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Abstract This paper considers single server retrial queues with setup time. In the
basic model, if the server completes a service and there are no customers in the orbit,
the server is turned off immediately. Arriving customers that see the server occupied
join the orbit and repeat their attempt after some random time. The new feature of
our models is that an arriving customer that sees the server off waits at the server and
the server is turned on. The server needs some setup time to be active so as to serve
the waiting customer. If the server completes a service and the orbit is not empty, it
stays idle waiting for either a new customer or a customer from the orbit. For this
model, we obtain explicit expressions for the generating functions of the joint queue
length. We then consider an extended model where the server stays idle for a while
before being turned off for which explicit solution is also obtained.
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1 Introduction

Power-saving in ICT systems is an important issue because ICT devices consume
a large amount of energy. One simple method is to turn off an idle device and to
switch it on again when some jobs arrive. This is because in the current technology
idle devices still consume about 60% of their peak processing a job [2]. On the other
hand, a quick response is crucial for delay sensitive applications. An off server needs
some setup time in order to be active during which the server consumes energy
but cannot process a job. Thus, there is a trade-off between power-consumption
and delay performance. This trade-off can be analyzed using single server queueing
models with setup times which are extensively studied in the literature [3, 12].
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Retrial is a common phenomenon in ICT systems. Customers (jobs) that can-
not occupy the server immediately upon arrival join an orbit and retry to enter the
server after some random time. Although queues with retrial or setup time are sep-
arately investigated in the literature, this paper is the first attempt to combine these
two features in one model. We first consider an M/M/1/1 retrial queue with setup
time where the server is immediately turned off when the system (server and orbit)
becomes empty. We then consider an extended model where the server waits for a
while before being switched off. This idle time reduces the mean number of cus-
tomers in the orbit and the mean waiting time but at the same time it increases the
power consumption. Thus, there is a need for an appropriate setting of this idle time.

Our models are suitable for a downlink of a mobile station with a power saving
mode. A mobile station receives data from a base station. Arriving messages are
stored in the base station and the mobile station downloads these messages from
the base station. Upon the completion of a download, if there are no messages in
the base station the mobile station is turned off in order to save energy. However,
when amessage arrives, the base station sends a signal in order to wake up themobile
station. Themobile station needs some random setup time to be active so as to receive
waiting messages.

A closely related work is due to Do [4] who considers an M/M/1/1 retrial queue
with working vacation in which the server can still work at a different rate during the
vacation period. In [4], the retrial rate is independent to the number of customers in
the orbit. Artalejo [1] considers M/G/1/1 retrial queue with constant retrial rate and
vacation. In contrast to the models in [1, 4], we consider the so-called classical retrial
policy in which the retrial rate is proportional to the number of customers in the orbit.
It should be noted that the classical retrial policy makes the underlyingMarkov chain
non-homogeneous and thus its analysis is more challenging in comparison with the
constant retrial rate policy. Multiserver queues with setup time and without retrials
are analyzed in [8, 9, 10]. Analytical solutions for multiserver retrial queue and
tandem retrial model could be found in [5, 6] and [7], respectively.

The rest of this paper is organized as follows. Section 2 presents the basicM/M/1/1
retrial queue with setup time and its analysis. Section 3 presents an extended model
where the server stays idle for a while before being turned off and a summary of
analytical results. Concluding remarks are presented in Section 5.

2 Model Without a Waiting Time

2.1 Model

We consider anM/M/1/1 retrial queue with setup time. Customers arrive at the server
according to a Poisson process with rate λ. The service time of customers follows
an exponentially distributed time with mean 1/ν. Customers that see the server busy
upon arrival join the orbit and retry for service after some exponentially distributed
time with mean 1/μ. When the system becomes empty, the server is turned off
immediately. Customers that see the off server waits at the server and the server is
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turned on. However, the server needs some setup time to be active so as to serve the
waiting customer. We assume that the setup time is exponentially distributed with
mean 1/α. Customers that see the server in setup state joins the orbit and behaves
the same as other customers in the orbit.

Remark 1 Our model is different from other retrial models with vacations [1, 4]
where arriving customers that see the server on vacation join the orbit. In our model,
the setup time is activated upon an arrival of a new customer while the vacations
in [1, 4] are independent of the arrivals.

2.2 Analysis

In this section, we present an analytical solution for the joint stationary distribution
in terms of generating functions. Let C(t) and N (t) denote the state of the server
and the number of customers in the orbit, respectively.

