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Abstract Recently, queues with speed scaling have received considerable attention
due to their applicability to data centers, enabling a better balance between perfor-
mance and energy consumption. This paper proposes a new model where blocked
customers must leave the service area and retry after a random time, with retrial rate
either varying proportionally to the number of retrying customers (linear retrial rate)
or non-varying (constant retrial rate). For both, we study the case without and with
setup time. In all four cases, we obtain an exact solution for the stationary queue
length distribution. This document presents the resulting expressions as well as their
derivation.

Keywords Data center · Energy efficiency · Speed scaling · Setup time · Retrial
queue

1 Introduction

In current large-scale data centers, thousands of parallel servers are responsible for the
processing of incoming jobs. While system performance is still measured by means
of traditional measures like job latency, the overall energy consumption is a second
important consideration. According to [4], data centers constitute about 40 % of the
global ICT electricity consumption in 2012, or approximately 107 TWh. Concretely,
amodern system needsmechanisms to handle the trade-off between performance and
energy consumption [3].
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Inresponse to this, speedscalinghasbeendeveloped[6, 7, 15], slowingdownserver
speed when the number of customers is low, and speeding up, in the converse case.
As argued first in [7] (and later in [15]), this enables a better balance between perfor-
mance and energy consumption. This is also argued in [19] in the context of data cen-
ters, and can be intuitively understood as follows.Assume that the speed of the system
can be tuned by tuning the service rate (“speed scaling”). While power consumption
rises more than proportionally with service rate (e.g., with the former approximately
equal to the square of the latter [7]), this does not hold true for the mean number of
customers in system. Specifically, the latter is approximately proportional to themean
service time (inverse of the service rate) in case of (very) low traffic load (with low
arrival rate). Opposed to this, in case of high traffic load, speeding up can have amuch
larger than proportional impact on the number of customers in system, while the rela-
tion between service rate and power consumption remains the same. In other words,
the added value per additional unit of power is higher when traffic load is high than
when traffic load is low, creating a trade-off. In this sense, it is useful to work at lower
speed when traffic load is low, and at higher speed in the converse case.

To the best of our knowledge, the first queueing model to address (a form of)
speed scaling is [5], presenting the analysis of a single-server system with Poisson
arrivals and a service rate that depends on the number of customers n according to a
formula μn = ncμ1, where μ1 is a model parameter describing the service rate for
a customer arriving at an idle system. An important recent contribution with speed
scaling is [15], which features the concept of switching delay discussed also below.

While [5, 15] study a classic model without retrials, some retrial queues have
been studied which also relate to the current work. Specifically, while [14] does
not discuss speed scaling as such, it presents a generic study of the broad class of
retrial queues with state-dependent rates, sharing many of the assumptions of this
contribution. However, it is important to note that, on the one hand, [14] does not
include any of the expressions derived below, and that, on the other hand, the concept
of a setup time is not treated in [14], whereas it plays a key role in this contribution.
Specifically, Sect. 4 and 5 below are devoted tomodelswith a setup time, an important
and realistic model extension defined below, studied earlier in e.g. [1, 10, 11, 12,
13, 16, 17, 18]. Further, the mentioned switching delay of [15] is identical to the
setup time as defined in this work. Summarizing, speed scaling has already been
considered in settings with setup times, and also indirectly in settings with retrial
queues, but never in the combination of both. Since both phenomena are found in
realistic data centers, it is useful to quantify their impact by means of the formulas
derived in this contribution.

This paper is organized as follows. In Sect. 2 and 3, a speed scaling model without
setup time is considered, either with classical linear retrial rate (Sect. 2) or with
constant retrial rate (Sect. 3). In Sect. 4 and 5, the speed scaling model extension
with finite setup time is considered, againwith either linear (Sect. 4) or constant (Sect.
5) retrial rate. Sect. 6 presents a note on practical implementation. Conclusions are
drawn in Sect. 7.
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2 Linear Retrial Rate Model

2.1 Assumptions

We consider a single server retrial queueing system where blocked customers leave
the server and retry after independent and identically distributed (iid) retrial times.
Retrials take place at rate nν, where n is the number of customers in orbit: A so-called
linear retrial rate model. Further, as is common in retrial queue terminology, see e.g.
[1, 8], during consecutive retrials, the customer is said to be in the orbit. However,
different from a classical retrial queue, speed scaling takes place: The service rate
of the server is linear to the total number of customers in the system. In particular, if
there are n customers in the orbit the customer in the server (if any) is served at rate
(n + 1)μ. Customers arrive at the system according to a Poisson process with rate λ.

