
Rolf Haenni · Reto E. Koenig
Douglas Wikström (Eds.)

 123

LN
CS

 9
26

9

5th International Conference, VoteID 2015
Bern, Switzerland, September 2–4, 2015
Proceedings

E-Voting
and Identity

Lecture Notes in Computer Science 9269

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Rolf Haenni • Reto E. Koenig
Douglas Wikström (Eds.)

E-Voting
and Identity
5th International Conference, VoteID 2015
Bern, Switzerland, September 2–4, 2015
Proceedings

123

Editors
Rolf Haenni
Bern University of Applied Sciences
Biel
Switzerland

Reto E. Koenig
Bern University of Applied Sciences
Biel
Switzerland

Douglas Wikström
Royal Institute of Technology
Stockholm
Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-22269-1 ISBN 978-3-319-22270-7 (eBook)
DOI 10.1007/978-3-319-22270-7

Library of Congress Control Number: 2015944731

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers presented at VoteID 2015, the fifth edition of the
International Conference on E-Voting and Identity held during September 2–4, 2015,
in Bern, Switzerland. Previous VoteID conferences were held in Guildford, UK (2013),
Tallinn, Estonia (2011), Luxembourg (2009), and Bochum, Germany (2007). This
year’s VoteID conference was hosted by the Bern University of Applied Sciences.
There were 17 submissions by authors from 11 different countries. Each submission
was reviewed by at least three, and on average 4.3, Program Committee members in a
double-blind procedure. The committee decided to accept ten papers. The conference
program also included one keynote and three invited talks. The paper submission,
reviewing, and proceedings preparation process was supported by the EasyChair
conference management tool.

Bringing one of the world’s leading e-voting conferences to Switzerland was a
long-desired objective of the conference organizers. In Switzerland’s long tradtion of
federalism and direct democracy, frequent referendums are held on national, cantonal,
and communal levels. Citizens can vote about changes to the constitution or about
accepting new laws up to four times a year. This guarantees not only a maximum
amount of self-determination to the citizens, but is also an important stabilizing factor
for the political system of the country. In addition to the frequent referendums, regular
elections take place on all federal levels, usually every four years. Traditionally, voting
used to take place either at the ballot box in local election offices or at the cantonal
assembly (called Landsge- meinde) in a public space by raising hands. Both traditional
voting channels still exist today, but their importance has descreased with the general
introduction of postal voting on a national level in 1994. Today, postal voting is the
most common form of voting in Switzerland and is widely accepted.

Given the high frequency of referendums and elections, providing the most efficient
voting channels to Swiss voters is an obvious objective of Swiss election administra-
tions on all levels. It is therefore not surprising that Switzerland has been a pioneering
country not only in postal voting, but also in introducing remote voting over the
Internet. The first pilots in the cantons of Geneva and Zurich started almost 15 years
ago, and another pilot in the canton of Neuchâtel followed a few years later. All three
systems are still in use today and are used by multiple cantons. Just recently, they all
received a major update in the underlying security concept by introducing individual
verifiability based on confirmation codes. Further updates toward universal verifiability
are planned for the near future. The results of scientific research have therefore found
fertile soil in Switzerland’s fundamental democratic processes.

To establish a link between this year’s conference location and the general con-
ference topic, we invited Barbara Perriard, Head of the Political Rights Section of the
Federal Chancellery, to give a keynote talk on “Vote électronique: The Long Path
Towards the Digitalization of Political Rights.” She presented the past and the future
of the Swiss e-voting projects and outlined the strategy of the federal administration

and the cantons. We also invited Dr. Uwe Serdült from the Centre for Democracy
Studies Aarau (ZDA) to give a talk on “The Use and Users of Swiss Internet Voting.”
He presented Switzerland’s experience with e-voting from a political science per-
spective. On the more technical side of the topic, we had two invited talks by Prof.
Alex Halderman from the University of Michigan on “Security Analysis of Estonia’s
Internet Voting System” and by Prof. Steve Schneider from the University of Surrey on
“Verifiable Voting in Victoria: The vVote Project.”

We would like to thank everyone who helped in bringing this conference together:
the VoteID Steering Committee for their trust in putting this year’s edition into our
hands; the authors for their submissions; the Program Committee and the external
reviewers for their conscientious and timely efforts in reviewing and discussing the
submissions; the keynote speaker for her insights into the process of introducing
electronic voting in Switzerland; the invited speakers for delivering high-quality pre-
sentations on current research issues; the administration of the Swiss Federal Palace for
offering a free guided tour to all participants; and Scytl for their generous sponsorship
that allowed us to extend the list of invited speakers and to support students in
attending the conference. Finally, we thank our home institution, the Bern University of
Applied Sciences, for its support.

June 2015 Rolf Haenni
Reto E. Koenig

Douglas Wikström

VI Preface

Organization

Program Committee

Michael Alvarez California Institute of Technology, USA
Roberto Araujo Universidade Federal do Pará, Brazil
David Bernhard University of Bristol, UK
David Bismark Votato
Jeremy Clark Concordia University, Canada
Chris Culnane University of Surrey, UK
Eric Dubuis Bern University of Applied Sciences, Switzerland
Aleks Essex University of Waterloo, Canada
J. Paul Gibson Telecom & Management SudParis, France
Kristian Gjøsteen Norwegian University of Science and Technology,

Norway
Rajeev Gore The Australian National University, Australia
Jens Groth University College London, UK
Rolf Haenni Bern University of Applied Sciences, Switzerland
Hugo Jonker University of Luxembourg, Luxembourg
Reto E. Koenig Bern University of Applied Sciences, Switzerland
Robert Krimmer Tallinn University of Technology, Estonia
Ralf Kuesters University of Trier, Germany
Tal Moran IDC Herzliya
Stephan Neumann TU Darmstadt, Germany
Olivier Pereira Université Catholique de Louvain, Belgium
Peter Y.A. Ryan University of Luxembourg, Luxembourg
Steve Schneider University of Surrey, UK
Berry Schoenmakers Eindhoven University of Technology, The Netherlands
Carsten Schuermann IT University of Copenhagen, Denmark
Philip Stark University of California, Berkeley, USA
Vanessa Teague The University of Melbourne, Australia
Melanie Volkamer TU Darmstadt, Germany
Poorvi Vora The George Washington University, USA
Roland Wen The University of New South Wales, Australia
Douglas Wikström KTH Royal Institute of Technology, Sweden
Filip Zagorski Wroclaw University of Technology, Poland
Dimitrios Zissis University of the Aegean, Greece

Local Organizers

Eric Dubuis Bern University of Applied Sciences, Switzerland
Stephan Fischli Bern University of Applied Sciences, Switzerland
Rolf Haenni Bern University of Applied Sciences, Switzerland
Severin Hauser Bern University of Applied Sciences, Switzerland
Reto E. Koenig Bern University of Applied Sciences, Switzerland
Philipp Locher Bern University of Applied Sciences, Switzerland

Additional Reviewers

Chaidos, Pyrros
Müller, Johannes
Ronquillo, Lorena
Vogt, Andreas

VIII Organization

Contents

Real-World Election Systems

2015 Neuchâtel’s Cast-as-Intended Verification Mechanism 3
David Galindo, Sandra Guasch, and Jordi Puiggalí

Log Analysis of Estonian Internet Voting 2013–2014 19
Sven Heiberg, Arnis Parsovs, and Jan Willemson

The New South Wales iVote System: Security Failures and Verification
Flaws in a Live Online Election . 35

J. Alex Halderman and Vanessa Teague

Advanced Voting Protocols

Extending Helios Towards Private Eligibility Verifiability 57
Oksana Kulyk, Vanessa Teague, and Melanie Volkamer

Verifiable Internet Elections with Everlasting Privacy and Minimal Trust 74
Philipp Locher and Rolf Haenni

Vote Validatability in Mix-Net-Based eVoting . 92
Pedro Bibiloni, Alex Escala, and Paz Morillo

Making Code Voting Secure Against Insider Threats Using
Unconditionally Secure MIX Schemes and Human PSMT Protocols 110

Yvo Desmedt and Stelios Erotokritou

Other Topics

Document Analysis Techniques for Automatic Electoral Document
Processing: A Survey . 129

J. Ignacio Toledo, Jordi Cucurull, Jordi Puiggalí, Alicia Fornés,
and Josep Lladós

Machine-Checked Reasoning About Complex Voting Schemes
Using Higher-Order Logic . 142

Jeremy E. Dawson, Rajeev Goré, and Thomas Meumann

Experience Reports

Challenging an E-voting System in Court: An Experience Report 161
Richard Hill

Author Index . 173

http://dx.doi.org/10.1007/978-3-319-22270-7_1
http://dx.doi.org/10.1007/978-3-319-22270-7_2
http://dx.doi.org/10.1007/978-3-319-22270-7_3
http://dx.doi.org/10.1007/978-3-319-22270-7_3
http://dx.doi.org/10.1007/978-3-319-22270-7_4
http://dx.doi.org/10.1007/978-3-319-22270-7_5
http://dx.doi.org/10.1007/978-3-319-22270-7_6
http://dx.doi.org/10.1007/978-3-319-22270-7_7
http://dx.doi.org/10.1007/978-3-319-22270-7_7
http://dx.doi.org/10.1007/978-3-319-22270-7_8
http://dx.doi.org/10.1007/978-3-319-22270-7_8
http://dx.doi.org/10.1007/978-3-319-22270-7_9
http://dx.doi.org/10.1007/978-3-319-22270-7_9
http://dx.doi.org/10.1007/978-3-319-22270-7_10

Real-World Election Systems

2015 Neuchâtel’s Cast-as-Intended
Verification Mechanism

David Galindo, Sandra Guasch(B), and Jordi Puiggaĺı

Scytl Secure Electronic Voting, Barcelona, Spain
sandra.guasch@scytl.com

Abstract. Cast-as-intended verification seeks to prove to a voter that
their vote was cast according to their intent. In case ballot casting is made
remotely through a voting client, one of the most important dangers a
designer faces are malicious voting clients (e.g. infected by a malware),
which may change the voter’s selections. A previous approach for achiev-
ing cast-as-intended verification in this setting uses the so-called Return
Codes. These allow a voter to check whether their voting options were
correctly received by the ballot server, while keeping these choices pri-
vate. An essential ingredient of this approach is a mechanism that allows
a voter to discard a vote that does not represent their intent. This is
usually solved using multiple voting, namely, if the return codes received
by the voter do not match their choices, they cast a new vote. However,
what happens if voters are not allowed to cast more than one ballot (aka
single vote casting)? In this paper we propose a simple ballot casting
protocol, using return codes, for allowing a voter to verify votes in a sin-
gle vote casting election. We do so without significantly impacting the
number of operations in the client side. This voting protocol has been
implemented in a binding election in the Swiss canton of Neuchâtel in
March 2015, and will be the canton’s new voting platform.

Keywords: Electronic voting protocols · Binding election · Cast-as-
intended verifiability · Malicious voting client · Return codes

1 Introduction

Switzerland has a long history on direct participation of its citizens in deci-
sion making processes. Besides traditional elections where voters choose their
representatives in the Federal Assembly, citizens can participate in several other
voting events. Citizens can propose popular voting initiatives on their own (after
having obtained enough popular support by collecting signatures), and then par-
ties and governments themselves (at the communal, cantonal or federal level) can
organize referendums in order to ask the citizens for their opinion on a new law
or a modification of the Constitution, among others. At the end, Swiss citizens
have the chance to participate in 3–4 voting processes a year in average.

Remote electronic voting was first introduced in Switzerland in three cantons:
Geneva, Zurich and Neuchâtel [14]. The first binding trials were held in 2004.
c© Springer International Publishing Switzerland 2015
R. Haenni et al. (Eds.): VoteID 2015, LNCS 9269, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-22270-7 1

4 D. Galindo et al.

Nowadays 14 cantons offer the electronic voting channel to their electors, which
until recently has been restricted to be used by up to 10 % of the eligible voters.
In 2011 the Federal Council of Switzerland started a task force for studying the
security issues of electronic voting. As a result, the Federal Council published,
in 2013, a report with the requirements for extending the use of the electronic
voting systems to a larger part of the electorate. This framework [11], which
became binding in January 2014, provides requirements of functionality, security,
verifiability and testing/certification which allow the electronic voting systems
to be extended to 30 %, 50 % or up to 100 % of the electorate. More specifically,
while current electronic voting systems may be allowed to be used for up to
30 % of the electorate provided that they fulfil a certain set of functional and
security requirements, systems to be used for up to 100 % of the electorate are
required to additionally provide verifiability features. Although the modality of
electronic voting (DRE, remote, ...) is not specified in the report, it refers to
electronic voting systems where the vote is cast electronically. In this paper, we
will talk specifically of remote electronic voting systems.

Verifiability in remote electronic voting is traditionally divided in three types,
which are related to the phase of the voting process which is verified [5]. The first
step to audit is the vote preparation at the voting client application run in the
voter’s device. This application is usually in charge of encrypting the selections
made by the voter prior to casting them to a remote server so that their secrecy
is ensured. Cast-as-intended verification methods provide the voters with means
to audit that the vote prepared and encrypted by the voting client application
contains what they selected, and that no changes have been performed. Recorded-
as-cast verification methods provide voters with mechanisms to ensure that,
once cast, their votes have been correctly received and stored at the remote
voting server. Finally, counted-as-recorded verification allows voters, auditors
and third party observers to check that the result of the tally corresponds to
the votes which were received and stored at the remote voting server during the
voting phase.

According to the report by the Federal Council, systems to be used for up to
the 50 % of electors are required to provide methods for cast-as-intended verifi-
cation, and systems for up to 100 % of the electorate are required to addition-
ally provide methods for recorded-as-cast and counted-as-recorded verification,
while also enforcing the separation of duties on operations impacting the privacy,
integrity and verifiability of the system.

Our Contribution. In this paper we present a protocol which provides cast-
as-intended verification, according to the requirements of the Federal Council
for systems to be used by up to 50 % of the electorate. The protocol has the
particularity of only allowing voters to cast one vote through the electronic
channel, and therefore gives provisions for ensuring that such vote is considered
to be cast only in case that it represents the voter intention, by means of a
confirmation phase executed by the voter. The protocol is an evolution of the
so-called Norwegian voting protocol [15,16,23] that was used in the Norwegian
elections in 2011 and 2013. Importantly, it substantially improves the Norwegian

2015 Neuchâtel’s Cast-as-Intended Verification Mechanism 5

scheme by not needing to rely on the strong assumption that two independent
server-side entities do not collude to preserve voter privacy. Furthermore, the
scheme also represents a great performance improvement of the voting client
application compared with the original Puiggali-Guasch scheme [6], from which
the Norwegian scheme was initially derived.

This protocol has been implemented and used for a binding election in the
canton of Neuchâtel, in the federal referendum conducted on March 8th 2015.
From 111,080 eligible voters, 23,927 were registered at the citizen electronic
portal Guichet Unique [20] (from which the electronic voting application could
be accessed) and 5,132 chose to cast their vote electronically using this protocol,
which represents 21,45 % of the voters who had the chance to use the electronic
voting channel. General participation in the referendum, all voting channels
considered, was 41,24 %.

The paper is structured as follows: the related work and the main contribu-
tions are detailed in Sect. 2. The syntax and a formal description of the solution
are provided in Sect. 3. The building blocks and the instantiation of the protocol
implemented for the election in Neuchâtel are presented in Sects. 4 and 5. Then,
some details on the usability and verifiability aspects are provided in Sect. 6.
Finally, an informal analysis on the security aspects of the protocol is provided
in Sect. 7 and the conclusions are shown in Sect. 8.

2 Related Work

There have been several proposals of cast-as-intended verification schemes dur-
ing the last decade. In [9], Benaloh presents the Immediate decryption scheme,
where the voter’s device encrypts a vote and the voter is allowed to challenge
the encryption generated. In case they choose to challenge it, the device reveals
the randomness which was used to perform the encryption of the voting options.
Using this randomness, the voter can check that the encrypted vote was con-
structed correctly. After the audit, the voting options are encrypted again with
fresh randomness prior to casting the vote, so that the voter cannot use the
randomness provided for audit as a proof to a third party of how they voted.
However, this approach presents several drawbacks, such as usability (this ran-
domness is a rather large string, cumbersome to be typed by a voter), and the
fact that it does not allow for simple verification (i.e. verification must be done
using a secondary computing device, under the assumption that at least one
of the two devices is not compromised). This approach is used by the Helios
voting system [2–4] and in the Wombat system [24]. A similar approach is used
in VoteBox [25], by disclosing audited votes in the poll station local network in
order to allow them to be verified.

A different approach consists on using the so-called return codes, which are
targeted against malicious voting clients while enjoying some degree of usability
[6,15,18,19,23]. In these proposals the voter selects their voting options and the
voting client sends an encrypted vote to the remote voting servers, where return
codes are calculated from the encrypted vote and sent back to the voter for ver-
ification. Voters possess a verification card where return codes (pre-computed

6 D. Galindo et al.

in a configuration phase) are shown against matching voting options, and veri-
fication can be made by rather simple visual inspection. The current proposals
assume that the voter can cast multiple votes. If the return codes do not match
the selected voting options, then voters can cast another vote that invalidates
the previous one (typically, this would happen if the voting client is malicious
and encrypts voting options independently of the voter). However, some coun-
tries do not allow voters to cast multiple votes (such as France or Switzerland
[11,22]), so it is important to provide a proposal for these cases. Still, multiple
voting is also used as a countermeasure for vote selling and voter coercion in
such schemes, so they have to be taken into account when single voting is used1.

One possible solution to support single vote casting is to add a confirmation
phase to validate the vote after checking the return codes. In the first phase, the
vote is encrypted and sent to the voting server, which calculates the return codes,
stores the vote and communicates the return codes to the voter. In the second
phase, the voter, after inspection of the return codes, sends a confirmation code
to the voting server, that stores it together with the ballot as a proof that the
vote has been confirmed by the voter. Only votes with a valid voter confirmation
code will be taken into account during the tally phase.

The return codes are computed from the probabilistic encryption of voting
options, but at the same time they have to be deterministic: during the vot-
ing phase, the values computed by the server-side from an encrypted vote have
to match those computed during the verification card generation phase (which
happens at election configuration time) for the same set of voting options. There-
fore, the randomness from the voting options encryption has to be removed for
computing the return codes, which poses a serious risk on the vote secrecy. This
was solved in the Norwegian voting system [15,16,23] by splitting the genera-
tion of the return codes in two independent entities: a ballot box server and a
code generation server, which were assumed not to collude. To prevent these
components from colluding and compromising the election privacy [15,16], both
components were located in independent locations and managed by different
companies. However, this approach is not always feasible to implement (the
economic and organizational cost of setting up two different and independent
environments are high).

In contrast, in the Puiggali-Guasch [6] scheme one of the previous indepen-
dent entities is embedded in the voting client application. In their proposal there
is no need of two separate components at the server-side of the voting platform,
although then vote casting becomes computationally more expensive for the vot-
ing client (2,5 times more exponentiations than in the Norwegian protocol are
required approximately). This is important considering the fact that the cryp-
tographic operations done at the voting application level are often performed
using web technologies such as Java Applets or Javascript, so the performance
is slowed down when compared to a C/assembly implementation that uses lower

1 For example, the risk of voter coercion or vote selling in Switzerland is assumed to
be affordable given the fact that many voters already use the postal channel.

2015 Neuchâtel’s Cast-as-Intended Verification Mechanism 7

level instructions. Naturally, ballot construction and casting needs to be executed
in an acceptable time-frame to prevent voter disenfranchisement.

In this paper, we present a modification of the protocol [23] which, while
very similar to [6] in the sense that it moves the operations of one of the server-
side entities to the voting client application, reduces dramatically the number of
operations to be performed at the voting client application (as it will be shown
in Sect. 5, the cost of encryption and of proofs computation does not depend
on the number of options anymore). Moreover, we add a confirmation phase in
order to support single vote casting, so that it fulfils the requirements of the
Swiss Federal Council [11].

3 Single Voting with Return Codes

We start by presenting a syntax for a voting scheme with return codes, which
will be later used to describe the protocol2. We build on existing definitions of
single-pass voting schemes, such as [10], and enrich them by adding a second
interaction of the voter with the system, in order to confirm a cast vote.

3.1 Syntax

The scheme has the following participants: Election Authorities, who are in
charge of setting up the election, computing the tally and publishing the results;
Voters, who participate in the election by choosing their preferred options; Reg-
istrars, who are responsible for providing to the voters all the information they
need to vote and, in particular, the return codes that provide the cast-as-intended
integrity property; the Voting Server, which receives, processes and stores the
ballots cast by eligible voters in the Ballot Box, and may as well publish some
information; the Voting Device, which is in charge of casting a ballot given the
voting options selected by the voter; the Code Generator, which is in charge
of generating return codes from the ballots cast by the voting device. Finally,
Auditors, who are responsible for verifying the integrity of the procedures run
in the counting phase.

We assume that non-cryptographic election specifications such as the sets of
administrators and voter identities are fixed in advance. Furthermore we assume
a counting function ρ : (V ∪ {⊥})n → R is given, where V s is the set of voting
options, ⊥ denotes abstention, n is the number of voters and R is the set of
results. Voters may use credentials in order to be able to cast their ballots.
However, how the voters obtain and use such credentials is out of the scope of
this presentation.

There exists a public bulletin board PBB to which every algorithm in the
voting scheme has read-only access to. As is common in the literature, some
authorized parties have writing append-only access to it.
2 As usual, the terms “scheme” and “protocol” can be read interchangeably without

much loss of precision.

8 D. Galindo et al.

The voting scheme is characterized by the following protocols/algorithms:

– Setup(1λ) is an interactive protocol run by the election authorities. On input a
security parameter 1λ, it generates and outputs an election public key pke and
an election private key ske. In addition, it generates a global code generation
public/private key pair (pkc, skc), a signing public/private key pair (pks, sks),
and the set of values which will represent the voting options: V = {v1, . . . , vk}.
The public keys pke, pkc and pks, and the set of voting options V , are implicit
inputs to the remaining algorithms.

– Register(id, skc, sks) is an interactive protocol run by the registrars. It takes
as input a voter identity id, the global code generation private key skc and the
signing private key sks. It outputs a voter’s code generation public/private
key pair (pkid, skid), a set of voter return codes linked to voting options
{vi, RCidi }k

i=1, a voter confirmation value CVid, a voter finalization value FCid

and a validity proof for such finalization code, ΠFCid . Additionally, the regis-
trars publish a set of reference values {RFidi }k

i=1 that are linked to the codes
{RCidi }k

i=1. We sometimes refer to the set
{{vi, RCidi }k

i=1, CV
id, FCid

}
as the

Verification Card.
– Vote(id, skid, {vj1 , . . . , vjt}) is a probabilistic algorithm run at the voting

device. It receives as input a set of values {vj1 , . . . , vjt}, the voter identifier
id ∈ ID and the voter’s code generation private key skid; outputs a ballot b.

– ProcessBallot(BB, b, id, pkid) is run by the voting server. It receives as input a
ballot box BB, a ballot b, an identity id and a voter’s code generation public
key pkid. It outputs 1 in case of success, 0 otherwise.

– RCGen(b, id, skc) is an algorithm run by the code generator. On input a ballot
b, the voter identifier id and the global code generation private key skc, it
outputs an (unordered) set of return codes {RCid} if the operation is successful,
or ⊥ in case of error/rejection. Typically this algorithm will look-up at PBB
to check the list of legitimate reference values

{{RFidi }k
i=1

}
id∈ID

.
– RCVerif({vj1 , . . . , vjt}, {RCid}, {vi, RCidi }k

i=1) is an algorithm run by the voter.
On input a set of voting options {vj1 , . . . , vjt}, a set of return codes {RCid}
and a voting card {vi, RCidi }k

i=1, it outputs 1 if {RCidji }t
i=1 = {RCid} as sets, 0

otherwise.
– Confirm(CVid, id, skid) is a simple algorithm run by the voting device. On

input a voter confirmation value CVid, the voter identity id, and the voter
code generation private key skid, it outputs a confirmation message CMid.

– FCGen(CMid, id, skc,ΠFCid) is an algorithm run by the code generator. It
receives as input a confirmation message CMid, a voter identity id, the global
code generation private key skc and the proof ΠFCid . It outputs a finalization
code FCid if the operation is successful, or ⊥ in case of error/rejection.

– Tally(BB, ske, {ΠFCid}id∈ID) is an interactive protocol run by the election
authorities. It takes as input the ballot box BB, the election private key ske

and the set of validity proofs {ΠFCid}id∈ID. It outputs a result r ∈ R and a
proof π of the tally correctness, or ⊥.

– Verify(PBB, r,π) is an interactive protocol run by the auditors/election
observers. It takes as input the bulletin board PBB, the tally result r and

2015 Neuchâtel’s Cast-as-Intended Verification Mechanism 9

the proof π of correct tally. The output is 1 if their verification succeeds, 0
otherwise.

3.2 Workflow

Configuration Phase: Election authorities define the set ID of voter identities
participating in the election and run the Setup algorithm. They publish the
election public key pke, the global code generation public key pkc, the set of
voter identities ID, the signing public key pks and the set of voting options V in
the bulletin board. They provide the global code generation private key skc to
both the registrars and the code generator. Finally the signing private key sks

is provided to the registrars.

Registration Phase: Voters register to participate in the election. To register, a
voter first provides their identity id ∈ ID to the registrars, who run the Register
algorithm. The outputs (pkid, skid), {vi, RCidi }k

i=1, CV
id, and FCid are provided

to the voter, while the voter’s code generation public key pkid, the proof ΠFCid

and the reference values {RFidi }k
i=1 are published in the bulletin board PBB.

Voting phase: This phase consists of several steps:

1. The voter authenticates through the voting device to the voting server. If
the authentication is successful, the values id, pkid are stored in the voting
device. The voter chooses a set of voting options {vj1 , . . . , vjt} ∈ V and enters
them into the voting device as her choices for the election, together with the
private key skid

3. The voting device then runs the Vote protocol and produces
a ballot b. The ballot b and the voter identity id are sent to the voting server.

2. Upon reception of (b, id), the voting server calls the ProcessBallot algorithm.
In case the result of the execution is 1, the ballot box BB is updated with the
ballot b and the voter identity id, with the state ballot received. Otherwise,
the voting device is notified of the error.

3. The code generator is notified of the new update in BB and executes the
RCGen algorithm with the newly arrived ballot. In case the operation is suc-
cessful, a set of return codes {RCid} is generated and sent to the voting server,
which updates the status of the ballot in the BB to return code generated, and
forwards the return codes to the voting device. In case the operation is not
successful the voting device is notified accordingly.

4. The voting device shows the voter the set of generated return codes {RCid}.
The voter is then asked to confirm the ballot cast by providing the confir-
mation value CVid to the voting device, which they will do only in case the
RCVerif algorithm accepts. The voting device then runs Confirm and outputs
a confirmation message CMid, which is sent to the voting server together with
the voter identity id.

3 How this key is provided to the voting device in the Neuchâtel protocol is explained
in Sect. 6.1.

10 D. Galindo et al.

5. The voting server forwards the confirmation message CMid to the code gener-
ator, which executes the FCGen algorithm. If the operation is successful, the
resulting finalization code FCid is sent back to the voting sever, which stores it
together with the ballot, updates the ballot status to confirmed and forwards
FCid to the voting device. In case the operation is not successful, the voter is
notified accordingly.

6. Finally, the voter checks whether the displayed finalization code FCid matches
the value FCid received during registration. In case of a successful verification,
the received finalization code serves the voter as a confirmation of the correct
submission and confirmation of their vote. Otherwise, they complain to the
election administrators, and might need to cast their vote using a different
channel (i.e. at a polling station).

Counting Phase: The election authorities run the interactive protocol Tally on
BB, obtaining and publishing in the bulletin board the result r and the proof π,
or set r =⊥ in case of error. The auditors run the Verify protocol. In case their
output is 1, the result r is announced to be fair. Otherwise, an investigation is
opened to detect the reason of failure.

3.3 Trust Assumptions

The following conditions are assumed in order to provide cast-as-intended veri-
fication and voter privacy with the proposed protocol:

For cast-as-intended verifiability, it is assumed that the following entities,
as pairs, are not simultaneously malicious: the voting device and (1) the code
generator, (2) the registrar, or (3) the voting server; (4) the code generator and
the registrar.

For privacy, the following conditions are necessary: (1) the voting device
is not compromised; (2) the election authorities are honest; (3) the verification
card contents are only known to the voter.

4 Building Blocks

Encryption scheme. Our protocol uses the ElGamal asymmetric encryption
scheme [13], which consists of three algorithms: key generation, encryption and
decryption (KGen,Enc,Dec). The key generation algorithm KGen takes on input
a subgroup G which has a generator g of order q of elements in Z

∗
p, where p is a

safe prime such that p = 2q +1 and q is a prime number. It outputs an ElGamal
public/secret key pair (pk, sk), where pk ∈ G such that pk = gsk mod p and
sk ∈ Zq. On input m ∈ G and the public key pk, the Enc algorithm chooses a
random r ∈ Zq and computes (c1, c2) = (gr, pkr ·m). The Dec algorithm receives
(c1, c2) and the private key sk and outputs m = c2/csk

1 .

Voting options. The voting options V = {v1, . . . , vk} are chosen as small
bit-length primes belonging to the group G. A vote is encoded as the product
of voting options chosen by the voter (prior to encryption), and the individual

2015 Neuchâtel’s Cast-as-Intended Verification Mechanism 11

voting options are recovered via factorisation after decryption. Therefore, it has
to be ensured that the product of t of such primes, where t is the number of
selections a voter can make, is not larger than p.

Pseudo-random function family. A function family is a map F : K × D →
R, where K is the set of keys, D is the domain and R is the range. A pseudo-
random function family (PRF) is a family of efficiently computable functions,
with the following property: a random instance of the family is computationally
indistinguishable from a random function, as long as the key remains secret. We
use the HMAC algorithm as a PRF [7], parametrized by the key K.

Signature scheme. A signature scheme is defined by three probabilistic algo-
rithms SignKeyGen,Sign,SignVerify, that stand for key generation, signature
generation and signature verification. Our protocol uses the RSA signature algo-
rithm with the hash variant (or RSA Full Domain Hash signature scheme (RSA-
FDH) [8]), therefore the key generation algorithm SignKeyGen outputs a pair of
keys (pks, sks), for which pks = {pkrsa, Nrsa}, Nrsa = p ·q where p and q are two
distinct primes, and sks = skrsa. The signature algorithm Sign takes as input a
message m, which is not restricted to a specific space, and the private key sks,
and outputs σ = H(m)skrsa mod Nrsa, where H denotes a hash function. The
signature verification algorithm SignVerify takes as input the public key pks, the
message m and the signature σ, and checks that H(m) = σpkrsa mod Nrsa. It
outputs 1 if successful, 0 otherwise.
Non-interactive zero-knowledge proofs of knowledge. We use

EqDLG(g1, . . . , gn, h1, . . . , hn),

a generalization of the NIZK proof system [12], to prove in zero-knowledge that
logg1

h1 = logg2
h2 = . . . = loggn

hn for g1, . . . , gn, h1, . . . , hn ∈ G (with proof
builder ProveEq and proof verifier VerifyEq); and the NIZK proof system [26]
PrDLG(g, h) to prove in zero-knowledge the knowledge of logg h for g, h ∈ G

(with proof builder ProveDL and proof verifier VerifyDL). G is a hash function
mapping strings to Zq.

5 A Protocol for Cast-as-Intended Verification
with Single Voting

The protocol implemented for the elections in Neuchâtel consists of the following
algorithms:

– Setup(1λ): the algorithm chooses a group G and runs KGen to generate an
encryption key pair (pk, sk). As discussed before, the voting options V =
{v1, . . . , vk} are chosen as small bit-length primes belonging to the group G.
The algorithm then generates a random K to choose a pseudorandom function
fK ∈ F , and chooses hash functions H,G.
The election public key is pke = (pk,G,H,G), and the election private key
is ske, where ske = sk if there is only one trustee; alternatively ske consists

12 D. Galindo et al.

of the shares of sk if there are several trustees (for instance, by using [21]).
Finally, the global code generation key pair is set to pkc =⊥, skc = K, and
SignKeyGen is run and the result is set to be the signing key pair (pks, sks)4.

– Register(id, skc, sks): the algorithm runs KGen with input G to generate a
keypair (pk, sk) which is set to be the voter public/private code generation5

key pair (pkid, skid) ∈ G×Zq. Then it generates the voter confirmation value
CVid by selecting a random element from G. For each voting option vi ∈ V it
computes the corresponding return code RCidi = fskc

(vskid

i), and computes the
finalization value FCid = fskc

((CVid)skid). The validity proof for the finalization
code ΠFCid is computed by running Sign(FCid, sks). Finally, the set of reference
values {RFidi }k

i=1 is generated by computing RFidi = H(RCidi) for each return
code.

– Vote(id, skid, {vj1 , . . . , vjt}): the algorithm receives the voting options selected
by the voter as input, sets v =

∏t
l=1 vjl and encrypts them, obtaining

(c1, c2) = Enc(pk, v). The algorithm then makes a partial computation of the
return codes corresponding to such voting options using the voter private key
skid: (vskid

j1
, . . . , vskid

jt
)6. Finally, it also computes (cskid

1 , cskid

2). The following
NIZK proofs are computed to prove the correct computation of these values:

• A proof πenc ← ProveDL(g, c1), which proves knowledge of the random-
ness used for computing the encryption of v.

Two proofs to demonstrate that the voting options in the ciphertext (c1, c2)
and the voting options used to for the partial computation of return codes are
the same:

• A proof πexp ← ProveEq(g, c1, c2, pkid, c
skid

1 , cskid

2) which proves that
(cskid

1 , cskid

2) are computed by raising the ciphertext (c1, c2) to the voter’s
code generation private key skid corresponding to the public key pkid.

• A proof πprod ← ProveEq
(
g, pk, cskid

1 , cskid

2 · (vskid

j1
, . . . , vskid

jt
)−1

)
which

proves that the ciphertext (cskid

1 , cskid

2) is the encryption of the product
(vskid

j1
· · · vskid

jt
) under the election public key pke.

The result of the above computations is a ballot b consisting of

b =
(
id, (c1, c2), (vskid

j1
, . . . , vskid

jt
), (cskid

1 , cskid

2), pkid, π
enc

, π
exp

, π
prod

)
.

4 Note that skc is not considered to be divided in shares in this protocol. This is due
to the fact that the secrets for computing the return codes (skc and skid) belong
to two different entities that are assumed not to collude for providing vote secrecy.
However, distributing skc might be considered to weaken the trust assumptions.

5 Notice that this is formally an encryption key pair, but it is being used here differ-
ently.

6 As explained in Sect. 2, return codes have to be computed between two entities which
are assumed not to collude, in order to ensure vote secrecy. In this implementation,
the voting device computes a partial computation in the Vote algorithm, while the
voting server computes the final values in the ProcessBallot algorithm.

2015 Neuchâtel’s Cast-as-Intended Verification Mechanism 13

– ProcessBallot(BB, b): in the first place, the algorithm checks if there already
exists a ballot for the voter identity id in the ballot box BB; if this is the
case, it outputs 0. Otherwise, it continues by validating the NIZK proofs
πenc,πexp,πprod. In case all the validations are successful, 1 is returned.

– RCGen(b, id, skc): the algorithm computes the set of return codes contained
in ballot b as follows:

• Computes the final return code value RCidjl = fskc
(vskid

jl
) for each of the

partially computed return codes (vskid

j1
, . . . , vskid

jt
) from b.

• Checks that
{
RCidj1 , . . . , RC

id
jt

}
is a subset of {RFidi }k

i=1. In a positive case,

the set of return codes {RCid} =
{
RCidj1 , . . . , RC

id
jt

}
is output. In a negative

case, ⊥ is returned.
– Confirm(CVid, id, skid): the algorithm computes CMid = (CVid)skid .
– FCGen(CMid, id, skc,ΠFCid): runs SignVerify(pks, FCid,ΠFCid), where FCid =

fK(CMid). FCid is returned if the signature verification is successful, ⊥ oth-
erwise.

– Tally(BB, ske, {ΠFCid}id∈ID): for all the ballots in the ballot box which have
a finalization code FCid stored together with the ballot, this algorithm runs
SignVerify(pks, FCid,ΠFCid) to select the ones which have been confirmed by
the voters. The resulting set is shuffled, and then for each ballot it runs
Dec({c1, c2}, ske) and obtains the cleartext v (in case ske was divided in
shares, a secret reconstruction algorithm [21] is used to recover the private
key previous to decryption). The cleartext v is factorized to recover from
v = vβ1

1 · · · vβk

k the factors vi such that βi = 1. The small primes representing
the voting options vi are then used to compute the final result r.

6 Usability and Vote Correctness Layers

The protocol described in the previous sections may pose significant usability
problems to the voters. In order to cast a vote, the voter is asked to type in the
voting device a series of secret values from their voting card, such as the confir-
mation value CMid and the private key skid. In order to confirm their vote, the
voter is asked to compare the return codes RCid shown by the voting device with
those in their verification card. The same applies to the finalization code FCid.

The problem is that, according to current cryptographic key length recom-
mendations [1], the aforementioned values have a length of 256 or 2048 bits,
depending on whether they are the output of a symmetric or an asymmetric key
cryptographic operation. To be more concrete, in case a Base32 encoding is used
to represent such values, this implies 52 and 410 characters, respectively. It is
clearly not realistic to ask a voter to perform such task.

Therefore, an additional layer for improving usability is required on top of
the protocol from Sect. 5. This layer allows to reduce the length of the values
in the verification card, and to provide the voter’s code generation key to the
voting device in a way that is transparent to the voter. This usability layer was
used in the referendum conducted in Neuchâtel.

14 D. Galindo et al.

6.1 Private Key Provision

Details about the authentication layer have been deliberately omitted in previous
sections, for the sake of clarity. In Neuchâtel there are two layers of authenti-
cation: the first one is handled by the citizen portal Guichet Unique [20], and
the second one is managed by the electronic voting system. This second layer
consists on a username/PIN-based authentication. The PIN is generated during
registration and printed onto the voter’s verification card, while the username
is provided by the first layer of authentication, i.e. the Guichet Unique. The
authentication layer managed by the electronic voting system is used not only
to qualify a user as an authorized voter in the election, but also to transparently
provide her with some cryptographic secrets, such as the voter’s code generation
key pair (pkid, skid).

6.2 Short Return Codes

The usability layer is in charge of generating short values {sRCid}k
i=1, sFC

id, that
are printed in the verification card. One key ingredient of this layer is the length
of such values, which actually represents a neat trade-off between usability and
security: the longer they are, the harder it is to guess them by a corrupted voting
device, but the harder is to use them by the voter. Specifically, in Neuchâtel they
are of 4 and 7 numeric digits respectively7.

Additionally, the registrar secretly generates a table which relates each code
sRCidi or sFCid to the corresponding long codes RCidi or FCid. We call this table
the mapping table, and mapping to each one of the correspondences. During the
voting phase, the code generator uses this table to obtain the corresponding
short codes. The mapping table is designed to be an injective function from
codes {RCid}k

i=1, FC
id to short codes {sRCid}k

i=1, sFC
id.

Our implementation of the mapping table contains one entry for each (long)
return code RCidi of the form: [H(RCidi), ERCidi

(sRCidi)], where H denotes a hash
function, and Ek(m) denotes the encryption of the message m with a symmetric
encryption algorithm8 and a secret key k.

An additional entry is computed in the same way with the (long) finalization
code FCid and the short finalization code sFCid.

6.3 Vote Correctness

Additionally, we use the mapping table to ensure that a ballot that is accepted
by the voting server, contains valid choices as per the election. For example, in
case a ballot contains some v′

j �∈ V , the (long) return code computed by the code

7 Since the voting device has only one chance to show the values to the voter, a brute
force attack succeeds with probability at most 10−4t in changing the value of t voting
choices without detection.

8 The SHA-256 hash and the AES-128 symmetric encryption algorithms are used in
the implementation made in Neuchâtel.

2015 Neuchâtel’s Cast-as-Intended Verification Mechanism 15

generator as fskc
(v′skid

j) will not find an entry on the mapping table described
above (and the same happens for the reference values {RFidi }k

i=1 in the underlying
protocol). Moreover, there is other information that can be checked: imagine the
scenario where a voter can select one party list, and then can give some weight
to individual candidates. Metadata can be added to the return code mechanism,
so that it is verified that a vote contains voting options which fulfill this rule
without breaking the voter privacy.

In the case of the Neuchâtel voting protocol, type identifiers such as ′party′

or ′candidate′ are added in the ballot cast by the voter, and then used to
compute the return codes at the server. The ballot cast by the voter, then, has
the following contents:

b =
(
id, (c1, c2), (vskid

j1
-′party′, . . . , vskid

jt
-′candidate′), (cskid

1 , cskid

2), pkid, . . .
)

In a first step the type identifiers are checked (in the example, that there is
only one type identifier for party list and that the rest are for candidates). In the
second step, these type identifiers are added to the computation of the return
codes:

RCidjl = fskc
(vskid

jl
vskid

jl
, ′party′ or ′candidate′),

where ’,’ denotes a concatenation. The same is done in the configuration
phase, when generating the mapping table. Therefore, an invalid combination of
partial return code (vskid

jl
) and of type identifier will result on an entry of the

table only with negligible probability, given the properties of cryptographic hash
functions.

7 (Informal) Security Analysis

The protocol is focused on preventing a corrupt voting client from changing
the voter intention without being detected, while maintaining the privacy of
such voter in front of a malicious voting server/code generator. In this section
we informally discuss how these security properties are fulfilled given the trust
assumptions presented in Sect. 3.3.

7.1 Cast-as-Intended Verifiability

The voting device can try to modify the voter’s intention without detection in
two ways: (i) by showing to the voter return codes which do not correspond to
the maliciously modified contents of the vote (but that correspond with those
of the voter’s choices); (ii) by confirming a vote without the participation of the
voter.

For the first attack, the voting device could try to send a ballot where the
encrypted options do not correspond to the partial computation of return codes.
However, in that case the proofs πexp,πprod would not be successfully verified by
the voting server. The collaboration of the code generator is needed to generate

16 D. Galindo et al.

the return codes. However, the only way the code generator receives a ballot cast
by the voting device is that the voting server verifies the proofs first. Therefore,
the code generator and the voting device cannot collaborate in case of a honest
voting server and the only strategy the voting device can follow is to guess the
return codes the voter expects. A brute force attack cannot be done in this case,
since the voter will detect consecutive attempts of displaying wrong return codes.

A possibility for the second attack is that the voting device generates a fake
cofirmation message, so that the code generator computes a fake finalization
value. Even in case the code generator does not verify the proof of validity of
this finalization value (because it colludes with the voting device), the election
authorities or the auditors would detect that it is fake at the counting or audit
phases, so that the vote would not be counted. The alternative is that the voting
device guesses a valid confirmation message. In order to limit the possibility of
a brute force attack, the voting server allows a limited number of retries.

7.2 Privacy

Privacy in electronic voting is understood as the property of maintaining the
intention of a voter unknown. Besides recovering the voter selections or the
encryption randomness from the voting device (which we assume that cannot
happen because for privacy the voting device is assumed to be honest), there are
two ways to attack the voter privacy in this scheme.

The first one is to target the voting options encryption. This can be done
by brute forcing the encryption, by decrypting the votes without shuffling them
(so that they could be connected to the voter’s identities), or by recovering
the shuffling permutation. However, according to the assumptions previously
detailed and using a strong encryption algorithm, none of these attacks are
feasible.

The second attack is to target the return code generation mechanism. The
ballot cast by the voter includes some partial computations of the return codes,
which consist on the voter selections raised to some exponent known by the
voting device. As far as it does not reveal such secret exponent, neither the
voting server nor the code generator (even in coalition) can compute back the
voter’s original voting options (see [15] for the analysis). Given that the relation
between return codes and voting options is only known to the voter, neither the
voting server nor the code generator (or any third party who could have access to
them) can use the generated return codes to infer which are the choices selected
by the voter.

Finally, a voter cannot copy a vote of another voter and cast it as it was theirs,
so that they receive return codes matching those in their voting card. In order
to do that they need to compute the exponentiation the original selections to an
exponent they know (while not knowing the selections themselves). Otherwise,
they would get return codes that they would not be able to understand (because
they would belong to another verification card).

2015 Neuchâtel’s Cast-as-Intended Verification Mechanism 17

8 Conclusions

In this paper, we have presented a technique for cast-as-intended verification
in the case of single voting. This mechanism improves on the performance and
infrastructure requirements of previous proposals using return codes. Besides a
syntax (that could be useful to design other return code-based voting protocols)
and a formal description of the scheme, we have provided various details on the
implementation of this mechanism for the new Internet voting platform of the
Swiss canton of Neuchâtel, where it has already been used for a binding federal
election in March 2015. These details include techniques applied to improve
the usability of the system, and to check that the contents of an encrypted
vote are correct before being added to the ballot box, without breaking vote
privacy. Finally, an informal security analysis has been provided. As a future
work we foresee the formalization of the security properties of the scheme and a
rigorous study of their fulfillment, as well as further improvements with respect
to usability and computational cost.

Acknowledgements. We are thankful to the comments and suggestions made by the
anonymous reviewers.

References

1. Crytographic key length recommendation (2015). http://www.keylength.com
2. Adida, B.: Helios: web-based open-audit voting. In: van Oorschot, P.C. (ed.)

USENIX Security Symposium, pp. 335–348. USENIX Association, Berkeley (2008)
3. Adida, B., de Marneffe, O., Pereira, O.: Helios voting system. http://heliosvoting.

org
4. Adida, B., de Marneffe, O., Pereira, O., Quisquater, J.J.: Electing a university

president using open-audit voting: analysis of real-world use of Helios. In: Pro-
ceedings of the 2009 Conference on Electronic Voting Technology/Workshop on
Trustworthy Elections (2009)

5. Adida, B., Neff, C.A.: Ballot casting assurance. In: Wallach, D.S., Rivest, R.L.
(eds.) 2006 USENIX/ACCURATE Electronic Voting Technology Workshop, EVT
2006, Vancouver, BC, Canada, 1 August 2006. USENIX Association (2006)

6. Allepuz, J.P., Castelló, S.G.: Internet voting system with cast as intended verifica-
tion. In: Kiayias, A., Lipmaa, H. (eds.) VoteID 2011. LNCS, vol. 7187, pp. 36–52.
Springer, Heidelberg (2012)

7. Bellare, M.: New proofs for NMAC and HMAC: security without collision-
resistance. Cryptology ePrint Archive, Report 2006/043 (2006)

8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security. CCS 1993, pp. 62–73. . ACM, New York (1993)

9. Benaloh, J.: Simple verifiable elections. In: Proceedings of the USENIX/Accurate
Electronic Voting Technology Workshop 2006. EVT 2006, p. 5. USENIX Associa-
tion, Berkeley (2006)

10. Bernhard, D., Pereira, O., Warinschi, B.: On necessary and sufficient conditions
for private ballot submission. Cryptology ePrint Archive, Report 2012/236 (2012)

http://www.keylength.com
http://heliosvoting.org
http://heliosvoting.org

18 D. Galindo et al.

11. Chancellery, S.F.: Explications relatives à l’ordonnance de la chancellerie fédérale
sur le vote électronique (OVotE) (2013). http://www.bk.admin.ch/themen/pore/
evoting/07979

12. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

13. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

14. Gerlach, J., Gasser, U.: Three case studies from Switzerland: E-voting (2009)
15. Gjøsteen, K.: Analysis of an internet voting protocol. Cryptology ePrint Archive,

Report 2010/380 (2010)
16. Gjosteen, K.: The Norwegian internet voting protocol. Cryptology ePrint Archive,

Report 2013/473 (2013)
17. Kripp, M.J., Volkamer, M., Grimm, R. (eds.): 5th International Conference on

Electronic Voting 2012, (EVOTE 2012), Co-organized by the Council of Europe,
Gesellschaft für Informatik and E-Voting.CC, 11–14 July 2012, Castle Hofen, Bre-
genz, Austria, LNI, vol. 205. GI (2012)

18. Lipmaa, H.: Two simple code-verification voting protocols. Cryptology ePrint
Archive, Report 2011/317 (2011)

19. Malkhi, D., Margo, O.: E-voting without ‘Cryptography’. In: Blaze, Matt (ed.) FC
2002. LNCS, vol. 2357. Springer, Heidelberg (2003)

20. Neuchatel: Guichet unique citizen portal. https://www.guichetunique.ch/
21. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

22. Pinault, T., Courtade, P.: E-voting at expatriates’ MPs elections in France. In:
Kripp et al. [17], pp. 189–195

23. Puigalli, J., Guasch, S.: Cast-as-intended verification in Norway. In: Kripp et al.
[17], pp. 49–63

24. Rosen, A., Ta-shma, A., Riva, B., Ben-Nun, J.: Wombat voting. http://www.
wombat-voting.com/

25. Sandler, D., Derr, K., Wallach, D.S.: Votebox: a tamper-evident, verifiable elec-
tronic voting system. In: van Oorschot, P.C. (ed.) USENIX Security Symposium,
pp. 349–364. USENIX Association, Berkeley (2008)

26. Schnorr, C.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

http://www.bk.admin.ch/themen/pore/evoting/07979
http://www.bk.admin.ch/themen/pore/evoting/07979
https://www.guichetunique.ch/
http://www.wombat-voting.com/
http://www.wombat-voting.com/

Log Analysis of Estonian Internet
Voting 2013–2014

Sven Heiberg1, Arnis Parsovs2,3, and Jan Willemson4(B)

1 Smartmatic-Cybernetica Centre of Excellence for Internet Voting,
Ülikooli 2, Tartu, Estonia

2 Software Technology and Applications Competence Centre,
Ülikooli 2, Tartu, Estonia

3 Institute of Computer Science, Tartu University, J. Liivi 2, Tartu, Estonia
4 Cybernetica, Ülikooli 2, Tartu, Estonia

jan.willemson@gmail.com

Abstract. This paper presents analysis of Internet voting system logs of
2013 local municipal and 2014 European Parliament elections in Estonia.
We study both sociodemographic characteristics of voters and technical
aspects of voting. Special attention is paid to voting and verification
sessions that can be considered irregular (e.g. inability to cast a valid
vote or failed verifications). We observe several interesting phenomena,
e.g. that older people are generally faster Internet voters and that women
use the vote verification option significantly less than men.

1 Introduction

The 2011 parliamentary elections were a significant landmark in Estonian i-
voting. The share of votes cast over the Internet reached the as high as 24.3 % [7].
Such a share makes Internet voting an appealing target for various attackers, and
indeed, several different attacks were observed in 2011 [9]. The most interesting
one was proposed by a student who developed a proof-of-concept vote-rigging
malware that exploited the lack of a feedback channel in 2011 elections.

As a result of these events, Estonian National Electoral Committee (NEC)
took the initiative to improve the security of Internet voting in various ways.
The i-voting protocol was extended by adding a new scheme providing cast-as-
intended verification for Estonian i-voting [11]. A separate effort was established
to perform in-depth analysis of logs produced by i-voting servers in order to
study voter behaviour and to detect attacks against i-voting system and system
malfunction.

