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Preface

This volume contains papers presented at the 10th International Conference on
Queueing Theory and Network Applications (QTNA2015) held on 17–20 August,
2015 in Ha Noi and Ha Long, Vietnam. The conference is co-organized by
Analysis, Design and Development of ICT systems (AddICT) Laboratory,
Budapest University of Technology and Economics, Hungary, Vietnam National
University, University of Engineering and Technology (VNU-UET) and Ha Long
University.

The conference is a continuation of the series of successful QTNA conferences -
QTNA2006 (Seoul, Korea), QTNA2007 (Kobe, Japan), QTNA2008 (Taipei,
Taiwan), QTNA2009 (Singapore), QTNA2010 (Beijing, China), QTNA2011
(Seoul, Korea), QTNA2012 (Kyoto, Japan), QTNA2013 (Taichung, Taiwan) and
QTNA2014 (Bellingham, USA).

The QTNA2015 conference is to promote the knowledge and the development
of high-quality research on queueing theory and its applications in networks and
other related fields. It brings together researchers, scientists and practitioners from
the world and offers an open forum to share the latest important research accom-
plishments and challenging problems in the area of queueing theory and network
applications.

The clear message of the proceedings is that the potentials of queueing theory
are to be exploited, and this is an opportunity and a challenge for researchers. The
intensive discussions have seeded future exciting applications. The works included
in this proceedings can be useful for researchers, Ph.D. and graduate students in
queueing theory. It is the hope of the editors that readers can find many inspiring
ideas and use them to their research. Many such challenges are suggested by
particular approaches and models presented in the proceedings.

We would like to thank all authors, who contributed to the success of the
conference and to this book. Special thanks go to the members of Program
Committees for their contributions to keeping the high quality of the selected
papers. We would like to thank Dr. Vu Thi Thu Thuy (rector) and Dr. Bui Van Tan
(vice-rector) of Ha Long University, who invited us to have sessions in Ha Long
university. A special appreciation goes to the People's Committee of Quảng Ninh



Province and the President Board of Vietnam National University, Hanoi for their
generous support. Cordial thanks are due to the Organizing Committee members for
their efforts and the organizational work. Finally, we cordially thank Springer for
supports and publishing this volume.

August 2015 Tien Van Do
Yutaka Takahashi

Wuyi Yue
Viet-Ha Nguyen

VI Preface
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Part I
Queueing Models I



Detailed Analysis of the Response Time
and Waiting Time in the M/M/m FCFS
Preemptive-Resume Priority Queue

Hideaki Takagi

Abstract We present a detail theoretical analysis of the response time and wait-
ing time in the M/M/m FCFS preemptive-resume priority queueing system in the
steady state by scrutinizing and extending the previous studies by Brosh (1969),
Segal (1970), Buzen and Bondi (1983), Tatashev (1984), and Zeltyn et al. (2009). In
particular, we analyze the durations of intermittent waiting times and service times
during the response time of a tagged customer of each priority class that is preempted
by the arrivals of higher-priority class customers. Numerical examples are shown in
order to demonstrate the computation of theoretical formulas.

Keywords Priority queue · Multiserver · Preemptive-resume · Response time ·
Waiting time · First passage time

1 Introduction

We consider a queueing systemwith m servers and an infinite capacity of the waiting
room with several priority classes of customers. Customers of class p arrive in a
Poisson process with rate λp (> 0) independently of customers of all other classes.
Every customer requests a service which has the exponential distribution with mean
1/μ irrespective of his class. Classes are indexed 1, 2, . . . such that customers of
class p have preemptive priority for service over customers of class q if p < q.

There are three cases which may happen when a customer of class p arrives:

– Unless all servers are busy, his service is started immediately.
– If all servers are busy serving customers of classes not lower than p, he must wait
at the tail of waiting customers of class p.

H. Takagi (B)

Professor Emeritus, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8573, Japan
e-mail: takagi@sk.tsukuba.ac.jp

© Springer International Publishing Switzerland 2016
T.V. Do et al. (eds.), Queueing Theory and Network Applications,
Advances in Intelligent Systems and Computing 383,
DOI: 10.1007/978-3-319-22267-7_1
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4 H. Takagi

– If all servers are busy serving customers, out ofwhomat least one of them is of class
lower than p. Let q (> p) be the lowest priority class of those customers being
served. At this moment there are at most customers of classes q, q + 1, . . . in the
waiting room. In this case, the service to one of customers of class q is preempted
and he is displaced from the service facility to the head of the waiting room. We
select such a customer of class q for displacement that his service was started or
resumed last among all the customers of class q in service. Then the service to
the arriving customer of class p is started. This policy of selecting the customer to
displace is assumed by Segal [4]. It is called Last-Come, First-Displaced (LCFD)
by Fujiki [3].

As soon as a server becomes available, one of the customers of the highest priority
class among those in the waiting room is called in for service. Within the same class,
a customer is chosen on the first-come, first-served (FCFS) basis.When the service is
resumed, a new sample of the service time is set up from the exponential distribution
with mean 1/μ, irrespective of the amount of service given to him previously.

Thus we may call our system an “M/M/m preemptive-resume priority queue with
FCFS and LCFD within the same class.” The study of response times of customers
in this model dates back to old days including Brosh [1], Segal [4], Buzen and Bondi
[2], Tatashev [5], and Zeltyn et al. [6]. The purpose of this paper is to derive explicit
formulas for the mean and second moment of the response time of a tagged customer
of each priority class in the steady state.

We use the following notation for the analysis throughout this paper.

ρp := λp

mμ
; λ+

p :=
p∑

k=1

λk ; ρ+
p :=

p∑

k=1

ρk = λ+
p

mμ
p = 1, 2, . . .

In the numerical examples in this paper, we assume that there are 4 classes of
customers and that

m = 5 ; μ = 1 ; λp = λ

4
(1 ≤ p ≤ 4).

For this setting, we will show several performance measures against λ for the range
0 ≤ λ ≤ 20. Our formulas can be applied to systems with any number of servers,
any number of classes, and any different distinct values of arrival rates. However we
must assume that the service rates are identical for all customers of all classes and
that the system is stable up to customers of class p (ρ+

p < 1).

2 Mean Response Time and Mean Waiting Time

We first follow Buzen and Bondi [2] for the neat derivation of mean response time
E[T (p)] for customers of each class p. Let us focus on customers of class p. Due to
the service and preemption mechanismmentioned above, the behavior of a customer
is never affected by customers of lower priority classes as well as customers of the
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same class who arrive after him. Therefore, we have only to consider customers of
classes 1, 2, . . . , p.

We denote by N+
p the number of customers of classes 1, 2, . . . , p present in the

system at an arbitrary time in the steady state and define

Q+
p,k := P{N+

p = k} k = 0, 1, 2, . . . .

From the well-known analysis for the M/M/m queue with customers of classes
1, 2, . . . , p, we get

Q+
p,k =

⎧
⎪⎨

⎪⎩
Q+

p,0

(mρ+
p )k

k! 1 ≤ k ≤ m,

Q+
p,m(ρ+

p )k−m k ≥ m + 1,

(1)

where, from the normalization condition
∑∞

k=0 Q+
p,k = 1, we have

1

Q+
p,0

=
m−1∑

k=0

(mρ+
p )k

k! + (mρ+
p )m

m!(1 − ρ+
p )

,

where we assume that ρ+
p < 1 for the system to be stable. Then we get

E[N+
p ] =

∞∑

k=1

k Q+
p,k = mρ+

p + ρ+
p C(m, mρ+

p )

1 − ρ+
p

,

where

C(m, a) := am

m!

/[(
1 − a

m

) m−1∑

k=0

ak

m! + am

m!

]
(2)

is the Erlang’s C formula. In the present case, we have

C(m, mρ+
p ) =

∞∑

k=m

Q+
p,k = Q+

p,m

1 − ρ+
p

= Q+
p,0

1 − ρ+
p

· (mρ+
p )m

m!

as the probability that a customer of class p waits upon arrival.
We denote by Np the number of customers of class p present in the system at an

arbitrary time in the steady state. Then we get

E[Np] = E[N+
p ] − E[N+

p−1] = λp

μ
+ ρ+

p C(m, mρ+
p )

1 − ρ+
p

− ρ+
p−1C(m, mρ+

p−1)

1 − ρ+
p−1

.

From Little’s theorem E[Np] = λp E[Tp] for customers of class p, we obtain [2]
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E[Tp] = E[Np]
λp

= 1

μ
+ ρ+

p C(m, mρ+
p )

λp(1 − ρ+
p )

− ρ+
p−1C(m, mρ+

p−1)

λp(1 − ρ+
p−1)

. (3)

We denote by L p the number of customers of class p present in the waiting room
at an arbitrary time in the steady state. Then we have

E[L p] = ρ+
p C(m, mρ+

p )

1 − ρ+
p

− ρ+
p−1C(m, mρ+

p−1)

1 − ρ+
p−1

,

which gives the mean waiting time [6]

E[Wp] = E[L p]
λp

= ρ+
p C(m, mρ+

p )

λp(1 − ρ+
p )

− ρ+
p−1C(m, mρ+

p−1)

λp(1 − ρ+
p−1)

= E[Tp] − 1

μ
. (4)

We plot E[Wp] and E[Tp] in Figs. 1 and 2, respectively, for the numerical example
described in Section 1.
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Fig. 1 Mean waiting time for a customer of
class p in the M/M/m preemptive-resume pri-
ority queue
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p�

p�4 p�3 p�2 p�1

Fig. 2 Mean response for a customer of class
p in the M/M/m preemptive-resume priority
queue

3 Waiting Time

After a customer of class p enters service for the first time, his service may be
preempted several times before completion when he is pushed out of the service
facility by the arrivals of customers of classes 1, 2, . . . , p−1. He stays in the waiting
room until he again enters service. The total amount of the time a customer spends
in the waiting room is called the waiting time, which is the response time minus the
service time.

Tatashev [5] derived the LST of the DF for the waiting time Wp for customers of
class p. Later Zeltyn et al. [6] show the mean and the second moment of Wp. Their
analysis and result are reviewed in this section.

Let Pp,k{Pr} be the probability that a tagged customer of class p competing for
the servers with k other customers (they are all customers of classes 1, 2, . . . , p − 1
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. . .
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Fig. 3 State transition diagram for a customer of class p until service preemption or completion

and those customers of class p who have arrived before the tagged customer) is
preempted, where k = 0, 1, 2, . . . .m −1. The state transition diagram for our tagged
customer is shown inFig. 3.Weconsider thefirst passage time in this one-dimensional
birth-and-death process with two absorbing states, namely “service preemption”
denoted by “Pr” and “service completion” denoted by “Sr”.

Referring to Figure 3, we have the complete set of equations for {Pp,k{Pr}; 0 ≤
k ≤ m − 1} as follows:

Pp,0{Pr} = (1 − βp,0)Pp,1{Pr},
Pp,k{Pr} = (1 − αp,k − βp,k)Pp,k+1{Pr} + αp,k Pp,k−1{Pr} 1 ≤ k ≤ m − 2,

Pp,m−1{Pr} = 1 − αp,m−1 − βp,m−1 + αp,m−1Pp,m−2{Pr},

where αp,k and βp,k are given by

αp,k = kμ

λ+
p−1 + (k + 1)μ

; βp,k = μ

λ+
p−1 + (k + 1)μ

0 ≤ k ≤ m − 1.

The solution is found to be [5]

Pp,k{Pr} = B(m, mρ+
p−1)

B(k, mρ+
p−1)

0 ≤ k ≤ m − 1 (5)

with the well-known Erlang’s B formula

B(m, a) := am

m!

/
m∑

k=0

ak

k! .
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We note that

rp := Pp,m−1{Pr} = B(m, mρ+
p−1)

B(m − 1, mρ+
p−1)

= ρ+
p−1

[
1 − B(m, mρ+

p−1)
]

is the probability that the service for a customer of class p started after waiting is
preempted (note that r1 ≡ 0). The probability that the service for a customer of class
p started without waiting is found as follows. When his service is started there are k
other customers of classes 1, 2, . . . , p with probability

(mρ+
p )k

k!

/
m−1∑

j=0

(mρ+
p ) j

j ! 0 ≤ k ≤ m − 1.

Then his service is preempted with probability Pp,k{Pr}. Thus we get (q1 ≡ 0)

qp =
m−1∑

k=0

B(m, mρ+
p−1)

B(k, mρ+
p−1)

· (mρ+
p )k/k!

∑m−1
j=0 (mρ+

p ) j /j ! =
ρ+

p−1

[
B(m, mρ+

p ) − B(m, mρ+
p−1)

]

ρp
[
1 − B(m, mρ+

p )
] .

Similarly, let Pp,k{Sr} be the probability that a tagged customer of class p com-
peting for the servers with k other customers is completedwithout preemption, where
k = 0, 1, 2, . . . .m − 1. This is given by

Pp,k{Sr} = 1 − Pp,k{Pr} = 1 − B(m, mρ+
p−1)

B(k, mρ+
p−1)

0 ≤ k ≤ m − 1. (6)

Then we can numerically confirm the relation

m−1∑

k=0

Q+
p,k Pp,k{Sr} = [1 − C(m, mρ+

p )](1 − qp)

as the probability that an arriving customer of class p is started service immediately
upon arrival and his service is not preempted until completion. We can also confirm
the relation

m−1∑

k=0

Q+
p,k Pp,k{Pr} = [1 − C(m, mρ+

p )]qp

as the probability that an arriving customer of class p is started service immediately
upon arrival and his service is preempted before completion.

We note that G∗
p−1(s) is the LST of the DF for the length of a busy period in the

M/M/1 queue with arrival rate λ+
p−1 and service rate mμ, which is denoted by G+

p−1.
G∗

p−1(s) is the solution to the quadratic equation
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λ+
p−1[G∗

p−1(s)]2 − (s + λ+
p−1 + mμ)G∗

p−1(s) + mμ = 0,

which yields the mean and variance of G+
p−1:

E[G+
p−1] = 1

mμ(1 − ρ+
p−1)

; Var[G+
p−1] = 1 + ρ+

p−1

(mμ)2(1 − ρ+
p−1)

3
.

Upon arrival of a tagged customer of class p, the following cases occur:

– If less than m servers are busy for serving customers of classes 1, 2, . . . , p, his
service is started immediately. This case occurs with probability 1− C(m, mρ+

p ).

• If his service is not preempted, his waiting time is zero. This subcase occurs
with probability 1 − qp.

• If his service is preempted, hewaitsG+
p−1 timeunits for his service to be resumed.

This subcase occurs with probability qp. The resumed service is preempted i
times with probability (1 − rp)(rp)

i (i = 0, 1, 2, . . .) with each preemption
making him wait G+

p−1 time units.

– If m or more servers are busy for serving customers of classes 1, 2, . . . , p, he
waits W +

p time units for his service to be started for the first time. This case occurs
with probability C(m, mρ+

p ). His service is preempted i times with probability

(1− rp)(rp)
i (i = 0, 1, 2, . . .) with each preemption making him wait G+

p−1 time
units. We have the LST of the DF for W +

p as

W +
p (s) = (1 − ρ+

p )G∗
p−1(s)

1 − ρ+
p G∗

p−1(s)
= mμ(1 − ρ+

p )[1 − G∗
p−1(s)]

s − λp + λpG∗
p−1(s)

. (7)

Therefore, the LST of the DF for the waiting time of a tagged customer of class p is
given by [5, 6]

W ∗
p (s) = [1 − C(m, mρ+

p )]
{
1 − qp + qpG∗

p−1(s)
∞∑

i=0

(1 − rp)(rp)
i [G∗

p−1(s)]i

}

+ C(m, mρ+
p )W +

p (s)
∞∑

i=0

(1 − rp)(rp)
i [G∗

p−1(s)]i

= [1 − C(m, mρ+
p )]

{
1 − qp + qp(1 − rp)G∗

p−1(s)

1 − rpG∗
p−1(s)

}
+ C(m, mρ+

p )
(1 − rp)W +

p (s)

1 − rpG∗
p−1(s)

.

(8)

The mean waiting time for a customer of class p is given by

E[Wp] = [1 − C(m, mρ+
p )]qp

mμ(1 − rp)(1 − ρ+
p−1)

+ C(m, mρ+
p )(1 − rpρ

+
p )

mμ(1 − rp)(1 − ρ+
p−1)(1 − ρ+

p )
.
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We have numerically confirmed that this yields the same result as Eq. (4). The second
moment of the waiting time is given by

E[W 2
p ] = 2[1 − C(m, mρ+

p )]qp(1 − rpρ
+
p−1)

(mμ)2(1 − rp)2(1 − ρ+
p−1)

3

+2C(m, mρ+
p )

(mμ)2

[
1 − ρ+

p−1ρ
+
p

(1 − ρ+
p−1)

3(1 − ρ+
p )2

+ rp[2 − ρ+
p−1 − ρ+

p − rp(1 − ρ+
p−1ρp)]

(1 − rp)2(1 − ρ+
p−1)

3(1 − ρ+
p )

]
. (9)

This expression yields the same numerical values as those from the following expres-
sion derived by Zeltyn et al. [6]:

E[W 2
p ] = 2

(mμ)2

[
(1 − ρ+

p−1ρ
+
p )C(m, mρ+

p )

(1 − ρ+
p−1)

3(1 − ρ+
p )2

+ ρ+
p−1C(m, mρ+

p )[1 − C(m, mρ+
p−1)]

(1 − ρ+
p−1)

3(1 − ρ+
p )

+ [qp + (rp − qp)C(m, mρ+
p )](1 − rpρ

+
p−1)

(1 − rp)2(1 − ρ+
p−1)

3

]
. (10)

The agreement of Eqs. (9) and (10) can be proved algebraically by using the relation

C(m, mρ+
p−1) = ρ+

p−1 − rp

ρ+
p−1(1 − rp)

= B(m, mρ+
p−1)

1 − ρ+
p−1 + ρ+

p−1B(m, mρ+
p−1)

.

We plot E[W 2
p] in Fig. 4 for the numerical example described in Section 1.

4 Service Time

We are also interested in the total service time that each customer of class p receives
before service completion in the M/M/m FCFS preemptive-resume priority queue.
The total service time consists of several partial service times of two types, which
we look at separately in the following.

Let V ∗
p,k(s) be the LST of the DF for the time to preemption for a customer of class

p who competes for the servers with k other customers, where 0 ≤ k ≤ m − 1. By
referring to Fig. 3,we have the complete set of equations for {V ∗

p,k(s); 0 ≤ k ≤ m−1}
as follows:

(s + λ+
p−1 + μ)V ∗

p,0(s) = λ+
p−1V ∗

p,1(s),

[s + λ+
p−1 + (k + 1)μ]V ∗

p,k(s) = λ+
p−1V ∗

p,k+1(s) + kμV ∗
p,k−1(s) 1 ≤ k ≤ m − 2,

(s + λ+
p−1 + mμ)V ∗

p,m−1(s) = λ+
p−1 + (m − 1)μV ∗

p,m−2(s).
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We note that Pp,k{Pr} = V ∗
p,k(0) for 0 ≤ k ≤ m −1. We obtain the mean E[Vp,k] =

−V ∗(1)
p,k (0) as

E[Vp,0] =
m∑

j=1

(mρ+
p−1)

j

j !
j−1∑

l=0

Pp,l{Pr}
/

λ+
p−1

m∑

j=0

(mρ+
p−1)

j

j ! ,

E[Vp,m−1] =
m−1∑

j=0

(mρ+
p−1)

j

j !
m−1∑

l= j

Pp,l{Pr}
/

mμ

m∑

j=0

(mρ+
p−1)

j

j ! , (11)

and

E[Vp,k] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎡

⎣
m∑

j=k+1

(mρ+
p−1)

j

j !
j−1∑

l=0

Pp,l {Pr}
⎤

⎦
k∑

j=0

(mρ+
p−1)

j

j !

−
⎡

⎣
k∑

j=1

(mρ+
p−1)

j

j !
j−1∑

l=0

Pp,l {Pr}
⎤

⎦
m∑

j=k+1

(mρ+
p−1)

j

j !

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

λ+
p−1

(mρ+
p−1)

k

k!
m∑

j=0

(mρ+
p−1)

j

j !

1 ≤ k ≤ m − 1,

(12)

The second moment E[V 2
p,k] = V ∗(2)

p,k (0) is given by

E[V 2
p,0] = 2

m∑

j=1

(mρ+
p−1)

j

j !
j−1∑

l=0

E[Vp,l ]
/

λ+
p−1

m∑

j=0

(mρ+
p−1)

j

j ! ,

E[V 2
p,m−1] = 2

m−1∑

j=0

(mρ+
p−1)

j

j !
m−1∑

l= j

E[Vp,l ]
/

mμ

m∑

j=0

(mρ+
p−1)

j

j ! ,

and

E[V 2
p,k]
2

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎡

⎣
m∑

j=k+1

(mρ+
p−1)

j

j !
j−1∑

l=0

E[Vp,l ]
⎤

⎦
k∑

j=0

(mρ+
p−1)

j

j !

−
⎡

⎣
k∑

j=1

(mρ+
p−1)

j

j !
j−1∑

l=0

E[Vp,l ]
⎤

⎦
m∑

j=k+1

(mρ+
p−1)

j

j !

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

λ+
p−1

(mρ+
p−1)

k

k!
m∑

j=0

(mρ+
p−1)

j

j !

1 ≤ k ≤ m − 2.
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LetU∗
p,k(s) be the LST of the DF for the time to service completion for a customer

of class p who competes for the serverswith k other customers, where 0 ≤ k ≤ m−1.
By referring to Fig. 3 again, we have the complete set of equations for {U∗

p,k(s); 0 ≤
k ≤ m − 1} as follows:

(s + λ+
p−1 + μ)U∗

p,0(s) = μ + λ+
p−1U∗

p,1(s),

[s + λ+
p−1 + (k + 1)μ]U∗

p,k(s) = μ + λ+
p−1U∗

p,k+1(s) + kμU∗
p,k−1(s) 1 ≤ k ≤ m − 2,

(s + λ+
p−1 + mμ)U∗

p,m−1(s) = μ + (m − 1)μU∗
p,m−2(s).

We note that Pp,k{Sr} = U∗
p,k(0) for 0 ≤ k ≤ m −1.We obtain the mean E[Up,k] =

−U∗(1)
p,k (0) as

E[Up,0] =
m∑

j=1

(mρ+
p−1)

j

j !
j−1∑

l=0

Pp,l{Sr}
/

λ+
p−1

m∑

j=0

(mρ+
p−1)

j

j ! ,

E[Up,m−1] =
m−1∑

j=0

(mρ+
p−1)

j

j !
m−1∑

l= j

Pp,l{Sr}
/

mμ

m∑

j=0

(mρ+
p−1)

j

j ! ,

and

E[Up,k] =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎡

⎣
m∑

j=k+1

(mρ+
p−1)

j

j !
j−1∑

l=0

Pp,l {Sr}
⎤

⎦
k∑

j=0

(mρ+
p−1)

j

j !

−
⎡

⎣
k∑

j=1

(mρ+
p−1)

j

j !
j−1∑

l=0

Pp,l {Sr}
⎤

⎦
m∑

j=k+1

(mρ+
p−1)

j

j !

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

λ+
p−1

(mρ+
p−1)

k

k!
m∑

j=0

(mρ+
p−1)

j

j !

1 ≤ k ≤ m − 2.

The second moment E[U 2
p,k] = U∗(2)

p,k (0) is given by

E[U 2
p,0] = 2

m∑

j=1

(mρ+
p−1)

j

j !
j−1∑

l=0

E[Up,l ]
/

λ+
p−1

m∑

j=0

(mρ+
p−1)

j

j ! ,

E[U 2
p,m−1] = 2

m−1∑

j=0

(mρ+
p−1)

j

j !
m−1∑

l= j

E[Up,l ]
/

mμ

m∑

j=0

(mρ+
p−1)

j

j ! ,

and
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E[U 2
p,k]
2

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎡

⎣
m∑

j=k+1

(mρ+
p−1)

j

j !
j−1∑

l=0

E[Up,l ]
⎤

⎦
k∑

j=0

(mρ+
p−1)

j

j !

−
⎡

⎣
k∑

j=1

(mρ+
p−1)

j

j !
j−1∑

l=0

E[Up,l ]
⎤

⎦
m∑

j=k+1

(mρ+
p−1)

j

j !

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

λ+
p−1

(mρ+
p−1)

k

k!
m∑

j=0

(mρ+
p−1)

j

j !

1 ≤ k ≤ m − 2.
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Fig. 4 Second moment of the waiting time
for a customer of class p in the M/M/m FCFS
preemptive-resume priority queue
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Fig. 5 Second moment of the response time
for a customer of class p in the M/M/m FCFS
preemptive-resume priority queue

Here we note the relations

E[Up,k ] + E[Vp,k ] = Pp,k{Sr}
μ

; E[U2
p,k ] + E[V 2

p,k ] = 2E[Up,k ]
μ

0 ≤ k ≤ m − 1. (13)

Let S∗
p,k(s) be the LST of the DF for the total service time of a customer of class

p who competes for the servers with k other customers, where k ≥ 0. For a customer
of class p who waits upon arrival or resumes service after preemption, the LST of
the DF for the service time until completion is given by

∞∑

i=0

U∗
p,m−1(s)[V ∗

p,m−1(s)]i = U∗
p,m−1(s)

1 − V ∗
p,m−1(s)

.

Thus we have

S∗
p,k(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

U∗
p,k(s) + V ∗

p,k(s)
U∗

p,m−1(s)

1 − V ∗
p,m−1(s)

0 ≤ k ≤ m − 1,

U∗
p,m−1(s)

1 − V ∗
p,m−1(s)

k ≥ m.
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Then the LST of the DF for the total service time of a customer of class p is given
by

S∗
p(s) =

∞∑

k=0

Q+
p,k S∗

p,k(s) =
m−1∑

k=0

Q+
p,k S∗

p,k(s) +
∞∑

k=m

Q+
p,k S∗

p,k(s)

=
m−1∑

k=0

Q+
p,kU∗

p,k(s) +
{

m−1∑

k=0

Q+
p,k V ∗

p,k(s) + C(m, mρ+
p )

}
U∗

p,m−1(s)

1 − V ∗
p,m−1(s)

.

(14)

Using the relation in (13), we can show that

E[Sp,k] = 1

μ
; E[S2

p,k] = 2

μ2 k ≥ 0 ; E[Sp] = 1

μ
; E[S2

p] = 2

μ2 .

Thesewould be themean and the secondmoment ifwe assumed that Sp,k and Sp were
exponentially distributed with mean 1/μ. However, we have not obtained S∗

p,k(s)
and S∗

p(s) explicitly except for the case p = 1:

S∗
1,k(s) = S∗

1 (s) = μ

s + μ
.

5 Response Time

For customers of the highest priority class p = 1 who are never preempted, we get

T ∗
1 (s) = W ∗

1 (s)S∗
1 (s), (15)

where

W ∗
1 (s) = 1 − C(m, mρ1) + C(m, mρ1)(mμ − λ1)

s + mμ − λ1

is the well-known LST of the DF for the waiting time in the M/M/m FCFS queue
(without priorities) with arrival rate λ1.

For p ≥ 2, by combining the arguments for deriving the LST of the DF for the
waiting time Wp in Eq. (8) and the LST of the DF for the service time Sp in Eq. (14),
the joint LST of the DF for Wp and Sp of a customer of class p is given by
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T̃ ∗
p (s, s′) =

m−1∑

k=0

Q+
p,kU∗

p,k(s
′)

+
{

G∗
p−1(s)

m−1∑

k=0

Q+
p,k V ∗

p,k(s
′) + C(m, mρ+

p )W +
p (s)

}
U∗

p,m−1(s
′)

1 − G∗
p−1(s)V ∗

p,m−1(s
′)

.

(16)

The marginal distributions yield

W ∗
p(s) = T̃ ∗

p (s, 0) ; S∗
p(s) = T̃ ∗

p (0, s),

which agree with Eqs. (8) and (14), respectively.
Finally, the LST of the DF for the response time Tp of a customer of class p is

given by

T ∗
p (s) = T̃ ∗

p (s, s) =
m−1∑

k=0

Q+
p,kU∗

p,k(s)

+
{

G∗
p−1(s)

m−1∑

k=0

Q+
p,k V ∗

p,k(s) + C(m, mρ+
p )W +

p (s)

}
U∗

p,m−1(s)

1 − G∗
p−1(s)V ∗

p,m−1(s)
.

(17)

Clearly it does not hold that T ∗
p (s) = W ∗

p(s)S∗
p(s) for p ≥ 2, which means that the

total waiting time Wp and the total service time Sp are not independent for p ≥ 2.
In fact, they are positively correlated as we get from Eq. (16) the covariance of the
total time and the service time:

Cov[Wp, Sp]

=

m−1∑

k=0

Q+
p,k E[Vp,k]

mμ(1 − rp)(1 − ρ+
p−1)

+ {[1 − C(m, mρ+
p )]qp + C(m, mρ+

p )}E[Vp,m−1]
mμ(1 − rp)2(1 − ρ+

p−1)
,

(18)

where E[Vp,k] and E[Vp,m−1] are given in Eqs. (12) and (11), respectively. For
customers of the highest priority class (p = 1), we have T ∗

1 (s) given in Eq. (15)
and E[W1, S1] = 0, which means that W1 and S1 are independent, because they
are never preempted. We plot Cov[Wp, Sp] in Fig. 6 for p ≥ 2 for the numerical
example described in Section 1.

From Eq. (17), we get the mean response time E[Tp] already given in Eq. (3).
The second moment of the response time is given by
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Fig. 6 Covariance of the total waiting time and the total service time for a customer of class p in
the M/M/m FCFS preemptive-resume priority queue

E[T 2
p ] = E[(Wp + Sp)

2] = E[W 2
p ] + 2Cov[Wp, Sp] + 2E[Wp]E[Sp] + E[S2

p]

=
2

m−1∑

k=0

Q+
p,k E[Vp,k ]

mμ(1 − rp)(1 − ρ+
p−1)

+ 2{[1 − C(m, mρ+
p )]qp + C(m, mρ+

p )}E[Vp,m−1]
mμ(1 − rp)2(1 − ρ+

p−1)

+ 2[1 − C(m, mρ+
p )]qp

(mμ)2

[
1 − rpρ

+
p−1

(1 − rp)2(1 − ρ+
p−1)

3
+ m

(1 − rp)(1 − ρ+
p−1)

]

+ 2C(m, mρ+
p )

(mμ)2

[
1 − ρ+

p−1ρ
+
p

(1 − ρ+
p−1)

3(1 − ρ+
p )2

+ rp[2 − ρ+
p−1 − ρ+

p − rp(1 − ρ+
p−1ρp)]

(1 − rp)2(1 − ρ+
p−1)

3(1 − ρ+
p )

+ m(1 − rpρ
+
p )

(1 − rp)(1 − ρ+
p−1)(1 − ρ+

p )

]
+ 2

μ2 . (19)

We plot E[T 2
p ] in Fig. 5 for the numerical example described in Section 1. We have

confirmed that this yields the same result as obtained by the method of Segall [4].
It remains us to find the explict LST of the DF, T ∗

p (s), for a customer of generic
class p in the M/M/m FCFS preemptive-resume priority queue.
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Exhaustive Vacation Queue with Dependent
Arrival and Service Processes

Gábor Horváth, Zsolt Saffer and Miklós Telek

Abstract This paper presents amore general class ofMAP/MAP/1 exhaustive vaca-
tion queue, in which the Markov modulated arrival and service processes are depen-
dent. This model class requires the evaluation of the busy period of quasi birth death
process with arbitrary initial level, which is a new analysis element.

