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Abstract We consider the well-studied MMPP/PH/1 queue and illustrate a method
to find an almost equivalent model, the MTCP/PH/1. MTCP stands for Markovian
TransitionCounting Process. It is a counting process that has similar characteristics to
MMPP (Markov Modulated Poisson Process). We prove that for a class of MMPPs
there is an equivalent class of MTCPs. We then use this property to suggest an
approximation for MMPP/PH/1 in terms of the first two moments. We numerically
show that the steady state characteristics of MMPP/PH/1 are well approximated
by the associated MTCP/PH/1 queue. Our numerical analysis leaves some open
problems on bounds of the approximations. Of independent interest, this paper also
contains a lemma on the workload expression of MAP/PH/1 queues which to the
best of our knowledge has not appeared elsewhere.

Keywords Markov modulated poisson process · MAP/PH/1 · Queueing
1 Introduction

Queuing theory finds a variety of applications such as telecommunication networks,
healthcare and manufacturing, see for instance [6]. One of the most useful queueing
models is theMAP/PH/1 queue, see for example [14]. TheMarkovianArrival Process
(MAP) is a counting process based on a background finite-state Continuous-Time
Markov Chain (CTMC). MAP can be considered as a generalisation of the Poisson
process where the inter-arrival times of a MAP are not necessarily independent
of each other, nor exponentially distributed. The Phase type (PH) distribution is a
generalization of the exponential distribution and is based on the distribution of time
until absorption in a finite-state CTMC. These two matrix-analytic objects make up
the MAP/PH/1 queue: the arrival process is MAP, and the service times are assumed
i.i.d. from a PH distribution.
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Comparison of different stochastic processes to find a versatile model for describ-
ing observed data in an accurate manner is a fundamental objective in stochastic
modelling. In modelling a variety of phenomena such as queueing processes, the
MarkovModulated Poisson Process (MMPP), a special case ofMAP, can be applied.
The MMPP has a variety of applications in modelling bursty traffic. The motivation
behind the vast applications of MMPP is that MMPP keeps the tractability of the
Poisson process while enabling non-zero correlation between inter-arrival times. See
for example [5], [10] and [13].

In this paper we introduce an alternative model to MMPP which we refer to
as the Markovian Transition Counting Process (MTCP). MTCP is a MAP which
counts every transition of the background CTMC.We believe it is more tractable and
more computationally convenient than the MMPP. We find relations between MTCP
and MMPP, focusing on the case of a two state background CTMC for the MMPP.
We prove that in some cases, the first two moments of MMPP and MTCP can be
matched. We refer to these cases as slow MMPPs. This implies that the intensity of
arrivals is greater than the total intensity of state changes per state. From a modelling
perspective, slow MMPPs are perhaps the most useful MMPPs because non-slow
MMPPs have characteristics quite similar to the Poisson process.

In using MTCP for queues, we investigate the behaviour of the MTCP/PH/1
queue as an alternative to the MMPP/PH/1 queue. Here, we address this question
empirically through extensive numerical experiments. We show that the basic steady
state characteristics (mean and variance of the queue) of a given MMPP/PH/1 queue
can be emulated by an MTCP/PH/1 queue almost without relative error in most
cases, and with relative errors that are bounded at the worst case by 9%. These
preliminary results are significant for the emerging body of research dealing with
finding alternative (but similar) queueing models.

As a stochastic modeller chooses a suitable queueing model for a given situation,
there is typically more than one choice. Knowing that MTCP/PH/1 is similar to
MMPP/PH/1 allows the modeller to have more freedom in model choice. In future
research we shall integrate this within a statistical model-selection framework, fitting
queueing models to data. Towards that end, a key advantage of using MTCP/PH/1
instead of MMPP/PH/1 is that the MTCP is more informative than the MMPP. In
fact we believe that our MTCP is better suited for parameter estimation since for this
model, each observed event corresponds to exactly one transition in the background
(unobserved) CTMC.

