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Abstract To study the performance of handover calls approaching a target cell in
combination with arrivals of new calls competing for the same cell, a mixed discrete-
time delay/retrial model with one server andwith priorities for the delayed customers
is discussed. The handover calls are modeled as high-priority customers and the new
calls as low-priority customers. The priority is non-preemptive. Upon arrival high-
priority customers are put in a queue which is served on a first come first served
basis. The behavior of the low-priority customers is modeled as in a retrial queue.
Arrivals are in batches and all customers are served individually according to gener-
ally distributed and independent service times. The joint steady-state distribution of
the queue length of the high priority customers and the orbit size of the low-priority
customers is studied using probability generating functions. Several performance
measures will be calculated, such as the mean queue length of the handover calls and
the orbit size of the new calls. Also the covariance between the queue length and the
orbit size will be studied, among others.

Keywords Handover calls ·Discrete-time retrial queue · Priority customers ·Gen-
erating functions

1 Introduction

In mobile telephony the problem how to handle handover calls is a important topic.
When a mobile phone user is moving from one cell [the source] to another cell [the
target] then his ongoing call has to be switched from the channel of the source cell
to a channel of the target cell. Because neighboring cells cover overlapping regions,
usually a so-called soft handover protocol is used, i.e. the ongoing call joins a queue,
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waiting for a free channel at the target cell, but the call continues to use the channel of
the source cell until a channel at the target cell is available. Meanwhile also new calls
will try to get a free channel at the target cell. To avoid unnecessary interruptions
of the ongoing calls waiting for a free channel at the target cell, priority is given
to the handover calls over the new calls. When all channels are busy new calls are
temporarily rejected and the new calls have to be initiated anew some time later.

To model this protocol of soft handover calls at a target cell in combination with
the arrival of new calls at this cell we study a mixed delay/retrial model in discrete
time with one server [channel]. More specifically, we consider a one-server queue-
ing model in discrete time with two types of customers. Time is divided in slots, and
all events [arrivals, start of a service and departures] are considered to occur at the
slot boundaries only. The high-priority customers [handover calls] arrive in batches
following a general probability distribution. Upon arrival a batch of high-priority cus-
tomers is put in awaiting line fromwhich the customers are servedonebyoneonafirst
come first served basis. The low-priority customers [new calls] also arrive in batches
(primary arrivals), possibly following a different probability distribution, and when
upon arrival a batch of low-priority customers sees the server busy, all incoming low-
priority customers are sent into orbit, a virtual waiting space fromwhich they will try
to reenter the system individually some random time later (secondary arrivals). The
service times of the high-priority and the low-priority customers are all independent
and follow [possibly] a different general distribution. To resolve the conflict of simul-
taneous arrivals and departureswe have chosen for the late arrival set up with delayed
access, i.e. arrivals have precedence over departures and a service of newly arrived
customers can only start at the time slot following the slot of the arrival at the earli-
est. Also the modeling assumption is made that the time slot after any departure the
server always stays idle, evenwhen high-priority customers arewaiting in line. A new
high-priority customer will start service the next slot when the queue of high-priority
customers is not empty or a batch of high-priority customers will have arrived during
the idle slot. In that case all possibly arrived low-priority customers are sent (back)
into orbit. Otherwise, i.e. no high-priority customers present at the end of the idle
slot, the server starts the service of a low-priority customer, randomly chosen from
the mixed batch of primary and secondary low-priority arrivals. When neither high-
priority customers are present at the end of the idle slot, nor low-priority customers
will have arrived during the idle slot, the server stays idle also the following slot. All
customers are served one by one, and in case a low-priority customer is taken into
service all other primary and secondary low-priority customers having arrived in the
same slot are sent (back) into orbit.

As is well-known retrial models have receivedmuch less attention in the literature
than thewell-known queueingmodels such as delay-models and loss-models, mainly
because the arrival stream of the customers consists of two types, the primary arrivals
who enter for the first time, and the secondary arrivals from the orbit, making the
‘arrival intensity’ dependent of the number of customers in the orbit. Also overtaking
takes place, i.e. customers are not served according to a specific queueing discipline,
which severely complicates the study of the waiting-time distribution of a customer,
here defined as the total time that the customer spends in the orbit. It is probably fair
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to say that the unpopularity of the research on retrial models is partly due to their
intractability, because from a practical point of view retrial models often describe
a more realistic picture of many queueing situations than any of the other type of
models. Notwithstanding the mathematical difficulties encountered in the study of
retrial systems some models, with the M/G/1 retrial queue in a prominent position,
have been analyzed thoroughly, and we refer to the monographs of Falin and

Templeton [4] and Artalejo and Gómez- Corral [1] for an overview of the
main results.