The model is analyzed by applying matrix analytic methods for the underlying
quasi birth death process. The main result of the paper is the probability-generating
function of the number of jobs in the system. Finally, a numerical example provides
an insight into the behavior of the model.

Keywords Vacation queue ·MAP ·Dependent arrival and service process ·QBD ·
Matrix analytic methods · stationary analysis
1 Introduction

The importance of vacation queues comes for their diverse application fields: model-
ing various computer systems, telecommunication protocols, manufacturing, logis-
tics, etc. For details on analysis works on vacation models and their generalizations
the reader is referred to the recent surveys [5] and [10].

Due to the versatility of theMarkovianArrival Process (MAP) [7], vacation queues
with MAP input and general service times have also been investigated in several past
papers [4, 8, 9]. Only a few discrete-time models have been investigated, in which
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both the arrival and the service processes areMarkovian.MAP/PH/1 vacationmodels
have been analyzed by A.-S. Alpha in [1, 2] and by C. Goswami and N. Selvaraju
in [3].

In this paper we consider a more general class of exhaustive vacation queues
with dependent Markov modulated arrival and service processes. This model class
requires the introduction of a new analysis element, the evaluation of the busy period
of quasi birth death (QBD) processes with arbitrary initial level. We provide the
expression of the probability-generating function (PGF) of the number of jobs in the
system. In the last part of the paper we provide a numerical example and investigate
the effects of different vacation distributions on the mean number of jobs.

2 Model Description

We consider the dependent MAP/MAP/1 exhaustive vacation queue. The model
falls in the class of single server FCFS queue with multiple vacations and exhaustive
discipline [10]. According to the rule of exhaustive service discipline the server
serves the jobs in the queue until it gets idle, then the server leaves for vacation
for an independent and identically distributed random amount of time. If the queue
is idle at the end of the vacation the server leaves for a new vacation, otherwise
it starts serving the jobs in the queue. The random vacation time, its probability
density function (pdf) and its Laplace transform (LT) are denoted by σ̃ , σ (t) and
σ ∗(s) = E(e−sσ̃ ), respectively.

The arrivals and services are characterized by seven matrices: Lv, Fv, Bs,

Ls, Fs,�vs and �sv .

– During the vacations the arrivals are given by a MAP, where the entries of Lv are
the rates of transitions without a job arrival, and the entries of Fv are the rates
of transitions that are accompanied by a job arrival. Matrix Lv + Fv is therefore
the generator of the continuous time Markov chain (CTMC) with Nv states which
modulates the arrivals during vacation.

– When the server serves the jobs, the queue behaves as a quasi birth-death (QBD) [6]
process, there the matrices Bs, Ls and Fs contains the transition rates associated
with a service completion, without service completion and job arrival, with a
job arrival, respectively. In this case the generator of the modulating CTMC is
Bs + Ls + Fs, and it has Ns states.

– The transition between the vacation and service periods is given by Nv × Ns

stochastic matrix �vs, whose entries are the probabilities of the state transitions
occurring at the end of the vacation period. The Ns × Nv matrix �sv has a similar
role, holding the probabilities of phase transitions when the service period ends
and a vacation starts.

This is a general model which covers a number of special cases, e.g., the MAP/PH/1
vacation queue and the MAP/MAP/1 vacation queue.
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The stability of the model is determined by the stationary drift of the QBD during
service [6]. Hence the necessary and sufficient condition of the stability of this
vacation model is

αsFs1 − αsBs1 < 0, (1)

where αs is the solution of the linear system αs (Bs + Ls + Fs) = 0, αs1 = 1, and
1 denotes the column vector of ones.

3 The Number of Jobs in the System

To characterize the number of jobs in the system, let us introduce the two dimensional
process X (t) = {N (t),J (t), t ≥ 0}, where N (t) denotes the number of jobs (also
referred to as levels) and J (t) denotes the state of the modulating CTMC (also
referred to as phase) at time t . For the analysis of X (t) the evolution of the queue
is divided to cycles, as shown in Figure 1. Each cycle starts with a vacation period,
which is followed by a service period, and the cycle ends when the last job leaves the
system. Note that a cycle can also be degenerate: if no jobs arrive during the vacation
period, there is no service period (see cycle i − 1 in Figure 1).

t

N (t)

cycle i− 1 cycle i cycle i+ 1

Vacation period Vacation period Service period Vacation period

Fig. 1 Cycles in the evolution of the queue

The stationary probability that there are � (� ≥ 1) jobs in the system is proportional
to M�, the mean time spent at level � in a stationary cycle.

M� =
∫ ∞

u=0
σ(u)

∫ u

t=0
β P(v)

� (t)1 dt du
︸ ︷︷ ︸

M(v)
�

+
∫ ∞

u=0
σ(u)

∞∑

m=1

β P(v)
m (u)�vsHm,�1 du

︸ ︷︷ ︸
M(s)

�

, (2)

where row vector β of size Nv is the stationary phase distribution at the beginning
of the vacation period, matrix P(v)

� (t) characterizes the number of arrivals up to time
t during the vacation period, defined as

[P(v)
� (t)]i, j = P(N (t) = �,J (t) = j, σ̃ > t |N (0) = 0,J (0) = i), (3)



22 G. Horváth et al.

and [Hm,�]i, j is the mean times spent in level � and phase j in the service period
starting from level m and phase i . The first and second term of (2), M(v) and M(s),
correspond to the vacation and service period, respectively. Closed form formulas
are provided for both in the next subsections. From M� the stationary distribution of
N (t) is obtained by normalization, q� = limt→∞ P(N (t) = �) = M�/

∑
k Mk .

The Evolution of the Number of Jobs During the Vacation Period. The evolution
of the number of jobs during the vacation period resembles to the counting process
of a MAP given by matrices Lv, Fv. Thus, for matrices P(v)

� (t) we have

d

dt
P(v)

� (t) = P(v)
�−1(t)Fv + P(v)

� (t)Lv, for � > 0, (4)

d

dt
P(v)
0 (t) = P(v)

0 (t)Lv, (5)

with initial condition P(v)
� (0) = δ0,�I, where δ denotes the Kronecker delta (that is

δi i = 1, δi j = 0 for i �= j). Similar to [6, Sec. 3], multiplying the �th equation by
z�, summing up and solving the differential equation gives the generating function

P(v)∗(z, t) =
∞∑

�=0

z�P(v)
� (t) = e(Lv+zFv)t . (6)

The Mean Time Spent in Different Levels During the Service Period. As a new
contributions of the paper we derive matrix Hm,�, which is the mean time spent in
various phases of level � starting from level m in a QBD characterized by matrices
Bs, Ls and Fs. It is known that the mean time spent at different phases of level �

starting from level 0 before returning to level 0 is given by R� [6].
But, in our vacation queue the starting level after a vacation is not 0, but the

number of arrivals during the vacation, which is denoted by m. According to our best
knowledge, this measure has not been investigated yet.

For m > 0, we define matrix P(s)
m,� corresponding to the service period as

[P(s)
m,�(t)]i, j = P(� > u+t,N (u+t) = �,J (u+t) = j |N (u)=m,J (u)= i, σ̃ =u),

where u marks the beginning and � marks the end of the service period, thus � =
min{t : N (u+t) = 0}. For � > 1 matrix P(s)

m,�(t) satisfies

d

dt
P(s)

m,�(t) = P(s)
m,�−1(t)Fs + P(s)

m,�(t)Ls + P(s)
m,�+1(t)Bs, (7)

and for � = 1 we have
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d

dt
P(s)

m,1(t) = P(s)
m,1(t)Ls + P(s)

m,2(t)Bs, (8)

with initial values P(s)
m,�(0) = δm,�I. We are interested in the mean time spent in

different states during the busy period, that is Hm,� = ∫ ∞
t=0 P(s)

m,�(t) dt . Integrating
the differential equation (7) and (8) from t = 0 to ∞ we get

P(s)
m,�(∞) − P(s)

m,�(0) = Hm,�−1Fs + Hm,�Ls + Hm,�+1Bs, for � > 1, (9)

P(s)
m,1(∞) − P(s)

m,1(0) = Hm,1Ls + Hm,2Bs. (10)

These two equations and the initial value P(s)
m,�(0) lead to four different cases, in

general: (1) when � = 1, (2) when 1 < � < m, (3) when 1 < � = m, finally, (4)
when � > m. The corresponding equations are

−δm,1I = Hm,1Ls + Hm,2Bs, (11)

0 = Hm,�−1Fs + Hm,�Ls + Hm,�+1Bs, for 1 < � < m, (12)

−I = Hm,m−1Fs + Hm,mLs + Hm,m+1Bs, for m > 1, (13)

0 = Hm,�−1Fs + Hm,�Ls + Hm,�+1Bs, for � > m, (14)

where δ denotes the Kronecker delta again. The solution of (11)-(14) is given by a
matrix-geometric combination

Hm,� = �R�−1 + �Sm−�, for 1 ≤ � ≤ m, (15)

Hm,� = Hm,mR�−m, for 1 ≤ m < �, (16)

where matrices R and S are obtained such that the regular equations (12) and (14)
are satisfied for any � and �. R and S are the minimal non-negative solutions to the
quadratic equations [6, Sec. 10]

0 = Fs + RLs + R2Bs, 0 = Bs + SLs + S2Fs, (17)

Matrices � and � are obtained from the solution of the irregular equations (11) and
(13) as

0 = �(Ls + RBs) + �(Sm−1Ls + Sm−2Bs), (18)

−I = �Rm−2 (Fs + RLs + R2Bs)︸ ︷︷ ︸
0

+�(SFs + Ls + RBs). (19)

The solution of � and � are
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� = (−SFs − Ls − RBs)
−1, (20)

� = �(Sm−1Ls + Sm−2Bs)(Ls + RBs)
−1

= −�SmFs(Ls + RBs)
−1 = −�SmR, (21)

where we exploited various identities of the fundamental matrices of QBDs. Finally
using the expressions of Hm,� from (16) and (15) as well as (20) and (21) we get

Hm,� = −�SmR�

︸ ︷︷ ︸
term1

+�R�−m
︸ ︷︷ ︸

term2

, for 1 ≤ m ≤ �, (22)

Hm,� = −�SmR�

︸ ︷︷ ︸
term1

+�Sm−�
︸ ︷︷ ︸

term3

, for 1 ≤ � < m. (23)

The Mean Time Spent at Each Level in a Stationary Cycle. By applying (6) in
the first term of (2), its generating function, M (v)

� , can be expressed as

M (v)∗(z) =
∞∑

�=0

z�M (v)
� = β

∫ ∞

u=0
σ(u)

∫ u

t=0
e(Lv+zFv)t1 dt du

= β

∫ ∞

u=0
σ(u)

(
I − e(Lv+zFv)u

)
(−Lv − zFv)

−1 1du

= β

(
I − σ ∗(Lv + zFv)

)
(−Lv − zFv)

−1 1,

(24)

where σ ∗(M) with square matrix M is defined by
∫ ∞

u=0 σ(u) eMudu.

Lemma 1. For any row vector x of size Nv , matrix X of size Nv × Ns and matrix Y
of size Ns × Ns, if the infinite sum exists we have

∞∑

m=0

x P(v)
m (t) X Ym = vecT〈XT 〉e(Lv

T ⊗I+Fv
T ⊗Y)t (xT ⊗ I), (25)

where vec〈〉 is the column stacking operator, which generates a column vector from
the columns of a matrix.

Proof. The proof of the lemma is omitted due to space limitations. �

M (s)
� is obtained by substituting the expressions (22) and (23) of the determinedmatri-

cesHm,� into the definition (2). For the generating function M (s)∗(z) = ∑∞
�=0 z�M (s)

�
we get
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M (s)∗(z) =
∞∑

�=0

z�M (s)
� = −

∞∑

�=0

z�

∫ ∞

u=0
σ(u)

∞∑

m=1

β P(v)
m (u)�vs�SmR�1 du

︸ ︷︷ ︸
M(s)∗

1 (z)

+
∞∑

�=0

z�

∫ ∞

u=0
σ(u)

�∑

m=1

β P(v)
m (u)�vs�R�−m1 du

︸ ︷︷ ︸
M(s)∗

2 (z)

+
∞∑

�=0

z�

∫ ∞

u=0
σ(u)

∞∑

m=�+1

β P(v)
m (u)�vs�Sm−�1 du

︸ ︷︷ ︸
M(s)∗

3 (z)

.

By applying rearrangements and making use of Lemma 1 the above three terms can
be expressed in closed-form resulting a formula for M (s)∗(z) as

M (s)∗(z) =
(
βσ ∗(Lv+zFv)�vs� − vecT〈�T �vs

T 〉σ ∗(Lv
T⊗I+Fv

T⊗S)(βT⊗I)
)

(
(I−zR)−1 + (zI−S)−1S

)
1.

The Generating Function of the Number of Jobs in the System. The phase
(J (t)) at the beginning of the cycles form an embedded discrete time Markov chain
(DTMC). The probability matrices characterizing the number of arriving jobs and
the phase transitions during the vacation period are

∫ ∞
0 σ(x)P(v)

m (x) dx . If m jobs
are in the queue when the system enters the service period then the phase transitions
are given by Gm , where matrix G is the minimal non-negative solution to the matrix-
quadratic equation 0 = Bs + LsG + FsG2. Thus, the transition probability matrix of
the DTMC, denoted by Q, is expressed by

Q =
∫ ∞

0
σ(x)

∞∑

m=0

P(v)
m (x)�vsGm�sv dx . (26)

The stationary distribution of Q, denoted by β, is determined by the linear system
βQ = β, β1 = 1. Making use of Lemma 1, vector β is the solution to

vecT〈�vs
T 〉σ ∗(Lv

T ⊗ I + Fv
T ⊗ G)(βT ⊗ �sv) = β, β1 = 1. (27)

Theorem 1. The generating function of the stationary number of jobs in the system,
q(z), is given by
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q(z) = 1

c

(
β

(
I − σ ∗(Lv + zFv)

)
(−Lv − zFv)

−1 1

+
(

βσ ∗(Lv+zFv)�vs� − vecT〈�T �vs
T 〉σ ∗(Lv

T⊗I+Fv
T⊗S)(βT⊗I)

)

·
(

(I−zR)−1 + (zI−S)−1S
)
1

)
,

where β is determined by (27) and the constant c satisfies limz→1 q(z) = 1.

Taking the derivatives of q(z) at z → 1 provides the factorial moments of the number
of jobs in the queue.

4 Numerical Example

This numerical example investigates the effect of the mean and the distribution of the
vacation time on the mean number of jobs in the system1. Since during the service
period the arrival and the service processes are dependent we characterize the overall
effect of the Markov environment by the following matrices :

Bs =
⎡

⎣
0 0 0
1 0 1
4 1 2

⎤

⎦ , Ls =
⎡

⎣
−8 1 0
0 −5 2
1 3 −11

⎤

⎦ , Fs =
⎡

⎣
2 1 4
0 1 0
0 0 0

⎤

⎦ ,

Fv =
[
3 1
0 1

]
, Lv =

[−5 1
2 −3

]
,�sv =

⎡

⎣
1 0
1 0
0.1 0.9

⎤

⎦ ,�vs =
[
0.8 0 0.2
0 0.7 0.3

]
.

(28)
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Fig. 2 The mean number of jobs in the system

1 The Mathematica implementation can be downloaded from http://hit.bme.hu/
~ghorvath/software

http://hit.bme.hu/~ghorvath/software
http://hit.bme.hu/~ghorvath/software
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The computation has been performed for the following type of vacation distribu-
tions: Uniform distribution, Exponential distribution, Erlang distribution with shape
parameter of 3, Weibull distribution with shape parameter of k = 1/2. The mean
number of jobs computed from Theorem 1 is depicted in Figure 2. As expected, the
number of jobs in the system is the highest when the vacation times are Weibull
distributed which has the heaviest tail. The plots corresponding to the uniform and
the Erlang cases match completely. These distributions have the same squared coef-
ficient of variations (that is 1/3), thus the results suggest same kind of insensitivity
as in the M/G/1 queue.
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Delay Analysis of a Queue with General Service
Demands and Phase-Type Service Capacities

Michiel De Muynck, Herwig Bruneel and Sabine Wittevrongel

Abstract We present the analysis of a non-classical discrete-time queueing model
where customers demand variable amounts of work from a server that is able to per-
form this work at a varying rate. The service demands of the customers are integer
numbers of work units. They are assumed to be independent and identically dis-
tributed (i.i.d.). The service capacities, i.e., the numbers of work units that the server
can process in the consecutive slots, are also assumed to be i.i.d. and have a rational
probability generating function (pgf). Finally, the numbers of customer arrivals in
each slot are i.i.d. as well. We analyze this model analytically using contour inte-
gration. Our main result is an expression for the pgf of the customer delay in steady
state, from which expressions for the moments of the delay can be derived.

Keywords Discrete-time queueing theory · Service demands · Service capacities ·
Complex contour integration

1 Introduction

In many naturally occurring single-server queueing phenomena, the customers
require different amounts of service from the server, and the rate at which the server
is able to provide that service also varies over time. Examples are packet-switched
routers where the packet sizes are variable and the available bandwidth fluctuates
over time, web services where the available processing power fluctuates due to back-
ground processes or shared hosting, etc.

Most classical queueing models that try to take these two effects into account do
this by using the notion of “service time”, which is the amount of time that the server
needs to fully serve one customer. This single notion, however, is not always adequate
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to model both effects. This is because if the amount of service that each customer
requires (which we refer to as the “service demand” of the customer) varies from
customer to customer, and the amount of work that the server is able to perform per
time unit (which we refer to as the “service capacity” of the server) varies over time,
then there may be a non-trivial correlation between the consecutive service times.
In discrete-time queueing systems the notion of “service time” may even become
ill-defined, as the amount of time that each customer spends in service may depend
on the state of the queue and the service demands of the other customers.

In this paper, we analyze a discrete-time queue with variable service demands and
variable service capacities. Time is divided into fixed-length intervals, called time
slots, and both the service demands of the customers and the service capacities in
each time slot are assumed to be integer numbers of “work units”. The numbers of
customer arrivals per slot are assumed to be independent and identically distributed
(i.i.d.), as are the service demands per customer and the service capacities per slot.

This type of queueing model has been analyzed before, under various restrictions
for the distribution of the service capacities. In [1] and [2], it was assumed that the ser-
vice capacities follow a geometric distribution. In [3], the model was analyzed under
the restriction that service capacities are deterministically equal to a given constant.
Finally, in [4], this model was again analyzed, now with the restriction that the distri-
bution of the service capacities has finite support. This was a generalization of [3], as
the deterministic distribution has a support of 1. It was, however, not a generalization
of [1] and [2], as the geometric distribution does not have finite support.

In the present paper, we analyze the queueingmodel under the assumption that the
service capacities have a rational probability generating function (pgf). Note that all
the restrictions on the service capacities in the previous papers [1]-[4] imply that the
pgf of the service capacities must be rational. Additionally, all discrete phase-type
distributions have a rational pgf, so the model is very widely applicable. The analysis
in this paper is focused on the customer delay, and our main result is an expression
for the pgf of the customer delay in steady state.

2 Queueing Model

The queueing model that we study in this paper is a discrete-time queueing model,
where time is divided into contiguous fixed-length intervals, referred to as (time)
slots. The numbers of arriving customers during the consecutive slots are i.i.d. from
slot to slot. We denote their common pgf as A(z) and their mean as λ � A′(1).

Each customer has a service demand, expressed as a positive integer number of
work units. This is exactly the amount of work that the server will have to perform,
possibly over the course of multiple time slots, to completely serve the customer.
The service demands of the customers are assumed to be i.i.d. from customer to
customer. The common pgf of the service demands of the customers is denoted as
S(z). The mean service demand is denoted as τ � S′(1).

The number of work units that the server can execute in a time slot is referred to
as the service capacity of the server during that time slot. These service capacities



Delay Analysis of a Queue with General Service Demands 31

are assumed to be non-negative integers that are i.i.d. from slot to slot, and we denote
their common pgf as R(z), which is assumed to be a rational function. The mean
service capacity is denoted as μ � R′(1).

The server cannot initiate the service of a customer during the arrival slot of that
customer. Stated otherwise, the service of a customer can start at the earliest during
the slot following his arrival slot, even if the customer arrives in an empty system.

Customers from the queue are served sequentially by the server in first-come
first-served (FCFS) order. In each slot, no more work units are performed than the
available service capacity for that slot. If during a slot the available service capacity
is less than the (remaining) service demand of the customer currently in service, then
that customer’s service simply continues in the next slot, with a reduced remaining
service demand. Conversely, if the service capacity is greater than the remaining
service demand of the customer currently in service, then that customer leaves the
system and the server will use its remaining service capacity to immediately start
the service of the next customer in the queue (if any). This is repeated until either
the whole service capacity of the server during that slot has been used or there are
no customers left in the queue that still require service.

The final assumption that we make is that the numbers of arrivals in each slot, the
service demands of the customers, and the service capacities during each slot, are
mutually independent.

3 Unfinished Work

Before deriving the expression for the pgf of the customer delay in this system, we
first derive an expression for the pgf U (z) of the unfinished work at the beginning of
an arbitrary slot in steady state, i.e., the sum of (remaining) service demands of all
the customers in the system at the beginning of the arbitrary slot.

We begin by introducing a notation for some of the random variables pertaining
to the state of the system in slot k. We denote the unfinished work at the beginning of
slot k as uk , the number of customer arrivals during slot k as ak , the service demand
of the i th (i = 1, 2, ..., ak) customer entering the system during slot k as sk,i and the
service capacity during slot k as rk . In every slot k, the following system equation
holds between these random variables:

uk+1 = (uk − rk)
+ +

ak∑

i=1

sk,i , (1)

where (...)+ = max(..., 0). Taking the z-transform of both sides of this equation,
taking the limit for k → ∞ and using the fact that all the above random variables
pertaining to the same slot k (i.e., uk , ak , rk and the sk,i ’s) are all independent of each
other, we obtain

U (z) = A(S(z)) lim
k→∞ E

[
z(uk−rk )

+]
. (2)
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Since uk and rk are independent, we can use a method based on complex con-
tour integration, similar to the one presented in [5] (for the analysis of the classical
discrete-time G(G)/Geo/1 queue), to further work out the above equation. Under the
assumption of a stable system, i.e., under the equilibrium condition λτ < μ, the
following equation is then obtained for the steady-state pgf U (z) of the unfinished
work at the beginning of a slot (see [5]):

U (z) = A(S(z))

⎡

⎢⎣U (z)R(1/z) + (z − 1)
∑

ζ ∈S−1
R

Fζ (z)

⎤

⎥⎦ . (3)

Equation (3) is valid for all z /∈ S−1
R , where SR denotes the set of singularities

(including, if applicable, ∞) of R(z), S−1
R denotes the inverse of this set, i.e., {z :

1/z ∈ SR}, and Fζ (z) is defined as

Fζ (z) = 1

2π ı

∮

Cζ

U (ξ)R(1/ξ)

(ξ − z)(ξ − 1)
dξ , (4)

with ı2 = −1 and Cζ a small contour around ζ but not around any other singularity
of R(1/ξ), nor any singularity of U (ξ), nor around 1 or z.

Let us now assume that the service-capacity pgf R(z) is a rational function. Then
all singularities ζ of R(1/z) are poles and we can write

R(1/z) = PR(z)

Q R(z)
= PR(z)∏

ζ ∈S−1
R

(z − ζ )μζ
, (5)

wherein PR(z) and Q R(z) are two mutually prime polynomials and μζ denotes the
multiplicity of a singularity ζ . Note that the degree of PR(z) cannot be higher than
the degree m = ∑

ζ ∈S−1
R

μζ of Q R(z), since limz→∞ R(1/z) = R(0) ∈ [0, 1].
Therefore, using the expression for the residue of a complex function in a pole ζ

with multiplicity μζ , we easily find that the contour integral Fζ (z) takes the form

Fζ (z) =
μζ∑

k=1

ck

(z − ζ )k
, (6)

for yet unknown constants ck , or hence,

∑

ζ ∈S−1
R

Fζ (z) = N (z)

Q R(z)
, (7)

with N (z) an unknown polynomial of degree m − 1. Hence, we get
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U (z) = (z − 1)A(S(z))N (z)

Q R(z) − A(S(z))PR(z)
. (8)

Using Rouché’s theorem it can be shown (see e.g. [6]) that the denominator
T (z) = Q R(z) − A(S(z))PR(z) has exactly m zeros inside or on the unit circle, one
of which is equal to 1. SinceU (z)must remain bounded in these zeros, the numerator
ofU (z) has to vanish as well, which completely determines the polynomial N (z) and
the pgfU (z) except for a constant factor.With the normalization conditionU (1) = 1,
we finally get the following expression for U (z):

U (z) = (μ−λτ)
(z − 1)A(S(z))

1 − R(1/z)A(S(z))

∏

ζ ∈S−1
R

(
1 − ζ

z − ζ

)μζ ∏

ξ ∈N−
T

(
z − ξ

1 − ξ

)nξ

, (9)

whereN−
T denotes the set of zeros of T (z) inside or on the unit circle, excluding the

zero at z = 1, and nξ denotes the multiplicity of a zero ξ in this set.

4 Customer Delay

In this section, we derive an expression for the pgf D(z) of the delay dC that an arbi-
trary customer C experiences in the system in steady state, under a FCFS scheduling
discipline. This delay is measured as the number of slots between the end of the
arrival slot of the customer and the end of the slot during which the customer leaves.
Note that the customer delay cannot be 0, since a customer that arrives during a slot
cannot receive any service during that same slot.

We start the delay analysis with the derivation of the pgf of a related quantity, vC ,
the unfinished work observed by the customer C upon arrival. It is defined as the
total number of work units present in the system just after the arrival slot of customer
C , but to be executed before or during the service of customer C . Mathematically,
vC is therefore defined as

vC = (u J − rJ )+ +
fC +1∑

i=1

sJ,i , (10)

where J denotes the arrival slot of customer C , fC is the number of customers that
arrive in slot J but are to be served before C , and sJ,i is the service demand of
the i th customer in slot J . It is well-known (see e.g. [7]) that for any queue with
independent, ordered arrivals, the pgf of fC is given by (A(z)−1)/(λ(z −1)). Using
this property and equation (2), the pgf V (z) of vC then follows immediately as

V (z) = U (z)

A(S(z))
· A(S(z)) − 1

λ (S(z) − 1)
· S(z) . (11)
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The delay dC of customer C is related to the quantity vC as follows. Customer C
will still be in the system at the start of a slot if and only if fewer than vC work units
have been executed since the end of the arrival slot J of C . In other words,

dC > k ⇔ vC > rJ+1 + rJ+2 + ... + rJ+k . (12)

We denote the above sum of k independent service capacities as r (k)
J . Its pgf is

given by R(z)k . Using the fact that vC and r (k)
J are independent, we then find

D(z) − 1

z − 1
=

∞∑

k=0

Prob[dC >k]zk =
∞∑

k=0

∞∑

i=0

i−1∑

j=0

Prob[vC = i]Prob[r (k)
J = j]zk .

(13)
The inversion formula for probability generating functions states that

Prob[r (k)
J = j] = 1

2π ı

∮

L

R(ζ )k

ζ j+1 dζ , (14)

where L is a contour around the origin such that ∀ζ ∈ L : |ζ | < RR , where RX

denotes the radius of convergence of a pgf X (z). Note that the radius of convergence
of R(z) and that of R(z)k are equal. Equation (13) now reduces to

D(z) − 1

z − 1
= 1

2π ı

∞∑

k=0

∞∑

i=0

i−1∑

j=0

∮

L
Prob[vC = i]

(
z R(ζ )

)k

ζ j+1 dζ

= 1

2π ı

∞∑

k=0

∞∑

i=0

∮

L
Prob[vC = i] (

z R(ζ )
)k ζ−i − 1

1 − ζ
dζ . (15)

The above infinite summation of contour integrals is equal to the contour integral of
the infinite series (i.e., we may “swap” the summation and integration symbols) if
the contour L is chosen such that the resulting infinite series is uniformly convergent.
It is important to question when such a contour can be constructed. This is the case
if ∀ζ ∈ L : |1/ζ | < RV and |z R(ζ )| < 1. The former condition imposes a lower
bound on |ζ |, whereas the latter imposes an upper bound on |R(ζ )| that depends on
z. Since this upper bound is most severe when ζ is real and positive, and since R(ζ )

is an increasing function on the part of the real axis where 0 ≤ ζ < RR , the bounds
can be rewritten as R(1/RV ) < R(|ζ |) < |1/z|. We conclude that a contour can be
constructed if and only if |z| < 1/R(1/RV ). It follows that the radius of convergence
RD of D(z) is given byRD = 1/R(1/RV ).

If |z| < RD , we may construct L as described above and bring the summations
in (15) inside the integral. We obtain

D(z) − 1

z − 1
= 1

2π ı

∮

L

V (1/ζ ) − 1

(1 − ζ )
(
1 − z R(ζ )

) dζ . (16)
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Substituting z = 0 in (16), in view of D(0) = 0, we get

1 = 1

2π ı

∮

L

V (1/ζ ) − 1

1 − ζ
dζ .

Using this result in (16) again, we find

D(z) = z

2π ı

∮

L

V (1/ζ ) − 1

1 − ζ
· 1 − R(ζ )

1 − z R(ζ )
dζ . (17)

We can split the integrand into two terms, as follows:

V (1/ζ )

1 − ζ

1 − R(ζ )

1 − z R(ζ )
− 1

1 − ζ

1 − R(ζ )

1 − z R(ζ )
. (18)

The latter term has no poles inside L , since L was chosen such that ∀ζ ∈ L :
|z R(ζ )| < 1, which implies (due to Rouché’s theorem) that 1 − z R(ζ ) has no zeros
inside L , and since the simple zero of the denominator at ζ = 1 (if that is inside L)
is canceled by the zero of the numerator at ζ = 1. We conclude that the contribution
of the latter term to the value of the contour integral in (17) is zero. Therefore we
can rewrite (17) as

D(z) = z

2π ı

∮

L

V (1/ζ )

1 − ζ
· 1 − R(ζ )

1 − z R(ζ )
dζ . (19)

Now we change the integration variable in (19) to ξ = 1/ζ (which yields a factor
−1/ξ2 in the integrand), andwe invert the integration path L into L ′ but still integrate
in counter-clockwise sense (which yields an extra factor of -1, since the inversion of
L is a clockwise path). This leads to the expression

D(z) = z

2π ı

∮

L ′
V (ξ)

ξ (ξ − 1)
· 1 − R(1/ξ)

1 − z R(1/ξ)
dξ , (20)

where L ′ is a contour where ∀ξ ∈ L ′ : R−1
R < |ξ | < RV and |z R(1/ξ)| < 1.