C(t) =
⎧
⎨

⎩

0, the server is empty,
1, the server is busy,
2, the server is in setup process.

It is easy to see that {X (t) = (C(t), N (t)); t ≥ 0} forms a Markov chain on the state
space:

S = {(i, j); i = 0, 1, 2, j ∈ Z+},

where Z+ = {0, 1, 2, . . . }. We assume that the system is stable and thus λ < ν.
We refer to Figure 1 for transitions among states. It should be noted that (0, 0)

represents the state where the server is turned off.

Fig. 1 Transitions among states
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Let πi, j = limt→∞ P(C(t) = i, N (t) = j) ((i, j) ∈ S) denote the joint sta-
tionary distribution of {X (t)}. In this section, we obtain explicit expressions for the
generating functions of the joint stationary distribution πi, j ((i, j) ∈ S). We define
the generating functions as follows.

Πi (z) =
∞∑

j=0

πi, j z
j , i = 0, 1, 2.

The balance equations for states (0, j) read as follows.

(λ + jμ)π0, j = νπ1, j , j ∈ Z+.

Multiplying this equation by z j and summing up over j ∈ Z+, we obtain

λΠ0(z) + μzΠ ′
0(z) = νΠ1(z). (1)

Next, we consider balance equations for states (1, j) ( j ∈ Z+). We have

(λ + ν)π1, j = απ2, j + λπ1, j−1 + ( j + 1)μπ0, j+1 + λπ0, j (1 − δ0, j ),

where π1,−1 = 0 and δ0, j is the Kronecker delta, i.e. δ0, j = 1 if j = 0 and δ0, j = 0
if j �= 0. Multiplying this equation by z j and summing up over j ∈ Z+ yields

(λ + ν)Π1(z) = αΠ2(z) + λzΠ1(z) + μΠ ′
0(z) + λ(Π0(z) − π0,0). (2)

Next, we consider balance equations for states (2, j) ( j ∈ Z+).

(λ + α)π2,0 = λπ0,0, (λ + α)π2, j = λπ2, j−1, j ≥ 1.

Summing the first equation by z0 and the second equation by z j and summing over
j ∈ Z+, we obtain

(λ + α)Π2(z) = λzΠ2(z) + λπ0,0, (3)

leading to

Π2(z) = λπ0,0

λ + α − λz
.

We also have the following equation by summing up (1), (2) and (3) and arranging
the result.

λ(Π1(z) + Π2(z)) = μΠ ′
0(z). (4)

It should be noted that (4) represents the balance between the flows in and out the
orbit. Substituting Π1(z) and Π2(z) in terms of Π0(z) into (4), we obtain
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λ

(
λΠ0(z) + μzΠ ′

0(z)

ν
+ λπ0,0

λ + α − λz

)

= μΠ ′
0(z). (5)

Arranging this equation we obtain

Π ′
0(z) = λ2

μν

1

1 − λz
ν

Π0(z) + λ2

μ(λ + α)

π0,0

(1 − λz
λ+α

)(1 − λz
ν

)
. (6)

Remark 2 Taking the limit μ → ∞, (6) becomes Π ′
0(z) = 0 leading to Π0(z) =

π0,0. As a result, our model reduces to the conventional M/M/1 queue with setup
time (see e.g. Section 4.1 in [8]).

The differential equation (6) is solvable. First, we solve the homogeneous equa-
tion:

Π ′
0(z) = λ2

μν

1

1 − λz
ν

Π0(z).

The solution of this equation is given by

Π0(z) = C0

(

1 − λz

ν

)− λ
μ

,

for some constant C0. This suggests us to find the solution for (6) of the form

Π0(z) = C(z)

(

1 − λz

ν

)− λ
μ

.

Substituting this function into (6), we obtain

C ′(z) = λ2

μ(λ + α)

π0,0

(1 − λz
λ+α

)
(1 − λz

ν
)

λ
μ

−1
,

whose solution is given by

C(z) = C + λ2π0,0

μ(λ + α)

∫ z

0

(
1 − λu

ν

) λ
μ

−1

1 − λu
λ+α

du,

where C is some constant. Because Π0(0) = π0,0, we have C(0) = C = π0,0.
Thus, we have

Π0(1) = κ0π0,0.
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where

κ0 =
(

1 − λ

ν

)− λ
μ

(

1 + λ2

μ(λ + α)

∫ 1

0

(1 − λu/ν)
λ
μ

−1

1 − λu/(λ + α)
du

)

.