2.2 Analysis

In this section, we present a recursive scheme to calculate the joint stationary dis-
tribution. Let C(t) and N (t) denote the number of active servers and the number of
customers in the orbit, respectively. It is easy to see that {X (t) = (C(t), N (t)); t ≥ 0}
forms a Markov chain on the state space:

S = {(i, j); i = 0, 1, j ∈ Z+}.

Let πi, j = limt→∞ P(C(t) = i, N (t) = j) ((i, j) ∈ S) denote the joint stationary
distribution of {X (t)}.

In this section,we derive a recursion for calculating the joint stationary distribution
πi, j ((i, j) ∈ S). The balance equations for states with i = 0 read as follows.

(λ + nν)π0,n = (n + 1)μπ1,n, n ∈ Z+, (1)

(λ + (n + 1)μ)π1,n = λπ0,n + λπ1,n−1 + (n + 1)νπ0,n+1, n ∈ Z+, (2)

where Z+ denotes {1, 2, . . .}. Using the notation of (5), we obtain the following
system of equations for the partial generating functions Π0(z) and Π1(z).

λΠ0(z) + νzΠ ′
0(z) = μzΠ ′

1(z) + μΠ1(z), (3)

λΠ1(z) + μzΠ ′
1(z) + μΠ1(z) = λΠ0(z) + λzΠ1(z) + νΠ ′

0(z). (4)

Adding these two equations yields νΠ ′
0(z) = λΠ1(z). Substituting Π1(z) into the

first equation we obtain

zΠ ′′
0 (z) + λ

μ

(μ

λ
− z

)
Π ′

0(z) − λ2

μν
Π0(z) = 0.

Coining the notation p(x) = Π0(μx/λ) = Π0(x/ρ) (ρ = λ/μ), we obtain the
following equation.
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xp′′(x) + (1 − x) p′(x) − λ

ν
p(x) = 0.

This is the confluent hypergeometric differential equation whose solution is a con-
fluent hypergeometric function, a special case of the hypergeometric function also
encountered in the analysis of some retrial queue models without speed scaling,
such as the one studied in [2]. The solution for this equation is given by following
expression.

p(x) = π0,0M(a, b, x) = π0,0

∞∑
n=0

a(n)xn

b(n)n! ,

where

a = λ

ν
, b = 1,

and
a(0) = 1, a(n) = a(a + 1) · · · (a + n − 1), n ≥ 1,

where M(a, b, x) denotes the confluent hypergeometric function. We then have

Π0(z) = π0,0 p(λz/μ) = π0,0

∞∑
n=0

a(n)(λz/μ)n

b(n)n! = π0,0

∞∑
n=0

a(n)(λz/μ)n

n!2 ,

where we used b(n) = n! in the second equality. Thus,

π0,n = π0,0
a(n)ρ

n

b(n)n! = π0,0
a(n)

n!2
(

λ

μ

)n

.

Furthermore, we have

Π1(z) = ν

λ
Π ′

0(z) = π0,0
λ

μ
M(a + 1, b + 1, λz/μ),

where we have used

M ′(a, b, x) = a

b
M(a + 1, b + 1, x).

Formally, the unknown numberπ0,0 is determined using the normalization condition:

Π0(1) + Π1(1) = 1.

yielding
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π0,0 =
(

M(a, b, λ/μ) + λ

μ
M(a + 1, b + 1, λ/μ)

)−1

.

Although this is an explicit expression forπ0,0, it still contains the confluent hyperge-
ometric function, and thus, indirectly, infinite sums. This however poses no problem
for the numerical calculation of π0,0, since most scientific software packages are
able to handle confluent hypergeometric functions directly.