If the pgf of the service capacities is a rational function, i.e., if R(z) is given by
(5), then (20) can be rewritten as

D(z) = z

2π ı

∮

L ′
V (ξ)

ξ (ξ − 1)
· Q R(ξ) − PR(ξ)

Q R(ξ) − z PR(ξ)
dξ . (21)

We now focus on the poles of the integrand in (21). Since the service demand of
each customer is at least 1, S(0) must equal 0, and by (11) V (0) must equal 0 as
well. The zero of the factor V (ξ) in the numerator of the integrand at ξ = 0 then
ensures that the factor ξ in the denominator does not cause a pole of the integrand
at ξ = 0. Furthermore, the factor Q R(ξ) − PR(ξ) ensures that the factor (ξ − 1) in
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the denominator does not cause a pole of the integrand at ξ = 1. Finally, since the
contour L ′ was chosen such that ∀ξ ∈ L ′ : |ξ | < RV , V (ξ) has no poles inside L ′
either. Therefore the only poles of the integrand are the zeros for ξ of

Q R(ξ) − z PR(ξ) , (22)

or equivalently, of
1 − z R(1/ξ) . (23)

We denote these zeros as αk(z), k ∈ [0, N ] for some N , and their multiplicities
as mk, k ∈ [0, N ]. It can easily be seen that all these zeros lie inside L ′. Indeed,
the contour L ′ was chosen such that ∀ξ ∈ L ′ : |z R(1/ξ)| < 1. This implies that
|z PR(ξ)| < |Q R(ξ)|, so using Rouché’s theorem we can say that (22) has as many
zeros inside L ′ as Q R(ξ). But all m zeros (counting with multiplicities) of Q R(ξ)

must lie inside L ′, because L ′ was chosen such that ∀ξ ∈ L ′ : |ξ | > 1/RR . This
means that (22) must have exactly m zeros for ξ inside L ′. Moreover, these must be
all the zeros of (22), since (22) is a polynomial in ξ of degree m (see Section 3).

Nowwe can applyCauchy’sResidueTheorem to calculate the value of the contour
integral in (21). This gives

D(z) = z
N∑

k=0

Res
ξ=αk (z)

[
V (ξ)

ξ (ξ − 1)
· Q R(ξ) − PR(ξ)

Q R(ξ) − z PR(ξ)

]
, (24)

where the residue of ξ = αk(z) is given by

1

(mk − 1)! lim
ξ→αk (z)

dmk−1

dξmk−1

[
(ξ − αk(z))

mk
V (ξ)

ξ (ξ − 1)
· Q R(ξ) − PR(ξ)

Q R(ξ) − z PR(ξ)

]
. (25)

Since all quantities in expression (24) are known or can be calculated numerically
(when z is known), this expression may be used to evaluate D(z) for any z. However,
due to the (mk −1)st derivative with respect to ξ in (25), the evaluation of D(z) may
be difficult in practice if mk > 1.

Note that if a zero ξ of (23) has a multiplicity mk > 1, then R′(1/ξ)/ξ = 0.
Since R′(1/ξ)/ξ is the derivative of R(1/ξ), a rational function with degree of the
numerator and denominator at mostm, there are at most 2m −1 values of ξ for which
R′(1/ξ)/ξ = 0, with at most 2m −1 corresponding values of z (see (23)). Therefore,
for all but at most 2m − 1 values of z, the zeros αk(z) are distinct, so that mk = 1 for
all k. For those z, a substantially simpler expression for D(z) is available, because
we can simplify (24) to

D(z) =
m−1∑

k=0

V
(
αk(z)

) αk(z)

αk(z) − 1

1 − R
(
1/αk(z)

)

R′(1/αk(z)
) . (26)
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Due to (23), we have that R
(
1/αk(z)

) = 1/z. This allows to simplify (26) further to

D(z) = z − 1

z

m−1∑

k=0

V
(
αk(z)

)

R′(1/αk(z)
) · αk(z)

αk(z) − 1
. (27)

Substituting the expressions (11) and (9) we previously found for V (z) and U (z),
and again using (23) to simplify the result, we finally obtain

D(z) = μ − λτ

λ

m−1∑

k=0

1 − z

R′(1/αk(z)
) · S

(
αk(z)

)

S
(
αk(z)

) − 1
· 1 − A

(
S(αk(z))

)

z − A
(
S(αk(z))

) · αk(z)

·
∏

ζ ∈S−1
R

(
1 − ζ

αk(z) − ζ

)μζ

·
∏

ξ ∈N−
T

(
αk(z) − ξ

1 − ξ

)nξ

. (28)

This expression still contains the functions αk(z). These are zeros of an m-degree
polynomial with coefficients that depend on z, and for these zeros a closed-form
solution is generally not available. Therefore, inverting the pgf D(z) analytically is
very difficult. However, inverting this pgf numerically, using methods such as those
described in [8], is very straight-forward.

Additionally, expression (28) can be used to calculate the expected value and
other moments of the delay, in view of the moment-generating property of pgfs.

5 Numerical Examples

In this section, we briefly give some illustrative numerical examples. In the first
example, shown in Fig. 1, we study the impact of the service-capacity distribution
on the mean customer delay under varying loads ρ = λτ/μ.

We consider 4 different service-capacity distributions, all with mean μ = 10:
deterministic (R1(z) = z10), negative binomial with parameter r = 5 (R2(z) =
1/(3 − 2z)5), geometric (R3(z) = 1/(11 − 10z)) and a weighted mixture of 2
geometric distributions with means 5 and 30 such that the overall mean μ = 10,

R4(z) = 26 − 25z

(6 − 5z)(31 − 30z)
.

The variances of these 4 distributions are respectively 0, 30, 110, and 310.
In Fig. 1 it can be seen that, generally, a higher variance of the service capacity

leads to a higher mean delay. This is to be expected, since more variability on the
service capacities should in general lead to a burstier service process, which should
in turn cause longer queues. However, in Fig. 1 there is also one case where the
opposite is true: under low load, the system with negative binomially distributed ser-
vice capacities has a lower mean delay than the system with deterministic capacities,
despite the fact that the deterministic distribution has the lowest variance. Under high
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Fig. 1 Mean customer delay for a queue with Poisson arrivals with varying λ, deterministic service
demands of 11 work units and various distributions for the service capacities (as indicated), all with
mean μ = 10.
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Fig. 2 Mean system content for a queue with Poisson arrivals with λ = 0.9, shifted geometric (i.e.,
with minimum 1) service demands with varying mean τ and various distributions for the service
capacities (as indicated), with mean μ = τ .

load it is the other way around again. This is because for the system with determin-
istic service capacities, the lack of variance in the service process is helpful under
high load, but it makes the minimum delay experienced by each customer at least 2
slots, whereas a system with variable service capacities may under low load achieve
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a mean customer delay below 2. The exact influence of the coefficient of variation
on the mean delay is very non-linear and depends on the zeros S−1

R ,N−
T and αk(1).

In a second example, shown in Fig. 2, we keep the ratio τ/μ and all other system
parameters fixed and scale τ and μ together to observe the impact of their actual
values on the mean system content (obtained from the mean delay through Little’s
law E[system content] = λE[delay]).

Note that for geometric service capacities (and shifted geometric demands), the
mean system content does not depend on the actual values of τ and μ but merely
on their ratio. This effect was already observed in [1] and was called the “geometric
invariance property”. However, note that while it holds for geometric service capac-
ities, it does not hold for shifted geometric service capacities, as the mean system
content clearly depends on μ. From Fig. 2 it can also be seen that the invariance
property also holds for negative binomial service capacities.
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A Queueing Approximation of MMPP/PH/1

Azam Asanjarani and Yoni Nazarathy

Abstract We consider the well-studied MMPP/PH/1 queue and illustrate a method
to find an almost equivalent model, the MTCP/PH/1. MTCP stands for Markovian
TransitionCounting Process. It is a counting process that has similar characteristics to
MMPP (Markov Modulated Poisson Process). We prove that for a class of MMPPs
there is an equivalent class of MTCPs. We then use this property to suggest an
approximation for MMPP/PH/1 in terms of the first two moments. We numerically
show that the steady state characteristics of MMPP/PH/1 are well approximated
by the associated MTCP/PH/1 queue. Our numerical analysis leaves some open
problems on bounds of the approximations. Of independent interest, this paper also
contains a lemma on the workload expression of MAP/PH/1 queues which to the
best of our knowledge has not appeared elsewhere.

Keywords Markov modulated poisson process · MAP/PH/1 · Queueing
1 Introduction

Queuing theory finds a variety of applications such as telecommunication networks,
healthcare and manufacturing, see for instance [6]. One of the most useful queueing
models is theMAP/PH/1 queue, see for example [14]. TheMarkovianArrival Process
(MAP) is a counting process based on a background finite-state Continuous-Time
Markov Chain (CTMC). MAP can be considered as a generalisation of the Poisson
process where the inter-arrival times of a MAP are not necessarily independent
of each other, nor exponentially distributed. The Phase type (PH) distribution is a
generalization of the exponential distribution and is based on the distribution of time
until absorption in a finite-state CTMC. These two matrix-analytic objects make up
the MAP/PH/1 queue: the arrival process is MAP, and the service times are assumed
i.i.d. from a PH distribution.
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Comparison of different stochastic processes to find a versatile model for describ-
ing observed data in an accurate manner is a fundamental objective in stochastic
modelling. In modelling a variety of phenomena such as queueing processes, the
MarkovModulated Poisson Process (MMPP), a special case ofMAP, can be applied.
The MMPP has a variety of applications in modelling bursty traffic. The motivation
behind the vast applications of MMPP is that MMPP keeps the tractability of the
Poisson process while enabling non-zero correlation between inter-arrival times. See
for example [5], [10] and [13].

In this paper we introduce an alternative model to MMPP which we refer to
as the Markovian Transition Counting Process (MTCP). MTCP is a MAP which
counts every transition of the background CTMC.We believe it is more tractable and
more computationally convenient than the MMPP. We find relations between MTCP
and MMPP, focusing on the case of a two state background CTMC for the MMPP.
We prove that in some cases, the first two moments of MMPP and MTCP can be
matched. We refer to these cases as slow MMPPs. This implies that the intensity of
arrivals is greater than the total intensity of state changes per state. From a modelling
perspective, slow MMPPs are perhaps the most useful MMPPs because non-slow
MMPPs have characteristics quite similar to the Poisson process.

In using MTCP for queues, we investigate the behaviour of the MTCP/PH/1
queue as an alternative to the MMPP/PH/1 queue. Here, we address this question
empirically through extensive numerical experiments. We show that the basic steady
state characteristics (mean and variance of the queue) of a given MMPP/PH/1 queue
can be emulated by an MTCP/PH/1 queue almost without relative error in most
cases, and with relative errors that are bounded at the worst case by 9%. These
preliminary results are significant for the emerging body of research dealing with
finding alternative (but similar) queueing models.

As a stochastic modeller chooses a suitable queueing model for a given situation,
there is typically more than one choice. Knowing that MTCP/PH/1 is similar to
MMPP/PH/1 allows the modeller to have more freedom in model choice. In future
research we shall integrate this within a statistical model-selection framework, fitting
queueing models to data. Towards that end, a key advantage of using MTCP/PH/1
instead of MMPP/PH/1 is that the MTCP is more informative than the MMPP. In
fact we believe that our MTCP is better suited for parameter estimation since for this
model, each observed event corresponds to exactly one transition in the background
(unobserved) CTMC.

The remainder of this paper is structured as follows: In Section 2 we overview
the MMPP/PH/1 queue and treat it as a Quasi-Birth-Death (QBD) process. We also
present a lemma on the workload expression of MAP/PH/1 queues which to the best
of our knowledge has not appeared elsewhere. In Section 3 we introduce the new
model, MTCP, as a special MAP. In Section 4 we show that for a slow MMPP2, a
useful substitute MTCP4 exists. In fact, we prove that the first and second moments
of these two model classes (slow MMPP and MTCP) can be matched. In Section 5
numerical results for approximating a given MMPP2/PH2/1 with an MTCP4/PH2/1
are presented. We conclude in Section 6.
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2 The MMPP/PH/1 Queue

TheMMPP/PH/1 queue is a special case of the general single-server queueMAP/G/1,
where the stream of arrivals and service mechanism are modelled by MMPP and PH
distribution respectively. Figure 1 illustrates an example of anMMPP2/PH2/1 queue.
Methods of analysing theMMPP/PH/1 queueingmodels can be found in [7] and [10].
In this paper we use the uniform framework of QBD processes which is an efficient
way to analyse more general models using matrix-analytic methods, see [9].

1

2

1 2

λ1

λ2

2μ 2μ

Arrivals

Service
q̃12

q̃21

Fig. 1 A schematic illustration of the MMPP2/E2/1 queue (E2 is a special case of P H2 and stands
for Erlang, where in this case it has a mean of μ−1). The circles illustrate phases of the arrival
and/or service mechanism.

MMPP. An MMPP is simply an arrival process which consists of a finite number
of Poisson processes, modulated by a CTMC. In other words, MMPP is a special
case of a doubly stochastic Poisson process whose arrival rate is modulated by the
states of an irreducible finite-state CTMC, which is referred to as the phase process.
The parameters of an MMPP of order p are the vector of Poisson arrival rates asso-
ciated with each phase, λ = (λ1, · · · , λp)

′ as well as the parameters of the p-state
background CTMC: the transition rate matrix Q and the initial distribution of the
background CTMC, taken as a row vector α.

PH Distribution. The time until absorption into state 0 (absorbing state) of a finite-
state CTMC with q transient state and one absorbing state is said to have a phase
type (PH) distribution of order q. A PH distribution of order q is parametrised by
η and T , where η is the initial distribution over the transient states (taken as a row
vector) and the matrix T = {ti j }i, j=1,...,q specifies the transition rates between the
transient states of the CTMC. PH distributions are very versatile and are dense in the
class of distributions defined on the non-negative real numbers [3]. Moreover, PH
distributions are used in a wide range of applications, see for instance [1] and [8].

QBD and MMPP/PH/1. A continuous-time homogeneous QBDr is a Markov pro-
cess characterised by a two dimensional state space {(n, i) : 0 ≤ n , 1 ≤ i ≤ r},
which are called the level and the phase of the state, respectively. A transition from
(n, i) to (n′, j) is possible only when |n′ − n| < 2 and the transition rate from (n, i)
to (n′, j) may depend on i, j and |n′ − n|, but not on the specific values of n and
n′. When ordering the states in lexicographic order, the transition rate matrix of a



44 A. Asanjarani and Y. Nazarathy

QBDr has the following form:

A =

⎛

⎜⎜⎜⎜⎜⎝

B0 B1 0
B−1 A0 A1

A−1 A0 A1
A−1 A0 A1

0
. . .

. . .
. . .

⎞

⎟⎟⎟⎟⎟⎠
. (1)

In representing the MMPPp/PHq /1 queue as a QBDr , where r = p × q, the phase
records (in lexicographic order) both the background state of the MMPP (arrival)
and the current phase of the service (see Figure 1 for illustration of the phases in
the special case of MMPP2/E2/1). The level, represents the number of items in the
system.

Modelled as a QBD, we have:

B−1 = Ip ⊗ t, B0 = C, B1 = diag(λ) ⊗ η,

where C = Q − diag(λ) and where ⊗ is the Kronecker product. Here t = −T 1,
where 1 is a column vector of 1’s with appropriate dimension.

Further,

A−1 = Ip ⊗ tη, A0 = Ip ⊗ T + C ⊗ Iq , A1 = diag(λ) ⊗ Iq .

As is well known in the theory of QBDs, the stationary distribution of a positive-
recurrent QBD, π , admits a matrix-geometric form πn = πn−1R, where R is the
solution of a quadratic fixed-point matrix equation R = A1 + R A0 + R2A−1 and
πn are row vectors of dimension r , see [9]. We use the-state-of-the-art SMC solver
to find the matrix R and the stationary distribution of a given QBD, see [4]. It is
easy to show that A is irreducible due to the properties of the building blocks and
irreducibility of Q. Moreover, characterizing the positive-recurrence can be done as
follows1.

Lemma 1. The QBD representing a MAPp/PHq/1 queue is positive-recurrent if and
only if,

ρ := β A11
β A−11

= Λ
1

−ηT −11

< 1,

where −ηT −11 is the first moment of PHq with parameters (η, T ), Λ = π D1 is the
first moment of a time-stationary MAPp with parameters (π , C, D)2, and β is the
stationary distribution of A−1 + A0 + A1.

1 To the best of our knowledge, the algebra behind this intuitive lemma has not appeared elsewhere.
2 The QBD representation of MAPp/PHq /1 generalises the MMPPp /PHq /1 representation, with
diag(λ) being replaced by D (see next Section for MAPs).
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Proof. The fact that the left hand side of ρ is a necessary and sufficient condition
for positive recurrence follows from the theory of QBDs (see [9], Theorem 7.2.4). It
remains to show that both representations of ρ agree.

First we show that β = π ⊗ γ , where γ is the unique solution of γ (T + tη) = 0′
and γ 1 = 13. It is immediate that (π ⊗ γ )1 = 1. Further, we have

(π ⊗ γ )(A−1 + A0 + A1) = (π ⊗ γ )
(
Ip ⊗ tη + (Ip ⊗ T + C ⊗ Iq) + D ⊗ Iq

)

= (π ⊗ γ )
(
Ip ⊗ (tη + T ) + (C + D) ⊗ Iq

)

= (π ⊗ γ )
(
(C + D) ⊗ (tη + T )

)

= 0′,

where the last two steps follow since (A ⊗ B)(A′ ⊗ B ′) = AA′ ⊗ B B ′ when matrix
dimensions agree for the multiplication.

Now we need to show that β A11
β A−11 = Λ

1
−ηT −11

or equivalently:

β A11 = (β A−11)Λ (−ηT −11)

which for the MAPp/PHq /1 queue is written as:

(π ⊗ γ )(D ⊗ Iq)1 = (π ⊗ γ )(Ip ⊗ tη)1(π D1)(−ηT −11). (2)

For the left hand side, we have

(π ⊗ γ )(D ⊗ Iq)1 = (π D ⊗ γ )1 = π D1.

Therefore we need to show that the right hand side of (2) is equal to π D1, or
equivalently:

(π ⊗ γ )(Ip ⊗ tη)1(−ηT −11) = 1.

Since π1 = η1 = 1, we have (π ⊗ γ )(Ip ⊗ tη)1 = (π ⊗ γ tη)1 = γ t. Moreover,
from γ (T + tη) = 0′ we have γ tη = −γ T which results in γ t(−ηT −11) = 1. ��

3 MAPs and the Markovian Transition Counting Process

MAP. AMAP is a pure birth process which can be considered as a special case of the
QBD: aMAP is a two-dimensionalMarkov processwith parameters (α, C, D)where
α is the initial distribution of the finite-state CTMC and the matrix C = B0 = A0
records the transitions of the background CTMC with no arrival. The event intensity
matrix D = B1 = A1 has non-negative elements and describes the transitions of the
background CTMC with an arrival. The matrices A−1 and B−1 are zero matrices.

3 Note that γ is the limiting distribution of the phase in a PHq -renewal process.
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Moreover, we have C + D = Q, where Q is the transition rate matrix of the CTMC.
A MAP with parameters (α, C, D) is time-stationary if α = π , where π is the
stationary distribution of the phase process, i.e. π Q = 0′ and π1 = 1.

For a time-stationary MAP, the mean and variance of the number of counts at any
time t are given by the following formulas, see Chapter XI of [3]:

E[N (t)] = Λ t = π D1 t, (3)

Var
(

N (t)
)

= {Λ − 2Λ2 + 2π DQ−D1} t + 2π DQ−(eQt − I )Q−D1, (4)

where Q− = (1π − Q)−1.
The class of MAPs contains most of the commonly used point processes such as

the Poisson process (D = λ, where λ is the Poisson rate and C = −λ) and MMPP
(D = diag(λ) where λ is the vector of Poisson rates and C = Q − D). In this
research, we introduce and investigate a class of MAPs as follows:

Definition 1. A Markovian Transition Counting Process (MTCP) is a
two-dimensional Markov process {(N̄ (t), X (t)); t ≥ 0} where N̄ (t) counts every
transition of an irreducible CTMC X (·) on [0, t].
Therefore MTCP is a special type of MAP where we have D̄ = Q̄ − diag(Q̄) and
the parameters of MTCP are just the parameters of the background CTMC. MTCPs
and MMPPs are in a sense the extreme cases of MAPs. In an MMPP, the events do
not coincide with state transitions (with probability 1). In contrast, in an MTCP the
events are precisely all the transitions of the CTMC. This fact motivates the idea of
finding relations between MTCP and MMPP. An early reference that analyses both
MTCPs and MMPPs (although not using these names) is [12]. We now show some
further relations.

4 Relations between MTCP and MMPP

In Proposition 3.2 of [11], the authors showed that every MTCP has an associated
MMPP with the same two first moments. For completeness, we present this propo-
sition of [11] in an alternative form here, including the proof.

Proposition 1. Let N̄ (t) be the counting processes of a time-stationary MTCPp.
Then there is an MMPPp, with the counting processes Ñ (t), such that their first and
second moments are matched. That is, for ∀t ≥ 0,

E[Ñ k(t)] = E[N̄ k(t)] , for k = 1, 2 .

Proof. Assume that the event matrix of the MTCPp is given by D̄ = Q̄ − diag(Q̄).
Consider an MMPPp with the same background Markov chain and set D̃ =
−diag(Q̄).Now from (3) and (4),we just need to show that D̄1 = D̃1 andπ D̄ = π D̃.
Since Q̄1 = 0 and π Q̄ = 0′ the result follows. ��
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The proof shows that in order to construct an MMPP matching an MTCP with
parameter Q̄: set λ = −diag(Q̄) and Q̃ = Q̄. The question is now how to construct
MTCPs matching MMPPs. Based on the above proposition, the answer is given for
the special case of MMPPs where λ = −diag(Q̃), i.e. λi = ∑

j 	=i q̃i j . But this is a
very restricted case since it does not leave any freedom with λi .

We now show that for each instance in a class of MMPPs (of order 2), where
λi >

∑
j 	=i q̃i j which we call “slow MMPPs”, there is an associated MTCP (of

order 4) that exhibits the same first and second moments for the counting process.
We believe a similar construction holds for arbitrary p > 2 (relating MTCP2p to
MMPPp), this remains the subject of future work.

Definition 2. A slow Markov Modulated Poisson Process (slow MMPP) is an
MMPP where for any phase i in the phase process, the arrival rate is greater than
the rate of leaving that phase, i.e. λi >

∑
j 	=i q̃i j .

1 2

λ1 λ2

q̃12

q̃21

(a) Transition diagram of the
phase process of an MMPP2.

1b 2b

1a 2a

q̃12

q̃21

q̃12

q̃21

λ1 − q̃12
λ1 − q̃12

λ2 − q̃21
λ2 − q̃21

(b) Transition diagram of the
phase process of related MTCP4.

Fig. 2 An MMPP2 and its associated MTCP4

Given MMPP parameters, λ and Q̃, we can associate an MTCP4 to any slow
MMPP2 as illustrated in Figure 2. The transition ratematrix Q̄ and the event intensity
matrix D̄ of the associated MTCP4 are given as follows:

Q̄ =

⎛

⎜⎜⎝

−λ1 λ1 − q̃12 q̃12 0
λ1 − q̃12 −λ1 0 q̃12

q̃21 0 −λ2 λ2 − q̃21
0 q̃21 λ2 − q̃21 −λ2

⎞

⎟⎟⎠ , D̄ = Q̄ − diag(Q̄). (5)

We now have the following:

Proposition 2. Let Ñ (t) and N̄ (t) be the counting processes of a time-stationary
slow MMPP2 and its associated MTCP4, respectively. Then, these processes have
the same first and second moment. That is, for ∀t ≥ 0,
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E[Ñ k(t)] = E[N̄ k(t)] , for k = 1, 2 .

Proof. We first construct a MAP4 with the same counting process as the MMPP2 by
coupling the events of the phase process of MMPP2. When the process is in phase k,
Figure 3 shows the structure of a coupled MAP that results in transition from phase
ka to kb or vice versa. Q̃ is the phase transition matrix and D̃ is the event intensity
matrix of the resulting MAP4.

1b 2b

1a 2a

q̃12

q̃21

q̃12

q̃21

λ1 λ1 λ2 λ2

Q̃ =

⎛
⎜⎜⎝
−(λ1 + q̃12) λ1 q̃12 0

λ1 −(λ1 + q̃12) 0 q̃12
q̃21 0 −(λ2 + q̃21) λ2

0 q̃21 λ2 −(λ2 + q̃21)

⎞
⎟⎟⎠

D̃ =

⎛
⎜⎜⎝

0 λ1 0 0
λ1 0 0 0
0 0 0 λ2

0 0 λ2 0

⎞
⎟⎟⎠

Fig. 3 Transition diagram of the phase process of the coupled MAP4 and its matrices

To find the stationary distribution of the associated MAP4, π̃ , we need to solve
π̃ Q̃ = 0′, π̃1 = 1. In the same way, we can find the stationary distribution of
MTCP4, π̄ , i.e. we have the following systems of equations:

⎧
⎪⎪⎨

⎪⎪⎩

−(λ1 + q̃12)π̃1 + λ1π̃2 + q̃21π̃3 = 0
λ1π̃1 − (λ1 + q̃12)π̃2 + q̃21π̃4 = 0
q̃12π̃1 − (λ2 + q̃21)π̃3 + λ2π̃4 = 0
π̃1 + π̃2 + π̃3 + π̃4 = 1

⎧
⎪⎪⎨

⎪⎪⎩

−λ1π̄1 + (λ1 − q̃12)π̄2 + q̃21π̄3 = 0
(λ1 − q̃12)π̄1 − λ1π̄2 + q̃21π̄4 = 0
q̃12π̄1 − λ2π̄3 + (λ2 − q̃21)π̄4 = 0
π̄1 + π̄2 + π̄3 + π̄4 = 1

Both of the above are uniquely solved by

π1 = π2 = q̃21
2(q̃12 + q̃21)

, and π3 = π4 = q̃12
2(q̃12 + q̃21)

.

Therefore, these two processes have the same stationary distribution π .
Now since D̃1 = D̄1 = (λ1, λ1, λ2, λ2)

′ one can find from (3):

E[Ñ (t)] = E[N̄ (t)].

To compute the variance, first we verify that:

π D̃ = π D̄ =
(

q̃21λ1
2(q̃12 + q̃21)

q̃21λ1
2(q̃12 + q̃21)

q̃12λ2
2(q̃12 + q̃21)

q̃12λ2
2(q̃12 + q̃21)

)
.
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Explicit calculation of the fundamental matrices Q̃− and Q̄− shows that even though
these matrices are not the same, it holds that π D̃ Q̃− D̃1 = π D̄ Q̄− D̄1. In addition,
by explicitly calculating the matrix exponential, we have:

π D̃ Q̃−(eQ̃t − I )Q̃− D̃1 = (e−(q̃12+q̃21)t − 1)q̃12q̃21(λ1 − λ2)
2

(q̃12 + q̃21)4
= π D̄ Q̄−(et Q̄ − I )Q̄− D̃1.

Therefore, from (4), Var
(

Ñ (t)
)

= Var
(

N̄ (t)
)
and the proof is complete. ��

Remark 1. Note that Proposition 2 only holds for slow MMPPs. Otherwise the con-
struction of a MAP4 from a given MMPP2 does not hold due to some non-positive
off-diagonal elements λi − q̃i j in the matrices Q̄ and D̄.

5 The Steady-State Queue Approximation

In this section we use the results of the previous section to approximate a given
(slow) MMPP2/PH2/1 with an MTCP4/PH2/1. In general, our computations are for
MAP/PH/1 queues where the service time distributions are parametrized by their
workloads and their Squared Coefficient of Variations (SCVs) which we denote by
c2. We have c2 = 1

2 in the case of Erlang-2 (E2) distribution: the sum of two i.i.d.
exponential random variables with rate 2Λ

ρ
, where Λ is the arrival rate as in (3) and

ρ is the workload. In the case of c2 = 1, we use exponentially distributed random
variables with rate μ = Λ

ρ
. For the case of c2 > 1, we use the Hyperexponential-2

(H2) distribution which is a mixture of two independent exponential random vari-
ables. With probability p = 1

2c2−1
we take an exponential distribution with rate Λ

c2 ρ

and with probability 1 − p we take an exponential distribution with rate 2Λ
ρ
. It is

easy to verify that this H2 random variable has mean 1 and the desired c2.
We compute the matrix R and the stationary distribution of MMPP2/PH2/1 and

MTCP4/PH2/1 as QBDs by using the SMC solver. The numerical computation for
finding the relative errors, true value-approximate value

true value , shows the same properties for the
curves of the relative error of mean and SCV of steady state queue for all of the above
mentioned processes.

Figure 4 (left) shows different relative errors of the steady state mean for various
service time SCVs. The bigger the SCV of service time, the less relative error of
the mean. Figure 4 (right) shows different relative errors of the steady state SCV for
various service time SCVs. The minimum absolute value of the relative error is again
for the case that the service distribution is hyperexponential, i.e. the bigger the SCV
of service time, the less absolute value of the relative error of SCV of steady state
queue.

Both of these families of curves are bell-shaped. The only difference is that in
contrast to the relative error of means which has positive values, the relative error of
SCV of the steady state queue has negative values. This shows that the true value for
mean is always greater than the approximate one and the opposite holds for SCV.
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Fig. 4 The relative mean error (left) and relative SCV error (right) of a steady state queue. The
MMPP2 model used has q̃12 = q̃21 = 5, λ1 = 10, λ2 = 20. Then the mean service time is varied
to accommodate for the desired ρ.

From further investigation of the variance (not appearing in the figures) it also holds
that the true variance is less than or equal to the approximated variance.

As is evident from the figures, in any case, the relative error is negligible. Note
though, that for more bursty arrival processes wemay have bigger relative errors than
those in the figure, yet we carried out an extensive computational study to find an
empirical boundary for relative error. Assuming that λ1 is constant (=10) and varying
the values of λ2, q̃12 and q̃21 gives the results in Table 1 for the maximum relative
error. These empirical results indeed suggest that the MTCP/PH/1 is a very sensible
alternative model to MMPP/PH/1.

Table 1 Maximum relative error of mean queue in approximation of MMPP2/PH2/1 queue by
MTCP4/PH2/1 queue where λ1 = 10. Note that the H2 case corresponds to c2 = 1.1.