This paper presents the results of these analysis efforts for 2013 and 2014
Estonian elections. Internet voting in 2013 local municipal elections (KOV2013)
took place from 2013-10-10 09:00 to 2013-10-16 18:00 [5], and Internet voting in
2014 European Parliament elections (EP2014) took place from 2014-05-15 09:00
to 2014-05-21 18:00 [8].

To facilitate this kind of analysis, NEC has taken a decision to provide
pseudonymised log records for research purposes. During pseudonymisation, the
c© Springer International Publishing Switzerland 2015
R. Haenni et al. (Eds.): VoteID 2015, LNCS 9269, pp. 19–34, 2015.
DOI: 10.1007/978-3-319-22270-7 2

20 S. Heiberg et al.

voters’ identities and client certificates have been replaced by pseudonyms (leav-
ing the option of studying repeating voting patterns). Sociodemographic data
(gender, age) and technical session data (e.g. time stamps, OS identifiers) have
been preserved in the logs in their original form.

There have been several reports on electronic voting log monitoring, but
they have mostly been concerned with voting machines. Antonyan et al. analyse
AccuVote optical scanning terminal logs [2]. Peisert et al. discuss the need
for a detailed forensic audit trail to enable auditors to analyze the actions of
e-voting systems [14]. Michel et al. present a grammar-based log analysis frame-
work automating the analysis of event logs recorded by the electronic voting
tabulators [12]. To the best of our knowledge, the current paper presents the
first analysis of remote voting system logs.

The paper has the following structure. Section 2 describes the logging frame-
work together with the criteria used to determine successful voting sessions.
Sections 3 and 4 present various sociodemographic and technical metrics
observed while studying the logs. Sections 5 and 6 analyse failed voting and
verification sessions, respectively. Finally, Sect. 7 discusses the most interesting
findings and makes some conclusions.

2 Log Monitoring for Estonian Internet Voting Scheme

2.1 Estonian Internet Voting Scheme

The basic Internet voting scheme used in Estonia follows the double-envelope
postal voting system where the inner envelope is replaced by encryption and
the outer envelope by digital signature (see [9] for a more detailed description).
For cryptographic operations, each voter can use either smart card-based eID
tools (ID card, Digi-ID) or cellphone SIM card-based Mobile-ID. The voter is
supplied with the official i-voting client application (IVCA) and she can use it to
download the candidate list and cast her vote to the server. Since 2013 elections
it is also possible to verify one’s vote using a mobile device [11]. In case the
Internet voter feels coerced, she can resubmit her vote via Internet or in the
polling station during the advance voting period.

The three protocols implemented by the i-voting system – voting with
smart card, voting with Mobile-ID and verification – are defined by finite-state
machines. The transitions between the states generate log messages. For exam-
ple Fig. 1 displays the protocol for candidate list retrieval with a smart card-
based eID tool. After TLS authentication to Vote Forwarding Server (VFS)
has succeeded, a unique session identifier sid is generated. The sid is used
throughout the voting session to identify log messages belonging to this pro-
tocol run. Before proceeding to eligibility checks and candidate list retrieval,
the IP-address, HTTP User-Agent, personal code and client certificate of the
voter are logged. The protocol proceeds by determining eligibility of the voter,
checking the re-voting status at Vote Storage Server (VSS) and returning the
candidate list to IVCA. Each of those steps is logged accordingly. The candidate

Log Analysis of Estonian Internet Voting 2013–2014 21

IVCA VFS Log Monitor VSS

TLS client auth
generate sid()

sid
msgip, sid, IP

msgua, sid, UserAgent

msgauth, sid, PC, Certauth

get candidate list()

C, District
msgdist, sid, District

check revoting vfs()

msgsend.req.rev, sid
sid, PC

msgreq.rev, sid
check revoting vss()

R
msgresp.rev, sid

R

R
msgrevoted, sid, R

msgresp, sid
C, sid

Fig. 1. Logs generated on candidate list retrieval

list retrieval is later followed by the vote casting where the same sid is submitted
by the IVCA.

During the i-voting period, a large amount of log entries is produced (e.g. in
2013, 4 086 512 messages). Since it is not feasible for election officials to manually
review every log entry, a solution was required to process the produced audit
trail and generate a meaningful summary report that could be used to assess
the current state of the i-voting system and perform informed decisions upon it.
For example, unusually high system load could signal a possible bug in server
software or an ongoing denial-of-service attack. Sudden increase in the number
of unfinished voting sessions could be caused by a bug in i-voting software or an
attack being performed on Internet voters, etc.

A log monitor has been introduced to the architecture. The monitor is con-
nected to VFS and VSS receiving copies of log messages in quasi real-time using

22 S. Heiberg et al.

certificates

session id
auth serial
sign serial
auth hash
sign hash
auth eid
sign eid

sessions

session id
personal code
phone
ip
os
timestamp cand
status cand
timestamp vote
status vote
vote hash
vote id

ips

session id
ip
geoip

persons

personal code
givenname
surname
district

verifications

verification id
vote id
timestamp
ip
geoip
os
status

incidents

session id
timestamp
message

incident response

session id
response
user
timestamp

1 1
1

1..*

1..*
1

0..*

1

1 0..1

0..*

1

Fig. 2. Database table structure

rsyslog utility with UDP as transport protocol. The log monitor parses every
log line, and by using regular expressions tries to match the line against the
list of defined patterns. Useful information is extracted from the log entries and
inserted into the database. Every log entry that cannot be strictly matched
against the list of expected entries is written into the database as an incident
requiring manual inspection by an election official.

Database table structure is shown in Fig. 2. The central table is sessions
containing the data describing the voting session. The verifications table
contains information about vote verification requests which can be linked to
voting sessions through the vote id field.

The incidents table stores incidents that have been logged by the log proces-
sor. The incidents are linked to incident response table, which stores incident
resolutions created by election officials.

2.2 Specification-Based Log Analysis

The relative simplicity of voting and verification protocols makes it feasible to
apply the specification-based approach to monitoring where manually developed
specifications are used to characterize legitimate program behaviours. Sessions
that describe valid protocol runs and end with a successful result or acknowl-
edged error state are generally not interesting for detailed analysis. These ses-
sions are white-listed, they may become the subject of analysis in case some
external condition characterizes them as a part of some bigger pattern – e.g.
somebody re-voting a number of times over a certain threshold.

Associated with each session is a set of data which should be consistent within
the session and/or across the sessions. In case certain conditions are not met the

Log Analysis of Estonian Internet Voting 2013–2014 23

session is labelled for further analysis. The main criteria to call a voting session
normal are given below.

1. The encrypted vote is signed with the same eID tool that was used for authen-
tication. The i-voting protocol allows, e.g., for the voter to authenticate using
ID card and submit a vote signed by Mobile-ID eID tool. However, that would
be an anomaly since the official IVCA does not implement such a feature and
there is no clear reason why the voter would use two eID tools in one voting
session.

2. The IP address and the OS of the voter do not change through the voting
session. Voter’s IP address or OS change in the middle of the voting session
might indicate voting session hijacking. Although we do not see the benefit
or the flaw that would allow to hijack the i-voting session, we believe that
detection of such an anomaly is advisable.
Note that an IP address change could happen also for a completely legitimate
reason, such as voter switching Internet connections in the process of i-voting.

3. The vote cryptogram is unique. To encrypt the vote, RSA-OAEP encryption
scheme with random padding is used. Therefore, there should be no duplicate
votes received by the i-voting servers. Several encrypted votes sharing the
same cryptogram could indicate either randomness failure in IVCA (as was
the case in 2013 parliamentary elections in Norway [3]), vote manipulation
malware that uses hard-coded version of encrypted vote, or a ballot copying
attack [4].

4. Verification is requested only for those vote identifiers that have been issued.
Verification request containing a vote identifier which has not been issued by
the i-voting server could indicate a vote identifier brute-force attack or a bug
in the i-voting system or verification software. This event may also trigger
legitimately if the voter is for some reason using a QR code from a previous
election.

In addition to labelling sessions as normal or anomalous we also aggregate
descriptive metrics about ongoing election. The gathered data contains sociode-
mographic metrics such as age and gender, technical data such as OS, eID tool,
IP-addresses, etc. Some metrics are described below.

1. Amount of voters sharing an IP address. Several voters using the same IP
address could indicate that a collective voting is being performed or the votes
are cast by a single person who is using eID tools of other persons. However,
several voters can be legitimately using a single IP if they are voting from a
large organization where shared connection is used to access the Internet.

2. The overall percentage of revoters. In order to prevent vote selling and coer-
cion, voters can change their i-vote by casting another i-vote. Through pre-
vious elections in 2005–2011 the revoter proportion has been between 1.15 %
and 3.9 % [7]. A sudden increase in revoter proportion should be considered
an anomaly indicating a large scale coercion or malware installed on the vot-
ing devices that revotes using voter’s eID tool connected to the device, thus
escaping detection by vote verification scheme [11, Section 5.E].

24 S. Heiberg et al.

Increase in revoter ratio could also have a legitimate reason, e.g. a significant
political scandal occurring during the voting period.

3. Number of IP addresses for verifying a single vote. By design, the vote verifi-
cation protocol allows anyone knowing the vote reference to download the
encrypted vote from the server. Under normal circumstances, we should
see the vote verified from only a few devices (mostly just one). Verification
requests coming from different devices may be an indication of the QR code
containing the vote reference being misused.

4. Amount of verifiers sharing an IP address. Large number of votes verified
from a single IP address may indicate a large-scale vote-buying attempt. On
the other hand, verification from the same IP address can also happen if one
mobile device or Internet connection is shared by several verifiers legitimately
or a dynamic IP address is reassigned to different mobile devices.

3 Sociodemographic Metrics in 2013–2014

In this Section we will summarize some of the more interesting findings we
observed from the vote session logs w.r.t. sociodemographic metrics (age and
gender). In 2013, 170 804 voting sessions were made. In total, 133 808 voters
cast at least one successful i-vote and 4542 (3.39 %) of them attempted to verify
their vote. In 2014, 114 799 voting sessions were made. In total, 103 151 voters
cast at least one successful i-vote and 4250 (4.12 %) of them attempted to verify
their vote.

3.1 Age Distribution

The youngest person who (unsuccessfully) attempted i-voting in 2013 was 3 years
old (in 2014, 7), and the oldest i-voter was 102 (in 2014, 103). The youngest vote
verifier was 18 (in 2014 also 18) and the oldest was 97 (in 2014, 93).

The activity by age of voters (expressed as a percentage of all the eligible
voters) and verifiers (expressed as a percentage of all the voters) are shown in
Figs. 3 and 4 for 2013, and in Figs. 5 and 6 for 2014. We see that the most active
voters are people of age 30–40.

An interesting phenomenon was observed when studying the relationship
between the voter’s age and voting session length (which is defined as the time
between downloading the candidate list and submitting the vote). It turns out
that contrary to what one might expect, older people are faster i-voters. The
phenomenon is illustrated in Fig. 7 for 2013 and in Fig. 8 for 2014. We note
that this phenomenon does not disappear when splitting the data by gender or
eID tool used. The cause of this phenomenon remains unclear, possible reasons
include older people having made up their minds already when starting to vote
and younger people being more affected by multitasking.

Figures 9 and 10 show the histogram of general voting session lengths
observed in 2013 and 2014 respectively.

Log Analysis of Estonian Internet Voting 2013–2014 25

0

5

10

15

20

20 30 40 50 60 70 80 90 100

Age

Tu
rn

ou
t (

%
)

Fig. 3. KOV2013: Voter activity by age

0.0

2.5

5.0

7.5

20 30 40 50 60 70 80 90 100

Age

Ve
rif

ie
rs

 (%
)

Fig. 4. KOV2013: Verifier activity by
age

0

5

10

15

20 30 40 50 60 70 80 90 100

Age

Tu
rn

ou
t (

%
)

Fig. 5. EP2014: Voter activity by age

0

2

4

6

20 30 40 50 60 70 80 90
Age

Ve
rifi

er
s

(%
)

Fig. 6. EP2014: Verifier activity by age

50

100

150

200

250

25 50 75 100
Age

Vo
tin

g
tim

e
(s

)

Fig. 7. KOV2013: Age vs voting time

50

100

150

25 50 75 100
Age

Vo
tin

g
tim

e
(s

)

Fig. 8. EP2014: Age vs voting time

Table 1 gives 0.5 %, 1 %, 99 % and 99.5 % quantiles on the length of the voting
session. It allows us to estimate that a normal length for a voting session could
be considered between 20 s and 20 min (in 2014, 20 s and 13 min). Note that for
91.28 % (in 2014, 96.11 %) voting sessions the session length was less than 6 min.

3.2 Verification

It has been observed several times that women cast more i-votes than men.
This observation was also confirmed in 2013 and 2014 elections when 52,2 % and
51.53 % of successful Internet voters were women, respectively.

26 S. Heiberg et al.

Voting session length (s)

Fr
eq

ue
nc

y

0
40

00
10

00
0

0 120 300 480 660 840 1020 1200

Fig. 9. KOV2013: Distribution of the
voting session lengths

Voting session length (s)

Fr
eq

ue
nc

y

0
40

00
80

00

0 120 300 480 660 840 1020 1200

Fig. 10. EP2014: Distribution of the
voting session lengths

Table 1. Quantiles of voting session lengths in seconds

Quantile 0.5 % 1% 99 % 99.5 %

KOV2013 20 22 1182 1685.4

EP2014 21 23 751 1080

However, the gender distribution of verification is completely different, as
only 31.6 % and 26.35 % of vote verifiers were women in 2013 and 2014, respec-
tively.

It is also interesting to look at the length distribution of the verification
operation (i.e. the time between the vote identifier has been issued and the vote
verification request has been received). The period during which the server replies
to the verification request with the vote cryptogram has been limited to 30 and
60 minutes in 2013 and 2014, respectively. Several verification requests were still
received significantly after the end of this period. For example, in 2013, 19 voters
made their first verification request 1 hour after the vote had been submitted,
10 voters did it 6 hours and 6 voters 1 day after the vote submission.

Frequencies of verification lengths (taking into account only the first verifica-
tion request made by the voter) are shown in Figs. 11 and 12 for 2013 and 2014,
respectively.

Verification length (s)

Fr
eq

ue
nc

y

0
10

20
30

40

0 240 600 960 1320 1800 2280 2760

Fig. 11. KOV2013: Distribution of ver-
ification lengths

Verification length (s)

F
re

q
u
e
n
c
y

0
5

1
5

2
5

3
5

0 240 600 960 1320 1800 2280 2760

Fig. 12. EP2014: Distribution of veri-
fication lengths

Log Analysis of Estonian Internet Voting 2013–2014 27

4 Technical Metrics in 2013–2014

4.1 OS and eID Distribution

The official IVCA is available for three operating system families. Table 2 shows
the popularity of Windows, Mac OS X and GNU Linux for voting.

As mentioned in Sect. 2.1, an i-vote can be cast using three eID tools. Pop-
ularity of these tools is shown in Table 3. Note that in Tables 2 and 3 we only
take the final votes into account, thus excluding the votes annulled by revoting.

Table 2. OS distribution

OS Windows Mac OS X GNU Linux

KOV2013 93.87% 5.35% 0.78%

EP2014 93.4% 5.46% 1.14%

Table 3. eID distribution

eID ID card Mobile-ID Digi-ID

KOV2013 90.27% 8.49% 1.23%

EP2014 87.69% 10.86% 1.45%

4.2 IP Address Shared by Several Voters

In 2013, 133808 (in 2014, 103151) voters used 68503 (in 2014, 52191) unique IP
addresses to cast their successful votes.

There were 28 (in 2014, 22) IP addresses which were each shared by more
than 100 voters with the top IP address shared by 1127 (in 2014, 970) voters.
We reviewed the top shared voting IP addresses and did not notice any strange
patterns – voting was evenly distributed over the voting period, different OS
versions were used and several voting sessions overlapped. This is consistent with
the expected behaviour of people voting from one large organisation having just
one external IP address.

We observed a large number of IP addresses shared by two and more voters
where the voting sessions were not evenly distributed over the voting period, e.g.
voters’ casting their votes shortly after each other. Table 4 shows the number of
voter groups observed, where voters voting in 5 min interval between each other
and using the same OS are considered to belong to one group.1 The table contains
data only about those IP addresses which do no have overlapping voting sessions
and those with the first and last voting activity falling into a 24 hour window.
4.3 Revoting

In 2013, 1.93 % (in 2014, 1.69 %) voters (altogether 2586; in 2014, 1743) cast
more than one vote. From these revoters majority revoted only once. It appears
that 30 % (in 2014, 28 %) of the revoters revote in the first 10 min, and 41 % (in
2014, 38 %) of revoters revote in the first hour after casting the vote.

1 This definition of a group is limited to phenomena observable from system logs. A
proper group voting study would require a more detailed social science approach.

28 S. Heiberg et al.

Table 4. Voter groups in 2013 and 2014

Group size KOV2013 EP2014

2 8476 6033

3 697 523

4 108 60

5 15 9

6 3 1

Figures 13 and 14 show distribution of votes and revotes over the voting
period. We see that revoting activity pattern over the voting period follows the
voting activity pattern.

0

30

60

90

120

Oct 11 Oct 12 Oct 13 Oct 14 Oct 15 Oct 16 Oct 17

Time

A
c
ti
v
it
y

First revotes cast by revoters
First votes cast by voters (scaled by 0.25)

Fig. 13. KOV2013: Distribution of
votes and revotes

0

25

50

75

May 16 May 17 May 18 May 19 May 20 May 21 May 22

Time

A
ct

iv
ity

First revotes cast by revoters
First votes cast by voters (scaled by 0.25)

Fig. 14. EP2014: Distribution of votes
and revotes

We can estimate that in the worst case in KOV2013 2586 (in 2014, 1743) vot-
ers could have been coerced or fallen as a victims for revoting malware described
in Sect. 2.2.

However, since in the previous elections revoter proportion was similar (see
Sect. 2.2) and some amount of revoters is normal, it is unlikely that most of the
revotes would have been caused by an attack.

5 Unsuccessful Voting Sessions

From those persons who attempted to i-vote in 2013, 96.6 % (in 2014, 98.5 %)
succeeded to cast at least one successful vote (possibly by retrying). Still in 2013,
19.88 % of the voting sessions (in 2014, 8.39 %) did not result in a successfully
cast vote. In this section we present the causes for unsuccessful voting sessions.

5.1 Sessions Failing with an Error Condition

It is natural for some voting sessions to fail – e.g. it is possible that a person
is not in the list of eligible voters by mistake and finds it out only during the

Log Analysis of Estonian Internet Voting 2013–2014 29

failed attempt to vote. The breakdown of error conditions, the number of unique
voters affected in these voting sessions and the number of voters who did not
manage to successfully i-vote (column “Voters (u)”) are given in Table 5.

Looking at the row “Ineligible voters”, we can see that in 2013 some voters
who were originally declared ineligible eventually still managed to submit a vote.
This is because a person’s eligibility status can change during the voting period.

Table 5. Failed voting sessions in KOV2013 and EP2014

KOV2013 EP2014

Reason of failure Sessions Voters Voters (u) Sessions Voters Voters (u)

Maintenance of voting servers 11 11 1 – – –

Under-aged voter 28 25 25 16 16 15

Ineligible voter 1063 774 766 315 199 199

Voting not started 3 2 0 5 3 0

Voting already ended 1 1 1 38 35 28

Pre-2011 Mobile-ID user 1490 876 332 549 407 160

Bad Mobile-ID number 2051 – – 491 – –

Mobile-ID failure (auth) 2004 1394 122 1200 776 54

Mobile-ID failure (sign) 1043 926 29 609 562 33

Revoked ID card 1933 872 755 270 146 128

Revoked Mobile-ID 41 – – 23 – –

Incident 93 60 6 1173 325 88

5.2 Failure to Cast a Vote

Some voting sessions did not fail because of an error, but were from the
i-voting system perspective simply abandoned – the candidate list was success-
fully downloaded, but the vote submission request did not follow. Table 6 shows
the number of affected voters and the number of voters who did not manage to
cast any i-vote.

From these 2889 (in 2014, 869) voters, 176 (in 2014, 20) voters had at least
one voting session with failed status. From the remaining 2713 (in 2014, 849)
voters, 2000 (in 2014, 700) voters had made only a single voting session which
did not continue after candidate list retrieval, 370 (in 2014, 79) voters had two
such sessions, 52 (in 2014, 9) voters had more than six such sessions.

Some of these unfinished voting sessions in KOV2013 can be explained by a
bug [1] in libcurl library used by the IVCA which caused a connection timeout
when sending vote submission request over a slow network connection.

We can only speculate why these voters did not get past the candidate list
retrieval in EP2014. Possible reasons include forgetting the PIN required to sign
a vote with an eID tool, not finding a suitable candidate in the downloaded can-
didate list, or simply not realising that the i-voting session has to be completed
by signing the vote.

30 S. Heiberg et al.

5.3 Incidents

In addition to previously defined error conditions and abandoned voting sessions,
there were 93 (in 2014, 1178) voting sessions raising an incident alert caused by
unexpected log entries.

KOV2013. We observed 37 ID card voting sessions failing with the incident
message which stated that the signing certificate digest did not match the digest
specified in the vote. In total 12 voters were affected. Almost all of the voters
were using GNU Linux OS except one voter who was using Windows OS. The
incident was traced to the bug in OpenSC smart card library which was shipped
with some GNU Linux distributions [13]. The bug failed to remove zero padding
from the certificate when reading it from the smart card.

On 2013-10-15 from 15:12:26 to 15:13:08 there were 36 failed voting sessions
logged with an incident message which informed about unavailability of VSS.
The reason for VSS downtime was vote backup routine which required to stop
Apache process running on VSS. Starting from the next elections (EP2014)
LVM snapshots were used which allow to backup the votes without stopping the
Apache process.

We observed 17 incidents caused by malformed votes – some votes were
rejected as invalid. Altogether 13 voters were affected, all of them later managed
to successfully cast an i-vote. Some of these incidents were traced back to the
bug in IVCA. The IVCA continued with vote submission even if the certificate
could not be read from the smart card or the digital signature generation in the
smart card failed. In case of one voter it was found that the failure was caused
by a defective Mobile-ID SIM card. Without the corresponding invalid votes,
some of those incidents could not be thoroughly investigated.

We observed 3 Mobile-ID voting sessions which raised an incident alert about
invalid phone number received. The problem was traced back to IVCA which
failed to correctly enforce valid phone number input from the voter.

EP2014. We observed 1131 voting sessions failing with an error message stating
that the certificate used to sign the vote is not yet valid. The error was traced
back to a bug in server-side software updated in EP2014, which did not take
into account timezone information when checking the certificate validity date.
The error affected voters who had renewed their eID tool on the day of i-voting.
The voters who approached NEC support centre were instructed to retry after a

Table 6. Abandoned voting sessions in KOV2013 and EP2014

KOV2013 EP2014

Sessions Voters Voters (u) Sessions Voters Voters (u)

Sessions without cast votes 24103 15563 2889 4921 3889 869

Log Analysis of Estonian Internet Voting 2013–2014 31

few hours. From the 310 voters affected, 229 managed to successfully cast their
i-vote later in the i-voting period.

We observed five ID card voting sessions where the person submitting the
vote was not the same who obtained the candidate list. The behaviour can be
explained by the new “Retry” button feature introduced in IVCA which allows
to obtain the candidate list using one ID card, but sign and submit the vote
with another by swapping the cards between these operations. These votes were
accepted and counted without creating a problem. While it is not the case in
European Parliament Elections, it may happen that the voter obtaining the
candidate list and the voter casting the vote have different candidate lists, which
will result in an invalid vote in the vote counting phase. Therefore, server-side
software was modified to reject the vote if the candidate list was not obtained
by the same person who cast the vote.

It is not clear why these five voters decided to swap their ID card with other
person’s ID card before signing the vote. The persons involved in these sessions
were paired as 79 years old male and 72 years old female, 50 years old male and
71 years old female, 74 years old male and 68 years old female, 56 years old male
and 58 years old female, and 52 years old male and 33 years old female. From
the voters who obtained the candidate list, two submitted their own vote a few
minutes later, but three voters did not cast their vote at all.

We observed one ID card voting session using Windows IVCA failing with
the incident alert stating that the vote signature could not be verified. Three
minutes later the voter successfully revoted using the same ID card authenti-
cation certificate, but a different digital signature certificate. The hash of the
digital signature certificate used in the failed voting session could not be found
in any other voting session. We suspect that the voter swapped the currently
valid ID card before signing the vote with an older ID card which had been
officially reported lost.

The rest of the incidents were caused by the bug in a smart card library or
person retrying the failed Mobile-ID session.

6 Unsuccessful Verification Sessions

6.1 Failure to Verify

In 2013, NEC received no complaints about unsuccessful vote verifications. How-
ever, we see that for 33 (in 2014, 26) voters their first verification attempt was
not successful, resulting in an error message shown to the voter. Those voters
tried to verify after the verification time-window had passed or after a new vote
was submitted by them. In 2013, one verifier failed because VSS was unreachable
due to backup procedures.

In 2014, we observed 196 vote verification requests having a malformed vote
ID. Some of malformed vote ID requests were caused by a bug in iOS-based
vote verification application which truncated the vote identifiers that contained
a 0-byte. Four voters called to NEC support centre complaining about iOS ver-
ification application being unable to find their vote on VSS. The bug was fixed

32 S. Heiberg et al.

during elections and updated iOS application was pushed in iOS app store [11,
Sect. 6].

However, other malformed verification requests could not be attributed to
0-byte bug. The malformed vote verification requests were traced back to iOS
vote verification application, which failed to validate contents of the captured
QR code before forming the vote verification request sent to VFS. This bug in
iOS-based vote verification application has been fixed.

6.2 Verification Requests that Could Not Be Linked to Votes

We observed vote verification requests for three (in 2014, five) unique vote iden-
tifiers that were not issued by i-voting system. Some of those vote identifiers
were queried multiple times by several unique IP addresses. One of the identi-
fiers seen in EP2014 was also seen in KOV2013. We were able to track one of
those identifiers to a QR code from information materials about Internet voting.

7 Discussion and Conclusions

7.1 Summary of the Findings

Log monitoring has proven to be a useful tool for the election officials for trou-
bleshooting voters’ problems and understanding the state of ongoing i-voting.
In KOV2013 and EP2014 several malfunctions in IVCA, i-voting system, verifi-
cation apps and external systems were discovered and fixed. From the i-voting
perspective, those bugs were causing minor inconveniences to voters, in most
cases it was possible to re-vote successfully.

In those elections we did not observe any event which could qualify as an
attack against i-voting system. Furthermore, taking into account all observations,
we can conclude that during KOV2013 and EP2014 no large-scale attack has
been executed against i-voters.

There were several interesting phenomena observed in the logs that were
unknown before. We were able to determine that older people are generally
faster i-voters and vote verifiers are predominantly men, even though among the
general population of i-voters the share of women is slightly higher.

7.2 Limitations of the Approach

The main limitation of our analysis is the ability to find the causes for some
anomalies observed in the data.

In some of these cases the causes might be found if the voter could be con-
tacted for an explanation. However, there is no simple way to contact the voter2

and there is no legal basis for it, unless there is convincing evidence that illegal
2 Although, if the voter used Mobile-ID to cast the vote, the phone number registered

to the voter is available to NEC.

Log Analysis of Estonian Internet Voting 2013–2014 33

activity might have been performed. The only event when the voter was con-
tacted, was the case of voter who cast more than 500 votes in RK2011 [10], and
even then the inquiry did not provide a plausible explanation for the anomalous
behaviour observed.

Some incidents could not be investigated because of technical reasons, such
as unavailability of the vote involved in an incident. Logging and availability
of such data for investigation is deliberately limited by NEC due to the vote
privacy concerns.

Obviously, the approach used in this work can detect only the attacks exe-
cuted by external attackers who attack voters’ voting devices or eID tools, since
none of the anomalous patterns applied can be used to detect large-scale vote
manipulation attacks carefully executed by i-voting servers. Therefore, server-
side attacks must be detected using different means.

After the i-voting server-side source code was published on GitHub [6], the
described log monitoring solution is unlikely to observe incidents caused by
reconnaissance exploitation attempts against i-voting servers, since now the
attacker does not have to develop his attacks on a live election system. The
exploit can be developed using a cloned i-voting system fully operated by the
attacker.

Note that Internet voting still has a significant human component and hence
not all the errors can be expected to manifest themselves only on digital media.
For example, the mobile application for vote verification only displays the can-
didate number found in the cryptogram, but the decision about its match with
the voter’s intention is taken inside her head. Thus, some parts of the analysis
of events depends on the voters’ willingness to report them.

Also note that most of the reasons for suspicion do not necessarily indicate
a malicious attack and can occur for perfectly acceptable reasons. However,
they can be a starting point for more in-depth analysis to draw more complex
conclusions (e.g. in case several of the items trigger a flag).

7.3 Future Work

Most of the anomalous patterns – e.g. IP address changing in the middle of the
voting session, voter revoting several times – are not easily distinguishable from
the legitimate behaviour. In some of those cases sessions become interesting only
if a certain threshold is reached. Setting threshold values is a delicate trade-off
between missing an attack and getting too many false positives. The statistical
model of the expected behaviour built from KOV2013 and EP2014 data can
be used to implement better anomaly detection for further elections. However,
human behaviour is ever-changing, so these kinds of log monitoring efforts must
be continued to adjust the normality profiles in the future accordingly.

Acknowledgements. This research was supported by the Estonian Research Coun-
cil under Institutional Research Grant IUT27-1, Estonian Doctoral School in Infor-
mation and Communication Technology (IKTDK) and the European Regional Devel-
opment Fund through the Centre of Excellence in Computer Science (EXCS) and

34 S. Heiberg et al.

grant project number 3.2.1201.13-0018 “Verifiable Internet Voting – Event Analysis
and Social Impact”.

References

1. Timeout for Expect: 100-continue as an option, Oct 2013, Curl-library mailing list
archives. http://curl.haxx.se/mail/lib-2013-10/0142.html

2. Antonyan, T., Davtyan, S., Kentros, S., Kiayias, A., Michel, L., Nicolaou, N.,
Russell, A., Shvartsman, A.: Automating voting terminal event log analysis.
In: Electronic Voting Technology Workshop/Workshop on Trustworthy Elections
(EVT/WOTE09) (2009)

3. Bull, C., Nore, H.: Problems encountered. Seminar on Internet voting, Sep 2013.
https://www.regjeringen.no/contentassets/c41c2959b8d946bf8007b546552ff9dc/
5 problems encountered.pdf

4. Cortier, V., Smyth, B.: Attacking and fixing Helios: an analysis of ballot secrecy.
J. Comput. Secur. 21(1), 89–148 (2013)

5. Estonian National Electoral Committee: Municipal Elections 2013 Results (2013).
http://kov2013.vvk.ee/

6. Estonian National Electoral Committee: Source code of the server side compo-
nents of Estonian internet-voting system, Jul 2013. https://github.com/vvk-ehk/
evalimine

7. Estonian National Electoral Committee: Statistics about Internet Voting in Estonia
(2013). http://vvk.ee/voting-methods-in-estonia/engindex/statistics

8. Estonian National Electoral Committee: European Parliament Elections 2014
Results (2014). http://ep2014.vvk.ee/detailed-en.html

9. Heiberg, S., Laud, P., Willemson, J.: The application of I-voting for estonian parlia-
mentary elections of 2011. In: Kiayias, A., Lipmaa, H. (eds.) VoteID 2011. LNCS,
vol. 7187, pp. 208–223. Springer, Heidelberg (2012)

10. Heiberg, S., Willemson, J.: Modeling threats of a voting method. In: Zissis, D.,
Lekkas, D. (eds.) Design, Development, and Use of Secure Electronic Voting Sys-
tems, pp. 128–148. IGI Global, Hershey (2014)

11. Heiberg, S., Willemson, J.: Verifiable internet voting in Estonia. In: Krimmer,
R., Volkamer, M. (eds.) 6th International Conference on Electronic Voting 2014,
(EVOTE 2014), 28–31 October 2014, Bregenz, Austria, pp. 23–29. TUT Press,
Tallinn (2014)

12. Michel, L.D., Shvartsman, A.A., Volgushev, N.: A systematic approach to analyz-
ing voting terminal event logs. USENIX J. Election Technol. Syst. (JETS) 2(2),
April 2014. https://www.usenix.org/system/files/jets/issues/0202/overview/jets
0202-michel.pdf

13. OpenSC project: Regression in e35febe: compute cert length, Dec 2012. https://
github.com/OpenSC/OpenSC/pull/114

14. Peisert, S., Bishop, M., Yasinsac, A.: Vote selling, voter anonymity, and forensic
logging of electronic voting machines. In: 42nd Hawaii International Conference on
System Sciences, 2009. HICSS 2009, pp. 1–10. IEEE (2009)

http://curl.haxx.se/mail/lib-2013-10/0142.html
https://www.regjeringen.no/contentassets/c41c2959b8d946bf8007b546552ff9dc/5_problems_encountered.pdf
https://www.regjeringen.no/contentassets/c41c2959b8d946bf8007b546552ff9dc/5_problems_encountered.pdf
http://kov2013.vvk.ee/
https://github.com/vvk-ehk/evalimine
https://github.com/vvk-ehk/evalimine
http://vvk.ee/voting-methods-in-estonia/engindex/statistics
http://ep2014.vvk.ee/detailed-en.html
https://www.usenix.org/system/files/jets/issues/0202/overview/jets_0202-michel.pdf
https://www.usenix.org/system/files/jets/issues/0202/overview/jets_0202-michel.pdf
https://github.com/OpenSC/OpenSC/pull/114
https://github.com/OpenSC/OpenSC/pull/114

The New South Wales iVote System:
Security Failures and Verification Flaws

in a Live Online Election

J. Alex Halderman1 and Vanessa Teague2(B)

1 University of Michigan, Ann Arbor, USA
jhalderm@eecs.umich.edu

2 University of Melbourne, Melbourne, Australia
vjteague@unimelb.edu.au

Abstract. In the world’s largest-ever deployment of online voting, the
iVote Internet voting system was trusted for the return of 280,000 bal-
lots in the 2015 state election in New South Wales, Australia. During
the election, we performed an independent security analysis of parts of
the live iVote system and uncovered severe vulnerabilities that could be
leveraged to manipulate votes, violate ballot privacy, and subvert the
verification mechanism. These vulnerabilities do not seem to have been
detected by the election authorities before we disclosed them, despite a
pre-election security review and despite the system having run in a live
state election for five days. One vulnerability, the result of including ana-
lytics software from an insecure external server, exposed some votes to
complete compromise of privacy and integrity. At least one parliamentary
seat was decided by a margin much smaller than the number of votes
taken while the system was vulnerable. We also found protocol flaws,
including vote verification that was itself susceptible to manipulation.
This incident underscores the difficulty of conducting secure elections
online and carries lessons for voters, election officials, and the e-voting
research community.

1 Introduction

Internet voting has rarely been used in significant elections for public office, due
to numerous, well established security risks [15], such as compromise of election
servers, of voters’ client devices, of the network in between, and of the voter
authentication process. To better understand how these risks can play out in
real elections, we studied what may be the largest deployment of Internet voting
to-date, the March 2015 state election in New South Wales, Australia.

In this election, voters had the option to use an online voting system called
iVote, which was developed by e-voting vendor Scytl for the New South Wales
Electoral Commission (NSWEC). Prior to the election, NSWEC performed mul-
tiple security studies (e.g. [23,24]), and officials publicly claimed that the vote
was “. . . completely secret. It’s fully encrypted and safeguarded, it can’t be tam-
pered with” [1]. Over 280,000 votes were reportedly returned through iVote
c© Springer International Publishing Switzerland 2015
R. Haenni et al. (Eds.): VoteID 2015, LNCS 9269, pp. 35–53, 2015.
DOI: 10.1007/978-3-319-22270-7 3

36 J.A. Halderman and V. Teague

(about 5 % of the election total), exceeding the 70,090 Norwegian votes sub-
mitted online in 2013 [27] and the 176,491 online votes in the 2015 Estonian
election [13].

While the election was going on, we performed an independent, uninvited
security analysis of public portions of the iVote system. We discovered critical
security flaws that would allow a network-based attacker to perform downgrade-
to-export attacks [5,12], defeat TLS, and inject malicious code into browsers
during voting. We showed that an attacker could exploit these flaws to violate
ballot privacy and steal votes. We also identified several methods by which an
attacker could defeat the verification mechanisms built into the iVote design.

After we reported these problems to authorities, NSWEC patched iVote to
correct the network security flaws, but by this time the election had been running
for five days and 66,000 votes had been cast on the vulnerable system. After the
vulnerabilities were removed, we made our findings public in a technical blog
post on Freedom to Tinker [29] and an essay in The Conversation.

The election count is now complete [21], with the final seat in the proportion-
ally represented Legislative Council having come down to a margin of 3177 votes,
a tiny fraction of the number of votes cast over iVote before it was patched. To
our knowledge, this is the first time enough votes to affect a parliamentary seat
in a state election have been returned over an Internet voting system while it
was demonstrably vulnerable to attacks that would allow external vote manip-
ulation. While we do not know whether anyone exploited the opportunity for
electoral fraud, we know the opportunity was there.

This paper details our security findings and draws broader lessons from the
iVote vulnerability. It reinforces findings of security problems in other Inter-
net voting systems, such as Washington, D.C.’s [31] and Estonia’s [28], and it
demonstrates once again that no amount of pre-election review can guarantee
that such a system is secure. These problems also highlight the brittleness of the
web platform and TLS protocol—a fragility which may be incompatible with
the intensive security requirements and time pressure of political elections.

iVote’s vulnerabilities should encourage skepticism of other Internet voting
systems claimed to be verifiable. Years of research on electronic methods of
election verification are only just beginning to produce end-to-end verifiable
voting systems appropriate for use in low-stakes, low-coercion elections [4], or in
government elections using a postal mail step [32], or in the much easier case of
supervised polling places [7,10,11]. The iVote verification protocol ignores basic
insights and techniques from that research, opting instead for a telephone-based
vote reading service that substantially reduces voter privacy while providing
only very limited assurances of integrity. Furthermore, an election verification
protocol, like any other security protocol, should not be relied upon without an
extensive period of public review; in the case of the iVote protocols, there was
none.

Securing Internet voting requires overcoming some of the most difficult prob-
lems in computer security, and, with existing technology, even the smallest
mistakes can undermine the integrity of the election result. The experience in

The New South Wales iVote System: Security Failures 37

New South Wales is a real-world example demonstrating online voting security
problems that many security researchers, including us, have warned about for
many years. We recommend that election officials refrain from conducting high-
stakes elections online until there are fundamental security advances.

2 iVote Background

The iVote system was a complex interaction of many components, some managed
by the NSWEC and some by other administrators. Registration and voting could
each be done by three different methods: by telephone, over the Internet, or from
a NSWEC computer in a polling place. There were four steps in using iVote:

1. The voter registered, received an 8-digit iVote ID, and chose a 6-digit PIN.
2. The voter logged in to the voting server (or the telephone voting system) with

her iVote ID and PIN, cast a vote, and received a 12-digit receipt number.
The vote was encrypted on the client, sent to the voting server, and forwarded
to a separate verification service.

3. Optionally, the voter telephoned the verification service, an interactive voice
response (IVR) system. She entered her iVote ID, PIN, and receipt number
and heard her vote read back. This service stopped at the close of polls.

4. Optionally, the voter visited an online receipt service to query whether any
votes with her receipt number were included in the final count. No login was
needed. This service remained active after the close of polls.

More details are described in the Security Implementation Statement [24]
and other reports published by NSWEC [22]. These include prose descriptions
of the methods of encrypting and processing the vote. The protocol evolved over
several drafts, but all of them differ in some important respects from what the
system actually did during the election (see Sect. 5.1). No source code was made
available for any of the server-side processes, including the main voting web
server, verification server, registration server, and receipt server.

In the 2015 state election, each voter could cast one vote for the Legisla-
tive Assembly and one for the Legislative Council. Although iVote was officially
reserved for the disabled and other eligible absentee voters, voters could qualify
by self-certifying that they would be out of the state during election day. iVote
opened to the public on the morning of March 16 and closed at 6 P.M. on March
28, the same time as other polls closed in the state election. Officials reported
that about 280,000 votes (5 % of all counted ballots) were cast over iVote.

3 Vulnerabilities in iVote

Shortly after iVote voting opened, we began an independent security review
of the publicly accessible components of the system. Although election officials
did not publish the source code, client-side portions of this code were necessar-
ily delivered to voters’ browsers. Since we were not eligible voters, we did not

38 J.A. Halderman and V. Teague

Fig. 1. Like most web applications, iVote was made up of dozens of resources that
were loaded in the background by the browser. Using the Chrome Developer Tools, we
could see that most of the iVote resources came from the “core voting system” server,
cvs.ivote.nsw.gov.au, but one component, JavaScript for the Piwik analytics tool,
was loaded from an external server, ivote.piwikpro.com.

proceed past the login screen of the voting web application, http://cvs.ivote.
nsw.gov.au, but we did inspect the HTML, CSS, and JavaScript code that made
up the application. In addition, NSWEC made a practice version of the iVote
system available to the public at https://practise.ivote.nsw.gov.au. The practice
site allowed anyone to log in using provided credentials and vote a mock ballot.
We confirmed that the practice system used substantially the same client-side
code as the real election server and used it to perform further hands-on tests.

iVote delivers the web application using HTTPS. This is intended to prevent
an adversary from modifying or replacing the code in transit to the user’s web
browser. We tested the security of the main iVote HTTPS server using the Qualys
SSL Labs SSL Test, which indicated that the server configuration complied with
current best practices and was secure against known vulnerabilities. However, a
closer analysis of the structure of the iVote application showed that when the
voter loads the iVote site, the site imports and executes JavaScript for a third-
party analysis tool called Piwik. As shown in Fig. 1, this code is loaded from a
URL at the third-party server https://ivote.piwikpro.com. When we tested the
SSL configuration of this site, we found that it was extremely poor—scoring an

http://cvs.ivote.nsw.gov.au
http://cvs.ivote.nsw.gov.au
https://practise.ivote.nsw.gov.au
https://ivote.piwikpro.com

The New South Wales iVote System: Security Failures 39

Fig. 2. The ivote.piwikpro.com server scored an F on the Qualys SSL Labs tests.
Among other reported problems, the server used insecure Diffie-Hellman parameters,
allowed 512-bit export cipher suites that are subject to the FREAK attack, and was
vulnerable to the POODLE attack. We showed that these problems would allow a
man-in-the-middle attacker to inject vote-stealing code into the iVote application.

‘F’ grade in the SSL Labs test, as shown in Fig. 2. Among a variety of other
security problems, the server supported 512-bit “export-grade” ciphersuites for
both RSA and ephemeral Diffie-Hellman key exchange. As we will show, this
weak configuration allowed multiple ways for an attacker to bypass the secu-
rity provided by HTTPS and inject malicious code into the user’s iVote session
without triggering any browser security warnings.

3.1 Vulnerability to the FREAK Attack

The FREAK attack [8,12], short for Factoring RSA Export Keys, is a TLS
vulnerability that was publicly disclosed on March 3, 2015, less than two weeks
before the iVote voting opened. The Piwik server’s configuration problems made
it vulnerable to FREAK, and a network-based man-in-the-middle attacker could
exploit the attack against the Piwik server in order to compromise iVote.

As the name implies, FREAK exploits the weakness of 512-bit “export-grade”
RSA keys that are supported by the TLS protocol as a legacy feature of 1990 s
era U.S. cryptographic export restrictions. If a server supported export-grade

40 J.A. Halderman and V. Teague

RSA—as did http://ivote.piwikpro.com—an attacker could fool many popular
browsers into using this reduced-strength cryptography, obtain the RSA private
key by factoring the 512-bit public key, and manipulate the contents of the
connection.

The attack begins by intercepting the browser’s TLS CLIENT HELLO message
and sending a substitute message to the server declaring that the browser wishes
to use export-grade RSA. In export-grade RSA modes, the server sends a 512-bit
“temporary” RSA public key to the client and signs this key, together with a
nonce chosen by the client, using the public key from its normal X.509 certificate.
The client verifies the validity of the certificate chain, then uses the temporary
RSA key to encrypt session key material that will be used to secure the remainder
of the connection. The FREAK attack exploits a mistake in the way browsers
process the server’s message containing this temporary key. Several widely used
TLS implementations would accept a temporary export-grade RSA key even if
the client did not ask for it. This allows the attacker to downgrade a connection
requesting normal RSA encryption to much weaker export-grade RSA.

The main challenge for the attacker is to convince the voter’s browser that he
is http://ivote.piwikpro.com. He needs the server’s signature on the client’s TLS
nonce and an RSA public key that he knows the private key for. Assume for now
that Piwik always uses the same 512-bit key. Nadia Heninger has shown that it
is possible to factor 512-bit RSA keys using open-source software and Amazon
EC2 in about 7 h at a cost of about $100 [16]. The attacker can intercept the
user’s connection, note the client’s nonce, and make a request to the real Piwik
server with the same nonce—in effect, using it as a signature oracle. He can
send the resulting signature on the RSA key as part of the connection to the
voter’s browser, which will see the key as valid and use it to encrypt its session
key material. Since the attacker has factored the key, he can decrypt this key
material and impersonate the Piwik server for the rest of the connection.

One complication is that Piwikpro, unlike many TLS servers, periodically
rotated its temporary key. We saw the key change approximately every hour—
too frequently to apply the factoring methods available to us. However, we found
that we could force the Piwik server to use the same temporary RSA key for
much longer by maintaining a long-lived TLS connection and repeatedly invoking
client-initiated renegotiation. Each renegotiation can use a different client nonce,
so we could use the Piwik server as a signature oracle to attack as many clients
as we wanted and use the same key for as long as this connection stayed open.

In tests, we were able to sustain the connection for 17–21 h, and, with
Heninger’s assistance, we factored the temporary RSA key from one such ses-
sion. An attacker could start such a connection, spend the first 7 h factoring the
key, and then attack an unlimited number of voters’ TLS connections for the
remainder of the connection lifetime. By making multiple such connections in a
staggered fashion, the attacker could have continuously attacked iVote users for
the duration of the connection at a cost of about $100 per 12 h period.

Many popular browsers were vulnerable to FREAK, including Internet
Explorer, Safari, and Chrome for Mac OS and Android [12]. Although patches

http://ivote.piwikpro.com
http://ivote.piwikpro.com

The New South Wales iVote System: Security Failures 41

were released for most browsers around March 10, iVote voting opened on March
16, and many users likely had not applied the relevant patches.

3.2 Vulnerability to the Logjam Attack

The ivote.piwikpro.com server was also vulnerable to an even more power-
ful downgrade-to-export attack that affected all popular browsers: the Logjam
attack [5], which was publicly disclosed on May 20, 2015. We knew about this
flaw during the election because one of us was part of the team that developed
the attack, but we could not talk about it publicly because responsible disclosure
to the browser-makers was still ongoing. In other words, we had a zero-day TLS
vulnerability that would have allowed us to attack any voter’s iVote session.

Logjam is reminiscent of the FREAK attack, but it affects ephemeral Diffie-
Hellman (DHE) ciphersuites rather than RSA ciphersuites, and it is made pos-
sible by a flaw in the TLS protocol rather than a client-side implementation
error. If a server supports export-grade Diffie-Hellman with parameters that an
attacker can break, a man-in-the-middle can force browsers to use it, obtain
the session keys, and intercept or arbitrarily change the contents of the connec-
tion [5].

In Diffie-Hellman, two public parameters, a prime p and a group generator
g, are used to compute a public key y from a secret key x as y = gx mod p.
An attacker can breach the security by computing the discrete logarithm of y to
recover x. Although computing one discrete log is harder than factoring one RSA
key of equivalent parameter size, a large part of the discrete log computation can
be reused for all connections that use the same p [5]. The Piwik server supported
export Diffie-Hellman using a fixed 512-bit p:

a705d4b834119d78e434e47be531ae602209c4810fa3baca2b781d49f847bc27

7681d93375522e41aae5de77d86d124852951be54145c9417f603ea96e5024b7

The team that developed the Logjam attack used open-source software to per-
form the precomputation step for three other common 512-bit values of p, each
of which took about a week of wall-clock time using idle cycles on a cluster [5].
Following precomputation, they could break individual key exchanges based on
those values in about 90 s using a single 24-core machine. The same kind of
attack would be possible against Piwik’s p, and would allow us to effectively
attack all iVote sessions from any browser by paying a fixed up-front cost for
the precomputation. In that case, since the browser connects to Piwik in the
background, the 90 s delay to compute the session key would not be noticeable
by the voter.

3.3 Proof-of-Concept, Exploitability, and Responsible Disclosure

We developed a proof-of-concept demonstration to show how an attacker could
leverage the FREAK or Logjam vulnerability to compromise an iVote voting
session. Following the scheme in Fig. 3, this attack replaced the code loaded

42 J.A. Halderman and V. Teague

Fig. 3. Although the NSW web server used a secure HTTPS configuration to deliver
the iVote application, the app subsequently loaded additional JavaScript from an inse-
cure external server, ivote.piwikpro.com. An attacker who intercepted connections
between the voter’s browser and the PiwikPro server could tamper with this JavaScript
to inject arbitrary malicious code into the iVote application.

from http://ivote.piwikpro.com with malicious JavaScript. Since this code was
executed in the context of the user’s iVote session, it could arbitrarily change the
operation of the iVote web application. iVote used AngularJS to run a series of
worker JavaScript threads which implemented cryptographic operations. Crucial
election data, including the contents of the vote, were passed between these
workers as messages. Our code intercepted these messages to change the intended
vote to a different vote before it was sent to the iVote server. Our code also
exposed the vote that the voter intended to cast and sent it, along with the
voter’s authentication credentials, to a command-and-control server operated by
the attacker. Screenshots from our demonstration are in Fig. 4.

To exploit these attack against iVote, the attacker would need to intercept
and manipulate connections from the voter’s browser destined for the Piwik
server. (Such man-in-the-middle attacks are, of course, one of the main threats
that HTTPS is intended to guard against.) Criminal attackers have many well
documented ways to achieve this. It could be done, for example, using client-
side malware (including functions of widespread pre-existing botnets [2,9]), by
compromising insecure WiFi access points, by poisoning ISP DNS caches to
redirect the traffic to an attacker-controlled IP address [17], by attacking vul-
nerable routers or links along the path to the server, or by redirecting packets
by hijacking BGP prefixes [6]. These attacks are especially practical in an elec-
tion scenario, because the attacker can be highly opportunistic—he does not

http://ivote.piwikpro.com

The New South Wales iVote System: Security Failures 43

Fig. 4. As a proof of concept, we showed that we could exploit the FREAK attack
against iVote to inject malicious code that would surreptitiously manipulate the voter’s
choices (left) and report them to a command-and-control server (right). Our mock
attacker’s symbol invokes Ned Kelly, an iconic Australian outlaw.

care which NSW voters he compromises, so he can target any insecure hosts or
infrastructure in the entire state, or anywhere in the world with large numbers
of iVote voters. In addition to large scale criminal fraud, many individuals and
employers have legitimate administrator privileges on home or workplace net-
works that others might use for voting, and could abuse these privileges to target
votes.