Although most papers on retrial queues discuss models in continuous time, as a
consequence of the revolutionary developments in the computer and telecommuni-
cation technology, at the end of the past century people started to study also retrial
models in discrete time. Li and Yang [5], [6] and [9] made a start. Nobel and

Moreno [8] were the first to study a discrete-time classical retrial queueing model
with the so-called late-arrival setup, i.e. precedence is given to arrivals over depar-
tures. We recall that in a classical retrial model an idle server accepts exactly one
customer for service from the batch of all the incoming customers [a mixture of pri-
mary customers and customers arriving from the orbit] and sends all the other newly
arrived customers (back) to the orbit. As a consequence of the late-arrival setup, after
a departure the server always stays idle for at least one time slot, due to the fact that
the most recently arrived customers have seen the server still busy and therefore they
have been sent into the orbit.

In this paper we will extend the classical discrete-time one-server retrial model
of Nobel and Moreno [8] by adding a second type of customers [the handover
calls] who will be put in a queue and are served one by one on a first come first
served basis. These customers are given non-preemptive priority over the original
customers [the new calls] who continue to act as retrial customers. In a previous
paper (Nobel and Moreno [7]) the high-priority customers were lost when upon
arrival they found the server busy. Amodel similar to our delay/retrial model has been
studied in Choi and Kim [2], but they discuss only single arrivals and all customers
follow the same service-time distribution. Further, they have chosen the early arrival
setup. A continuous-time retrial model with priority customers has been studied by
Falin, Artalejo and Martin [3], but in that paper only single arrivals have been
considered. The model discussed in this paper can be seen both as an extension and
as the discrete-time counterpart of that model.

We will study the joint steady-state distribution of the length of the queue of high-
priority customers and the size of the orbit with low-priority customers. Not sur-
prisingly, the mathematical analysis of our mixed delay/retrial model differs greatly
from the analysis of the models discussed in the papers [2], [7] and [8].

Firstly, we will derive the generating function of the joint steady-state distribution
of the number of low-priority customers in orbit, the number of high-priority cus-
tomers in the queue and the residual service time of the customer in service [either
a high-priority customer, or a low-priority customer]. This generating function will
be used to calculate several performance measures, e.g. the mean queue length, the
mean orbit size and the covariance of the queue length and the orbit size. In Section 2
we describe the model in detail. Section 3 discusses the steady-state distributions of
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the orbit size and the queue length, among others. In Section 4 we derive an expres-
sion for the mean busy period. Numerical results will be presented in a forthcoming
extended version of this paper.

2 Description of the Model

For a detailed description of the discrete-time setup with late arrivals and delayed
access [LAS/DA] we refer to Nobel and Moreno [8]. Recall that in the classical
retrial model the time slot after a departure the server always stays idle for at least
one slot, due to the late-arrival setup with delayed access. For the mixed delay/retrial
model to be discussed in this paper we make the technical assumption that the slot
following a departure the server always stays idle, also in case high-priority cus-
tomers are waiting in the queue. We can interpret this idle slot as a preparation time
for the next service, but we admit that the main reason to include this idle slot fol-
lowing a departure is to enable tractability: a small price to pay for a deeper insight
into this mixed delay/retrial model with priorities for the delayed customers.

We will now give the precise description of our discrete-time mixed delay/retrial
queueingmodelwithoneserver andpriorities.Duringeach timeslothigh-prioritycus-
tomersarrive inbatches.Thebatchsizesaremutually independentandfollowageneral

probability distribution
{

a(H)
i

}∞
i=0

with probability generating function (p.g.f.)

AH (y) =
∞∑

i=0

a(H)
i yi .

In every time slot also low-priority customers arrive in batches. These batch sizes

follow a general probability distribution
{

a(L)
k

}∞
k=0

with p.g.f.