3 Constant Retrial Rate Model

3.1 Assumptions

We consider a single server retrial queueing system where blocked customers leave
the server and retry at a later time. As in the previous section, the retrial times are
iid random variables. However, different from the previous section, the retrial rate
is independent of the number of customers in the orbit and is given by ν(1 − δ0,n)

provided that there are n customers present in the orbit. Here, δm,n denotes the
Kronecker delta, which returns 1 if m = n, and 0 otherwise. Again, speed scaling
takes place: Service rate of the server is proportional to the total number of customers
in the system. Just like in the linear retrial rate case studied in the previous section,
if there are n customers in the orbit the customer in the server (if any) is served at
rate (n + 1)μ. Customers arrive at the system according to a Poisson process with
rate λ.

3.2 Analysis

In this section, we present a recursive scheme to calculate the joint stationary dis-
tribution. Let C(t) and N (t) denote the number of active servers and the number of
customers in the orbit, respectively. It is easy to see that {X (t) = (C(t), N (t)); t ≥ 0}
forms a Markov chain on the state space:

S = {(i, j); i = 0, 1, j ∈ Z+}.

Let πi, j = limt→∞ P(C(t) = i, N (t) = j) ((i, j) ∈ S) denote the joint stationary
distribution of {X (t)}.

In this section,we derive a recursion for calculating the joint stationary distribution
πi, j ((i, j) ∈ S). The balance equations for states with i = 0 read as follows.

(λ + ν(1 − δ0,n)))π0,n = (n + 1)μπ1,n, n ∈ Z+,

(λ + (n + 1)μ)π1,n = λπ0,n + λπ1,n−1 + νπ0,n+1, n ∈ Z+.

We define partial generating functions as follows.
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Π0(z) =
∞∑

n=0

π0,nzn, Π1(z) =
∞∑

n=0

π1,nzn . (5)

We obtain the following system of equations for generating functions.

λΠ0(z) + ν(Π ′
0(z) − π0,0) = μzΠ ′

1(z) + μΠ1(z), (6)

λΠ1(z) + μzΠ ′
1(z) + μΠ1(z) = λΠ0(z) + λzΠ1(z) + ν

z
(Π0(z) − π0,0). (7)

Summing up these two equations yields

λΠ1(z) = ν(Π0(z) − π0,0)

z

or

zΠ1(z) = ν(Π0(z) − π0,0)

λ
.

Taking the first derivative of the latter equation with respect to z and substituting the
result in the right-hand side of (6) yields

λΠ0(z) + ν(Π0(z) − π0,0) = μν

λ
Π ′

0(z)

or

Π ′
0(z) = λ(λ + ν)

μν
Π0(z) − λ

μ
π0,0.

Solving this equation we obtain

Π0(z) = π0,0

[
λ

λ + ν
exp(γ z) + ν

λ + ν

]
,

where we coined the notation

γ = λ(λ + ν)

μν
.

We also find that

Π1(z) = ν

λ + ν

exp(γ z) − 1

z
π0,0.

From the normalization condition,

Π0(1) + Π1(1) = 1,

we find that π0,0 = exp(−γ ).
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4 Linear Retrial Rate Model with Setup Time

In this section, we consider an extension of the model studied in Sect. 2, introducing
the notion of a setup time. As is the case in many realistic systems, upon turning idle
(i.e., empty server and empty orbit), the system may go into sleep mode (or hyberna-
tion mode) to save energy, returning to active mode when triggered by the arrival of
a new customer. Moving from idle to active mode may happen instantaneously (as in
the models of Sect. 2 and 3) or the system may be in setup mode during a finite time
called the setup time. In this section and the following, we assume finite iid setup
times with exponential distribution with parameter α. Further, we assume that the
first customer in the busy period immediately goes to the server without joining the
orbit. Arriving customers who find the server occupied (either setting up or actually
serving) join the orbit and repeat their attempt after some random time. Below, the
terms “busy” and “active” are interchangeable, as well as “idle” and “sleeping”.

Let C(t) denote the state of the server and N (t) denote the number of customers
in the orbit at time t .

C(t) =
⎧⎨
⎩
0, the server is idle,
1, the server is busy,
2, the server is in setup mode.

Here, {X (t) = (C(t), N (t)); t ≥ 0} forms a Markov chain on the state space

S = {(i, j); i ∈ {0, 1, 2}, j ∈ Z+},

where C(t) = 0, 1, 2 implies that the server is idle, busy or in setup mode, respec-
tively. It is easy to see that the system is always stable due to the speed scaling. Let
πi, j = limt→∞ P(C(t) = i, N (t) = j . Our goal is to explicitly express all πi, j in
terms of π0,0 which is uniquely determined using the normalization condition.