Since we (of course) would not attempt to steal actual votes, we tested our
demonstration attack only on our own votes, cast only on the iVote practice sys-
tem, which was identical in all relevant respects to the real voting system. After
confirming that the attack was possible, we notified the Australian CERT of the
vulnerabilities around 2 P.M. on Friday, March 20. CERT took responsibility
for notifying the NSW Electoral Commission, which fixed the problem around
midday on Saturday, March 21, by modifying the iVote server configuration to
disable Piwik. By then, about 66,000 votes had already been cast. We cannot
know with certainty whether any real iVote votes were attacked; however, the
final Legislative Council margin of 3177 votes represented less than 5 % of the
votes cast over iVote while the server was vulnerable.

4 Circumventing Verification

Vote manipulation attacks should be detectable with some probability by the
verification mechanism. However, the verification mechanism itself suffers from
a number of straightforward circumventions and at least one important proto-
col flaw.

4.1 Simple Verification Avoidance

The telephone-based verification scheme is easily sidestepped for last-minute
votes because it shuts down at the close of polls. So an attacker could confidently

44 J.A. Halderman and V. Teague

modify votes that were cast immediately before the deadline, knowing that they
could not be verified. A malicious client (or server) could slow down near the
end of polling to exacerbate this problem.

Voters are told how to verify by the same website they use to vote, so the
attacker could use the man-in-the-middle methods we describe above to direct
the voter to a fake verification phone number that would read back the voter’s
intended choices. Thanks to modern VoIP technology, setting up an automated
phone system is simply a matter of software.

Even more simply, the attacker could delay submitting the vote and showing
the receipt number for a few seconds, in hopes that the voter does not intend to
verify and simply leaves the website. (Perhaps the site could show a progress bar
in place of the number.) If the voter navigates away, there will be no chance to
verify, and the attacker can confidently submit a fraudulent vote. Otherwise, the
attacker can give up, submit the genuine vote, and display the receipt number.

4.2 Using the “clash” Attack to Reduce Verification Failures

The following attack coordinates multiple compromised iVote sessions to manip-
ulate a large number of votes with limited detection. The attack is a variant of
the “clash” attack [18]. We believe it would work, but of course we could not
test it during the election without interfering with real votes.

When verification fails to produce the expected vote, the voter is supposed to
complain to the authorities. Inevitably, some voters will falsely complain, either
mistakenly or maliciously, that their correctly entered vote has been dropped
or misrecorded. The iVote verification design does not provide any evidence to
support or disprove voter complaints, making it difficult to distinguish an attack
from the baseline level of complaints due to voter error. This observation is
important in the following attack, which reduces the number of complaints, but
probably does not eliminate them altogether. Although this attack would some-
times be detected, the percentage of verification complaints would substantially
underrepresent the fraction of manipulated votes, perhaps leading to an incorrect
result appearing to have been verified. The attack requires the ability to:

– misdirect some voters’ registrations,
– assign these voters a PIN at registration, instead of letting them choose, and
– compromise some iVote clients, using the attack from Sect. 3 or simple misdi-

rection.

First observe that, while the registration server itself was protected by
HTTPS, the main iVote gateway from which voters reached it ran plain HTTP1.
This gave a man-in-the-middle attacker the opportunity to misdirect registration
attempts to a site of the attacker’s choosing, for instance by using the SSL strip
attack [19]. The attacker could substitute a look-alike registration site which
assigned a PIN rather than accepting one, under the assumption that a typical
voter would not realize this was not the normal behavior.
1 Or rather, it did for the first week of voting, until we pointed this out to NSWEC.

The New South Wales iVote System: Security Failures 45

Now note that Australian elections use multi-candidate preferential voting,
so two voters who support party A may subsequently list quite different lower
preferences. However, some common patterns recur very often, for example the
vote consisting of a single (first) preference on each ballot. Many voters also
follow official party “How to Vote” cards. Although we are not aware of data for
NSW, studies in the neighboring state of Victoria show that overall about 40 %
of voters follow their how-to-vote card exactly [30].

The main idea of this attack is to intercept a voter’s registration and give him
the iVote ID and PIN of a like-minded person who has already voted, preferably
one who has cast a simple vote likely to be repeated. If the target voter’s choices
exactly match those of the first voter, then all of the verification will look exactly
right to both voters. The attacker can safely reuse the target voter’s registration
credentials to get a new iVote ID and PIN and cast an arbitrary vote. If the
target voter’s choices are different from the first voter, he will detect a problem
if he uses the verification service, but not if he contacts the receipt service only.

This attack removes a party-A vote and substitutes a vote of the attacker’s
choice. While it may sometimes be detected, if prediction of voter behavior is
good then it raises far fewer complaints than that quantity of attacked votes
ought to. For example, if prediction is perfect then it raises no alarm; if predic-
tion is near-perfect then it manipulates many more votes than the number of
verification complaints indicates. Note that it is not hard to predict how someone
will vote when you have their registration credentials and hence their electoral
roll record.

We find it notable that issues mentioned in the academic literature on verifi-
able voting—including the absence of dispute resolution (or accountability) and
the prospect of a particular kind of attack—here turn out to be relevant in the
context of a real-world online election.

5 Other Issues

We discuss additional problems related to privacy, integrity and usability.

5.1 Integrity, Auditing, and Verification

The iVote verification and audit systems are incompletely described in public
documents, and no source code is publicly available, so it is not possible for
external independent observers like us to rule out the existence of other sub-
stantial risks to integrity, beyond those we have already described. However, we
can make several high-level observations about limitations of the design.

For instance, the design cannot achieve the same level of assurance for
integrity as an ordinary post-election scrutineering process, since a related com-
promise of the Core Voting System and the Verification Service could unde-
tectably alter votes. For instance, the Verification Service could simply lie to
the voter about what vote was recorded on their behalf. Then the Core Voting
System and Verification System could show consistent misrepresented votes to
the Auditor.

46 J.A. Halderman and V. Teague

The process for auditing is incompletely described, so it is not clear whether a
related compromise of the Core Voting System and the Auditor would also suffice
to alter votes undetectably. A simple potential attack would be for the auditor to
turn a blind eye to inconsistencies between the Core Voting System’s data and
the Verification Server’s. Would this be caught? The Security Implementation
Statement [24] refers to some independent parties being allowed to observe some
parts of the audit process and receive some software, but it does not say exactly
what data they may check.

Votes that were present on the verification server (and possibly verified) could
subsequently be removed if the voter re-registered or voted via another channel.
It is not clear from the published system description how or whether the auditor
(or anyone else) could verify that only the correct votes were removed.

A compromised web server or Voice Server (i.e. the IVR system for phone
voting) could perform the attack from Sect. 4.1 on last-minute votes just as
easily as a compromised web client. This would be a low-risk attack, since the
malicious server would know that the verification server would be turned off
before the voter could perform verification and detect this.2

There are important inconsistencies between the code and the documenta-
tion describing how votes are encrypted. Early iVote documents [22], including
The iVote System Overview, describe them as being encrypted with the Receipt
Number; the Security Implementation Statement [24] describes them as being
encrypted using the ElGamal public key encryption system with the public keys
of the Election and Verification Servers. Our inspection of the JavaScript used
by iVote clients indicates that neither description is completely accurate: votes
are encrypted using a “digital envelope” which consists of a randomly-generated
symmetric key, encrypted once each with the Election and Verification Servers’
ElGamal public keys, plus the vote choices encrypted with AES using the sym-
metric key. This has implications for both the privacy and the integrity of the
system. Furthermore, the deviation of the actual code from the published spec-
ifications, particularly for such a central aspect of the voting protocol, raises
broader questions about the accuracy of the published descriptions of iVote.

5.2 Privacy

Having voters telephone a third-party server to have their votes read back to
them is unprecedented, either in Australia or (to our knowledge) elsewhere in
the world. It introduces many different opportunities for privacy breaches and
coercion after voting that do not exist in traditional paper-based voting.
2 In the case of the web server, this would require forging a signature attached to the

vote by the client. This signing step is evident in the JavaScript, but we could not
find any documentation on how the signing key was derived or how the signature
was verified. Hence we do not know whether a compromised web server could have
simply created a new signature on any vote it received, or whether it would have
needed to modify the JavaScript served to the client in order to get a valid signature
on an altered vote.

The New South Wales iVote System: Security Failures 47

For instance, a criminal could offer money in return for iVote verification
credentials that produced the desired vote from the verification server, or a
coercer could threaten punishment if such credentials are not provided. As noted
by McKay [20], such an attacker could use the Receipt Server to check that the
voter had not revoted to change their selections. Such attacks could originate
anywhere in the world, and vote buying could even be automated—imagine a
Tor hidden service that offered Bitcoin payments for proper votes.

Although the iVote design appears to give up on using technology to pro-
tect against vote buying and coercion, the system employs elaborate privacy
measures to try to separate the voter’s identity from their ballot internally.
Encryption alone does not guarantee vote privacy, as the vote must eventu-
ally be counted somehow. Some electronic voting systems, including the Norwe-
gian Internet voting system [14], use verifiable mixing in order to hide the link
between the decrypted vote and the encrypted form submitted by the voter.3 The
“cryptographic envelope” form of encryption used in iVote does not seem con-
ducive to these privacy-preserving tabulation methods. It is therefore crucial for
privacy that the voter’s identity cannot be reconnected with her symmetrically-
encrypted vote, which seems to remain in the same recognizable form throughout
the process.

iVote tries to achieve this by storing various items of unique or private data
in various different parts of the system, and the Security Implementation State-
ment [24] makes reference to associations between these being destroyed. How-
ever, compared to traditional postal ballots, for which the physical separation
of the voter’s identity from the ballot can occur irrevocably, the destruction of
electronic links is much more difficult to achieve. This is especially true if com-
ponents of the system are compromised or malfunctioning in ways that allow
data to be observed, recorded, or transferred elsewhere.

Unfortunately, there are several critical places in the system where compro-
mised components or malicious insiders could potentially associate voter identi-
ties with ballot contents. For example:

1. In the polling-site version of iVote, voters register and then vote via the same
machine. This creates a single point of attack, as their identity and their vote
are both present.

2. All the phone communications, including voting and verifying by IVR sys-
tem, are potentially susceptible to eavesdropping if the encryption used by the
phone company is weak or absent. This is particularly serious since both vot-
ing and verification involve transmitting the ballot contents over this channel,
and since many voters use identifiable telephone numbers.

3. A compromise of the registration server, which knows the link between an
individual’s iVote ID and name, could be combined with only one other com-
promise (of the Verification Server, Voice Server, or possibly the Auditor) to
link the name to the decrypted vote.

3 Some also use homomorphic tallying, but that would not work for Australian (pref-
erential) voting.

48 J.A. Halderman and V. Teague

4. The verification server has simultaneous access to the voter’s ballot contents
and iVote ID. If the voter accesses the service in a way that reveals their
identity (for example, with a phone that has caller ID), then the verification
server has all the information necessary to link the voter to their vote.

5.3 Usability and Operations

iVote suffered other problems during the election period. The system was sus-
pended for six hours because two minor parties had been left off the “above the
line” section of the ballot.

Fig. 5. iVote suffered from problems beyond security. Two parties were mistakenly left
off the “above the line” section of the ballot for the first 19,000 votes, and the ballot
interface (which required scrolling both horizontally and vertically to access all 394
candidates) was criticized for usability problems.

Other commentators drew attention to serious usability problems with the
ballot interface, which was very similar to the practice ballot design shown in
Fig. 5. Navigating the ballot required scrolling horizontally and vertically to
access all 24 party groups and 394 candidates. Scroll bars failed to appear on
some browsers, and the red arrows at the top of the screen had no effect. The
“Continue” button with the right-pointing arrow ended the voting session and
took the voter to a review, rather than scrolling right as might be expected.
This would seem to suggest that the system’s core voting functionality was not
adequately tested prior to deployment.

The New South Wales iVote System: Security Failures 49

6 Lessons

Security: The Difficulty of Correcting Known Problems in Time, and
Unknown Problems at all

iVote’s vulnerability to the FREAK and Logjam attacks illustrates once again
why Internet voting is hard to do securely. The system had been in development
for years, but FREAK was made public about two weeks before the election.
New vulnerabilities are discovered regularly in software and protocols that an
Internet voting system depends on for its security, including web browsers and
TLS. When this happens near election day, there may not be time to ensure that
election servers and voters’ clients are properly retested and patched.

Moreover, mechanisms for trying to ensure that correct software is running
in the voting system conflict with the necessity for rapid patching. A last minute
change to fix one serious problem could introduce new vulnerabilities—as hap-
pened in Washington, D.C. [31]—or could conceal a deliberate attempt at fraud.

The ability to test for and patch such problems assumes they are publicly
known, but attackers may also have access to unpublished “zero-day” vulnerabil-
ities for which, by definition, no patches yet exist. This was the case for us with
Logjam, which would have allowed us to compromise iVote connections to all
popular browsers during the election. It is sheer luck that NSWEC’s method of
removing the vulnerability to FREAK also protected iVote from Logjam, as the
attack was not disclosed publicly until two months later. The only responsible
assumption is that there are more major HTTPS vulnerabilities waiting to be
discovered and perhaps already known to sophisticated attackers.

Fragility: Standard Web Development Practices are Inadequate for
Critical Applications such as Elections

Many pieces of software contribute to a typical web application experience,
including off-the-shelf server software and library code and, commonly, packages
such as analytics tools that are loaded from third-party services. While reliance
on such components might be appropriate for a blog or even an e-commerce site,
they are often not engineered to the level of security that is required for crit-
ical, high-risk applications. (Indeed, analytics software has been shown to leak
critical private information in certain online banking systems [25]). Given the
economic and foreign policy stakes involved in the outcome of a large election,
such contests need to be treated as national security matters, which require a
wholly different technical approach than typical IT systems.

Moreover, the decision to import code from a third party into the election
system creates the possibility for that party to attempt to undermine the sys-
tem. Even if the PiwikPro server had not been vulnerable to man-in-the-middle
attacks, anyone with administrative access to that server (whether legitimate or
otherwise) would have been able to mount the same attack. Insider threats rep-
resent some of the most insidious security risks, and reliance on external code
greatly expands the set of insiders who are able to affect the security of the
election, adding possibly unknown employees of third-party service providers.

50 J.A. Halderman and V. Teague

Verifiability: When Does an Advertised Verification Mechanism
Truly Provide Verifiable Evidence of a Correct Election Outcome?

Although some schemes do provide genuine electronic election verification
remotely, including Helios [3], Remotegrity [32], and Pretty Good Democ-
racy [26], achieving this in a privacy-preserving way requires real verification
work from the voter. Such techniques hold promise for the future, and have been
used successfully in elections with relatively educated voters and low stakes [4].
However, extending them to state-level elections remains impractical for now.
Issues such as voter authentication and usability are especially problematic. New
South Wales is particularly challenging, since it has no public key infrastructure
and requires voters to number multiple preferences on a ballot with 394 candi-
dates.

Considering these limitations of state-of-the-art verification schemes, it is not
surprising that the iVote verification mechanism was vulnerable to circumven-
tion. It was not based on any peer-reviewed end-to-end verifiable scheme, and
there was no detailed public review to allow such problems to be pointed out
prior to the election. When an Internet voting system is claimed to be verifi-
able, this claim should be supported with a clear argument based on a complete
description of the system. Otherwise the verification protocol itself could be
incomplete, erroneous, or open to manipulation.

7 Conclusion

We discovered serious flaws in the iVote online voting system that would have
allowed a malicious attacker to expose voters’ secret ballots, substitute replace-
ment votes, and sidestep the verification mechanism. Despite years of planning,
development, and pre-election security assessment, the system was susceptible
to both publicly known and zero-day vulnerabilities that were at our disposal
during the state election. These findings demonstrate yet again why conducting
Internet voting with existing security technologies poses grave real-world risks.

NSWEC’s decision to keep the system’s source code and detailed design secret
prevented independent analysts like us from being able to bring these specific
problems to the officials’ attention before the election. Even now, we cannot
know whether there are other critical flaws in the iVote software and protocols
that would be evident if the relevant details were made public.

We recommend that NSWEC and others avoid large-scale Internet voting
deployments until there are fundamental advances in computer security that
can appropriately mitigate the risks. If Internet voting tests must proceed, future
tests should firmly restrict eligibility to voters unable to vote via a more secure
channel; incorporate genuine, peer-reviewed verification mechanisms; ensure that
the design and implementation are made openly available for rigorous indepen-
dent scrutiny; and include a clear public statement of the risks to voter privacy
and electoral integrity.

The New South Wales iVote System: Security Failures 51

Elections should produce not only an outcome but also sufficient evidence
supporting that outcome. This is the reason for Australia’s tradition of trans-
parent electoral processes, as well as for more recent research on auditable and
verifiable elections. In the case of the 2015 New South Wales state election, there
is neither evidence that the vulnerabilities we discovered were exploited nor ade-
quate proof that they were not. A demonstrable vulnerability exposing a large
number of votes to potential manipulation constitutes a serious failure of the
electoral process.

Acknowledgments. The authors thank David Adrian, Ed Felten, Rajeev Goré, Nadia
Heninger, Harri Hursti, and Liz Minchin for assistance during this project. For their
support and encouragement after we made our results public, we would also like to
thank the tremendous community of election integrity scholars and advocates, includ-
ing but not limited to: Duncan Buell, David Dill, Joseph Hall, Candice Hoke, David
Jefferson, Noel Runyan, Ronald Rivest, Barbara Simons and Pamela Smith. This mate-
rial is based in part upon work supported by the U.S. National Science Foundation
under grants CNS-1345254 and CNS-1409505, and by the Morris Wellman Faculty
Development Assistant Professorship.

References

1. ABC News. Computer voting may feature in March NSW election, February
2015. http://www.abc.net.au/news/2015-02-04/computer-voting-may-feature-in-
march-nsw-election/6068290

2. Abendan, O.: How DNS changer Trojans direct users to threats. In: Trend Micro
Threat Encyclopedia (2012)

3. Adida, B.: Helios: web-based open-audit voting. In: 17th USENIX Security Sym-
posium, August 2008. https://vote.heliosvoting.org

4. Adida, B., De Marneffe, O., Pereira, O., Quisquater, J.-J.: Electing a university
president using open-audit voting: analysis of real-world use of Helios. In: Elec-
tronic Voting Technology Workshop (EVT) (2009)

5. Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman, J.A.,
Heninger, N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wustrow,
E., Zanella-Béguelin, S., Zimmermann, P.: Imperfect forward secrecy: how Diffie-
Hellman fails in practice, May 2015. https://weakdh.org/

6. Ballani, H., Francis, P., Zhang, X.: A study of prefix hijacking and interception in
the Internet. In: Proceedings of ACM SIGCOMM, August 2007

7. Bell, S., Benaloh, J., Byrne, M.D., DeBeauvoir, D., Eakin, B., Fisher, G., Kortum,
P., McBurnett, N., Montoya, J., Parker, M., et al.: Star-vote: a secure, transparent,
auditable, and reliable voting system. USENIX J. Election Technol. Syst. 1(1), 18–
37 (2013)

8. Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M.,
Pironti, A., Strub, P.-Y., Zinzindohoue, J.K.: A messy state of the union: taming
the composite state machines of TLS. In: 36th IEEE Symposium on Security and
Privacy (2015)

9. Bilodeau, O., Dupuy, T.: Dissecting Linux/Moose: the analysis of a Linux router-
based worm hungry for social networks, May 2015. http://www.welivesecurity.
com/wp-content/uploads/2015/05/Dissecting-LinuxMoose.pdf

http://www.abc.net.au/news/2015-02-04/computer-voting-may-feature-in-march-nsw-election/6068290
http://www.abc.net.au/news/2015-02-04/computer-voting-may-feature-in-march-nsw-election/6068290
https://vote.heliosvoting.org
https://weakdh.org/
http://www.welivesecurity.com/wp-content/uploads/2015/05/Dissecting-LinuxMoose.pdf
http://www.welivesecurity.com/wp-content/uploads/2015/05/Dissecting-LinuxMoose.pdf

52 J.A. Halderman and V. Teague

10. Carback, R., Chaum, D., Clark, J., Conway, J., Essex, A., Herrnson, P.S., May-
berry, T., Popoveniuc, S., Rivest, R.L., Shen, E. et al.: Scantegrity II municipal
election at Takoma Park: the first E2E binding governmental election with ballot
privacy. In: Proceedings of the 19th USENIX Security Symposium (2010)

11. Culnane, C., Ryan, P.Y.A., Schneider, S., Teague, V.: vVote: A verifiable voting
system. ACM Transactions on Information and System Security. To appear. Tech-
nical report at http://arxiv.org/abs/1404.6822

12. Durumeric, Z., Adrian, D., Mirian, A., Bailey, M., Halderman, J.A.: Tracking the
FREAK attack. https://freakattack.com/

13. Estonian Internet Voting Committee. Statistics about Internet voting in Estonia,
May 2014. http://www.vvk.ee/voting-methods-in-estonia/engindex/statistics

14. Gjøsteen, K.: The Norwegian Internet voting protocol. In: Kiayias, A., Lipmaa, H.
(eds.) VoteID 2011. LNCS, vol. 7187, pp. 1–18. Springer, Heidelberg (2012)

15. Hastings, N., Peralta, R., Popoveniuc, S., Regenscheid, A.: Security considera-
tions for remote electronic UOCAVA voting. National Institute of Standards and
Technology, NISTIR 7770, February 2011. http://www.nist.gov/itl/vote/upload/
NISTIR-7700-feb2011.pdf

16. Heninger, N.: Factoring as a service. Crypto 2013 rump session. https://www.cis.
upenn.edu/nadiah/projects/faas/

17. Kaminsky, D.: It’s the end of the cache as we know it. In: Toorcon (2008)
18. Kusters, R., Truderung, T., Vogt, A.: Clash attacks on the verifiability of e-voting

systems. In: 33rd IEEE Symposium on Security and Privacy, pp. 395–409 (2012)
19. Marlinspike, M.: New tricks for defeating SSL in practice. Black Hat (2009). http://

www.thoughtcrime.org/software/sslstrip/
20. McKay, R.: Flaws in iVote’s re-vote process which attempts to defeat coercers.

http://www.bigpulse.com/governmentelections#changevoteflaw. BigPulse
21. NSW Electoral Commission. legislative council–final distribution of preferences

(2015). http://vtr.elections.nsw.gov.au/lc-home.htm#lc/state/dop/dop index
22. NSW Electoral Commission. Index of iVote reports. http://www.elections.nsw.gov.

au/about us/plans and reports/ivote reports
23. NSW Electoral Commission. iVote threat analysis and risk assessment, January

2014. http://www.elections.nsw.gov.au/ data/assets/pdf file/0008/175760/NSW
Election iVote Threat Analysis and Risk Assessment v3.0.pdf

24. NSW Electoral Commission. iVote system security implementation state-
ment, March 2015. http://www.elections.nsw.gov.au/ data/assets/pdf file/0007/
193219/iVote-Security Implementation Statement-Mar2015.pdf

25. Räisänen, O.: The bank deal. http://oona.windytan.com/pankki.html
26. Ryan, P.Y.A., Teague, V.: Pretty good democracy. In: Christianson, B., Malcolm,

J.A., Matyáš, V., Roe, M. (eds.) Security Protocols 2009. LNCS, vol. 7028, pp.
111–130. Springer, Heidelberg (2013)

27. Segaard, B., Christensen, D.A., Folkestad, B., Saglie, J.: Internettvalg: hva gjør og
mener velgerne? (2014). https://www.regjeringen.no/globalassets/upload/kmd/
komm/rapporter/isf internettvalg.pdf

28. Springall, D., Finkenauer, T., Durumeric, Z., Kitcat, J., Hursti, H., MacAlpine,
M., Halderman, J.A.: Security analysis of the Estonian internet voting system. In:
ACM Conference on Computer and Communications Security (CCS), November
2014

29. Teague, V., Halderman, J.A.: Security flaw in New South Wales puts thousands
of online votes at risk. Freedom to Tinker blog post, 22 March 2015. https://
freedom-to-tinker.com/blog/teaguehalderman/ivote-vulnerability/

http://arxiv.org/abs/1404.6822
https://freakattack.com/
http://www.vvk.ee/voting-methods-in-estonia/engindex/statistics
http://www.nist.gov/itl/vote/upload/NISTIR-7700-feb2011.pdf
http://www.nist.gov/itl/vote/upload/NISTIR-7700-feb2011.pdf
https://www.cis.upenn.edu/nadiah/projects/faas/
https://www.cis.upenn.edu/nadiah/projects/faas/
http://www.thoughtcrime.org/software/sslstrip/
http://www.thoughtcrime.org/software/sslstrip/
http://www.bigpulse.com/governmentelections#changevoteflaw
http://vtr.elections.nsw.gov.au/lc-home.htm#lc/state/dop/dop_index
http://www.elections.nsw.gov.au/about_us/plans_and_reports/ivote_reports
http://www.elections.nsw.gov.au/about_us/plans_and_reports/ivote_reports
http://www.elections.nsw.gov.au/_data/assets/pdf_file/0008/175760/NSW_Election_iVote_Threat_Analysis_and_Risk_Assessment_v3.0.pdf
http://www.elections.nsw.gov.au/_data/assets/pdf_file/0008/175760/NSW_Election_iVote_Threat_Analysis_and_Risk_Assessment_v3.0.pdf
http://www.elections.nsw.gov.au/_data/assets/pdf_file/0007/193219/iVote-Security_Implementation_Statement-Mar2015.pdf
http://www.elections.nsw.gov.au/_data/assets/pdf_file/0007/193219/iVote-Security_Implementation_Statement-Mar2015.pdf
http://oona.windytan.com/pankki.html
https://www.regjeringen.no/globalassets/upload/kmd/komm/rapporter/isf_internettvalg.pdf
https://www.regjeringen.no/globalassets/upload/kmd/komm/rapporter/isf_internettvalg.pdf
https://freedom-to-tinker.com/blog/teaguehalderman/ivote-vulnerability/
https://freedom-to-tinker.com/blog/teaguehalderman/ivote-vulnerability/

The New South Wales iVote System: Security Failures 53

30. Victorian Electoral Commission. Report to Parliament on the 2010 Victorian State
election; Section 11: Statistical overview of the election (2011). http://www.vec.
vic.gov.au/files/ER-2010-Section11.pdf

31. Wolchok, S., Wustrow, E., Isabel, D., Halderman, J.A.: Attacking the Washing-
ton, D.C. Internet voting system. In: 16th International Conference on Financial
Cryptography and Data Security (FC), February 2012

32. Zagórski, F., Carback, R.T., Chaum, D., Clark, J., Essex, A., Vora, P.L.:
Remotegrity: design and use of an end-to-end verifiable remote voting system.
In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013.
LNCS, vol. 7954, pp. 441–457. Springer, Heidelberg (2013)

http://www.vec.vic.gov.au/files/ER-2010-Section11.pdf
http://www.vec.vic.gov.au/files/ER-2010-Section11.pdf

Advanced Voting Protocols

Extending Helios Towards Private
Eligibility Verifiability

Oksana Kulyk1(B), Vanessa Teague2, and Melanie Volkamer1,3

1 Technische Universität Darmstadt/CASED, Darmstadt, Germany
Oksana.kulyk@secuso.org

2 University of Melbourne, Melbourne, Australia
vjteague@unimelb.edu.au

3 Karlstad University, Karlstad, Sweden
Melanie.volkamer@secuso.org

Abstract. We show how to extend the Helios voting system to provide
eligibility verifiability without revealing who voted which we call private
eligibility verifiability. The main idea is that real votes are hidden in a
crowd of null votes that are cast by others but are indistinguishable from
those of the eligible voter. This extended Helios scheme also improves
Helios towards receipt-freeness.

1 Introduction

Electronic voting protocols must allow the public to verify the accuracy of the
election outcome. Much of the research focus has been devoted to universal end-
to-end verifiability, which includes cast-as-intended, stored-as-cast and tallied-
as-stored verifiability. In particular, the Helios voting system [1] was designed
to ensure these requirements. Another crucial property is eligibility verifiability,
meaning that anyone can verify that only the votes of eligible voters have been
accepted and included into the tally, thus preventing ballot stuffing by the vot-
ing system. The original version of Helios requires trust in the voting system
for accepting votes from eligible voters only, thus lacking the option to verify
eligibility by the general public.

In Helios and related systems, votes are cast encrypted and are anonymized
before decryption and tallying. One simple way to ensure eligibility verifiability
would be to make use of an existing public-key infrastructure (PKI), letting
voters sign their encrypted vote and publishing all signed encrypted votes on
the Bulletin Board. In that case, everyone could verify that each vote had been
signed by an eligible voter. However, this approach inevitably reveals who voted
in the election and who abstained.

It is worth noting that different democracies take slightly different attitudes
to vote privacy in practice. In Australia and many other countries, voting is
compulsory and hence a matter of (somewhat) public record. However, in other
countries including Germany and Switzerland, the fact of whether or not a person
has voted is regarded as private; in the United States political organisations

c© Springer International Publishing Switzerland 2015
R. Haenni et al. (Eds.): VoteID 2015, LNCS 9269, pp. 57–73, 2015.
DOI: 10.1007/978-3-319-22270-7 4

58 O. Kulyk et al.

quite openly target likely voters on an individual basis. Hence it is sometimes
important to hide who voted—we call this participation privacy.

This work shows how to extend Helios to ensure both universal eligibility
verifiability and participation privacy for voters, i.e. private eligibility verifiabil-
ity. The proposal could also be used to improve other schemes like the Estonian
voting scheme [23], or could be implemented as an independent system.

The main idea is to pad out the Helios votes with null votes cast by others.
Anyone may add null votes to any voter’s row; and voters can update their votes.
We have decided to identify specific participants called “posting proxies” who do
most of the padding with null votes (according to some, presumably randomised,
algorithm).

These null votes need to have some important properties: They should not
have any effect on the election outcome. The null votes must also be indis-
tinguishable from the voter’s contributions, and numerous and unpredictable
enough to provide proper cover for voters. We achieve it by introducing witness-
indistinguishable disjunctive proofs that ensure that each cast vote is either a
null vote (represented by an encryption of 1), or a vote cast by an eligible voter.
We rely on an anonymous channel that is used by posting proxies as well as
by voters, in order to hide the origin of the cast votes. Our scheme uses an
existing PKI rather than relying on a dedicated credential-based mechanism like
JCJ/Civitas or caveat coercitor [18]. All voters must use their signing key to
vote. The list of assumptions for the overall scheme as well as for the individual
security requirements are listed and discussed in Sect. 5. Our construction also
prevent voters from proving which valid vote they have cast. Thus, it improves
Helios even fruther as it offers some level of receipt-freeness as protection against
vote selling. The remaining security properties, such as preserving the integrity
and secrecy of the vote, should hold for honest voters under the same assump-
tions as in the original Helios system. Note, we use the same cast-as-intended
verification methods as Helios.

We would not claim that our protocol satisfies all the requirements neces-
sary for government elections. It remains susceptible to coercion for abstaining
and randomizing the vote. Also the strong assumptions about the public key
infrastructure, and the smart card’s good behaviour mean that it is not truly
end-to-end verifiable. The necessity of participation of other contributors in each
person’s row may also be too strong for sufficient privacy for some elections.

The paper is structured as follows. In Sect. 2 we describe the related work
relevant for our proposal. In Sect. 3 we give the background information with
the building blocks used in our scheme. In Sect. 4 we describe the scheme itself,
followed by its security analysis, including the ensured security requirements and
the assumptions needed for this, in Sect. 5. Section 6 gives an efficiency analysis
of the scheme, and Sect. 7 provides the conclusion.

2 Related Work

Haenni and Spycher [22] provide a scheme with eligibility verifiability and par-
ticipation privacy (which they call anonymity). The scheme, however, does not

Extending Helios Towards Private Eligibility Verifiability 59

provide receipt-freeness. Eligibility verifiability for Helios was considered in [40].
This work takes a complementary approach to ours, because it assumes that
there is no public key infrastructure and relies instead on tokens generated
specifically for the election. The protocol provides eligibility verifiability and pre-
vention of ballot stuffing under reasonable assumptions, but does not attempt
either to hide who voted or to provide receipt freeness.

The goal of ensuring both eligibility verifiability and the participation privacy
of the voters is addressed, among other security requirements, by the schemes
aiming to provide the property of coercion resistance. The issue of coercion
resistance in remote voting was addressed in the work of Juels, Catalano and
Jacobson (JCJ) in [25], presenting a scheme that provides coercion resis-
tance – the definition of which includes receipt freeness as well as protection
against forced abstention, randomization and simulation attacks – against strong
attacker. This scheme, however, is unsuited for practical use, due to the fact, that
its performance is O(N2) with N as the number of eligible voters. Therefore,
a number of works have presented the improvements to the JCJ system, that
preserve the coercion-resistance properties while achieving linear complexity –
among others, approaches based upon group signatures [2], panic passwords [10],
concurrent ballot authorization [15], anonymity sets [34] or using the voter roll
[38]. Furthermore, several improvements focused on improving other shortcom-
ings in JCJ scheme, such as addressing the issue of board flooding [26], or improv-
ing usability with using tamper-resistant smartcards [29]. These improvements,
however, still require complex forms of credential management, thus lacking in
usability from the voter’s perspective. A number of other schemes has been sug-
gested that provide some level of coercion resistance [27,32], which, however,
also require complex actions from the voter. The Caveat Coercitor scheme [18]
aims at detecting whether coercion took place during the election, but not at
preventing it.

3 Background

In this section we provide the background information we base our scheme upon.

3.1 Helios

The Helios voting system incorporates a simple yet powerful collection of meth-
ods for end-to-end verifiable voting. Each person’s encrypted vote is tabulated,
along with some authentication information, on a public bulletin board. Well-
behaved voting clients are supposed to delete the randomness they use when
generating the ciphertext—if they do so, the person cannot subsequently prove
how they voted. If they fail to do so, that randomness can be used to open the
ciphertext and prove its contents to a coercer. It is obvious from the bulletin
board which voters have participated and which have abstained.

60 O. Kulyk et al.

The client is trusted for privacy. If more than a threshold of talliers collude
they too can violate privacy. No entities are trusted for integrity though of course
verification procedures for the voting process and the bulletin board must be
followed. Helios uses the “Benaloh challenge” [5] to allow voters to verify that
their vote is cast as they intended.

3.2 Cryptographic Building Blocks

We describe the cryptographic primitives and protocols that underlie our scheme.

ElGamal Encryption: Let (g, h) ∈ G
2
q be a public ElGamal key, where Gq ⊂

Zp is a multiplicative group of order q, with both p, q large primes, p = 2q + 1.
An ElGamal encryption of v ∈ Gq using the public key (g, h) is defined as a
tuple Enc(g,h)(v) = (a, b) := (gr, v · hr) for some randomness r ∈ Zq. In case it
is necessary to ensure for a ciphertext (a, b) encrypts a vote in Gq, one checks
whether aq = bq = 1mod p.

Proof of an Encryption of 1: In order to prove that a given ciphertext (a, b)
encrypts 1, one has to present a zero-knowledge proof:

ZKP{∃r : a = gr mod p ∧ b = hr mod p}

The proof, presented in [9], is given in Appendix A.1.
Note, that this as well as further proofs can be made non-interactive accord-

ing to Fiat-Shamir heuristic [16], by providing the challenge c as a hash function
of the “commitment” values sent in the first step of the proof, as well as to other
relevant parameters, as suggested in [7].

Proof of Knowledge of DSA Signing Key: Let (gs, hs = gs) ∈ Gq be the
DSA public key. Proving the possession of valid secret key s could be done with
Schnorr’s proof of knowledge of discrete logarithm [35], restated in Appendix A.2.
The proof is easily extended to a proof of knowledge of an ElGamal plaintext.

Proof of Knowledge of RSA Signatures: Let (N, e) with e prime be a public
RSA signature key, d secret signature key. For a message m and some encoding
function h(m) that is used for signing1, in order to prove the knowledge of a
valid signature on m, one has to show:

ZKP{∃s : se ≡ h(m)mod N}

The proof, described in [20,21], is given in Appendix A.3.

1 Usually a hash value of m and/or padding, according to common RSA signature
standards.

Extending Helios Towards Private Eligibility Verifiability 61

Reencryption Mix Nets: Re-encryption mix nets shuffle a set of ciphertexts
without needing to know the private key, and provide a proof of correct shuf-
fling. Modern re-encryption mixnets run efficiently, and many are appropriate
for ElGamal encryption, including [17,19,28,41].

It is important to defend against Pfitzmann’s attack on mixnet privacy [31],
in which a malicious participant copies someone else’s vote as a way of exposing
it. Our scheme hence requires a proof of the validity and knowledge of the vote
when it is posted, as in [6].

Plaintext Equality Tests: There are two approaches to prove the validity
of encrypted vote (i.e. that the plaintext belongs to the set of allowed voting
options) while preserving voter privacy. The first is to make the voter attach
the proofs of validity during vote casting. This approach is inapplicable to our
scheme because the product of several valid votes may be invalid. The second
approach is to discard non-valid votes after vote casting and anonymization.
A simple way would be to decrypt and publish all the votes. This approach
destroys receipt freeness, however. For example, a coercer could demand a par-
ticular vote v and then, with 50 % probability, either let a voter keep their vote
or demand that they add some large number x, and then see whether the x + v
appeared in the list of decrypted votes.

To prevent this, instead of decrypting, we use plaintext equality tests
(PET) [24]. For a pair of ElGamal ciphertexts e, e′ ∈ G

2
q, e = Enc(g,h)(v) =

(a, b), e′ = Enc(g,h)(v′) = (a′, b′), these tests are performed in a distributed way
by a group of trustees that own the shared corresponding decryption key. The
trustees compute and jointly decrypt

((
a

a′)
z, (

b

b′)
z)

for a jointly generated random secret z.
The result is the value of (v

v′)z which is 1 if v = v′, or a random value in Gq

that reveals no information about v, v′ or their relation to each other otherwise.

Other Cryptographic Tools: We use the disjunctive witness-hiding proofs of
Cramer et al. [13]. The trustees share the decryption key using Shamir thresh-
old secret sharing [36], jointly generated using Pedersen’s scheme [30], as recom-
mended for Helios by Cortier et al. [11].

4 Proposed Scheme

In this section we describe the proposed voting scheme. The key generation,
decryption trustees, mix nodes, bulletin board, and basic voter behaviour are
the same or similar as for Helios. The main difference to Helios is the tallying
stage, because we now allow multiple votes against one voter’s name. Each row
(corresponding to one voter) will be homomorphically totalled, then all the totals
will be mixed and interpreted by PET .

62 O. Kulyk et al.

If board flooding is considered a possible problem, we could incorporate the
token-based mechanisms of [26], which restricts the total number of postings by
any individual2. Even more simply, we could impose a restriction on the number
of ciphertexts that could be posted by each person against each voter’s row.
Even a small number (such as one or two) might be entirely sufficient, as long
as Assumption Sect. 5.2 remained true.

4.1 Preparations

The list of all eligible voters V1, ..., VN is posted on the bulletin board, as the
list of their public keys and voter IDs. We think of the bulletin board as having
a row for each of those eligible voters—in other words, each posted ciphertext
is explicitly allocated to one of the voter IDs. The available voting options are
represented as C = {c1, ..., cL}, with 1 �∈ C representing the null/abstaining vote.
Using distributed threshold secret sharing [30], the trustees generate a pair of
ElGamal keys (g, h) for encrypting the votes. Furthermore, the trustees publish
the list of ciphertexts resulting from the deterministic encryption (i.e. using fixed
and public randomness value) of voting options: Ê = {ê1 = Enc(g,h)(c1), ..., êL =
Enc(g,h)(cL)}.

4.2 Vote Casting

In order to post a vote v ∈ C for the voter Vi, one sends an ElGamal ciphertext
e = Enc(g,h)(v), and a disjunctive witness-hiding proof given in Algorithm1.

Algorithm 1. Witness hiding proof of valid vote posting (Assuming that the
DSA-based PKI is used.)

Public Input: The election ID, the ElGamal ciphertext e to be posted, the public
key PKV of the row to be posted on, the election ElGamal encryption parameters
(p, q, g, h).

Poster’s private input: Either the randomness used to produce e, or the private
key corresponding to PKV .

Proof: the poster proves
poster knows plaintext of e, using proof from Sect. 3.2
AND
{e encrypts 1, that is, is a null vote, using proof from Sect. 3.2
OR poster knows the private key corresponding to PKV , using proof from Sect. 3.2}

The proof is made noninteractive using the Fiat-Shamir heuristic applied to the
entire public input.

2 As the complexity of the computations in the tallying stage depends on the amount
of eligible voters rather than total cast votes, and the complexity of the computations
in the voting stage is linear in the number of cast votes, we presume board flooding
is less likely to significantly hinder the election than it is in [25].

Extending Helios Towards Private Eligibility Verifiability 63

An alternative method, applicable in case the RSA-based PKI is used, would
be that instead of proving knowledge of the signing key, the prover proves knowl-
edge of a digital signature on (election ID, e). Either way it is important to
incorporate all of the public parameters of the proof into the Fiat-Shamir hash,
to prevent reuse of the proof of knowledge.

As in the Helios system, the voter has the option to either audit the encrypted
ballot via the Benaloh challenge, or to send the vote and the proof. Once the
vote is sent, the voter can check the bulletin board in order to verify that it
has been recorded. It follows that only the legitimate voter Vi can post non-null
votes near her name, since she is the one possessing the secret signature key. If
the voter wants to update her vote from vA to vB, she encrypts and casts the
value of v−1

A vB.
All the cast votes are validated at the moment of posting: exact duplicated

postings are removed3, also discarded are the ciphertexts with invalid zero-
knowledge proofs, or those that encrypt a value v ∈ Zp\Gq

4.

4.3 Tallying

At the end of vote casting stage, the bulletin board looks as shown on Table 1.
It is assumed that for all i = 1, ..., N , it holds that mi > 0. Furthermore, only
the voter Vi knows how many of the votes vi,1, . . . vi,mi

are null votes, and how
many are real ones.5

Table 1. Bulletin board prior to tallying stage

Voter ID Cast votes

V1 e1,1, . . . e1,m1

...
...

VN eN,1, . . . eN,mN

The final ciphertext for each Vi is computed by elementwise multiplication

ei =
mi∏

j=1

ei,j

Since the null votes are all encryptions of 1, only the non-null votes influence
the final vote included in tallying. If for some i, the voter Vi has abstained, the
resulting ciphertext ei is an encryption of a null vote.
3 This prevents manipulating someone’s vote by re-posting something they have gen-

uinely contributed.
4 This can be done by checking whether bq = 1 for a ciphertext (a, b) with a valid

proof of plaintext knowledge, and is needed to prevent information leakage about
plaintext from PET s during tallying.

5 This and other assumptions are further discussed in Sect. 5.

64 O. Kulyk et al.

The resulting ciphertexts e1, ..., eN are then processed through the mix net
for the sake of removing the link between the voter and the decrypted vote, with
the anonymized list e′

1, ..., e
′
N as output.

For each ciphertext e′
i = Enc(g,h)(vi) that results from shuffling and each

voting option cj encrypted as êj , the trustees perform PET s for e′
i and êj . If

the test is positive for some j, the trustees conclude that vi = cj ; otherwise,
they conclude that vi is either a null vote, or an invalid vote, and thus should
be discarded from tallying. The result can then be directly computed from the
non-discarded votes.

5 Security Analysis

In this section we conduct the security analysis of our scheme, by listing the secu-
rity requirements we want to ensure, and identifying the security assumptions
that are needed for them. Further we discuss the ways to ensure the assumptions
that we make.

5.1 Security Requirements

In general, we need to rely on the following assumptions regarding the cryprog-
raphy used in the scheme:

– Cryptography Assumption: the cryptography used in witness-indistinguishable
proofs and in the ElGamal encryption scheme is reliable:

• the DDH assumption holds,
• the random oracle model is instantiated by a hash function,
• if RSA is used for PKI, the RSA assumption holds.

In the following we explain for each security requirement why it is ensured
and under which further security assumptions:

Eligibility Verifiability: This requirement suggests, that everyone should be
able to verify that only the votes from the eligible voters have been included
in the tallying result.

This requirement is ensured due to the application of the proof in Algo-
rithm 1 in Sect. 4.2 and its soundness (i.e. it that non voters can only cast null
votes, which have no effect on the final tallying), if the following assumptions
hold:
– Secret Key Leakage Assumption: The voter’s secret key is not leaked to

the adversary without voter’s knowledge.
– Secret Key Re-Usage Assumption: The voting device cannot use the secret

key to cast any additional votes without voter’s knowledge.
– Authentic List of Keys Assumption: Only eligible voters have their public

keys published in the voting register.

Extending Helios Towards Private Eligibility Verifiability 65

Individual Verifiability: Each voter should be able to verify, that her vote has
been cast and stored by the voting system according to her intention.
This requirement is ensured due to the following mechanisms:
– the application of the Benaloh challenges for cast-as-intended verifiability;
– the possibility for voters to check that the encrypted votes that she sub-

mitted herself appear on the bulletin board for stored-as-cast verifiability;
– the functionality to re-send a vote if voters detect that a posting proxy

withholds a vote (just like the single bulletin board in Helios); and
– the application of the proof in Algorithm 1 in Sect. 4.2 and its soundness
if the following assumptions hold:
– Secret Key Leakage Assumption: The voter’s secret key is not leaked to

the adversary without voter’s knowledge.
– Secret Key Re-Usage Assumption: The voting device cannot use the secret

key to cast any additional
– without voter’s knowledge.

Universal Verifiability: Everyone should be able to verify, that the tallying
result is computed from the valid votes stored by the voting system only.
This requirement is ensured due to the following mechanisms:
– all the ciphertexts posted on the bulletin board include a valid proof, thus

being either encryptions of null votes or of votes from eligible voters,
– these ciphertexts are included in the product defining the final votes,
– the final votes are correctly processed through mix net, and
– each one of the plaintext equality tests outputs the correct result, either

assigning a correct valid voting option to each vote, or determining that
the vote is invalid

if the following assumption holds:
– Bulletin Board Assumption: The bulletin board is a reliable broadcast

channel with memory.

Participation Privacy: The system should not disclose the fact, whether an
individual voter has participated in the election, to the passive adversary,
who only has access to the public output.
This requirement is ensured due to the the application of the proof in Algo-
rithm 1 in Sect. 4.2 and its soundness if the following assumption hold:
– Hidden Origin Vote Assumption (Passive): There is at least one ciphertext

which the adversary is unable to distinguish between a null vote and an
effective vote from an eligible voter.

Note, the tallying process does not reveal information about individual votes,
or even the presence of particular invalid votes.

Vote Secrecy: The adversary should not be able to learn for which candidate
each individual voter has voted from the public output.
The secrecy of the vote relies on
– the vote anonymization performed in a proper way, and
– the individual ciphertexts not being decrypted prior to being anonymized.

66 O. Kulyk et al.

if the following assumption holds:
– Trustee Assumption: Less than a threshold number of trustees disclose

their private key shares to the adversary.

Receipt-Freeness: The voter should not be able to provide a receipt to the
adversary, proving that she has voted for a particular candidate c.
The receipt-freeness relies on the fact, that even if the voter proves that she
cast a ciphertext encrypting c6, there are some additional ciphertexts in the
voter’s row, for which she would not be able to prove that it does not encrypt
some value c′ · c−1 thus replacing c with c′7. This is ensured as long as the
following assumption holds:
– Hidden Origin Vote Assumption (Active): There is at least one ciphertext

in the voter’s row, that the voter cannot prove whether she cast it.

An active coercer can force abstention or randomization, and a voter can
prove that they have abstained by casting an invalid vote.

5.2 Discussion on the Assumptions

We summarize the assumptions identified in Sect. 5.1 in the list below:

1. Hidden Origin Vote Assumption (Passive): There is at least one ciphertext
which the adversary is unable to distinguish between a null vote and an
effective vote from an eligible voter.

2. Hidden Origin Vote Assumption (Active): There is at least one ciphertext in
the voter’s row, that the voter cannot prove whether she cast it.

3. Secret Key Re-Usage Assumption: The voting device cannot use the secret
key to cast any additional votes without voter’s knowledge.

4. Secret Key Leakage Assumption: The voter’s secret key is not leaked to the
adversary without voter’s knowledge.

5. Trustee Assumption: Less than a threshold number of trustees disclose their
private key shares to the adversary.

6. Bulletin Board Assumption: The bulletin board is a reliable broadcast channel
with memory.

7. Cryptography Assumption: the cryptography used in witness-
indistinguishable proofs and in the ElGamal encryption scheme is reliable:

– the DDH assumption holds,
– the random oracle model is instantiated by a hash function,
– if RSA is used for PKI, the RSA assumption holds.

8. Authentic List of Keys Assumption: Only eligible voters have their public
keys published in the voting register.

6 She can do this for the ciphertext (gr, c · hr) by disclosing the randomness r to the
adversary.

7 Note, that v′ can be the legitimate vote for another candidate (i.e. the one the voter
actually intends to vote for), but also some random or even unknown to the voter
value that results in an invalid vote.

Extending Helios Towards Private Eligibility Verifiability 67

We discuss possible ways the assumptions that our scheme requires could be
implemented in the following paragraphs:

Hidden Origin Vote Assumption (Passive) and Hidden Origin Vote
Assumption (Active) can be summarized in following: each voter, against
every adversary, must have at least one opportunity to communicate with the
bulletin board (perhaps via a third party) and which

– the adversary cannot detect whether the voter has communicated, and
– if the voter doesn’t communicate to the BB, some other participant posts a

null vote

In other words, it should not be possible for a voter to prove that they have cast
all of the ciphertexts in their row that the adversary thinks they might possibly
have cast.

It could be implemented by a few ways, for example:

– some posting proxy not colluding with the coercer, with whom the voter can
communicate via an untappable channel,

– an anonymous channel to the bulletin board,
– a receipt-free attendance voting scheme (such as Prêt à Voter [33], Wom-

bat [4], StarVote [3] or Scantegrity II [8]) that the voter can attend physically
and not tell the coercer about.

This also implies, that at least one posting proxy faithfully adds null cipher-
texts in a way that is sufficiently numerous and unpredictable for the adversary,
in order to provide adequate cover for voters.

This is enough for participation privacy against a passive coercer. In order
to achieve receipt freeness we need to assume that the cryptographic protocol
does not allow an actively participating voter to cause Assumption 5.2 to fail by
deviating from the protocol. This will be shown below.