Model λ2 q̃12 q̃21 Max Relative Error of Mean Queue
MMPP2/E2/1 500 8 70 0.0893
MMPP2/M/1 300 9 70 0.0725
MMPP2/H2/1 400 5 70 0.0715

6 Conclusions and Future Work

As illustrated in this paper,MMPPs can perhaps be replaced byMTCPs formodelling
purposes. We have shown a theoretical relationship between the two processes and
an empirical relationship between their associated queueing models. Our focus in
this conference paper is on being expository, hence we focused on the case of p = 2.
A question that arises is: “Can we construct an MTCP to match a non-slow MMPP
with the same mean and variance?”.

In further work we plan to handle the general case, for p > 2, where we believe
similar resultsmay hold. Proving the empirical bounds thatwe found for the queueing
approximations remains a challenge.
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Of further interest is the issue of parameter estimation of MTCPs. Our belief is
that since data traces generated byMTCPs aremore informative than those generated
by MMPPs, there is a promise in devising a good parameter estimation method for
MTCPs.
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Throughput Analysis for the Opportunistic
Channel Access Mechanism in CRNs
with Imperfect Sensing Results

Shiying Ge, Shunfu Jin and Wuyi Yue

Abstract In order to reduce the average delay of secondary user (SU) packets and
adapt to various tolerance for transmission interruption, in this paper, we propose a
novel opportunistic channel access mechanism in cognitive radio networks (CRNs).
Considering the preemptive priority of primary user (PU) packets, as well as the
sensing errors caused by SUs, we can model the network system as a priority queue
with two classes of packets, however, these two classes of packets may interfere
with each other. We first analyze the stationary distribution of the queueing model,
then we derive the expression for the throughput of SU packets. Finally, we provide
numerical experiments to optimize the energy sensing threshold with a maximum
throughput of SU packets.

Keywords Cognitive radio networks · Opportunistic channel access · Sensing
threshold · Throughput

1 Introduction

In future wireless application, such as the 5th generation (5G) networks, the demand
for wireless spectrum resources will have a huge increase [1]. Now, a large portion
of the assigned spectrum remains under-utilized. This is the key reason leading to
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the shortage of spectrum resources [2]. How to improve the utilization of spectrum
resources is a hot topic of research. Cognitive radio (CR) is predicted to be one of
the most popular wireless technologies due to its efficient spectrum utilization. In
such a situation, cognitive radio networks (CRNs) emerge as required [3]. Recently,
the opportunistic channel access mechanism in CRNs has been paid more attention
aiming to improve the spectrum effectively.

In [4], a strategy for improving the priority of the interrupted SU was proposed to
reduce the delay of interrupted SU packets. However, the delay of all the SU packets
was not analyzed mathematically. In [5], a dynamic channel selection approach was
proposed to reduce the overhead caused by interrupted SU packets. According to
channel idle probability and average waiting time in the channel queue, a value was
calculated for each channel to estimate how much a channel was suitable for being
selected when the interruption occurred. However, the perfect sensing results of SUs
was assumed.

In practice, there exist twokinds of errors associatedwith channel sensing, namely,
missed detection and false alarm [6]. In [7], a cooperative channel sensing strategy
was analyzed. The performance of the network in terms ofmaximum throughputwith
optimal number of SU packets and sensing time was investigated. Unfortunately, the
preemptive priority of PU packet to SU packet was neglected.

Inspired by the above observations, aiming to reduce the average delay of all
the SU packets and adapt to various tolerance for transmission interruption, in this
paper, we propose a new opportunistic channel access mechanism. Considering the
preemptive priority of primary user PU packets and the sensing errors caused by SUs,
we establish a priority queueing model with two classes of packets to capture the
stochastic behavior of the network system. The two classes of packets may interfere
with each other. By using the method of Markov chain, we analyze the model to
investigate the influence of admission threshold and feedback probability on the
system performance.

2 Opportunistic Channel Access Mechanism
and System Model

In this section, we first present the opportunistic channel access mechanism that we
proposed in CRNs.

We consider a CRN with a single licensed channel. The channel is used by PU
packets preemptively and shared by SU packets opportunistically. To minimum the
delay of PU packets, no buffer is prepared for PU packets. That is to say, the number
of PU packets in the system is no more than 1. To improve the throughput of SU
packets, we set a buffer for SU packets. Moreover, we set an admission threshold H
(H > 0) and an admission probability r (0 ≤ r ≤ 1).

When an SU packet arrives at the system, the central controller will compare the
number L of SU packets in the system with the admission threshold H . If L ≥ H ,
the arriving SU packet will be admitted to join the system with probability r and
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refused by the system with probability r̄ . Otherwise, the arriving SU packet will be
admitted with probability 1. After admitted, the arriving SU packet will queue at the
buffer.

Under the schedule of the central controller, the SUwill sense the channel period-
ically. According to the sensing results, the SU packet will decide wether to occupy
the channel for transmission or not.Moreover, if an SU packet occupying the channel
is interrupted, it will leave the system with probability q (0 ≤ q ≤ 1) and return the
buffer with probability q̄ = 1− q. We define E as the value of detection energy and
τ as the energy threshold.

With the stochastic behavior of the network, we consider the system model in
discrete-time field. We suppose that the arrival processes for both PU packets and
SU packets followBernoulli distributions with arrival rates λpu and λsu , respectively.
In addition, we suppose that the service times of a PU packet and an SU packet follow
geometrical distributions with parameters μpu and μsu , respectively.

We define the total number Xn = i (i = 0, 1, 2, . . .) of SU packets in the system
as the system level and the channel state Yn = j ( j = 0, 1, 2, 3) as the system stage
at the instant n+. Then the process {(Xn, Yn), n ≥ 1} constitutes a two-dimensional
Markov process. Let πi, j be the steady-state probability that the system level is i and
the system stage is j . Therefore, πi, j can be given by

πi, j = lim
n→∞ P{Xn = i, Yn = j}. (1)

3 Stationary Probability Distribution

3.1 Missed Detection and False Alarm

When an SU senses the channel via energy detection, two kinds of sensing errors in
terms of missed detection and false alarm are unavoidable.

Let pmd be themissed detection ratio and p f a be the false alarm ratio. Referencing
[6], pmd and p f a can be given as follows:

⎧
⎪⎪⎨

⎪⎪⎩

pmd = 1 − Q

(( τ

σ 2 − γ − 1
) √

ts fs

2γ + 1

)

p f a = Q
(( τ

σ 2 − 1
) √

ts fs

) (2)

where τ is the energy threshold defined in Section 2, ts is the sensing time, fs is the
sensing frequency, γ is the signal-to-noise ratio, σ is the variance of noise and Q(v)

is the tail probability of the standard normal distribution as follows:

Q(v) = 1√
2π

∫ ∞

v

exp

(
− t2

2

)
dt.
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3.2 Transition Probability Matrix

We define P as the one step transition probability matrix of the Markov process
(Xn, Yn) , n ≥ 1. Let Pik be the transition probability sub-matrices for the number
of SU packets in the system changing from i (i = 0, 1, 2, . . .) to k (k = 0, 1, 2, . . .).
Pik is discussed as follows.
(1) If i = 0 and k = 0, it means that there is no SU packet arrival at the system
during the one step transition from the system level 0. P00 can be given by

P00 = λ̄su

[
λ̄pu λpu 0 0

λ̄puμpu Vpu 0 0

]

where Vpu = μ̄pu + λpuμpu .
(2) If i = 0 and k = 1, it means that there is an SU packet arrival at the system
during the one step transition from the system level 0. P01 can be given by

P01 = λsu

[
λ̄pu λpu λ̄pu λpu

λ̄puμpu Vpu λ̄puμpu Vpu

]
× K

where

K =

⎡

⎢⎢⎣

p f a 0 0 0
0 p̄md 0 0
0 0 p̄ f a 0
0 0 0 pmd

⎤

⎥⎥⎦ .

(3) If i = 1 and k = 0, it means that there is an SU packet departure and no arrival at
the system during the one step transition from the system level 1. P10 can be given
as follows:

P10 = λ̄su

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0

μsu λ̄pu μsuλpu 0 0
λ̄pu λpu 0 0

⎤

⎥⎥⎦ + λ̄su

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0

q̄μ̄su λ̄pu q̄μ̄suλpu 0 0
0 0 0 0

⎤

⎥⎥⎦ × K.

(4) Let B0 be the transition probability matrix representing that there is an SU packet
arrival at the system and no SU packet departure during the one step transition from
system levels higher than 0. B0 is given as follows:

B0 = λsu

⎡

⎢⎢⎣

λ̄pu λpu λ̄pu λpu

λ̄puμpu Vpu λ̄puμpu Vpu

qμ̄su λ̄pu qμ̄suλpu μ̄su λ̄pu μ̄suλpu

0 0 0 0

⎤

⎥⎥⎦ × K.

(i) For the case of 1 ≤ i < H and k = i + 1, Pi,i+1 is given by
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Pi,i+1 = B0.

(ii) For the case of i ≥ H and k = i + 1, Pi,i+1 is denoted as A0. A0 is given by

A0 = rB0.

(5) Let B1 be the transition probability matrix representing the number of SU packets
to be fixed at a value lager than 0 during one step transition. B1 is given as follows:

B1=

⎡

⎢⎢⎣

λ̄su 0 0 0
0 λ̄su 0 0
0 0 λsu(μsu + q̄μ̄su) + λ̄suqμ̄su 0
0 0 0 λsu

⎤

⎥⎥⎦ ×

⎡

⎢⎢⎣

λ̄pu λpu λ̄pu λpu
λ̄puμpu Vpu λ̄puμpu Vpu

λ̄pu λpu λ̄pu λpu
λ̄pu λpu λ̄pu λpu

⎤

⎥⎥⎦×K.

(i) For the case of 1 ≤ i < H and k = i , Pi i is given by

Pi i = B1.

(ii) For the case of i = H and k = i , PH H is given by

PH H = B1 + r̄λsu

⎡

⎢⎢⎣

λ̄pu λpu λ̄pu λpu

λ̄pu λpu λ̄pu λpu

(2q − 1)μ̄su λ̄pu (2q − 1)μ̄suλpu μ̄su λ̄pu μ̄suλpu

0 0 0 0

⎤

⎥⎥⎦ × K.

(iii) For the case of i > H and k = i , Pi i is denoted as A1. A1 is given by

A1 = B1 + r̄λsu

×

⎡

⎢⎢⎣

λ̄pu λpu λ̄pu λpu

λ̄pu λpu λ̄pu λpu

(2qμ̄su − 1)λ̄pu (2qμ̄su − 1)λpu (2μ̄su − 1)λ̄pu (2μ̄su − 1)λpu

−λ̄pu −λpu −λ̄pu −λpu

⎤

⎥⎥⎦ × K.

(6) Let B2 be the transition probability matrix representing that there is no SU packet
arrival at the system and an SU packet departure during the one step transition from
system levels higher than 0. B2 is given as follows:

B2 = λ̄su

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0

(μsu + q̄μ̄su)λ̄pu (μsu + q̄μ̄su)λpu μsu λ̄pu μsuλpu

λ̄pu λpu λ̄pu λpu

⎤

⎥⎥⎦ × K.

(i) For the case of 1 ≤ i < H and k = i − 1, Pi,i−1 is given by

Pi,i−1 = B2.
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(ii) For the case of i = H and k = H − 1, PH,H−1 is given by

PH,H−1 = B2 + q̄μ̄sur̄λsu

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0

λ̄pu λpu 0 0
0 0 0 0

⎤

⎥⎥⎦ × K.

(iii) For the case of i > H and k = i − 1, Pi,i−1 is denoted as A2. A2 is given by

A2 = B2 + r̄λsu

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0

(q̄μ̄su + μsu)λ̄pu (q̄μ̄su + μsu)λpu μsu λ̄pu μsuλpu

λ̄pu λpu λ̄pu λpu

⎤

⎥⎥⎦ × K.

From above, we obtained all the nonzero sub-matrices in the transition probability
matrix P. Then P can be given as follows:

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P00 P01
P10 P11 P12

P21 P22 P23
. . .

. . .
. . .

PH−1,H−2 PH−1,H−1 PH−1,H

PH,H−1 PH H A0
A2 A1 A0

. . .
. . .

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

With P, we can get the steady-state probability distribution πi j defined in Eq. (1)
by employing the matrix-geometric solution method.

4 Throughput of SU Packets and Numerical Experiments

In order to evaluate the system performance of the mechanism proposed in Section 2,
we present the performance measure for the throughput of SU packets. The through-
put φ of SU packets is defined as the number of SU packets transmitted successfully
per slot. φ is given as follows:

φ =
∞∑

i=0

πi,2μsu . (4)

By using the same settings for the system parameters as in [6], we set 1 ≤ τ ≤ 7,
λpu = 0.05, μsu = 0.8, μsu = 0.7 as an example, and provide numerical exper-
iments to show the change trend of the throughput packets. We conclude that the
analysis results match well with the simulation results.
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Fig. 1 Throughput φ of SU packets versus the energy threshold τ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Arrival rate su of SU packets

T
hr

ou
gh

pu
t

of
 S

U
 p

ac
ke

ts

Analysis
Simulation

H = 2, =3

H = 4, =1

H = 4, =3

H = 2, =1

Fig. 2 Throughput φ of SU packets versus the arrival rate λsu of SU packets

Figure 1 shows how the throughput φ of SU packets changes with the energy
threshold τ for the arrival rate λsu = 0.3 of SU packets.

In Fig. 1, we find that the throughput φ of SU packets will increase firstly and then
decreases slowly as the energy threshold τ increases. When the energy threshold is
smaller, the false alarm ratio is greater, so the false alarm is the main reason to impact
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the throughput of the SU packets. As the energy threshold increases, the false alarm
radio becomes smaller, the probability that an SU packet leaves the system because
of the false alarm is less, so the throughput will increase. On the other hand, with
the energy threshold increase, the missed detection becomes greater and it will lead
more SU packets collide with PU packets. So, the throughput of SU packets will
decrease.

Figure 2 demonstrates how the throughputφ ofSUpackets changeswith the arrival
rate λsu of SU packets for admission probability r = 0.4 and feedback probability
q = 0.4.

In Fig. 2, we notice that the throughput φ of SU packets will increase with the
arrival rate λsu of SU packets. The larger the arrival rate of SU packets is, the more
the probability is that an SU packet arrives at the system. So, the throughput of SU
packets will increase.

5 Conclusion

In this paper, we proposed a novel opportunistic channel access mechanism with
admission threshold and probabilistic feedback in CRNs to reduce the average delay
of SUpackets.Basedon the imperfect sensing results of SUs,we established a priority
queueing model with two classes of packets to capture the stochastic behavior. We
analyzed system model in steady state by using matrix-geometric solution method.
Finally, with numerical experiments, we evaluated the throughput of SU packets.
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Throughput Analysis of Multichannel Cognitive
Radio Networks Based on Stochastic Geometry

Seunghee Lee and Ganguk Hwang

Abstract In this paper, we consider an underlay type cognitive radio network with
multiple secondary users who contend to access multiple heterogeneous primary
channels. With the help of stochastic geometry we develop a new analytical model to
analyze the throughput of a random channel access protocol where each secondary
user determines whether to access a primary channel based on a given access prob-
ability. Due to the interference-free region that we newly introduce we can easily
analyze the throughput of a random channel access protocol. Numerical examples
are provided to validate our analysis.

1 Introduction

There are rapidly increasing new wireless services that need high transmission rate
and network throughput. Such an explosion of new wireless services causes the
scarcity of the radio spectrum. In order to solve the scarcity of the radio spectrum,
a concept of cognitive radio (CR) has been introduced. A CR network consists of
licensed primary users (PUs) who have a priority to occupy their designated radio
spectrum and unlicensed secondary users (SUs) who are allowed to access the radio
spectrum as far as they do not interfere the PUs at all (an overlay type) or affect the
PUs very limitedly (an underlay type) [1].

In order to capture the random feature of user locations in the network, stochastic
geometry [2] is widely used. Interference depends upon the path loss and the fading
characteristics of wireless interface. Both of them can be interpreted as functions of
the distance between users in the network, where stochastic geometry is involved.
For a comprehensive understanding, we refer the readers to a survey paper [3] and
the references therein.
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Pioneering studies on CR networks with stochastic geometry assume that the
spectrum access of each SU does not depend on the spatial distribution of PUs in
the network [4]-[6]. This assumption fails to characterize the networks in practice
because there is a strong correlation between the spatial distribution of PUs and the
spectrum access of SUs. The modeling of the dependency brings us many difficulties
in performance analysis. One of key difficulties in analysis is that the distribution of
the interference created by active SUs cannot be obtained in an analytical form. Here,
active SUs denotes the SUs who transmit their packets. To overcome such difficulties
various models and approximations have been proposed, e.g., [7, 8, 9, 10].

In this paper, we consider a random access protocol in an underlay CR network
with multiple heterogeneous primary channels and multiple SUs. Each SU is able
to transmit its packet in channel k if it selects channel k, decides to access channel
k with a given access probability, and finally decides that channel k is idle after
sensing. We assume that the access probability depends on the channel that the SU
selects, which is important because we consider heterogeneous primary channels.
We aim to analyze the throughput performance of an arbitrary SU. To overcome the
difficulties mentioned above, we propose to consider the so-called interference-free
region of a channel for an active SU. With the help of the interference-free region
we can approximate the throughput in a simple way. More details will be given in
Section 3. Numerical and simulation results are provided to validate our analysis.

The organization of this paper is as follows. In Section 2, we describe the system
model. In Section 3, we analyze the active probability, the coverage probability
(COP), and throughput. To validate our analysis numerical and simulation results
are provided in Section 4. We give our conclusions in Section 5.

2 System Model

We consider an underlay type CR network with N primary channels. The PUs for
each primary channel in the network are assumed to follow a marked Poisson Point
Process (PPP). The SUs in the network are assumed to follow another marked PPP.
We assume that the intensities of PUs of channels are different, so that SUs have
heterogeneous primary channels. The time axis is divided into slots of equal size and
one slot time is needed to transmit a packet for all users.

2.1 Network Model

Let Φ̃P,k = {(Xi,k, ai,k, Fi,k)} be a marked PPP with intensity λp,k on R
2 which

represents the set of PUs of channel k, and Φ̃S = {(Yi , bi , ci , Fi )} be a marked PPP
with intensity λs on R

2 which represents the set of SUs. Here

(1)ΦP,k = {Xi,k} denotes the locations of PUs of channel k, and ΦS = {Yi } denotes
the locations of SUs. All PUs and SUs are potential transmitters. The receivers are
assumed to be located at a distance R from their corresponding transmitters in a
random direction as in the so-called bipolar model.
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(2) {Ai,k} are independent and identically distributed (i.i.d.) random variables (r.v.s).
For PU i , the r.v. Ai,k denotes the activity of PU i in channel k: Ai,k = 1 with
probability πk,0 (i.e., PU i is active), and Ai,k = 0 with probability πk,1 (i.e., PU
i is inactive).
{di } are i.i.d. r.v.s. For SU i , the r.v. di denotes the accessibility of SU i : di = 1
with probability ak (i.e., SU i can access channel k), and di = 0 with probability
1 − ak (i.e., SU i does not access any channel) when SU i selects channel k. The
probabilities ak, 1 ≤ k ≤ N , are called the common access probabilities for SUs.

(3) ci is the r.v. which represents the channel that SU i selects. The probability that
any SU selects channel k is denoted by sk with

∑N
k=1 sk = 1.

(4) Each SU is allowed to transmit its packet in channel k if it selects channel k
with probability sk , decides to access channel k with access probability ak , and
determines channel k to be idle after sensing channel k. In this case, the SU is
called an active SU.

(5) Fi,k = {Fk(i, j)} denotes a collection of the fading power Fk(i, j) from trans-
mitter i to receiver j at the transmitting time in channel k. If the transmitter i is an
active PU in channel k, we assume that Fk(i, j) is an exponential r.v. with mean
1/μp. If the transmitter i is an active SU in channel k, we assume that Fk(i, j) is
an exponential r.v. with mean 1/μs . We further assume that all fading powers are
independent.

2.2 Sensing Model

We tag an arbitrary SU, say SU i , and call it the tagged SU. Let the location of the
tagged SU be denoted by Yi . When the tagged SU selects a channel for a packet
transmission, it first senses the selected channel and determines the channel to be
idle if the aggregated received signal from all active PUs of the selected channel is
smaller than a priori given sensing threshold T1.

To be more specific, suppose that the tagged SU selects and senses channel k. Let
Φa

P,k be the set of all active PUs of channel k, that is,

Φa
P,k = {X j,k ∈ ΦP,k : A j,k = 1}.

Then the received signal at the tagged SU is expressed as

IΦa
P,k

(Yi ) =
∑

X j,k∈Φa
P,k

Fk( j, i)/|X j,k − Yi |α

where α is the path loss exponent. This refers to the aggregated signal at the tagged
SU from active PUs of channel k inΦa

P,k . Consequently, channel k is identified as idle
if the following condition is satisfied: IΦa

P,k
(Yi ) < T1. For simplicity, the noise-free

model is assumed in this paper.
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SU j located at Y j can transmit its packet in channel k if it selects channel k,
decides to access channel k, and determines that channel k is idle. These conditions
can be encoded in the following indicator:

e j,k = 1(c j = k, d j = 1, IΦa
P,k

(Y j ) < T1).

2.3 Transmission Model

Consider the tagged SU who selects channel k. Let the location of the corresponding
receiver of the tagged SU, called the tagged SU receiver, be denoted by yi . The
tagged SU receiver can successfully receive the packet from the tagged SU if the
Signal to Interference Ratio (SIR) of the signal from Yi to yi is larger than a priori
given success threshold T2. Here, the interference is the signal transmitted from
the other transmitters including active PUs and SUs in the network. We denote the
aggregate interference from active PUs at the tagged SU receiver yi by IΦa

P,k
(yi ).

IΦa
P,k

(yi ) is given by IΦa
P,k

(yi ) = ∑
X j,k∈Φa

P,k
Fk( j, i)/|X j,k − yi |α . Let ΦS,k be the

set of active SUs who transmit their packets in channel k, that is, ΦS,k = {Y j ∈
ΦS : e j,k = 1}. Then IΦS,k\Yi (yi ) = ∑

Y j ∈ΦS,k\Yi
Fk( j, i)/|Y j − yi |α which is the

aggregate interference from active SUs in ΦS,k \ Yi . Therefore, the transmission is
successful if the following condition holds:

SI Ri,k := Fk(i, i)/Rα

IΦa
P,k

(yi ) + IΦS,k\Yi (yi )
> T2. (1)

3 Performance Analysis

In this section, we analyze the active probability and the coverage probability of the
tagged SU in the CR network. We assume that all SUs are saturated, that is, all SUs
always have packets to transmit.

3.1 Analysis of the Active Probability

We derive the active probability which is defined by the probability that the tagged
SU can transmit its packet.

Proposition 1. The probability that the tagged SU can transmit its packet in channel
k of a CR network is P{ei,k = 1} = skakP{IΦa

P,k
(Yi ) < T1} where

P{IΦa
P,k

(Yi ) < T1} ≈
∫ ∞

0

∫ ∞

0

∫ T1
x+y

0

2
(
πk,0λp,kπ

)2

α
e−πk,0λp,kπu−2/α

u− 2
α
−1

×
{

u− 2
α −

(
T1 − yu

x

)− 2
α

}
μpe−μp xμpe−μp ydudxdy.
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Proof. Since the analytical computation of P{IΦa
P,k

(Yi ) < T1} turns out to be very
difficult, we approximate it by considering the interference from the nearest and the
second nearest active PUs from the tagged SU. Due to space limitation, we do not
provide the detailed proof.

3.2 Analysis of the Coverage Probability

In this subsection, we derive the coverage probability (COP) that is defined by the
conditional probability for the tagged SU to transmit successfully, given that the
sensing result is idle. Noting that it is not easy to compute the COP because IΦa

P,k

and IΦS,k are not independent and their joint distribution is unknown, we approximate
the COP by introducing the concept of the interference-free region of the tagged SU.
The motivation is explained as follows. First note that we compute the COP under
the condition that the tagged SU determines channel k to be idle. With the condition,
there are no active PUs in channel k or even if there are some active PUs in channel
k, they are all very far away from the tagged SU, so that the tagged SU experiences
almost no interference from active PUs in channel k.

With the motivation we define the interference-free region of the tagged SU in
channel k, given that the tagged SU determines channel k to be idle, by the region
around the tagged SU (for simplicity, we use a circle centered at the tagged SU) such
that any other SUs in the region also experiences almost no interference from active
PUs in channel k.

To determine the interference-free region, we first focus on IΦa
P,k

(Yi ), the interfer-
ence from all active PUs in channel k, and consider a new PPP with a new intensity
λ′

p,k where the interference I ′
1 from the nearest PU in the new PPP at the tagged SU

satisfies

P{IΦa
P,k

(Yi ) < T1} = P{I ′
1 < T1} =

∫ ∞

0
e−λ′

p,kπ(x/T1)2/α fFP (x)dx .

where fFP (x) is the pdf of the fading power of a PU (an exponential r.v. with mean
1/μp), fromwhich we compute the new intensity λ′

p,k with the help of Proposition 1.
Let RP be the radius of the circle centered at the nearest PU in the new PPP such

that the signal of the nearest PU in the new PPP at the boundary of the circle, is equal
to the sensing threshold T1, that is,

FP · R−α
P = T1 (2)

where FP is the fading power of the nearest PU in the new PPP.

Definition 1. The radius of the interference-free region Ri f,k is defined by

Ri f,k = E[D′
1|D′

1 > E[RP ]] − E[RP ]

where D′
1 is the distance between the nearest PU in the new PPP and the tagged SU.
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By using (2) and the pdf fD′
1
(r1) of D′

1 [11] we can determine Ri f,k as given in
the following lemma whose proof is omitted due to space limitation.

Lemma 1. The expectation of RP and the conditional expectation of D′
1 are

given by

E[RP ] =
(

1

μpT1

)1/α

· Γ

(
1

α
+ 1

)

and

E[D′
1|D′

1 > E[RP ]] =
∫ ∞

E[RP ] r1 fD′
1
(r1)dr1

∫ ∞
E[RP ] fD′

1
(r1)dr1

,

respectively, where fD′
1
(r1) = 2πλ′

p,kr1e−πλ′
p,kr21 .

Based on Lemma 1, we are ready to approximate the COP.

Proposition 2. Given that channel k is sensed as idle, the COP that the tagged SU
can successfully transmit its packet is given by

P{SI Ri,k > T2|IΦa
P,k

(Yi ) < T1} ≈ L̃IΦa
P,k

(yi )(μs T2Rα)L̃IΦS,k\Yi (yi )(μs T2Rα)

where

L̃IΦa
P,k

(yi )(μs T2Rα) ≈ exp

{
−2ππk,0λp,k

∫ ∞

Ri f,k

r

1 + μprα/μs T2Rα
dr

}

and

L̃IΦS,k\Yi (yi )(μs T2Rα) ≈ exp

{
−2πskakλs

∫ Ri f,k

0

r

1 + rα/T2Rα
dr

}
.

Proof. We start with (1).

P{SI Ri,k > T2|IΦa
P,k

(Yi ) < T1}
= P{Fk(i, i) > T2Rα(IΦa

P,k
(yi ) + IΦS,k\Yi (yi ))|IΦa

P,k
(Yi ) < T1}

= E
[

e
−μs T2Rα(IΦa

P,k
(yi )+IΦS,k\Yi (yi ))|IΦa

P,k
(Yi ) < T1

]
.

With the help of the interference-free region, as explained below we can approx-

imate E
[

e
−μs T2Rα(IΦa

P,k
(yi )+IΦS,k\Yi (yi ))|IΦa

P,k
(Yi ) < T1

]
by only considering the

interference from active PUs outside the interference-free region and interference
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from active SUs inside the interference-free region, which are considered to be inde-
pendent. Moreover, since the tagged SU and its receiver are assumed to be located
closely, the interference-free region centered at the tagged SU can be considered as
the circle centered at the tagged SU receiver.

With our approximation assumption and theLaplace functional of themarkedPPP,

We approximate E
[
e−μs T2Rα IΦS,k\Yi (yi )|IΦa

P,k
(Yi ) < T1

]
by (we omit the details here

due to space limitation)

L̃IΦS,k\Yi (yi )(μs T2Rα) := E
[
e
−μs T2Rα

∑
Y j ∈ΦS,k\Yi

Fk ( j,i)/|Y j −yi |α |IΦa
P,k

(Yi ) < T1
]

≈ exp

{
−2πskakλs

∫ Ri f,k

0

r

1 + rα/T2Rα
dr

}
.

Similarly, we obtain

L̃IΦa
P,k

(yi )(μs T2Rα) := E
[

e
−μs T2Rα IΦa

P,k
(yi )|IΦa

P,k
(Yi ) < T1

]

≈ exp

{
−2ππk,0λp,k

∫ ∞

Ri f,k

r

1 + μprα/μs T2Rα
dr

}
.

3.3 Analysis of Throughput

We define the throughput T of the tagged SU as the probability that the tagged SU
receiver successfully receives a packet at an arbitrary slot time. Combining the active
probability and the COP derived in Proposition 1 and Proposition 2, the throughput
T of the tagged SU can be approximated by

T (s, a) ≈
N∑

k=1

skakP{IΦa
P,k

(Yi ) < T1}LIΦa
P,k

(yi )(μs T2Rα)LIΦS,k\Yi (yi )(μs T2Rα)

where s = (s1, · · · , sN ) and a = (a1, · · · , aN ).

4 Numerical Results

In this section, we provide some numerical results to validate our analysis. We use
Matlab to simulate the cognitive radio network. The following network parameters
are used in numerical and simulation analysis. The number of wireless channels is
N = 2. The averages of transmission powers are 1

μp
= 40 mW and 1

μs
= 8 mW .

The path loss exponent is α = 4. The distance between a transmitter and receiver pair
is R = 10 m. The success threshold is T2 = 1 d B. The observation space window is
200 × 200 m2.
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We investigate the behavior of throughput for different parameters values. Fig. 1
shows the throughput aswe change b1 from 0 to 1−b2 where bi = si ai , 1 ≤ i ≤ 2. In
the figure, b2 is chosen to maximize the throughput of channel 2, i.e., b2 = 0.4143.
Other parameters are π1,0λp,1 = 0.00005 and π2,0λp,2 = 0.00015. From Fig. 1
where the distribution of SUs is dense, we see that throughput is concave and the
optimal throughput is achieved at some point. Moreover, we see that our analytic
results are well matched with the simulation results.
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Fig. 1 Throughput (λs = 0.005, T1 = 0.0001)

5 Conclusions

In this paper, we considered an underlay type cognitive radio network with multiple
secondary users. We analyzed the throughput performance of the tagged secondary
user with the help of stochastic geometry. We introduced the interference-free region
to analyze the throughput of an arbitrary secondary user. Our numerical results val-
idated our analysis.
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Performance Comparison Between Two Kinds
of Priority Schemes in Cognitive Radio Networks

Yuan Zhao and Wuyi Yue

Abstract In this paper, we consider a cognitive radio network with multiple Sec-
ondary Users (SUs). The SU packets are divided into SU1 packets and SU2 packets,
and the SU1 packets have higher priority than the SU2 packets. Different from
the conventional preemptive priority scheme (called Scheme I), we propose a non-
preemptive priority scheme for the SU1 packets (called Scheme II) to guarantee the
transmission continuity of the SU2 packets. By constructing a three-dimensional
Markov chain, we give the transition probability matrix of the Markov chain, and
obtain the steady-state distribution of the system model. Accordingly, we derive
some performance measures, such as the interrupted rate of the SU1 packets and
the interrupted rate of the SU2 packets. Lastly, we provide numerical experiments to
compare the system performance between the two priority schemes.