AL(z) =
∞∑

k=0

a(L)
k zk .

These batch sizes are again mutually independent and they are also independent of
the batch sizes of the high-priority customers. We call these arrivals primary arrivals.
Each individual high-priority customer requires a service time,measured as a number

of time slots,which follows the discrete probability distribution
{

b(H)
j

}∞
j=1

with p.g.f.

BH (w) =
∞∑
j=1

b(H)
j w j .

Similarly, every low-priority customer requires a generally distributed service time

with distribution
{

b(L)
j

}∞
j=1

and p.g.f.
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BL(w) =
∞∑
j=1

b(L)
j w j .

All service times are mutually independent and they are also independent of the
batch sizes of the arriving customers. A service time requires at least one time slot,
so b(H)

0 = b(L)
0 = 0. As said before, the high-priority customers are placed in a

queue and the high-priority customers are served individually on a first come first
served basis [within a batch in random order]. Low-priority customers behave as the
customers in the classical retrial queue, with the only difference that all incoming
low-priority customers [primary and secondary arrivals] are also sent into orbit when
high-priority customers are present in the queue or arrive simultaneously, i.e. in the
same slot, with the low-priority customers. In each time slot low-priority customers
try to reenter the system individually and independently with the so-called retrial
probability r [0 < r < 1].

We are interested in the steady-state behavior of the number of high-priority
customers in the queue, the number of low-priority customers in orbit and the residual
service time of the customer currently in service. To analyze the mixed delay/retrial
queueing model, we define a discrete-time Markov chain (DTMC) by observing the
system at the epochs k−, that is at the start of the time slots k just after, possibly,
a service of a (low- or high-priority) customer has started, but before the arrivals
during time slot k have occurred. We define the following random variables,

Hk = the residual service time of the [high- or low-priority] customer

in service at time k−,

Lk = the number of high-priority customers present in the queue at time k−,

Qk = the number of low-priority customers in orbit at time k−.

We define Hk = 0 when at epoch k− the server is idle. Then, due to the indepen-
dencies stated in the description of the model, the stochastic process {(Hk, Lk, Qk) :
k = 0, 1, 2, . . .} is an irreducible aperiodic DTMC and under the stability condition
that

A′
H (1)[B′

H (1) + 1] + A′
L(1)[B′

L(1) + 1] < 1

it is positive recurrent. A formal proof of this stability condition can be given using
Foster’s criterion [see Nobel and Moreno [8] for the details]. Notice the ‘+1’
added to the mean service times B′

H (1) and B′
L(1), due to our technical assumption

that after every departure the server stays idle for at least one time slot.

3 The Joint Distribution of Queue Length and Orbit Size

In this section we will derive the joint generating function of the steady-state distri-
bution of the DTMC {(Hk, Lk, Qk) : k = 0, 1, 2, . . .}. Under the stability condition
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we can define the following limiting joint distribution of this DTMC

π( j, m, n) = lim
k→∞ IP(Hk = j; Lk = m; Qk = n), j, m, n = 0, 1, 2, . . . ,

with its associated three-dimensional generating function

Π(w, y, z) =
∞∑
j=0

∞∑
m=0

∞∑
n=0

π( j, m, n)w j ym zn .

In the following it is convenient to introduce also the partial generating functions,

Π jm(z) =
∞∑

n=0

π( j, m, n)zn and

Π j (y, z) =
∞∑

m=0

∞∑
n=0

π( j, m, n)ym zn =
∞∑

m=0

Π jm(z)ym .

To find the p.g.f. Π(w, y, z) we write down the system of balance equations,

π(0, m, n) = I{m=0}a(H)
0 a(L)

0 (1 − r)nπ(0, 0, n) +
m∑

i=0

a(H)
i

n∑
k=0

a(L)
k π(1, m − i, n − k), (1)

m, n = 0, 1, 2, . . . ,

π( j, m, n) =
m∑

i=0

a(H)
i

n∑
k=0

a(L)
k π( j + 1, m − i, n − k)

+b(H)
j

m+1∑
i=0

a(H)
i

n∑
k=0

a(L)
k π(0, m + 1 − i, n − k)

+ I{m=0}b(L)
j a(H)

0

{
n+1∑
k=1

a(L)
k π(0, 0, n + 1 − k)

+a(L)
0

(
1 − (1 − r)n+1

)
π(0, 0, n + 1)

}
. (2)

j = 1, 2, . . . ; m, n = 0, 1, 2, . . . .