The remainder of this paper is structured as follows: In Section 2 we overview
the MMPP/PH/1 queue and treat it as a Quasi-Birth-Death (QBD) process. We also
present a lemma on the workload expression of MAP/PH/1 queues which to the best
of our knowledge has not appeared elsewhere. In Section 3 we introduce the new
model, MTCP, as a special MAP. In Section 4 we show that for a slow MMPP2, a
useful substitute MTCP4 exists. In fact, we prove that the first and second moments
of these two model classes (slow MMPP and MTCP) can be matched. In Section 5
numerical results for approximating a given MMPP2/PH2/1 with an MTCP4/PH2/1
are presented. We conclude in Section 6.
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2 The MMPP/PH/1 Queue

TheMMPP/PH/1 queue is a special case of the general single-server queueMAP/G/1,
where the stream of arrivals and service mechanism are modelled by MMPP and PH
distribution respectively. Figure 1 illustrates an example of anMMPP2/PH2/1 queue.
Methods of analysing theMMPP/PH/1 queueingmodels can be found in [7] and [10].
In this paper we use the uniform framework of QBD processes which is an efficient
way to analyse more general models using matrix-analytic methods, see [9].
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Fig. 1 A schematic illustration of the MMPP2/E2/1 queue (E2 is a special case of P H2 and stands
for Erlang, where in this case it has a mean of μ−1). The circles illustrate phases of the arrival
and/or service mechanism.

MMPP. An MMPP is simply an arrival process which consists of a finite number
of Poisson processes, modulated by a CTMC. In other words, MMPP is a special
case of a doubly stochastic Poisson process whose arrival rate is modulated by the
states of an irreducible finite-state CTMC, which is referred to as the phase process.
The parameters of an MMPP of order p are the vector of Poisson arrival rates asso-
ciated with each phase, λ = (λ1, · · · , λp)

′ as well as the parameters of the p-state
background CTMC: the transition rate matrix Q and the initial distribution of the
background CTMC, taken as a row vector α.

PH Distribution. The time until absorption into state 0 (absorbing state) of a finite-
state CTMC with q transient state and one absorbing state is said to have a phase
type (PH) distribution of order q. A PH distribution of order q is parametrised by
η and T , where η is the initial distribution over the transient states (taken as a row
vector) and the matrix T = {ti j }i, j=1,...,q specifies the transition rates between the
transient states of the CTMC. PH distributions are very versatile and are dense in the
class of distributions defined on the non-negative real numbers [3]. Moreover, PH
distributions are used in a wide range of applications, see for instance [1] and [8].

QBD and MMPP/PH/1. A continuous-time homogeneous QBDr is a Markov pro-
cess characterised by a two dimensional state space {(n, i) : 0 ≤ n , 1 ≤ i ≤ r},
which are called the level and the phase of the state, respectively. A transition from
(n, i) to (n′, j) is possible only when |n′ − n| < 2 and the transition rate from (n, i)
to (n′, j) may depend on i, j and |n′ − n|, but not on the specific values of n and
n′. When ordering the states in lexicographic order, the transition rate matrix of a
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QBDr has the following form:

A =

⎛
⎜⎜⎜⎜⎜⎝

B0 B1 0
B−1 A0 A1

A−1 A0 A1
A−1 A0 A1

0
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠

. (1)

In representing the MMPPp/PHq /1 queue as a QBDr , where r = p × q, the phase
records (in lexicographic order) both the background state of the MMPP (arrival)
and the current phase of the service (see Figure 1 for illustration of the phases in
the special case of MMPP2/E2/1). The level, represents the number of items in the
system.

Modelled as a QBD, we have:

B−1 = Ip ⊗ t, B0 = C, B1 = diag(λ) ⊗ η,

where C = Q − diag(λ) and where ⊗ is the Kronecker product. Here t = −T 1,
where 1 is a column vector of 1’s with appropriate dimension.

Further,

A−1 = Ip ⊗ tη, A0 = Ip ⊗ T + C ⊗ Iq , A1 = diag(λ) ⊗ Iq .