The Secret Key Re-Usage Assumption is a particularly strong one for
voting, though standard enough for electronic commerce and banking. The issue
here is that in standard Helios each voter casts only one vote, and hence can
see whether an extra one has been added on their behalf. In our scheme, the
whole mechanism relies on the possibility of multiple additive vote casting. The
assumption that the smartcard reader doesn’t add extras implies a strong trust
assumption on the hardware (with, for example, a display/PIN setup). This is
also necessary for banking and other contracts, and is what a PIN-based smart-
card reader is supposed to achieve. However, this is a stronger assumption than
truly end-to-end verifiable protocols, such as basic Helios. We consider it an
important aspect of future work to remove this assumption, which was identified
as one source of vulnerability in the Estonian Internet voting protocol [37]. Simi-
larly, Secret Key Leakage Assumption could also be facilitated by assuming
the tamper-resistant and trusted smartcard that stores the key.

An alternative way of realising Secret Key Re-Usage Assumption without
trusted hardware is to insist that all votes but one be cast in a physical polling
place at which eligibility was carefully established. It would be important to do

68 O. Kulyk et al.

Table 2. Efficiency of individual phases

Preparations 3T + t− 2 + 2L

Vote casting (cast) 5

Vote casting (verify) 9N ′

Tallying (4T + 5t− 1)NL + (19N + 16)T

this in a way that preserved the Hidden Origin Vote Assumption. Again anyone
who was not concerned about coercion could simply cast their ordinary vote
online, and check that exactly that vote appeared on the bulletin board. There
would be no need to trust their hardware not to cast subsequent votes, because
there would be no option to cast a second vote remotely.

The Trustee Assumption is common in voting protocols that employ dis-
tributed decryption, and might be facilitated by selecting e.g. representatives
of groups with conflicting interests, such as of different parties as the trustees.
The Bulletin Board Assumption can be facilitated either by establishing a
central server, supervised by trusted third-party observers, or implemented in a
distributed way (e.g. [14]). The Cryptography Assumption is common to the
voting systems based on cryptographic mechanisms, and the Authentic List
of Keys Assumption is based upon the public list of all eligible voters, the
integrity of which is something that should be ensured in traditional elections
as well.

6 Efficiency Analysis

Assuming T as the number of tallying trustees, that are responsible for both
the mixing of the votes and performing the PET s with t as threshold parameter
(usually suggested as t = �T/2	 + 1), N ′ =

∑N
i=1 mi as all the votes posted

during vote casting (including null votes posted by posting proxies), L as number
of candidates (for example, L = 2 for referendum), following estimations can be
made regarding the performance of the scheme. We count the required number of
modular exponentiations during each phase, summarizing the findings in Table 2.
We assume, that the verifiable mix net scheme proposed in [41] is used during
the tallying stage, requiring 8N + 5 modular exponentiations for the proof of
validity, and 9N + 11 modular exponentiations for its verification. Furthermore,
we assume that the DSA-based PKI is used in the election.

7 Conclusion

We have presented a novel method of achieving private eligibility verifiability
and participation privacy by padding the real votes with null votes that are
indistinguishable from the non-null ones. With this, the presence of null votes
obscures who has actually voted.

Extending Helios Towards Private Eligibility Verifiability 69

Retaining the individual verifiability assumption of ordinary Helios depends
on the strong assumption that the voter’s signing key cannot be used to post a
ciphertext without the voter’s knowledge. (This issue does not arise in ordinary
Helios because each voter can cast at most one vote).

The scheme further provides a level of receipt-freeness, preventing voters
from proving that they have voted for a particular candidate. The protocol is
still susceptible to forced abstention and randomization attacks.

It is important further work to quantify how many and how random padded
votes we need. This depends of course on assumptions about collusion between
the posting proxies. It is therefore important to consider developing an algorithm
which an honest posting proxy should follow when deciding when to cast a null
vote.

Usability and public understanding (both important to increase trust in an
electronic voting system [39]) remain important open problems. In this system,
a voter who doesn’t want to participate in the receipt-freeness or participation
privacy aspects may simply ignore them and cast a single vote (optionally using
the Benaloh challenge for cast-as-intended verification). The possibility that they
might have participated is still enough to offer them privacy.

However, possible issues of understandability or usability might arise: for
example, the voters might get confused seeing several votes cast in their row,
thus leading to distrust in the system; or the need to remember all the previously
cast votes in order to be able to update them might become an issue. Many of
the complexities of the protocol could be hidden behind a helpful user interface,
for example one that remembered what votes had been cast before. Nevertheless
the tradeoffs between security, verifiability, public understanding, and ease of
use remain challenging, and require further exploration (for example, in forms
of user studies).

Acknowledgment. This project (HA project no. 435/14-25) is funded in the
framework of Hessen ModellProjekte, financed with funds of LOEWE – Landes-
Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz, Förderlinie 3:
KMU-Verbundvorhaben (State Offensive for the Development of Scientific and Eco-
nomic Excellence).

A Cryptographic Building Blocks

A.1 Proof of an Encryption of 1

In order to prove that a given ciphertext (a, b) encrypts 1, one has to present a
zero-knowledge proof:

ZKP{∃r : a = gr mod p ∧ b = hr mod p}

70 O. Kulyk et al.

The proof, presented in [9], is as follows:

1. Prover chooses a random w ∈R Zq, computes α = gw mod p, β = hw mod p
and sends α, β to the Verifier.

2. Verifier sends the challenge c ∈R Zq to the prover
3. Prover computes u = w + cr mod q and sends u to Verifier
4. Verifier checks, that gu ≡ αac mod p and hu ≡ βbc mod p hold.

The proof has the soundness error of 1/q.

A.2 Proof of Knowledge of Discrete Log

The following proof can be used to prove knowledge of a DSA or ElGamal signing
key, or knowledge of an ElGamal ciphertext.

Proof of knowledge{s : h = gs}

Public Parameters: ElGamal/DSA parameters (g, h, p, q)
Prover knows: s : h = gs mod p.

1. Prover selects a random value w ∈R Zq and publishes a = gw.
2. Verifier sends the challenge c ∈R Zq

3. Prover calculates and publishes u = w + cs
4. Verifier checks gu = ahc

The soundness error of the proof is 1/q.

A.3 Proof of Knowledge of RSA Signature

Proof of knowledge{s : se ≡ h(m)mod N}
Public Parameters: Message m, encoding function h(m), RSA public key
(N, e) with e prime

Prover knows: s : se ≡ h(m)mod N , d : d = e−1 mod φ(N).

1. Prover selects a random value r ∈R Z
∗
N and calculates x = re mod N

2. Verifier sends the challenge c ∈R Ze

3. Prover calculates z = rsc mod N and sends z to Verifier
4. Verifier checks ze ≡ x · h(m)c mod N .

The soundness error of the proof is 1/e. Note, that often the small prime
values of e are used as public key in RSA system: commonly, e = 3 or e = 216+1.
This leads to the proof being insufficiently sound. For this cases, a modification
has been proposed in [12], where in order to prove the knowledge of e-th root s
of h(m), one proves the knowledge of et-th root s′ of h(m)mod N , which can be
calculated as s′ = h(m)d

t

mod N . The modified proof has the soundness error
of 1/et.

Extending Helios Towards Private Eligibility Verifiability 71

References

1. Adida, B.: Helios: web-based open-audit voting. USENIX Security Symposium.
vol. 17, pp. 335–348 (2008)

2. Araújo, R., Traoré, J.: A practical coercion resistant voting scheme revisited. In:
Heather, J., Schneider, S., Teague, V. (eds.) Vote-ID 2013. LNCS, vol. 7985, pp.
193–209. Springer, Heidelberg (2013)

3. Bell, S., Benaloh, J., Byrne, M.D., DeBeauvoir, D., Eakin, B., Fisher, G., Kortum,
P., McBurnett, N., Montoya, J., Parker, M., Pereira, O., Stark, P.B., Wallach,
D.S., Winn, M.: STAR-vote: a secure, transparent, auditable, and reliable voting
system. USENIX J. Election Technol. Syst. (JETS) 1(1), 18–37 (2013)

4. Ben-Nun, J., Fahri, N., Llewellyn, M., Riva, B., Rosen, A., Ta-Shma, A., Wikström,
D.: A new implementation of a dual (paper and cryptographic) voting system. In:
5th International Conference on Electronic Voting (EVOTE) (2012). http://www.
wombat-voting.com

5. Benaloh, J.: Simple verifiable elections. In: Proceedings of the USENIX/Accurate
Electronic Voting Technology Workshop 2006 on Electronic Voting Technology
Workshop, pp. 5–5. USENIX Association (2006)

6. Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting helios
for provable ballot privacy. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS,
vol. 6879, pp. 335–354. Springer, Heidelberg (2011)

7. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of
the Fiat-shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012)

8. Carback, R., Chaum, D., Clark, J., Conway, J., Essex, A., Herrnson, P.S.,
Mayberry, T., Popoveniuc, S., Rivest, R.L., Shen, E., Sherman, A.T., Vora, P.L.:
Scantegrity II municipal election at Takoma Park: the first E2E binding govern-
mental election with ballot privacy. In: Proceedings of USENIX Security (2010)

9. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

10. Clark, J., Hengartner, U.: Selections: internet voting with over-the-shoulder
coercion-resistance. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 47–61.
Springer, Heidelberg (2012)

11. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Distributed Elgamal à la
Pedersen: application to Helios. In: Proceedings of the 12th ACM Workshop on
Workshop on Privacy in the Electronic Society, pp. 131–142. ACM (2013)

12. Cramer, R., Damg̊ard, I.B., MacKenzie, P.D.: Efficient zero-knowledge proofs of
knowledge without intractability assumptions. In: Imai, H., Zheng, Y. (eds.) PKC
2000. LNCS, vol. 1751, pp. 354–373. Springer, Heidelberg (2000)

13. Cramer, R., Damg̊ard, I.B., Schoenmakers, B.: Proof of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

14. Culnane, C., Schneider, S.: A peered bulletin board for robust use in verifiable
voting systems. In: 2014 IEEE 27th Computer Security Foundations Symposium
(CSF), pp. 169–183. IEEE (2014)

15. Essex, A., Clark, J., Hengartner, U.: Cobra: toward concurrent ballot authoriza-
tion for internet voting. In: Proceedings of the 2012 International Conference on
Electronic Voting Technology/Workshop on Trustworthy Elections, EVT/WOTE,
p. 3 (2012)

http://www.wombat-voting.com
http://www.wombat-voting.com

72 O. Kulyk et al.

16. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

17. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, p. 368. Springer, Heidelberg (2001)

18. Grewal, G.S., Ryan, M.D., Bursuc, S., Ryan, P.Y.: Caveat coercitor: coercion-
evidence in electronic voting. In: 2013 IEEE Symposium on Security and Privacy
(SP), pp. 367–381. IEEE (2013)

19. Groth, J.: A verifiable secret shuffe of homomorphic encryptions. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2002)

20. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to
security microprocessor minimizing both transmission and memory. In: Günther,
C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988)

21. Guillou, L.C., Quisquater, J.-J.: A “paradoxical” identity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol.
403, pp. 216–231. Springer, Heidelberg (1990)

22. Haenni, R., Spycher, O.: Secure internet voting on limited devices with anonymized
dsa public keys. In: Proceedings of the 2011 Conference on Electronic Voting Tech-
nology/Workshop on Trustworthy Elections, pp. 8–8. EVT/WOTE 2011. USENIX
Association (2011)

23. Heiberg, S., Laud, P., Willemson, J.: The application of i-voting for estonian parlia-
mentary elections of 2011. In: Kiayias, A., Lipmaa, H. (eds.) VoteID 2011. LNCS,
vol. 7187, pp. 208–223. Springer, Heidelberg (2012)

24. Jakobsson, M., Juels, A.: Mix and match: secure function evaluation via cipher-
texts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, p. 162. Springer,
Heidelberg (2000)

25. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Proceedings of the 2005 ACM workshop on Privacy in the electronic society, pp.
61–70. ACM (2005)

26. Koenig, R., Haenni, R., Fischli, S.: Preventing board flooding attacks in
coercion-resistant electronic voting schemes. In: Camenisch, J., Fischer-Hübner,
S., Murayama, Y., Portmann, A., Rieder, C. (eds.) SEC 2011. IFIP AICT, vol.
354, pp. 116–127. Springer, Heidelberg (2011)

27. Kuty�lowski, M., Zagórski, F.: Verifiable internet voting solving secure platform
problem. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS,
vol. 4752, pp. 199–213. Springer, Heidelberg (2007)

28. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: Proceedings
of the 8th ACM conference on Computer and Communications Security, pp. 116–
125. ACM (2001)

29. Neumann, S., Feier, C., Volkamer, M., Koenig, R.: Towards a practical jcj/civitas
implementation. In: INF13 - Workshop: Elektronische Wahlen: Ich sehe was, das
Du nicht siehst - öffentliche und geheime Wahl, pp. 804–818 (2013)

30. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

31. Pfitzmann, B.: Breaking an efficient anonymous channel. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 332–340. Springer, Heidelberg (1995)

32. Raykova, M., Wagner, D.: Verifable remote voting with large scale coercion resis-
tance. Technical report CUCS-041-11, Columbia (2011)

Extending Helios Towards Private Eligibility Verifiability 73

33. Ryan, P.Y., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à voter: a voter-
verifiable voting system. IEEE Trans. Inf. Forensics Secur. 4(4), 662–673 (2009)

34. Schläpfer, M., Haenni, R., Koenig, R., Spycher, O.: Efficient vote authorization in
coercion-resistant internet voting. In: Kiayias, A., Lipmaa, H. (eds.) VoteID 2011.
LNCS, vol. 7187, pp. 71–88. Springer, Heidelberg (2012)

35. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991)

36. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
37. Springall, D., Finkenauer, T., Durumeric, Z., Kitcat, J., Hursti, H., MacAlpine, M.,

Halderman, J.A.: Security analysis of the estonian internet voting system. In: Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, pp. 703–715. ACM (2014)

38. Spycher, O., Koenig, R., Haenni, R., Schläpfer, M.: A new approach towards
coercion-resistant remote e-voting in linear time. In: Danezis, G. (ed.) FC 2011.
LNCS, vol. 7035, pp. 182–189. Springer, Heidelberg (2012)

39. Spycher, O., Volkamer, M., Koenig, R.: Transparency and technical measures to
establish trust in Norwegian internet voting. In: Kiayias, A., Lipmaa, H. (eds.)
VoteID 2011. LNCS, vol. 7187, pp. 19–35. Springer, Heidelberg (2012)

40. Srinivasan, S., Culnane, C., Heather, J., Schneider, S., Xia, Z.: Countering bal-
lot stuffing and incorporating eligibility verifiability in Helios. In: Au, M.H.,
Carminati, B., Kuo, C.-C.J. (eds.) NSS 2014. LNCS, vol. 8792, pp. 335–348.
Springer, Heidelberg (2014)

41. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J.,
Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 100–113. Springer,
Heidelberg (2010)

Verifiable Internet Elections with Everlasting
Privacy and Minimal Trust

Philipp Locher1,2(B) and Rolf Haenni1

1 Bern University of Applied Sciences,
2501 Biel, Switzerland

{philipp.locher,rolf.haenni}@bfh.ch
2 University of Fribourg,

1700 Fribourg, Switzerland
philipp.locher@unifr.ch

Abstract. This paper presents a new cryptographic Internet voting pro-
tocol based on a set membership proof and a proof of knowledge of the
representation of a committed value. When casting a vote, the voter pro-
vides a zero-knowledge proof of knowledge of the representation of one
of the registered voter credentials. In this way, votes are anonymized
without the need of trusted authorities. The absence of such authorities
reduces the trust assumptions to a minimum and makes our protocol
remarkably simple. Since computational intractability assumptions are
only necessary to prevent the creation of invalid votes during the voting
period, but not to protect the secrecy of the vote, the protocol even offers
a solution to the everlasting privacy problem.

1 Introduction

Two types of trust assumptions are commonly found in cryptographic voting
protocols. First, it is usually assumed that a threshold number of non-colluding
trusted authorities exists, for instance for mixing the list of encrypted votes or
for decrypting them in a distributed manner. In an ideal setting, each trusted
authority is completely independent from all the others, both in terms of the
people engaged in providing the expected service and in terms of the available
computer and software infrastructure. In practice, recruiting such a group of
trusted authorities and equipping them with independent hard- and software is
a very difficult problem.

The second type of assumptions in cryptographic voting protocols limits the
adversary’s computational capabilities, for example with respect to computing
discrete logarithms or factoring large numbers. Such computational intractability
assumptions are very common in many cryptographic applications, but they
are very problematical in the context of electronic elections. It means that the
secrecy of the votes of an election today may be at risk in the future, when more
powerful computers and better methods of cryptanalysis are available. Choosing
very conservative security parameters may postpone the privacy breach, but does
not prevent it.
c© Springer International Publishing Switzerland 2015
R. Haenni et al. (Eds.): VoteID 2015, LNCS 9269, pp. 74–91, 2015.
DOI: 10.1007/978-3-319-22270-7 5

Verifiable Internet Elections with Everlasting Privacy and Minimal Trust 75

1.1 Contribution

The contribution of this paper is a new cryptographic voting protocol for remote
electronic elections, which guarantees the secrecy of the vote without relying on
trusted authorities or on computational intractability assumptions. It offers there-
fore everlasting privacy in an information-theoretical sense. Trusted authorities
are only needed for fairness, and computational intractability assumptions are
only necessary to prevent the creation of invalid votes during the voting period.

From a technical point of view, our protocol differs strongly from mainstream
approaches such as those based on homomorphic tallying, mix-nets, or blind sig-
natures. The core of the protocol is a combination of a set membership proof
[3] and a proof of known representation of a committed value [2]. When casting
a vote, the voter provides a zero-knowledge proof of knowledge of the represen-
tation of one of the registered public voter credentials. Informally, the protocol
consists of the following four consecutive steps (some details about preventing
double voting or providing fairness are left out):

– Registration: Each voter creates a pair of private and public voter credentials
and sends the public voter credentials over an authentic channel to the election
administration.

– Election Preparation: The election administration publishes the list of pub-
lic voter credentials—one for every registered voter—on the public bulletin
board.

– Vote Casting: The voter creates an electronic ballot and sends it over an
anonymous channel to the public bulletin board. The ballot consists of the
vote, a commitment to the voter’s public credential, and the above-mentioned
composition of zero-knowledge proofs.

– Public Tallying: At the end of the election period, anyone can derive the
final election result from the data published on the public bulletin board.
The correctness of the result follows from verifying the zero-knowledge proofs
included in the ballots.

The proofs included in every ballot are computationally sound and perfectly
zero-knowledge. This implies with very high probability that every vote with a
valid proof stems from an eligible voter, but nothing more than that. Every single
voter remains completely anonymous within the set of registered voters, inde-
pendently of the computational capabilities of a future adversary. In this way,
our protocol achieves everlasting privacy without the help of trusted authorities.
As a consequence, the protocol requires almost no central infrastructure and
no complicated process coordination. Except during registration, interactions
are limited to writing data to and reading data from the public bulletin board.
The main computational efforts are spent by the voters themselves during vote
casting and by anyone computing and verifying the final election result.

1.2 Related Work

The position that only the strongest notion of privacy is sufficient for electronic
voting has first been proclaimed by Chaum [10]. He argued that ballot secrecy

76 P. Locher and R. Haenni

must be unconditionally secure, meaning that the partial tally of a group of vot-
ers can only be determined by a coalition of all other voters. In its strict sense,
this definition includes an adversary with unlimited computational power. Two
protocols by Kiayias and Yung [16] and Groth [15] achieve a weaker form of
so-called perfect ballot secrecy under the Decisional Diffie-Hellman assumption.
They are intended for use in the context of boardroom voting with a small num-
ber of participants. Both protocols are self-tallying, meaning that the election
result can be computed without the aid of a trusted authority.

In a series of papers [18–20], Moran and Naor proposed several protocols
with everlasting privacy (but not unconditional privacy according to Chaum’s
definition). They are intended for use in the traditional setting, in which ballots
are cast in a private polling booth. In all three protocols, everlasting privacy is
only achieved with the aid of a single or a group of trusted authorities, which
could potentially cause voter privacy to be breached. Another protocol [21] for
the traditional setting achieves everlasting privacy by combining concepts from
Punchscan and Prêt àVoter.

In a more recent series of papers [6,11,12], everlasting privacy with the aid of
trusted authorities has been brought into the context of remote elections. While
the information published on the public bulletin board does not reveal anything
about somebody’s vote, the trusted server could potentially break the encrypted
votes transmitted over the private channel between voter and server.

Another important line of related work are the protocols based on blind sig-
natures [14]. They are also based on submitting votes over an anonymous chan-
nel, but they achieve everlasting privacy under much stronger trust assumptions.
Their main problem is ballot-stuffing by malicious signing authorities, which can-
not be detected. More generally speaking, protocols based on blind signatures do
not support the verification of the electorate. Other disadvantages are the facts
that voters need to interact with the authorities during vote casting and that the
authorities learn who actually voted. To overcome some of the drawbacks of blind
signatures, Canard and Traoré introduced a system based on list signatures [9].

1.3 Paper Overview

In the following section, we introduce the cryptographic building blocks of our
protocol. In particular, we describe possible instances of a set membership proof
and a proof of known representation of a committed value. In Sect. 3, we pro-
vide a detailed description of our protocol and a discussion of the underlying
adversary model and the resulting system properties. In Sect. 4, we analyse the
running times of the vote casting and tallying procedures and present the results
from corresponding performance tests. Finally, we summarize the findings of this
paper in Sect. 5.

2 Cryptographic Preliminaries

Let Gp be a multiplicative cyclic group of prime order p, for which the discrete
logarithm assumption is believed to hold. Furthermore, let Gq ⊂ Z

∗
p, be a large

Verifiable Internet Elections with Everlasting Privacy and Minimal Trust 77

prime-order subgroup of the group of integers modulo p, where γ = (p − 1)/q
denotes the corresponding co-factor. Finally, suppose that independent gener-
ators g0, g1 ∈ Gp and h0, . . . , hN ∈ Gq are publicly known. Independence with
respect to generators of a cyclic group means that their relative discrete loga-
rithms are unknown.1

In our protocol, we use two instances of the perfectly hiding Pedersen commit-
ment scheme, one over Gp and one over Gq. We distinguish them by comp(u, r) =
gr
0g

u
1 as a commitment to u with randomization r and comq(v, s) = hs

0h
v
1 as a

commitment to v with randomization s, where u, r ∈ Zp and v, s ∈ Zq. In the
case of Gq, we write comq(v1, . . . , vN , s) = hs

0h
v1
1 · · · hvN

N for a commitment to N
values v1, . . . , vN ∈ Zq. Recall that Pedersen commitments are perfectly hiding,
computationally binding, and additively homomorphic.

The main cryptographic tools in our protocol are non-interactive zero-
knowledge proofs of knowledge. The voter uses them to demonstrate knowl-
edge of some secret values involved in a mathematical statement, but without
revealing any information about the secret values. One of the most fundamental
type of zero-knowledge proofs of knowledge is a preimage proof for a one-way
group homomorphism φ : X → Y , denoted by NIZKP [(a) : b = φ(a)], where
a ∈ X is the secret preimage of a public value b = φ(a) ∈ Y . Examples of
such preimage proofs result from the above additively homomorphic Pedersen
commitment schemes, for example NIZKP [(u, r) : c = comp(u, r)] for proving
knowledge of an opening u, r ∈ Zp for a publicly known commitment c ∈ Gp.

The most common construction of a non-interactive preimage proof is the
Σ-protocol in combination with the Fiat-Shamir heuristic [13]. The transcript of
such a non-interactive proof consists of one or multiple commitments and one or
multiple responses to a challenge computed by a publicly known hash function.
Some auxiliary information can be linked to the transcript by using it as an
additional input to the hash function. In Sect. 3, we will write πi = NIZKPx[·]
for the transcripts of the non-interactive proofs used in the voting protocol,
where x represents some auxiliary information linked to the proof.

2.1 Set Membership Proof

Let U = {u1 . . . , uM} be a finite set of values ui ∈ Zp and c = comp(u, r) a
commitment to an element u ∈ U . Both U and c are publicly known. With a
set membership proof, denoted by NIZKP [(u, r) : c = comp(u, r) ∧ u ∈ U], the
prover demonstrates knowledge of corresponding values u ∈ U and r ∈ Zp, but
without revealing any information about them. Such a proof can be constructed
by a standard OR combination of individual preimage proofs for each u ∈ U ,
but this proof has a size linear to M and is therefore not efficient. The first set
membership proof with a sub-linear size has been given by Camenisch et al. [7].

As suggested by Brands et al. [5], a general way of constructing a set
membership proof is to compute the polynomial P (X) =

∏M
i=1(X − ui) and

1 To ensure that generators are independent, they need to be generated in some pub-
licly reproducible way, for example by deriving them from a common reference string.

78 P. Locher and R. Haenni

to demonstrate that P (u) = 0. This proof, denoted by NIZKP [(u, r) : c =
comp(u, r) ∧ P (u) = 0], is a particular case of a polynomial evaluation proof
NIZKP [(u, r, v, s) : c = comp(u, r) ∧ d = comp(v, s) ∧ P (u) = v] for v = s = 0.
In a recent publication [3], Bayer and Groth proposed a polynomial evaluation
proof with a logarithmic size, which is the current state-of-the-art. We use a
non-interactive version of this proof in our voting protocol, instantiated to the
special case of v = s = 0. A summary of the proof generation and verification is
given in Fig. 1.

A complete proof transcript consists of 4�log M� + 2 elements of Gp and
3�log M� + 3 elements of Zp. The proof generation requires 8�log M� + 4 expo-
nentiations in Gp and not more than 2M�log M� multiplications in Zp. Similarly,
6�log M�+6 exponentiations in Gp and 3M multiplications inZp are needed for the
verification.2 In terms of exponentiations only, the computational costs for gener-
ating and verifying a proof are both logarithmic with M , but for very large values
M , the cost of the (quasi-)linear number of multiplications becomes dominant.

2.2 Proof of Known Representation of a Committed Value

In a cyclic group such as Gq with generators h1, . . . , hN , a tuple (v1, . . . , vN)
of values vi ∈ Zq is called DL-representation (or simply representation) of u ∈
Gq with respect to (h1, . . . , hN), if u = hv1

1 · · · hvN

N [4]. Note that the general
definition of DL-representation does not require the values h1, . . . , hN to be
generators, nor do they need to be independent or distinct. On the other hand,
every opening of a Pedersen commitment is clearly a DL-representation of the
commitment with respect to the given independent generators.

Let c = comp(u, r) be a commitment to a single value u ∈ Gq ⊂ Zp and
d = comq(v1, . . . , vN , s) a commitment to multiple values v1, . . . , vN ∈ Zq. Both c
and d are publicly known. Following Au et al. [2], a proof of known representation
of a commmited value (or simply representation proof), denoted by

NIZKP [(u, r, v1, . . . , vN , s) : c = comp(u, r) ∧ d = comq(v1, . . . , vN , s)
∧ u = hv1

1 · · · hvN

N],

demonstrates that the tuple of committed values in d is a DL-representation of
the committed value in c. Note that this is a generalization of proof of knowl-
edge of double discrete logarithms, NIZKP{(v) : c = g(h

v)}, by Camenisch and
Stadler [8]. A summary of the proof generation and verification is given in Fig. 2,
where a security parameter K determines the soundness of the proof.

A complete proof transcript consists of K + 1 elements of Gp, K elements of
Gq, K + 2 elements of Zp, and K(N + 1) elements of Zq. Note that elements

2 The number of exponentiations given in [3, Table 2] is incorrect for the verification.
The correct result of 6�log M� exponentiations is obtained by counting cx

j in Step 2
and cx

j+1 in Step 3 as one exponentiation only. This remark together with the correct
result can be found in [3, Page 11], i.e., only the table entry is incorrect. Furthermore,
we cannot reproduce the result of 2M multiplications for the verification reported in
[3, Table 2]. According to our analysis, at least 3M multiplications are needed.

Verifiable Internet Elections with Everlasting Privacy and Minimal Trust 79

Public Input: c = comp(u, r) ∈ Gp, P (X) =
∑M

i=0 aiX
i ∈ Zp[X]

Secret Input: u, r ∈ Zp

Generation:
1. For j = 1, ... , m, pick rj ∈R Zp and compute cj = comp(u2j , rj).
2. For j = 0, ... , m, pick āj , r̄j ∈R Zp and compute c̄j = comp(āj , r̄j).
3. Compute new polynomial

P̃ (X) =

m∑
j=0

ãjX
j =

M∑
i=0

ai

m∏
j=0

(u2jX + āj)
i[j]X1−i[j] ∈ Zp[X]

of degree m. For j = 0, ... , m, pick r̃j ∈R Zp and compute c̃j =
comp(ãj , r̃j).

4. For j = 0, ... , m − 1, compute âj = u2j āj , pick r̂j ∈R Zp, and compute
ĉj = comp(âj , r̂j).

5. Compute x = h(c, a0, ... , aM , c1, ... , cm, c̄0, ... , c̄m, c̃0, ... , c̃m, ĉ0, ... , ĉm−1).

6. For j = 0, ... , m, compute ā′
j = āj + xu2j .

7. For j = 0, ... , m, compute r̄′
j = r̄j + xrj .

8. For j = 0, ... , m − 1, compute r̂′
j = r̂j + xrj+1 − bjrj .

9. Compute r̃′ =
∑m

j=0 r̃jx
j .

Transcript:
(c1, ... , cm, c̄0, ... , c̄m, c̃0, ... , c̃m, ĉ0, ... , ĉm−1, ā

′
0, ... , ā

′
m, r̄′

0, ... , r̄
′
m, r̂′

0, ... , r̂
′
m−1, r̃

′)
Verification:

1. Compute x = h(c, a0, ... , aM , c1, ... , cm, c̄0, ... , c̄m, c̃0, ... , c̃m, ĉ0, ... , ĉm−1).
2. For j = 0, ... , m, check cx

j c̄j = comp(ā′
j , r̄

′
j).

3. For j = 0, ... , m − 1, check cx
j+1ĉj = c

ā′
j

j · comp(0, r̂′
j).

4. Check

m∏
j=0

c̃ xj

j = comp

(
M∑

i=0

ai

m∏
j=0

ā′
j
i[j]x1−i[j], r̃′

)
.

Fig. 1. Non-interactive version of the polynomial evaluation proof NIZKP [(u, r) : c =
comp(u, r) ∧ P (u) = 0] according to Bayer and Groth [3], using a slightly adjusted
formal notation. We use m = �log M� = |M | − 1 to denote the bit length of M minus
1 and a publicly known hash function h(·) with values in Zp to compute the challenge
x. The j-th bit of the binary representation of an index i ∈ {0, . . . , M} is denoted by
i[j] ∈ {0, 1}, for j = {0, . . . , m}. For reasons of convenience, let c0 = c and r0 = r.

of Gq can be counted as elements of Zp, thus resulting in 2K + 2 elements of
Zp.3 The proof generation requires 2K + 2 exponentiations in Gp and K(N + 1)
exponentiations in Gq. Similarly, the verification requires 2K+1 exponentiations
in Gp and K(N + 1) exponentiations in Gq.

3 The bandwidth requirements given in [2, Table 4] are clearly incorrect. It seems that
the K elements of Gq have been counted falsely as elements of Gp.

80 P. Locher and R. Haenni

Public Input: c = comp(u, r) ∈ Gp, d = comq(v1, ... , vN , s) ∈ Gq

Secret Input: u, r ∈ Zp, v1, ... , vN , s ∈ Zq

Generation:
1. Pick ū, r̄ ∈R Zp and compute c̄ = comp(ū, r̄).
2. For j = 1, ... , K,

(a) pick v̄1,j , ... , v̄N,j ∈R Zq and compute ūj = h
v̄1,j
1 · · · hv̄N,j

N ,
(b) pick r̄j ∈R Zp and compute c̄j = comp(ūj , r̄j),
(c) pick s̄j ∈R Zq and compute d̄j = comq(v̄1,j , ... , v̄N,j , s̄j).

3. Compute x = h(c, d, c̄, c̄1, ... , c̄k, d̄1, ... , d̄k).
4. Compute ū′ = ū − xu and r̄′ = r̄ − xr.
5. For j = 1, ... , K,

(a) for i = 1, ... , N , compute v̄′
i,j = v̄i,j − x[j]vi,

(b) compute r̄′
j = r̄j − x[j] · comq(v̄

′
1,j , ... , v̄

′
N,j , r),

(c) compute s̄′
j = s̄j − x[j]s.

Transcript:
(c̄, c̄1, ... , c̄k, d̄1, ... , d̄k, ū′, r̄′, v̄′

1,1, ... , v̄
′
N,K , r̄′

1, ... , r̄
′
k, s̄′

1, ... , s̄
′
k)

Verification:
1. Compute x = h(c, d, c̄, c̄1, ... , c̄k, d̄1, ... , d̄k).
2. Check c̄ = cx · comp(ū′, r̄′).
3. For j = 1, ... , K,

(a) check d̄j = dx[j] · comq(v̄
′
1,j , ... , v̄

′
N,j , s̄

′
j),

(b) compute ū′
j = h

v̄′
1,j

1 · · · hv̄′
N,j

N , and check

c̄j =

{
comp(ū′

j , r̄
′
j), if x[j] = 0,

cū′
j · comp(0, r̄′

j), if x[j] = 1.

Fig. 2. Non-interactive version of the representation proof NIZKP [(u, r, v1 . . . , vN , s) :
c = comp(u, r) ∧ d = comq(v1, . . . , vN , s) ∧ u = hv1

1 · · · hvN
N] according to Au et al. [2],

using a slightly adjusted formal notation. We use a publicly known hash function h(·)
with values in Zp to compute the challenge x. The j-th bit of the binary representation
of x is denoted by x[j] ∈ {0, 1} and K < log p is the security parameter.

3 Internet Elections with Everlasting Privacy

In this section, we present our new protocol for internet elections with everlasting
privacy. We start with a discussion of the adversary model and the underlying
trust assumptions. In Sects. 3.2 and 3.3, which constitutes the main contribution
of this paper, we provide a detailed formal description of the protocol and analyse
its security properties. A compact summary of the protocol is given in Fig. 3.
We round off this section with a discussion of two important side aspects and
corresponding protocol extensions.

3.1 Adversary Model and Trust Assumptions

We consider two types of adversaries with different capabilities and goals. An
adversary of the first type acts at the present time, before or while an election

Verifiable Internet Elections with Everlasting Privacy and Minimal Trust 81

takes place, whereas an adversary of the second type acts at any point in the
future. Accordingly, we call them present adversaries and future adversaries.

The goal of present adversaries is to break the integrity or secrecy of the votes
during an election, for example by submitting votes in the name of someone else
or by linking votes to voters. We assume present adversaries to be polynomially
bounded and thus incapable of solving mathematical problems such as comput-
ing discrete logarithms in large prime order groups or breaking cryptographic
primitives such as contemporary hash functions. This implies that present adver-
saries cannot efficiently find valid openings of Pedersen commitments or valid
proof transcripts for zero-knowledge proofs of knowledge without knowing the
secret inputs. We also assume that the present adversary cannot control the
machines used for vote casting.4

For a future adversary, the only goal is breaking the secrecy of the votes
of an election that took place at the present time. To avoid the problem of
estimating the available computational resources far in the future, we simply
assume the strongest possible adversary, one with unlimited resources in terms
of computational power and time. Although contemporary cryptography will be
completely useless in the presence of such an adversary, the secrets hidden in
perfectly hiding commitments or in perfect zero-knowledge proofs of knowledge
will never be revealed, even if they were generated today.

From the point of view of the necessary communication infrastructure, the
protocol requires an authentic channel between voter and election administration
during the registration process. In the basic protocol version of Sect. 3.2, voters
need to re-register in every new election, but we will show later how to circum-
vent this limitation. Furthermore, the protocol requires a broadcast channel with
memory, for example in the form of a robust append-only public bulletin board
collecting the entire election data. Finally, for sending their votes to the bulletin
board, voters need access to an anonymous channel. We assume that no adver-
sary is capable of intercepting and recording the whole traffic over this channel
during an election and storing the data for future vote privacy attacks [1].

3.2 Protocol Description

The first step of the protocol is the voter registration before an election. To
register, voter V picks a private credential (α, β) ∈R Z

2
q at random and computes

the public credential u = hα
1 hβ

2 ∈ Gq. Note that the private credential is a
representation of the public credential with respect to (h1, h2). Finally, the voter
sends u over an authentic channel to the election administration.5

4 We are aware that requiring a secure platform is a strong assumption. We do not
explicitly address this problem in this paper, but our protocol allows voters at least
to detect a compromised platform as long as they can read the bulletin board in a
secure way.

5 To ensure that u has been computed from fresh values (α, β), the voter could be
asked to prove knowledge of (α, β) by computing NIZKP [(α, β) : u = hα

1 hβ
2]. As this

is not an essential step for our protocol, we omit it in our presentation.

82 P. Locher and R. Haenni

After the registration phase, the election administration defines the list
U = ((V1, u1), . . . , (VM , uM)) based on the electoral roll. Each pair (Vi, ui) ∈ U
links a public credential to the corresponding voter. Next, the coefficients
A = (a0, . . . , aM) of the polynomial P (X) =

∏M
i=1(X − ui) ∈ Zp[X] are com-

puted to allow voters creating the set membership proof during the vote casting
phase. As the computation of those coefficients is quite expensive (12M2 multi-
plications in Zp), it is performed by the election administration, possibly already
during the registration phase in an incremental way. Note that the coefficients
can be re-computed and verified by anyone, and voters can efficiently verify the
inclusion of their public credential u by checking P (u) = 0. Finally, an indepen-
dent election generator ĥ ∈ Gq is defined in some publicly reproducible way and
(U,A, ĥ) is posted to the public bulletin board.

During the election, voters create their vote e by selecting their preferred
election options. We do not further specify these options and their encoding, since
our protocol does not impose any restrictions. Similarly, we do not discuss vote
encryption, as this is a side aspect of the protocol and only affects fairness (see
Sect. 3.4). To cast the vote, the voter computes the election credential û = ĥβ ∈
Gq, a commitment c = comp(u, r) to the public credential, and a commitment
d = comq(α, β, s) to the private credential, where r ∈R Zp and s ∈R Zq. Next,
the voter generates three non-interactive zero-knowledge proofs. The first proof
is a set membership proof π1 = NIZKPe[(u, r) : c = comp(u, r) ∧ P (u) = 0]
proving that c is indeed a commitment to one of the public credentials in U . To
prevent that a voter can take just any credential from U , the voter generates
π2 = NIZKPe[(u, r, α, β, s) : c = comp(u, r) ∧ d = comq(α, β, s) ∧ u = hα

1 hβ
2] to

prove knowledge of the representation of the committed value in c. Finally, the
voter shows by a third proof π3 = NIZKPe[(α, β, s) : d = comq(α, β, s)∧ û = ĥβ]
that β used to build d and û is the same. All three proofs are linked to e. The
ballot B = (c, d, e, û, π1, π2, π3) consisting of the two commitments, the vote, the
election credential, and the three proofs is posted over an anonymous channel
to the bulletin board.

The final result of the election can be derived by anyone. For this, the list B
of submitted ballots is retrieved from the bulletin board and the proofs included
in each ballot B ∈ B are verified. Then duplicate votes are determined based
on identical values û and conflicts are resolved according to some policy. As
we will see in Sect. 4.3, verifying the proofs can be an expensive task for a
large electorate. To accelerate the publication of the final result, the election
administration may verify the proofs and mark invalid ballots as soon as they
appear on the bulletin board. The correctness of the result can then still be
checked by anyone.

3.3 Protocol Discussion

The correctness of the protocol is based on the fact that the public credential u
can be seen as a perfectly hiding commitment to β and the election credential û as
a perfectly binding commitment to β. For a present adversary not in possession

Verifiable Internet Elections with Everlasting Privacy and Minimal Trust 83

Registration (Voter):
1. Pick private credential α, β ∈R Zq.
2. Compute public credential u = hα

1 hβ
2 ∈ Gq.

3. Send u over an authentic channel to the election administration.
Election Preparation (Election Administration):

1. Define U = ((V1, u1), ... , (VM , uM)) based on the electoral roll.
2. Compute coefficients A = (a0, ... , aM) of P (X) =

∏M
i=1(X − ui) ∈ Zp[X].

3. Define election generator ĥ ∈ Gq.
4. Post (U, A, ĥ) to the bulletin board.

Vote Casting (Voter):
1. Select vote e.
2. Compute election credential û = ĥβ .
3. Pick r ∈R Zp and s ∈R Zq and compute commitments c = comp(u, r) and

d = comq(α, β, s).
4. Compute the following non-interactive proofs:

π1 = NIZKPe[(u, r) : c = comp(u, r) ∧ P (u) = 0],

π2 = NIZKPe[(u, r, α, β, s) : c = comp(u, r) ∧ d = comq(α, β, s)

∧ u = hα
1 hβ

2],

π3 = NIZKPe[(α, β, s) : d = comq(α, β, s) ∧ û = ĥβ].

5. Post ballot B = (c, d, e, û, π1, π2, π3) to the bulletin board over an anony-
mous channel.

Public Tallying:
1. Retrieve the set B of all ballots from the bulletin board.
2. For each B ∈ B, verify π1, π2, π3.
3. Detect duplicate votes based on identical values û and resolve conflicts.
4. Compute final election result.

Fig. 3. Detailed protocol description.

of a private credential, there are two principle ways of creating a ballot that
will be accepted in the final tally. First, the adversary may try to find (α′, β′)
such that u = hα′

1 hβ′
2 for some u ∈ U , which is equivalent to solve the discrete

logarithm problem. Second, the adversary may try to fake a proof transcript
without knowing such a pair (α′, β′), but this is prevented by the computational
soundness of the proofs. If the present adversary is an eligible voter in possession
of a valid private credential, then trying to submit more than one ballot based
on the same private credential will result in identical election credentials û = ĥβ .
Without using the private credential, the voter is not more powerful than any
other present adversary.

Everlasting Privacy. A ballot posted over an anonymous channel to the
bulletin board contains no information for identifying the voter. Clearly, the
future adversary will be able to determine β from û contained in the ballot, but
knowing β, a suitable value α′ can be found for every credential u′ ∈ U such that

84 P. Locher and R. Haenni

u′ = hα′
1 hβ

2 . Therefore, the adversary is unable to link û to u from knowing β.
Additionally, the proofs π1, π2, and π3 are perfectly zero-knowledge and there-
fore of no help. This implies that even the future adversary is unable to break
the privacy of the vote. In other words, our protocol offers everlasting privacy.

Trust and Infrastructure Assumptions. Our protocol is based on two fun-
damental assumptions with regard to the available communication infrastruc-
ture. For silently casting a vote, voters require an anonymous channel, and for
storing all their ballots, a robust public bulletin board must be available. Corre-
sponding trust assumptions towards the developers and administrators of these
systems are inevitable. However, no further trust assumptions are necessary in
the basic version of our protocol. The election administration is the only author-
ity involved, but the task of registering voters and publishing their public cre-
dentials can be verified by the voters themselves. The absence of further trusted
authorities makes the overall election process extremely simple and allows an
implementation of our protocol with almost no central infrastructure.

3.4 Extensions

In the basic version of the protocol as presented in Sect. 3.2, we have ignored
some important aspects of real election systems. The following discussion of two
of these aspects rounds off the description of our protocol.

Achieving Fairness. The protocol as presented is not fair. Fairness means
that the published election data does not allow anyone to derive partial results
during the election period. If fairness is a requirement, which is not always the
case (especially in smaller elections with a very short election period), the pro-
tocol can be extended as follows. Instead of submitting the vote e in plaintext,
the voter computes an encryption E = encpk(e, t) using a randomized encryp-
tion scheme such as ElGamal or Paillier and generates a non-interative proof
π4 = NIZKP [(e, t) : E = encpk(e, t)] of knowing the plaintext vote. The public
encryption key pk is generated beforehand by a group of trusted authorities in a
distributed manner. When the election period is over, the authorities post their
shares of the corresponding private key to the bulletin board. The encrypted
votes can then be decrypted by anyone.

Multiple Elections. If the protocol as presented so far is used for multiple
elections, but without requiring voters to renew their credentials, then a future
adversary will be able to link the votes from the same voter by uncovering the
same value β from different election credentials. This does not create a direct
link to the voter’s identity, but it allows creating a kind of voter profile which
will eventually leak information. To overcome this problem, the protocol must
be modified to ensure that a single β is used for only one election. This can
be achieved by extending the private and public credentials to (α, β1, . . . , βL)

Verifiable Internet Elections with Everlasting Privacy and Minimal Trust 85

and u = hα
1 hβ1

2 . . . hβL

L+1, respectively, where L is the maximal number of elec-
tions the credentials can be used for. The corresponding commitment to the
extended private credential, d = comq(α, β1, . . . , βL, s), implies that π2 needs to
be extended to a representation proof of size N = L+1. Finally, the modified elec-
tion credential û = ĥβl and an extended proof π3 = NIZKPe[(α, β1, . . . , βL, s) :
d = comq(α, β1 . . . , βL, s) ∧ û = ĥβl] are computed for l = (ε mod L) + 1,
where ε = 1, 2, . . . is the election number published beforehand by the elections
administration.

4 Performance and Implementation

Given the complexity of both the set membership proof and the representation
proof, we need to look closely at the computational resources required by our
voting protocol. As we will see in this section, the performance is the most
critical aspect of our protocol compared to others. We will first analyse the ballot
size and estimate the total amount of election data that results from different
electorate sizes. Then we discuss the cost of computation for creating a ballot
and for verifying the entire election at the end of the election period.

4.1 Ballot Size

The size of a ballot in our protocol is mainly determined by the sizes of π1 and
π2. In Sect. 2, we have given respective numbers. Recall that π1 depends on M
only, whereas π2 depends on K and L. In Table 1 we recapitulate the number of
group elements for Gp, Zp, Gq, and Zq and sum them up. Since Zp and Gq share
the same modulo p, their elements are counted together. The table does not
include corresponding numbers for the vote e and the proof of known plaintext
in case of an encrypted vote.

To calculate the actual size of a ballot and estimate the total size of the
election data, some of the system parameters need to be fixed. We consider
the basic protocol version for a single election by setting L = 1. For a security
parameter K = 80, we choose corresponding bit lengths |q| = 160 and |p| = 1024.
In the light of today’s recommendations for cryptographic parameters, these
numbers may seem too small for offering appropriate security, but in the case of

Table 1. Ballot size as a function of M , K, and L (without encrypted vote and proof of
known plaintext of the encrypted vote). Elements of Zp and Gq are counted together.

Ballot Component Elements of Gp Elements of Zp,Gq Elements of Zq

c, d, û 1 2 –

π1 4�log M� + 2 3�log M� + 3 –

π2 K + 1 2K + 2 K(L + 2)

π3 – 2 4

Entire Ballot 4�log M� + K + 4 3�log M� + 2K + 9 KL + 2K + 3

86 P. Locher and R. Haenni

Table 2. Ballot size for different numbers of voters and parameters K = 80, L = 1,
|p| = 1024, and |q| = 160.

M = |U | Elements of Gp Elements of Zp,Gq Elements of Zq Single Ballot M Ballots

10 96 178 244 39.0 KB 0.4 MB

100 108 187 244 41.6 KB 4.1 MB

1’000 120 196 244 44.3 KB 43.2 MB

10’000 136 208 244 47.8 KB 466.5 MB

100’000 148 217 244 50.4 KB 4.8 GB

1’000’000 164 229 244 53.9 KB 51.4 GB

our protocol, the cryptography only needs to withstand vote integrity attacks by
present adversaries during the election period. In other words, the cryptographic
parameters can be chosen for an exceptionally short cryptoperiod.

Table 2 lists the results obtained for different electorates. The table shows
that the size of a single ballot is certainly not a problem for voters to create
and submit a ballot, even if M gets very large. On the other hand, if each
voter submits a ballot, then the total size of the elections data sums up to more
than 50 GB of data for one million voters. Given today’s storage and network
capacities, this amount of data should still be manageable by an ordinary server
and communication infrastructure.

4.2 Cost of Computation: Ballot Generation

Let us now have a look at the cost of computation for generating a ballot.
Corresponding computational resources need to be available to the voter for
casting a vote. Again, generating the proofs π1 and π2 are the two critical tasks in
this process. Recall from Sect. 2 that generating π1 requires a logarithmic number
of exponentiations in Gp, but also a linearithmic number of multiplications in
Zp. Since multiplications will become more expensive than exponentiations when
M gets very large, they can not be neglected. Table 3 contains the number of
critical operations in Gp, Gq, and Zp, and sums them up for the whole ballot.
Again, we exclude the cost for encrypting the vote and generating a proof of
known plaintext.

Table 3. Number of exponentiations and multiplications required to generate a single
ballot (without encrypted vote and proof of known plaintext of the encrypted vote).

Ballot Component Exponentiations in Gp Exponentiations in Gq Multiplications in Zp

c, d, û 2 4 –

π1 8�logM� + 4 – 2M�logM�
π2 2K + 2 K(L + 2) –

π3 – 4 –

Entire Ballot 8�logM� + 2K + 8 KL + 2K + 8 2M�logM�

Verifiable Internet Elections with Everlasting Privacy and Minimal Trust 87

To estimate actual computation times for generating a ballot, we select the
same parameters as in the previous subsection. Furthermore, we assume that the
voter’s computer is capable of calculating 350 exponentiations per second in Gp,
2’000 exponentiations per second in Gq, and 200’000 multiplications per second
in Zp. We derive these numbers from performance tests in Java on a MacBook
Pro with a 2.7 GHz Intel Core i7 processor (16GB RAM, OS X Yosemite 10.10.2,
JRE 8, standard BigInteger class, single-threaded). The results of our analysis
are shown in Table 4. The estimated cost of computation for generating a single
ballot turns out to be perfectly acceptable for a medium-sized or even a large
electorate. Only when M gets very large (e.g. more than 100’000 voters), the
ballot generation gets delayed inappropriately. This is roughly the threshold
when the multiplications start to dominate the exponentiations.

Table 4. Cost of ballot generation for different numbers of voters and parameters
K = 80, L = 1, |p| = 1024, and |q| = 160. The time estimates are based on 350
exponentiations per second in Gp, 2’000 exponentiations per second in Gq, and 200’000
multiplications per second in Zp.

M = |U | Exponentiations Exponentiations Multiplications Estimated Time

in Gp in Gq in Zp (Single Ballot)

10 192 248 60 0.7 s

100 216 248 1’200 0.7 s

1’000 240 248 18’000 0.9 s

10’000 272 248 260’000 2.2 s

100’000 296 248 3’200’000 17.0 s

1’000’000 328 248 40’000’000 3.4 min

4.3 Cost of Computation: Verification

The most expensive computational task of our protocol is clearly the public
tallying, which involves the verification of all proofs included in the ballots.
The values shown in Table 5 summarize the number of critical operations in Gp,
Gq, and Zp for verifying a single ballot. For very large values of M , the most
expensive operations are again the 3M multiplications in Zp, which is why they
cannot be neglected. As before, the results shown in the table do not contain
additional operations for verifying the proof of known plaintext in case of an
encrypted vote. Note that proper verification requires checking that the values
included in the proof transcripts are elements of corresponding sets. In case of
Gp and Gq this may require additional exponentiations. We omit them here to
be consistent with the results given in [2,3].