More specially, let (0,0) denote the state corresponding to sleep mode (with thus
an idle server), while (0, j) ( j ≥ 1) denotes states for which the server is idle while
there are j customers in the orbit. Further, the states (1, j) ( j ≥ 1) correspond to
a server busy serving a customer with j customers present in the orbit. Finally, the
states (2, j) ( j ≥ 1) correspond to one customer awaiting setup in the server with j
customers present in the orbit. The balance equation for an idle server reads

(λ + nν)π0,n = (n + 1)μπ1,n,

which is identical to (1), the balance equation without setup time. As a result, the
relation between the partial generating functions Π0(z) and Π1(z) (defined by (5))
also holds true here. Opposed to this, the balance equations for a busy server, with
states (1, j), explicitly involve the setup parameter α, as follows.

(λ + μ)π1,0 = νπ0,1 + απ2,0, (8)

(λ + (n + 1)μ)π1,n = λπ0,n + λπ1,n−1 + (n + 1)νπ0,n+1 + απ2,n . (9)
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Introducing the generating function Π2(z) = ∑∞
j=0 π2, j z j , we then have

λΠ1(z) + μΠ1(z) + μzΠ ′
1(z) = λ(Π0(z) − π0,0) + λzΠ1(z) + νΠ ′

0(z) + αΠ2(z).

The balance equations for a server setting up, with states (2, j) are given by

(λ + α)π2,0 = λπ0,0, (10)

(λ + α)π2, j = λπ2, j−1, j = 1, 2 . . . , (11)

leading to

(λ + α)Π2(z) = λzΠ2(z) + λπ0,0 ⇐⇒ Π2(z) = λπ0,0

λ + α − λz
.

Taking the balance of flows in and out the orbit yields

λ(Π1(z) + Π2(z)) = νΠ ′
0(z).

Multiplying both sides by z and taking the derivative of both sides yields

λ[(zΠ1(z))
′ + (zΠ2(z))

′] = νzΠ ′′
0 (z) + νΠ ′

0(z).

Substituting (zΠ1(z))′ in terms of Π0(z) we find the following differential equation.

λ
λΠ0(z) + νzΠ ′

0(z)

μ
+ λ(zΠ2(z))

′ = νzΠ ′′
0 (z) + νΠ ′

0(z).

Reworking this equation, we obtain

zΠ ′′
0 (z) + (1 − λ

μ
z)Π ′

0(z) − λ2

μν
Π0(z) = λ

ν
(zΠ2(z))

′,

where

Π2(z) = λπ0,0

λ + α − λz
.

This is a non-homogeneous confluent differential equation and its explicit solution
seems difficult. But we can solve it by power expansion method.

In particular, substituting Π0(z) = ∑∞
j=0 π0, j z j into the left hand side of the

differential equation we obtain

∞∑
j=0

[
( j + 1)2π0, j+1 − λ

μ

(
j + λ

ν

)
π0, j

]
z j = λ2π0,0

ν(λ + α)

∞∑
j=0

( j+1)

(
λ

λ + α

) j

z j ,
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where we have used

Π2(z) = λπ0,0

λ + α

⎛
⎝

∞∑
j=0

λz

λ + α

⎞
⎠

j

, (12)

and thus

(zΠ2(z))
′ = λπ0,0

λ + α

∞∑
j=0

(
λ

λ + α

) j

( j + 1)z j .

Comparing the coefficients of z0 in both sides yields,

π0,1 = λ2(λ + μ + α)

μν(λ + α)
π0,0.

Assuming that π0, j = β jπ0,0 ( j ∈ Z+), it follows from the comparison between the
coefficients of z j that

( j + 1)2β j+1 − λ

μ

(
j + λ

ν

)
β j = λ2

ν(λ + α)
( j + 1)

(
λ

λ + α

) j

,

= λ

ν
( j + 1)

(
λ

λ + α

) j+1

where β0 = 1. This equation leads to

β j+1 = λ

μ

( j + λ/ν)

( j + 1)2
β j + λ

ν

(λ/(λ + α)) j+1

j + 1
,

where β0 = 1. This equation allows to calculate π0, j in terms of π0,0 for any j .
Thus, using (1), we can also calculate π1, j in terms of π0,0 for any j . Determining
π0,0 can be done by means of the recursion explained below in Sect. 6.