Notice how our technical assumption that after any departure the server stays idle
for at least one time slot plays its role in these balance equations. This assumption
enforcesmore parallelism between the [services of] low-priority customers and high-
priority customers. Below we will see that only due to this enforced parallelism our
analysis can be pursued successfully.
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From equations (1) and (2) we get by multiplying both sides with zn and summing
over n = 0, 1, . . ., and subsequently multiplying both sides of the result by ym and
summing over m = 0, 1, . . .,

Π0(y, z) = a(H)
0 a(L)

0 Π00((1 − r)z) + AH (y)AL (z)Π1(y, z), (3)

Π j (y, z) = AH (y)AL (z)Π j+1(y, z) +
b(H)

j

y
AL (z)

[
AH (y)Π0(y, z) − a(H)

0 Π00(z)
]

+
b(L)

j a(H)
0

z

[
AL (z)Π00(z) − a(L)

0 Π00((1 − r)z)
]
. (4)

Next, multiplying equation (4) by w j and summing over j = 1, 2, . . . gives after
some simple algebra, using equation (3) to get rid of Π1(y, z),

yz [w − AH (y)AL(z)]Π(w, y, z) = AH (y)AL(z)z [wBH (w) − y]Π0(y, z)

+ a(H)
0 AL(z)w [yBL(w) − zBH (w)]Π00(z)

+ a(H)
0 a(L)

0 wy [z − BL(w)]Π00((1 − r)z).(5)

So, the problem is to find the unknown partial generating functions Π0(y, z) and
Π00(z). Firstly, take w = AH (y)AL(z) in (5) to make the left-hand side zero. This
gives

Π0(y, z) = a(H)
0

AL(z) [yBL(ω(y, z)) − zBH (ω(y, z))]Π00(z)

z [y − ω(y, z)BH (ω(y, z))]

+a(H)
0

a(L)
0 y [z − BL(ω(y, z))]Π00((1 − r)z)

z [y − ω(y, z)BH (ω(y, z))]
(6)

where ω(y, z) := AH (y)AL(z). Now for any z with |z| ≤ 1 let w = φ(z) be a
solution of the system of equations

{
w = AH (y)AL(z)
y = wBH (w)

⇐⇒
{

w = AH (wBH (w))AL(z)
y = wBH (w).

For real z with 0 < z < 1 it is easy to see that there is a unique real solution
w = φ(z) ∈ (0, 1) and further that φ(1) = 1. So we have for z with |z| ≤ 1

φ(z) = AH (φ(z)BH (φ(z)))AL(z) (7)

from which we can calculate the derivative φ′(z) by implicit differentiation. For
future use we give the result

φ′(z) = AH (φ(z)BH (φ(z)))A′
L(z)

1 − A′
H (φ(z)BH (φ(z)))[BH (φ(z)) + φ(z)B′

H (φ(z))]AL(z)
. (8)
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From equation (6) we get [notice that now y = φ(z)BH (φ(z)) and ω(y, z) = φ(z)]

Π00(z) = a(L)
0

φ(z) [z − BL(φ(z))]

AL(z) [z − φ(z)BL(φ(z))]
Π00((1 − r)z). (9)

Introduce (see also Nobel and Moreno [8]) the retrial function

R(z) := a(L)
0

φ(z) [z − BL(φ(z))]

AL(z) [z − φ(z)BL(φ(z))]
.

We see thatR(0) = 1 and after some calculation, using L’Hôpital and result (8) we
find

R(1) = a(L)
0

1 − A′
H (1)[B′

H (1) + 1] − A′
L(1)B′

L(1)

1 − A′
H (1)[B′

H (1) + 1] − A′
L(1)[B′

L(1) + 1] .