To conclude our performance analysis, we adopt the system parameters and
the assumptions with regard to the available computation power from the pre-
vious subsection. The resulting values for different electorate sizes are shown in

88 P. Locher and R. Haenni

Table 5. Number of exponentiations and multiplications required to verify a single
ballot (without proof of known plaintext of the encrypted vote).

Ballot Component Exponentiations Exponentiations Multiplications

in Gp in Gq in Zp

π1 6�log M� + 6 – 2M

π2 2K + 1 K(L + 2) –

π3 – 6 –

Total 6�log M� + 2K + 7 KL + 2K + 6 2M

Table 6. Cost of ballot verification for different numbers of voters and parameters
K = 80, L = 1, |p| = 1024, and |q| = 160. The time estimates are based on 350
exponentiations per second in Gp, 2’000 exponentiations per second in Gq, and 200’000
multiplications per second in Zp.

M = |U | Exponentiations Exponentiations Multiplications Estimated Estimated

in Gp in Gq in Zp Time Time

(Single Ballot) (M Ballots)

10 185 166 30 0.6 s 6.1 s

100 203 166 300 0.7 s 1.1min

1’000 221 166 3’000 0.7 s 12.2min

10’000 245 166 30’000 0.9 s 2.6 h

100’000 263 166 300’000 2.3 s 64.8 h

1’000’000 287 166 3’000’000 15.9 s 4417.5 h

Table 6. By multiplying the time estimates for verifying a single ballot by the
total number of votes, we obtain time estimates for the full verification process.

From the given results, we conclude again that our protocol works reasonably
well for a medium-sized or even a large electorate. Note that the verification of
the ballots can already start during the vote casting phase, and since it can be
executed in parallel, there is a huge potential for distributing the total amount of
work to arbitrarily many and possibly more powerful machines. While this is in
principle a solution for reducing the 4’400 hours of computation for an election
with one million ballots to a more reasonable value, it restricts somewhat the
idea of a public tallying process.

4.4 Implementation and Optimizations

In course of developing the protocol presented in this paper, we implemented
both the set membership and the representation proof in UniCrypt [17]. This is
an open-source Java library developed for the purpose of simplifying the imple-

Verifiable Internet Elections with Everlasting Privacy and Minimal Trust 89

mentation of cryptographic voting protocols.6 The library consist of a math-
ematical and a cryptographic layer. The two implemented proofs extend the
proofsystem package, which is a central component of the cryptographic layer.
The same package also contains classes for generating all sorts of preimage or
equality proofs, which we need for computing π3. Other packages in the cryp-
tographic layer provide implementations of Pedersen commitments and various
encryption schemes. The library provides therefore the full functionality for a
straightforward implementation of our protocol.

In order to check the accuracy of the calculated time estimates of the pre-
vious subsections, we used UniCrypt to generate and verify ballots for different
electorate sizes and measured the times of computation. The results of these
measurements are shown in Table 7. We used the same machine for the tests as
in the previous subsection, a MacBook Pro with a 2.7 GHz Intel Core i7 proces-
sor, and the current UniCrypt version from the project’s development branch
on April 1, 2015. In general, the measured running times are quite consistent
with the time estimates from the previous section, for example 18.2 instead of
17.0 seconds for generating a ballot with 100’000 voters. This difference can be
explained by the overhead for other less expensive operations and for Java’s
memory and object management. Note that for 1’000’000 voters, the actual run-
ning times are even slightly better than the estimates (3.3 instead of 3.4 min).
An explanation for this is the fact, that 2M�log M� is an upper approximation
for the number of multiplications in Zp.

To conclude the discussion about our implementation and the results of the
performance analysis, we need to stress that the prototype implementation has
not been optimized in any way. To speed up the ballot generation, we may
pre-compute the proofs in a background process of the vote preparation soft-
ware, and we may distribute the computations to all available cores of the given
machine, or to the machine’s graphics processing unit. In the final verification of
all ballots, the potential of executing tasks in parallel—possibly on many differ-
ent machines—is even higher. Furthermore, techniques like multi-exponentiation

Table 7. Actual running times for generating and verifying a single ballot using the
UniCrypt library.

M = |U | Ballot generation Ballot verification

10 1.3 s 0.9 s

100 1.4 s 1.0 s

1’000 1.6 s 1.1 s

10’000 3.0 s 1.3 s

100’000 18.2 s 2.9 s

1’000’000 3.3 min 18.8 s

6 UniCrypt is publicly available on GitHub under a dual AGPLv3/commercial licence,
see https://github.com/bfh-evg/unicrypt.

https://github.com/bfh-evg/unicrypt

90 P. Locher and R. Haenni

and fixed-base exponentiation may bring considerable performance improve-
ments, especially for small elections, where the exponentiations predominate
the multiplications. For very large elections, we should consider replacing the
set membership proof as described in this paper by an approach by Brands
et al. [5], which requires 8

√
M exponentiations but only 2M + 8

√
M multiplica-

tions for generating a proof.

5 Conclusion

In this paper, we have introduced a new approach for a cryptographic voting
protocol. Its underlying mechanism is very different compared to mainstream
approaches based on mixing and homomorphic tallying. In our protocol, the
distinction between valid and invalid ballots is strictly based on perfectly hiding
commitments and perfect zero-knowledge proofs of knowledge. This prevents
computationally bounded adversaries from submitting illegitimate votes during
the election. At the same time, even a computationally unbounded adversary in
the future will never be able to link votes to voters. Our protocol offers therefore a
solution to the everlasting privacy problem. Compared to other protocols offering
everlasting privacy, we do not require any trusted authorities. This makes our
protocol particularly attractive for straightforward implementation in a practical
system. The relatively high computational costs for generating and verifying the
ballots is a clear disadvantage of our approach, but we have demonstrated that
with today’s technology, this is only a drawback for very large electorates.

Acknowledgments. We thank the anonymous reviewers for their thorough reviews
and appreciate their comments and suggestions. This research has been supported by
the Swiss National Science Foundation (project No. 200021L 140650).

References

1. Arapinis, M., Cortier, V., Kremer, S., Ryan, M.: Practical everlasting privacy. In:
Basin, D., Mitchell, J.C. (eds.) POST 2013 (ETAPS 2013). LNCS, vol. 7796, pp.
21–40. Springer, Heidelberg (2013)

2. Au, M.H., Susilo, W., Mu, Y.: Proof-of-knowledge of representation of committed
value and its applications. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS,
vol. 6168, pp. 352–369. Springer, Heidelberg (2010)

3. Bayer, S., Groth, J.: Zero-knowledge argument for polynomial evaluation with
application to blacklists. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 646–663. Springer, Heidelberg (2013)

4. Brands, S.: Rethinking Public Key Infrastructures and Digital Certificates: Build-
ing in Privacy. MIT Press, Cambridge (2000)

5. Brands, S., Demuynck, L., De Decker, B.: A practical system for globally revoking
the unlinkable pseudonyms of unknown users. In: Pieprzyk, J., Ghodosi, H., Daw-
son, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 400–415. Springer, Heidelberg
(2007)

Verifiable Internet Elections with Everlasting Privacy and Minimal Trust 91

6. Buchmann, J., Demirel, D., van de Graaf, J.: Towards a publicly-verifiable mix-net
providing everlasting privacy. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859,
pp. 197–204. Springer, Heidelberg (2013)

7. Camenisch, J.L., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008)

8. Camenisch, J.L., Stadler, M.A.: Efficient group signature schemes for large groups.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997)

9. Canard, S., Traoré, J.: List signature schemes and application to electronic vot-
ing. In: Augot, D., Charpin, P., Kabatianski, G. (eds.) WCC’03, 3rd International
Workshop on Coding and Cryptography, Versailles, France, pp. 81–90 (2003)

10. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Cryptol. 1(1), 65–75 (1988)

11. Demirel, D., Henning, M., van de Graaf, J., Ryan, P.Y.A., Buchmann, J.: Prêt à
voter providing everlasting privacy. In: Heather, J., Schneider, S., Teague, V. (eds.)
Vote-ID 2013. LNCS, vol. 7985, pp. 156–175. Springer, Heidelberg (2013)

12. Demirel, D., van de Graaf, J., Araújo, R.: Improving Helios with everlasting pri-
vacy towards the public. In: Halderman, J.A., Pereira, O. (eds.) Electronic Voting
Technology Workshop/Workshop on Trustworthy Elections, EVT/WOTE 2012,
Bellevue, USA (2012)

13. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

14. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In: Seberry, J., Zheng, Y. (eds.) ASIACRYPT 1992. LNCS, vol. 718, pp.
244–251. Springer, Heidelberg (1992)

15. Groth, J.: Efficient maximal privacy in boardroom voting and anonymous broad-
cast. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 90–104. Springer, Heidelberg
(2004)

16. Kiayias, A., Yung, M.: Self-tallying Elections and Perfect Ballot Secrecy. In: Nac-
cache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 141–158. Springer,
Heidelberg (2002)

17. Locher, P., Haenni, R.: A lightweight implementation of a shuffle proof for elec-
tronic voting systems. In: Plödereder, E., Grunske, L., Schneider, E., Ull, D. (eds.)
INFORMATIK 2014. Lecture Notes in Informatics, Stuttgart, Germany, pp. 1391–
1400. Gesellschaft für Informatik, Bonn (2014)

18. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-
vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer,
Heidelberg (2006)

19. Moran, T., Naor, M.: Split-ballot voting: everlasting privacy with distributed trust.
In: Ning, P., de Capitani di Vimercati, S., Syverson, P. (eds.) CC 2007, 14th ACM
Conference on Computer and Communications Security, Alexandria, USA, pp.
246–255 (2007)

20. Moran, T., Naor, M.: Split-ballot voting: everlasting privacy with distributed trust.
ACM Trans. Inf. Syst. Secur. 13(2), 16:1–16:43 (2010)

21. van de Graaf, J.: Voting with unconditional privacy by merging Prêt à Voter and
PunchScan. IEEE Trans. Info. Forensics Secur. 4(4), 674–684 (2009)

Vote Validatability in Mix-Net-Based eVoting

Pedro Bibiloni1(B), Alex Escala2,3, and Paz Morillo3

1 Departament de Matemàtiques i Informàtica,
Universitat de Les Illes Balears, Palma, Spain

pedro@bibiloni.es
2 Scytl Secure Electronic Voting, Barcelona, Spain

alex.escala@ma4.upc.edu
3 Departament de Matemàtica Aplicada IV,

Universitat Politècnica de Catalunya, Barcelona, Spain
paz@ma4.upc.edu

Abstract. One way to build secure electronic voting systems is to use
Mix-Nets, which break any correlation between voters and their votes.
One of the characteristics of Mix-Net-based eVoting is that ballots are
usually decrypted individually and, as a consequence, invalid votes can
be detected during the tallying of the election. In particular, this means
that the ballot does not need to contain a proof of the vote being valid.

However, allowing for invalid votes to be detected only during the tal-
lying of the election can have bad consequences on the reputation of the
election. First, casting a ballot for an invalid vote might be considered as
an attack against the eVoting system by non-technical people, who might
expect that the system does not accept such ballots. Besides, it would be
impossible to track the attacker due to the anonymity provided by the
Mix-Net. Second, if a ballot for an invalid vote is produced by a software
bug, it might be only detected after the election period has finished. In
particular, voters would not be able to cast a valid vote again.

In this work we formalize the concept of having a system that detects
invalid votes during the election period. In addition, we give a general
construction of an eVoting system satisfying such property and an effi-
cient concrete instantiation based on well-studied assumptions.

Keywords: Electronic voting systems · Mix-Nets · Formal definitions

1 Introduction

Even though many electronic voting schemes have been proposed, we could argue
that two of the most important conceptual categories are Homomorphic Tallying
based voting schemes and Mix-Net based voting schemes. Both types of schemes
consist on having the voter encrypt her selected voting option on her voting device
and having an electoral authority decrypting these encrypted voting options, after

P. Bibiloni was partially supported by the Spanish project TIN 2013-42795-P and
the fellowship FPI/1645/2014, which was cofinanced by the European Social Fund.

c© Springer International Publishing Switzerland 2015
R. Haenni et al. (Eds.): VoteID 2015, LNCS 9269, pp. 92–109, 2015.
DOI: 10.1007/978-3-319-22270-7 6

Vote Validatability in Mix-Net-Based eVoting 93

some anonymization procedure. This anonymization procedure is what defines
each category and has implications on the whole voting system.

In Homomorphic Tallying based voting systems [8], the anonymization pro-
cedure consists on homomorphically aggregating the encryptions of the voting
options from different voters to obtain the encryption of the aggregated selec-
tions. For instance, if each voter computes as many encryptions as voting options
exist in the election, the aggregate would be the encryption of the number of
votes for the first voting option, the encryption of the number of votes for the
second voting option and so on. This would imply that electoral authorities only
need to compute one decryption operation per voting option in the election,
whereas each voter would need as many encryptions.

This does not fit well within our paradigm, since electronic voting is an
extremely asymmetric scenario: the computational power of a single voter’s
device is much smaller than the computational power of the electoral authority.
This is due to two factors. First, the resources available to a single voter (per-
sonal computers, smartphones or tablets) are usually considerably lower than
those available to electoral authorities (multiple servers with many cores per
server), specially in big elections. Second, the recent trend seems to be to imple-
ment the voting client in JavaScript, which performance is orders of magnitude
lower than Java or C, the languages in which the back-end of the system is
usually implemented. There are technologies which improve the performance of
JavaScript but they are not available in all web browsers. Finally, the time it
takes to tally an election is less critical than the time it takes to cast a vote. As
estimated in [2], encrypting a single candidate in the JavaScript implementation
of Helios, the most popular implementation of a Homomorphic Tallying-based
voting system, takes up to 1 s. This clearly does not scale well when hundreds
or thousands of candidates are eligible.

On the other hand, in Mix-Net based voting systems [7], the computational
cost for the voter is much smaller than the computational cost for the elec-
toral authority and even smaller than the computational cost in a Homomor-
phic Tallying-based scheme. This is achieved by changing the anonymization
procedure, which consists on shuffling the encrypted voting options to break any
correlation between the ballot and the voter. In this case, the voter only needs
to encrypt an encoding of her selected voting options, which might be as efficient
as computing a single encryption. On the other hand, the electoral authority will
need to decrypt all the ciphertexts individually, but that’s a reasonable trade-off.

To have a fair comparison between these two categories of voting systems,
one has to consider how many voting options exist in an election. If the election is
a single referendum answer, there will be usually three answers (yes, no, blank),
which implies that using a Homomorphic Tallying-based system is more than
reasonable. However, there are elections where a voter might choose between
close to a thousand candidates. We find such an example in elections where
tens of parties are eligible in an election, each party having close to a hundred
candidates and a voter being able to choose candidates from any party, in which
case the benefits of using a Mix-Net-based system outweight its disadvantages.

94 P. Bibiloni et al.

Lastly, it should be noted that the Damg̊ard Jurik cryptosystem [9] allows
encrypting several candidates in a single ciphertext, pushing the boundaries of
Homomorphic Tallying-based voting systems. However, only a certain number
of candidates can be encrypted, which depends on the number of voters. Above
this number, more than one ciphertext needs to be computed and casting a
ballot becomes more costly. Determining at which point Mix-Net-based systems
outperform Homomorphic Tallying-based systems (with respect to the voting
client) is outside the scope of this paper.

1.1 The Problem of Invalid Votes

When building a Homomorphic Tallying based voting system, a technical req-
uisite is that the voter must construct a proof that her vote conforms to the
election rules. Otherwise, the homomorphic aggregation of invalid votes could
produce completely unreasonable results. Current Homomorphic Tallying based
systems consider this requirement, so we can consider it a solved problem.

Mix-Net-based systems do not have this requirement. As votes are individu-
ally decrypted, it can be checked whether each decrypted vote conforms to the
election rules and, in case it does not, consider it an invalid vote. From a tech-
nical perspective this is completely reasonable, we do not need to ask voters for
a proof of her vote conforming to the election rules in order to have a secure
Mix-Net-based system. Indeed, this is how paper voting systems work nowadays.

Despite proofs of ballot well-formedness not being necessary to implement
a secure eVoting system, the lack of such proofs might affect the reputation of
the system. Firstly, from a non-technical voter’s perspective, it is reasonable to
assume that if the voting interface does not allow for an invalid vote to be cast
then invalid votes should be impossible to cast. Therefore, modifying the voting
client to cast an invalid vote might be seen as an attack against the system, even
if it has no effect on the result on the election. Besides, it would be impossible
to track the attacker due to the anonymity provided by the Mix-Net. The paper
voting scenario is slightly different: in paper voting the voting interface allows
voters to easily cast an invalid ballot. In addition, should there be a software
bug which created invalid votes inadvertently, this would be only detected at
the tallying phase. Depending on the amount of invalid votes, the election might
even have to be restarted – with the reputation loss that it represents.

1.2 Introducing Vote Validatability

In this work we introduce the concept of vote validatability, which attempts to
solve the problem mentioned above. We consider that an electronic voting system
has vote validatability if it can be publicly verified that a ballot contains a vote
conforming to the election rules – we want to be able to detect whether a vote is
invalid before it is decrypted. This means that (a) no invalid votes will appear
during the tallying of the election and (b) any software bug in the voting devices

Vote Validatability in Mix-Net-Based eVoting 95

will be detected during the election period, so it can be quickly fixed, providing
the voters another attempt to vote before the end of the election.1

As we discussed above, Homomorphic Tallying systems have vote validatabil-
ity since it is a requisite in order to have a secure voting system, in contrast with
Mix-Net-based systems. Adding this property to a Mix-Net-based scheme is not
a theoretical problem: there are inefficient cryptographic tools such as general-
purpose zero-knowledge proofs which can be used to achieve it. The challenge is
thus using appropriate proofs to retain low computational cost from the voters’
side, which is one of the advantages of using a Mix-Net-based system.

There is a trivial approach to achieve vote validatability: considering all pos-
sible contents of a ballot as valid. This can be done by defining an encoding
for all-but-one eligible candidates and assigning any other encoding to the last
candidate. However, this has some drawbacks. First, having several encodings
for the same candidate opens the door to facilitating vote selling by making it
possible to introduce the voter’s identity in the encoding of the candidate. In
addition, requiring a specific encoding might limit the amount of features of the
eVoting system, such as the so called return codes [11], which require that each
candidate has only one encoding, or using special encodings to aggregate encryp-
tions before the tallying, as also done in [11]. Therefore, we prefer a modular
solution to vote validatability which does not require a specific encoding of the
candidates.

In this work, we introduce a formal definition for the concept of vote vali-
datability in Sect. 3. Then, we give a general construction of a Mix-Net-based
scheme achieving vote validatability and privacy. This construction is based on
basic cryptographic primitives and is given in Sect. 4, along with its security
properties. Finally, we give a concrete, efficient instantiation of a Mix-Net-based
system with vote validatability in Sect. 5.

2 Preliminaries

2.1 Encryption Schemes

An encryption scheme consists of three probabilistic polynomial time (p.p.t.)
algorithms: KeyGenEnc,Enc,Dec. On input a security parameter 1k, the
KeyGenEnc algorithm outputs a public key pk and a secret key sk, implicitly
defining a message space Me. The Enc algorithm takes as input the public key
pk and a message m ∈ Me and outputs a ciphertext C. Dec takes as input
a secret key sk and a ciphertext C and outputs a message m ∈ Me or halts
outputting ⊥.

An encryption scheme is NM-CPA (Non-Malleability under a Chosen Plain-
text Attack) if, loosely speaking, no adversary can find a non-trivial relation
between the plaintexts hidden in some ciphertexts generated by him, querying
the encryption oracle as in the IND-CPA experiment [5].
1 There could be bugs in the software which verifies vote validatability. However, this

verification can be done in parallel by different implementations done by different
entities, leveraging this risk.

96 P. Bibiloni et al.

2.2 Signature Schemes

A signature scheme consists of three p.p.t. algorithms KeyGenSign,Sign,
VerifySign. On input a security parameter 1k, the KeyGenSign algorithm out-
puts a public key pk and a secret key sk, implicitly defining a message space
Ms. The Sign algorithm takes as input the secret key sk and a message m ∈ Ms

and outputs a signature σ. The VerifySign algorithm takes as input a public key
pk and a signature σ and outputs success (1) or reject (0).

One usual notion of security for a signature scheme is EUF-CMA [13]. In such
a scheme, no adversary is able to forge a new valid signature for any message
not already signed, regardless the number of signatures issued.

2.3 Pseudo-Random Permutations

A Pseudo-Random Permutation family [15] is a family of efficient functions F(·) :
X → X parametrized by a key k ∈ KPRP .

The pseudo-random property of a PRP family states that it is difficult to
distinguish the outputs of a function Fk for a random key k ∈ KPRP from those
of a function f chosen at random from the space of random permutations of X .

2.4 Non-Interactive Zero-Knowledge Proof of Knowledge

Let R be a relation, containing pairs (x,w) such that, given (x,w) it can be
verified in polynomial time whether (x,w) ∈ R. We call x the statement and
w the witness. We define the language LR as the set of statements x for which
there exists a witness w such that (x,w) ∈ R.

A non-interactive zero-knowledge proof of knowledge (NIZKPK) for a lan-
guage LR consists of three p.p.t. algorithms: GenCRS,Prove,VerifyProof. GenCRS
takes as input a security parameter 1k and outputs a common reference string
crs. Prove takes as input the common reference string crs, a statement x and a
witness w such that (x,w) ∈ R and outputs a proof π. VerifyProof takes as input
a common reference string crs, a statement x and a proof π and outputs 1 if it
accepts the proof or 0 if it rejects it.

A NIZKPK must satisfy the properties of completeness, witness extraction
and zero-knowledge (see, for instance, [16]). Intuitively, completeness states that
VerifyProof will always return 1 on correctly generated proofs. Witness extraction
states that (a) there exists an algorithm ExtGenCRS which outputs a common
reference string c̃rs, indistinguishable from a common reference string output by
GenCRS, and a trapdoor key tk; and (b) that there exists an algorithm Extract
that, on input the trapdoor key tk, a statement x and a valid proof π it returns
a witness w such that (x,w) ∈ R. Finally, zero-knowledge states that (a) there
exists some SimGenCRS which outputs a common reference string c̃rs, indistin-
guishable from a common reference string output by GenCRS, and a simulation
key fk; and (b) that there exists an algorithm SimProve that, on input a state-
ment x and the simulation key fk it can generate a proof indistinguishable from
a proof generated using the Prove algorithm with a valid witness.

Vote Validatability in Mix-Net-Based eVoting 97

3 Definitions

In this section we present the syntactical definition of an eVoting scheme and we
define some security properties. We have not considered all the desirable security
properties of an eVoting scheme – all the end-to-end verifiability properties,
including the handling of voters’ credentials, are considered to be out of the
scope of this paper. However, the solution given in this paper can be combined
with the usual techniques for achieving end-to-end verifiability.

3.1 Syntactical Definition

We now give the syntax of a voting scheme. We will consider single-pass voting
schemes as defined in [5], which are characterized by the fact that voters interact
with the system only by submitting their ballots.

We will consider the following entities regarding an election. First, election
authorities are in charge of defining the election parameters, generating any
required cryptographic keys and tallying the result of the elections. The bulletin
board is a repository of information containing public keys and ballots. It can
be read by any entity but only the bulletin board manager and the election
authorities can write to it. Voters participate in the election by choosing their
preferred voting options and submitting their ballots. For the sake of simplicity,
we will assume that there is only one election authority. This assumption can be
avoided with well-known tools such as multi-party computation.

A voting scheme is parametrized by the set of possible votes V, a result space
R and a result function ρ : (V ∪ {⊥})∗ → R, where ⊥ denotes an invalid vote.

The result function states how votes should be tallied, i.e., which counting
function should be applied to votes. One such result function which we are
interested in is the multiset function. As defined in [4], the multiset function
discloses the sequence of all the cast votes, in a random order. In this case, an
invalid vote is treated as any other vote.2

A voting scheme is defined by the following p.p.t. algorithms:

– Setup(1λ) on input a security parameter 1λ it outputs an election public key
pk and an election secret key sk.

– Vote(pk, v) on input the election public key pk and a vote v ∈ V, outputs a
ballot b.

– ValidateBallot(BB, b) takes as input a bulletin board BB and a ballot b. It
outputs either success (1) or reject (0).

– Tally(sk,BB) on input the election secret key sk and the bulletin board BB.
It outputs the tally r ∈ R together with a proof of correct tabulation Π.

– VerifyTally(BB, r,Π) takes as input the bulletin board BB, the tally r and a
proof of correct tabulation Π. It outputs either success (1) or reject (0).

A single-pass protocol is executed in three phases.
2 As in [4], the result function can be used to model revote policies. In this work we

just consider the scenario where each voter can only cast one vote.

98 P. Bibiloni et al.

1. In the setup phase, the election authority runs the Setup algorithm. It pub-
lishes the election public key pk in the bulletin board BB and keeps the
election secret key sk.

2. In the voting phase, each voter can vote. To vote, the voter chooses a vote v
and retrieves the public key pk from the bulletin board. Both v and pk are
used to create a ballot b using the Vote algorithm, which is sent to the bulletin
board manager. The bulletin board manager then executes the ValidateBallot
algorithm on the ballot. If the algorithm returns 1, then the bulletin board
manager adds the ballot to the bulletin board. Otherwise, it rejects the bal-
lot and notifies both the voter and the electoral authority for auditability
purposes.

3. In the counting phase, the election authority runs the Tally algorithm on the
bulletin board using the election secret key. The output of the Tally algorithm,
which consists of the result r and the correct tabulation proof Π, is published
to the bulletin board. The proof Π can then be verified by any entity using
the VerifyTally algorithm.

A voting system as defined above is correct if, when the three phases are run
with all the participants behaving correctly, then (a) the result r output by the
Tally algorithm is equal to the evaluation of the result function ρ on the voting
options corresponding to the ballots cast by the voters and (b) the algorithm
VerifyTally on input the result of the Tally algorithm returns success.

3.2 Privacy

Intuitively, a voting system has ballot privacy if an adversary with access to all
the ballots and the public key of the election is not able to get any information
about the voters’ preferences. Formalizing this intuition turns out to be non-
straightforward, and it is not until recently that good definitions have been given.
We adopt the formalization given in [4], a game-based definition of ballot privacy,
proven to be equivalent to the intuitive simulation-based security notion.

Ballot privacy is defined by using two experiments between an adversary A
and a challenger C. As usual, the goal of the adversary is to distinguish between
the two experiments. In both experiments, the adversary may corrupt voters and
submit ballots on their behalf. In addition, for each honest voter the adversary
can specify two votes to be used for casting her ballot. However, the electoral
authority is assumed to remain honest. Depending on the experiment, the chal-
lenger will cast a ballot containing either of those two votes. To prevent trivial
attacks, the same tally is always shown to the adversary regardless of which
experiment is being played.

For compactness, we present the two experiments as a single experiment
which depends on a bit β ∈ {0, 1}. Both experiments assume given the set of
voting options V, the result space R, the result function ρ and use an algorithm
SimProof(BB, r) which, given a bulletin board and a result, simulates a correct
tabulation proof. The experiment Expβ is run in these phases:

Vote Validatability in Mix-Net-Based eVoting 99

1. Setup phase. The challenger sets up two empty bulletin boards BBL and
BBR. It runs the Setup(1λ) protocol to obtain the election public key pk and
the election private key sk. It then posts pk on both bulletin boards. The
adversary is given read access to either BBL if β = 0 or BBR if β = 1.

2. Voting phase. The adversary may make two types of queries:
– Vote(vL, vR) queries. The adversary provides two votes vL, vR ∈ V. The

challenger runs Vote(pk, vL) and Vote(pk, vR) obtaining two ballots bL

and bR respectively. C then obtains new versions of the boards BBL and
BBR by running ValidateBallot(BBL, bL) and ValidateBallot(BBR, bR)
and updating the boards accordingly.

– Ballot(b) queries, which model queries made on behalf of corrupt voters.
The adversary provides a ballot b, with which ValidateBallot(BBL, b) is
run by the challenger. If the algorithm returns 1, BBL is updated and
ValidateBallot(BBR, b) is executed, updating BBR accordingly. Otherwise,
if the algorithm returns 0, it does nothing.

3. Tallying phase. The challenger evaluates Tally(sk,BBL) obtaining the
result r and the proof of correct tabulation Π. If β = 0, the challenger
publishes (r,Π) on the bulletin board BBL. If β = 1, the challenger runs
SimProof(BBR, r) obtaining a simulated proof Π ′ and posts (r,Π ′) on the
bulletin board BBR.

4. Output. The adversary A outputs a bit α, which depends on A, V, R, ρ and
SimProof.

We say that a voting protocol for (V, R, ρ) as defined in Sect. 3.1 provides
ballot privacy if there exists an algorithm SimProof such that for any p.p.t.
adversary A the following advantage is negligible in the security parameter λ.

Advpriv
V,R,ρ,SimProof(λ):=|Pr[α = 1|β = 1] − Pr[α = 1|β = 0]|

We remark that honest voters are assumed to generate the ballots correctly
(i.e., proper randomness is used and it is not leaked to the adversary).

3.3 Strong Consistency

In order to define vote validatability we will first define the notion of strong
consistency. Strong consistency states that the tally of the bulletin board must
correspond to the result of applying the result function to the contents of the
ballots in the bulletin board. As shown in [4], this property is needed to avoid
having leaky tallying algorithms.

In our case, we also use it to define what a meaningful content extractor is.
This content extractor will be useful to define the concept of vote validatability.

Strong consistency is given by the following game, where we assume given
election parameters (V, R, ρ) and uses an algorithm Extract(sk, b) which takes
the election secret key and a ballot and outputs either a vote or the error symbol
⊥ denoting an invalid vote.

100 P. Bibiloni et al.

1. Setup Phase. The challenger runs Setup(1λ) to obtain the election public key
pk and the election secret key sk. It gives both pk and sk to the adversary A.

2. Bulletin Board(BB). The adversary submits a bulletin board BB to the
challenger.

3. Output. The challenger runs Tally(sk,BB) to obtain a result r and a correct
tabulation proof Π. The output of the game is a bit γ, which depends on A,
V, R, ρ and SimProof. This bit is defined as 1 if r �= ρ(Extract(sk,BB)) and
0 otherwise, where Extract is applied on the bulletin board by applying it to
each individual ballot.

We say that a voting protocol for (V, R, ρ) as defined in Sect. 3.1 has strong
consistency with respect to an extract algorithm Extract if the following condi-
tions are satisfied:

(i) For any (pk, sk) in the image of Setup, for any vote v ∈ V it is satisfied
that Extract(Vote(pk, v)) = v

(ii) For any p.p.t. adversary A, the following advantage is negligible in the
security parameter λ:

Advs−const
V,R,ρ,SimProof(λ):= Pr[γ = 1]

3.4 Vote Validatability

We now present the definition of vote validatability, which is the first contribu-
tion of this paper. Simply stated, vote validatability states that a ballot which
passes all validations must correspond to a valid vote. This is modeled by stating
that the algorithm Extract, the one from the strong consistency property, never
returns the error symbol ⊥ on ballots for which ValidateBallot returns 1.

Vote validatability is given by the following game, which assumes that the
election parameters (V, R, ρ) are given and uses an algorithm Extract(sk, b),
which takes the election secret key and a ballot and outputs either a vote or
the error symbol ⊥ denoting an invalid vote.

1. Setup phase. The challenger runs Setup(1λ) to obtain the election public
and private keys (pk, sk), giving both of them to the adversary.

2. Ballot(b). The adversary submits a ballot b to the challenger.
3. Output. The output of the game is a bit δ, which depends on A, V, R, ρ and

SimProof. This bit is defined as 1 if Extract(sk, b) =⊥ and ValidateBallot = 1,
and as 0 otherwise.

We say that a voting protocol for (V, R, ρ) as defined in Sect. 3.1 has vote
validatability with respect to an extract algorithm Extract if the following con-
ditions are satisfied:

(i) The voting protocol for (V, R, ρ) is strongly consistent with respect to
Extract

(ii) For any p.p.t. adversary A, the following advantage is negligible in the
security parameter λ:

Advval
V,R,ρ,SimProof(λ):= Pr[δ = 1]

Vote Validatability in Mix-Net-Based eVoting 101

One implication of the definition given above is that, if the protocol has vote
validatability, then it must be satisfied that, for any honestly-generated keys and
any adversarially generated bulletin board, the result output by the tally can be
obtained with only valid votes, r ∈ ρ(V∗).

We want to remark that vote validatability does not depend on the secrecy of
the election secret key. However, it assumes that the Setup is run honestly. Even
though this can be achieved by distributing the trust among multiple authorities,
we have decided to give the definition assuming that there is only one authority
for the sake of simplicity.

4 General Construction

4.1 Core Idea

In an electronic voting system, voters might be able to vote for more than one
candidate, so we will consider a generic scenario in which votes are subsets
of n distinct candidates from a larger but specified list of them. Treating the
set of votes as the set of combinations of candidates would result in a terribly
inefficient system. Therefore, each of the selected candidates will be encrypted
independently. To prove that each candidate hidden in its respective encryption
belongs to the list of candidates, we will use a set membership protocol based
on digital signatures. In addition, we will use another technique to demonstrate
that the candidates hidden in these encryptions are distinct.

The main idea of our new construction is inspired by the set membership
protocol proposed by Camenisch et al. [6]. In that work, the authors construct a
protocol for proving that a value is a commitment to a member of a pre-defined
set. Their protocol works as follows. First, there is a trusted third party which
produces signatures on each element of the set. Then, the prover constructs a
zero-knowledge proof that she knows a signature on the committed value which
verifies under the trusted third party’s secret key. When the encryption scheme
and the signature scheme being used have nice structural properties, the size of
the proof is small and constant on the size of the set. In our case, the electoral
authority will sign all candidates, and the voter will prove that she knows a
signature on each selected candidate. However, this would still allow the voter
to choose repeated candidates.

To detect this last situation, we use a technique inspired by the compact
e-cash scheme given in [3]. In e-cash, detecting double-spending is essential,
and this problem is similar to detecting repeated candidates in a vote. We will
ask the voter to choose a pseudo-random permutation key and to publish the
image of each chosen candidate under the pseudo-random permutation defined
by such key. Given that the pseudo-random permutation is deterministic, if the
voter chooses the same candidate more than once this will be detected by any
entity. Finally, the prover needs to prove that the images of the pseudo-random
permutation correspond to the candidates which she encrypted and that she
knows a signature for each candidate.

102 P. Bibiloni et al.

In Sect. 4.2 we describe a generic protocol built on the mentioned crypto-
graphic primitives. In general, computing non-interactive proofs of knowledge
for such statements might be inefficient. In Sect. 5 we show that by instantiating
the cryptographic primitives with adequate schemes the resulting protocol can
be made as efficient as currently deployed e-voting systems.

4.2 Detailed Protocol

We begin by characterizing the set of allowed votes V. Given a set of candidates
V, we define the set of votes as V = {v | v ⊂ V ∧ |v| = n} for some fixed value
of n. Here, we are assuming that a voter must vote for n candidates. We can
handle blank votes and undervotes by designating n different blank candidates.

Our voting scheme uses a common setup generation algorithm, ComSetupGen,
in order to generate some common information that might be shared among the
rest of algorithms like, for instance, the description of a mathematical group.
This will be useful for efficiency reasons.

It also uses, as building blocks, an encryption scheme (KeyGenEnc, Enc,Dec),
a signature scheme (KeyGenSign,Sign,VerifySign), a PRP family F(·) and a NIZK
proof system (GenCRS, Prove,VerifyProof) for the relation R defined as:

R = {(x,w)| x = (C1, . . . , Cn, p1, . . . , pn, pke, pks)∧
w = (ν1, . . . , νn, r1, . . . , rn, σ1, . . . , σn, k)∧
(C1, . . . , Cn) = (Enc(pke, ν1, r1), . . . ,Enc(pke, νn, rn))∧
(VerifySign(pks, σ1, ν1), . . . ,VerifySign(pks, σn, νn)) = (1, . . . , 1)∧
(p1, . . . , pn) = (Fk(ν1), . . . , Fk(νn))}

The algorithms are then defined as follows:
Setup(1λ) starts by running the ComSetupGen algorithm to generate the

common setup information cs, which will be used by GenCRS, KeyGenEnc and
KeyGenSign. Then the algorithm runs GenCRS to generate the common ref-
erence string crs, KeyGenEnc to generate a pair of public/private encryption
keys (pke, ske) and KeyGenSign to generate a pair of public/private signing keys
(pks, sks), all of which may depend on the common setup information cs. This
implicitly defines the message space for the encryption scheme Me and the mes-
sage space for the signature scheme Ms. We require that there exist two injec-
tive mappings η1, η2 such that η1(V) ⊂ Me and η2(V) ⊂ Ms. For the sake of
simplicity we will assume that V = Me = Ms. Then, for each ν ∈ V, the algo-
rithm produces a signature on it, σν = Sign(sks, ν). The election public key is
defined as pk = (crs, pke, pks, {σν}ν∈V) and the election secret key is defined as
sk = (pk, ske).

Vote(pk, v) parses pk as (crs, pke, pks, {σν}ν∈V) and v as (ν1, . . . , νn). It
then samples fresh randomness (r1, . . . , rn) and runs the (Enc(pke, ν1, r1), . . . ,
Enc(pke, νn, rn)) obtaining ciphertexts C = (C1, . . . , Cn). Next, it selects a fresh
random PRP key k ∈ KPRP and computes (p1, . . . , pn) = (Fk(ν1), . . . , Fk(νn))
Finally, it computes a NIZK proof π for the statement x = (C1, . . . , Cn,

Vote Validatability in Mix-Net-Based eVoting 103

p1, . . . , pn, pke, pks) and witness w = (ν1, . . . , νn, r1, . . . , rn, σν1 , . . . , σνn
, k). The

ballot is defined as b = (C, π, {pi}n
i=1).

ValidateBallot(BB, b) recovers pk from the bulletin board BB and parses it
as pk = (crs, pke, pks, {σν}ν∈V). Upon reception of a ballot b, which parses it
as b = (C, π, {pi}n

i=1), it is checked if in the bulletin board there is another
ballot b′ such that C ′

j = Ci for any i, j ∈ {1, . . . , n}. If any such ballot is found,
the algorithm stops and returns 0. Otherwise, the algorithm checks that the
values (p1, . . . , pn) are distinct, returning 0 if they are not. If the values are
distinct, the algorithm returns the output of VerifyProof using the statement
x = (C1, . . . , Cn, p1, . . . , pn, pke, pks).

Tally(sk,BB) after individual ballot b ballot has been processed with
ValidateBallot, during the tallying algorithm they are decrypted and the result
function is computed. The decryption procedure is defined as follows.

1. (ν̃1, . . . , ν̃n) = (Dec(ske, C1), . . . ,Dec(ske, Cn)) is computed.
2. It is checked that ν̃1, . . . , ν̃n ∈ V.
3. It is checked that (ν̃1, . . . , ν̃n) are pairwise different.
4. If any of such checks fail, v is assigned the value ⊥. Otherwise, v is assigned

the value (ν̃1, . . . , ν̃n).

Then, ρ is applied to the resulting decryptions {v}. Note that, for each v, either
v ∈ V or v =⊥, so ρ can be applied. The output of ρ is defined as the result and
the proof of correct tabulation is defined to be the empty string ε

Note that, as the proof of correct tabulation is the empty string ε, VerifyTally
can be the algorithm which returns 1 on any input.

Security of Our Scheme. Finally, we give the security properties fulfilled by
our scheme. Let (KeyGenEnc,Enc,Dec) be a NM-CPA secure encryption scheme,
let F(·) be a PRP family, let (GenCRS,Prove,VerifyProof) be a NIZK proof sys-
tem, and let (KeyGenSign, Sign,VerifySign) be an EUF-CMA signature scheme.
Let ρ be the counting function which outputs its inputs randomly permuted and
let Extract be the decryption procedure of the Tally algorithm. Then, the protocol
defined above (i) has ballot privacy, and (ii) has vote validatability for any V,
with respect to ρ,Extract. These two results are formally stated in Theorems 1
and 3, which are found along with their proof in Appendix A.

5 Concrete Instantiation

We now give a concrete instantiation of the voting protocol given above. In
order to give the concrete instantiation, we just need to define which encryp-
tion scheme, signature scheme, pseudo-random permutation family and non-
interactive zero-knowledge proof of knowledge scheme the protocol will use. With
regard to our instantiation, the candidates will be encoded as n randomly sam-
pled elements of G1.

The ComSetupGen algorithm will output a type-III bilinear group as a com-
mon setup cs, i.e., a tuple (p,G1,G2,GT , e,G,H), where p is a prime, G1,G2,GT

104 P. Bibiloni et al.

are groups of order p, G,H generate G1,G2 respectively, e is a non-degenerate
bilinear map and there is no efficiently computable homomorphism from G1 to
G2 or viceversa. Besides, the Decisional Diffie-Hellman assumption [18] holds in
G1 and in G2.

Encryption Scheme. The protocol will use the Signed ElGamal [17] encryption
scheme in G1, which is NM-CPA secure [5].

Signature Scheme. The signature scheme that we will use is the structure-
preserving signature scheme given in [1]. A structure-preserving signature scheme
is characterized by having messages, signatures and verification keys to be group
element and having a verification procedure that only consists on evaluating
product-pairing equations.

The signature works as follows. On a common setup (p,G1,G2,GT , e,G,H),
an extra random element X ∈ G1 is added to the public parameters. The secret
key is a value v ∈ Zp and the public key is computed as V = Hv. The signature
on M ∈ G1 is then (R,S, T) = (Hr,M

v
r , S

v
r G

1
r) for a random r. To verify a sig-

nature it is checked if e(S,R) = e(M,V)e(X,H) and e(T,R) = e(S, V)e(G,H).

Pseudo-Random Permutation Family. We will define the set of candidates,
V, as a set containing n randomly sampled group elements from G1. This allows
us to define the pseudo-random function Fk : G1 → G1 where Fk(g) = gk and
k ∈ Z

∗
p. As we assume that the Decisional Diffie-Hellman assumption holds in

G1, this function family is pseudo-random when we restrict the input to V.3

Non-Interactive Zero-Knowledge Proof of Knowledge. Finally, we have
to give the NIZKPK scheme that we will use. We will use the Groth-Sahai Proof
System [14] but we will frame it as a Commit-and-Prove scheme as done in [10].
A Commit-and-Prove scheme is similar to a NIZKPK scheme with the difference
that a Commit-and-Prove scheme explicitly splits the process of committing to
secret values and proving statements related to such values. In addition, [10]
introduces type-based commitments, where the type indicates how the commit-
ment should be computed. For example, the type “encryption” indicates that
the secret value should be encrypted, as opposed to using the more expensive
commitment operation.

We first remark that the encryption and signature schemes must use the
same algebraic groups that the NIZKPK scheme. Therefore, at the beginning of
the Setup algorithm, the common setup (p,G1,G2,GT , e,G,H) is generated and
will be used to generate the crs and the keys of the encryption and signature
schemes. There is no loss of generality since the groups are generated in the same
way in ComSetupGen and, respectively, in GenCRS, KeyGenEnc and KeyGenSign.

In addition, the Commit-and-Prove scheme given in [10] allows us to treat the
ElGamal encryption of a value as a commitment of type “encryption”, where the

3 Technically, it is a Pseudo-Random Function [12] from V to G1 where F(·) is injective
for any k ∈ Z

∗
p. Therefore, an adversary restricted to only evaluate the function in

points from V can not distinguish those evaluations from randomly sampled elements,
which is sufficient for the security reduction to work.

Vote Validatability in Mix-Net-Based eVoting 105

randomness used for the encryption is the randomness used for the commitment.
The encryption scheme is thus embedded into the NIZKPK scheme, instead of
being an independent scheme, as assumed in the general construction. However,
we can still adapt the security proof to keep it sound as we now describe.

We will consider the conjunction of two proofs. The first one is a zero-
knowledge proof for the language defined by the relation

R1 = {(x,w)| x = (C1, . . . , Cn, pke, pks)∧
w = (ν1, . . . , νn, r1, . . . , rn, σ1, . . . , σn)∧
(C1, . . . , Cn) = (Enc(pke, ν1, r1), . . . ,Enc(pke, νn, rn))∧
(VerifySign(pks, σ1, ν1), . . . ,VerifySign(pks, σn, νn)) = (1, . . . , 1)}

For this proof, the prover computes a commitment to each value of the sig-
nature and builds proofs for satisfiability of the verification equations.

We now need to see that the Commit-and-Prove scheme in [10] is Zero-
Knowledge for the language defined by R1. In other words, we need to see that
exists a simulator. As seen in [10], this reduces to check that there are no terms
in pairing product equations which prevent simulation. Those terms are pairings
where in each side of the pairing there is either a public, non-equivocable value4

or a value which commitment type is “encryption”. Going back to the verification
equations of the signature scheme, we see that there are none of these terms.
Therefore, there exists a simulator for the statement defined by R1.

The second zero-knowledge proof is defined by the relation

R2 = {(x,w)| x = (C1, . . . , Cn, p1, . . . , pn, pke)∧
w = (ν1, . . . , νn, r1, . . . , rn, k)∧
(C1, . . . , Cn) = (Enc(pke, ν1, r1), . . . ,Enc(pke, νn, rn))∧
(p1, . . . , pn) = (Fk(ν1), . . . , Fk(νn))}

For the proof for the relation R2, we will consider the multi-exponentiation
equations νk

i = pi, where νi and k are secret values. The prover computes a
commitment on k and builds a proof for satisfiability of this equation using Ci

as a commitment to νi. Both the commitments on the signatures and the proofs
will be included in π. As noted in [10], multi-exponentiation equations are always
simulatable.

Note that Groth-Sahai proofs are not extractable for exponents such as k.
However, the proof of our scheme having vote validatability only needs to extract
the values ν1, . . . , νn and their corresponding signatures.

5.1 Efficiency

Each Signed ElGamal encryption consists of 2 elements in G1 and 2 elements in
Zp. Each value pi consists of a single element in G1.
4 In [10] the authors define equivocable values as the generators of the group. However,

it can be seen that values for which the simulator knows the discrete logarithm w.r.t.
the generator of the group are also equivocable.

106 P. Bibiloni et al.

When looking at the proof π, we have to consider both the proof for the
language defined by R1 and the language defined for R2. For the proof for the
language defined by R1, we have that in the structure-preserving signature of [1]
each signature consists of three elements. A Groth-Sahai commitment on a single
element consists on 2 elements in G1. As we have to commit to n signatures, the
number of elements is 6n elements in G1. Furthermore, there are two verification
equations per signature and a Groth-Sahai proof for a single of such equation
consists of 4 elements in G1 and 4 elements in G2. Therefore, the proofs for all
the verification equations consist on 8n elements in G1 and 8n elements in G2.

When considering the proof for the language defined by R2, we have to
commit to k, which has a cost of 2 elements in G2, and compute the Groth-
Sahai proofs. A Groth-Sahai proof for an equation of the form νk = p consists
on 2 elements in G1 and 4 elements in G2, and we have to compute n of them.

In total, we get that a ballot consists of 19n elements in G1, 12n+2 elements
in G2 and 2n elements in Zp. The cost is linear in n (the number of candidates
encoded in each vote). Moreover, the constant factor is relatively small.

6 Conclusions

We have formalized the definition of vote validatability in order to give an accu-
rate meaning to avoid voters from casting invalid votes, both if done in purpose
or as a consequence of a software bug. Besides creating a construction based
on generic building blocks and general-purpose zero-knowledge proofs, we have
provided a concrete instantiation. We have shown that its efficiency fits into the
device’s computational capacity of voters in current elections.

There are other alternatives which may improve the performance of our con-
struction achieving the same security properties. First, a cryptographic accu-
mulator could be used to prove that candidates are valid. This approach could
reduce the length of the ballot but would make the scheme to rely on the Random
Oracle Model. Second, much of the cost of the ballot comes from the NIZKPK
proof for the language defined by R1. A choice of a different structure-preserving
signature scheme might improve the efficiency of our system.

A Proofs of Security Theorems

We prove the security for the construction given in Sect. 4.2.

Theorem 1. Let (KeyGenEnc,Enc,Dec) be a NM-CPA secure encryption
scheme, let F(·) be a PRP family and let (GenCRS,Prove,VerifyProof) be a NIZK
proof system. Then, the protocol defined in Sect. 4.2 has ballot privacy.

Proof. Recall that privacy is defined as the indistinguishability of two experi-
ments which depend on a bit β. We will refer to them as Expβ for β ∈ {0, 1}.

Vote Validatability in Mix-Net-Based eVoting 107

Let SimVote1(pk, v) be the Vote algorithm of the protocol given in Sect. 4.2
but, instead of using the Prove algorithm to generate π it uses the SimProve algo-
rithm. Moreover, let SimVote2(pk, v) to be the SimVote1 algorithm but, instead
of using a PRP it uses a truly random permutation.

Consider experiments Expβ,0 = Expβ , Expβ,1 to be the experiment which are
the same as Expβ,0 but the challenger runs SimGenCRS instead of GenCRS and
it runs SimProve instead of Prove. Finally, let Expβ,2 be the experiments which
are identical to Expβ,1 but in which the challenger uses a truly random function
instead of a PRP in order to cast ballots.

Due to the zero-knowledge property of the NIZK proof system, Expβ,0 and
Expβ,1 are indistinguishable for β ∈ {0, 1}. Besides, Expβ,1 and Expβ,2 are indis-
tinguishable for β ∈ {0, 1} due to the pseudo-randomness of the PRP. Now the
only thing left is to prove that Exp0,2 and Exp1,2 are indistinguishable.

Consider the Enc2Vote scheme [5], where the result function ρ is the multiset
function. The scheme is defined as follows: the Setup algorithm runs KeyGenEnc
to produce a public key pke and a secret key ske. Then, pk is set to be pke and
sk is set to be (pke, ske). The Vote algorithm takes as input a vote v and a public
key pke and outputs b defined by b = Enc(pke, v, r) for some fresh randomness
r. ValidateBallot looks if the ballot b already appears on the bulletin board BB:
it returns 1 if it does already appear and 0 otherwise. Tally decrypts all ballots
b on the bulletin board obtaining votes v and evaluates r = ρ(v), outputting
an empty proof of correct tabulation. Observe that Enc2Vote implicitly assumes
that V = Me, the message space of the encryption scheme. As shown in [5], the
following is satisfied:

Theorem 2. Let (KeyGenEnc,Enc,Dec) be an NM-CPA secure encryption
scheme. Then, Enc2Vote has ballot privacy.

Finally, we reduce the privacy of our scheme to the privacy of Enc2Vote.

Lemma 1. Let A1 be a p.p.t. adversary that interacts which challenger C and
outputs a bit αA1 such that |Pr[αA1 = 1|Exp0,2] − Pr[αA1 = 1|Exp1,2]| is non-
negligible. Then, there exists an adversary A2 that breaks the ballot privacy prop-
erty of the Enc2Vote scheme.