Keywords Cognitive radio networks · Preemptive priority · Non-preemptive pri-
ority · Markov chain

1 Introduction

In conventional cognitive radio networks there are two kinds of users, namely, Pri-
mary Users (PUs) and Secondary Users (SUs). The PUs have priority, with the
SUs making use of the licensed spectrum only when the spectrum is not occupied
by the PUs [1]. Most of studies in cognitive radio networks have been focused on
the interaction between PUs and SUs. Hamza et al. assumed that the SU in the
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system acted as a relay for the PU in the event of transmission failure [2]. Using
queueing analysis, they obtained the throughputs of the PUs and the SUs in the sys-
tem. Considering that the transmission of the SUsmay be interrupted by the PUs, Chu
et al. proposed a spectrum handoff strategy in the overlay cognitive radio networks
[3]. Their numerical results showed that their proposed spectrum handoff strategy
could effectively reduce the waiting time during the spectrum handoff. However, the
studies mentioned above did not attribute different priority levels to SUs.

We note that there are various types of data in communication networks, for
example, real-time data and non-real-time data. The real-time data requires higher
priority. So, it is also necessary to grade the SUs in cognitive radio networks. Lee
et al. divided the SUs into SU1 and SU2 in a multi-channel cognitive radio network
[4]. They assumed the SU1 calls have higher priority than the SU2 calls, and the SU1
calls can interrupt the transmission of the SU2 calls. By building a continuous-time
Markov chain, they analyzed the performance of the SU1 and the SU2, respectively.
Zhang et al. equipped the SUswith different priority levels to guarantee the quality of
service for the SUswith higher priority [5]. By applying a preemptive resume priority
M/M/1 queueing model, they evaluated the transmission delay for the interrupted
SUs.

Moreover, we note that in most of the research considering the prioritization of
the SUs in cognitive radio networks, the SUs with higher priority would interrupt
the transmission of the SUs with lower priority immediately (preemptive priority
scheme). However, in practical networks, in order to guarantee the transmission
continuity of the SUs, the SUs with higher priority may wait until the transmission
of the SUs with lower priority are completed.

In this paper, we propose a non-preemptive priority scheme for the SU packets
with higher priority. Considering the digital nature of modern networks, we construct
a three-dimensional discrete-time Markov chain and then derive some performance
measures. In addition, we provide numerical experiments to compare the system
performance between the two priority schemes.

2 System Model

In this paper, we consider a cognitive radio network with a single channel. The PU
packets are supposed to have preemptive priority over the SU packets. The packets
generated from the SUs are classified into SU1 packets and SU2 packets, and the SU1
packets have higher priority than the SU2 packets. Considering the lowest priority
of the SU2 packets, a buffer is prepared for the SU2 packets to reduce possible loss
of those packets. We call this buffer the “SU2 buffer".

When a PU packet arrives at the system, if the channel is occupied by another
PU packet, this newly arriving packet will leave the system to find another available
channel. If the channel is occupied by an SU1 packet, the transmission of that SU1
packet will be interrupted by the PU packet and the interrupted SU1 packet will leave
the system to find another available channel. If the channel is occupied by an SU2
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packet, the transmission of the SU2 packet will also be interrupted by the PU packet
and the interrupted SU2 packet will return back to the SU2 buffer.

The SU1 packets have a higher priority access to the channel than the SU2 packets.
For example, when an SU1 packet and an SU2 packet arrive at the system simulta-
neously (there is no PU packet arrival), if the channel is idle, the newly arriving SU1
packet will occupy the channel, while the newly arriving SU2 packet has to queue
in the SU2 buffer.

In the case of an SU1 packet arriving at the system (namely, there is no PU packet
arrival) during the transmission of an SU2 packet, we propose a non-preemptive
priority scheme.We assume the newly arriving SU1 packet will be blocked and leave
the system to find another available channel in order to guarantee the transmission
continuity of the SU2 packets. In the following, in order to clarify the presentation,
we call the preemptive priority scheme where the newly arriving SU1 packet will
interrupt the transmission of the SU2 packet and occupy the channel immediately
“Scheme I" and the proposed non-preemptive priority scheme we call “Scheme II".

We assume an early arriving system with a slotted timing structure, and the time
axis is ordered by t = 1, 2, ....We suppose that the arrival intervals of the PU packets,
the SU1 packets and the SU2 packets follow geometrical distributions with param-
eters λ1, λ21 and λ22, respectively. Moreover, we assume that the transmission time
of a PU packet, an SU1 packet and an SU2 packet follow geometrical distributions
with parameters μ1, μ21 and μ22, respectively.

We denote L(1)
n , L(21)

n and L(22)
n as the number of PU packets, SU1 packets and

SU2 packets in the system at the instant t = n+, respectively, where n represents

the time epoch of the slot boundary. Then,
{

L(22)
n , L(21)

n , L(1)
n

}
constitutes a three-

dimensional discrete-time Markov chain with the state space M as follows:

M = {(i, 0, 0) ∪ (i, 0, 1) ∪ (i, 1, 0) : 0 ≤ i ≤ ∞}. (1)

3 Performance Analysis

Let P be the state transition probability matrix of the three-dimensional discrete-time
Markov chain. P can be given in a block-structure form as follows:

P =

⎛

⎜⎜⎜⎝

C0 B0
A2 A1 A0

A2 A1 A0
. . .

. . .
. . .

⎞

⎟⎟⎟⎠ (2)

where each non-zero block in P is a 3 × 3 matrix and can be discussed as follows.
Hereafter, we use the overbar notation to denote the probability of a complement
event, for instance, λ̄1 = 1 − λ1. Moreover, we introduce ζ = λ21μ21 + μ̄21 and
ϑ = λ22μ22 + λ̄22μ̄22 in following equations for compactness of presentation.
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(1)C0 is the one-step transition probability matrix for the number of SU2 packets in
the system being fixed at 0. C0 can be given by

C0 = λ̄22U (3)

where U can be given as follows:

U =
⎛

⎝
λ̄1λ̄21 λ1 λ̄1λ21

λ̄1λ̄21μ1 λ1μ1 + μ̄1 λ̄1λ21μ1

λ̄1λ̄21μ21 λ1 λ̄1ζ

⎞

⎠ . (4)

(2)B0 is the one-step transition probability matrix for the number of SU2 packets in
the system increasing from 0 to 1. B0 can be given by

B0 = λ22U. (5)

(3)A2 is the one-step transition probability matrix for the number of SU2 packets in
the system decreasing from i to i − 1 (1 ≤ i ≤ ∞). A2 can be given by

A2 = μ22λ̄22V (6)

where V can be given as follows:

V =
⎛

⎝
λ̄1λ̄21 λ1 λ̄1λ21
0 0 0
0 0 0

⎞

⎠ . (7)

(4)A1 is the one-step transition probability matrix for the number of SU2 packets in
the system being fixed at i (1 ≤ i ≤ ∞). A1 can be given as follows:
For the case of Scheme I, A1 can be given by

A1 =
⎛

⎝
λ̄1λ̄21ϑ λ1ϑ λ̄1λ21ϑ

λ̄22λ̄1λ̄21μ1 λ̄22(λ1μ1 + μ̄1) λ̄22λ̄1λ21μ1

λ̄22λ̄1λ̄21μ21 λ̄22λ1 λ̄22λ̄1ζ

⎞

⎠ . (8)

For the case of Scheme II, A1 can be given by

A1 =
⎛

⎝
λ̄1(λ̄22μ̄22 + λ22μ22λ̄21) λ1ϑ λ̄1λ21λ22μ22

λ̄22λ̄1λ̄21μ1 λ̄22(λ1μ1 + μ̄1) λ̄22λ̄1λ21μ1

λ̄22λ̄1λ̄21μ21 λ̄22λ1 λ̄22λ̄1ζ

⎞

⎠ . (9)
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(5)A0 is the one-step transition probability matrix for the number of SU2 packets in
the system increasing from i to i + 1 (1 ≤ i ≤ ∞). A0 can be given by

A0 = λ22W. (10)

For the case of Scheme I, W can be given as follows:

W =
⎛

⎝
λ̄1λ̄21μ̄22 λ1μ̄22 λ̄1λ21μ̄22

λ̄1λ̄21μ1 λ1μ1 + μ̄1 λ̄1λ21μ1

λ̄1λ̄21μ21 λ1 λ̄1ζ

⎞

⎠ . (11)

For the case of Scheme II, W can be given follows:

W =
⎛

⎝
μ̄22λ̄1 μ̄22λ1 0

λ̄1λ̄21μ1 λ1μ1 + μ̄1 λ̄1λ21μ1

λ̄1λ̄21μ21 λ1 λ̄1ζ

⎞

⎠ . (12)

The steady-state distribution πi, j,k of
{

L(22)
n , L(21)

n , L(1)
n

}
is then defined as

πi, j,k = lim
n→∞ P

{
L(22)

n = i, L(21)
n = j, L(1)

n = k
}

(13)

where 0 ≤ i ≤ ∞, j = 0, 1, k = 0, 1. Moreover, we note that j and k can not be
equate to 1 at the same time.

The structure of the transition probability matrix P indicates that the three-
dimensional Markov chain follows a Quasi Birth and Death (QBD) process. By
using the matrix-geometric solution method [6], we can obtain the numerical results
for the steady-state distribution πi, j,k defined in Eq. (13).

Next, by using the steady-state distributionπi, j,k , we present various performance
measures of this system model.

We define the interrupted rate γ21 of the SU1 packets as the number of SU1 packets
that are interrupted by the PU packets per slot. The expression of the interrupted rate
γ21 of the SU1 packets can be given as follows:

γ21 =
∞∑

i=0

πi,1,0μ̄21λ1. (14)

We define the interrupted rate γ22 of the SU2 packets as the number of SU2 packets
that are interrupted by the SU1 packets or the PU packets per slot. The expression
of the interrupted rate γ22 of the SU2 packets can be given for two cases.

For the case of Scheme I:

γ22 =
∞∑

i=1

πi,0,0μ̄22(1 − λ̄1λ̄21). (15)
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For the case of Scheme II:

γ22 =
∞∑

i=1

πi,0,0μ̄22λ1. (16)

4 Numerical Experiments

In this section, we compare the interrupted rate of the SU1 packets and the interrupted
rate of the SU2 packets between Scheme I and Scheme II. The time length of one
slot is assumed to be 1 ms. By referencing [7] and following the IEEE 802.11 b/g
standard, the data rate in Physical Layer is assumed to be 11 Mbps. The average
packet size is assumed to be 2, 750 Bytes. Moreover, the arrival rate λ22 of the SU2
packets is assumed to be λ22 = 0.1.

Figures 1 compares the interrupted rate γ21 of the SU1 packets between Scheme
I and Scheme II.
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Fig. 1 Change trend for the interrupted rate γ21 of the SU1 packets.

From Fig. 1, we observe that the interrupted rate γ21 of the SU1 packets increases
as the arrival rate λ1 of the PU packets increases. This is because as the arrival rate of
the PU packets increases, the possibility for the transmission of the SU1 packets to
be interrupted by the PU packets will be higher, and this will increase the interrupted
rate of the SU1 packets.

On the other hand, as shown in Fig. 1, the interrupted rate γ21 of the SU1 packets
increases as the arrival rate λ21 of the SU1 packets increases. The reason is that the
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larger the arrival rate of the SU1 packets is, the more the SU1 packets will occupy
the channel, and this will result in a greater interrupted rate of the SU1 packets.

Furthermore, the interrupted rate γ21 of the SU1 packets in Scheme I is greater
than that in Scheme II for the same parameter settings. The reason is that in Scheme
I, a newly arriving SU1 packet can interrupt the transmission of the SU2 packet
on the channel. In other words, in the case of Scheme I, the possibility of the SU1
packets occupying the channel is higher, and the possibility for the transmission of
the SU1 packets to be interrupted by the PU packets will also be higher. As a result,
the interrupted rate of the SU1 packets will be greater in Scheme I.

Figure 2 compares the interrupted rate γ22 of the SU2 packets between Scheme I
and Scheme II.
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Fig. 2 Change trend for the interrupted rate γ22 of the SU2 packets.

From Fig. 2, we find that as the arrival rate λ1 of the PU packets increases,
the interrupted rate γ22 of the SU2 packets shows an increasing tendency. This is
obviously because the greater the arrival rate of the PU packets is, the higher the
possibility that the transmission of the SU2 packets to be interrupted, so the larger
the interrupted rate of the SU2 packets will be.

On the other hand, Fig. 2 shows an increasing arrival rate λ21 of the SU1 packets
causes an increase in the interrupted rate γ22 of the SU2 packets in Scheme I. This is
because in Scheme I, a newly arriving SU1 packet can interrupt the transmission of
the SU2 packet, and this will result in a higher interrupted rate of the SU2 packets.

Furthermore, as the arrival rate λ21 of the SU1 packets increases, the interrupted
rate γ22 of the SU2 packets will not be changed in Scheme II. This is because in
Scheme II, a newly arriving SU1 packet will not interrupt the transmission of the
SU2 packets, so the arrival rate of the SU1 packets will not influence the interrupted
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rate of the SU2 packets. Moreover, because of the preemptive priority mechanism,
Scheme I experiences a higher interrupted rate γ22 of the SU2 packets than Scheme II.

5 Conclusions

In this paper, we investigated the system performance of cognitive radio networks,
in which the SU packets in the system were divided into SU1 packets with higher
priority and SU2 packets with lower priority. For the purpose of guaranteeing the
transmission continuity of the SU2 packets, a non-preemptive priority scheme was
proposed for the SU1 packets. A three-dimensional discrete-time Markov chain was
constructed and the transition probability matrix was given. With the steady-state
distribution, some performance measures for the SU1 packets and SU2 packets were
derived. Finally, with numerical experiments, we showed that compared with the
preemptive priority scheme, the proposed non-preemptive priority scheme for the
SU1 packets could reduce the interrupted rate of the SU2 packets effectively.
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in the IEEE 802.16e/m Network
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Abstract We propose a distributedMAC protocol for cognitive radio when primary
network is IEEE 802.16e/m WiMAX. Our proposed MAC protocol is Truncated
Binary Exponential Backoff Algorithm where backoff stage of algorithm is doubled
at each collision, and backoff counter is operated by frame basis and is freezed at a
frame with no idle slots. We model our proposed MAC protocol as a 3-dimensional
discrete-time Markov chain and obtain steady state probability of the Markov chain
by using a censored Markov chain method. Based on this steady state probability,
we obtain the throughput, packet loss probability and packet delay distribution of
secondary users. Our numerical examples show that initial contention window size
can be determined according to the number of secondary users in order to obtain
higher throughput for secondary users, and the maximum backoff stage has a large
impact on the secondary user’s packet loss probability.
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1 Introduction

Cognitive radio technologies have been receiving a lot of attention from industry
and academia since it is known as a promising technique to enhance the utilization
of the existing radio spectrum[1]. The main idea behind a cognitive radio is that the
unlicensed users (also called secondary users (SUs)) opportunistically exploit the
licensed spectrum unused by the primary users (PUs).

For related works applicable to IEEE 802.16e/mWiMAX [2],[3], we focus on the
papers [4]and [5] where MAC protocols adopt 802.11 binary backoff scheme. Fan-
tacci et al.[4] proposed scheduling based and contention based cognitive radio MAC
protocols for SUs with IEEE 802.16 networks as the PU network, and simulation
are presented. Chong et al.[5] proposed a slot-based MAC protocol for SUs where
primary network has multiple channels and operates on frame-by-frame basis. To
the best of our knowledge, there has been no work on comprehensive QoS analysis
of cognitive radio network whose primary network is IEEE 802.16e/m.

In this paper, we propose a distributed contention-basedMAC protocol for SUs in
a cognitive radio network where the primary network is IEEE 802.16e/m. As aMAC
protocol for SUs, a truncated binary exponential backoff (TBEB) scheme is adopted
and the backoff unit of the algorithm is one frame in IEEE 802.16m WiMAX. We
construct a 3-dimensional Markov chain incorporating the variation of the number
of idle slots in a frame and (backoff stage, backoff counter) of the tagged SU. By
applying censored Markov chain method, we obtain the steady state probability of
Markov chain. Based on the steady state probability of the Markov chain, we obtain
throughput, packet loss probability.

2 System Model

In this paper, the primary network of cognitive radio network is IEEE 802.16e/m
network which is operated in Time Division Duplexing (TDD) mode, because it is
the most commonly used scheme in practical implementation of WiMAX systems.

In TDD mode, a frame is divided into two subframes: a downlink (from base
station(BS) to mobile station(MS)) subframe followed by an uplink (from MS to
BS) subframe. The BS for primary users allocates resources in data regions of uplink
subframes and downlink subframes to PUs for uplink and downlink transmissions,
respectively, and this scheduling information is broadcasted to PUs through DL-
MAP and UL-MAP which are the beginning parts of every downlink subframe. The
DL-MAP and UL-MAP in each downlink subframe contains the allocation message
for resources of current downlink subframe and following uplink subframe. In this
work, we only consider the uplink transmission, thus we only focus on resources of
uplink subframes. The data region of an uplink subframe consists of slots. A slot is
a resource unit assigned to PUs. Since the uplingk traffic size is affected by the PU’s
activities (i.e., time-varying), thus there might be some slots unused by PUs in each
uplink frame and the number of such slots (idle slots) is time-varying.
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By allowing SUs to use the idle slots, the utilization of resources can be signif-
icantly improved. Therefore, it is an important issue to develop an efficient oppor-
tunistic spectrum access scheme for SUs.

In practice, the size of slots are different according to the frequency band it locates
and also according to whether the operation is Time Division Multiplexing (TDM)
or Frequency Division Multiplexing (FDM). However, in our work, for simplicity,
we assume that the slot size is a constant and thus the number of slots in an uplink
subframe is fixed.

3 Cognitive Radio Protocol

In this section, we introduce the operation of PUs and SUs in our proposed protocol.

3.1 Primary Users’ Operations

We assume that the PUs’ traffic is voice data generated by Np independent active
primary voice sources (PV sources). Each active PV source alternates between talk-
spurt and silent periods. Voice data is generated during talkspurt periods, while no
data is generated during silent periods which is due either to listening periods or gaps
between words. Let each PV source occupies Rt slots per uplink subframe during
talkspurt periods. We model the operation of each PV source as a discrete time ON-
OFF process, with one frame as the time unit, and the one-step transition probability
matrix is given as follows.

Pvoice = talkspurt
silent

talkspurt silent(
α 1 − α

1 − β β

)
,

(1)

Let Nslot be the number of slots in an uplink subframe and Xn be the the number of
PV sources in talkspurt period during the nth uplink subframe. If Xn > Nslot , we
assume that only Nslot of them are allowed to transmit voice data while others are
blocked. The mechanism of admission control of PV sources is the outside the scope
of this paper.

3.2 Secondary Users’ Operations

Asmentioned above, theBSbroadcasts resource allocationmessages for PUs through
DL-MAP and UL-MAP in a control message at the beginning of each frame. We
assume that the SUs can get information on the number and the positions of idle slots
in the frame. This can be done either by overhearing the UL-MAP or cognitive radio
BS (CR-BS) broadcasting this information to SUs. Another assumption is that each
SU uses only one slot at every frame.
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For distributed opportunistic spectrum access for SUs, we adopt truncated binary
exponential backoff (TBEB) scheme whose backoff unit is a frame unit in IEEE
802.16 e/m WiMaX. The detailed operation for TBEB scheme is as follows:

– Whenever a SU has a packet to transmit, the tagged SU chooses a backoff counter
value uniformly in [0, W0 − 1] where W0 is called the initial contention window
and SU is called at its backoff stage 0.

– If at least one of Nslot slots is idle at a frame, the SU decreases its backoff counter
by one regardless of other SUs’ operations in next frame, otherwise, the SU’s
backoff counter is frozen.

– If the backoff counter of the SU reaches zero at a frame and in that frame there is
at least one idle slot unused by PUs, the SU chooses a slot randomly among the
idle slot(s) and transmit its packet in that slot.

• If no other SUs choose the same slot as the SU chose, the packet’s transmission
of the SU is successful.

• Otherwise, i.e., if another SU chooses the same slot as the tagged SU chose,
both packets collide.

– Suppose a SU with backoff stage i and contention window Wi collides,

• if i is less than pre-defined maximum backoff stage m, this SU increases its
backoff stage by one and doubles its contention window (Wi+1 = 2 × Wi );

• If i = m, this SU gives up transmitting the packet (i.e., this packet is lost) and
sets its backoff stage to 0, i.e., each SU only has m retrial chances.

4 Markov Chains for Describing PUs and a Tagged SU’s
Operations

In this section, we first model the operation of a tagged PU as a discrete timeON-OFF
process, then we construct a 3-dimensional Markov chain to evaluate the scheme for
SUs described in section 2 and find stationary probability vector by following the
censored Markov chain method.

4.1 Markov Chain for PUs’ Operations

According to the assumptions in 3.1, it can be easily found that Xn (the the number
of PV sources in talkspurt period during the nth uplink subframe) follows a discrete
time Markov chain. Let pi, j be the one step transition probability of this Markov
chain. Then we obtain pi, j from Pvoice in Equation (1) as follows.

pi, j =
min{i, j}∑

k=max{0,i+ j−Np}
αk(1 − α)i−k(1 − β) j−kβNp−i− j+k , i, j ∈ [0, Np] (2)
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4.2 Markov Chain for a Tagged SU’s Operation

Our Markov chain for a tagged SU has states (i, j, k) where the backoff stage i ,
backoff counter j of the tagged SU and the number k of busy PV sources in the
frame. We assume a saturated condition, which means each SU always has packets
to send. An unsaturated situation can be modeled and analyzed similarly by adding
an idle state to current Markov chain.

Let qk be the collision probability of a tagged SU when the number of busy PV
sources is k, given that the tagged SU transmits a packet. The one-step transition
probability matrix of the 3-dimensional Markov chain will be expressed in terms
of qk , and conversely qk will be expressed in terms of steady state probabilities
of this Markov chain. (see Equation (5)). The state transition probabilities for this
3-dimensional Markov chain are listed below:

– If Np ≥ Nslot

P(i, j,k)(i, j,k′) = pk,k′ i ∈ [0, m], j ∈ [0, Wi − 1], k ∈ [Nslot , p], k′ ∈ [0, Np ]
P(i, j,k)(i, j−1,k′) = pk,k′ i ∈ [0, m], j ∈ [1, Wi − 1], k ∈ [0, Nslot − 1], k′ ∈ [0, Np ]
P(i,0,k)(0, j ′,k′) = (1 − qk )pk,k′ /W0 i ∈ [0, m − 1], j ′ ∈ [0, W0 − 1], k ∈ [0, Nslot − 1], k′ ∈ [0, Np ]
P(m,0,k)(0, j ′,k′) = pk,k′ /W0 j ′ ∈ [0, W0 − 1], k ∈ [0, Nslot − 1], k′ ∈ [0, Np ]
P(i,0,k)(i+1, j ′,k′) = qk pk,k′ /Wi+1 i ∈ [0, m − 1], j ′ ∈ [0, Wi+1 − 1], k ∈ [0, Nslot − 1], k′ ∈ [0, Np ]

– If Np < Nslot

P(i, j,k)(i, j−1,k′) = pk,k′ i ∈ [0, m], j ∈ [1, Wi − 1], k ∈ [0, Np ], k′ ∈ [0, Np ]
P(i,0,k)(0, j ′,k′) = (1 − qk )pk,k′ /W0 i ∈ [0, m − 1], j ′ ∈ [0, W0 − 1], k ∈ [0, Np ], k′ ∈ [0, Np ]
P(m,0,k)(0, j ′,k′) = pk,k′ /W0 j ′ ∈ [0, W0 − 1], k ∈ [0, Np ], k′ ∈ [0, Np ]
P(i,0,k)(i+1, j ′,k′) = qk pk,k′ /Wi+1 i ∈ [0, m − 1], j ′ ∈ [0, Wi+1 − 1], k ∈ [0, Np ], k′ ∈ [0, Np ]

Here, Wi is the size of contention window of backoff stage i ; m is the maximum
backoff stage.

This matrix has following form:

P =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0,0 A0,1 0 0 · · · 0 0
B1,0 C1,1 A1,2 0 · · · 0 0
B2,0 0 C2,2 A2,3 · · · 0 0
B3,0 0 0 C3,3 · · · 0 0

...
...

...
...

. . .
...

...

Bm−1,0 0 0 0 · · · Cm−1,m−1 Am−1,m
Bm,0 0 0 0 · · · 0 Cm,m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

Bi,0, Ai,i+1 and Ci,i can be specified by above one-step transition probabilities.
Let Π = (π0, π1, ..., πm) be the steady state probability vector of this Markov
chain. Denote S = {0, 1, ..., m} where i is level i , i.e., i = {(I, J, K )|I = i}.
Π = (π0, π1, ..., πm) can be obtained by the censored Markov chain method whose
detailed derivation is omitted.



86 S. Jin et al.

5 Performance Measures

Let τk be the transmission probability of the tagged SU when the number of busy PV
sources is k, and qk be the collision probability of a tagged SU when the number of
busy PV sources is k, given that the tagged SU transmits a packet. Then τk and qk

are given by

τk =
∑m

i=0 πi,0,k
∑m

i=0
∑Wi −1

j=0 πi, j,k

, k ∈ [0,min(Np, Nslot ) − 1] (4)

qk = 1 − (1 − τk · 1

Nslot − k
)

Ns−1

, k ∈ [0,min(Np, Nslot ) − 1] (5)

In Equation (5), (1 − τk · 1
Nslot −k )

Ns−1
represents the probability that all of the

other Ns − 1 secondary users (except the tagged secondary user) do not choose the
same slot as the tagged SU chose when there are k busy PV sources in that frame.

We define the throughput T of secondary users as the ratio of the average number
of slots successfully used by SUs to the total number of slots in a long enough
duration.

Given Pc = (pi, j ), the one-step transition probability matrix of the number of
busy PV sources, we can find C = (ck), the steady state probability that there are k
busy PV sources by solving CPc = C . Given that there are k busy PV sources in a
frame, the average number of slots successfully used by SUs in a frame is

Nsτk(1 − τk
1

Nslot − k
)

Ns−1

. (6)

From Equation (6), we obtain the throughput of SUs as follows:

T =
∑Nslot −k

k=0 ck Nsτk(1 − τk
1

Nslot −k )Ns−1

Nslot
. (7)

We define the packet loss probability PL of SUs as the ratio of the average number
of lost packets of SUs to the number of successfully transmitted or lost packets.
Given that there are k busy PV sources in a frame, the average number of lost
packets and successfully transmitted packets of a tagged SU in one frame is πm,0,kqk

and
∑m

i=0 πi,0,k(1 − qk), respectively. By conditioning on the number of busy PV
sources in one frame, we obtain the average number of lost packets and successfully
transmitted packets in one frame. Therefore, the packet loss probability is given as
follows.

PL =
∑Nslot −k

k=0 ckπm,0,kqk
∑Nslot −k

k=0 ck[∑m
i=0 πi,0,k(1 − qk) + πm,0,kqk]

. (8)
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6 Numerical Results

In this section, we evaluate the throughput and packet loss probability of secondary
users in the proposed IEEE 802.16e/m cognitive radio system.

We consider the following parameters: the average length of talkspurt and silent
periods are 352ms and 650 ms, respectively. The parameter values used in numerical
examples are listed in Table 1.

Table 1 Parameter values used in numerical examples

Parameter Value
Nslot 70
α 0.9857
β 0.9923
Rt 1

The theoretical results are obtained by the equations in Section 4. Our simulations
are done by MATLAB program based on our protocol described in 3, and in each
case, simulations are repeated 20 times with different seeds and 2000 frames in each
time. In the following figures, solid lines stand for theoretical results and dotted lines
stand for simulation results.
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Fig. 1 Secondary users’ throughput versus Ns (Np = 160)

First notice that, the analytic results and simulation results match. Figure 1
describes the saturated throughput T versus the number of SUs when the initial
contention window size W0 is 1 and 2. It can be observed that if the number of sec-
ondary users is less than 45, the saturated throughput is larger with W0 = 1 than that
with W0 = 2, while opposite if the number of secondary users is larger than 50. This
is because larger initial contention window size is suitable for more SUs to contend.

Figure 2 and 3 depicts the packet loss probability of SUs versus the maximum
backoff stage m and Nm , respectively, when the number of secondary users Ns is 20,
30 and 40. As expected, the packet loss probabilities decrease as m increases and as
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Fig. 2 Secondary users’ packet loss probability versus m
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Fig. 3 Secondary users’ packet loss probability versus Np

Np decreases. It is reasonable since larger m implies more opportunities to attempt
to transmit and smaller Np means averagely there are more idle slots in each frame
for SUs to utilize.
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M/M/1/1 Retrial Queues with Setup Time

Tuan Phung-Duc

Abstract This paper considers single server retrial queues with setup time. In the
basic model, if the server completes a service and there are no customers in the orbit,
the server is turned off immediately. Arriving customers that see the server occupied
join the orbit and repeat their attempt after some random time. The new feature of
our models is that an arriving customer that sees the server off waits at the server and
the server is turned on. The server needs some setup time to be active so as to serve
the waiting customer. If the server completes a service and the orbit is not empty, it
stays idle waiting for either a new customer or a customer from the orbit. For this
model, we obtain explicit expressions for the generating functions of the joint queue
length. We then consider an extended model where the server stays idle for a while
before being turned off for which explicit solution is also obtained.