Notice that in the denominator the stability condition shows up. Rewriting equation
(9) gives via iteration

Π00(z) = R(z)Π00((1 − r)z) = R(z)R((1 − r)z)Π00

(
(1 − r)2z

)
= · · ·

=
n−1∏
i=0

R((1 − r)i z)Π00
(
(1 − r)nz

)
, (10)

and now, sending n to infinity, we get

Π00(z) =
∞∏

i=0

R((1 − r)i z)Π00(0) (11)

For the technique to prove the convergence of the infinite product
∏∞

i=0 R((1−r)i z)
we refer to [8]. So, our next problem is to calculate Π00(0). From equation (11) we
see that is it sufficient to calculate Π00(1− r). We plug the result (9) in equation (6).
This gives

Π0(y, z) = a(H)
0

AL (z) [yBL (ω(y, z)) − zBH (ω(y, z))]R(z) + a(L)
0 y [z − BL (ω(y, z))]

z [y − ω(y, z)BH (ω(y, z))]
×Π00((1 − r)z). (12)

Because Π0(1, 1) is the long-run fraction of time slots that the server is idle and we
can conclude from Little’s Law that

Π0(1, 1) = 1 − A′
H (1)B′

H (1) − A′
L(1)B′

L(1)

we can find an expression for Π00(1− r) using equation (12). Notice that ω(y, 1) =
AH (y).
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Π0(1, 1) = lim
y→1

a(H)
0

[yBL (AH (y)) − BH (AH (y))]R(1) + a(L)
0 y [1 − BL (AH (y))]

y − AH (y)BH (AH (y))

×Π00(1 − r) =

a(H)
0 a(L)

0

(
1 − A′

H (1)[B′
H (1) − B′

L (1)]) (1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)B′

L (1)
)+

−A′
H (1)B′

L (1)
(
1 − A′

H (1)[B′
H (1) + 1] − A′

L (1)[B′
L (1) + 1])(

1 − A′
H (1)[B′

H (1) + 1]) (1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)[B′

L (1) + 1])

×Π00(1 − r) =

[after some algebra!] = a(H)
0 a(L)

0
1 − A′

H (1)B′
H (1) − A′

L (1)B′
L (1)

1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)[B′

L (1) + 1]Π00(1 − r),

from which we find

Π00(1 − r) = 1 − A′
H (1)[B′

H (1) + 1] − A′
L(1)[B′

L(1) + 1]
a(H)
0 a(L)

0

.

We remark here that interchanging the limits, i.e. consideringΠ0(1, 1) = limz→1 Π0
(1, z), leads to the same result, because Π0(y, z) is continuous at the point (1, 1),
although at first sight the expression looks very different. To double-check our result
we give the details. Notice that ω(1, z) = AL(z) and we get

Π0(1, 1) = lim
z→1

a(H)
0

AL (z) [BL (AL (z)) − zBH (AL (z))]R(z) + a(L)
0 [z − BL (AL (z))]

z [1 − AL (z)BH (AL z))]

×Π00((1 − r)z) =

a(H)
0 a(L)

0

(
1 − A′

L (1)[B′
L (1) − B′

H (1)]) (1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)B′

L (1)
)+

−[1 − A′
L (1)B′

L (1)] (1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)[B′

L (1) + 1])

A′
L (1)[B′

H (1) + 1](1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)[B′

L (1) + 1])

×Π00(1 − r) =

[again after some algebra!]

= a(H)
0 a(L)

0
1 − A′

H (1)B′
H (1) − A′

L (1)B′
L (1)

1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)[B′

L (1) + 1]Π00(1 − r).

So, slightly rewriting equation (11), we get an explicit expression for the partial
p.g.f. Π00(z),
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Π00(z) =
∞∏

i=0

R((1 − r)i z)

R((1 − r)i )
R(1)Π00(1 − r)

= 1 − A′
H (1)[B′

H (1) + 1] − A′
L(1)B′

L(1)

a(H)
0

∞∏
i=0

R((1 − r)i z)

R((1 − r)i )
. (13)

Next, using this expression for Π00(z) and the expression for R(z) we also get an
expression for Π0(y, z) from equation (12). After canceling out common factors we
find

Π0(y, z) = a(H)
0

AL (z) [yBL (ω(y, z)) − zBH (ω(y, z))]R(z) + a(L)
0 y [z − BL (ω(y, z))]

z [y − ω(y, z)BH (ω(y, z))]
×Π00((1 − r)z) =

(1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)[B′

L (1) + 1])
⎛
⎝

∞∏
i=1

R((1 − r)i z)

R((1 − r)i )

⎞
⎠

×φ(z) [yBL (ω(y, z)) − zBH (ω(y, z))] [z − BL (φ(z))] + y [z − BL (ω(y, z))] [z − φ(z)BL (φ(z))]

z [y − ω(y, z)BH (ω(y, z))] [z − φ(z)BL (φ(z))]
.