In our reduction, A1 will interact with A2, which will act as the challenger
for A1. At the same time, A2 will interact with the privacy challenger C. The
reduction is as follows:

In the Setup phase, C will run ComSetupGen, outputing cs and posting it
to the bulletin board. It will also run KeyGenEnc, keeping the private key for
itself and publishing the public key pke to the bulletin board. Then, A2 will run
the GenCRS and the KeyGenSign algorithms and will produce signatures on each
voting option, posting all the information to the bulletin board.

In the Voting phase, when A1 submits a Vote query, A2 will submit n Vote
queries to C, one for each pair of candidates. The challenger C will answer with
n pairs of ciphertexts (C0,1, . . . , C0,n) and (C1,1, . . . , C1,n). A2 will then sample
two pairs of random values (p0,1, . . . , p0,n) and (p1,1, . . . , p1,n) of the target space

108 P. Bibiloni et al.

of the PRP. Finally, it will create ballots b0 = (C0,1, . . . , C0,n, p0,1, . . . , p0,n, π0)
and b1 = (C1,1, . . . , C1,n, p1,1, . . . , p1,n, π1) where π0 and π1 will be simulated.
A2 will post these ballots to the respective bulletin boards. Finally, when A1

submits a Ballot(b) query, A2 will run the ValidateBallot algorithm and will
create a Ballot(b′) for C with b′ = (C1, . . . , Cn) from b.

It is straightforward to see that the output of A2 in its interaction with A1

is correctly distributed, which implies that the reduction is sound.

Theorem 3. Let ρ be the counting function which outputs its inputs randomly
permuted. Let (GenCRS,Prove,VerifyProof) be a NIZKPK proof system and let
(KeyGenSign, Sign,VerifySign) be an EUF-CMA signature scheme. Let Extract
be the decryption procedure of the Tally algorithm of the protocol defined in
Sect. 4.2. Then, the protocol defined in Sect. 4.2 has vote validatability for any
V, with respect to ρ,Extract.

Proof. Strong consistency of the protocol follows by construction. Therefore we
only need to show that, on correctly generated (pk, sk) no adversary can con-
struct a ballot b such that ValidateBallot returns 1 but Extract returns ⊥.

Let Exp0 be the vote validatability experiment and let Exp1 be identical
to Exp0 but instead of using GenCRS the challenger uses ExtGenCRS. These two
experiments are indistinguishable by the properties of the NIZKPK. Now assume
that an adversary A1 is able to output a ballot b in the experiment Exp1 such
that ValidateBallot = 1 and Extract(sk, b) =⊥. Then, we build an adversary A2

which breaks the EUF-CMA of the signature scheme.
The reduction is straightforward: A2, interacting with an EUF-CMA chal-

lenger asks for signatures on {ν}ν∈V . Then, it interacts with A1, posing as
a vote validatability challenger. It runs all the algorithms as in the proto-
col but uses ExtGenCRS, keeping the trapdoor key tk for itself, and using
the answers from the EUF-CMA challenger as the signatures on the voting
options. When A1 outputs a ballot b, A2 uses Extract on π to obtain a witness
w = (ν̃1, . . . , ν̃n, r1, . . . , rn, σν̃1 , . . . , σν̃n

, k)) such that (x,w) ∈ R. This means
that VerifySign(pks, σν̃i

, ν̃i) = 1 for i ∈ {1, . . . , n}. Extract(sk, b) might return ⊥
either because (i) some Dec(ske, Ci) =⊥, (ii) some ν̃i = ν̃j for i �= j or (iii) some
ν̃i �∈ V. However, (i) and (ii) are ruled out due to w being a valid witness, so the
only possibility is (iii). Then, A2 can submit (ν̃i, σν̃i

) as its EUF-CMA forgery.

References

1. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively
randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014)

2. Adida, B.: Encrypting your vote in javascript. Electronic Voting Technology
Workshop - EVT/WOTE, August 2011. http://assets.adida.net/presentations/
2011-08-08-helios-evt-rump.pdf

3. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact E-Cash and
simulatable VRFs revisited. In: Shacham, H., Waters, B. (eds.) Pairing 2009.
LNCS, vol. 5671, pp. 114–131. Springer, Heidelberg (2009)

http://assets.adida.net/presentations/2011-08-08-helios-evt-rump.pdf
http://assets.adida.net/presentations/2011-08-08-helios-evt-rump.pdf

Vote Validatability in Mix-Net-Based eVoting 109

4. Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: A comprehensive
analysis of game-based ballot privacy definitions. IACR Cryptology ePrint Archive
2015, 255 (2015). http://eprint.iacr.org/2015/255

5. Bernhard, D., Pereira, O., Warinschi, B.: On necessary and sufficient condi-
tions for private ballot submission. IACR Cryptology ePrint Archive 2012, 236
(2012). http://dblp.uni-trier.de/db/journals/iacr/iacr2012.html#BernhardPW12.
Informal Publication

6. Camenisch, J.L., Chaabouni, R., shelat, a: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008)

7. Chaum, D.: Untraceable electronic mail, return addresses and digital
pseudonyms. In: Gritzalis, D. (ed.) Secure Electronic Voting, Advances
in Information Security, vol. 7, pp. 211–219. Springer, New York (2003).
http://dx.doi.org/10.1007/978-1-4615-0239-5 14

8. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient
multi-authority election scheme. Eur. Trans. Telecommun. 8(5), 481–490 (1997).
http://dx.doi.org/10.1002/ett.4460080506

9. Damg̊ard, I., Jurik, M., Nielsen, J.B.: A generalization of Paillier’s public-key sys-
tem with applications to electronic voting. Int. J. Inf. Secur. 9(6), 371–385 (2010)

10. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014)

11. Gjøsteen, K.: Analysis of an internet voting protocol. Cryptology ePrint Archive,
Report 2010/380 (2010). http://eprint.iacr.org/

12. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986). http://doi.acm.org/10.1145/6490.6503

13. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988).
http://dx.doi.org/10.1137/0217017

14. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

15. Luby, M., Rackoff, C.: How to construct pseudo-random permutations from
Pseudo-random functions. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol.
218, pp. 447–447. Springer, Heidelberg (1986)

16. Santis, A.D., Persiano, G.: Zero-knowledge proofs of knowledge without interaction
(extended abstract). In: FOCS, pp. 427–436. IEEE Computer Society (1992)

17. Schnorr, C.-P., Jakobsson, M.: Security of signed ElGamal encryption. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, p. 73. Springer, Heidelberg
(2000)

18. Tsiounis, Y., Yung, M.: On the security of ElGamal based encryption. In: Imai, H.,
Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, p. 117. Springer, Heidelberg (1998)

http://eprint.iacr.org/2015/255
http://dblp.uni-trier.de/db/journals/iacr/iacr2012.html#BernhardPW12
http://dx.doi.org/10.1007/978-1-4615-0239-5_14
http://dx.doi.org/10.1002/ett.4460080506
http://eprint.iacr.org/
http://doi.acm.org/10.1145/6490.6503
http://dx.doi.org/10.1137/0217017

Making Code Voting Secure Against Insider
Threats Using Unconditionally Secure MIX

Schemes and Human PSMT Protocols

Yvo Desmedt1,2(B) and Stelios Erotokritou1,3

1 Department of Computer Science, The University of Texas at Dallas,
Richardson, USA

{y.desmedt,s.erotokritou}@cs.ucl.ac.uk
2 Department of Computer Science, University College London, London, UK

3 CaSToRC, The Cyprus Institute, Nicosia, Cyprus

Abstract. It is clear to the public that when it comes to privacy, com-
puters and “secure” communication over the Internet cannot fully be
trusted. Chaum introduced code voting as a solution for using a possibly
infected-by-malware device to cast a vote in an electronic voting appli-
cation. He trusted the mail system. However, a conspiracy between the
mail system and the recipient of the cast ballots breaks privacy. Con-
sidering a t-bounded passive adversary, we remove the trust in the mail.
We propose both single and multi-seat elections, using PSMT protocols
(SCN 2012) where with the help of visual aids, humans can carry out
mod10 addition correctly with a 99 % degree of accuracy. We introduce
an unconditionally secure MIX based on the combinatorics of set systems.

Keywords: Voting systems · Internet voting · Information theoretic
anonymity · Private and secure message transmission · Computer system
diversity

1 Introduction

Electronic voting over the Internet enables to cast votes from any computer con-
nected to physical Internet accessible location. There is no need to be physically
present at a polling station, a disadvantage of booth based electronic voting
systems developed by the cryptographic community [8].

Even though secure Internet voting is in its infancy, many countries and
organizations are considering adoption or have already done so, such as
Switzerland [1] and Estonia [27] where participation increased by 17 % [28]. Sim-
ilarly, after IACR used the Helios Internet voting system [24], voting increased
from 20 % to around 30 %–40 %.

Home computers are vulnerable to security attacks and are easy to hack. So,
experts agree that achieving secure Internet voting will be even more difficult

A part of this work was done while being, part time, at RCIS/AIST, Japan.

c© Springer International Publishing Switzerland 2015
R. Haenni et al. (Eds.): VoteID 2015, LNCS 9269, pp. 110–126, 2015.
DOI: 10.1007/978-3-319-22270-7 7

Making Code Voting Secure Against Insider Threats 111

than booth-based electronic voting (see e.g., [2,22]). Modern browsers are vul-
nerable to attacks - as demonstrated against Helios 2.0 Internet voting in [19].
Already in 2001 Chaum proposed a breakthrough solution called “code vot-
ing” [6], where one can use a possibly hacked computer.

In code voting, a voter receives through the postal mail a long enough unique
code for every candidate. Voters just enter the code corresponding to the can-
didate of their choice. Chaum’s approach assumes the postal mail to be secure
from a reliability and privacy viewpoint. Unfortunately, a collaboration of the
postal service with the returning officer1 may allow for the anonymity of all votes
to be broken by divulging the identity of voters to whom specific voting codes
were delivered. Other problems that relate to active attacks against code voting
are described in [14].

In Chaum [7] MIX-networks, proposed for anonymity, senders input
encrypted messages. The MIX-network outputs each message to all recipi-
ents (see Sect. 2.1 for a survey). Their security is conditional. No conditional
secure cryptosystem designed so far has withstood cryptanalysis for more than
300 years. Quantum computers will undermine computational voting schemes
cryptographers have proposed, in particular these based on ElGamal. This moti-
vates an unconditionally secure voting scheme. Note that for many goals other
than voting, unconditionally secure solutions have already been proposed.

The importance of requiring unconditional vote security is further highlighted
with the following example:

In 2020 Alice turns 18 and votes using a popular ElGamal based elec-
tronic voting scheme. 50 years later, Alice is a candidate for president
of the USA. Imagine that in 2070 USA politics is going through a new
McCarthy witch hunt. Unfortunately for Alice, ElGamal security has
since been broken. The newspapers find that Alice voted for the what is
then considered the “wrong” party!

We propose an unconditional secure MIX construction with t insiders cor-
rupted by a passive adversary, which cannot cause deviation of protocol execu-
tion in any way. Our solution considering an active adversary will be presented
in a future full version of this paper.

To deal with foreign governments who might have hacked hardware and soft-
ware, we employ a diversity of computing systems. We consider the t-bounded
computationally unlimited adversary to be capable of taking control of a total of
at most t nodes between the vote authority and the voters which includes nodes
in the MIX-network, nodes in the communication network or voters computa-
tional devices (through malware).

Considering a t-bounded adversary we emphasize the following:

Important Statement 1. As shown in [20], when the number of corrupted
nodes is at most t, the minimum number of disjoint paths to allow for private
communication between a sender and a receiver is t + 1.
1 A returning officer oversees elections in one or more constituencies [34].

112 Y. Desmedt and S. Erotokritou

Corollary 1. Because of the above, voters will have to use a number of com-
puting devices to securely receive (or dually send) their voting codes.

Note that nowadays, many people in developed countries can have effortless
access to more than one device such as PC’s, laptops, smartphones and tablets.
These devices could be owned or from friends and relatives, or available to the
public (such as at libraries). These devices can be connected to a communication
network in a different manner (Internet or cellular), using different providers and
run different operating systems.

The protocols in [4] use humans and avoid relying on a fully trusted computer
(see also [18]). We follow a similar approach in the context of Internet voting.
We propose unconditionally secure Internet code voting solutions for single seat
and multi-seat elections, both user friendly, to guarantee high accuracy.2

Our solution can also be used for other established code voting schemes as it
is a way of removing the use of a possibly untrusted mail system and transmitting
the voting codes securely, reliably and anonymously to voters.

The text is organized as follows. Background and relevant previous work
are presented in Sect. 2. In Sect. 3 a high level description of the protocol is
given and we identify the required cryptographic tools. In Sect. 4 we provide a
simplified version of the MIX private and anonymous communication protocol.
This is used in Sect. 5 in a more efficient manner where we present private and
anonymous communication protocols for the transmission of voting codes to
voters for single seat and multi seat elections. Section 6 presents the electronic
code voting protocol.

2 Background and Previous Related Work

2.1 Previous Related Work

MIX-networks can be constructed using a shuffle (permutation). One way of
achieving this [26,32] is by using approaches which are based on zero-knowledge
arguments [21,35]. In [15] the use of zero-knowledge was avoided. MIX-networks
based on zero-knowledge arguments can be used in electronic voting protocols -
as proposed in [23]. Earlier work [31] similarly used shuffles in electronic voting
based on zero-knowledge proofs. Other work on MIX-networks includes the work
of Abe in [3]. Such constructions are based on computational assumptions which
only allow for conditional security. The work we present is based on the stronger
model of unconditional security.

Anonymity in practice is difficult to achieve. One proposed implementation
was that of [25] but it was shown to be insecure in [33].

In EVOTE2014, [30] addressed a similar problem to our work. The solution
though achieves conditional security and the authors consider the adversary to
be present in the MIX network only. This does not take into account the possible
2 The work of [5] is independent and their MIX servers are different. For a further

comparison, see [14].

Making Code Voting Secure Against Insider Threats 113

presence of malware upon the tablets with which voters will use to cast their
votes. Passive malware could possibly identify to an adversary how someone
voted, whereas active malware could alter the way someone votes - thus rigging
the result of an election.

A voting scheme similar to the one we propose which achieves information
theoretic security and requires the voter to carry out modular addition is that
presented in [29]. Contrary to the voting scheme proposed in this paper, the
work of [29] is not an Internet voting scheme as it requires voters to cast their
votes at a polling station.

The work of [11] describes an election scheme which requires computational
modular exponentiation operations to be carried out by voters. These oper-
ations require software or hardware. Furthermore, public key-cryptography is
used, meaning that the security properties achieved are computational and not
information theoretic - as achieved in our scheme.

2.2 Message Transmission Security Properties

We define security properties considering a setting where a single receiver S is
connected to m number of senders (r1, · · · , rm) over a possibly corrupt underly-
ing network. For formal definitions, see [17].

(Perfectly) Correct - When the receiver accepts a message, it was sent by a
sender S.

(Perfectly) Reliable - When a sender S transmits a message, this message will
be received by the receiver with probability 1.

(Perfectly) Private - Only the designated receiver(s) can read a message trans-
mitted by S. i.e., for any coalition of t parties, their probability of correctly deter-
mining a message is the same whether the coalition is given their transmission
view or not.

(Perfect) Security - Means perfect correctness, perfect reliability and perfect
privacy.

(Perfectly) Anonymous - Considering the single receiver wants to receive m
different messages - one from each m number of senders, perfect anonymity is
achieved when for any coalition of t parties, their probability of correctly deter-
mining the sender of any message is the same whether the coalition observes the
transmission view or not. In the context of Internet voting, perfect anonymity is
achieved when the voting protocol used does not facilitate any party in the vot-
ing process to correlate any cast vote to a specific voter with greater probability
than any other.

114 Y. Desmedt and S. Erotokritou

2.3 Existential Honesty

Some of our ideas use concepts of existential honesty, defined in [15] as:

“It is possible to divide the MIX servers into blocks, which guarantee
that one block is free of dishonest MIX servers, assuming the number of
dishonest MIX servers is bounded by t.”

To achieve this, [15] defined and used the following3:

Definition 1 [10]. A set system is a pair (X,B), where X � {1, 2, . . . ,m} and
B is a collection of blocks Bi ⊂ X with i = 1, 2, . . . , b.

Definition 2 [15]. (X,B) is an (m, b, t)-verifiers set system if |X| = m, |Bi| =
t + 1 for i = 1, 2, . . . , b and for any subset F ⊂ X with |F | ≤ t, there exists a
Bi ∈ B such that F ∩ Bi = ∅.

We assume that private channels connect respective MIX servers of corre-
sponding blocks (i.e. MIX server MIXk,i and MIXk+1,j are connected with a
private channel). We also assume such channels between the receiver and MIX1,i

and similarly, between MIXb,i and the sender.

2.4 Human Perfectly Secure Message Transmission Protocols

Perfectly secure message transmission (PSMT) protocols where the sender or
receiver is a human were introduced in [18]. In such protocols it is assumed
that the human receiver does not have access to a trusted device since these
may be faulty and/or infected with malware. Because the receiver is a human,
such protocols aim to achieve perfectly secure message transmission (PSMT)
in a computationally efficient and computationally simple manner. It is also
important that the amount of information and operations the human receiver
should process be kept to a minimum.

Addition mod10 was used by humans in these protocols [18] to reconstruct
the secret message of the communication protocol from received shares through
addition mod10. The idea of using addition mod10 for human computable func-
tions was also used in [4] but within a different security context. By regard-
ing in [18] Z10(+) as a subgroup of S10 the operation became very reliable for
humans to perform. Experiments have shown that given clear, correct and pre-
cise instructions, coupled with visual aids, allowed for the correct usage of these
protocols by a very high percentage of human participants.

2.5 Secure Multiparty Computation in Black-Box Groups

Black box multiparty computation protocols against a passive adversary for
non-Abelian group have been presented in [9] and in [13] through the use of a

3 See also [18, Sect. 2.3] for an extensive description of set systems and how these
relate to covering designs.

Making Code Voting Secure Against Insider Threats 115

t-reliable n-coloring admissible planar graph. These papers studied in particular
the existence of secure n-party protocols to compute the n-product function
fG(x1, · · · , xn) := x1 · . . . · xn where each participant is given the private input
xi from some non-Abelian group G where n ≥ 2t + 1. It was assumed that the
parties are only allowed to perform black-box operations in the finite group G,
i.e., the group operation ((x, y) �→ x · y), the group inversion (x �→ x−1) and the
uniformly random group sampling (x ∈R G).

3 Secure Code Voting with Distributed Security

Assuming the reader is familiar with [6] we present a high level description of
the secure code voting protocol we will present in this paper.

3.1 High Level Description

We call Code Generation Entity (CGE) the entity which is responsible for cre-
ating the codes with which voters will cast their votes. These codes are unique
and are sent to the voters so that each of these codes is used only once for the
whole election. For single seat elections each voter receives as many codes as
there are candidates. For multi-seat elections each voter receives a single permu-
tation - which is a permutation of the alphabetical ordering of the candidates.
After these codes pass through a MIX network, they will be sent to voters using
PSMT. Voters will receive each share using a different device, identify the shares
which correspond to the candidate of their choice and reconstruct using human
computation this voting code. To cast their vote, voters will send this code back
to the CGE via the MIX servers, which perform inverse operations. For each of
the received cast codes, the CGE will identify the candidate the code corresponds
and will tally up the cast votes for each candidate.

Our protocol does not use the mail system for the delivery of voting codes
to voters, but instead these are sent by the CGE to voters over a MIX network
and using PSMT. Similarly, cast votes will be sent by voters to the CGE over a
network as explained in Sect. 6.3.

3.2 Required Cryptographic Tools

The process should not facilitate the CGE (or any t other passive parties) to
identify that a specific voter cast a particular vote given that a number of under-
lying network nodes may be corrupt. The use of secret sharing should also allow
any protocol to prevent any t parties (apart from voters) learning voting codes,
otherwise anonymity of votes could be broken.

Human PSMT protocols as presented in [18] are employed. We rely on the
feasibility tests performed which confirm that humans can perform these basic
operations. We use the secret sharing scheme friendly to humans as presented
in [18, Sect. 2.2] which guarantees perfect privacy unconditionally. Except for the
voters computing the codes from the shares they receive, all other computations
are carried out by computers.

116 Y. Desmedt and S. Erotokritou

4 Transmit and Reply Protocol

In this section we present the first of the required primitives - a perfectly private
and perfectly anonymous network communication protocol. For didactic pur-
poses, the simplest form of our proposed protocol will be presented - with more
efficient constructions described later.

Suppose that we have a single receiver and v senders each of whom needs to
receive a secret one time pad so as to send a secret back to the receiver in an
interactive anonymous way4.

We assume the passive adversary controls at most t MIX servers with each
MIX server being involved in one mixing. t + 1 blocks of MIX servers will be
required - denoted as B1, . . . , Bt+1, with each block consisting of t + 1 MIX
servers and we use Bk = {MIXk,1, MIXk,2, . . . , MIXk,t+1} to identify MIX
servers of the kth block and call MIXk,1 “Bk’s leader”.

4.1 Protocol Main Idea

The receiver will share each of the v one-time pads into t + 1 shares using XOR
with each share given to a corresponding MIX server (i.e. one of the t+1 servers)
in B1. The shares of the ith one-time pad and those of the jth one-time pad might
be transposed and will also be altered. To guarantee shares of the same pad stay
together, the transpositions and alterations are chosen by the block leader.

After the last MIX operation, the final block of MIX servers delivers the
shares to the senders which reconstruct the received and altered one-time pad
sent by the receiver. Each sender will then XOR a secret message with the
received altered one-time pad and send the result to the receiver over the MIX
network. During this reverse transmission, the inverse alterations will be applied
by each block leader.

By XOR’ing the one time pad initially sent out by the receiver, the secret
message sent by each sender can be obtained by the receiver.

4.2 The MIX Communication Protocol - 1A: Receiver
to Sender Transmission

We now present the steps in the MIX communication protocol for the transmis-
sion of the one-time pads from the receiver to the set of senders.

Protocol 1. Private and Anonymous Communication Protocol.

Step 1. Let π1
i be the ith one-time pad (where 1 ≤ i ≤ v). The receiver shares

each π1
i into t + 1 shares π1

i,j ∈ F2l using XOR (where 1 ≤ j ≤ t + 1)
and privately sends π1

i,j to the corresponding MIX MIX1,j in block B1.

4 The dual problem is that instead of having v senders, we have v receivers and one
sender. Obviously a solution for the first provides a similar solution for the second.

Making Code Voting Secure Against Insider Threats 117

Step 2. The leader of B1 (we call MIX1,1) informs all others MIX servers
in B1 how they have to permute the i-index of all above π1

i,j . This
permutation is defined by ρ1 ∈R Sv.

Step 3. On the i indices all MIX servers in B1 apply the permutation ρ1. So,
π1

i,j := π1
ρ1(i),j

.
Step 4. The leader of B1 chooses t + 1 random bit string modifiers ω1

i,j ∈R F2l

and privately sends ω1
i,j to parties in B1.

Step 5. For each (i, j) the t+1 values π1
i,j are regarded as shares of π1

i . Similarly,
the t + 1 values ω1

i,j are regarded as shares of ω1
i .

The MIX server in B1 computes π2
ij = ω1

ij + π1
ij . π2

i,j are regarded as
shares of π2, the ρ1(i) permuted and modified one time pad.

Step 6. Steps 2–5 are repeated, incrementing by one the indices of B1 and B2

until the last block Bb is reached.
Step 7. Shares held by MIX-servers of block Bt+1 are denoted as φi,j .

MIXt+1,j ∈ Bt+1 then sends φi,j to the ith sender.

4.3 The MIX Communication Protocol - 1B: Sender
to Receiver Transmission

Upon the end of the first phase, each sender reconstructs their respective altered
one-time pad using XOR over all received shares.

Using XOR, senders encrypt their secret and send this to the leader of block
Bt+1. These are sent back to the receiver in much the same way as transmitted
from receiver to sender. This time though data are sent between leaders of MIX
blocks, with the inverse permutations ρ−1

b and XOR invalidation of modifiers
using −ωk

i being applied.
The data sent back to the receiver correspond to encrypted messages trans-

mitted by senders. By applying XOR using the respective one-time pad, the
secret message transmitted by senders can be obtained.

4.4 Security Proof

In this section we present the security proof for Protocol 1.

Theorem 1. Protocol 1 is a reliable, private and anonymous message transmis-
sion protocol.

Proof. The protocol achieves perfect reliability due to the passive nature of the
adversary. Perfect privacy is achieved as each one-time pad or encrypted message
is “shared” over t + 1 shares. As each MIX server is used only once and as the
adversary can control at most t MIX servers, secrecy of these transmitted data
is retained.

We now prove the perfect anonymity of the protocol - for simplicity of the
proof we assume that there are only two messages (two one time pads). As
t + 1 blocks of MIX servers are used and each MIX server is used only once,
there exists a block Bi - 1 ≤ i ≤ b, free from adversary controlled MIX servers.

118 Y. Desmedt and S. Erotokritou

Because of this, the adversary is unable to learn the modifiers and permutation
which are added and implemented respectively to the shares of the messages.

Assuming the adversary is present in Bi+1 and absent from Bi, the view
of the adversary of a share for both messages can be one of the following two
possibilities: (ωi

1 + πi−1
1 , ωi

2 + πi−1
2), (ωi

2 + πi−1
2 , ωi

1 + πi−1
1)

Obviously, the adversary cannot distinguish between the first and the second
possibility as the modifiers and permutation used in block Bi are random and
unknown to the adversary. Indeed, there exists an (ω′

1, ω
′
2) such that (ωi

2 +
πi−1
2 , ωi

1 + πi−1
1)=(ω′

1 + πi−1
1 , ω′

2 + πi−1
2). So, the adversary cannot distinguish

whether the messages have been interchanged or not.
Without loss of generality, the proof can be extended to any number v of

messages.
�

5 Reducing the Number of MIX Servers

In this section we improve on the “Transmit and Reply Protocol” presented in
Sect. 4 presenting a solution for the single seat election case where an Abelian
group is used.

Our solution uses Chaum’s code voting and considers a single receiver (e.g.,
CGE) and v human voters who each need to receive voting codes (one code per
candidate) in a non-interactive anonymous way. We consider the CGE as the
receiver and the human voters as the senders of the communication because at
the end of the combined protocol, the human voters will send back to the CGE
the voting code which corresponds to the candidate of their choice. We regard
codes intended for the same receiver as a long string and the MIX servers MIX
the strings (i.e. those intended for different receivers).

A more efficient network of MIX servers is used as our solution is not confined
to using each MIX server only once, thus the total number of MIX operations
done is b. We denote the set of MIX servers by X and assume we have an (X,B)
set system, which is an (m, b, t)-verifiers set system set system as defined in [15].
We let Bk = {MIXk,1, MIXk,2, . . . , MIXk,t+1} and call MIXk,1 “Bk’s leader”.

The main idea of the protocol is very similar to the communication protocol
of the previous section. This time, the receiver (e.g., CGE) will share each of
the v messages to transmit using an appropriate secret sharing scheme (and
not using XOR). In a similar fashion, messages are permuted and altered as
they are transmitted within the MIX network. After the last MIX operation,
the final block of MIX servers delivers the shares of messages to the senders,
with each sender reconstructing the secrets (voting codes) sent by the receiver.
We will assume the transmission of the shares of these secrets uses the human
friendly method presented in [18]. Similarly, since a code is only used once, it
can be modified using addition over a finite Abelian group. To be compatible
with [18] one such example is addition mod10 over the group used. Senders will
then transmit back to the receiver the voting code corresponding to their choice.

Making Code Voting Secure Against Insider Threats 119

5.1 Virtual Directed Acyclic Graphs

When an Abelian group is used and when blocks of the (m, b, t)-verifiers set
system can share common MIX servers between them, we define the construction
of a virtual vertex-labeled Directed Acyclic Graph (DAG). The set of vertices of
the DAG is composed of parties participating in the protocol (which is similar
to Protocol 3), with the source of the graph being the receiver of the protocol
and the sink being a sender.

The directed edges of the DAG identify the transmission of messages from
one party to another amongst different levels in the DAG. We define levels of
the DAG as the receiver, a sender and the different blocks of MIX servers used.
Considering block Bi as a tuple (ordered set), when Bi is a block where |Bi| = l
and b ∈ Bi, at location k in this tuple, we say that b is at position k. With the
above definition, directed edges of the DAG will occur (i) from the receiver to all
bj in B1 (1 ≤ j ≤ l), (ii) from each bj in block Bb to the sender, (iii) moreover,
we have edges between nodes in Bi and nodes in Bi+1. The following is required:

1. If a unique color was to be assigned to each party of the protocol, based
on the results of [16], the sender and receiver can privately communicate, if
when choosing any t colors and removing the vertices of the DAG with those
t colors the sender and receiver remain connected - meaning that there still
exists a directed path from the sender to the receiver on the reduced DAG.

2. We require that if at level k the parties in Bk receive shares of πk
i , the parties

in Bk+1 (i.e., at level k + 1) receive shares of πk+1
i =ωk

i + πk
ρ(i).

Two methods can be used to achieve the above requirements. One uses re-
sharing - such as the redistribution scheme described in [12]. The other uses a
large set of MIX servers X to guarantee the following property.

Definition 3. We say that set X of MIX servers is under t-confinement if all
members of set T where |T | = t appear in at most t positions over all blocks of
MIX servers used and this for all T ⊆ X where |T | = t.

It is easy to see that the above satisfies the DAG requirements.

5.2 The MIX Protocol

In the case of Internet voting this is used as a pre-voting protocol for the trans-
mission of voting codes to voters and it is used to achieve anonymity of voting
codes. We assume S to be a finite Abelian group and denote with v the number
of senders, and thus the number of messages (sets of voting codes) that need to
be transmitted. In the following, we only describe the required difference when
compared to Protocol 1.

Protocol 2. Private and Anonymous Random Communication Protocol.

Step 1. Let si be the ith message (where 1 ≤ i ≤ v). The sender shares each
si by choosing l shares π1

i,j ∈R S (using an appropriate secret sharing
scheme over an Abelian group where 1 ≤ j ≤ l) and privately sends
π1

i,j to the corresponding party B1,j in B1.

120 Y. Desmedt and S. Erotokritou

– As an (m, b, t)-verifiers set system is used, l = t + 1 denotes the
number of shares.

Step 2. Same as in Protocol 1.
Step 3. Same as in Protocol 1.
Step 4. The leader of B1 chooses modifiers ω1

i,j ∈R S and privately sends ω1
i,j

to parties in B1.
Step 5. Similar as in Protocol 1. Only:

The MIX servers in B1 compute shares of π2
i = ω1

i + π1
i , i.e. party

Pj ∈ Bi adds the modifiers it receives from the leader of Bi to the
share(s) it holds. The shares of the π2

i are denoted as π2
i,j .

Step 6. If the concept of t-confinement is not used, re-sharing of shares π2
i,j

is carried by out by parties in B1 using the redistribution scheme
described in [12]. That means that each party in B2 receives l = t + 1
values, which they then compress.

Step 7. Steps 2–5 are repeated incrementing by one the indices of B1 and B2

until the last block Bb is reached. For all iterations - except when the
last block Bb is reached, Step 6 is also repeated (except if t-confinement
is used).

Step 8. If t-confinement is not used, shares held by the MIX-servers of block
Bb are re-shared.

Step 9. Shares held by MIX-servers of block Bb are denoted as φi,j . MIXb,j ∈
Bb then sends φi,j to the ith voter using [18].

It should be noted, that as in [18], MIX servers will send shares to voters using
network disjoint paths, as the communication network cannot be trusted with
the adversary capable of listening to at most t of these paths. The way voters
cast their vote will be described in Sect. 6.

5.3 Security Proof

Corollary 2. Protocol 2 is a reliable, private and anonymous message trans-
mission protocol.

Proof. Formally, we have:

Perfect Reliability - This is the same as in Theorem 1.

Perfect Privacy - The protocol achieves perfect privacy as each message is
“shared” over l = t + 1 shares. In the case of t-confinement, the view of the
adversary will consist of at most t shares. This number is one less that the
number required to reconstruct a secret and thus perfect privacy is achieved.
In the case of re-sharing, the re-sharing guarantees that shares at level i are
independent of those at level i+1 (note that the adversarial parties are passive).
The rest follows from [16] and through the use of re-sharing or t-confinement.
When using re-sharing we ensure that there is no cut of t vertices (colors) that
can disconnect the sender and the receiver. This is because the resharing of
shares makes certain that the parties in block bi receive shares from t+1 parties

Making Code Voting Secure Against Insider Threats 121

in block bi−1. So, any adversarial t parties in block bi−1 will not allow to cut the
graph. It is easy to see that the condition of [16] (i.e. no t parties are able to cut
a graph) is satisfied when using t-confinement thus allowing for secure solutions.

Perfect Anonymity - This is very similar to the anonymity proof of Theorem 1.
The only difference is that now where a lower number of MIX servers are used,
due to Property 3 from the definition of verifier set systems, there exists a block
bi - 1 ≤ i ≤ b, free from adversary controlled MIX servers. Because of this, the
adversary is unable to learn the modifiers and permutation which are added and
implemented respectively to the shares of the messages.
�

5.4 Use of non-Abelian Group - Multi-seat Election Case

When a non-Abelian group is used, the protocol is similar to that presented
in Sect. 5.2. Due to the non-Abelian nature of the group, alternative additional
techniques will have to be employed to manage the fact that dealing with shares
cannot be done locally (due to the multiplication) thus this needs to be shared
and securely computed among many parties using techniques presented in [13].

Suppose we have an election in which we have s seats in which every voter
can vote for up to s of the c candidates - where s ≤ c. To enable blinding of
the code, we give to each voter a secret permutation π ∈ Sc, where Sc is the
symmetric group. For each favourite candidate i the voter wants to vote for, π(i)
is transmitted to the returning officer.

Note that π is not necessarily unique to the election, as opposed to Chaum’s
code voting. The protocol is organized to avoid that this creates a problem.
In the case of Internet voting, the following protocol is used as a pre-voting
protocol, for the transmission of v number of voting “codes” (i.e. permutations)
to v number of voters and it is used to achieve anonymity of voting codes. We
assume S = Sc to be a finite non-Abelian group.

It should be noted that the protocol to be presented is only useful for the
private and anonymous transmission of permutations with which receivers can
cast their vote.

Protocol 3. Private and Anonymous Random Communication Protocol

Step 1. Same as in Protocol 2 only now a non-Abelian group is used and per-
mutations are transmitted.

Step 2. The leader of B2 chooses modifiers ω2
i,j ∈R Sl

c and privately sends ω2
i,j

to parties in B2 such that the l values ω2
i,j are regarded as shares of ω2

i .5

Step 3. For each (i, j) the l values π1
i,j are regarded as shares of π1

i .
The MIX servers in X ′

1,2 ⊆ X where |X ′
1,2| ≥ 2t + 1 and B1 ∪ B2 ⊆

X ′
1,2 compute shares of π2

i = ω2
i ◦ π1

i using a black box non-Abelian

5 As shown in [13], to securely compute π and ω where π is chosen by one party and
ω by another, we need 2t + 1 parties with t curious parties. To mimic as closely as
possible the working of [13], the leader of B2 chooses ω2

i,j and not the leader of B1.

122 Y. Desmedt and S. Erotokritou

multiparty computation protocol6 (see Sect. 2.5). This is done so that
ω2

i blinds π1
i . The shares of the product are denoted as π2

i,j and are
obtained by the parties7 in B2.

Step 4. The leader of B2 informs all other MIX servers in B2 how they have to
permute the i-index of all shares they hold from the above operations.
This permutation is defined by ρ2 ∈R Sv. On the i indices the MIX
servers in B2 apply the permutation ρ2. So, π2

i,j := π2
ρ2(i),j

.
Step 5. The above three steps are repeated by incrementing by one the indices

of B1 and B2 (thus Bk �= Bk+1). After parties in Bk permute the
i indices of πk

i,j using ρk - where 2 ≤ k ≤ b − 1, the leader of Bk+1

chooses modifiers ω3
i,j ∈R Sl

c which are given to parties in Bk, the black
box non-Abelian multiparty computation sub-protocol is executed by
parties in X ′

k,k+1 ⊆ X where Bk ∪ Bk+1 ⊆ X ′
k,k+1 |X ′

k,k+1| ≥ 2t + 1
and the process continues till the final block of servers Bb is reached.

Step 6. After parties in Bb permute the i indices of πb
i,j using ρb, the leader

of B1 chooses modifiers ω1
i,j ∈R Sl

c which are given to parties in B1,
the black box non-Abelian multiparty computation sub-protocol is exe-
cuted between parties in block Bb and B1 and the output of which is
held by parties in B1. MIX1,j ∈ B1 sends the output it holds to the
ith voter using [18].

It should be noted, that as in [18], MIX servers will send shares to voters using
network disjoint paths, as the communication network cannot be trusted with
the adversary capable of listening to at most t of these paths. The way voters
will use what they receive to cast their vote will be described in Sect. 6.

Theorem 2. Provided Protocol 3 together with the appropriate black box non-
Abelian multiparty computation sub-protocol is used, then Protocol 3 is a reliable,
private and anonymous random transmission protocol.

The proof of the above theorem is similar to the proof of Theorem 1, but relying
on either [9,13].

6 Electronic Code Voting Protocol

We now outline how components of previous sections are combined.

6.1 Preparation, Mixing and Transmission of Voting Codes

As described in Sect. 3.1 the CGE is responsible for creating the codes with which
voters will cast their votes. We first explain this for the single-seat election.
6 Note that the MIX servers in B1 ∪ B2 can also be a in X ′

1,2 where |X ′
1,2| ≥ 2t + 1.

Additionally, the efficiency of black box non-Abelian multiparty computation pro-
tocols is better when |X ′

1,2| >> 2t + 1.
7 Note that [13] allows to organize the computation such that the output, i.e. shares

of π2
i , are received by parties in B2.

Making Code Voting Secure Against Insider Threats 123

Considering an election has c number of candidates and that there are v
number of voters, the CGE will create v random initial codes for each of the c
candidates. In total, c × v unique number of codes will be generated. The CGE
will then group these codes to form v number of c − tuples, with each tuple
containing a single code for each of the c candidates.

Each of these codes will then be transmitted as one-time pads to the voters
in the same way as described by Protocol 2. It should be noted that Protocol 2
describes the transmission of only v codes as opposed to c × v required by the
voting protocol. To transmit all the voting codes, c executions of Protocol 2
will be executed at the same time. These executions should not be independent
between them but instead should use the same permutations (ρ ∈R Sv in Step 2)
and modifiers (ωi,j in Step 4) used throughout all executions of the protocol,
i.e. the same modifier is used for all codes the same voters will receive and they
remain bundled together (i.e. by reusing ρ). These c executions can be carried
out either in parallel or sequentially, as long as each voter receives c voting codes.

In the case of multi-seat elections, each voter will receive a single permutation
over Sc - which is a permutation of the alphabetical ordering of the candidates.
Moreover, Protocol 3 will be used.

6.2 Receiving and Reconstructing Voting Codes

We first explain the single-seat case. Each voter will receive l = t + 1 shares for
each voting code, receiving each one using a different computational device. It
should be noted that the ith share of each of the c voting codes will be received
upon the same computational device.

A voter can then identify the code for their chosen candidate. Once all pieces
of each code are received, the code corresponding to their choice can be recon-
structed in a similar manner as described in Sect. 2.4.

In the multi-seat election, instead of receiving a c-tuple, a single permutation
is received - which is a permutation of the alphabetical ordering of the candidates.
Similar to the single seat case, t + 1 shares of this permutation will be received
by the voter who will reconstruct the permutation as described in [18, Sects. 4.2
and 4.3]. This will allow the voter to identify the candidates of their choice.
Supposing the voter wants to vote for candidate c and candidate c′, the recon-
struction of the permutation will help the voter identify π(c) and π(c′) which
correspond to the candidates of their choice. To cast their vote, voters will have
to send back to the CGE these π(c) and π(c′) values.

6.3 Transmission, Mixing and Counting of Cast Votes

We first explain for the single-seat case. A voter identifies the code corresponding
to their chosen candidate and sends this code back to the CGE by transmitting
this code to the leader of the last block of MIX.

To transmit voter codes in the reverse direction (towards the CGE), the
leaders of each block of MIX servers will have to carry out the reserve operations

124 Y. Desmedt and S. Erotokritou

on the codes. Thus the inverse permutations (ρ−1
b) and modifiers (−ωk

i) are used.
Once a code arrives to the CGE, it will identify the candidate it corresponds to
and the vote will be counted.

The multi-seat case is similar. Voter identify the π(c) corresponding to one
of their chosen candidates and send this π(c) to the leader of the last block of
MIX servers. Similar to the single-seat case, the reverse operations on the codes
will be carried out. Once a voter’s π(c) arrives to the CGE, the CGE will apply
π−1 and identify the candidate the voting corresponds to and the vote will be
counted.

Acknowledgments. The authors would like to thank the anonymous referees for their
valuable comments on improving the presentation and clarity of this paper. We thank
Rebecca Wright for having co-invented the concept of having anonymous communica-
tion allowing a receiver to reply anonymously to the sender. The authors would also
like to thank Juan Garay and Amos Beimel for expressing their interests in PSMT in
which one cannot trust the equipment used by the receiver.

References

1. E-voting. https://www.ch.ch/en/online-voting/
2. Four Grand Challenges in Trustworthy Computing. In: CRA Conference on Grand

Research Challenges in Information Security and Assurance, Warrenton, Virginia,
16–19 November 2003

3. Abe, M.: Universally verifiable mix-net with verification work independent of the
number of mix-servers. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 437–447. Springer, Heidelberg (1998)

4. Blocki, J., Blum, M., Datta, A.: Human computable passwords. CoRR (2014)
5. Buchmann, J., Demirel, D., van de Graaf, J.: Towards a publicly-verifiable mix-net

providing everlasting privacy. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859,
pp. 197–204. Springer, Heidelberg (2013)

6. Chaum, D.: SureVote: technical overview. In: Proceedings of the Workshop on
Trustworthy Elections, Tomales Bay, CA, USA, 26–29 August 2001

7. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

8. Chaum, D., Essex, A., Carback, R., Clark, J., Popoveniuc, S., Sherman, A.T., Vora,
P.L.: Scantegrity: end-to-end voter-verifiable optical-scan voting. IEEE Secur. Priv.
6(3), 40–46 (2008)

9. Cohen, G., Damg̊ard, I.B., Ishai, Y., Kölker, J., Miltersen, P.B., Raz, R., Rothblum,
R.D.: Efficient multiparty protocols via log-depth threshold formulae. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 185–202.
Springer, Heidelberg (2013)

10. Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs. Discrete Math-
ematics and Its Applications, 2nd edn. Chapman & Hall/CRC, Boca Raton (2006)

11. Cramer, R., Franklin, M.K., Schoenmakers, B., Yung, M.: Multi-authority secret-
ballot elections with linear work. In: Maurer, U.M. (ed.) EUROCRYPT 1996.
LNCS, vol. 1070, pp. 72–83. Springer, Heidelberg (1996)

12. Desmedt, Y., Jajodia, S.: Redistributing secret shares to new access structures and
its applications. Technical Report ISSE-TR-97-01, George Mason University

https://www.ch.ch/en/online-voting/

Making Code Voting Secure Against Insider Threats 125

13. Desmedt, Y., Pieprzyk, J., Steinfeld, R., Sun, X., Tartary, C., Wang, H., Yao,
A.C.-C.: Graph coloring applied to secure computation in non-abelian groups. J.
Cryptol. 25(4), 557–600 (2012)

14. Desmedta, Y., Erotokritou, S.: Making Code Voting Secure against Insider Threats
using Unconditionally Secure MIX Schemes and Human PSMT Protocols. https://
www.cyi.ac.cy/images/ResearchProjects/SteliosE/voteID2015FinalShort.pdf

15. Desmedt, Y.G., Kurosawa, K.: How to break a practical MIX and design a new one.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 557–572. Springer,
Heidelberg (2000)

16. Desmedt, Y.G., Wang, Y., Burmester, M.: A complete characterization of tolerable
adversary structures for secure point-to-point transmissions without feedback. In:
Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 277–287. Springer,
Heidelberg (2005)

17. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
J. ACM 40(1), 17–47 (1993)

18. Erotokritou, S., Desmedt, Y.: Human perfectly secure message transmission proto-
cols and their applications. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS,
vol. 7485, pp. 540–558. Springer, Heidelberg (2012)

19. Estehghari, S., Desmedt, Y.: Exploiting the client vulnerabilities in internet e-
voting systems: Hacking Helios 2.0 as an example. In: EVT/WOTE 2010 (2010)

20. Franklin, M.K., Yung, M.: Secure hypergraphs: privacy from partial broadcast.
SIAM J. Discrete Math. 18(3), 437–450 (2004)

21. Furukawa, J.: Efficient and verifiable shuffling and shuffle-decryption. IEICE Trans.
88–A(1), 172–188 (2005)

22. Gerck, E., Neff, C.A., Rivest, R.L., Rubin, A.D., Yung, M.: The business of elec-
tronic voting. In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, p. 234. Springer,
Heidelberg (2002)

23. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer,
Heidelberg (2008)

24. Helios. Helios Voting. http://heliosvoting.org/
25. Katti, S., Cohen, J., Katabi, D.: Information slicing: anonymity using unreliable

overlays. In: Proceedings of the 4th USENIX Symposium on NSDI, Cambridge,
Massachusetts, U.S.A., 11–13 April 2007, pp. 43–56 (2007)

26. Khazaei, S., Moran, T., Wikström, D.: A mix-net from any CCA2 secure cryp-
tosystem. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
607–625. Springer, Heidelberg (2012)

27. Maaten, E.: Towards remote e-voting: Estonian case. In: Electronic Voting in
Europe - Technology, Law, Politics and Society, 7th-9th July 2004. LNI, vol. 47,
pp. 83–100. GI, Bregenz (2004)

28. Malkopoulou, A.: Lost voters: participation in eu elections and the case for com-
pulsory voting. CEPS Working Document No. 317, 24 July 2009

29. Moran, T., Naor, M.: Split-ballot voting: everlasting privacy with distributed trust.
ACM Trans. Inf. Syst. Secur. 13(2), 16:1–16:43 (2010)

30. Rabin, M.O., Rivest, R.L.: Efficient end to end verifiable electronic voting employ-
ing split value representations. In: EVOTE 2014, Bregenz, Austria (to appear)

31. Sako, K., Kilian, J.: Secure voting using partially compatible homomorphisms.
In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 411–424. Springer,
Heidelberg (1994)

32. Sampigethaya, K., Poovendran, R.: A survey on mix networks and their secure
applications. Proc. IEEE 94, 2142–2181 (2006)

https://www.cyi.ac.cy/images/ResearchProjects/SteliosE/voteID2015Final Short.pdf
https://www.cyi.ac.cy/images/ResearchProjects/SteliosE/voteID2015Final Short.pdf
http://heliosvoting.org/

126 Y. Desmedt and S. Erotokritou

33. Tran, A., Hopper, N., Kim, Y.: Hashing it out in public: common failure modes of
DHT-based anonymity schemes. In: Proceedings of WPES 2009, Chicago, Illinois,
USA, 9 November, pp. 71–80 (2009)

34. Wikipedia. Returning officer. http://en.wikipedia.org/wiki/Returning officer
35. Wikström, D.: The security of a mix-center based on a semantically secure cryp-

tosystem. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551,
pp. 368–381. Springer, Heidelberg (2002)

http://en.wikipedia.org/wiki/Returning_officer

Other Topics

Document Analysis Techniques for Automatic
Electoral Document Processing: A Survey

J. Ignacio Toledo1(B), Jordi Cucurull1, Jordi Puiggaĺı1,
Alicia Fornés2, and Josep Lladós2

1 Scytl Secure Electronic Voting, Barcelona, Spain
{JuanIgnacio.Toledo,Jordi.Cucurull,Jordi.Puiggali}@scytl.com

2 Computer Vision Center, Universitat Autònoma de Barcelona, Barcelona, Spain
{afornes,josep}@cvc.uab.es

Abstract. In this paper, we will discuss the most common challenges in
electoral document processing and study the different solutions from the
document analysis community that can be applied in each case. We will
cover Optical Mark Recognition techniques to detect voter selections in
the Australian Ballot, handwritten number recognition for preferential
elections and handwriting recognition for write-in areas. We will also
propose some particular adjustments that can be made to those general
techniques in the specific context of electoral documents.

Keywords: Document image analysis · Computer vision · Paper bal-
lots · Paper based elections · Optical scan · Tally

1 Introduction

While remote or poll-site electronic voting is gaining more and more acceptance
worldwide, many elections are still paper based. Be it for tradition, for its sim-
plicity, because it leaves a physical evidence of the vote or because of a restrictive
electoral law, there are several countries that are not willing to abandon paper
based elections yet. However, this does not mean that they are not willing to
use modern technology in elections.

Countries with complex electoral systems, like the US, have been exploring
how to automate the tally for paper based elections for decades. Mark sense scan-
ners, first developed for educational testing, have been used for ballot processing
since the 1950’s. They were based on a ballot printed with a special ink, that was
invisible to the sensor, and the use of index marks to define the position of the
voting targets. In the 1990’s, devices using imaging technology were developed.
They used fiducial marks that allowed the scanner to interpolate the voting tar-
gets and counted the number of dark pixels in each area. More recently, in 2006,
a patent was granted to a device based on edge detection, which could detect
empty voting targets (ovals) and filled voting targets.

We can see a trend moving from solutions requiring specific hardware to
more generic hardware-independent solutions using computer vision techniques.
c© Springer International Publishing Switzerland 2015
R. Haenni et al. (Eds.): VoteID 2015, LNCS 9269, pp. 129–141, 2015.
DOI: 10.1007/978-3-319-22270-7 8

130 J.I. Toledo et al.

However, there are still a lot of challenges to be able to support more com-
plex elections. In the document analysis field, techniques have been developed
to process different kind of documents. To our knowledge, the work specifically
applied to electoral documents has mainly dealt with Optical Mark Recognition.
In this paper we will discuss several of the techniques developed in the docu-
ment analysis community that can be applied in the electoral document context,
while pointing out some improvements that can be done using knowledge of the
electoral process.

This paper is organized as follows: In Sect. 2 we will discuss the more relevant
preprocessing steps applied in document image analysis. In Sect. 3 we will deal
with ballots, starting with the most common issue, detecting filled voting targets.
We will also deal with preferential voting, where voters have to sort candidates
according to their preferences by assigning them a number, and the hardest
problem we can find in ballots, write-ins, where voters can write in the name
of the candidate in a designated area will be discussed. In Sect. 4, we will see
how we can apply most of the techniques previously discussed in another kind of
electoral document, the ballot statement. In Sect. 5 we show a few small security
enhancements that can be easily implemented. Finally we draw some conclusions
and outline some possible lines of future work.

2 Preprocessing

In image processing, before trying to understand a document image, we can
try to simplify the problem by removing some sources of variance. The same
intensity value can sometimes represent a black pixel or white (background pixel)
depending on the acquisition device. It is also very common to find different
skews on each scan, due to small misalignments when feeding the paper sheet
into the scanner. Finally the image can be noisy. We will discuss techniques to
address each of these problems.