As is well known in the theory of QBDs, the stationary distribution of a positive-
recurrent QBD, π , admits a matrix-geometric form πn = πn−1R, where R is the
solution of a quadratic fixed-point matrix equation R = A1 + R A0 + R2A−1 and
πn are row vectors of dimension r , see [9]. We use the-state-of-the-art SMC solver
to find the matrix R and the stationary distribution of a given QBD, see [4]. It is
easy to show that A is irreducible due to the properties of the building blocks and
irreducibility of Q. Moreover, characterizing the positive-recurrence can be done as
follows1.

Lemma 1. The QBD representing a MAPp/PHq/1 queue is positive-recurrent if and
only if,

ρ := β A11
β A−11

= Λ
1

−ηT −11

< 1,

where −ηT −11 is the first moment of PHq with parameters (η, T ), Λ = π D1 is the
first moment of a time-stationary MAPp with parameters (π , C, D)2, and β is the
stationary distribution of A−1 + A0 + A1.

1 To the best of our knowledge, the algebra behind this intuitive lemma has not appeared elsewhere.
2 The QBD representation of MAPp/PHq /1 generalises the MMPPp /PHq /1 representation, with
diag(λ) being replaced by D (see next Section for MAPs).
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Proof. The fact that the left hand side of ρ is a necessary and sufficient condition
for positive recurrence follows from the theory of QBDs (see [9], Theorem 7.2.4). It
remains to show that both representations of ρ agree.

First we show that β = π ⊗ γ , where γ is the unique solution of γ (T + tη) = 0′
and γ 1 = 13. It is immediate that (π ⊗ γ )1 = 1. Further, we have

(π ⊗ γ )(A−1 + A0 + A1) = (π ⊗ γ )
(
Ip ⊗ tη + (Ip ⊗ T + C ⊗ Iq) + D ⊗ Iq

)

= (π ⊗ γ )
(
Ip ⊗ (tη + T ) + (C + D) ⊗ Iq

)

= (π ⊗ γ )
(
(C + D) ⊗ (tη + T )

)

= 0′,

where the last two steps follow since (A ⊗ B)(A′ ⊗ B ′) = AA′ ⊗ B B ′ when matrix
dimensions agree for the multiplication.

Now we need to show that β A11
β A−11 = Λ

1
−ηT −11

or equivalently:

β A11 = (β A−11)Λ (−ηT −11)

which for the MAPp/PHq /1 queue is written as:

(π ⊗ γ )(D ⊗ Iq)1 = (π ⊗ γ )(Ip ⊗ tη)1(π D1)(−ηT −11). (2)

For the left hand side, we have

(π ⊗ γ )(D ⊗ Iq)1 = (π D ⊗ γ )1 = π D1.

Therefore we need to show that the right hand side of (2) is equal to π D1, or
equivalently:

(π ⊗ γ )(Ip ⊗ tη)1(−ηT −11) = 1.

Since π1 = η1 = 1, we have (π ⊗ γ )(Ip ⊗ tη)1 = (π ⊗ γ tη)1 = γ t. Moreover,
from γ (T + tη) = 0′ we have γ tη = −γ T which results in γ t(−ηT −11) = 1. ��

3 MAPs and the Markovian Transition Counting Process

MAP. AMAP is a pure birth process which can be considered as a special case of the
QBD: aMAP is a two-dimensionalMarkov processwith parameters (α, C, D)where
α is the initial distribution of the finite-state CTMC and the matrix C = B0 = A0
records the transitions of the background CTMC with no arrival. The event intensity
matrix D = B1 = A1 has non-negative elements and describes the transitions of the
background CTMC with an arrival. The matrices A−1 and B−1 are zero matrices.

3 Note that γ is the limiting distribution of the phase in a PHq -renewal process.
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Moreover, we have C + D = Q, where Q is the transition rate matrix of the CTMC.
A MAP with parameters (α, C, D) is time-stationary if α = π , where π is the
stationary distribution of the phase process, i.e. π Q = 0′ and π1 = 1.