(14)

Finally, we approach our main goal, an expression for the three-dimensional p.g.f.
Π(w, y, z). From equation (5) we have

Π(w, y, z) =
AH (y)AL (z)z [wBH (w) − y]Π0(y, z) + a(H)

0 AL (z)w [yBL (w) − zBH (w)]Π00(z)

+a(H)
0 a(L)

0 wy [z − BL (w)]Π00((1 − r)z)

yz [w − AH (y)AL (z)]
.

(15)

For future use it is worthwhile to factorize out the common factor Π00((1− r)z) in
the numerator. This gives after some manipulations and writing throughout ω(y, z)
for AH (y)AL(z),

Π(w, y, z) = 1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)[B′

L (1) + 1]
a(L)
0

⎛
⎝

∞∏
i=1

R((1 − r)i z)

R((1 − r)i )

⎞
⎠

×

⎡
⎢⎢⎢⎣

ω(y, z) [wBH (w) − y]

(
AL (z) [yBL (ω(y, z)) − zBH (ω(y, z))]R(z)

+a(L)
0 y [z − BL (ω(y, z))]

)

+AL (z)w [yBL (w) − zBH (w)]R(z) [y − ω(y, z)BH (ω(y, z))]

+a(L)
0 wy [z − BL (w)] [y − ω(y, z)BH (ω(y, z))]

⎤
⎥⎥⎥⎦

yz [w − ω(y, z)] [y − ω(y, z)BH (ω(y, z))]
.

(16)

Notice that in the denominator still the factor a(L)
0 is present because we did not

spell out the retrial functionR(z) in the numerator. Doing that would also cancel out
the factor a(L)

0 .
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From expression (16) we find the marginal p.g.f.’s L(y) := Π(1, y, 1) and
Q(z) := Π(1, 1, z) of the limiting distribution of the queue length and the orbit
size, respectively. To get rid of the factor a(L)

0 introduce R∗(z) = R(z)/a(L)
0 . Then

we find

L(y) = (1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)[B′

L (1) + 1]) 1 − y

y[1 − AH (y)]

×
AH (y)

(
[yBL (AH (y)) − BH (AH (y))]R∗(1)

+y [1 − BL (AH (y))]

)
− R∗(1) [y − AH (y)BH (AH (y))]

y − AH (y)BH (AH (y))
,

(17)

and, using the definition of R∗(z) and some further simplification,

Q(z) = (1 − A′
H (1)[B′

H (1) + 1] − A′
L(1)[B′

L(1) + 1])
( ∞∏

i=1

R((1 − r)i z)

R((1 − r)i )

)

×
(

1 − z

1 − AL(z)

)(
φ(z) − 1

z − φ(z)BL(φ(z))

)
. (18)

Notice that from the expressions (17) and (18) we can check that L(1) = 1 and
Q(1) = 1. Of course we can also write down the two-dimensional p.g.f. T (y, z) :=
Π(1, y, z) of the joint limiting distribution of the queue length and the orbit size,

T (y, z) = (1 − A′
H (1)[B′

H (1) + 1] − A′
L(1)[B′

L(1) + 1])
( ∞∏

i=1

R((1 − r)i z)

R((1 − r)i )

)

×

⎡
⎢⎢⎣

ω(y, z) [1 − y]

(
AL(z) [yBL(ω(y, z)) − zBH (ω(y, z))]R∗(z)

+y [z − BL(ω(y, z))]

)

+AL(z) [y − z]R∗(z) [y − ω(y, z)BH (ω(y, z))]
+y [z − 1] [y − ω(y, z)BH (ω(y, z))]

⎤
⎥⎥⎦

yz [1 − ω(y, z)] [y − ω(y, z)BH (ω(y, z))]
.

(19)

Because T (y, z) 
= L(y)Q(z) we see immediately that the queue length and the
orbit size are dependent. Our next step is to calculate the mean queue length L and
the mean orbit size Q. Of course we have

L = L′(1) and Q = Q′(1).