Furthermore, it follows from the differential equation (6) that

Π ′
0(1) = κ ′

0π0,0,

where

κ ′
0 = λ2

μ(ν − λ)

(
κ0 + ν

α

)
.

It follows from (4) that

Π1(1) + Π2(1) = μ

λ
κ ′
0π0,0.

Furthermore, because Π0(1) + Π1(1) + Π2(1) = 1, we have

π0,0 = 1

κ0 + μ
λ
κ ′
0
.

Differentiating equation (6) at z = 1 yields

Π ′′
0 (1) = κ ′′

0π0,0,

where

κ ′′
0 = λ

μ

(
ρ2κ0

(1 − ρ)2
+ ρκ ′

0

1 − ρ
+ ρλ(ν + α − λ)

(1 − ρ)2α2

)

, ρ = λ

ν
.

Thus, the mean number of customers in the system is given by

E[N ] = (κ ′
0 + μ

λ
κ ′′
0 )π0,0.

3 Model with an Idle Time

3.1 Model

In this section,we extend themodel in Section 2 by adding a new feature. In particular,
we assume that when the system becomes empty the server is not immediately turned
off but stays idle for some random time. In this idle period, an arriving customer
receives the service immediately. We assume that the idle time is exponentially
distributed with mean 1/β. Let C(t) denote the state of the server (defined as in the
previous section) and N (t) denote the number of customers in the orbit. Let
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X (t) =
{

O, the server is turned off,
(C(t), N (t)), otherwise.

It is easy to see that {X (t); t ≥ 0} forms a Markov chain on the state space S given
by

S = O ∪ {0, 1, 2} × Z+.

We assume that λ < ν and thus the Markov chain is stable. Furthermore, we are
going to find the stationary distribution defined as follows.

π0 = lim
t→∞P(X (t) = O), πi, j = lim

t→∞P(X (t) = (i, j)).

We refer to Figure 2 for transitions among states. The generating functions Πi (z)
(i = 0, 1, 2) are defined the same as in the previous section.

Fig. 2 Transition among states

3.2 Analysis

We have the following balance equations for states (0, j) ( j ∈ Z+)

π0,0β = λπ0, (7)

(λ + β)π0,0 = νπ1,0, j = 0, (8)

(λ + jμ)π0, j = νπ1, j , j ≥ 1. (9)

Multiplying (8) by z0 and (9) by z j and summing up over j ∈ Z+ we obtain

βπ0,0 + λΠ0(z) + μzΠ ′
0(z) = νΠ1(z). (10)
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Next we consider balance equations for states (1, j) ( j ∈ Z+).

(λ + ν)π1, j = λπ1, j−1 + ( j + 1)μπ0, j+1 + απ2, j + λπ0, j .

where π1,−1 = 0. Multiplying this equation by z j and summing up over j ∈ Z+, we
obtain

(λ + ν)Π1(z) = λzΠ1(z) + μΠ ′
0(z) + αΠ2(z) + λΠ0(z). (11)

Finally, we consider balance equations for states (2, j) ( j ∈ Z+).

(λ + α)π2,0 = λπ0, j = 0, (12)

(λ + α)π2, j = λπ2, j−1, j ≥ 1. (13)

Multiplying the first equation by z0 and the second equation by z j and summing up
over j ∈ Z+, we obtain

(λ + α)Π2(z) − λzΠ2(z) = λπ0 ⇔ Π2(z) = λπ0

λ + α − λz
. (14)

As in Section 2, we also have the following equation (representing the balance
between the flows in and out the orbit)

λ(Π1(z) + Π2(z)) = μΠ ′
0(z), (15)

by summing up (10), (11) and (14) and arranging the result. Substituting Π1(z) and
Π2(z) in terms of Π0(z) into the above equation and arranging the result yields

Π ′
0(z) = λ2

μν

1

1 − λ
ν

z
Π0(z) + λ2π0(λ + α + ν − λz)

μν(λ + α − λz)(1 − λz
ν

)
. (16)

It should be noted that (16) becomes Π ′
0(z) = 0 as μ → ∞, i.e. Π ′

0(z) = π0,0. In
this case our model reduces to the model with idle period and setup time (without
retrial). The solution of (16) is given by

Π0(z) = π0

(

1 − λz

ν

)− λ
μ

(
λ

β
+ λ2

μν

∫ z

0

(

1 − λu

ν

) λ
μ

−1 (

1 + ν

λ + α − λu

)

du

)

.