For a time-stationary MAP, the mean and variance of the number of counts at any
time t are given by the following formulas, see Chapter XI of [3]:

E[N (t)] = Λ t = π D1 t, (3)

Var
(

N (t)
)

= {Λ − 2Λ2 + 2π DQ−D1} t + 2π DQ−(eQt − I )Q−D1, (4)

where Q− = (1π − Q)−1.
The class of MAPs contains most of the commonly used point processes such as

the Poisson process (D = λ, where λ is the Poisson rate and C = −λ) and MMPP
(D = diag(λ) where λ is the vector of Poisson rates and C = Q − D). In this
research, we introduce and investigate a class of MAPs as follows:

Definition 1. A Markovian Transition Counting Process (MTCP) is a
two-dimensional Markov process {(N̄ (t), X (t)); t ≥ 0} where N̄ (t) counts every
transition of an irreducible CTMC X (·) on [0, t].
Therefore MTCP is a special type of MAP where we have D̄ = Q̄ − diag(Q̄) and
the parameters of MTCP are just the parameters of the background CTMC. MTCPs
and MMPPs are in a sense the extreme cases of MAPs. In an MMPP, the events do
not coincide with state transitions (with probability 1). In contrast, in an MTCP the
events are precisely all the transitions of the CTMC. This fact motivates the idea of
finding relations between MTCP and MMPP. An early reference that analyses both
MTCPs and MMPPs (although not using these names) is [12]. We now show some
further relations.

4 Relations between MTCP and MMPP

In Proposition 3.2 of [11], the authors showed that every MTCP has an associated
MMPP with the same two first moments. For completeness, we present this propo-
sition of [11] in an alternative form here, including the proof.

Proposition 1. Let N̄ (t) be the counting processes of a time-stationary MTCPp.
Then there is an MMPPp, with the counting processes Ñ (t), such that their first and
second moments are matched. That is, for ∀t ≥ 0,

E[Ñ k(t)] = E[N̄ k(t)] , for k = 1, 2 .

Proof. Assume that the event matrix of the MTCPp is given by D̄ = Q̄ − diag(Q̄).
Consider an MMPPp with the same background Markov chain and set D̃ =
−diag(Q̄).Now from (3) and (4),we just need to show that D̄1 = D̃1 andπ D̄ = π D̃.
Since Q̄1 = 0 and π Q̄ = 0′ the result follows. ��
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The proof shows that in order to construct an MMPP matching an MTCP with
parameter Q̄: set λ = −diag(Q̄) and Q̃ = Q̄. The question is now how to construct
MTCPs matching MMPPs. Based on the above proposition, the answer is given for
the special case of MMPPs where λ = −diag(Q̃), i.e. λi = ∑

j 	=i q̃i j . But this is a
very restricted case since it does not leave any freedom with λi .

We now show that for each instance in a class of MMPPs (of order 2), where
λi >

∑
j 	=i q̃i j which we call “slow MMPPs”, there is an associated MTCP (of

order 4) that exhibits the same first and second moments for the counting process.
We believe a similar construction holds for arbitrary p > 2 (relating MTCP2p to
MMPPp), this remains the subject of future work.

Definition 2. A slow Markov Modulated Poisson Process (slow MMPP) is an
MMPP where for any phase i in the phase process, the arrival rate is greater than
the rate of leaving that phase, i.e. λi >

∑
j 	=i q̃i j .

1 2

λ1 λ2

q̃12

q̃21

(a) Transition diagram of the
phase process of an MMPP2.

1b 2b

1a 2a

q̃12

q̃21

q̃12

q̃21

λ1 − q̃12
λ1 − q̃12

λ2 − q̃21
λ2 − q̃21

(b) Transition diagram of the
phase process of related MTCP4.

Fig. 2 An MMPP2 and its associated MTCP4

Given MMPP parameters, λ and Q̃, we can associate an MTCP4 to any slow
MMPP2 as illustrated in Figure 2. The transition ratematrix Q̄ and the event intensity
matrix D̄ of the associated MTCP4 are given as follows:

Q̄ =

⎛
⎜⎜⎝

−λ1 λ1 − q̃12 q̃12 0
λ1 − q̃12 −λ1 0 q̃12

q̃21 0 −λ2 λ2 − q̃21
0 q̃21 λ2 − q̃21 −λ2

⎞
⎟⎟⎠ , D̄ = Q̄ − diag(Q̄). (5)

We now have the following:

Proposition 2. Let Ñ (t) and N̄ (t) be the counting processes of a time-stationary
slow MMPP2 and its associated MTCP4, respectively. Then, these processes have
the same first and second moment. That is, for ∀t ≥ 0,
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E[Ñ k(t)] = E[N̄ k(t)] , for k = 1, 2 .