After tedious calculations we find
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L = −
(

A′′
H (1)

2A′
H (1)

+ A′
H (1)B′

H (1) + A′
L (1)B′

L (1)

)

+1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)[B′

L (1) + 1]
1 − A′

H (1)[B′
H (1) + 1]

×
[

A′′
H (1)

2A′
H (1)

+
(
A′

H (1) − A′′
H (1)

2A′
H (1)

− 1

)
B′

H (1) +
(
1 + A′′

H (1)

2A′
H (1)

)
B′

L (1)+

1

2
A′

H (1)
(
B′′

L (1) − B′′
H (1)

)]

+ A′′
H (1)[B′

H (1) + 1] + [
A′

H (1)
]2 [B′′

H (1) + 2B′
H (1)]

2(1 − A′
H (1)[B′

H (1) + 1])

+ A′
L (1)

1 − A′
H (1)[B′

H (1) + 1]

[
A′′

H (1)

2A′
H (1)

+
(
1 + A′′

H (1)

2A′
H (1)

)
B′

L (1) + A′
H (1)B′

H (1)+

A′′
H (1)

2A′
H (1)

B′′
L (1)

]

and

Q = (1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)[B′

L (1) + 1])
{

φ′′(1)[1 − φ′(1)B′′
L (1)] + [

φ′(1)
]3 [

2B′
L (1) + B′′

L (1)
]

2A′
L (1)

(
1 − φ′(1)[B′

L (1) + 1])2

+
(

φ′(1)
1 − φ′(1)[B′

L (1) + 1]

)⎡
⎣ A′′

L (1)

2
[
A′

L (1)
]2 + 1

A′
L (1)

∞∑
i=1

(1 − r)iR′((1 − r)i )

R((1 − r)i )

⎤
⎦
⎫
⎬
⎭ .

Using equation (8) we can easily evaluate φ′(1) and φ′′(1) in terms of the p.g.f.’s
AL(·), AH (·), BL(·) and BH (·). It is more cumbersome to evaluate the terms of
the series because for every argument (1 − r)i the calculation of R((1 − r)i ) and
R′((1 − r)i ) requires that the values φ((1 − r i ) and φ′((1 − r)i ) are determined as
the solution of the two equations (7) and (8) with z = (1 − r)i . This solution must
be found numerically. We skip further details.

To find the covariance of the queue length and the orbit size we first calculate
LQ := ∑∞

i=1
∑∞

n=1 inπ(1, i, n). Using the two-dimensional p.g.f T (y, z) we have

LQ =
[

∂2

∂y∂z T (y, z)
]

y=1,z=1
and then the covariance is Cov(L , Q) = LQ − L · Q,

where we used L and Q as artifact random variables denoting the steady-state queue
length and the orbit size, respectively. We do not spell out the long expression for
LQ, the evaluation simply requires a lot of tedious algebra. We end this section to
announce that numerical results for L, Q and Cov(L , Q) will be presented in an
extended version of this paper. This work is in preparation.
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4 The Mean Busy Period

The busy period in the delay/retrial model is defined as the time lapse from the epoch
that the server starts a first service after the server has been idle due to the fact that
the system was empty, i.e. no waiting high-priority customers in the queue and no
low-priority customers in the orbit, until the first departure epoch leaving behind an
empty system again. Introduce B for this busy period and I for the time lapse that the
system is empty between two successive busy periods. It is clear that the idle period
is geometrically distributed with parameter 1 − a(H)

0 a(L)
0 . So, from the the Renewal

Reward Theorem we get

π(0, 0, 0) =
1
/(

1 − a(H)
0 a(L)

0

)

1
/(

1 − a(H)
0 a(L)

0

)
+ IE[B]

.

From (13) we have

π(0, 0, 0) = Π00(0) = 1 − A′
H (1)[B′

H (1) + 1] − A′
L(1)B′

L(1)

a(H)
0

∞∏
i=0

1

R((1 − r)i )
.

So we get

E[B] = 1

1 − a(H)
0 a(L)

0

⎡
⎣ a(H)

0
1 − A′

H (1)[B′
H (1) + 1] − A′

L (1)B′
L (1)

∞∏
i=0

R((1 − r)i ) − 1

⎤
⎦ .
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