A key preprocessing step in most document analysis tasks is image bina-
rization. That is, determining if a pixel of the image should be considered
“black/foreground” or “white/background” depending on whether its darker or
brighter than a certain threshold value. If the image acquisition is done in a very
controlled environment, a global threshold value can be predefined. This is the
less flexible approach and it can fail if you have to use scanners from different
manufacturers or with different contrast response. There are also several differ-
ent methods to automatically find optimum global thresholds. One of the most
widely used method is Otsu’s method [17]. This method is based on iterating
through the 256 possible threshold values of a typical 8-bit gray level image
finding the value that minimizes the intra-class variance (which is equivalent to
maximizing the inter-class variance). This kind of methods would allow us more
flexibility in the requirements of a particular scanner configuration.

There are also adaptive threshold methods like Niblack [16], Bernsen [4] or
Sauvola [21]. In this kind of methods, instead of selecting a single threshold value
for the whole image, the threshold value is determined for each individual pixel,

Document Analysis Techniques 131

Fig. 1. The original ballot image acquired with a camera (left). The image thresholded
with Otsu’s Method (center) and with Sauvola’s Method (right). We can see how using
Otsu’s method the darker areas of the ballot become black while voting targets in the
lighter areas disappear, showing the limitations of setting a global threshold.

taking into account its neighbors in a local area of a predefined size. In the case
of Sauvola, a widely used method for documents, the mean and the standard
deviation in the local area are calculated. Then each pixel is classified as dark, if
it is at least k times (a parameter) the standard deviation darker than the mean
in that area. This kind of binarization methods are specially interesting if there
are illumination changes (as for instance when the ballot images are acquired
using a camera), noise in the image, or stains or folding marks in the ballot.
A very interesting survey on both global and local thresholding algorithms can
be found in [19,23] showing that despite being a mature research area, there is
still interest in the community for binarization techniques. See Fig. 1.

Another key preprocessing step is the removal of the skew; there are also
several approaches to do this. One of the most common approaches [13], is based
on rotating the document in all allowed skews (i.e., from –10 to 10 degrees with a
precision of 1 degree), trying to find the right orientation. There are several ways
to find out the correct orientation. Assuming an horizontal writing, the document
will have the correct orientation when the horizontal projection histogram has a
higher variance. Also, if there is a long horizontal line separating two areas, the
correct orientation would be the one that produces the highest peak value for a
specific line in the horizontal projection histogram. Another common approach
would be to use the Hough Transform [3,9,24]. Using the Hough Transform we
get the equation of all the lines y = ax+b that we can find in a document, making
it trivial to find the skew of the document. Nevertheless, mainly because of the
computational cost of the Hough Transform, methods based on the horizontal
projection are more commonly used.

In some cases, after thresholding and skew correction, some noise remov-
ing algorithms can be applied. For instance, the median filter can be useful to
remove “salt and pepper” noise (isolated black or white pixels). Mathematical
morphology operators [22] (opening, closing, erosion, etc.) can also be used in
case we need to remove artifacts with a specific shape/size or connect some
broken shapes.

132 J.I. Toledo et al.

Fig. 2. Three different marking styles: check, ex, and filled, and their corresponding
noisy inputs generated by the voter attempting to erase a mark. Extracted from [29].

3 Ballots

The most common election document is the ballot. Ballot design can have a high
variability depending on the electoral system of each country or state. The kind
of challenges we can find in ballots can be divided in three big groups: mark
recognition, preferential voting and write-ins. We will review each of them in the
following subsections.

3.1 Mark Recognition

The ballots used in most of the elections consist of a grid where a voter selects
k out of n candidates for each contest by filling in empty voting targets in
predefined locations. In the most simple case, there will only be one ballot model.
In this case, the recognition software will only require a mapping from a filled
voting target (dark pixels in a certain area) to a candidate name.

However, in most complex elections we usually have to deal with different bal-
lot models (in different languages, or different districts with different contests).
The first step that the software will perform (after the preprocessing step) is to
identify the ballot model. The most popular solutions use QR-codes or barcodes
to identify each model. After reading the barcode and identifying the ballot
model, the configuration for that particular model can be loaded, that is, the
position of the pixels of each voting target and the candidate it is associated to.
If there are enough dark pixels in that area, it means that the voter cast a vote
for that candidate. This kind of approach looks very efficient and simple, but
it has problems because some voters do not fill the voting target completely or
place their mark near but not inside the voting target. What kind of marks are
considered a valid vote depends on the electoral law, and traditional approaches
like this are lacking in flexibility.

An alternative approach could allow us to perform both the ballot model
and mark detection at the same time, avoiding the need of barcodes. To do that,
we need a template image of an empty ballot of each ballot model. The process
would consist in computing the difference of the ballot (after preprocessing) and
each of the templates. The actual ballot model will have the smaller difference,

Document Analysis Techniques 133

and that difference would be the marks made by the voter. This difference will
usually have an amount of noise due to small misalignments, dust or different
scanning conditions. To obtain a mark detector that is less sensitive to noise,
several approaches are discussed in [25,27], like using a distance transform to
detect safe and unsafe zones, depending on their distance to black pixels, using
Gaussian filters to smooth the images before performing the subtraction or using
morphological filters. Some authors try to detect a grid for possible positions of
marks by analyzing the geometry of the ballot [26]. Other authors simply require
user collaboration to tag a blank voting target and locate the rest using pattern
matching techniques. Once they know where voting targets are, they search for
filled in targets in that region [12,28].

One drawback of the approaches described above is that they mainly rely on
the size of the mark. Usually, some voters do not follow exactly the instructions
to completely fill the voting target area, and use marks like X or � (see Fig. 2).
Since most electoral laws define a vote in terms of voter intent, we have to be
able to detect these marks. A possibility suggested in [29], assuming that the
voter makes consistent marks, is to train classifiers taking into account the style
of the marks, improving mark detection.

3.2 Preferential Voting

In some elections the voter is allowed to perform preferential voting. In that
scenario detecting a mark in a voting target is not enough. In preferential voting,
the voter assigns a number to each candidate indicating their preference, so we
have to classify the marks we find as belonging to a particular class (i.e. “1”,
“2”, etc.).

The problem of identifying the particular class of an image among a possible
set of classes is one of the big challenges in computer vision. Fortunately, in
handwritten numbers, the number of different classes is small (only ten different
classes) and there have been free datasets available for years. The main challenge
is the huge difference in writing styles. Classifying handwritten isolated digits
has been tackled by computer vision for the last three decades and there is now a
wide variety of techniques that allow us to perform the recognition of individual
digits with less than a 2 % error rate [15] on the popular MNIST dataset [14].
See Fig. 3 for some examples.

Fig. 3. Some examples from the MNIST dataset. It’s a common benchmark for isolated
handwritten digit recognition consisting of 60,000 digit images from approximately 250
different writers.

134 J.I. Toledo et al.

Fig. 4. The architecture of one column of the convolutional neural network that
achieved the best scores so far in handwritten digit recognition on the MNIST dataset.
The response for each neuron to the input image is also shown as an image. Extracted
from [5]

Recently, a multicolumn convolutional deep neural network trained for weeks
with several GPU has surpassed human performance in this task, achieving an
error rate of 0.23 % [5]. Convolutional neural networks combine the ability to
learn low level features (convolutional layers) with the invariance to translation
and scale given by max-pooling layers. Deep neural networks try to emulate
the hierarchical representations of the human brain, where the first layers learn
low level features, and the layers above learn higher level features (non-linear
combination of the low level ones). The last layer is the actual classifier (a non-
linear multiclass logistic regression) that outputs the probability of each class
given that particular input image (Fig. 4).

In practice, these “deep learning” systems are still difficult to train because
they require long training times, huge amounts of data, careful tuning of net-
work parameters, and expertise in GPU programing. For that reason, tradi-
tional systems using handcrafted features like Histogram of Oriented Gradients
(HOG) [11] and classifiers like Support Vector Machines (SVM) are still a very
popular approach [6]. SVM also output the probability of the observation belong-
ing to each specific class. This is very important because it gives us not only a
most probable label, but also a confidence on that prediction.

Document Analysis Techniques 135

In electoral documents there is additional context information that can be
used to further reduce the error rate. Usually a number cannot be repeated within
the same contest (there cannot be two candidates with the same preference in the
same contest) and usually they have to be correlative (i.e. a voter cannot assign
a preference “3” without previously assigning preferences “1”, and “2”). Instead
of individual classifications, we are facing a problem of a set of observations with
some restrictions that can help us lower our error rate even more. Finally, the
number of preferences a single voter can choose is probably less than ten, that
would reduce the number of classes (which has a great impact in error rates).
For example, usually the digit 1 is mistaken by a 7, or the digit 3 with a 5
or an 8, so if we have less than 7 preferences to assign, the error rate would
drastically decrease. Finally, since these techniques also provide a confidence
level on the classification result, this confidence level can be used to discard
an ambiguous ballot and ask for a human decision if the confidence is below a
certain threshold. This approach of combining Intelligent Character Recognition
techniques with human inspection of dubious ballots has been used successfully
in several elections in the Australian Capital Territory [2].

3.3 Write-In

Recognizing the text in write-in areas is the most difficult problem we can find in
electoral documents. Handwriting recognition can be performed with online or
offline information. In online systems, the temporal sequence of the handwriting
is available whereas in offline scenarios, we only have an scanned image available.
While the recognition rate is better in the online scenario, we discarded its
usage in our systems because: (1) it requires special hardware (a digital pen or
digitizing board that records the (x, y) position of the pentip at each timestep)
and (2) it has security implications because it detaches the voter input from the
ballot background, forcing to perform audits on the physical ballots to avoid
ballot tampering.

Offline cursive handwriting recognition, with open vocabularies in a multi-
writer scenario is still an open problem, the state of the art [8] character error
rates are around 18–19%. Probably the main reason that can explain why this
is a hard problem is the so called ‘Sayre’s Paradox’. This paradox states that
handwriting recognition is a “chicken-egg” problem. In order to segment a cursive
word into characters you need to recognize the characters first, but to recognize
the characters you first need to segment them out. A way to circumvent this
problem is to use segmentation-free techniques. Also we have to keep in mind that
cursive handwriting has huge variability, thus most of the approaches include a
preprocessing step trying to normalize the slant, horizontal and vertical size of
the characters and, in some cases, even the stroke width.

The key idea is to model the handwritten text line or word like a temporal
series of observations with a “sliding window approach”. See the example of the
sliding window approach on a previously normalized handwritten text line in
Fig. 5. That is, we focus our attention only in a column of a few pixels wide at a
time and extract some representative features in that window. There are different

136 J.I. Toledo et al.

Fig. 5. The “sliding window”. Extracted from [7]

Fig. 6. In Hidden Markov Models, the data is modeled as a series of observations
generated by a hidden state that is only dependent on the state at the previous time
step.

set of features that are used in the literature, like statistical moments, the slope
of the upper and lower contour, image derivatives, the number of black and white
transitions, etc. Once we have the handwritten text represented as a series of
features, the correct alignment with the ground truth character sequence has to
be found. Since the character sequence and the feature sequence have different
lengths the alignment is not trivial.

Since the 90s, technologies like Hidden Markov Models [7,20] have been used
to address this problem [18]. Hidden Markov Models are generative models that
have been adapted from the speech recognition area. According to this model,
each observation(xt) in every timestep is conditionally dependent only from a
latent unobserved variable (hidden state xt), which in turn depends only on the
hidden state of the previous timestep (Markov process). Given a number of states
(x), a matrix T of allowed transitions among them p(xt|xt−1), and a parametric
probability distribution P for p(y|x), the Baum-Welch algorithm can be used to
train the system, that is, finding the parameters for T and P that better fit our
observations. A graphical representation of the HMM can be seen in Fig. 6.

In 2009 a new algorithm was developed that allows us to use neural networks
for segmentation free handwriting recognition. The algorithm, called Connec-
tionist Temporal Classification (CTC) allows us to align two sequences of differ-
ent lengths and return a differentiable error for each timestep. With the output
from the CTC algorithm, and using the traditional backpropagation algorithm,
it is possible to train a recurrent neural network to map the image feature rep-
resentation with the character sequence. However, traditional recurrent neural
networks have problems learning long sequences, because of a problem known as

Document Analysis Techniques 137

the vanishing gradient. After several timesteps, because the activation function
of each neuron is smaller than 1, the error gradient fades into the network, mak-
ing it unable to learn long range dependencies. This problem can be solved with
the Long Short-Term Memory (LSTM) cells (Fig. 7), that incorporate input,
output and forget gates, that the cell can learn to open or close depending on
the input and the current state, thus allowing the network to learn arbitrarily
long sequences.

Fig. 7. A Long Short Term Memory Cell with multiplicative input, output and forget
gates. Extracted from [8]

The easier way to dramatically improve the recognition rate would be to
change the write-in areas so that they are expected to be filled with a set of
isolated capital letters. Also, in electoral documents we can assume that the
content of the write-in area will be a name. We can then use a reduced vocabu-
lary, consisting of the 5,000 most common surnames in that country, to improve
the accuracy of the system in both the original connected handwriting and iso-
lated character recognition scenarios. Finally, since the number of voters who
actually use the write-ins area is usually low, there is also the option to simply
detect the presence of write-in text, and mark the ballot for human inspection.
This approach would still be better than current optical scan technologies, since
they require the voter to fill in a mark associated to the write-in in order to
process it. Requiring to fill-in that mark does not seem intuitive since, according
to a study performed by Ji [10], a 49 % of the voters who used write-ins forgot
to fill the associated mark.

138 J.I. Toledo et al.

4 Ballot Statements

In some elections, with very simple ballot designs (e.g. Partisan Ballot), process-
ing the ballot is extremely easy, you just have to identify the party correspond-
ing to each ballot. In that case, human tally at precinct level is feasible. After
performing the tally, the electoral officials have to fill in a report or ‘ballot state-
ment’ with the election results for that precinct. We can see an example of such
a document in Fig. 8.

Fig. 8. Example of a ballot statement. Extracted from [1]

These ballot statements usually contain handwritten numbers that represent
the number of votes for a specific party, the number of eligible voters, etc. The
same techniques as the one described above for “Preferential Voting” in ballots
can be used. In the case of ballot statements, some integrity checks could also
be performed when recognizing the digits that can help to reduce even more
the classification errors (o even help to detect election official errors). Spatial
grammars can be defined for a ballot statement document, that is, numbers
recognized in a certain area must meet some requirements. For instance, the
sum of the recognized votes of all the parties and blank votes must match the
number recognized as total votes cast, which in turn has to match the number
recognized as number of voters, which has to be smaller than the number of
eligible voters, etc.

Some ballot statements can also contain connected handwriting. Usually the
numbers are also written in text form (like the courtesy amount in cheques).

Document Analysis Techniques 139

We can recognize this text with high accuracy because of the very restricted
vocabulary and syntax. Since recognizing the text “thirty four” and the number
‘34’ use different techniques to analyze different data, they can be considered
independent probabilities, which can be easily combined to boost the confidence
of the recognition.

To finish, usually, there is also an “observations” field, where the election
officers can write free text to explain some anomaly during the election. As we
explained above, unconstrained offline handwriting recognition is still an open
problem. Since that field is usually empty, simply detecting if there are any
observations, and asking a human operator for a transcription seems the best
option.

5 Security

With traditional mark detection scanners, it may be feasible to tamper elec-
tions by replacing the original ballots by ballots with candidates in permuted
order, easily affecting the election results, or by changing the configuration of the
machine. Also, mark sense scanners can’t detect any kind of identification mark,
thus allowing vote-coercion and vote buying by corrupt election officials. If coer-
cion or vote-buying are a concern for that particular election, we could detect
possible identification marks anywhere on the ballot using document analysis
techniques like the ones described above, based on the difference with a tem-
plate ballot image. These same techniques would be able to detect a false ballot.
In the case that we wanted to go even further (or if for some reason we can’t
have an image of an empty ballot for every ballot model) we could perform
an OCR on the printed text to further validate the authenticity of the ballot.
Knowing the font used in the ballot, the OCR can be done with almost perfect
accuracy. These techniques cannot prevent pattern based marking or deliberate
mismarking as way of identification. The document analysis community has also
worked on signature verification. Given enough training samples from the elec-
tion officers, we could verify that the signatures in a ballot statement are not
forgeries.

6 Conclusions

We have reviewed the most relevant document analysis techniques that can be
applied to ballot processing in all of the possible configurations: mark detection,
preferential voting and write-ins. We also proposed some small improvements to
the general techniques that can be applied in the specific context of ballots, like
using the fact that numbers cannot be repeated in a same contest in preferen-
tial voting or that there may be less than ten different classes of numbers to
improve the accuracy, or in write-ins, where we can use a vocabulary of common
surnames. Using the techniques described in this paper we can go beyond the tra-
ditional Optical Mark Recognition systems and support most complex election
types, dramatically reducing the need of human intervention. Finally, we have

140 J.I. Toledo et al.

also shown that advanced techniques for mark detection also lead to improved
security. As a possible future line of research, we would like to study if it would
be possible to develop a system that, by using layout detection, OCR and prior
knowledge of electoral processes, could be able to interpret most common ballot
designs without requiring a manual configuration for each ballot model.

Acknowledgements. We thank the reviewers for their suggestions and comments.
This work has been partially supported by the Spanish project TIN2012-37475-C02-
02 and the European project ERC-2010-AdG-20100407-269796 and by the Secretaria
d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat
de Catalunya.

References

1. Citizen’s oversight projects (2009). www.copswiki.org/Cops/BallotStatements
2. Elections ACT: Scanning of ballot papers (2015). http://www.elections.act.gov.

au/elections and voting/scanning of ballot papers
3. Amin, A., Fischer, S.: A document skew detection method using the hough trans-

form. Pattern Anal. Appl. 3(3), 243–253 (2000)
4. Bernsen, J.: Dynamic thresholding of grey-level images. In: International Confer-

ence on Pattern Recognition (ICPR), pp. 1251–1255 (1986)
5. Ciresan, D.C., Meier, U., Schmidhuber, J.: Multi-column deep neural networks

for image classification. In: IEEE Conference on Computer Vision and Pattern
Recognition CVPR 2012 (2012), long preprint arXiv:1202.2745v1 [cs.CV]

6. Ebrahimzadeh, R., Jampour, M.: Efficient handwritten digit recognition based on
histogram of oriented gradients and svm. Int. J. Comput. Appl. 104(9), 10–13
(2014)

7. Fischer, A., Frinken, V., Bunke, H.: Hidden markov models for off-line cursive hand-
writing recognition. In: Govindaraju, V., Rao, C.R. (eds.) Handbook of Statistics:
Machine Learning: Theory and Applications, vol. 31, p. 421. Elsevier, Amsterdam
(2013)

8. Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., Schmidhuber,
J.: A novel connectionist system for unconstrained handwriting recognition. IEEE
Trans. Pattern Anal. Mach. Intell. (PAMI) 31(5), 855–868 (2009)

9. Hinds, S.C., Fisher, J.L., D’Amato, D.P.: A document skew detection method using
run-length encoding and the hough transform. In: 10th International Conference
on Pattern Recognition (ICPR), 1990, vol. 1, pp. 464–468. IEEE (1990)

10. Ji, T., Kim, E., Srikantan, R., Tsai, A., Cordero, A., Wagner, D.: An analysis of
write-in marks on optical scan ballots. In: Proceedings of the 2011 Conference on
Electronic Voting Technology/Workshop on Trustworthy Elections, EVT/WOTE
2011. USENIX Association, Berkeley (2011)

11. Keysers, D., Gollan, C., Ney, H.: Local context in non-linear deformation models for
handwritten character recognition. In: 17th International Conference on Pattern
Recognition (ICPR), 2004, vol. 4, pp. 511–514. IEEE (2004)

12. Kim, E., Carlini, N., Chang, A., Yiu, G., Wang, K., Wagner, D.: Improved
support for machine-assisted ballot-level audits. In: Presented as part of the
2013 Electronic Voting Technology Workshop/Workshop on Trustworthy Elec-
tions. USENIX, Berkeley (2013). https://www.usenix.org/conference/evtwote13/
workshop-program/presentation/Kim

www.copswiki.org/Cops/BallotStatements
http://www.elections.act.gov.au/elections_and_voting/scanning_of_ballot_papers
http://www.elections.act.gov.au/elections_and_voting/scanning_of_ballot_papers
http://arxiv.org/abs/1202.2745v1
https://www.usenix.org/conference/evtwote13/workshop-program/presentation/Kim
https://www.usenix.org/conference/evtwote13/workshop-program/presentation/Kim

Document Analysis Techniques 141

13. Le, D.S., Thoma, G.R., Wechsler, H.: Automated page orientation and skew angle
detection for binary document images. Pattern Recogn. 27(10), 1325–1344 (1994)

14. Lecun, Y., Cortes, C.: The MNIST database of handwritten digits. http://yann.
lecun.com/exdb/mnist/

15. Liu, C.L., Nakashima, K., Sako, H., Fujisawa, H.: Handwritten digit recognition:
benchmarking of state-of-the-art techniques. Pattern Recogn. 36(10), 2271–2285
(2003)

16. Niblack, W.: An Introduction to Digital Image Processing. Strandberg Publishing
Company, Birkerod (1985)

17. Otsu, N.: A threshold selection method from gray-level histograms. Automatica
11(285–296), 23–27 (1975)

18. Plötz, T., Fink, G.A.: Markov models for offline handwriting recognition: a survey.
Int. J. Doc. Anal. Recogn. 12(4), 269–298 (2009)

19. Pratikakis, I., Gatos, B., Ntirogiannis, K.: ICDAR 2013 document image bina-
rization contest (DIBCO 2013). In: 12th International Conference on Document
Analysis and Recognition (ICDAR), 2013, pp. 1471–1476. IEEE (2013)

20. Rabiner, L., Juang, B.H.: An introduction to hidden markov models. IEEE ASSP
Mag. 3(1), 4–16 (1986)

21. Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern
Recogn. 33(2), 225–236 (2000)

22. Serra, J.: Introduction to mathematical morphology. Comput. Vis. Graph. Image
Process. 35(3), 283–305 (1986)

23. Sezgin, M., et al.: Survey over image thresholding techniques and quantitative
performance evaluation. J. Electron. Imaging 13(1), 146–168 (2004)

24. Singh, C., Bhatia, N., Kaur, A.: Hough transform based fast skew detection and
accurate skew correction methods. Pattern Recogn. 41(12), 3528–3546 (2008)

25. Smith, E.H.B., Lopresti, D.P., Nagy, G.: Ballot mark detection. In: ICPR, pp. 1–4.
IEEE (2008)

26. Smith, E.H.B., Lopresti, D.P., Nagy, G., Wu, Z.: Towards improved paper-based
election technology. In: International Conference on Document Analysis and Recog-
nition (ICDAR), pp. 1255–1259. IEEE (2011)

27. Smith, E.H.B., Nagy, G., Lopresti, D.P.: Mark detection from scanned ballots. In:
Berkner, K., Likforman-Sulem, L. (eds.) DRR. SPIE Proceedings, vol. 7247, pp.
1–10. SPIE (2009)

28. Wang, K., Kim, E., Carlini, N., Motyashov, I., Nguyen, D., Wagner, D.: Operator-
assisted tabulation of optical scan ballots. In: Presented as part of the 2012
Electronic Voting Technology Workshop/Workshop on Trustworthy Elections.
USENIX, Berkeley (2012)

29. Xiu, P., Lopresti, D.P., Baird, H.S., Nagy, G., Smith, E.H.B.: Style-based ballot
mark recognition. In: International Conference on Document Analysis and Recog-
nition (ICDAR), pp. 216–220. IEEE (2009)

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Machine-Checked Reasoning About Complex
Voting Schemes Using Higher-Order Logic

Jeremy E. Dawson, Rajeev Goré(B), and Thomas Meumann

Research School of Computer Science,
Australian National University, Canberra, Australia

rajeev.gore@anu.edu.au

Abstract. We describe how we first formally encoded the English-
language Parliamentary Act for the Hare-Clark Single Transferable
Vote-counting scheme used in the Australian state of Tasmania into
higher-order logic, producing SPECHOL. Based on this logical specifica-
tion, we then encoded an SML program to count ballots according to
this specification inside the interactive theorem prover HOL4, giving us
IMPHOL. We then manually transliterated the program as a real SML
program IMP. We are currently verifying that the formalisation of the
implementation implies the formalisation of the specification: that is, we
are using the HOL4 interactive theorem prover to prove the implication
IMPHOL → SPECHOL.

1 Introduction

Two fundamental principles in tallying an election are the transparency and
trustworthiness of the process. Strict protocols are enforced when dealing with
the ballot boxes and interested parties are provided with the opportunity to
scrutinise the tally while it is being undertaken. Thus traditional manual vote-
counting methods are designed to ensure trustworthiness via scrutiny.

Despite these measures, manually counting ballots is still error-prone. Dur-
ing the 2013 Senate election, the Australian Electoral Commission (AEC) was
required to recount the Western Australian (WA) ballots after a close result.
During the recount, approximately 1370 ballots were found to be missing. It is
unclear whether these ballots were present in the first count and then mislaid, or
whether the original tallies were wrong. The error had the capacity to influence
the outcome of the election, so the AEC was forced to re-run the election for
the WA seats in its entirety at a cost of approximately AUD 20 million [1]. The
electoral commissioner of the AEC itself subsequently resigned.

Paper ballots and manual counting methods in modern elections are therefore
increasingly seen as archaic, especially as cash-strapped electoral bodies seek
cheaper alternatives. Indeed, numerous electoral bodies are ploughing ahead with
electronic vote-casting and vote-counting of preferential votes using computers
and the most recent state election in New South Wales in Australia even used an
internet voting system which was shown to be vulnerable to vote-tampering [22].
Alarmingly, many of these software systems are not open to scrutiny and some
c© Springer International Publishing Switzerland 2015
R. Haenni et al. (Eds.): VoteID 2015, LNCS 9269, pp. 142–158, 2015.
DOI: 10.1007/978-3-319-22270-7 9

Machine-Checked Reasoning About Complex Voting Schemes 143

are even officially deemed to be “commercial in confidence” and are deliberately
kept from researchers like us who wish to scrutinise the code for correctness.
Given the importance of the task of electing a government, this state of affairs
is totally unacceptable.

The ideal of course is to use some form of end-to-end verifiable system
which provides strong evidence that electronic ballots are cast-as-intended,
transported-without-tampering and that all electronic ballots are included in the
final tally without having to blindly trust the underlying computer code. Unfor-
tunately, such systems do not guarantee that the electronic ballots are counted
correctly according to complex vote-counting schemes such as single-transferable
voting (STV) and methods for extending them to STV are in their infancy [7].

A “voting scheme” is a method that spells out the structure of a ballot, how
to cast a vote using such a ballot, and how to count such votes regardless of
whether these activities are carried out using pen and paper, hand-counting or
electronically. We describe a methodology for formally reasoning about complex
vote-counting schemes. Specifically, we describe how we first formally encoded
the English-language description of the Hare-Clark Single Transferable Vote-
counting scheme used in the Australian state of Tasmania into higher-order
logic, giving a formula called SPECHOL. We then created a more algorithmic
version using the syntax of the functional programming language Standard ML
(SML) to give a formula called IMPHOL. We manually transliterated this formula
into an actual SML program IMP to count ballots. We are currently verifying
that the formalisation of the implementation logically implies the formalisation
of the specification: that is, we are using the HOL4 interactive theorem prover
to machine-check the implication IMPHOL → SPECHOL.

2 Hare-Clark Single Transferable Voting

Farrell and McAllister [12] provide a definitive study of preferential electoral
systems in Australia. Wen [23] provides an engineering perspective of preferential
systems, legislation and verifiable cryptographic schemes for preferential voting
and counting. Here, we briefly describe STV and Hare-Clark STV.

STV for Electing Multiple Candidates. We assume that there are more candi-
dates than seats, as otherwise, there is no need for an election. Voters order the
candidates on the ballot paper in order of preference, usually by placing a num-
ber next to each candidate’s name. To become elected, a candidate must reach a
quota of votes, as opposed to an absolute majority. This quota is set according
to the number of seats available. There are several ways of calculating a quota.

The votes are all initially allocated according to their first preference. A
candidate who reaches the quota is elected, or else, if no candidate reaches the
quota, then one “weakest” candidate is eliminated. There are several ways to
choose the “weakest” candidate. If a candidate is elected by reaching the quota,
each surplus ballot for that candidate is transferred to the next continuing (un-
elected and un-eliminated) candidate on that ballot. There are many different

144 J.E. Dawson et al.

ways to choose a surplus ballot, and many ways to choose its new, possibly
fractional, value. If a candidate is eliminated, all of the ballots currently counted
as being for that candidate are transferred to their next (continuing) preference,
again possibly with a fractional transfer value. The election is complete either
when all seats are filled, or the number of vacant seats equals the number of
continuing candidates, in which case all these candidates are elected.

The transfer of votes is key to ensuring that candidates with particular politi-
cal views are elected in proportion to their support within the community, so the
complexity resulting from surplus calculations and transfers cannot be removed
without seriously crippling the system. As we shall see, there are many subtleties
in the naive description above.

The Hare-Clark Scheme. Hare-Clark is an instance of the proportional repre-
sentation scheme that uses single transferable vote as described above and has
been used to elect members of Tasmania’s House of Assembly since 1907 [8,17].
A slightly different version has also been used to elect members of the Legisla-
tive Assembly in the Australian Capital Territory (ACT) since 1995 [3]. Hand-
counting according to Hare-Clark is notoriously difficult and error-prone with
some ballots examined in excess of 50 times before a result is declared. Thus
a formally verified program for either version is likely to have practical bene-
fits almost immediately. We already have a formal specification of Hare-Clark
ACT [2], so we decided to concentrate on Hare-Clark Tasmania as this will allow
us to compare and contrast the properties of these two variants of Hare-Clark.

3 Related Work

Various authors have attempted to apply formal methods to algorithms for STV
counting, starting from early work using only pen-and-paper proofs, and ending
with more recent work using light-weight computer-based tools. We present them
in order of the amount and rigour of machine-checking involved in each. As far
as we know, the only other work on using heavy-weight verification is our own
previous work on reasoning about the first-past-the-post voting scheme [14].

Hill et al. [15] give a pen-and-paper proof of various properties of an algorithm
to count votes using the Meek’s method. It’s correctness relies totally on these
pen-and-paper proofs, which presumably were checked by the referees.

Poppleton [19] takes a step towards machine-checked proofs by writing a
specification for STV vote-counting in the logic-based specification language Z,
but does not verify an implementation using computer tools based on Z [20].

Kiniry et al. [10] formalised the STV scheme used for proportional represen-
tation elections in Ireland using the Alloy tool. They automatically generated
test cases that covered every possible scenario using breadth-first search. Finally,
they tested an implementation of the Irish vote-counting scheme, which had been
developed using light-weight formal methods, and found two errors. They con-
clude that “this level of coverage (100% statement and condition coverage) does
not prove that the system is error-free. . . . But what it does do is (a) provide

Machine-Checked Reasoning About Complex Voting Schemes 145

strong evidence, especially when combined with a rigorous development method
and formal verification, that the system is correct, and (b) raise the state-of-the-
art for election tally system testing enormously” [10].

Cochran conducted a comprehensive study of verifying STV counting using
light-weight (automatic) formal methods [9] by attempting to formally verify a
Java program for the Irish proportional representation single-transferable voting
scheme against its English natural language description using the ESC/Java
tool. Most proofs were completed automatically, but in some, “ESC/Java2 could
neither verify the loop invariants nor the post-condition” [9, p. 46]. Moreover,
lightweight formal methods, such as ESC/Java, are not guaranteed to be sound
or complete since their code base is huge. Cochran concludes with “Despite the
use of a verification-centric process, and 100% statement coverage of the code,
the following issues are outstanding, representing a potential inconsistency in
the JML specifications.” [9, p. 63].

Recent attempts by Beckert et al. [5] show that even state-of-the-art light-
weight verification techniques such as bounded model-checking do not scale to
realistic elections for even simple voting schemes such as first-past-the-post.

The move to using interactive theorem proving technology based upon
(higher-order) logic is apparent in the work of De Young and Schurmann [11].
Rather than translating English prose into higher-order logic, they express the
vote-counting scheme itself as a linear logic program. Read purely declaratively,
this logic program specifies what the algorithm should do. It can also be exe-
cuted to count actual ballots, although tests showed that it did not scale to
real-world elections. The logical framework they utilise is not able to capture
formal reasoning about the logic program itself: thus there is no correctness
proof.

The related work described above is mostly about verifying algorithms
against specifications. Thus there is no ability to formally compare and con-
trast two variants of the same voting scheme. Light-weight methods allow us to
specify two variants of an STV voting scheme (say) and compare them by spec-
ifying different post-conditions. But recall that such tools are not guaranteed to
be sound or complete. Recent work of Beckert et al. [6] shows other pen-and-
paper methods for reasoning about voting schemes using first-order and linear
logic.

Our methodology goes beyond all of these efforts in the following senses:

Formal specifications: the specification is encoded as a formula of higher-
order logic inside the HOL4 theorem prover. Thus it is type-checked and we
can be sure that it actually is a well-formed formula of higher-order logic;

Formal termination: the SML program is encoded into HOL4 as IMPHOL and
HOL4 will only accept the program if we can create a proof inside HOL4
that the program will terminate for all inputs;

Proof Objects: both the implementation and the specification are encoded
as formulae of higher-order logic inside the theorem prover HOL4. Thus we
can construct a proof that IMPHOL → SPECHOL which can be exported and
checked by others using their own favourite theorem prover;

146 J.E. Dawson et al.

Correctness: the HOL4 theorem prover checks all steps in this proof are correct
so we can be certain that the proof is mathematically correct.

Our methodology has three inherent weaknesses. As with all formal meth-
ods, there is no guarantee that SPECHOL correctly captures the English prose that
makes up the Hare-Clark method of STV counting since it is merely one per-
son’s interpretation of the English-language prose of the relevant Parliamentary
Act. We mitigated the risks of errors in interpretation by using two people to
complete the formalisation: Meumann wrote the initial SPECHOL and IMPHOL but
Dawson carried out all the proofs. Thus, Dawson first had to check whether these
formulae accurately captured the Hare-Clark act and Meumann’s implementa-
tion. In so doing, Dawson found some errors, as discussed in Sect. 8.3. Second,
we have no formal model of the programming language SML, so we cannot prove
that the final SML code meets its formal programming language semantics. As
we point out previously [14], the CakeML [16] project will allows us to provide
such proofs in the future. Finally, our approach is very labour-intensive: it took
Dawson at least six months of full-time work to complete these proofs and he
has over 20 years of experience in using higher-order logic theorem provers!

4 Higher-Order Logic and the HOL4 Theorem Prover

The rigorousness of our approach stems from the use of HOL4 to construct
the proofs. HOL4 is an interactive theorem proving assistant based upon Dana
Scott’s “Logic for Computable Functions” (LCF), a mathematically rigorous
logic engine consisting of 8 primitive inference rules which have been proven
to be mathematically correct [13]. HOL4 implements this logic engine using
approximately 3000 lines of ML code and this code has been scrutinised by
experts in LCF to ensure that it correctly implements the 8 inference rules. Any
complex inference rules must be constructed as a programmatic combination of
the core primitive rules only. Thus its code base is small and trusted.

Our verification process falls under the rubric of “heavy-weight verification”
since it requires a person to direct the process in an interactive fashion. As
such, it is very labour intensive. It involves producing a logical formalisation of
both the program’s requirements and the program itself in the HOL4 theorem
proving assistant (http://hol.sourceforge.net/), then constructing a formal proof
showing that the program matches the requirements. Producing the program
using a strictly functional programming style ensures the program can be readily
represented in higher order logic with minimal alterations. We used Standard
ML (SML), the same language in which HOL4 is itself implemented.

When applied to electoral systems, the requirements are usually informed
by the relevant legislation. As we shall show, translating complex legislation
into rigorous formal logic can be a non-trivial task. Our methodology involves
producing the following:

SPECHOL: a hand-encoding of the English-language description of the vote-
counting process into higher-order logic;

http://hol.sourceforge.net/

Machine-Checked Reasoning About Complex Voting Schemes 147

IMPHOL: a hand-translation of SPECHOL into the HOL4 rendering of SML;
IMP: a hand-transliteration of IMPHOL into SML;
Formal Proof: a proof acceptable to the HOL4 theorem prover that IMPHOL log-

ically implies SPECHOL which guarantees that the translation of the imple-
mentation meets the translation of the Parliamentary Act.

When applying this methodology to vote counting schemes, the counting pro-
gram is represented in higher-order logic (as IMPHOL). It thus becomes possible to
prove various results about the program. We can also verify various desiderata of
the voting scheme (SPECHOL) itself. Our methodology is particularly suited to the
verification of new voting schemes against the presence of desired properties or
the avoidance of objectionable ones. For example it would be possible to prove
that the voting scheme in question adheres to the independence of irrelevant
alternatives (see [4]). It is also possible to prove comparative results between
different voting schemes: for instance that voting scheme A differs from voting
scheme B in only x specific situations.

The specification (in this case the translation of the legislation into HOL4’s
logic) is performed prior to the implementation of a counting program. This is
intended to ensure the specification remains as independent of the implementa-
tion as possible. Thus ensuring any shortcuts or misconceptions adopted during
the implementation process are not carried through to the specification.

Rather than producing an SML program and translating that to HOL4, the
program is produced first in HOL4’s formal logic, then translated to SML. Pro-
gramming directly in HOL4’s formal logic also helps to ensure that the non-
functional features of SML are avoided.

The astute reader may notice there are certain gaps in this methodology that
cannot be filled: there is no proof that the SML program (IMP) is the same as
the HOL4 translation (IMPHOL), and there is no proof that the HOL4 encoding
of the legislation (SPECHOL) is logically the same as the legislation itself.

5 Translating Legislation into Higher-Order Logic

The following list of HOL4 syntax may be helpful.

HOL4 \x y. A T F ~t t1 \/ t2 t1 /\ t2 t1 ==> t2 t1 = t2 !x.t ?x.t

Logic λxy. A verum falsum ¬t t1 ∨ t2 t1 ∧ t2 t1 → t2 t1 = t2 ∀x.t ∃x.t

The translation of the Tasmanian House of Assembly vote counting legislation
is a non-trivial task. Theoretically, if there is only one way to interpret the
legislation logically, then higher-order logic is expressive enough to capture the
legislation’s meaning. When examined closely, however, the legislation contains
various ambiguities and contradictions that prevent a direct “translation”. In
many cases the intended meaning of the legislation must be encoded in HOL4
rather than a direct logical translation of each predication.

148 J.E. Dawson et al.

For example, clause 12 deals with the case in which there is a tie amongst the
weakest candidates and one of them must be eliminated. The legislation specifies
that the tie is to be broken by deferring to “the last count or transfer at which
[the candidates involved in the tie] had an unequal number of votes”. When more
than two candidates are concerned, there are three different ways of interpreting
which candidate should be excluded:

(a) the candidate who has the lowest count at the last count or transfer at which
all of the candidates concerned had pairwise unequal counts;

(b) the candidate who has the lowest count at the last count or transfer at which
one candidate had a count less than all of the other candidates concerned;

(c) the candidate who has the lowest count in a lexicographical ordering of all of
the previous counts for the candidates concerned (with the most recent count
being the first element of the lexicographical combination and the next-most
recent count being the next element of the lexicographical combination etc.).

Option (a) appears to most closely mirror the wording of the legislation, but
causes deferral to counts older than the other two options. This one is the most
likely to defer all the way back to the initial count and result in a lot-based
elimination. Option (b) causes deferral to counts more recent than option (a),
but may result in the exclusion of a candidate who had a higher count than
some or all of the other candidates concerned at a more recent count. Option
(c) is the intuitively fairest option, but appears to reflect the legislation least.
The ACT has a similar issue with their Hare-Clark legislation, in which the
clauses regarding tie breaking are similarly worded. The ACTEC interprets their
legislation according to option (c), so we also used this option.

Ambiguities such as this increase the difficulty of the formalisation process.
Nevertheless, it is a testament to the rigorousness of our approach that it results
in ambiguities such as this being discovered and properly questioned. This is a
positive outcome if it results in a tightening of the legislation.

Another issue encountered whilst formalising the legislation is that the leg-
islation is written in a procedural manner. In particular, the legislation makes
regular reference to various “stages” of the count, and what should happen if cer-
tain conditions are met at various stages. This implies a mutable representation
of the count, where the state changes over time (at each stage of the count) and
is a side-effect of the legislation specifying how the votes should be counted, not
what the result of the count should be. This is in direct contradiction with the
ideal of functional programming, which is to have a declarative representation
of computation (effectively stateless).

The procedural nature of the legislation forces SPECHOL to make statements
about IMPHOL’s “state”. In lieu of an existing IMPHOL, the SPECHOL must be
built based on assumptions about IMPHOL’s structure. This results in a certain
level of coupling between SPECHOL and IMPHOL, but cannot be avoided when the
legislation is written in a procedural manner.

Machine-Checked Reasoning About Complex Voting Schemes 149

5.1 Assumptions About the Implementation

To have a concrete conceptualisation about which to build the logical statements
of SPECHOL, some assumptions must be made about the form of IMPHOL. The
initial assumptions are explained below. Note that some of the assumptions now
need revision due to unforeseen technical restrictions on IMPHOL. The revision
process is yet to be undertaken, but the intention is to combine it with a general
review of SPECHOL to remove any inconsistencies.

Inputs and Outputs. The inputs and outputs of the counting procedure must
be defined. This is fairly straightforward. At a minimum, the procedure must
take the set of ballots and the set of running candidates as input. These are
assumed to be provided using lists: a mainstay of functional programming. The
procedure is assumed to take as input a list of candidates and a list of ballots.
Each ballot itself is assumed to be a list of candidates in order of preference (the
head of the list being the first preference). It is also assumed the function takes
as input the number of candidates to be elected since the number of seats per
electorate has changed multiple times in Tasmania. The output of the function
is assumed to be a list of elected candidates. Let us call the function COUNT HCT,
so we have the following type-definition to work with:

COUNT_HCT: num -> ’a list -> ’a list list -> ’a list

where the first argument represents the number of available seats, the second
argument the list of running candidates and the third argument the list of ballots.

Stateful Representation. Some assumptions about the internal operation
of the function are needed to capture the stateful or procedural nature of the
legislation. It is necessary to assume that COUNT HCT possesses some form of
state, and that the state changes over time. Moreover the state must take a
particular structure, so we can reason formally about its various components.

In a strictly functional programming language there is no implicit concept
of time or state. The closest thing to a state is the set of values of all of the
variables at a given level of recursion. In this conceptual representation of state,
the “time” is given by the level of recursion. Naturally, a proper representation
of time must be strictly monotonic. That is, with each recursion the time must
increase. In other words, backtracking back up the recursion cannot be permitted
until the final result is ascertained (and it becomes possible to backtrack all the
way to the surface tail-recursively). Ultimately, within the Hare-Clark context,
our concept of time need only capture the temporal difference between the stages
of the count, not the assignment of individual variables or other small differences.
Bundling the requisite variables into a “state” represented by a tuple allows us
to recurse on the tuple and treat it as a close approximation of a mutable state.

Based on the properties referred to by the legislation, it is assumed that the
state of the count is represented by a tuple of the following structure:

(time, seats, quota, elected, excluded, rem, surps, groups)

150 J.E. Dawson et al.

where. . .

time is a parameter representing temporality (the level of recursion). It increases
by one with each recursion;

seats is the number of seats to be filled. Note that this value is not intended
to change over the course of the count;

quota is the number of votes required by candidates in order to be declared
elected. It is calculated at the beginning and remains unchanged throughout;

elected is a list of candidates who have been elected. Declaring a candidate
elected (as specified in the legislation) means placing a candidate in this list;

excluded is the list of excluded candidates. Excluding a candidate is interpreted
as placing a candidate in this list;

rem is the list of continuing candidates, along with their current vote counts and
their transfer history. Each candidate in this list is represented by the tuple
(name, total, transfers) where:
name is the identifier of the candidate (this can be any equality type);
total is the total value of votes assigned to the candidate;
transfers is a list of transfers assigned to the candidate and is of the form

(value, ballots, clause) where
value is the transfer value associated with the transfer and is a tuple of

the form (numerator, denominator);
ballots is the list of ballots associated with the transfer.
clause represents the clause responsible for the transfer of the ballots

to the candidate concerned. This will likely be removed when the
specification is reviewed as the implementation does not use it;

surps is a list of pending transfers of surplus votes from elected candidate;
groups is a list of transfers pending from the exclusion of a candidate. Each

member of both surps and groups is of the form (value, ballots) where
value is a tuple (numerator, denominator) for the transfer value and

ballots is the list of ballots awaiting transfer.

Assuming the function performing the recursion on the state tuple is called
FINAL STAGE, we have the following function type definition:

FINAL_STAGE: num # num # num #’a list #’a list #
(’a # num # ((num # num) #’a list list # num) list) list #
((num # num) #’a list list # num) list
-> ’a list

It can be argued that these assumptions are not necessary: that the functions
can be quantified in each of the clauses. This would remove any dependency on
naming conventions, but the clauses will still need to make statements relying on
what form the functions take. This has the potential to blow out the complexity
of the individual clauses as each clause will need to cover many more possibilities
in terms of functional structure. Whether or not this would actually happen is
unclear. Potentially, more experience is needed to truly take advantage of the
expressibility of higher order logic.

Machine-Checked Reasoning About Complex Voting Schemes 151

With the assumptions in hand, it becomes possible to translate the legisla-
tion into HOL4’s formal syntax. The translation of one example clause, is given
in Sect. 5.4. An example function and statements that are used by the clauses
are given in Sect. 5.2 below. Sanity checks are given in Sect. 5.3. Note that the
definitions, sanity checks and clausal statements will need to be revised to take
into account the final form of the implementation. They will also need to be
reviewed for their accuracy.

5.2 Example Definitions

The function shown in Listing 1.1 is used to simplify the clauses in Sect. 5.4.
Such functions are intended to be executable and translatable into SML so that
they may be used by the counting program should this be necessary.

Listing 1.1: Executable function definitions.

1 (* Returns list of ballots whose first preference is cand *)

2 val FIRSTS_FOR_DEF = Define ‘

3 FIRSTS_FOR cand ballots =

4 FILTER (($= cand) o HD) ballots ‘;

5 (* Sums the number of ballots with a first preference for

6 each of the running candidates. This is needed simply

7 because the legislation specifies that this is how the

8 quota should be calculated. *)

9 val SUM_FIRSTS_DEF = Define ‘

10 (SUM_FIRSTS [] ballots = 0)

11 /\ (SUM_FIRSTS (c::cs) ballots =

12 LENGTH (FIRSTS_FOR c ballots)

13 + SUM_FIRSTS cs ballots)‘;

5.3 Sanity Checks

In addition to the clauses of the Tasmanian Hare-Clark legislation, some proof
obligations have been defined as sanity checks. These checks can be assumed in
the clausal statements, reducing their complexity, as shown next.

Listing 1.2 specifies that it must be impossible to introduce candidates to
the list of continuing candidates after the count has begun. In other words, if a
candidate is in the list of continuing candidates, then that candidate must have
been in the list of candidates in all preceding states of the count.

Listing 1.2: Candidates cannot be introduced partway through the count.

1 !seats cands ballots state state ’.

2 (COUNT_HCT seats cands ballots = FINAL_STAGE state)

3 /\ (COUNT_HCT seats cands ballots = FINAL_STAGE state ’)

4 /\ TIME_VAR state ’ > TIME_VAR state

5 ==> !cand. IS_REM_CAND state ’ cand

6 ==> IS_REM_CAND state cand

152 J.E. Dawson et al.

5.4 Example of a Clause in Higher-Order Logic

Each of the 14 clauses in the Tasmanian Hare-Clark legislation was thus hand-
translated into higher-order logic. We give just one example below.

Clause 2: First Preference Votes to Be Counted

The number of first preferences recorded for each candidate, on ballot
papers which are not informal ballot papers, is to be counted.

This is somewhat abstract in the context of our counting procedure and leaves
little to specify concretely. The proof obligation for this clause in HOL4 instead
specifies how the counts should be incorporated into the initial state tuple. See
Listing 1.3 below.

Listing 1.3: Clause 2

1 !seats cands ballots cand rem_cands quota.

2 (COUNT_HCT seats cands ballots =

3 FINAL_STAGE (t0,seats ,quota ,[],[], rem_cands ,[]))

4 /\ (MEM cand cands =

5 MEM (cand ,

6 LENGTH (FIRSTS_FOR cand ballots),

7 [((1,1), FIRSTS_FOR cand ballots , clause2)])

8 rem_cands)

Note that the “count” of the first preferences is given by LENGTH
(FIRSTS FOR cand ballots). The function LENGTH is a predefined function in
HOL4, and FIRSTS FOR is defined in Listing 1.1 and MEM is the member predicate
on lists.

6 From HOL4 to an SML Implementation

The implementation is first written in HOL4, then translated into SML. The
translation is performed iteratively, ironing out any features used in one lan-
guage that are not available in the other. Since the implementation is initially
programmed in HOL4, the features that need removal are primarily those avail-
able in HOL4 but not SML (a lambda calculus interpreter for instance).

The semantic equivalence of these two implementations is not rigorously guar-
anteed. A visual comparison is still convincing for this larger case study, however,
thanks to the strict functional nature of the implementations and the restricted
feature set they use.

The implementation breaks ties using the lexicographical ordering interpre-
tation (option (c) on p. X). It does this by merge-sorting the list of remaining
candidates according to candidate counts at each stage of the recursion. Merge
sort is stable, allowing it to maintain the lexicographical ordering discussed with-
out further interference.

Machine-Checked Reasoning About Complex Voting Schemes 153

6.1 Testing the SML Implementation for Efficiency

The implementation was tested both for preliminary correctness and to ascertain
whether it could handle the input sizes likely in real public elections. All of the
tests were conducted using PolyML (http://www.polyml.org/) on GNU/Linux
with an Intel Core i7-3740QM processor and 16 GiB of RAM.

To test for bugs, we compared this implementation against an implementa-
tion of the ACT’s Hare-Clark system produced previously by Dawson. Several
randomly generated examples were produced with lists of votes ranging from 50
thousand to 300 thousand in length and between 10 and 40 candidates covering
a range of possible scenarios.1 The two programs produced the same results for
each example, giving preliminary indications that the program is correct.

However, there are differences between Hare-Clark ACT and Hare-Clark Tas-
mania. The main difference that might lead to a different outcome at an election
is that the transfer value is calculated differently. Tasmanian Hare-Clark cal-
culates the transfer value based on the total number of votes in the transfer
leading to the surplus whereas the ACT calculates it based on a subset of those:
the unexhausted ballots. The following small example illustrates the difference.