Keywords M/M/1/1 retrial queue · Setup time · Power-saving

1 Introduction

Power-saving in ICT systems is an important issue because ICT devices consume
a large amount of energy. One simple method is to turn off an idle device and to
switch it on again when some jobs arrive. This is because in the current technology
idle devices still consume about 60% of their peak processing a job [2]. On the other
hand, a quick response is crucial for delay sensitive applications. An off server needs
some setup time in order to be active during which the server consumes energy
but cannot process a job. Thus, there is a trade-off between power-consumption
and delay performance. This trade-off can be analyzed using single server queueing
models with setup times which are extensively studied in the literature [3, 12].
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Retrial is a common phenomenon in ICT systems. Customers (jobs) that can-
not occupy the server immediately upon arrival join an orbit and retry to enter the
server after some random time. Although queues with retrial or setup time are sep-
arately investigated in the literature, this paper is the first attempt to combine these
two features in one model. We first consider an M/M/1/1 retrial queue with setup
time where the server is immediately turned off when the system (server and orbit)
becomes empty. We then consider an extended model where the server waits for a
while before being switched off. This idle time reduces the mean number of cus-
tomers in the orbit and the mean waiting time but at the same time it increases the
power consumption. Thus, there is a need for an appropriate setting of this idle time.

Our models are suitable for a downlink of a mobile station with a power saving
mode. A mobile station receives data from a base station. Arriving messages are
stored in the base station and the mobile station downloads these messages from
the base station. Upon the completion of a download, if there are no messages in
the base station the mobile station is turned off in order to save energy. However,
when amessage arrives, the base station sends a signal in order to wake up themobile
station. Themobile station needs some random setup time to be active so as to receive
waiting messages.

A closely related work is due to Do [4] who considers an M/M/1/1 retrial queue
with working vacation in which the server can still work at a different rate during the
vacation period. In [4], the retrial rate is independent to the number of customers in
the orbit. Artalejo [1] considers M/G/1/1 retrial queue with constant retrial rate and
vacation. In contrast to the models in [1, 4], we consider the so-called classical retrial
policy in which the retrial rate is proportional to the number of customers in the orbit.
It should be noted that the classical retrial policy makes the underlyingMarkov chain
non-homogeneous and thus its analysis is more challenging in comparison with the
constant retrial rate policy. Multiserver queues with setup time and without retrials
are analyzed in [8, 9, 10]. Analytical solutions for multiserver retrial queue and
tandem retrial model could be found in [5, 6] and [7], respectively.

The rest of this paper is organized as follows. Section 2 presents the basicM/M/1/1
retrial queue with setup time and its analysis. Section 3 presents an extended model
where the server stays idle for a while before being turned off and a summary of
analytical results. Concluding remarks are presented in Section 5.

2 Model Without a Waiting Time

2.1 Model

We consider anM/M/1/1 retrial queue with setup time. Customers arrive at the server
according to a Poisson process with rate λ. The service time of customers follows
an exponentially distributed time with mean 1/ν. Customers that see the server busy
upon arrival join the orbit and retry for service after some exponentially distributed
time with mean 1/μ. When the system becomes empty, the server is turned off
immediately. Customers that see the off server waits at the server and the server is
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turned on. However, the server needs some setup time to be active so as to serve the
waiting customer. We assume that the setup time is exponentially distributed with
mean 1/α. Customers that see the server in setup state joins the orbit and behaves
the same as other customers in the orbit.

Remark 1 Our model is different from other retrial models with vacations [1, 4]
where arriving customers that see the server on vacation join the orbit. In our model,
the setup time is activated upon an arrival of a new customer while the vacations
in [1, 4] are independent of the arrivals.

2.2 Analysis

In this section, we present an analytical solution for the joint stationary distribution
in terms of generating functions. Let C(t) and N (t) denote the state of the server
and the number of customers in the orbit, respectively.

C(t) =
⎧
⎨

⎩

0, the server is empty,
1, the server is busy,
2, the server is in setup process.

It is easy to see that {X (t) = (C(t), N (t)); t ≥ 0} forms a Markov chain on the state
space:

S = {(i, j); i = 0, 1, 2, j ∈ Z+},

where Z+ = {0, 1, 2, . . . }. We assume that the system is stable and thus λ < ν.
We refer to Figure 1 for transitions among states. It should be noted that (0, 0)

represents the state where the server is turned off.

Fig. 1 Transitions among states
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Let πi, j = limt→∞ P(C(t) = i, N (t) = j) ((i, j) ∈ S) denote the joint sta-
tionary distribution of {X (t)}. In this section, we obtain explicit expressions for the
generating functions of the joint stationary distribution πi, j ((i, j) ∈ S). We define
the generating functions as follows.

Πi (z) =
∞∑

j=0

πi, j z
j , i = 0, 1, 2.

The balance equations for states (0, j) read as follows.

(λ + jμ)π0, j = νπ1, j , j ∈ Z+.

Multiplying this equation by z j and summing up over j ∈ Z+, we obtain

λΠ0(z) + μzΠ ′
0(z) = νΠ1(z). (1)

Next, we consider balance equations for states (1, j) ( j ∈ Z+). We have

(λ + ν)π1, j = απ2, j + λπ1, j−1 + ( j + 1)μπ0, j+1 + λπ0, j (1 − δ0, j ),

where π1,−1 = 0 and δ0, j is the Kronecker delta, i.e. δ0, j = 1 if j = 0 and δ0, j = 0
if j �= 0. Multiplying this equation by z j and summing up over j ∈ Z+ yields

(λ + ν)Π1(z) = αΠ2(z) + λzΠ1(z) + μΠ ′
0(z) + λ(Π0(z) − π0,0). (2)

Next, we consider balance equations for states (2, j) ( j ∈ Z+).

(λ + α)π2,0 = λπ0,0, (λ + α)π2, j = λπ2, j−1, j ≥ 1.

Summing the first equation by z0 and the second equation by z j and summing over
j ∈ Z+, we obtain

(λ + α)Π2(z) = λzΠ2(z) + λπ0,0, (3)

leading to

Π2(z) = λπ0,0

λ + α − λz
.

We also have the following equation by summing up (1), (2) and (3) and arranging
the result.

λ(Π1(z) + Π2(z)) = μΠ ′
0(z). (4)

It should be noted that (4) represents the balance between the flows in and out the
orbit. Substituting Π1(z) and Π2(z) in terms of Π0(z) into (4), we obtain
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λ

(
λΠ0(z) + μzΠ ′

0(z)

ν
+ λπ0,0

λ + α − λz

)
= μΠ ′

0(z). (5)

Arranging this equation we obtain

Π ′
0(z) = λ2

μν

1

1 − λz
ν

Π0(z) + λ2

μ(λ + α)

π0,0

(1 − λz
λ+α

)(1 − λz
ν

)
. (6)

Remark 2 Taking the limit μ → ∞, (6) becomes Π ′
0(z) = 0 leading to Π0(z) =

π0,0. As a result, our model reduces to the conventional M/M/1 queue with setup
time (see e.g. Section 4.1 in [8]).

The differential equation (6) is solvable. First, we solve the homogeneous equa-
tion:

Π ′
0(z) = λ2

μν

1

1 − λz
ν

Π0(z).

The solution of this equation is given by

Π0(z) = C0

(
1 − λz

ν

)− λ
μ

,

for some constant C0. This suggests us to find the solution for (6) of the form

Π0(z) = C(z)

(
1 − λz

ν

)− λ
μ

.

Substituting this function into (6), we obtain

C ′(z) = λ2

μ(λ + α)

π0,0

(1 − λz
λ+α

)
(1 − λz

ν
)

λ
μ

−1
,

whose solution is given by

C(z) = C + λ2π0,0

μ(λ + α)

∫ z

0

(
1 − λu

ν

) λ
μ

−1

1 − λu
λ+α

du,

where C is some constant. Because Π0(0) = π0,0, we have C(0) = C = π0,0.
Thus, we have

Π0(1) = κ0π0,0.
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where

κ0 =
(
1 − λ

ν

)− λ
μ

(
1 + λ2

μ(λ + α)

∫ 1

0

(1 − λu/ν)
λ
μ

−1

1 − λu/(λ + α)
du

)
.

Furthermore, it follows from the differential equation (6) that

Π ′
0(1) = κ ′

0π0,0,

where

κ ′
0 = λ2

μ(ν − λ)

(
κ0 + ν

α

)
.

It follows from (4) that

Π1(1) + Π2(1) = μ

λ
κ ′
0π0,0.

Furthermore, because Π0(1) + Π1(1) + Π2(1) = 1, we have

π0,0 = 1

κ0 + μ
λ
κ ′
0
.

Differentiating equation (6) at z = 1 yields

Π ′′
0 (1) = κ ′′

0π0,0,

where

κ ′′
0 = λ

μ

(
ρ2κ0

(1 − ρ)2
+ ρκ ′

0

1 − ρ
+ ρλ(ν + α − λ)

(1 − ρ)2α2

)
, ρ = λ

ν
.

Thus, the mean number of customers in the system is given by

E[N ] = (κ ′
0 + μ

λ
κ ′′
0 )π0,0.

3 Model with an Idle Time

3.1 Model

In this section,we extend themodel in Section 2 by adding a new feature. In particular,
we assume that when the system becomes empty the server is not immediately turned
off but stays idle for some random time. In this idle period, an arriving customer
receives the service immediately. We assume that the idle time is exponentially
distributed with mean 1/β. Let C(t) denote the state of the server (defined as in the
previous section) and N (t) denote the number of customers in the orbit. Let
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X (t) =
{

O, the server is turned off,
(C(t), N (t)), otherwise.

It is easy to see that {X (t); t ≥ 0} forms a Markov chain on the state space S given
by

S = O ∪ {0, 1, 2} × Z+.

We assume that λ < ν and thus the Markov chain is stable. Furthermore, we are
going to find the stationary distribution defined as follows.

π0 = lim
t→∞P(X (t) = O), πi, j = lim

t→∞P(X (t) = (i, j)).

We refer to Figure 2 for transitions among states. The generating functions Πi (z)
(i = 0, 1, 2) are defined the same as in the previous section.

Fig. 2 Transition among states

3.2 Analysis

We have the following balance equations for states (0, j) ( j ∈ Z+)

π0,0β = λπ0, (7)

(λ + β)π0,0 = νπ1,0, j = 0, (8)

(λ + jμ)π0, j = νπ1, j , j ≥ 1. (9)

Multiplying (8) by z0 and (9) by z j and summing up over j ∈ Z+ we obtain

βπ0,0 + λΠ0(z) + μzΠ ′
0(z) = νΠ1(z). (10)
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Next we consider balance equations for states (1, j) ( j ∈ Z+).

(λ + ν)π1, j = λπ1, j−1 + ( j + 1)μπ0, j+1 + απ2, j + λπ0, j .

where π1,−1 = 0. Multiplying this equation by z j and summing up over j ∈ Z+, we
obtain

(λ + ν)Π1(z) = λzΠ1(z) + μΠ ′
0(z) + αΠ2(z) + λΠ0(z). (11)

Finally, we consider balance equations for states (2, j) ( j ∈ Z+).

(λ + α)π2,0 = λπ0, j = 0, (12)

(λ + α)π2, j = λπ2, j−1, j ≥ 1. (13)

Multiplying the first equation by z0 and the second equation by z j and summing up
over j ∈ Z+, we obtain

(λ + α)Π2(z) − λzΠ2(z) = λπ0 ⇔ Π2(z) = λπ0

λ + α − λz
. (14)

As in Section 2, we also have the following equation (representing the balance
between the flows in and out the orbit)

λ(Π1(z) + Π2(z)) = μΠ ′
0(z), (15)

by summing up (10), (11) and (14) and arranging the result. Substituting Π1(z) and
Π2(z) in terms of Π0(z) into the above equation and arranging the result yields

Π ′
0(z) = λ2

μν

1

1 − λ
ν

z
Π0(z) + λ2π0(λ + α + ν − λz)

μν(λ + α − λz)(1 − λz
ν

)
. (16)

It should be noted that (16) becomes Π ′
0(z) = 0 as μ → ∞, i.e. Π ′

0(z) = π0,0. In
this case our model reduces to the model with idle period and setup time (without
retrial). The solution of (16) is given by

Π0(z) = π0

(
1 − λz

ν

)− λ
μ

(
λ

β
+ λ2

μν

∫ z

0

(
1 − λu

ν

) λ
μ

−1 (
1 + ν

λ + α − λu

)
du

)
.

Thus, we have Π0(1) = χ0π0, where

χ0 =
(
1 − λ

ν

)− λ
μ

(
λ

β
+ λ2

μν

∫ 1

0

(
1 − λu

ν

) λ
μ

−1 (
1 + ν

λ + α − λu

)
du

)
.

Furthermore, it follows from the differential equation that
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Π ′
0(1) = λ2Π0(1)

μ(ν − λ)
+ π0λ

2(α + ν)

μα(ν − λ)

= χ ′
0π0,

where

χ ′
0 = λ2χ0

μ(ν − λ)
+ λ2(α + ν)

μα(ν − λ)
.

This expression together with the balance equation between the flow in and out the
orbit (15) yield

Π1(1) + Π2(1) = μ

λ
χ ′
0π0.

Because
Π0(1) + Π1(1) + Π2(1) + π0 = 1,

we have

π0 = 1

1 + χ0 + μχ ′
0

λ

.

Thus, we also have explicit expressions for Πi (z) (i = 0, 1, 2).
Differentiating equation (16) at z = 1 yields,

Π ′′
0 (1) = π0χ

′′
0 ,

where

χ ′′
0 = λ

μ

(
ρ2χ0

(1 − ρ)2
+ ρχ ′

0

1 − ρ
+ ρλ(ν + α − λ)

(1 − ρ)2α2 + ρ2

(1 − ρ)2

)
.

Thus, the mean number of customers in the system is given by

E[N ] = (χ ′
0 + μ

λ
χ ′′
0 )π0.

4 Performance Measures and Numerical Results

We consider two main performance measures: the probability that the server is off
(π0,0 in the model in Section 2 and π0 in the model in Section 3) and the mean
number of customers in the orbit. We would like to increase the former (i.e. decrease
the probability of the states on which the server consumes power) in order to save
energy while we also would like to decrease the mean number of customers in the
orbit. Thus, we have a trade-off between the performance and power consumption.
In order to see this trade-off we consider a cost function which is the product of
the probability that the server is in either SETUP or ON or IDLE (not in OFF state)
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and the mean number of customers in the orbit, i.e., (1− π0,0)E[N ] in the model in
Section 2 and (1 − π0)E[N ] in the model in Section 3. It should be noted that the
server consumes power in SETUP and ON and IDLE states.

In this section, we present some numerical results. We fix the parameters as
follows: μ = 1 and ν = 1. We consider three cases where β = 0.1, 1 and 10 for
the model with a waiting time (exponentially distributed with mean 1/β). We first
consider the case where ρ = λ/ν = 0.7. Figure 3 shows the probability that the
server is in OFF state against the setup rate. We observe that the π0 increases with β

in the model with waiting time. This is because a large β results in a short mean idle
time 1/β and thus a large π0. We also observe that π0 < π0,0 which is also intuitive
due to the same reason as in the monotonicity of π0 in β.

Furthermore, we observe from Figure 8 that the mean number of customers in the
orbit E[N ] decreases with β. This is intuitive because the server has more chance to
be in the idle state during which it can serve an arriving customer immediately when
β is small. We also observe that E[N ] for the model with a waiting time is bounded
by that for the model without a waiting time.

Finally, we consider the cost function against the setup rate α. We observe that
when α is small, the cost function increases with β. This suggests that if the setup
time is long, it is better to keep the idle time long. However, when the setup rate α

is large enough, we observe the cost function decreases with β. This implies that if
the setup is fast enough, it is better to keep only a short idle time so as to save power
consumption.

Figures 4, 7 and 6 show the probability of OFF state, E[N ] and the cost function
for the case of ρ = 0.1. We observe the same trends as for the case of ρ = 0.7.
Furthermore, the range of α at which the cost function of the model without waiting
time outperforms that of the model with a waiting time is larger for the case of
ρ = 0.1 in comparison with the case ρ = 0.7. This suggest that when the utilization
is low and the setup time is large enough, it is better to switched off as soon as the
server becomes idle.
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5 Concluding Remark

In this paper, we have proposed two retrial queueing models with setup time. In the
first model, the server is immediately turned off when the system becomes empty
while in the second model, the server stays idle for a while before being switched off.
We have derived explicit expressions for the partial generating functions of the joint
stationary probability of the state of the server and the number of customers in the
orbit. From the generating function, we have obtained themean number of customers
in the orbit in an explicit form. We have demonstrated some numerical examples to
show the effects of parameters on some performance measures. Models with general
distributions for service time and setup time are left for future studies. Extension of
the current model to the model with N-policy may be also another interesting topic.
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The Pseudo-fault Geo/Geo/1 Queue with Setup
Time and Multiple Working Vacation

Zhanyou Ma, Pengcheng Wang and Wuyi Yue

Abstract In this paper, we consider a discrete time Geo/Geo/1 repairable queueing
system with pseudo-fault, setup time, N -policy and multiple working vacations. We
assume that the service interruption is caused by pseudo-fault and breakdown, and
occurs onlywhen the server is busy. Using quasi birth-and-death chain, we establish a
two-dimensional Markov chain. We obtain the distribution of the steady-state queue
length by using matrix-geometric solution method. Moreover, We provide several
performance indices of the system in steady-state. Finally, we present numerical
results to illustrate the effect of several parameters on the systems.

Keywords Pseudo-fault ·Setup time ·Multipleworkingvacation·Matrix-geometric
solution

1 Introduction

The theory of discrete time queueing system has been well investigated and applied
in a variety of directions, such as computer system, computer communications and
manufacturing systems. Domestic and foreign scholars are interested in the discrete
time queueing system which is first proposed in [1]. Ndreca et al. considered a
GI/Geo/1 queueing model with priority and derived the distributions of the mean
queue length and the mean waiting time in [2].

The working vacation policy was introduced into the queueing system firstly in
[3]. Subsequently, working vacation policy was extended to discrete time queueing
system models in [4]. Furthermore, N -policy and setup time were also studied in the
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considered system. Yadin introduced N -policy into the queueing system first in [5].
A discrete-time queueing model with batch service and multiple working vacations
was studied in [6].

Actually, there is no breakdown in classical queueing system. But mechanical
failure and service interruption often occur while making a production or serving a
customer. Failure policy was first introduced into the queueing model in [7]. Subse-
quently, Kulkarni et al. extended the queueing model with failure in [8]. Kalidass et
al. analyzed an M/M/1 queueing system with unreliable server and derived steady-
state distribution and analytical expressions for the transient state probabilities of the
system length in [9].

The definition of system false fault state was presented in power systems, and
the calculating formulas of false fault indices were given in [10]. The reliability
evaluation algorithm was also proposed in order to improve the system performance.

However, the practical problems such as Internet, digital communications and
industrial manufacturing are usually full of complexity, improving the system per-
formance or increasing the stability is more important work. For this, in this paper,
we first introduce the concept of pseudo-fault into the considered queueing model to
provide theoretical basis for the analysis of network performance. Then, we present
a discrete time Geo/Geo/1 repairable queueing system with setup time, N -policy,
pseudo failures and multiple working vacations. Finally, we offer numerical results
to illustrate the parameter effect on the performance measures.

2 The Mathematical Model

In this paper, ∀x ∈ [0, 1], and let x̄ be 1 − x . We first describe a discrete time
Geo/Geo/1 repairable queueing system with pseudo-fault, setup time, N -policy and
multiple working vacations (MWV) as follows:

(1) A customer arrives at the system in (n−, n). The inter-arrival time is an inde-
pendently identically distributed (i.i.d.) sequence, which follows a geometric
distribution with parameter p (0 < p < 1), namely,

P {T = j} = p p̄ j−1, j = 1, 2, ....

(2) The starting and ending of service occur at epoch n. The service time Sb follows
a geometric distribution with parameter μb (0 < μb < 1) in a regular busy
period. The service time Sv follows a geometric distribution with parameter μv

(0 ≤ μv < 1, μv < μb) in a working vacation period, namely,

P {Sb = j} = μbμ̄
j−1
b , j = 1, 2, ...,

P {Sv = j} = μvμ̄
j−1
v , j = 1, 2, ....

(3) The starting and ending of the vacation occur in (n, n+), the vacation time V
follows a geometric distribution with parameter θ (0 < θ < 1). The beginning
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and ending of setup time occur in (n, n+), the setup time U follows a geometric
distribution with parameter β (0 < β < 1), namely,

P {V = j} = θ θ̄ j−1, j = 1, 2, ...,

P{U = j} = ββ̄ j−1, j = 1, 2, ....

(4) When the system becomes empty, the server will start a vacation. If a customer
arrives in the system during a vacation period, it will be served with the service
rate μv . When a working vacation ends and the number of the customers is
less than N (a fixed positive integer) in the queue, another vacation is taken;
otherwise, the server starts a setup period. At this time, if the server launches
successfully, the service rate will be changed from μv to μb along with vacation
end and a regular busy period beginning; if the server can not start, the server
will continue to attempt to start until the system begins a regular busy period.

We assume that the server cannot serve customers in a setup period. During a
regular busy period, if service interruptions do not appear in the queue, the server
will still work with service rateμb continuously; if the service is interrupted, the
queueing system will follow the specifical principle as the following (5).

(5) Service interruption occurs only in a regular busy period with probability q
(0 ≤ q ≤ 1,) in (n−, n). Subsequently, breakdown and pseudo-fault occur with
probabilities α (0 ≤ α ≤ 1) and ᾱ, respectively. If the pseudo-fault occurs,
a vacation period is taken. If the breakdown appears, the repair period starts
immediately.

The repair time R follows a geometric distribution with parameter γ (0 <

γ < 1). Suppose that the repair period begins in (n−, n) and the repair period
ends in (n, n+). After repair period, the server is assumed as good as new and
the server will continue to serve customers. The served time in this case is still
valid.

(6) We assume that inter-arrival times, the probability of service interruptions, repair
times, service times, setup time and vacation times are mutually independent.
And the service discipline is first in first out (FIFO).

The queueing system model which we considered in this paper can be illustrated
in Figure 1.

n

n ( 1)n

( 1)n

+( 1)n

Service interruption epoch

End of repair epoch

Start and end of vacation epoch

Potential departure epoch

n

Potential arrival epoch

Start and end of set-up epoch

Fig. 1 The schematic diagram for the model description
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3 Analysis

3.1 State Transition Probability Matrix

Let L+
n be the number of customers in the system at time n+ and Jn be the server

state at time n+. Define that

Jn =

⎧
⎪⎪⎨

⎪⎪⎩

0, the system is in a working vacation or pseudo-fault period at time n+
1, the system is in a setup period at time n+
2, the system is in a regular busy period at time n+
3, the system is in a breakdown period at time n+.

{(
L+

n , Jn
)
, n ≥ 0

}
is a discrete timeMarkov chain in this system and its state space

is given by

� = {(0, 0)} ∪ {(i, 1), i ≥ N } ∪ {(i, j), i ≥ 1, j = 0, 2, 3}.

Using the lexicographical sequence for the states, the one-step state transition prob-
ability matrix of Markov chain can be written as follows:

P =

0
1
2
...

N − 2
N − 1

N
N + 1

...

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A00 C01
B10 A0 C0

B0 A0 C0 0
. . .

. . .
. . .

B0 A0 C0
B0 A0 C1

0 B1 A C
B A C

. . .
. . .

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

where A00 = p̄, C01 = (p, 0, 0), B10 = ( p̄μv, p̄μb, 0)T, T denotes matrix trans-
pose, and

A0 =
⎛

⎝
p̄μ̄v + pμv 0 0

( p̄μ̄b + pμb)qᾱ ( p̄μ̄b + pμb)q̄ ( p̄μ̄b + pμb)qα

0 p̄γ p̄γ̄

⎞

⎠ ,

B0 =
⎛

⎝
p̄μv 0 0

p̄μbqᾱ p̄μbq̄ p̄μbqα

0 0 0

⎞

⎠ , C0 =
⎛

⎝
pμ̄v 0 0

pμ̄bqᾱ pμ̄bq̄ pμ̄bqα

0 pγ pγ̄

⎞

⎠ ,

B1 =

⎛

⎜⎜⎝

p̄μv 0 0
0 0 0

p̄μbqᾱ p̄μbq̄ p̄μbqα

0 0 0

⎞

⎟⎟⎠ , C1 =
⎛

⎝
pμ̄vθ̄ pμ̄vθ 0 0

pμ̄bqᾱ 0 pμ̄bq̄ pμ̄bqα

0 0 pγ pγ̄

⎞

⎠ ,
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A =

⎛

⎜⎜⎝

( p̄μ̄v + pμv)θ̄ ( p̄μ̄v + pμv)θ 0 0
0 p̄β̄ p̄β 0

( p̄μ̄b + pμb)qᾱ 0 ( p̄μ̄b + pμb)q̄ ( p̄μ̄b + pμb)qα

0 0 p̄γ p̄γ̄

⎞

⎟⎟⎠ ,

B =

⎛

⎜⎜⎝

p̄μvθ̄ p̄μvθ 0 0
0 0 0 0

p̄μbqᾱ 0 p̄μbq̄ p̄μbqα

0 0 0 0

⎞

⎟⎟⎠ , C =

⎛

⎜⎜⎝

pμ̄vθ̄ pμ̄vθ 0 0
0 pβ̄ pβ 0

pμ̄bqᾱ 0 pμ̄bq̄ pμ̄bqα

0 0 pγ pγ̄

⎞

⎟⎟⎠ .

3.2 The Steady-State Analysis

If Markov chain {(L+
n , Jn), n ≥ 0} is positive recurrent, let (L , J ) be the limit of

the stationary distribution of (L+
n , Jn) and its distribution is given as follows:

� = (π0,π1,π2, ...)

where π0 = π00, πi = (πi0, πi2, πi3), 1 ≤ i < N , πi = (πi0, πi1, πi2, πi3), i ≥
N , and

πi j = P {L = i, J = j} = lim
n→∞ P

{
L+

n = i, Jn = j
}
, (i, j) ∈ �.

Theorem 1. A necessary and sufficient condition for the Markov chain {(L+
n , Jn),

n ≥ 0} to be positive recurrent is that the matrix quadratic equation:

R2B + R A + C = R (2)

has a minimal non-negative solution R and the spectral radius SP(R) < 1. Also the
3N + 2 dimensional stochastic matrix

B[R] =

0
1
2
...

N − 1
N

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

A00 C01
B10 A0 C0

B0 A0 C0
. . .

. . .
. . .

B0 A0 C1
B1 A + RB

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(3)

has a left-invariant vector. When Markov chain is positive recurrent, its stationary
distribution satisfies:

⎧
⎪⎪⎨

⎪⎪⎩

πi = πN Ri−N , i ≥ N + 1
(π0,π1, ...,πN ) = (π0,π1, ...,πN ) B [R]

π0 +
N−1∑
k=1

πk e1 + πN (I − R)−1e2 = 1
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where e1 = (1, 1, 1)T, e2 = (1, 1, 1, 1)T.

The proof of Theorem 1 can be obtained by using equilibrium equation �P = �

and matrix-geometric solution method presented in [11, 12, 13].

3.3 Approximation Algorithm of Rate Matrix R

Because the matrixes A, B, C presented in this paper are relatively complex, and
therefore getting analytic expression of the rate matrix R directly becomes more
difficult, we derive the recursion expression of the rate matrix R and calculate the
numerical solution by using MATLAB as a method we usually use. From Eq. (2),
the recursion expression is derived as follows:

Rn+1 = (R2
n B + C)(I − A)−1, n = 0, 1, .... (4)

The numerical solution of rate matrix R is the output of Rn+1.

4 Performance Measures

In this section, we obtain a serial of main performance measures of the considered
queueing system in this paper. Queue indices and fault analysis indices are given as
follows:

(1) The expected waiting queue length is given by

E(Lq) =
∞∑

i=1

3∑

j=0

(i − 1)πi j . (5)

(2) The breakdown probability is indicated by Pq1, namely

Pq1 = P {L ≥ 1, j = 3} =
∞∑

i=1

πi3. (6)

(3) The pseudo-fault probability is denoted by Pq2, namely

Pq2 = ᾱPq1/α = (1/α − 1)
∞∑

i=1

πi3. (7)

5 Numerical Results

In this section, we provide numerical results to describe the effect of parameters on
performance measures. Specifically, Figures 2 and 3 show the curves of the different
parameters and system indices by taking q = 0.4, γ = 0.6, θ = 0.8 as an example.
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Fig. 2 Relation of E(Lq ) with μb

Figure 2 illustrates the effect of the waiting queue length E(Lq) with μb and β

when p = 0.3, μv = 0.2, α = 0.7, N = 15. If β is a constant, E(Lq) decreases
with the increasing value ofμb. This is mainly because the service time reduces with
the increase of the service rate μb, E(Lq) turns small. When μb is fixed, E(Lq)

decreases with the increase of β. That is mainly because the larger the probability β

is, the more the busy period becomes, therefore, E(Lq) decreases.
Figure 3 shows the change of the probability of pseudo-fault period Pq2 with the

arrival rate p and breakdown rate α when μv = 0.2, μb = β = 0.7, N = 15. When
α is fixed, Pq2 increases with the increasing value of p. This is mainly because the
probability of the regular busy period turns large with the increase of arrival rate p,
and then the probability of pseudo-fault period Pq2 increases. When p is fixed, Pq2
decreases with the increasing value of α.

Fig. 3 Relation of Pq2 with p and α
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6 Conclusions

According to the analysis in this paper, we can draw a convincible conclusion:
pseudo-fault really exists in the queue and it cannot be ignored in studying prac-
tical problem. Furthermore, the size of the impact of pseudo-fault and breakdown on
system depends on the relative parameters such asμv , p and α, and so on. Therefore,
we should take the corresponding solution for solving service interruption which is
caused by different factors. For example, when the pseudo fault is dominant in ser-
vice interruption, we should relax restrictions of the system or replacemore advanced
equipment. When the breakdown is prior, we should improve repair rate. As a result,
how to cope with service interruption which is caused by different factors will play
an important role in many aspects.
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Analysis of an M/M/1 Retrial Queue
with Speed Scaling

Tuan Phung-Duc and Wouter Rogiest

Abstract Recently, queues with speed scaling have received considerable attention
due to their applicability to data centers, enabling a better balance between perfor-
mance and energy consumption. This paper proposes a new model where blocked
customers must leave the service area and retry after a random time, with retrial rate
either varying proportionally to the number of retrying customers (linear retrial rate)
or non-varying (constant retrial rate). For both, we study the case without and with
setup time. In all four cases, we obtain an exact solution for the stationary queue
length distribution. This document presents the resulting expressions as well as their
derivation.