Proof. We first construct a MAP4 with the same counting process as the MMPP2 by
coupling the events of the phase process of MMPP2. When the process is in phase k,
Figure 3 shows the structure of a coupled MAP that results in transition from phase
ka to kb or vice versa. Q̃ is the phase transition matrix and D̃ is the event intensity
matrix of the resulting MAP4.

1b 2b

1a 2a

q̃12

q̃21

q̃12

q̃21

λ1 λ1 λ2 λ2

Q̃ =

⎛
⎜⎜⎝
−(λ1 + q̃12) λ1 q̃12 0

λ1 −(λ1 + q̃12) 0 q̃12
q̃21 0 −(λ2 + q̃21) λ2

0 q̃21 λ2 −(λ2 + q̃21)

⎞
⎟⎟⎠

D̃ =

⎛
⎜⎜⎝

0 λ1 0 0
λ1 0 0 0
0 0 0 λ2

0 0 λ2 0

⎞
⎟⎟⎠

Fig. 3 Transition diagram of the phase process of the coupled MAP4 and its matrices

To find the stationary distribution of the associated MAP4, π̃ , we need to solve
π̃ Q̃ = 0′, π̃1 = 1. In the same way, we can find the stationary distribution of
MTCP4, π̄ , i.e. we have the following systems of equations:

⎧⎪⎪⎨
⎪⎪⎩

−(λ1 + q̃12)π̃1 + λ1π̃2 + q̃21π̃3 = 0
λ1π̃1 − (λ1 + q̃12)π̃2 + q̃21π̃4 = 0
q̃12π̃1 − (λ2 + q̃21)π̃3 + λ2π̃4 = 0
π̃1 + π̃2 + π̃3 + π̃4 = 1

⎧⎪⎪⎨
⎪⎪⎩

−λ1π̄1 + (λ1 − q̃12)π̄2 + q̃21π̄3 = 0
(λ1 − q̃12)π̄1 − λ1π̄2 + q̃21π̄4 = 0
q̃12π̄1 − λ2π̄3 + (λ2 − q̃21)π̄4 = 0
π̄1 + π̄2 + π̄3 + π̄4 = 1

Both of the above are uniquely solved by

π1 = π2 = q̃21
2(q̃12 + q̃21)

, and π3 = π4 = q̃12
2(q̃12 + q̃21)

.

Therefore, these two processes have the same stationary distribution π .
Now since D̃1 = D̄1 = (λ1, λ1, λ2, λ2)

′ one can find from (3):

E[Ñ (t)] = E[N̄ (t)].

To compute the variance, first we verify that:

π D̃ = π D̄ =
(

q̃21λ1
2(q̃12 + q̃21)

q̃21λ1
2(q̃12 + q̃21)

q̃12λ2
2(q̃12 + q̃21)

q̃12λ2
2(q̃12 + q̃21)

)
.
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Explicit calculation of the fundamental matrices Q̃− and Q̄− shows that even though
these matrices are not the same, it holds that π D̃ Q̃− D̃1 = π D̄ Q̄− D̄1. In addition,
by explicitly calculating the matrix exponential, we have:

π D̃ Q̃−(eQ̃t − I )Q̃− D̃1 = (e−(q̃12+q̃21)t − 1)q̃12q̃21(λ1 − λ2)
2

(q̃12 + q̃21)4
= π D̄ Q̄−(et Q̄ − I )Q̄− D̃1.

Therefore, from (4), Var
(

Ñ (t)
)

= Var
(

N̄ (t)
)
and the proof is complete. ��

Remark 1. Note that Proposition 2 only holds for slow MMPPs. Otherwise the con-
struction of a MAP4 from a given MMPP2 does not hold due to some non-positive
off-diagonal elements λi − q̃i j in the matrices Q̄ and D̄.