Thus, we have Π0(1) = χ0π0, where

χ0 =
(

1 − λ

ν

)− λ
μ

(
λ

β
+ λ2

μν

∫ 1

0

(

1 − λu

ν

) λ
μ

−1 (

1 + ν

λ + α − λu

)

du

)

.

Furthermore, it follows from the differential equation that
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Π ′
0(1) = λ2Π0(1)

μ(ν − λ)
+ π0λ

2(α + ν)

μα(ν − λ)

= χ ′
0π0,

where

χ ′
0 = λ2χ0

μ(ν − λ)
+ λ2(α + ν)

μα(ν − λ)
.

This expression together with the balance equation between the flow in and out the
orbit (15) yield

Π1(1) + Π2(1) = μ

λ
χ ′
0π0.

Because
Π0(1) + Π1(1) + Π2(1) + π0 = 1,

we have

π0 = 1

1 + χ0 + μχ ′
0

λ

.

Thus, we also have explicit expressions for Πi (z) (i = 0, 1, 2).
Differentiating equation (16) at z = 1 yields,

Π ′′
0 (1) = π0χ

′′
0 ,

where

χ ′′
0 = λ

μ

(
ρ2χ0

(1 − ρ)2
+ ρχ ′

0

1 − ρ
+ ρλ(ν + α − λ)

(1 − ρ)2α2 + ρ2

(1 − ρ)2

)

.

Thus, the mean number of customers in the system is given by

E[N ] = (χ ′
0 + μ

λ
χ ′′
0 )π0.

4 Performance Measures and Numerical Results

We consider two main performance measures: the probability that the server is off
(π0,0 in the model in Section 2 and π0 in the model in Section 3) and the mean
number of customers in the orbit. We would like to increase the former (i.e. decrease
the probability of the states on which the server consumes power) in order to save
energy while we also would like to decrease the mean number of customers in the
orbit. Thus, we have a trade-off between the performance and power consumption.
In order to see this trade-off we consider a cost function which is the product of
the probability that the server is in either SETUP or ON or IDLE (not in OFF state)
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and the mean number of customers in the orbit, i.e., (1− π0,0)E[N ] in the model in
Section 2 and (1 − π0)E[N ] in the model in Section 3. It should be noted that the
server consumes power in SETUP and ON and IDLE states.

In this section, we present some numerical results. We fix the parameters as
follows: μ = 1 and ν = 1. We consider three cases where β = 0.1, 1 and 10 for
the model with a waiting time (exponentially distributed with mean 1/β). We first
consider the case where ρ = λ/ν = 0.7. Figure 3 shows the probability that the
server is in OFF state against the setup rate. We observe that the π0 increases with β

in the model with waiting time. This is because a large β results in a short mean idle
time 1/β and thus a large π0. We also observe that π0 < π0,0 which is also intuitive
due to the same reason as in the monotonicity of π0 in β.

Furthermore, we observe from Figure 8 that the mean number of customers in the
orbit E[N ] decreases with β. This is intuitive because the server has more chance to
be in the idle state during which it can serve an arriving customer immediately when
β is small. We also observe that E[N ] for the model with a waiting time is bounded
by that for the model without a waiting time.

Finally, we consider the cost function against the setup rate α. We observe that
when α is small, the cost function increases with β. This suggests that if the setup
time is long, it is better to keep the idle time long. However, when the setup rate α

is large enough, we observe the cost function decreases with β. This implies that if
the setup is fast enough, it is better to keep only a short idle time so as to save power
consumption.

Figures 4, 7 and 6 show the probability of OFF state, E[N ] and the cost function
for the case of ρ = 0.1. We observe the same trends as for the case of ρ = 0.7.
Furthermore, the range of α at which the cost function of the model without waiting
time outperforms that of the model with a waiting time is larger for the case of
ρ = 0.1 in comparison with the case ρ = 0.7. This suggest that when the utilization
is low and the setup time is large enough, it is better to switched off as soon as the
server becomes idle.
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5 Concluding Remark

In this paper, we have proposed two retrial queueing models with setup time. In the
first model, the server is immediately turned off when the system becomes empty
while in the second model, the server stays idle for a while before being switched off.
We have derived explicit expressions for the partial generating functions of the joint
stationary probability of the state of the server and the number of customers in the
orbit. From the generating function, we have obtained themean number of customers
in the orbit in an explicit form. We have demonstrated some numerical examples to
show the effects of parameters on some performance measures. Models with general
distributions for service time and setup time are left for future studies. Extension of
the current model to the model with N-policy may be also another interesting topic.
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