Keywords Data center · Energy efficiency · Speed scaling · Setup time · Retrial
queue

1 Introduction

In current large-scale data centers, thousands of parallel servers are responsible for the
processing of incoming jobs. While system performance is still measured by means
of traditional measures like job latency, the overall energy consumption is a second
important consideration. According to [4], data centers constitute about 40 % of the
global ICT electricity consumption in 2012, or approximately 107 TWh. Concretely,
amodern system needsmechanisms to handle the trade-off between performance and
energy consumption [3].
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Inresponse to this, speedscalinghasbeendeveloped[6, 7, 15], slowingdownserver
speed when the number of customers is low, and speeding up, in the converse case.
As argued first in [7] (and later in [15]), this enables a better balance between perfor-
mance and energy consumption. This is also argued in [19] in the context of data cen-
ters, and can be intuitively understood as follows.Assume that the speed of the system
can be tuned by tuning the service rate (“speed scaling”). While power consumption
rises more than proportionally with service rate (e.g., with the former approximately
equal to the square of the latter [7]), this does not hold true for the mean number of
customers in system. Specifically, the latter is approximately proportional to themean
service time (inverse of the service rate) in case of (very) low traffic load (with low
arrival rate). Opposed to this, in case of high traffic load, speeding up can have amuch
larger than proportional impact on the number of customers in system, while the rela-
tion between service rate and power consumption remains the same. In other words,
the added value per additional unit of power is higher when traffic load is high than
when traffic load is low, creating a trade-off. In this sense, it is useful to work at lower
speed when traffic load is low, and at higher speed in the converse case.

To the best of our knowledge, the first queueing model to address (a form of)
speed scaling is [5], presenting the analysis of a single-server system with Poisson
arrivals and a service rate that depends on the number of customers n according to a
formula μn = ncμ1, where μ1 is a model parameter describing the service rate for
a customer arriving at an idle system. An important recent contribution with speed
scaling is [15], which features the concept of switching delay discussed also below.

While [5, 15] study a classic model without retrials, some retrial queues have
been studied which also relate to the current work. Specifically, while [14] does
not discuss speed scaling as such, it presents a generic study of the broad class of
retrial queues with state-dependent rates, sharing many of the assumptions of this
contribution. However, it is important to note that, on the one hand, [14] does not
include any of the expressions derived below, and that, on the other hand, the concept
of a setup time is not treated in [14], whereas it plays a key role in this contribution.
Specifically, Sect. 4 and 5 below are devoted tomodelswith a setup time, an important
and realistic model extension defined below, studied earlier in e.g. [1, 10, 11, 12,
13, 16, 17, 18]. Further, the mentioned switching delay of [15] is identical to the
setup time as defined in this work. Summarizing, speed scaling has already been
considered in settings with setup times, and also indirectly in settings with retrial
queues, but never in the combination of both. Since both phenomena are found in
realistic data centers, it is useful to quantify their impact by means of the formulas
derived in this contribution.

This paper is organized as follows. In Sect. 2 and 3, a speed scaling model without
setup time is considered, either with classical linear retrial rate (Sect. 2) or with
constant retrial rate (Sect. 3). In Sect. 4 and 5, the speed scaling model extension
with finite setup time is considered, againwith either linear (Sect. 4) or constant (Sect.
5) retrial rate. Sect. 6 presents a note on practical implementation. Conclusions are
drawn in Sect. 7.
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2 Linear Retrial Rate Model

2.1 Assumptions

We consider a single server retrial queueing system where blocked customers leave
the server and retry after independent and identically distributed (iid) retrial times.
Retrials take place at rate nν, where n is the number of customers in orbit: A so-called
linear retrial rate model. Further, as is common in retrial queue terminology, see e.g.
[1, 8], during consecutive retrials, the customer is said to be in the orbit. However,
different from a classical retrial queue, speed scaling takes place: The service rate
of the server is linear to the total number of customers in the system. In particular, if
there are n customers in the orbit the customer in the server (if any) is served at rate
(n + 1)μ. Customers arrive at the system according to a Poisson process with rate λ.

2.2 Analysis

In this section, we present a recursive scheme to calculate the joint stationary dis-
tribution. Let C(t) and N (t) denote the number of active servers and the number of
customers in the orbit, respectively. It is easy to see that {X (t) = (C(t), N (t)); t ≥ 0}
forms a Markov chain on the state space:

S = {(i, j); i = 0, 1, j ∈ Z+}.

Let πi, j = limt→∞ P(C(t) = i, N (t) = j) ((i, j) ∈ S) denote the joint stationary
distribution of {X (t)}.

In this section,we derive a recursion for calculating the joint stationary distribution
πi, j ((i, j) ∈ S). The balance equations for states with i = 0 read as follows.

(λ + nν)π0,n = (n + 1)μπ1,n, n ∈ Z+, (1)

(λ + (n + 1)μ)π1,n = λπ0,n + λπ1,n−1 + (n + 1)νπ0,n+1, n ∈ Z+, (2)

where Z+ denotes {1, 2, . . .}. Using the notation of (5), we obtain the following
system of equations for the partial generating functions Π0(z) and Π1(z).

λΠ0(z) + νzΠ ′
0(z) = μzΠ ′

1(z) + μΠ1(z), (3)

λΠ1(z) + μzΠ ′
1(z) + μΠ1(z) = λΠ0(z) + λzΠ1(z) + νΠ ′

0(z). (4)

Adding these two equations yields νΠ ′
0(z) = λΠ1(z). Substituting Π1(z) into the

first equation we obtain

zΠ ′′
0 (z) + λ

μ

(μ

λ
− z

)
Π ′

0(z) − λ2

μν
Π0(z) = 0.

Coining the notation p(x) = Π0(μx/λ) = Π0(x/ρ) (ρ = λ/μ), we obtain the
following equation.
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xp′′(x) + (1 − x) p′(x) − λ

ν
p(x) = 0.

This is the confluent hypergeometric differential equation whose solution is a con-
fluent hypergeometric function, a special case of the hypergeometric function also
encountered in the analysis of some retrial queue models without speed scaling,
such as the one studied in [2]. The solution for this equation is given by following
expression.

p(x) = π0,0M(a, b, x) = π0,0

∞∑

n=0

a(n)xn

b(n)n! ,

where

a = λ

ν
, b = 1,

and
a(0) = 1, a(n) = a(a + 1) · · · (a + n − 1), n ≥ 1,

where M(a, b, x) denotes the confluent hypergeometric function. We then have

Π0(z) = π0,0 p(λz/μ) = π0,0

∞∑

n=0

a(n)(λz/μ)n

b(n)n! = π0,0

∞∑

n=0

a(n)(λz/μ)n

n!2 ,

where we used b(n) = n! in the second equality. Thus,

π0,n = π0,0
a(n)ρ

n

b(n)n! = π0,0
a(n)

n!2
(

λ

μ

)n

.

Furthermore, we have

Π1(z) = ν

λ
Π ′

0(z) = π0,0
λ

μ
M(a + 1, b + 1, λz/μ),

where we have used

M ′(a, b, x) = a

b
M(a + 1, b + 1, x).

Formally, the unknown numberπ0,0 is determined using the normalization condition:

Π0(1) + Π1(1) = 1.

yielding
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π0,0 =
(

M(a, b, λ/μ) + λ

μ
M(a + 1, b + 1, λ/μ)

)−1

.

Although this is an explicit expression forπ0,0, it still contains the confluent hyperge-
ometric function, and thus, indirectly, infinite sums. This however poses no problem
for the numerical calculation of π0,0, since most scientific software packages are
able to handle confluent hypergeometric functions directly.

3 Constant Retrial Rate Model

3.1 Assumptions

We consider a single server retrial queueing system where blocked customers leave
the server and retry at a later time. As in the previous section, the retrial times are
iid random variables. However, different from the previous section, the retrial rate
is independent of the number of customers in the orbit and is given by ν(1 − δ0,n)

provided that there are n customers present in the orbit. Here, δm,n denotes the
Kronecker delta, which returns 1 if m = n, and 0 otherwise. Again, speed scaling
takes place: Service rate of the server is proportional to the total number of customers
in the system. Just like in the linear retrial rate case studied in the previous section,
if there are n customers in the orbit the customer in the server (if any) is served at
rate (n + 1)μ. Customers arrive at the system according to a Poisson process with
rate λ.

3.2 Analysis

In this section, we present a recursive scheme to calculate the joint stationary dis-
tribution. Let C(t) and N (t) denote the number of active servers and the number of
customers in the orbit, respectively. It is easy to see that {X (t) = (C(t), N (t)); t ≥ 0}
forms a Markov chain on the state space:

S = {(i, j); i = 0, 1, j ∈ Z+}.

Let πi, j = limt→∞ P(C(t) = i, N (t) = j) ((i, j) ∈ S) denote the joint stationary
distribution of {X (t)}.

In this section,we derive a recursion for calculating the joint stationary distribution
πi, j ((i, j) ∈ S). The balance equations for states with i = 0 read as follows.

(λ + ν(1 − δ0,n)))π0,n = (n + 1)μπ1,n, n ∈ Z+,

(λ + (n + 1)μ)π1,n = λπ0,n + λπ1,n−1 + νπ0,n+1, n ∈ Z+.

We define partial generating functions as follows.
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Π0(z) =
∞∑

n=0

π0,nzn, Π1(z) =
∞∑

n=0

π1,nzn . (5)

We obtain the following system of equations for generating functions.

λΠ0(z) + ν(Π ′
0(z) − π0,0) = μzΠ ′

1(z) + μΠ1(z), (6)

λΠ1(z) + μzΠ ′
1(z) + μΠ1(z) = λΠ0(z) + λzΠ1(z) + ν

z
(Π0(z) − π0,0). (7)

Summing up these two equations yields

λΠ1(z) = ν(Π0(z) − π0,0)

z

or

zΠ1(z) = ν(Π0(z) − π0,0)

λ
.

Taking the first derivative of the latter equation with respect to z and substituting the
result in the right-hand side of (6) yields

λΠ0(z) + ν(Π0(z) − π0,0) = μν

λ
Π ′

0(z)

or

Π ′
0(z) = λ(λ + ν)

μν
Π0(z) − λ

μ
π0,0.

Solving this equation we obtain

Π0(z) = π0,0

[
λ

λ + ν
exp(γ z) + ν

λ + ν

]
,

where we coined the notation

γ = λ(λ + ν)

μν
.

We also find that

Π1(z) = ν

λ + ν

exp(γ z) − 1

z
π0,0.

From the normalization condition,

Π0(1) + Π1(1) = 1,

we find that π0,0 = exp(−γ ).
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4 Linear Retrial Rate Model with Setup Time

In this section, we consider an extension of the model studied in Sect. 2, introducing
the notion of a setup time. As is the case in many realistic systems, upon turning idle
(i.e., empty server and empty orbit), the system may go into sleep mode (or hyberna-
tion mode) to save energy, returning to active mode when triggered by the arrival of
a new customer. Moving from idle to active mode may happen instantaneously (as in
the models of Sect. 2 and 3) or the system may be in setup mode during a finite time
called the setup time. In this section and the following, we assume finite iid setup
times with exponential distribution with parameter α. Further, we assume that the
first customer in the busy period immediately goes to the server without joining the
orbit. Arriving customers who find the server occupied (either setting up or actually
serving) join the orbit and repeat their attempt after some random time. Below, the
terms “busy” and “active” are interchangeable, as well as “idle” and “sleeping”.

Let C(t) denote the state of the server and N (t) denote the number of customers
in the orbit at time t .

C(t) =
⎧
⎨

⎩

0, the server is idle,
1, the server is busy,
2, the server is in setup mode.

Here, {X (t) = (C(t), N (t)); t ≥ 0} forms a Markov chain on the state space

S = {(i, j); i ∈ {0, 1, 2}, j ∈ Z+},

where C(t) = 0, 1, 2 implies that the server is idle, busy or in setup mode, respec-
tively. It is easy to see that the system is always stable due to the speed scaling. Let
πi, j = limt→∞ P(C(t) = i, N (t) = j . Our goal is to explicitly express all πi, j in
terms of π0,0 which is uniquely determined using the normalization condition.

More specially, let (0,0) denote the state corresponding to sleep mode (with thus
an idle server), while (0, j) ( j ≥ 1) denotes states for which the server is idle while
there are j customers in the orbit. Further, the states (1, j) ( j ≥ 1) correspond to
a server busy serving a customer with j customers present in the orbit. Finally, the
states (2, j) ( j ≥ 1) correspond to one customer awaiting setup in the server with j
customers present in the orbit. The balance equation for an idle server reads

(λ + nν)π0,n = (n + 1)μπ1,n,

which is identical to (1), the balance equation without setup time. As a result, the
relation between the partial generating functions Π0(z) and Π1(z) (defined by (5))
also holds true here. Opposed to this, the balance equations for a busy server, with
states (1, j), explicitly involve the setup parameter α, as follows.

(λ + μ)π1,0 = νπ0,1 + απ2,0, (8)

(λ + (n + 1)μ)π1,n = λπ0,n + λπ1,n−1 + (n + 1)νπ0,n+1 + απ2,n . (9)
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Introducing the generating function Π2(z) = ∑∞
j=0 π2, j z j , we then have

λΠ1(z) + μΠ1(z) + μzΠ ′
1(z) = λ(Π0(z) − π0,0) + λzΠ1(z) + νΠ ′

0(z) + αΠ2(z).

The balance equations for a server setting up, with states (2, j) are given by

(λ + α)π2,0 = λπ0,0, (10)

(λ + α)π2, j = λπ2, j−1, j = 1, 2 . . . , (11)

leading to

(λ + α)Π2(z) = λzΠ2(z) + λπ0,0 ⇐⇒ Π2(z) = λπ0,0

λ + α − λz
.

Taking the balance of flows in and out the orbit yields

λ(Π1(z) + Π2(z)) = νΠ ′
0(z).

Multiplying both sides by z and taking the derivative of both sides yields

λ[(zΠ1(z))
′ + (zΠ2(z))

′] = νzΠ ′′
0 (z) + νΠ ′

0(z).

Substituting (zΠ1(z))′ in terms of Π0(z) we find the following differential equation.

λ
λΠ0(z) + νzΠ ′

0(z)

μ
+ λ(zΠ2(z))

′ = νzΠ ′′
0 (z) + νΠ ′

0(z).

Reworking this equation, we obtain

zΠ ′′
0 (z) + (1 − λ

μ
z)Π ′

0(z) − λ2

μν
Π0(z) = λ

ν
(zΠ2(z))

′,

where

Π2(z) = λπ0,0

λ + α − λz
.

This is a non-homogeneous confluent differential equation and its explicit solution
seems difficult. But we can solve it by power expansion method.

In particular, substituting Π0(z) = ∑∞
j=0 π0, j z j into the left hand side of the

differential equation we obtain

∞∑

j=0

[
( j + 1)2π0, j+1 − λ

μ

(
j + λ

ν

)
π0, j

]
z j = λ2π0,0

ν(λ + α)

∞∑

j=0

( j+1)

(
λ

λ + α

) j

z j ,
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where we have used

Π2(z) = λπ0,0

λ + α

⎛

⎝
∞∑

j=0

λz

λ + α

⎞

⎠
j

, (12)

and thus

(zΠ2(z))
′ = λπ0,0

λ + α

∞∑

j=0

(
λ

λ + α

) j

( j + 1)z j .

Comparing the coefficients of z0 in both sides yields,

π0,1 = λ2(λ + μ + α)

μν(λ + α)
π0,0.

Assuming that π0, j = β jπ0,0 ( j ∈ Z+), it follows from the comparison between the
coefficients of z j that

( j + 1)2β j+1 − λ

μ

(
j + λ

ν

)
β j = λ2

ν(λ + α)
( j + 1)

(
λ

λ + α

) j

,

= λ

ν
( j + 1)

(
λ

λ + α

) j+1

where β0 = 1. This equation leads to

β j+1 = λ

μ

( j + λ/ν)

( j + 1)2
β j + λ

ν

(λ/(λ + α)) j+1

j + 1
,

where β0 = 1. This equation allows to calculate π0, j in terms of π0,0 for any j .
Thus, using (1), we can also calculate π1, j in terms of π0,0 for any j . Determining
π0,0 can be done by means of the recursion explained below in Sect. 6.

5 Constant Retrial Rate Model with Setup Time

In this section, we extend the model of Sect. 3 with the notion of a setup time, an iid
random variable with exponential distribution with parameter α. Further, the state
space is the same as in the previous section. Finally,while the steady-state distribution
is obviously different,weuse the samenotation as in the previous section. Thebalance
equations are as follows.

λπ0,0 = μπ1,0,

(λ + ν)π0,n = (n + 1)μπ1,n, n ≥ 1.

Transforming this equation to z-domain yields,
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(λ + ν)Π0(z) − νπ0,0 = μ(zΠ ′
1(z) + Π1(z))

Balance of flows in and out the orbit yields

λ(Π1(z) + Π2(z)) = ν

z
(Π0(z) − π0,0). (13)

Multiplying both sides by z and taking the derivative of both sides arranging the
result yields

Π ′
0(z) = λ(λ + ν)

μν
Π0(z) − λ

μ
π0,0 + λ

ν
(zΠ2(z))

′,

= γΠ0(z) + π0,0Q(z), (14)

where

Q(z) = − λ

μ
+ λ

ν

(
λz

λ + α − λz

)′
, γ = λ(λ + ν)

μν
.

It should be noted that we have used

Π2(z) = λπ0,0

λ + α − λz
.

The solution of the differential equation (14) has the form:

Π0(z) = π0,0 exp(γ z)

(
1 +

∫ z

0
exp(−γ u)Q(u)du

)
.

Hence, formally, we have Π0(1) = κ0π0,0 where

κ0 = exp(γ )

(
1 +

∫ 1

0
exp(−γ u)Q(u)du

)
.

From (13), we also have Π1(1) + Π2(1) = κ1π0,0 where

κ1 = ν

λ
(κ0 − 1).

From the normalization condition

Π0(1) + Π1(1) + Π2(1) = 1,

we can obtain

π0,0 = 1

κ0 + κ1
.
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We can obtain κ0 (and thus, also κ1 and π0,0) using numerical integration which is
readily available in almost all scientific software packages. Furthermore, π0,0 can
also be obtained directly by means of the recursion explained next.

6 Recursive Approach

From theoretical point of view, the results in the previous two sections are nice since
they are related to some well-known differential equation. However, from practical
point of view, it is more convenient to evaluate the stationary probabilities via some
simple recursion.

Practically, the approach for the model of Sect. 4 is as follows. In a first step,
we set π0,0 = 1. In a second step, we can calculate π2,0 and then π1,0. Using these
results, we can calculate π0,1 using the balance equation in and out the orbit, i.e.,

(n + 1)νπ0,n+1 = λ(π1,n + π2,n).

The probability π2,n+1 is easily calculated in terms of π0,0 for any n using (10) and
(11).

So, we can again use the following balance equation in order to determine π1,n+1.

(λ + (n + 1)ν)π0,n+1 = (n + 2)μπ1,n+1.

The step from n to n + 1 is taken in the same manner. As a result, we can calculate
relative values of the πi,n (i = 0, 1, 2) for any value of n up to a certain value n = N0
characterizing the accuracy (the larger the more accurate), and then normalize the
result by ensuring that the sum of the obtained probabilities is 1.

A similar procedure can be applied for the models of Sect. 2, 3 and 5. As a result,
we can calculate any desired performance measure with high accuracy, by setting
N0 sufficiently high.

7 Conclusions

In this contribution, we studied an M/M/1 retrial queue model with speed scaling.
The analysis yielded an exact solution for the steady-state queue length distribution,
and this for four different cases: two without setup times (either linear or constant
retrial rate), and two with setup times (again, linear or constant retrial rate).

With these results available, future work is to study the trade-off between perfor-
mance and energy consumption, inherent to speed scaling systems. Here, a first route
is by means of the existing cost function used in [7, 15]; however, this may ideally
be contrasted with alternative formulations of the mentioned trade-off.
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Mathematical Model and Performance
Evaluation of AMI Applied to Mobile
Environment

Shunsuke Matsuzawa, Satoru Harada, Kazuya Monden, Yukihiro Takatani
and Yutaka Takahashi

Abstract Advanced Metering Infrastructure (AMI) will play an important role in
order to realize the vision of a smart grid. An integral part of AMI is a set of smart
meters, which measure and transmit power consumption data periodically with fixed
intervals. If the bandwidth allocated toAMI ismuchmore than the capacity necessary
for collecting power consumption data, the remaining part of the bandwidth can be
used for other types of communication. In this paper, we propose a mathematical
model and evaluate the communication performance of AMI taking into account the
variable number of smart meters, caused by the turn on/off of meters and mobility
of meters across the AMI network coverage. We construct a discrete time Markov
chain whose states are defined by the numbers of on-state meters and request-holding
meters, deriving some performance measures.

Keywords AMI · Mobile environment · Random access · Markov chain

1 Introduction

For the purpose of realization of a smart grid, Advanced Metering Infrastructure
(AMI) has been attracting considerable attention. An integral part of AMI is a set of
smart meters. Smart meters measure and transmit power consumption data. Monitor-
ing power demand is useful for setting more flexible electricity bill, power demand
control, and peak shift [1]. In addition to collection of power consumption data,
smart meters can be used for other types of communication such as gas and water
consumption, demand response for electricity, and inquiries to electric companies [2].
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Although meter reading operations have been regarded as difficult due to augment-
ing concern about preserving security, smart meters may resolve the problem [3].
Live information of residents can be inferred from collected data, which is helpful in
elderly support services. In order to put AMI into practice, however, it is necessary
to reduce communication and electricity costs [4].

Wireless multihop networks will be mainly adopted for AMI from the perspective
of communication costs and scalability. Smart meters autonomously compose wire-
less multihop networks, which enables communication with gateways even if radio
waves do not reach directly [5]. Besides, smart meters can select another path when
a part of a network is damaged.

Power consumption data is collected periodically with fixed intervals called check
cycles. If the bandwidth allocated for AMI is much more than the capacity necessary
for collecting power consumption data, the remaining part of the bandwidth can be
used for other types of communication such as gas and water consumption, demand
response for electricity, and inquiries to electric companies. A hybrid protocol [6, 7,
8]will be used inAMI to integrate collection of power consumption data and irregular
data communication in the same network. For instance, we can apply a polling
protocol to periodical data collection and a random access protocol to infrequent or
occasional data communication. Smart meters are polled sequentially one by one for
their regular transmission in a polling mode, while each smart meter transmits data
autonomously in a random access mode, as a result, the transmission may fail.

We assume that the bandwidth allocated for a random access mode is divided into
time slots and that the length of time slots is determined by the maximum number
of hops within the network. A large number of studies have been made on random
access protocols based on slotted ALOHA [9, 10, 11].

Apreviouswork [12] assesses schedulingmethods to integrate polling and random
access protocols in the same bandwidth. However, there has been no study that takes
into account variable numbers of smart meters within the AMI network, called on-
state meters. The variability is caused by the turn on/off of meters, and mobility of
meters across the AMI network coverage.

In this paper, we evaluate the communication performance of AMI in terms of per-
formance measures such as throughput, the probability of successful transmissions,
and transmission delay. Firstly, we construct a discrete time Markov chain whose
states are defined by the numbers of on-state meters and request-holding meters.
Secondly, we derive the stationary state distribution and throughput. Finally, we
derive the probability of successful transmissions and transmission delay by using
Laplace-Stieltjes transform of the probability distribution function.

This paper is organized as follows. Section 2 presents a mathematical model of
AMI. InSection3,wederiveperformancemeasures.Section4showsnumericalexam-
ples of these performance measures. Finally, we conclude the paper in Section 5.
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2 Mathematical Model

We describe a mathematical model of AMI in this section. There are NRA smart
meters in the AMI network. Let T denote the length of a check cycle, that is, power
consumption data is collected with intervals of T . We then decompose T into T =
TP + TRA, where TP (resp., TRA) denotes the length of a polling mode (resp., random
access mode). We also define a period between the beginning of a random access
mode and the end of the next polling mode as a frame.

Check cycle

time

Random access modePolling mode

P RA

time

Fig. 1 Communication schedule for AMI

In a random access mode, smart meters decide autonomously when to start their
transmission. Smart meters holding transmission attempts randomly and indepen-
dently choose time slots and try to transmit data. If a time slot is chosen by two
or more smart meters, the transmissions in the time slot fail. Smart meters which
failed in their transmissions wait until the next random access mode begins. Let
tRA and L denote the length of a time slot and the number of time slots for a ran-
dom access mode, respectively. We then have TRA = LtRA. Moreover, tRA satisfies
tRA = HmaxtH, where Hmax and tH denote the maximum number of hops in the
network and time necessary for one hop, respectively.

We assume that smart meters are either in on-state or off-state and that the states
may change immediately after a random access mode begins.We call on-state meters
which have (resp., do not have) transmission attempts request-holding meters (resp.,
non-request meters). The number of frames until an on-state meter (resp., an off-state
meter) changes its state into off-state (resp., on-state) follows a geometric distribu-
tion with a parameter a (resp., b). Non-request meters can generate transmission
attempts with probability λ immediately before a random access mode starts, while
the requests are canceled when their states change into off-state.
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3 Analysis

In this section, we construct a discrete time Markov chain whose states are defined
by the numbers of on-state meters and request-holding meters at the beginning of
random access modes. We then derive the stationary state distribution and obtain
some performance measures.

3.1 Construction of Markov Chain

Let N (n)
ON (resp., N (n)

RQ) denote the number of on-state meters (resp., request-holding
meters) at the beginning of nth random access mode starts. From the assumptions
for the model, {(N (n)

ON, N (n)
RQ)} is a discrete time Markov chain with finite state space

S1, where

S1 = {(i, k)|i ∈ {0, 1, 2, . . . , NRA}, k ∈ {0, 1, 2, . . . , i}}.

Note here that this Markov chain is irreducible and aperiodic. Therefore, we have
the unique stationary state distribution vector π := (πk(i))(i,k)∈S21 . By definition, π
is given by

π P = π ,

NRA∑

i=0

i∑

k=0

πk(i) = 1,

where P denotes the transition probabilitymatrix of theMarkov chain {(N (n)
ON, N (n)

RQ)}
and is derived in the following.

Let us now define the transition probability as follows,

pk,l (i, j) := Pr(N (n+1)
ON = j, N (n+1)

RQ = l | N (n)
ON = i, N (n)

RQ = k), (i, k) × ( j, l) ∈ S
2
1.

We assume that i1 request-holding meters and i2 non-request meters change their
states into off-state immediately after the random access mode begins, and then j +
i1+i2−i off-statemeters change their states into on-state. Further, l−k1 transmission
attempts are generated if k1 request-holding meters fail in their transmissions. Thus,
we have

pk,l(i, j) =
k∑

i1=0

i−k∑

i2=max(0,i− j−i1)

min(l,k−i1)∑

k1=0

SOFF(k, i1)SOFF(i − k, i2)

· SON(NRA − i, j + i1 + i2 − i)qk−i1,k1 Bl−k1( j − k1),

where SOFF(i, j) (resp., SON(i, j)) denotes the probability of j out of i on-state
meters (resp., off-state meters) changing their states into off-state (resp., on-state)and
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where Bk(i) is the probability of transmission attempts being generated in k out of
i non-request meters. These are obtained as follows.

SOFF(i, j) =
⎧
⎨

⎩

(
i

j

)
a j (1 − a)i− j , 0 ≤ j ≤ i,

0, otherwise,

SON(i, j) =
⎧
⎨

⎩

(
i

j

)
b j (1 − b)i− j , 0 ≤ j ≤ i,

0, otherwise,

Bk(i) =
⎧
⎨

⎩

(
i

k

)
λk(1 − λ)i−k, 0 ≤ k ≤ i,

0, otherwise.

Besides, qk,l denotes the probability of k − l out of k request-holding meters suc-
ceeding in their transmissions. See Appendix A for the derivation of qk,l .

3.2 Throughput

We define throughput, θ , as the number of successful transmissions per a time slot
in a random access mode. The mean number of successful transmissions is given by

NRA∑

i=0

i∑

k=0

k∑

i1=0

k−i1∑

k1=0

πk(i)SOFF(k, i1)qk−i1,k1 · (k − i1 − k1).

Therefore, We have

θ = 1

L

NRA∑

i=0

i∑

k=0

k∑

i1=0

k−i1∑

k1=0

πk(i)SOFF(k, i1)qk−i1,k1 · (k − i1 − k1).

3.3 Probability of Successful Transmissions and
Transmission Delay

In this subsection, we consider the probability of successful transmissions and trans-
mission delay. Transmission delay is defined as time from when a transmission
attempt is generated until when its transmission is completed successfully.

Let (NON, NRQ) denote the state at the beginning of a random access mode imme-
diately after a tagged transmission attempt is generated and αk(i) denote the prob-
ability of (NON, NRQ) = (i, k). Further, we define D and G as the transmission
delay of the transmission and the event of the request being successfully transmitted,
respectively. We also define a distribution function denoted by
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F (i,k)(t) = Pr(D ≤ t,G | (NON, NRQ) = (i, k)), (i, k) ∈ S2,

where

S2 = {(i, k)|i ∈ {1, 2, . . . , NRA}, k ∈ {1, 2, . . . , i}}.

Let F (i,k)∗(s) denote the Laplace-Stieltjes transform (LST) of F (i,k)(t). The prob-
ability of successful transmissions, Ps, is then given by Ps = αF∗(0), where
α := (αk(i))(i,k)∈S2 is a column vector, and F∗(s) := (F (i,k)∗(s))(i,k)∈S2 is a row
vector. Similarly, we have

E[D | G] = − 1

Ps
αF∗′(0), E

[
D2 | G

]
= 1

Ps
αF∗′′(0).

Moreover, the variance of transmission delay is given by

Var[D | G] = E[D2 | G] − (E[D | G])2 .

Wenowderiveαk(i). Themean number of transmission attempts generated imme-
diately before a random access mode starts is given by

NRA∑

j2=1

j2∑

l2=1

NRA∑

j1=0

j1∑

l1=0

l1∑

i1=0

j1−l1∑

i2=max(0, j1− j2−i1)

min(l2,l1−i1)∑

k1=0

πl1( j1)SOFF(l1, i1)

· SOFF( j1 − l1, i2)SON(NRA − j1, j2 + i1 + i2 − j1)

· ql1−i1,k1 Bl2−k1( j2 − k1) · (l2 − k1), (1)

where j1 (resp., l1) denotes the number of on-state meters (resp., request-holding
meters) at the beginning of a random access mode and where j2 (resp., l2) denotes
the number of on-state meters (resp., request-holding meters) at the beginning of the
next random access mode. Suppose j2 = i and l2 = k in (1), we have

NRA∑

j1=0

j1∑

l1=0

l1∑

i1=0

j1−l1∑

i2=max(0, j1− j2−i1)

min(k,l1−i1)∑

k1=0

πl1( j1)SOFF(l1, i1)SOFF( j1 − l1, i2)

· SON(NRA − j1, i + i1 + i2 − j1)ql1−i1,k1 Bk−k1( j2 − k1) · (k − k1). (2)

As a result, αk(i) can be derived by dividing (2) by (1).
We next derive F (i,k)∗(s) and its derivatives. Suppose that the transmission of the

tagged transmission attempt is successful during the random access mode immedi-
ately after its generation, then let d (0 ≤ d ≤ TRA) denote a random variable of
transmission delay. From the assumption for our model, d follows a discrete uniform
distribution with tRA, 2tRA . . . , LtRA. Let d∗(s) denote the LST of the distribution
function of d, we then have
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d∗′(0) = −E[d] = − 1

L

L∑

m=1

mtRA = − L + 1

2
tRA,

d∗′′(0) = E
[
d2

]
= 1

L

L∑

m=1

m2t2RA = (L + 1)(2L + 1)

6
t2RA.