5 The Steady-State Queue Approximation

In this section we use the results of the previous section to approximate a given
(slow) MMPP2/PH2/1 with an MTCP4/PH2/1. In general, our computations are for
MAP/PH/1 queues where the service time distributions are parametrized by their
workloads and their Squared Coefficient of Variations (SCVs) which we denote by
c2. We have c2 = 1

2 in the case of Erlang-2 (E2) distribution: the sum of two i.i.d.
exponential random variables with rate 2Λ

ρ
, where Λ is the arrival rate as in (3) and

ρ is the workload. In the case of c2 = 1, we use exponentially distributed random
variables with rate μ = Λ

ρ
. For the case of c2 > 1, we use the Hyperexponential-2

(H2) distribution which is a mixture of two independent exponential random vari-
ables. With probability p = 1

2c2−1
we take an exponential distribution with rate Λ

c2 ρ

and with probability 1 − p we take an exponential distribution with rate 2Λ
ρ
. It is

easy to verify that this H2 random variable has mean 1 and the desired c2.
We compute the matrix R and the stationary distribution of MMPP2/PH2/1 and

MTCP4/PH2/1 as QBDs by using the SMC solver. The numerical computation for
finding the relative errors, true value-approximate value

true value , shows the same properties for the
curves of the relative error of mean and SCV of steady state queue for all of the above
mentioned processes.

Figure 4 (left) shows different relative errors of the steady state mean for various
service time SCVs. The bigger the SCV of service time, the less relative error of
the mean. Figure 4 (right) shows different relative errors of the steady state SCV for
various service time SCVs. The minimum absolute value of the relative error is again
for the case that the service distribution is hyperexponential, i.e. the bigger the SCV
of service time, the less absolute value of the relative error of SCV of steady state
queue.

Both of these families of curves are bell-shaped. The only difference is that in
contrast to the relative error of means which has positive values, the relative error of
SCV of the steady state queue has negative values. This shows that the true value for
mean is always greater than the approximate one and the opposite holds for SCV.
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Fig. 4 The relative mean error (left) and relative SCV error (right) of a steady state queue. The
MMPP2 model used has q̃12 = q̃21 = 5, λ1 = 10, λ2 = 20. Then the mean service time is varied
to accommodate for the desired ρ.

From further investigation of the variance (not appearing in the figures) it also holds
that the true variance is less than or equal to the approximated variance.

As is evident from the figures, in any case, the relative error is negligible. Note
though, that for more bursty arrival processes wemay have bigger relative errors than
those in the figure, yet we carried out an extensive computational study to find an
empirical boundary for relative error. Assuming that λ1 is constant (=10) and varying
the values of λ2, q̃12 and q̃21 gives the results in Table 1 for the maximum relative
error. These empirical results indeed suggest that the MTCP/PH/1 is a very sensible
alternative model to MMPP/PH/1.

Table 1 Maximum relative error of mean queue in approximation of MMPP2/PH2/1 queue by
MTCP4/PH2/1 queue where λ1 = 10. Note that the H2 case corresponds to c2 = 1.1.

Model λ2 q̃12 q̃21 Max Relative Error of Mean Queue
MMPP2/E2/1 500 8 70 0.0893
MMPP2/M/1 300 9 70 0.0725
MMPP2/H2/1 400 5 70 0.0715

6 Conclusions and Future Work

As illustrated in this paper,MMPPs can perhaps be replaced byMTCPs formodelling
purposes. We have shown a theoretical relationship between the two processes and
an empirical relationship between their associated queueing models. Our focus in
this conference paper is on being expository, hence we focused on the case of p = 2.
A question that arises is: “Can we construct an MTCP to match a non-slow MMPP
with the same mean and variance?”.

In further work we plan to handle the general case, for p > 2, where we believe
similar resultsmay hold. Proving the empirical bounds thatwe found for the queueing
approximations remains a challenge.
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Of further interest is the issue of parameter estimation of MTCPs. Our belief is
that since data traces generated byMTCPs aremore informative than those generated
by MMPPs, there is a promise in devising a good parameter estimation method for
MTCPs.
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