5 Constant Retrial Rate Model with Setup Time

In this section, we extend the model of Sect. 3 with the notion of a setup time, an iid
random variable with exponential distribution with parameter α. Further, the state
space is the same as in the previous section. Finally,while the steady-state distribution
is obviously different,weuse the samenotation as in the previous section. Thebalance
equations are as follows.

λπ0,0 = μπ1,0,

(λ + ν)π0,n = (n + 1)μπ1,n, n ≥ 1.

Transforming this equation to z-domain yields,
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(λ + ν)Π0(z) − νπ0,0 = μ(zΠ ′
1(z) + Π1(z))

Balance of flows in and out the orbit yields

λ(Π1(z) + Π2(z)) = ν

z
(Π0(z) − π0,0). (13)

Multiplying both sides by z and taking the derivative of both sides arranging the
result yields

Π ′
0(z) = λ(λ + ν)

μν
Π0(z) − λ

μ
π0,0 + λ

ν
(zΠ2(z))

′,

= γΠ0(z) + π0,0Q(z), (14)

where

Q(z) = − λ

μ
+ λ

ν

(
λz

λ + α − λz

)′
, γ = λ(λ + ν)

μν
.

It should be noted that we have used

Π2(z) = λπ0,0

λ + α − λz
.

The solution of the differential equation (14) has the form:

Π0(z) = π0,0 exp(γ z)

(
1 +

∫ z

0
exp(−γ u)Q(u)du

)
.

Hence, formally, we have Π0(1) = κ0π0,0 where

κ0 = exp(γ )

(
1 +

∫ 1

0
exp(−γ u)Q(u)du

)
.

From (13), we also have Π1(1) + Π2(1) = κ1π0,0 where

κ1 = ν

λ
(κ0 − 1).

From the normalization condition

Π0(1) + Π1(1) + Π2(1) = 1,

we can obtain

π0,0 = 1

κ0 + κ1
.
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We can obtain κ0 (and thus, also κ1 and π0,0) using numerical integration which is
readily available in almost all scientific software packages. Furthermore, π0,0 can
also be obtained directly by means of the recursion explained next.

6 Recursive Approach

From theoretical point of view, the results in the previous two sections are nice since
they are related to some well-known differential equation. However, from practical
point of view, it is more convenient to evaluate the stationary probabilities via some
simple recursion.

Practically, the approach for the model of Sect. 4 is as follows. In a first step,
we set π0,0 = 1. In a second step, we can calculate π2,0 and then π1,0. Using these
results, we can calculate π0,1 using the balance equation in and out the orbit, i.e.,

(n + 1)νπ0,n+1 = λ(π1,n + π2,n).

The probability π2,n+1 is easily calculated in terms of π0,0 for any n using (10) and
(11).

So, we can again use the following balance equation in order to determine π1,n+1.

(λ + (n + 1)ν)π0,n+1 = (n + 2)μπ1,n+1.

The step from n to n + 1 is taken in the same manner. As a result, we can calculate
relative values of the πi,n (i = 0, 1, 2) for any value of n up to a certain value n = N0
characterizing the accuracy (the larger the more accurate), and then normalize the
result by ensuring that the sum of the obtained probabilities is 1.

A similar procedure can be applied for the models of Sect. 2, 3 and 5. As a result,
we can calculate any desired performance measure with high accuracy, by setting
N0 sufficiently high.

7 Conclusions

In this contribution, we studied an M/M/1 retrial queue model with speed scaling.
The analysis yielded an exact solution for the steady-state queue length distribution,
and this for four different cases: two without setup times (either linear or constant
retrial rate), and two with setup times (again, linear or constant retrial rate).

With these results available, future work is to study the trade-off between perfor-
mance and energy consumption, inherent to speed scaling systems. Here, a first route
is by means of the existing cost function used in [7, 15]; however, this may ideally
be contrasted with alternative formulations of the mentioned trade-off.
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