Imagine an election between 3 candidates (A, B and C), with two available
seats and a total of 5 votes. Let’s say the votes were as follows: [A,B] [A,B]
[A] [A] [C] where the vote can be read from left to right in order of preference
(so the first vote has A as its first preference and B as its second). In the first
round, A will be elected with 4 votes and a surplus of 2 (the Droop quota is
2 votes). B and C remain unelected with counts of 0 and 1 respectively. In the
second round, 2 of A’s votes will be counted towards B, but the transfer value
differs between the ACT and Tasmanian systems:

TAS = (surplus/total votes in prev. transfer) = 2/4 = 1/2
ACT = (surplus/total unexhaust. votes in prev. transfer) = 2/2 = 1.

Thus, the ACT would transfer the votes in full, whereas in Tasmania they would
transfer them as half votes. So the result after round 2 would be:

TAS: 1 for C, 1 for B so B eliminated as C had more votes in previous round;
ACT: 1 for C, 2 for B so C eliminated.

The programs confirmed that this example leads to different results.
The program was tested separately for its ability to handle large numbers

of ballots. The tests ranged from 250 thousand votes with 10 candidates to 15
million votes with 40 candidates. Note that every example took less than 80
seconds to count, and consumed less than 10 GiB of memory.

There are 5 electorates in Tasmania used to elect the House of Assembly
using Hare-Clark, and these each have approximately 72,000 enrolled voters (as
at September 2013) [21]. Our implementation is more than adequately equipped
1 If a large number of ballots are generated näıvely, they become spread too evenly

between the candidates. This results in no candidate being elected until the final
stages of the count, which is unrealistic. The candidates were given random popu-
larity ratings to produce uneven distributions of ballots to avoid this issue.

http://www.polyml.org/

154 J.E. Dawson et al.

to handle counts of this size. The largest electorate used in any PR election in
Australia is New South Wales (NSW), with an enrolment of just under 5 million
voters (as at August 2014) [18]. Once again, our implementation is well able to
handle counts of this size.

An initial analysis shows that our SML code has computational complexity
O(num candidates * num candidates * num votes), possibly worse. We are con-
fident that we can remove at least one of these occurrences of num candidates
by using SML arrays, and setting up a HOL4 theory formalising the appropriate
extra correctness properties. An alternate view is that the verified code only has
to be run once, and it doesn’t matter if it takes a week to run, even if the faster
unverified code has already produced a result which has been announced.

We are currently investigating whether it can handle hundreds of candidates
as occurred in the 2015 NSW State Election. Incidentally, being functional, and
moving bits of data all over the place, it depends crucially on real memory.

7 Proving Termination of Functions and Properties of
the Results of Those Functions

HOL4 requires function definitions to terminate, because the underlying logic
of computable functions requires that all functions be total. So HOL4 does not
actually allows us to state termination as a formula of higher-order logic: rather
the evidence of it is that HOL accepts the definition of a function.

Once we input a function definition, HOL4 automatically attempts to gen-
erate a termination proof using in-built strategies based upon term-rewriting. If
HOL4 cannot produce a termination proof automatically, it outputs the state-
ment of a lemma which would allow it to complete the proof. If the user proves
the lemma interactively, then HOL4 completes the proof of termination itself.

Once HOL4 accepts a function as terminating, it outputs, automatically, an
induction principle which can be used to prove an arbitrary property P of the
function. By instantiating this property in various ways, we can prove interesting
properties of the function as illustrated next.

7.1 Properties of the Function MERGE

Definition 1 (MERGE def). The function MERGE (used to define MERGE SORT) is

(MERGE R [] right = right)
/\ (MERGE R left [] = left)
/\ (MERGE R (l::ls) (r::rs) = if R l r

then l::(MERGE R ls (r::rs))
else r::(MERGE R (l::ls) rs))

where [] is the empty list, x::xs is a list with head x and tail xs and R is a
function that returns true if its first argument is “less than” its second.

Machine-Checked Reasoning About Complex Voting Schemes 155

Theorem 1. The MERGE function terminates for all inputs.

Proof. HOL4 is able to deduce termination automatically because in successive
recursive calls, one list argument gets smaller while the other remains the same.

Some function definitions, however, require the user to prove a termination
condition: in general, that there is some well-founded relation for which the
argument(s) to the function get “smaller” in successive function calls.

HOL4 generates, automatically, an induction principle (lemma) called
MERGE ind for proving properties P of the result of the MERGE function:

Lemma 1. (MERGE ind). For all properties P, if the following conditions hold

1. P R left right holds whenever left or right is empty
2. P R (l::ls) (r::rs) holds whenever ~ R l r and P R (l::ls) rs hold
3. P R (l::ls) (r::rs) holds whenever R l r and P R ls (r::rs) hold

then P v v1 v2 holds for all values of v, v1 and v2:

!P. (!R right. P R [] right) /\ (!R v4 v5. P R (v4::v5) [])

/\ (!R l ls r rs. ~ R l r /\ P R (l::ls) rs ==> P R (l::ls) (r::rs))

/\ (!R l ls r rs. R l r /\ P R ls (r::rs) ==> P R (l::ls) (r::rs))

==> !v v1 v2. P v v1 v2

Note how HOL4 has reformulated the first clause of MERGE ind to avoid over-
lapping cases by using v4::v5 instead of left to enforce that the left argument
is a non-empty list since the other part of this clause already handles the case
where left is the empty list.

As an example of a proof by induction using MERGE ind, we prove that the
result of MERGE, viewed as a set, is the union of the lists l and r, viewed as sets.

Theorem 2. !v v1 v2. set (MERGE v v1 v2) = (set v1) UNION (set v2)

Proof. We instantiate P of the theorem MERGE ind to

\c l r. set (MERGE c l r) = set l UNION set r

HOL4 then sets out the framework for a proof by induction, where the inductive
steps and their assumptions match the structure of MERGE def (Definition 1).
Intuitively, each step in the definition of MERGE preserves the desired property.

8 Proving Sanity Checks, Difficulties and Errors Found

8.1 That the List of Candidates Remains Unchanged

We showed that the list of elected, excluded and remaining candidates is
unchanged. This needs to be formulated precisely, since these lists are changed
by moving candidates from one list to another, and by re-ordering the remaining
candidate list according to the number of votes each candidate has.

We use the built-in function PERM, which means that one list is a permutation
of the other. The definition of PERM is provided by HOL. So we show that at
each iteration, the concatenation of these lists is permuted.

156 J.E. Dawson et al.

8.2 Conditions Which Need to Be Proved

These are examples of conditions which seem obvious, and are assumed by the
code (and, indeed, by the legislation), but proving that they hold requires several
steps of reasoning and tracing through the code. Their proof is a lower priority
since whenever they are not satisfied, the code as written will not complete
without error, but for completeness, we intend to prove all such conditions.

The Condition that There Be “Remaining” Candidates. Since the count-
ing program chooses the lowest ranking candidate to be eliminated, it requires
that the list of “remaining” candidates be non-empty. We found that to prove
this from the code as written would be very convoluted, since the part of the
code which excludes a candidate requires that there be a candidate to exclude,
and will have an undefined effect otherwise. That is, to avoid reasoning about
an undefined effect, we have to prove that the list of remaining candidates is
non-empty: leading us back to where we started!

We “solved” this problem by adding an extra termination condition: stop if
the list of remaining candidates becomes empty. This avoids having to reason
about undefined effects, but defers the problem since we now need to prove that
this extra termination condition never has effect. However, doing so is signifi-
cantly simpler since we never have to reason about undefined effects.

That Transfer Values Do Not Have Denominator Zero. The code
requires the denominator of a fractional transfer value to be non-zero. This in
turn requires that the final parcel of votes which elects a candidate is non-empty
and that a candidate can get only one new parcel of votes in each iteration of
the algorithm.

8.3 Errors Discovered

We found some errors where conditions (expressed in HOL4), which we set out
to prove, were in fact not provable. We have not yet found cases where this was
due to errors in the code (that is, the specification, in HOL4, of the program’s
behaviour). Rather, the errors were all in the expression of the conditions which
were to be proved. We surmise that this is because the “program” specification,
in HOL4, was translated into Standard ML, and tested. No doubt there were
errors which were found in the course of this testing. On the other hand, the
correctness conditions were not tested in this way.

Taking the nth Member of a Shorter List. The condition that the list of
remaining candidates are distinct utilises the function EL n list which returns
the nth member of list but is undefined when list has fewer than n members.

Machine-Checked Reasoning About Complex Voting Schemes 157

Need to Assume Candidates Distinct Initially. To prove that the list of
remaining candidates are distinct at any stage, it is necessary to assume that the
list of candidates provided initially is distinct. This assumption was omitted.

Acknowledgements. We are extremely grateful to the many suggestions for improve-
ment from the reviewers of VoteID 2015. We have tried to take every comment into
account, and have even used some of the suggested prose verbatim.

References

1. AAP. AEC costs WA Senate election at $20M, February 2014. http://www.sbs.
com.au/news/article/2014/02/25/aec-costs-wa-senate-election-20m

2. Abate, P., Dawson, J., Goré, R., Gray, M., Norrish, M., Slater, A.: Formal methods
applied to electronic voting systems (2003). http://users.rsise.anu.edu.au/∼rpg/
EVoting/

3. ACTEC. Hare-Clark electoral system (2015). http://www.elections.act.gov.au
4. Arrow, K.J.: A difficulty in the concept of social welfare. J. Polit. Econ. 58(4),

328–346 (1950)
5. Beckert, B., Börmer, T., Goré, R., Kirsten, M., Meumann, T.: Reasoning about

vote counting schemes using light-weight and heavy-weight methods. In: VERIFY
2014: Workshop Associated with IJCAR 2014 (2014)

6. Beckert, B., Goré, R., Schürmann, C., Bormer, T., Wang, J.: Verifying voting
schemes. J. Inf. Sec. Appl. 19(2), 115–129 (2014)

7. Benaloh, J., Moran, T., Naish, L., Ramchen, K., Teague, V.: Shuffle-sum: coercion-
resistant verifiable tallying for STV voting. IEEE Trans. Inf. Forensics Secur. 4(4),
685–698 (2009)

8. Bennett, S.: Inglis Clark’s other contribution: a critical analysis of the Hare-Clark
voting system. http://samuelgriffith.org.au/docs/vol23/vol23chap5.pdf

9. Cochran, D.: Formal specification and analysis of danish and irish ballot counting
algorithms. Ph.D. thesis, ITU (2012)

10. Cochran, D., Kiniry, J.R.: Formal model-based validation for tally systems. In:
Heather, J., Schneider, S., Teague, V. (eds.) Vote-ID 2013. LNCS, vol. 7985, pp.
41–60. Springer, Heidelberg (2013)

11. DeYoung, H., Schürmann, C.: Linear logical voting protocols. In: Kiayias, A., Lip-
maa, H. (eds.) VoteID 2011. LNCS, vol. 7187, pp. 53–70. Springer, Heidelberg
(2012)

12. Farrell, D.M., McAllister, I.: The Australian Electoral System: Origins, Variations
and Consequences. University of New South Wales Press, Sydney (2006)

13. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: a theorem proving environ-
ment for higher order logic. CUP (1993)

14. Goré, R., Meumann, T.: Proving the monotonicity criterion for a plurality vote-
counting program as a step towards verified vote-counting. In: 6th International
Conference on Electronic Voting: Verifying the Vote, pp. 1–7 (2014)

15. Hill, I.D., Wichmann, B.A., Woodall, D.R.: Algorithm 123: single transferable vote
by Meek’s method. Comput. J. 30, 277–281 (1987)

16. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: POPL, pp. 179–192 (2014)

17. Newman, T.: Hare-Clark system (2004). http://www.utas.edu.au/library/
companion to tasmanian history/H/Hare-Clark%20system.htm

http://www.sbs.com.au/news/article/2014/02/25/aec-costs-wa-senate-election-20m
http://www.sbs.com.au/news/article/2014/02/25/aec-costs-wa-senate-election-20m
http://users.rsise.anu.edu.au/~rpg/EVoting/
http://users.rsise.anu.edu.au/~rpg/EVoting/
http://www.elections.act.gov.au
http://samuelgriffith.org.au/docs/vol23/vol23chap5.pdf
http://www.utas.edu.au/library/companion_to_tasmanian_history/H/Hare-Clark%20system.htm
http://www.utas.edu.au/library/companion_to_tasmanian_history/H/Hare-Clark%20system.htm

158 J.E. Dawson et al.

18. NSWEC. Enrolment statistics. New South Wales Electoral Commission (2014).
http://www.elections.nsw.gov.au/enrol to vote/enrolment statistics

19. Poppleton, M.: The single transferable voting system: functional decomposition in
formal specification. In: IWFM (1997)

20. Community Z tools. http://czt.sourceforge.net/. Accessed 2 June 2015
21. TEC. Annual report 2013–2014. Tasmanian Electoral Commission (2013)
22. Teague, V., Halderman, J.A.: Thousands of NSW election online votes open to

tampering (2015). http://theconversation.com
23. Wen, R.: Online elections in Terra Australis. Ph.D. thesis, University of New South

Wales (2010)

http://www.elections.nsw.gov.au/enrol_to_vote/enrolment_statistics
http://czt.sourceforge.net/
http://theconversation.com

Experience Reports

Challenging an E-voting System in Court:

An Experience Report

Richard Hill(&)

Hill & Associates, Geneva, Switzerland
rhill@hill-a.ch

Abstract. The Swiss political system is decentralized, and this includes voting
operations. Several cantons have implemented Internet-based e-voting systems.
The system used until recently in Geneva was a simple Internet voting system
which assumed that the voter’s personal computer had not been compromised.
This was considered risky already at the time and various counter-measures
were considered. The one that was implemented in practice was to limit the
proportion of voters that could vote via Internet. At present, there is consensus
amongst experts that such systems are unsafe and should be improved, in par-
ticular by implementing verification. In order to stimulate improvements in the
system, the author challenged the use of the Geneva system in court, arguing
that it was not compliant with constitutional principles and cantonal law on
voting rights. At the end of a long and complex legal process, the Swiss Federal
Tribunal (supreme court) ruled that the complaints could not be heard on their
merits, because they did not allege that weaknesses had actually been exploited
in a specific vote. This decision differs from those taken in other jurisdictions
and highlights the difficulties of bringing scientific arguments into the court
system.

Keywords: E-voting � Internet voting � Court challenges to e-voting

1 Introduction and Background

Switzerland is a federal state: the subdivisions are called cantons and communes.
Although most laws in Switzerland are federal and apply throughout the country, that is
not the case for many administrative matters such as taxation and voting. Fundamental
voting principles are specified in the Federal Constitution and in the federal act on
political rights. Lower level measures are included in the federal ordinance on political
rights. Federal provisions apply throughout the country. But, within the limits specified
by those principles, cantons are free to organize and administer elections as they think
best. A detailed explanation of this complex situation is given in [1].

E-voting was introduced gradually and in a controlled manner (that is, with
restrictions on its use), since the early 2000’s. Internet voting has been used for federal
votes since 2003. A comprehensive overview is given in [2]. The proportion of Internet
voters is limited to 30 % of the cantonal electorate and 10 % of the federal electorate.
About half of the 26 cantons use Internet voting systems and most of them are not close
to reaching the authorized limits [1]. In Geneva, about 20 % of the voters who have the

© Springer International Publishing Switzerland 2015
R. Haenni et al. (Eds.): VoteID 2015, LNCS 9269, pp. 161–171, 2015.
DOI: 10.1007/978-3-319-22270-7_10

possibility to use Internet voting do so and the introduction of Internet voting did not
increase the rate of participation [3].

The introduction of Internet voting was greatly facilitated by the fact that corre-
spondence voting is widely used in Switzerland, and Internet voting was viewed as a
natural extension of correspondence voting [1, 4].

The canton of Geneva started to use Internet voting in 2003 in trials at the com-
munal level, and used it for a federal vote in 2004 [1]. During the early stages of the
development process, computer experts identified the risks associated with Internet
voting and recommended measures such as the development of a dedicated operating
system that would be distributed on CD ROMs and uploaded by voters on their
personal computers for the vote, but such measures were rejected as being too complex:
it was felt that they would discourage use of the Internet voting system [4]. For similar
reasons, solutions involving coded voting [5] were not implemented.

The system that was implemented was basically an electronic version of the cor-
respondence voting procedure. The system is not fully electronic: the voter needs the
very same paper material used for correspondence voting. The identification codes that
prevent voters from casting multiple votes are provided in the correspondence voting
material. Proxy voting is not allowed in Geneva. In order to prevent (or at least
discourage) proxy voting, the voter must sign the identification card used for corre-
spondence voting: this card must be sent to the voting authorities, but it is of course
separate from the actual ballot, so anonymity of the vote is preserved. In the case of
Internet voting, voters must provide their birth date and commune of origin (each Swiss
citizen is associated with one or more commune of origin). In families, family members
typically know the birth date and commune of origin of other family members.

When a voter accessed the Geneva Internet voting system that the author chal-
lenged, Java applets were downloaded to the voter’s PC (the system has been modified
and continues to evolve). Various sophisticated encryption measures are used for the
communications between the user’s personal computer and the state’s servers.
A detailed description is given in [6]. But the system used in 2011 did not have any
provisions for verifiability (see [7–9] for a discussion of that technique) nor were any
particular measures foreseen to check whether a user’s personal computer had been
compromised by malware [5, 7, 10]. In June 2013 a computer engineer demonstrated
that it was relatively easy to insert in the voter’s personal computer malware that could
modify the voter’s vote before it was encrypted and sent to the state’s servers, and this
without the voter being aware of the change [11].

Geneva cantonal law does not limit the proportion of Internet voters, but this has no
practical effect for most votes, because cantonal votes are held in conjunction with
federal votes, so the federal limits apply. That is, when there is a vote that concerns
both federal and cantonal matters, the federal rules apply, and the proportion of Internet
voters is limited.

However, the limits do not necessarily apply if a vote concerns only cantonal
matters. The schedule of federal voting is fixed in advance by the government and there
are usually four votes per year, each involving several separate questions (typically a
yes or no vote on a constitutional amendment or on a federal law).

162 R. Hill

In May 2011, there was no federal question. The Geneva government decided to
allow 100 % of the Geneva voters to use Internet voting for the cantonal questions. The
same happened in November 2011.

The purpose of this paper is to present the outcome of an attempt to challenge the
Geneva system in court. A comparative analysis of the case law regarding electronic
voting in several countries, and also of the respective laws, is given in [13]. As we will
see, the approach taken by the courts in Switzerland differs from that taken by the
courts in other countries.

2 What the Appellant Did

The author of the present paper filed court challenges (called appeals in Switzerland)
against the use of the Geneva system by all voters for the May and September 2011
votes. He requested the courts to find that the Geneva system did not conform to
cantonal law and the Federal Constitution.

The reasons being that there was no guarantee that the vote sent to the state’s server
accurately reflects the voter’s choices, that a family members can vote for another
family member without that member’s knowledge, and that the secrecy of the vote was
not guaranteed.

The appeals were filed only against the votes where 100 % of the Geneva voters
were offered the possibility of voting via Internet because, as explained below, an
appeal can only be successful if the appellant can show that an irregularity could
have affected the outcome. It is highly unlikely that the federal outcome can be affected
by an irregularity in an Internet voting system that is offered only to 30 % of the voters.
So an appeal against the use of the Internet voting system in a federal vote had lesser
chance of being successful.

As we will see, the appeal was unsuccessful and this colors the present paper.

3 Why the Appellant Did It

The motivation behind the appeals was to stimulate improvements to the Geneva
system, in particular the implementation of verifiability. In the author’s view, the
Geneva government (who had put into place the challenged Internet voting system) and
the Geneva parliament (who had passed the law allowing the challenged system to be
offered to all voters) did not know or understand that there has long been consensus
amongst computer scientists that e-voting is risky [5, 12], that the rather simple Geneva
system was inadequate, and that appropriate systems can be put into place.

Challenging an E-voting System in Court 163

4 The Appellant’s Background

The appellant in these cases is not a lawyer and he did not mandate or consult lawyers
regarding the cases. The complainant has degrees in mathematics and statistics from
MIT and Harvard University, but he has mostly worked as a programmer, information
systems manager, and telecommunications manager.

5 The Legal Process

Legal challenges to cantonal votes in Geneva must be filed with the cantonal court. The
decision of the cantonal court can be appealed to the Federal Tribunal, which is the
Swiss supreme court.

The deadline for filing the appeal at the cantonal level is rather short, 6 days. The
deadline for filing the federal appeal is 30 days. At the cantonal level, the court will
consider the receivability of the appeal before considering the arguments on the merits;
it will consider both cantonal law and federal law, in particular the provisions of the
Federal Constitution.

At the federal level the court will consider the receivability of the federal appeal,
and the receivability of the cantonal appeal (but it will only consider whether the
cantonal decision on receivability was arbitrary). Regarding the merits, it will freely
review the application of both cantonal and federal law, but it will rely on the facts
established by the cantonal court, unless the appelant can prove that the cantonal court
established the facts in an arbitrary manner.

As we will see below, these technical legal procedural niceties were significant to
the cases.

5.1 Receivability

In order to be receivable, an appeal must be filed within the deadline, by a person who
has the right to file the appeal (in this case any voter). And it must respect formal rules
regarding the format of the appeal, the language in which it is written, the number of
copies to be submitted, etc.

There were no receivability issues at the federal level (even if the Geneva gov-
ernment did attempt to challenge the receivability of the federal appeals). On the other
hand, there were significant issues regarding the receivability at the cantonal level. On
the one hand, this might appear surprising: why should the court try to avoid con-
sidering the merits of the case? On the other hand, it is understandable: courts are not
comfortable evaluating what is primarily a technical dispute [13].

5.2 Merits

The Law Applicable to the Merits. According to federal law (art. 34 of the Swiss
Constitution and the resulting case law of the Federal Tribunal), the results of a vote

164 R. Hill

must faithfully reflect the voter’s intent, the vote must be secret (with some exceptions
which are not relevant for the cases at hand), and one person can vote only once. It is
not necessary for a complainant to prove that irregularities actually affected the result of
a vote: it suffices to show that irregularities could have affected the result [14].

According to cantonal law (art. 60 of the Loi sur l’exercise des droits politiques), a
voter must use equipment that is sufficiently secure, the government publishes security
rules, and the government can suspend the use of e-voting systems if it believes that
security is insufficient. In this context, “security” does not refer merely to security of
the information technology used in the e-voting systems, it also refers to the reliability
and security of all other aspects of the e-voting system, including manual operations.

The Substantive Arguments. The appellant alleged that the Geneva system did not
comply with the law because the personal computers used by voters are vulnerable to
malware that can change a vote without the voter’s knowledge (for example,
man-in-the-browser attack), that a man-in-the-middle attack was possible, that the
state’s server could also be compromised, that massive fraud could not be detected, that
the secrecy of the vote could not be guaranteed, and that a family member could –

easily and without risk of detection – impersonate and vote in place of another family
member (also a risk in old persons’ homes).

Further, the appelant alleged that the Geneva government had not produced the
security requirements called for by cantonal law, and that the government should
suspend the use of Internet voting until those security requirements were published.

The appeal was directed against the specific system (software) implemented and
used in Geneva and the allegedly missing detailed regulation of security, and not
against the principle of e-voting, nor against the provisions of the Geneva Constitution
or of the cantonal law authorizing Internet voting. Indeed, appeals against those pro-
visions per se would have been time-barred: an explicit challenge of the provisions of
the Constitution or the cantonal law would have had to be filed within 30 days of their
promulgation. On the other hand, the provisions can be challenged implicitly in the
context of an appeal against a specific vote. The appellant attempted to do this but, as
we will see below, the appeal was not accepted because the appellant could not present
evidence showing that specific weaknesses had been exploited in a specific vote.

The appeal included the following figures. Figure 1 shows how malware could be
introduced so as to change what the voter entered and send the falsified vote to the
state’s server. Figure 2 shows how a man-in-the-middle attack would be possible if the
voter’s personal computer were compromised, for example by replacing its X.509
certificates. Figure 3 shows the results of the Internet vote compared to the corre-
spondence vote for the May 2011 vote for each of the five questions considered in that
vote. As can be seen, the Internet vote differed systematically from the correspondence
vote, which is not usually the case [15]. And the difference for question 5 was sta-
tistically significant and it actually affected the result of the vote for that particular
question.

The appeals pointed out that a computer engineer had actually shown how easy it
was to insert malware that would modify a vote, without the voter being aware of it [11].
And it stressed the fact that the 2013 report of the Federal government called for not
allowing more than 30 % of voters to use the existing systems, and for the development

Challenging an E-voting System in Court 165

and implementation of verifiable systems [2]. The appellant argued that the federal
restriction of 30 % on the proportion of voters allowed to use the Geneva Internet voting
system should apply also to cantonal votes.

The cantonal court’s judgment provided a good summary of all the arguments
outlined above [16].

Voter

Operating System
Internet navigator

eVoting Applet

Screen
Interface

Keyboard
Interface

User Interface

Secure connection
with State server

Points where malware may
be present

Fig. 1. Vulnerabilities to malware

Voterís computer Man-in-Middle eVoting server

Access to fake web site

Fake certificate

Access to State web site

Authentic certificate

Establishment of encryption

Downloading authentic applet

Downloading fake applet

Transmission of identification information

Transmission of key and client certificate

Transmission of ballot

Manipulation of vote and transmission of fake ballot

Fig. 2. Vulnerabilities to man-in-the-middle

166 R. Hill

6 The Actual Procedures

The complainant filed six separate legal actions. In four of them he appealed to the
Federal Tribunal against the cantonal decision. The six separate actions were:

1. Against the voting method used for the May 2011 vote. This complaint was mis-
takenly filed too late, so it was irreceivable. There was no appeal to the Federal
Tribunal. The total cost of this action was CHF 500.

2. Against the result of the May 2011 vote. This was declared time barred and thus
irreceivable at the cantonal level because the cantonal court held that the complaint
was in reality directed against the voting method, not against the result of the vote
[17]. The complainant appealed to the Federal Tribunal: the appeal was rejected
[18]. It should be noted here that, with respect to cantonal procedural law (in this
case the deadline for filing the cantonal complaint), the Federal Tribunal will only
overturn the cantonal decision if it finds it to be arbitrary. The Federal Tribunal’s
judgment did not explicitly deal with the fact, put forward in both the cantonal
complaint and the federal appeal, that there was an unusual difference between the
results of the correspondence vote and the Internet vote, see Fig. 3 above. So the
complainant filed a request for revision, on the grounds that the Federal Tribunal
had overlooked a significant fact. The Federal Tribunal rejected this request [19].
The cost for this action was CHF 500 at the cantonal level, and CHF 1000 for each
stage at the federal level, so the total was CHF 2500.

3. Against the refusal of the Geneva government to suspend e-voting as requested by
letter. The cantonal court held that there was no appealable decision: the mere
refusal to comply with the request in a letter was not a formal decision. There was
no appeal to the Federal Tribunal. The total cost of this action was CHF 500.

Fig. 3. Differences between Internet vote and correspondence vote for May 2011 vote

Challenging an E-voting System in Court 167

4. Against the voting method used for the 27 November 2011 vote. The cantonal court
held that the appeal was irreceivable because the arguments were abstract, general,
and directed against the principle of e-voting and not against the Geneva system
[16]. On appeal, the Federal Tribunal quashed this judgement and remanded the
case to the cantonal court for a new decision, on the grounds that the arguments put
forward by the cantonal court concerned the merits, not the receivability of the
appeal [20]. In accordance with the procedural rules regarding deadlines, the appeal
was filed before the results of the vote were known. Once the results were pub-
lished, it became obvious that they could not have been affected by a defect in the
Internet voting system (the proportion of voters using the Internet system was too
small to affect the outcome). Therefore the appellant withdrew his request to annul
the vote, but he persisted with his request that the method be found illegal. The
withdrawal of the request to annul the vote could have resulted in the case being
declared moot, but the Federal Tribunal ruled that it was not, because the case raised
a question of principle which should be examined by the courts [20]. There was no
cost for this case because the appellant prevailed.

5. Recusal of the cantonal judges who involved in the judgment mentioned above, on
the grounds that they had already evaluated the merits of the case, because they had
held that the arguments were abstract, general, and directed against the principle of
e-voting and not against the Geneva system. The request was refused both by the
cantonal court and by the Federal Tribunal [21]. The cost was CHF 350 at the
cantonal level and CHF 2000 at the federal level, so the total cost was CHF 2350.

6. Second cantonal judgment regarding the 27 November 2011, the case having been
declared receivable by the Federal Tribunal. The cantonal court rejected the appeal
on the grounds that the arguments were abstract, general, and directed against the
principle of e-voting and not against the Geneva system [22]. On appeal, the Federal
Tribunal agreed [23]. Since this judgment ended the process, it will be discussed in
more detail below. The cost was CHF 1500 at the cantonal level and CHF 1000 at
the federal level, so the total was CHF 2500.

7 The Federal Court’s Reasons

In essence, the Federal Tribunal [23] held that an appeal can only be lodged if
weaknesses have been actually exploited during a specific vote. The fact that a
weakness exists, and that it could be exploited in a way that cannot be detected, is not
sufficient, and this even if the appeal is directed against the procedures used and not
against the outcome of the vote. According to the Tribunal, arguments of that nature
must be decided at the political level. Thus in practice one cannot appeal to the courts
against the characteristics of an electronic voting system. The Tribunal, in so ruling,
distances itself from the case law of other jurisdictions.

It should be noted that the Tribunal rejected (for the reasons mentioned above), the
following claims regarding the Geneva system:

1. A voter can vote more than once using the electronic system, and this in a way that
cannot be detected. This is not due to the computerized system properly speaking:

168 R. Hill

the weakness is in the method used to identify voters when they are voting
electronically.

2. A virus or other malware could have changed the results of the vote.
3. The secrecy of the vote cannot be guaranteed, because malware could compromise

the secrecy.
4. The regulations at the cantonal level are not consistent with cantonal law because

they do not contain the required level of detailed requirements regarding the
security of the voters’ computers.

5. Because the federal law does not allow use of a system such as the Geneva system
for all voters, and this precisely for the reasons set forth by the appellant, making
such a system available to all voters for cantonal votes violates the Federal
Constitution.

Regarding the case law of other jurisdictions, claims similar to those put forward by the
appellant have been evaluated on their merits by courts in Austria, Germany and India
[13]. In those cases the courts ruled that the electronic systems in question did not
conform to the law and could not be used without changes. The German judgment is
particularly broad and some commentators are of the view that it essentially prohibits
e-voting [26].

A case judged in Estonia is worth mentioning because it creates a catch-22, that is,
a situation from which an individual cannot escape because of contradictory rules [24].
At the time, Estonia was using an Internet voting scheme that shared the main char-
acteristics of the Geneva system described above: it assumed that the voter’s personal
computer had not been compromised. A computer specialist deliberately infected his
own personal computer with a virus that tampered with his vote, and then challenged
the voting process in court, using as evidence what had happened in his own personal
computer. The court dismissed the case, holding that the situation was analogous to that
of a user who deliberately casts an invalid ballot. But the computer specialist would
have committed a criminal offense if he had tampered with the computer of another
voter without that voter’s consent. So, in effect, there was no legal way for the com-
puter specialist to present to the court evidence regarding how easy it was to tamper
with the Internet voting system by tampering with voters’ personal computers [27].

As Driza Maurer and Barrat put the matter [28], absence of proof of tampering is
not proof of absence of tampering. We will discuss this point in more detail in the next
section.

8 Next Steps

On the one hand, the judgment of the Federal Tribunal might seem surprising because,
having first ruled that the appellant raised matters of principle that should be evaluated
by the courts, it subsequently ruled that the matters in question were better left to the
political system. On the other hand, the judgment must be seen in light of the evolution
of the Swiss federal rules regarding e-voting systems. While the case was progressing
through the courts, the Federal Council tightened the requirements for e-voting sig-
nificantly, mandating the use of verifiable systems if more than 30 % of the voters are
allowed to use an e-voting system [25]. While this change in federal law does not

Challenging an E-voting System in Court 169

directly prevent the use of non-verifiable systems for cantonal-only votes, in practice it
has resulted in the implementation of verifiable systems in the cantons. Thus the court
cases discussed above may have influenced the actual implementation of e-voting
systems in Switzerland, even if they were thrown out by the courts [28, 29].

Nevertheless, one might take the view that the situation in Switzerland is not
satisfactory, because there is no way to ask for judicial review of a cantonal govern-
ment’s implementation of the federal rules regarding e-voting systems. For sure the
systems are subject to review and approval by the federal government, but that is not
the same as review and approval by an impartial and independent judiciary.

And indeed a group of federal parliamentarians has proposed to change the federal
law so that the courts would have to evaluate on their merits arguments such as the ones
outlined above [30]. That is, courts would evaluate whether a specific implementation
of an e-voting system complies with the applicable federal and cantonal laws and
regulations, and this independently of whether or not an appellant can prove that
specific weaknesses were exploited in the course of a specific vote.

Further, it seems reasonable to conclude that parliaments need to take greater
responsibility for the security of the systems that are actually implemented, and that
they should be more involved in the tradeoffs between verifiability versus secrecy,
usability versus coded voting or dedicated operating systems, and low costs versus
dedicated hardware. All those topics warrant considerable further inter-disciplinary
discussions, because they relate to legal, technical, and social matters [28].

References

1. Maurer, A.D.: Internet Voting and Federalism: The Swiss Case. Revista General de Derecho
Público Comparado, No. 13, 2013. In: Barrat, J. (ed.) El voto electronico y sus dimensiones
juridicas: entre la ingenua complacencia y el rechazo precipitado, Iustel, Madrid, Spain
(2015)

2. Swiss Federal Chancellery: Vote électronique. http://www.bk.admin.ch/themen/pore/
evoting/index.html?lang=fr

3. Commission externe d’évaluation des politiques publiques: Voter par Internet: évaluation
des effets du vote électronique à Genève, Geneva, Switzerland (2013). http://goo.gl/BZpFn4

4. Chevalier, M.: Internet Voting: Status, Perspectives, and Issues, Chancellery of the canton of
Geneva, ITU-T Workshop on e-Government (2003). http://www.itu.int/itudoc/itu-t/
workshop/e-gov/e-gov010.html

5. Oppliger, R.: Traitement du problème de la sécurité des plate-formes pour le vote par
Internet à Genève, Chancellerie du canton de Genève, Geneva, Switzerland (2002). http://
goo.gl/t8o9gG

6. Chevalier, M.: La solution genevoise de vote électronique à cœur ouvert, Direcktdemokratie,
Flash Informatique No. 6 (2011). http://goo.gl/9HUZXx

7. Dubuis, E., Haenni, R., Koenig, R.: Konzept und implicationen eines verifizierbaren Vote
Eletronique Systems. Berner Fachhochschule, Bern, Switzerland (2012). http://goo.gl/
pj7Gyl

8. Dubuis, E., Fischli, S., Haenni, R., Serdült, U., Spycher, O.: A verifiable internet voting
system. In: CeDEM 2011, Conference for E-Democracy and Open Government, Krems,
Austria, pp. 301–312 (2011)

170 R. Hill

http://www.bk.admin.ch/themen/pore/evoting/index.html?lang=fr
http://www.bk.admin.ch/themen/pore/evoting/index.html?lang=fr
http://goo.gl/BZpFn4
http://www.itu.int/itudoc/itu-t/workshop/e-gov/e-gov010.html
http://www.itu.int/itudoc/itu-t/workshop/e-gov/e-gov010.html
http://goo.gl/t8o9gG
http://goo.gl/t8o9gG
http://goo.gl/9HUZXx
http://goo.gl/pj7Gyl
http://goo.gl/pj7Gyl

9. Barrat, J., Chevallier, M., Goldsmith, B., Jandura, D., Turner, J., Sharma, R.: Internet voting
and individual verifiability: the Norwegian return codes. In: EVOTE2012, Bregenz, Austria,
pp. 35–45 (2012)

10. Swiss Federal Council: Rapport sur le vote électronique (2013). http://www.admin.ch/opc/fr/
federal-gazette/2013/4519.pdf

11. Andrivet, S.: Attacking E-Voting: A Concrete Case, in Nuit du Hack 2013, Advtools (2013).
http://goo.gl/1FamYU

12. Jones, Douglas W., Simons, Barbara: Broken Ballots: Will Your Vote Count?. University of
Chicago Press, Chicago (2012)

13. Maurer, A.D., Barrat, J. (eds.): E-Voting Case Law: A Comparative Analysis. Ashgate,
Farnham (2015)

14. Auer, A., Malinverni, G., Hottelier, M.: Droit constitutionnel suisse. Staempfli, Bern (2006)
15. Christin, T., Trechsel, A.S.: Analyse du scrutin du 26 septembre 2004 dans quatre

communes genevoises. E-Democracy Center, University of Geneva, Geneva, Swittzerland
(2005). http://goo.gl/4YqhFz

16. Chambre administrative, Cour de Justice de Genève: ATA/533/2012, 21 August 2012.
http://justice.geneve.ch/tdb/Decis/TA/ata.tdb?F=ATA/533/2012

17. Chambre administrative, Cour de Justice de Genève, ATA/414/2011, 28 June 2011. http://
justice.geneve.ch/tdb/Decis/TA/ata.tdb?F=ATA/414/2011

18. Federal Tribunal: 1C_329/2014, 22 July 2014. http://relevancy.bger.ch/php/aza/http/index.
php?type=highlight_simple_query&highlight_docid=aza%3A%2F%2F22-12-2011-1C_
329-2011

19. Federal Tribunal: 1F_5/2012, 19 March 2012. http://relevancy.bger.ch/php/aza/http/index.
php?type=highlight_simple_query&highlight_docid=aza%3A%2F%2F19-04-2012-1F_5-
2012

20. Federal Tribunal: 1C_477/2012, 27 March 2013. http://relevancy.bger.ch/php/aza/http/
index.php?type=highlight_simple_query&highlight_docid=aza%3A%2F%2F27-03-2013-
1C_477-2012

21. Federal Tribunal: ATF 1C_563, 29 August 2013. http://relevancy.bger.ch/php/aza/http/
index.php?type=highlight_simple_query&highlight_docid=aza%3A%2F%2F29-08-2013-
1C_563-2013

22. Chambre administrative, Cour de Justice de Genève, ATA 118/2014, 25 February 2014.
http://justice.geneve.ch/tdb/Decis/TA/FichierWord/2014/0001/ATA_000118_2014_A_
3506_2011.pdf

23. Federal Tribunal: 1C_136, 22 July 2014. http://relevancy.bger.ch/php/aza/http/index.php?
type=highlight_simple_query&highlight_docid=aza%3A%2F%2F22-07-2014-1C_136-2014

24. Wikipedia: Catch-22 (logic). http://en.wikipedia.org/wiki/Catch-22_(logic)
25. Swiss Federal Chancellery: Des nouvelles dispositions régissent le vote électronique. http://

www.bk.admin.ch/themen/pore/evoting/index.html?lang=fr
26. Seedorf, S.: Germany: the public nature of elections and its consequences on e-voting. In:

[13]
27. Madise, U., Vinkel, P.: A judicial approach to internet voting in Estonia. In: [13]
28. Driza Mauer, A., Barrat, J.: Conclusions. In: [13]
29. Kuoni, B.: Case Law on e-voting – a swiss perspective. In: [13]
30. Swiss Parliament: Zulassung einer rechtlichen Prüfung der Modalitäten der elektronischen

Stimmabgabe, Curia Vista 15.412. http://www.parlament.ch/d/suche/Seiten/geschaefte.
aspx?gesch_id=20150412

Challenging an E-voting System in Court 171

http://www.admin.ch/opc/fr/federal-gazette/2013/4519.pdf
http://www.admin.ch/opc/fr/federal-gazette/2013/4519.pdf
http://goo.gl/1FamYU
http://goo.gl/4YqhFz
http://justice.geneve.ch/tdb/Decis/TA/ata.tdb?F=ATA/533/2012
http://justice.geneve.ch/tdb/Decis/TA/ata.tdb?F=ATA/414/2011
http://justice.geneve.ch/tdb/Decis/TA/ata.tdb?F=ATA/414/2011
http://relevancy.bger.ch/php/aza/http/index.php%3ftype%3dhighlight_simple_query%26highlight_docid%3daza%253A%252F%252F22-12-2011-1C_329-2011
http://relevancy.bger.ch/php/aza/http/index.php%3ftype%3dhighlight_simple_query%26highlight_docid%3daza%253A%252F%252F22-12-2011-1C_329-2011
http://relevancy.bger.ch/php/aza/http/index.php%3ftype%3dhighlight_simple_query%26highlight_docid%3daza%253A%252F%252F22-12-2011-1C_329-2011
http://relevancy.bger.ch/php/aza/http/index.php%3ftype%3dhighlight_simple_query%26highlight_docid%3daza%253A%252F%252F19-04-2012-1F_5-2012
http://relevancy.bger.ch/php/aza/http/index.php%3ftype%3dhighlight_simple_query%26highlight_docid%3daza%253A%252F%252F19-04-2012-1F_5-2012
http://relevancy.bger.ch/php/aza/http/index.php%3ftype%3dhighlight_simple_query%26highlight_docid%3daza%253A%252F%252F19-04-2012-1F_5-2012
http://relevancy.bger.ch/php/aza/http/index.php%3ftype%3dhighlight_simple_query%26highlight_docid%3daza%253A%252F%252F27-03-2013-1C_477-2012
http://relevancy.bger.ch/php/aza/http/index.php%3ftype%3dhighlight_simple_query%26highlight_docid%3daza%253A%252F%252F27-03-2013-1C_477-2012
http://relevancy.bger.ch/php/aza/http/index.php%3ftype%3dhighlight_simple_query%26highlight_docid%3daza%253A%252F%252F27-03-2013-1C_477-2012
http://relevancy.bger.ch/php/aza/http/index.php%3ftype%3dhighlight_simple_query%26highlight_docid%3daza%253A%252F%252F29-08-2013-1C_563-2013
http://relevancy.bger.ch/php/aza/http/index.php%3ftype%3dhighlight_simple_query%26highlight_docid%3daza%253A%252F%252F29-08-2013-1C_563-2013
http://relevancy.bger.ch/php/aza/http/index.php%3ftype%3dhighlight_simple_query%26highlight_docid%3daza%253A%252F%252F29-08-2013-1C_563-2013
http://justice.geneve.ch/tdb/Decis/TA/FichierWord/2014/0001/ATA_000118_2014_A_3506_2011.pdf
http://justice.geneve.ch/tdb/Decis/TA/FichierWord/2014/0001/ATA_000118_2014_A_3506_2011.pdf
http://relevancy.bger.ch/php/aza/http/index.php%3ftype%3dhighlight_simple_query%26highlight_docid%3daza%253A%252F%252F22-07-2014-1C_136-2014
http://relevancy.bger.ch/php/aza/http/index.php%3ftype%3dhighlight_simple_query%26highlight_docid%3daza%253A%252F%252F22-07-2014-1C_136-2014
http://en.wikipedia.org/wiki/Catch-22_(logic)
http://www.bk.admin.ch/themen/pore/evoting/index.html?lang=fr
http://www.bk.admin.ch/themen/pore/evoting/index.html?lang=fr
http://www.parlament.ch/d/suche/Seiten/geschaefte.aspx%3fgesch_id%3d20150412
http://www.parlament.ch/d/suche/Seiten/geschaefte.aspx%3fgesch_id%3d20150412

Author Index

Bibiloni, Pedro 92

Cucurull, Jordi 129

Dawson, Jeremy E. 142
Desmedt, Yvo 110

Erotokritou, Stelios 110
Escala, Alex 92

Fornés, Alicia 129

Galindo, David 3
Goré, Rajeev 142
Guasch, Sandra 3

Haenni, Rolf 74
Halderman, J. Alex 35

Heiberg, Sven 19
Hill, Richard 161

Kulyk, Oksana 57

Lladós, Josep 129
Locher, Philipp 74

Meumann, Thomas 142
Morillo, Paz 92

Parsovs, Arnis 19
Puiggalí, Jordi 3, 129

Teague, Vanessa 35, 57
Toledo, J. Ignacio 129

Volkamer, Melanie 57

Willemson, Jan 19

	Preface
	Organization
	Contents
	Real-World Election Systems
	2015 Neuchâtel's Cast-as-Intended Verification Mechanism
	1 Introduction
	2 Related Work
	3 Single Voting with Return Codes
	3.1 Syntax
	3.2 Workflow
	3.3 Trust Assumptions

	4 Building Blocks
	5 A Protocol for Cast-as-Intended Verification with Single Voting
	6 Usability and Vote Correctness Layers
	6.1 Private Key Provision
	6.2 Short Return Codes
	6.3 Vote Correctness

	7 (Informal) Security Analysis
	7.1 Cast-as-Intended Verifiability
	7.2 Privacy

	8 Conclusions
	References

	Log Analysis of Estonian Internet Voting 2013--2014
	1 Introduction
	2 Log Monitoring for Estonian Internet Voting Scheme
	2.1 Estonian Internet Voting Scheme
	2.2 Specification-Based Log Analysis

	3 Sociodemographic Metrics in 2013--2014
	3.1 Age Distribution
	3.2 Verification

	4 Technical Metrics in 2013--2014
	4.1 OS and eID Distribution
	4.2 IP Address Shared by Several Voters
	4.3 Revoting

	5 Unsuccessful Voting Sessions
	5.1 Sessions Failing with an Error Condition
	5.2 Failure to Cast a Vote
	5.3 Incidents

	6 Unsuccessful Verification Sessions
	6.1 Failure to Verify
	6.2 Verification Requests that Could Not Be Linked to Votes

	7 Discussion and Conclusions
	7.1 Summary of the Findings
	7.2 Limitations of the Approach
	7.3 Future Work

	References

	The New South Wales iVote System: Security Failures and Verification Flaws in a Live Online Election
	1 Introduction
	2 iVote Background
	3 Vulnerabilities in iVote
	3.1 Vulnerability to the FREAK Attack
	3.2 Vulnerability to the Logjam Attack
	3.3 Proof-of-Concept, Exploitability, and Responsible Disclosure

	4 Circumventing Verification
	4.1 Simple Verification Avoidance
	4.2 Using the ``clash'' Attack to Reduce Verification Failures

	5 Other Issues
	5.1 Integrity, Auditing, and Verification
	5.2 Privacy
	5.3 Usability and Operations

	6 Lessons
	7 Conclusion
	References

	Advanced Voting Protocols
	Extending Helios Towards Private Eligibility Verifiability
	1 Introduction
	2 Related Work
	3 Background
	3.1 Helios
	3.2 Cryptographic Building Blocks

	4 Proposed Scheme
	4.1 Preparations
	4.2 Vote Casting
	4.3 Tallying

	5 Security Analysis
	5.1 Security Requirements
	5.2 Discussion on the Assumptions

	6 Efficiency Analysis
	7 Conclusion
	A Cryptographic Building Blocks
	A.1 Proof of an Encryption of 1
	A.2 Proof of Knowledge of Discrete Log
	A.3 Proof of Knowledge of RSA Signature

	References

	Verifiable Internet Elections with Everlasting Privacy and Minimal Trust
	1 Introduction
	1.1 Contribution
	1.2 Related Work
	1.3 Paper Overview

	2 Cryptographic Preliminaries
	2.1 Set Membership Proof
	2.2 Proof of Known Representation of a Committed Value

	3 Internet Elections with Everlasting Privacy
	3.1 Adversary Model and Trust Assumptions
	3.2 Protocol Description
	3.3 Protocol Discussion
	3.4 Extensions

	4 Performance and Implementation
	4.1 Ballot Size
	4.2 Cost of Computation: Ballot Generation
	4.3 Cost of Computation: Verification
	4.4 Implementation and Optimizations

	5 Conclusion
	References

	Vote Validatability in Mix-Net-Based eVoting
	1 Introduction
	1.1 The Problem of Invalid Votes
	1.2 Introducing Vote Validatability

	2 Preliminaries
	2.1 Encryption Schemes
	2.2 Signature Schemes
	2.3 Pseudo-Random Permutations
	2.4 Non-Interactive Zero-Knowledge Proof of Knowledge

	3 Definitions
	3.1 Syntactical Definition
	3.2 Privacy
	3.3 Strong Consistency
	3.4 Vote Validatability

	4 General Construction
	4.1 Core Idea
	4.2 Detailed Protocol

	5 Concrete Instantiation
	5.1 Efficiency

	6 Conclusions
	A Proofs of Security Theorems
	References

	Making Code Voting Secure Against Insider Threats Using Unconditionally Secure MIX Schemes and Human PSMT Protocols
	1 Introduction
	2 Background and Previous Related Work
	2.1 Previous Related Work
	2.2 Message Transmission Security Properties
	2.3 Existential Honesty
	2.4 Human Perfectly Secure Message Transmission Protocols
	2.5 Secure Multiparty Computation in Black-Box Groups

	3 Secure Code Voting with Distributed Security
	3.1 High Level Description
	3.2 Required Cryptographic Tools

	4 Transmit and Reply Protocol
	4.1 Protocol Main Idea
	4.2 The MIX Communication Protocol - 1A: Receiver to Sender Transmission
	4.3 The MIX Communication Protocol - 1B: Sender to Receiver Transmission
	4.4 Security Proof

	5 Reducing the Number of MIX Servers
	5.1 Virtual Directed Acyclic Graphs
	5.2 The MIX Protocol
	5.3 Security Proof
	5.4 Use of non-Abelian Group - Multi-seat Election Case

	6 Electronic Code Voting Protocol
	6.1 Preparation, Mixing and Transmission of Voting Codes
	6.2 Receiving and Reconstructing Voting Codes
	6.3 Transmission, Mixing and Counting of Cast Votes

	References

	Other Topics
	Document Analysis Techniques for Automatic Electoral Document Processing: A Survey
	1 Introduction
	2 Preprocessing
	3 Ballots
	3.1 Mark Recognition
	3.2 Preferential Voting
	3.3 Write-In

	4 Ballot Statements
	5 Security
	6 Conclusions
	References

	Machine-Checked Reasoning About Complex Voting Schemes Using Higher-Order Logic
	1 Introduction
	2 Hare-Clark Single Transferable Voting
	3 Related Work
	4 Higher-Order Logic and the HOL4 Theorem Prover
	5 Translating Legislation into Higher-Order Logic
	5.1 Assumptions About the Implementation
	5.2 Example Definitions
	5.3 Sanity Checks
	5.4 Example of a Clause in Higher-Order Logic

	6 From HOL4 to an SML Implementation
	6.1 Testing the SML Implementation for Efficiency

	7 Proving Termination of Functions and Properties of the Results of Those Functions
	7.1 Properties of the Function MERGE

	8 Proving Sanity Checks, Difficulties and Errors Found
	8.1 That the List of Candidates Remains Unchanged
	8.2 Conditions Which Need to Be Proved
	8.3 Errors Discovered

	References

	Experience Reports
	Challenging an E-voting System in Court:
	Abstract
	1 Introduction and Background
	2 What the Appellant Did
	3 Why the Appellant Did It
	4 The Appellant's Background
	5 The Legal Process
	5.1 Receivability
	5.2 Merits

	6 The Actual Procedures
	7 The Federal Court's Reasons
	8 Next Steps
	References

	Author Index