In the case of (NON, NRQ) = (i, 1), i ∈ {1, 2, . . . , NRA}, the request-holding
meter succeeds in its transmission if its state remains on-state, so F (i,1)∗(s) = (1 −
a)d∗(s). Thus, we have

F (i,1)∗(0) = 1 − a,

F (i,1)∗′(0) = −(1 − a) · L + 1

2
tRA,

F (i,1)∗′′(0) = (1 − a) · (L + 1)(2L + 1)

6
t2RA.

We next consider the case of (NON, NRQ) = (i, k) ∈ S3, where

S3 = {(i, k) | i ∈ {2, 3, . . . , NRA}, k ∈ {2, 3, . . . , i}}.

We define rk(i) as the probability that the tagged transmission attempt is successful
during the random access mode. We also define r̃k,l(i, j) as the probability that the
transmission fails and that the next state of the Markov chain is ( j, l). It is necessary
for a request-holding meter which failed in its transmission to wait for another T .
Therefore, we have the following equation for (i, k) ∈ S3.

F (i,k)∗(s) = rk(i)d
∗(s) + exp{−sT }

NRA∑

j=2

j∑

l=2

r̃k,l(i, j)F ( j,l)∗(s). (3)

Here, rk(i) is given by

rk(i) =

⎧
⎪⎨

⎪⎩

(1 − a)ak−1, L = 1,

(1 − a)

k−1∑

i1=0

SOFF(k, i1)

(
L − 1

L

)k−i1−1

, L ≥ 2.

Further, we have

r̃k,l(i, j) = (1 − a)

k−1∑

i1=0

i−k∑

i2=0

k−i1−1∑

k1=1

k−i1−1−k1∑

k2=0

SOFF(k − 1, i1)SOFF(i − k, i2)

· SON(NRA − i, j + i1 + i2 − i) · L
(k−i1−1

k1

)
g(L−1)

k−i1−1−k1,k2

Lk−i1

· Bl−1−k1−k2( j − 1 − k1 − k2),
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where g(L)
k,l denotes the number of combinations in which l out of k request-holding

meters fail in their transmissions in L time slots. See Appendix A for the derivation
of g(L)

k,l . We then rewrite (3) as

F̂
∗
(s) = d∗(s)r + exp{−sT }R̃ F̂

∗
(s), (4)

where

F̂
∗
(s) := (F (i,k)∗(s))(i,k)∈S3 , r := (rk(i))(i,k)∈S3 , R̃ := (r̃k,l(i, j))(i,k)×( j,l)∈S23 .

Since exp{−sT }R̃ is an inferior probability matrix and irreducible, F̂
∗
(s) is given

by

F̂
∗
(s) = d∗(s)

(
I − exp{−sT }R̃

)−1
r.

Thus, we have

F̂
∗
(0) = d∗(0)

(
I − R̃

)−1
r.

We differentiate the both sides of (4) with respect to s, which results in

F̂
∗′(s) = d∗′(s)r + exp{−sT }R̃

(
F̂

∗′(s) − T F̂
∗
(s)

)
. (5)

Differentiating the above equation yields

F̂
∗′′(s) = d∗′′(s)r + exp{−sT }R̃

(
F̂

∗′′(s) − T F̂
∗′(s)

)

−T exp{−sT }R̃
(

F̂
∗′(s) − T F̂

∗
(s)

)
. (6)

From (5) and (6), we have the following equations.

F̂
∗′(s) =

(
I − exp{−sT }R̃

)−1 (
d∗′(s)r − T exp{−sT }R̃ F̂

∗
(s)

)
,

F̂
∗′′(s) =

(
I − exp{−sT }R̃

)−1

·
(

d∗′′(s)r − 2T exp{−sT }R̃ F̂
∗′(s) + T 2 exp{−sT }R̃ F̂

∗
(s)

)
.

As a result, we obtain
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Table 1 Parameter setting
Number of smart meters NRA 5-40
Length of a check cycle T (sec) 18
Length of a polling mode TP (sec) 10.5
Length of a random access mode TRA (sec) 7.5
Mean duration of on-state periods T/a (sec) 45-7200
Mean duration of off-state periods T/b (sec) 180,900,1800,18000
Mean interval of generations of transmission attempts T/λ (sec) 36
Time for one hop tH (msec) 75
Maximum number of hops Hmax 2
Number of time slots of a random access mode L 5
Length of a time slot of a random access mode tRA (sec) 1.5

F̂
∗′(0) =

(
I − R̃

)−1 (
d∗′(0)r − T R̃ F̂

∗
(0)

)

= −
(

I − R̃
)−1

(
L + 1

2
tRAr + T R̃ F̂

∗
(0)

)
,

F̂
∗′′(0) =

(
I − R̃

)−1 (
d∗′′(0)r − 2T R̃ F̂

∗′(0) + T 2 R̃ F̂
∗
(0)

)

=
(

I − R̃
)−1

{
(L + 1)(2L + 1)

6
t2RAr − 2T R̃ F̂

∗′(0) + T 2 R̃ F̂
∗
(0)

}
.

In numerical examples, we show the coefficient of variation (CV) of transmission
delay defined as

CV =
√
Var [D | G]
E [D | G] .

4 Numerical Example

In this section, we show some numerical examples of the performance measures
derived in the previous section. We then investigate the effects of the durations of
on-state and off-state periods and their ratio on the performance measures.

4.1 Parameter Setting

In numerical experiments, we use the basic parameter values shown in Table 1.
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4.2 Effect of the Ratio of the Durations of On-state and
Off-state Periods

In this subsection, we set T/b = 1800 (sec) and change T/a : T/b in order to
investigate the effect of the ratio of the duration of on-state periods to that of off-
state periods on the performance measures.
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Fig. 2 Throughput vs. number of smart meters. (T/b = 1800)
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Fig. 3 Probability of successful transmissions vs. number of smart meters. (T/b = 1800)

Figure 2 represents the throughput against NRA in cases of (a/T )/(b/T ) =
4, 2, 1, 1/2, and 1/4. In this figure, the number of smart meters at which the through-
put takes the maximum value grows larger as the ratio decreases although the max-
imum throughput decreases. the number of transmissions per one time slot and can
improve the throughput. Figure 3 shows the probability of successful transmissions
against NRA in cases of (a/T )/(b/T ) = 4, 2, 1, 1/2, and 1/4. It is observed from



Mathematical Model and Performance Evaluation of AMI 137

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5  10  15  20  25  30  35  40

M
ea

n 
tr

an
sm

is
si

on
 d

el
ay

NRA

on:off=4:1
on:off=2:1
on:off=1:1
on:off=1:2
on:off=1:4
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Fig. 5 Coefficient of variation of transmission delay vs. number of smart meters. (T/b = 1800)

this figure that the lower the ratio gets, the lower the deterioration rate of the probabil-
ity of successful transmissions becomes. Figure 4 illustrates the mean transmission
delay against NRA in cases of (a/T )/(b/T ) = 4, 2, 1, 1/2, and 1/4. We observe
from this figure that the increase rate of the mean transmission delay is low if the
ratio is low. Figure 5 indicates the coefficient of variation of the transmission delay
against NRA in cases of (a/T )/(b/T ) = 4, 2, 1, 1/2, and 1/4. It is found from this
figure that the number of smart meters which maximizes the coefficient of variation
of the transmission delay becomes larger with the decrease of the ratio. These results
imply that if the number of smart meters is large, the communication performance
can be improved by a lower ratio of the duration of on-state periods to that of off-
state periods. This is because the number of request-holding meters gets smaller and
because collision probability in transmissions decreases when the ratio is low.
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4.3 Effect of the Durations of On-state and Off-state Periods

In this subsection, we fix (T/a)/(T/b) = 1/4 and change T/b for the purpose of
investigating the effect of durations of on-state and off-state periods on the perfor-
mance measures. Note here that switching intervals between on-state and off-state
are short when T/b is small.

Figure 6 shows throughput against NRA. In this figure, the throughput is lowwhen
switching intervals are short to some extent, but switching intervals hardly affect the
throughput if they are very long. Figure 7 illustrates the probability of successful
transmissions against NRA. It is observed from this figure that the probability of
successful transmissions decreases as switching intervals get shorter. Figure 8 indi-
cates the mean transmission delay against NRA. It is found from this figure that
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Fig. 6 Throughput vs. number of smart meters. (T/a : T/b = 1 : 4)
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Fig. 9 Coefficient of variation of transmission delay vs. number of smart meters. (T/a : T/b =
1 : 4)

the increase rate of the mean transmission delay is low when switching intervals are
short. Figure 9 represents the coefficient of variation of the transmission delay against
NRA. In , the shorter switching intervals get, the larger the coefficient of variation
of the transmission delay becomes. Therefore, we can claim that the throughput is
improved and the mean transmission delay is restrained although the probability of
successful transmissions decreases when switching between on-state and off-state
is frequent. This is because frequent switching increases the number of canceled
transmission and generated transmission attempts.



140 S. Matsuzawa et al.

5 Conclusion

In this paper, we evaluated the performance of AMI taking the mobile environment
into consideration. We constructed a discrete time Markov chain whose states are
defined by the numbers of on-state meters and request-holding meters, deriving the
throughput, the probability of successful transmissions, themean transmission delay,
and the coefficient of variation of the transmission delay.

From numerical examples, we found that if the number of smart meters is large,
the communication performance can be improved by a lower ratio of the duration
of on-state periods to that of off-state periods although the coefficient of variation
of the transmission delay becomes larger. It was also revealed that the probability of
successful transmissions decreases, while the throughput is improved and the mean
transmission delay is restrained when switching between on-state and off-state is
frequent.

Electricity consumption of smart meters is much more than that of conventional
electrical meters mainly because the former are equipped with communication func-
tions. Further, in wireless networks, collisions among transmission attempts occur
frequently and more electricity is consumed when the number of smart meters is
large. We can make wireless networks scalable to the increase of the number of
smart meters and suppress electricity costs by setting the probability of retransmis-
sions extremely low, while the mean transmission delay may increase. Our future
work is to consider a trade-off between electricity costs and the performance in AMI
networks.

Acknowledgments This work was supported by JSPS KAKENHI Grant Numbers 26280113 and
15K12152.
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A Appendix: Derivation of qk,l and g(L)
k,l

Firstly, we derive the number of combinations, g(L)
k,l , in which l out of k request-

holding meters fail in their transmissions in L time slots. If two or more smart meters
choose the same time slot, then all the transmissions in the time slot fail. Thus, k − l
request-holding meters choose different time slots in this event. On the other hand,
each of L − k − l time slots is chosen by at least two out of l request-holding meters.
If k − l > L or k − l = L , l > 0, there are no combinations of k − l request-holding
meters succeeding in their transmissions. We now consider the case of k − l < L .
If l = 0, the number of combination of choosing successful time slots is

( L
k−l

)
, and

that of k request-holding meters choosing those time slots is k!/ l!. The case of l = 1
does not satisfy the given condition because the transmission necessarily succeeds.
We next consider the case of l ≥ 2. Let m denote the number of time slots chosen by
two or more request-holding meters, we then have 1 ≤ m ≤ min(L − k + l, [l/2]).
Therefore, g(L)

k,l is given as follows.

g(L)
k,l =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

⎧
⎪⎪⎨

⎪⎪⎩

k < l,
k − l > L ,

k − l = L , l > 0,
k − l < L , l = 1,

k!, k − l = L , l = 0,

(
L

k − l

)
k!
l! , k − l < L , l = 0,

min(L−k+l,[l/2])∑

m=1

( L
k−l

)
k!(L−k+l

m

)
h(l, m)

l! , otherwise,

where h(l, m) denotes the number of combinations in which each of m out of l
time slots is chosen by at least two request-holding meters. Further, the number of
combinations of k request-holding meters choosing L time slots is Lk , so we obtain
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qk,l =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

⎧
⎪⎪⎨

⎪⎪⎩

k < l,
k − l > L ,

k − l = L , l > 0,
k − l < L , l = 1,

k!
Lk

, k − l = L , l = 0,

(
L

k − l

)
k!

l!Lk
, k − l < L , l = 0,

min(L−k+l,[l/2])∑

m=1

( L
k−l

)
k!(L−k+l

m

)
h(l, m)

l!Lk
, otherwise.

We then derive h(l, m). In the case of 2 ≤ l, m = 1, there exists only one
combination because of there being one time slot. If l = 1, this event is infeasible
since no time slots are chosen by two or more request-holding meters. Moreover,
the case of l < 2m does not meet the given condition. In what follows, we consider
the case of 2 ≤ l, 2m ≤ l. There are ml combinations of l request-holding meters
choosing m time slots. We suppose that n1 out of m time slots are not chosen by any
request-holdingmeters, then the number of combinations of choosing those time slots
is

(m
n1

)
. If each of n2 time slots out of m − n1 is chosen by only one request-holding

meter, we obtain the number of combinations of choosing the time slots as
(m−n1

n2

)
.

There exist j !/n2! combinations for n2 request-holding meters, and the number of
combinations of l − n2 request-holding meters choosing m − n1 − n2 time slots is
given by h(l − n2, m − n1 − n2). Here, 1 ≤ n1 + n2 ≤ m − 1 holds for n1 and n2,
we then have

h(l, m) = ml −
m−1∑

n1=0

m−1−n1∑

n2=max(0,1−n1)

(
m

n1

)(
m − n1

n2

)
j !

n2!h(l − n2, m − n1 − n2).

As a result, h(l, m) is given by the following recurrence relation.

h(l, m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, 0 ≤ l < 2m,

1, 2 ≤ l, m = 1,

ml −
m−1∑

n1=0

m−1−n1∑

n2=max(0,1−n1)

m!l!h(l − n2, m − n1 − n2)

n1!n2!(m − n1 − n2)!(l − n2)! , otherwise.



Retrial Queue for Cloud Systems
with Separated Processing and Storage Units

Tuan Phung-Duc

Abstract This paper considers a retrial queueing model for cloud computing sys-
tems where the processing unit (server) and the storage unit (buffer) are separated.
Jobs that cannot occupy the server upon arrival are stored in the buffer from which
they are sent to the server after some random time. After completing a service the
server stays idle for a while waiting for either a new job or a job from the buffer. After
the idle period, the server starts searching for a job from the buffer. We assume that
the search time cannot be disregarded during which the server cannot serve a job.
We model this system using a retrial queue with search for customers from the orbit
and obtain an explicit solution in terms of partial generating functions. We present a
recursive scheme for computing the stationary probability of all the states.

Keywords Retrial queue · Search time · Two-way communication ·Cloud systems

1 Introduction

Retrial queueing systems are ubiquitous in our daily life. The are characterized by
the fact that a customer who cannot receive service immediately upon arrival joins
a virtual orbit and repeats its attempt after some random time. Almost all the papers
in the retrial queueing literature assume that the server only waits for either a new
customer or a repeated one from the orbit [9]. However, there are some situations
in which the server has some initiative searching for blocked customers. We assume
that after a service the server stays idle for a while and starts searching for blocked
customers. In the idle time, if either a new customer or a repeated customer comes,
it receives the service immediately. After the idle time, the server performs a search
whose duration follows the exponential distribution. During the searching time, the
server cannot serve a customer, i.e., customers that arrive during the searching time
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of the server join the orbit. After the searching time the server gets a customer from
the orbit if any, otherwise it stays idle again.

The model is motivated from cloud computing systems where the processing unit
and the storage unit are separated. The processing unit has the capacity to serve only
one job at a time. Jobs that arrive when the server is busy are stored in a buffer from
which they are sent to the server. On completing a service the server stays idle for a
while and then picks a job from the buffer which takes some time. We refer this time
to as a search time. This system can be modeled using a retrial queue with search for
customers for which we obtain an explicit solution. Analytical solutions for some
Markovian retrial queues could be found in [11, 12, 14].

Some closely related works are as follows. Artalejo et al. [3] consider a retrial
queue with search for customers from orbit. In particular, after completing a service,
the server either immediately picks a customer from the orbit if any with probability
p or stays idle with probability 1 − p. This is similar to our model in the sense
that the server picks a customer from the orbit. However there is no idle time and
searching time (the searching time is zero) in this model [3]. Dudin et al. [8] consider
the same model as in [3] with BMAP input and search for customers. However, the
search mechanism is started just after the service completion. Some other extensions
are found in [6, 7]. Artalejo and Phung-Duc [4, 5] consider a model with two-way
communication where after the idle time the server initiates an outgoing call whose
duration is exponentially distributed. This can be considered as the searching time
in our model. However, after an outgoing call, the server stays idle, i.e., no customer
from the orbit is picked up. In all theworks above, the idle time and the searching time
are separately considered. This paper is the first which proposes a search mechanism
which is initiated after some idle time of the server. Other related works are due to
Artalejo and Gomez-Corrall [1] and Artalejo and Atencia [2] where the retrial rate
is a linear function of the number of customers in the orbit.

The rest of the paper is organized as follows. Section 2 describes the queueing
model in details while Section 3 is devoted to the analysis of the model. In section 4,
we present a special case where the searching time is negligible. Concluding remarks
are presented in section 5.

2 Model

Incoming jobs arrive at the server according to a Poisson process with rate λ. Ser-
vice time of incoming customers follows the exponential distribution with mean
1/ν1. After the completion of a service the server stays idle for an exponentially
distributed time with mean 1/α. During this idle time, an arriving customer (either
a new customer or a repeated one) is immediately served. After the idle time, the
server starts searching for a customer in the orbit. The searching time follows the
exponential distribution withmean 1/ν2. Arriving customers who see the server busy
(serving a customer or searching) join the orbit from which each customer retries
to enter the server after some exponentially distributed time with mean 1/μ. To the
best of our knowledge, this model has not been analyzed in the literature.
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3 Analysis

Let C(t) denote the state of the server at time t ≥ 0.

C(t) =
⎧
⎨

⎩

0, the server is idle,
1, the server is serving a job,
2, the server is searching for a customer.

Let N (t) denote the number of customers in the orbit at time t ≥ 0. We then have
the fact that {X (t) = (C(t), N (t)), t ≥ 0} forms a Markov chain on the state space
S = {0, 1, 2} × {0, 1, 2, . . . }. See Figure 1 for the transitions among states.

We assume that the system is stable, i.e., the stationary distribution exists. The
necessary and sufficient condition for the stability is λ < ν1 which will be obtained
later in the analysis.

Fig. 1 Transitions among states

Letting πi, j = limt→∞ P(C(t) = i, N (t) = j), the balance equations for states
(i, j) are given as follows.

(λ + α)π0,0 = ν1π1,0 + ν2π2,0, (1)

(λ + α + jμ)π0, j = ν1π1, j , j ≥ 1, (2)

(λ + ν1)π1, j = ( j + 1)μπ0, j+1 + ν2π2, j+1 + λπ1, j−1 + λπ0, j , j ≥ 0,

(λ + ν2)π2, j = απ0, j + λπ2, j−1, j ≥ 0, (3)

where πi,−1 = 0 (i = 1, 2). Let Πi (z) denote the generating function of πi, j , i.e.
Πi (z) = ∑∞

j=0 πi, j z j (i = 0, 1, 2). Transforming the above balance equations to
generating functions we obtain,
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(λ + α)Π0(z) + μzΠ ′
0(z) = ν1Π1(z) + ν2π2,0, (4)

(λ + ν1)Π1(z) = μΠ ′
0(z) + ν2

z
(Π2(z) − π2,0)

+ λzΠ1(z) + λΠ0(z), (5)

(λ + ν2)Π2(z) = αΠ0(z) + λzΠ2(z). (6)

Summing the above equations and arranging the result yields

λ(Π1(z) + Π2(z)) = μΠ ′
0(z) + ν2(Π2(z) − π2,0)

z
. (7)

This equation represents the balance between the flows coming into and out the orbit.
From (4) and (6), we obtain

Π1(z) = (λ + α)Π0(z) + μzΠ ′
0(z) − ν2π2,0

ν1
, (8)

Π2(z) = αΠ0(z)

λ + ν2 − λz
. (9)

Substituting these two expressions into the orbit balance equation (7) and arranging
the result yields

Π ′
0(z) = A(z)Π0(z) + B(z), (10)

where

A(z) =
λ(λ+α)

ν1
+ α(λ−ν2/z)

λ+ν2−λz

μ
(
1 − λz

ν1

) , B(z) = π2,0ν2

μz
.

We decompose A(z) as follows.

A(z) = a

z
+ b

1 − λz
ν1

+ c

1 − λz
λ+ν2

,

where a, b and c are given by

a = − αν2

μ(λ + ν2)
, b = λ2(λ + α + ν2 − ν1)

μν1(λ + ν2 − ν1)
, c = λ2αν1

(λ + ν2)2μ(ν1 − λ − ν2)
.

We first solve the non-homogeneous differential equation

Π ′
0(z) = A(z)Π0(z),

which is transformed to
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Π ′
0(z)

Π0(z)
= a

z
+ b

1 − λz
ν1

+ c

1 − λz
λ+ν2

.

The solution of this differential equation is given by

Π0(z) = Cza
(

ν1 − λ

ν1 − λz

) bν1
λ

(
ν2

λ + ν2 − λz

) c(λ+ν2)

λ

,

where C is a constant number. As usual, we find the solution for our original differ-
ential equation (10) in the following form.

Π0(z) = C(z)za
(

ν1 − λ

ν1 − λz

) bν1
λ

(
ν2

λ + ν2 − λz

) c(λ+ν2)

λ

,

where C(z) is an unknown function. Substituting this into the original differential
equation (10) yields

C ′(z)za
(

ν1 − λ

ν1 − λz

) bν1
λ

(
ν2

λ + ν2 − λz

) c(λ+ν2)

λ = π2,0ν2

μz
,

or equivalently

C ′(z) = π2,0ν2

μ
z−(a+1)

(
ν1 − λ

ν1 − λz

)− bν1
λ

(
ν2

λ + ν2 − λz

)− c(λ+ν2)

λ

.

Therefore, we have

C(z) = C0 − π2,0ν2

μ

∫ 1

z
u−(a+1)

(
ν1 − λ

ν1 − λu

)− bν1
λ

(
ν2

λ + ν2 − λu

)− c(λ+ν2)

λ

du,

where C0 is a constant number. Because Π0(z) is analytic at z = 0 and a < 0, we
must have C(0) = 0 implying that

C0 = π2,0ν2

μ

∫ 1

0
u−(a+1)

(
ν1 − λ

ν1 − λu

)− bν1
λ

(
ν2

λ + ν2 − λu

)− c(λ+ν2)

λ

du.

The final solution for Π0(z) is given by

Π0(z) = π2,0ν2

μ
za

(
ν1 − λ

ν1 − λz

) bν1
λ

(
ν2

λ + ν2 − λz

) c(λ+ν2)

λ

×
∫ z

0
u−(a+1)

(
ν1 − λ

ν1 − λu

)− bν1
λ

(
ν2

λ + ν2 − λu

)− c(λ+ν2)

λ

du. (11)
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From (7), (9) and (10), we obtain

Π1(1) + Π2(1) =
(μ

λ
A(1) + α

λ

)
Π0(1). (12)

We also have the normalization condition:

Π0(1) + Π1(1) + Π2(1) = 1. (13)

From (12) and (13), we obtain

Π0(1) = ν2(1 − λ
ν1

)

α + ν2
,

where the expression of A(1) in terms of given parameters is used.
It follows from (8) and (9) that

Π2(1) = α(1 − λ
ν1

)

α + ν2
, Π1(1) = λ

ν1
.

Therefore, from the expression for Π0(z), we obtain the expression for π2,0 as fol-
lows.

π2,0 = μ(1 − λ
ν1

)

(λ + ν2)
∫ 1
0 u−(a+1)

(
ν1−λ
ν1−λu

)− bν1
λ

(
ν2

λ+ν2−λu

)− c(λ+ν2)

λ
du

. (14)

From this expression, we obtain the fact that the stability condition for the model is
λ < ν1.

3.1 Recursive Formulae

Now, we are going to derive a recursive scheme for the stationary distribution. From
the orbit balance equation, we obtain

λ(π1, j + π2, j ) = ( j + 1)μπ0, j+1 + ν2π2, j+1.

From this equation and (3) with j := j + 1, we obtain,

λπ1, j + λ2

λ + ν2
π2, j =

(
( j + 1)μ + αν2

λ + ν2

)
π0, j+1.

Therefore, we have the following recursive scheme for the stationary distribution.



Retrial Queue for Cloud Systems with Separated Processing and Storage Units 149

π0, j = λ[(λ + ν2)π1, j−1 + λπ2, j−1]
jμ(λ + ν2) + αν2

, j ≥ 1,

π1, j = (λ + α + jμ)π0, j

ν1
, j ≥ 1,

π2, j = απ0, j + λπ2, j−1

λ + ν2
, j ≥ 1,

where π0,0, π1,0 and π2,0 are given in advance. In particular, π2,0 is obtained by (14)
and π0,0 is obtained from (3) with j = 0 while π1,0 is obtained by summing up (1)
and (3) with j = 0, i.e., π1,0 = λ(π0,0 +π2,0)/ν1. It should be noted that the second
and the third equations follow from (2) and (3), respectively.

Remark 1 This recursive formulae allow to calculate any probability πi, j . Further-
more, the recursive scheme can be implemented in both numerical and symbolic
manners.

Remark 2 Taking the derivatives at z = 1 for the differential equation (10) we can
obtain Π

(n)
0 (1) for any n. Since Π1(z) and Π2(z) are expressed in terms of Π0(z),

we can also calculate Π
(n)
1 (1) and Π

(n)
2 (1) for any n.

4 Limiting Case

We investigate the casewhere ν2 → ∞meaning that a call in the orbit is picked to the
server after an exponentially distributed idle time with mean 1/α. This is equivalent
to the linear retrial rate policy presented in [1]

In particular, we observe that when ν2 → ∞,

a = −α

μ
, b = λ2

μν1
, c = 0.

Furthermore,
lim

ν2→∞ Π2(z) = 0,

meaning that the searching states do not exist. We have

lim
ν2→∞

ν2π2,0

μ
= lim

ν2→∞
ν2(1 − λ

ν1
)

(λ + ν2)
∫ 1
0 u−(a+1)

(
ν1−λ
ν1−λu

)− bν1
λ

(
ν2

λ+ν2−λu

)− c(λ+ν2)

λ
du

= 1 − λ
ν1

∫ 1
0 u−(a+1)

(
ν1−λ
ν1−λu

)− bν1
λ

du

.

Thus, it follows from (11) that



150 T. Phung-Duc

Π0(z) =
(
1 − λ

ν1

)
z− α

μ

(
ν1 − λ

ν1 − λz

) λ
μ

∫ z
0 u

α
μ

−1
(

ν1−λ
ν1−λu

) λ
μ

du

∫ 1
0 u

α
μ

−1
(

ν1−λ
ν1−λu

) λ
μ

du

.

Substituting (10) into (8), we obtain

Π1(z) = (λ + α + μz A(z))Π0(z)

ν1
.

5 Concluding Remarks

In this paper, we present a new queueing model for cloud computing systems where
the processingunit and the storageunit are separated.Themodel is explicitly analyzed
in terms of generating functions. Furthermore, we have presented a simple recursive
scheme allowing to calculate the stationary distribution.We also consider one special
case of ourmodelwhich has appeared in the literature. For futurework, wewould like
to extend our model to a multiserver setting which may call for a level-dependent
QBD formulation [13]. It might be also interesting to consider the corresponding
model with constant retrial rate as in [15].
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Abstract This paper studies a queuing model of a multi-skill call center in 
M-design. In this model, there are two types of customers and three groups of 
servers who have different skills. Servers in Group 1 can only serve type 1 
customers, servers in Group 2 can only serve type 2 customers, and servers in 
Group 3 can serve both type 1 and type 2 customers. We obtain the state-transition 
rates by using results from M/M/c/c and M/M/c queueing systems. Then, we 
establish equations for the steady-state probabilities of the system. Finally, we 
obtain the computational formula for the service level and we present an 
optimization of a staffing problem. * 
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1 Introduction 

Call centers are becoming increasingly important in the global business 
environment. Correspondingly, as the importance and complexity of modern call 
centers grow, there is a proliferation of literature relating to them, typically focusing 
on queueing models. In a queueing model of a call center, the call agents and calls 
correspond to servers and customers, respectively. For important related surveys, 
we refer to Koole and Mandelbaum [1] and Gans et al. [2]. An introduction to 
staffing problems with relevant bibliographic references can be found in Aksin  
et al. [3].   

Multi-skill call centers have emerged and have recently been studied in the 
literature. A multi-skill call center handles several types of calls, and each agent has 
a selected number of skills. The agents are distinguished by the set of call types they 
can handle. A typical example is an international call center where incoming calls 
are in different languages, see Gan et al. [2].   

Perry and Nilsson [4] considered a multi-skill call center with two classes of calls 
that are served by a single pool of agents. They determined the required number of 
agents and an assignment policy to satisfy a target for the expected waiting times of 
callers. Such multi-skill call centers are referred to as V-models or V-designs. 
Bhulai and Koole [5] proposed scheduling policies and showed that the policy is 
optimal for equal service time distributions. Gans and Zhou [6] also studied the 
same V-design model using a linear programming approach. They obtained results 
for the case of unequal service rates.  

Örmeci [7] studied a dynamic admission control for a multi-skill call center in 
M-design where there are two classes of calls and three stations: one dedicated to 
each class, and one shared station. He showed that serving a call in its assigned 
station, whenever possible, is optimal. In this paper, we study an M-design model 
for a multi-skill call center by using a queueing model. We focus on the 
performance analysis and optimization for this M-design model of a multi-skill call 
center. 

The rest of the paper is organized as follows. In Section 2, we describe the 
M-design model for a multi-skill call center. In Section 3, we obtain the 
state-transition rates by using results of M/M/c/c and M/M/c queueing systems. 
Then, we establish equations for the steady-state probabilities of the system. In 
Section 4, we obtain the computational formula for the service level and present a 
staffing problem. Section 5 concludes the paper. 

2 System Model  

In this paper, we study an M-design model for a multi-skill call center where there 
are two types of calls and three groups of servers.  

1. Arrival Process: There are two types of calls (or customers). The calls of Type 
1 and Type 2 arrive according to a Poisson process with rates 1λ and 2λ , 
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respectively. Arriving calls are lined in two queues. Queue 1 and Queue 2 
consist of calls of Type 1 and Type 2, respectively. There are infinite waiting 
spaces for both queues. 

2. Service Process: There are three groups of servers (agents). Group 1, Group 2 

and Group 3 consist of 1N servers, 2N servers and 3N servers, respectively. 

Group 1 and Group 2 are specialized servers who can only serve customers of 
Type 1 and Type 2 calls, respectively. Group 3 is made up of flexible servers 
who can serve customers of both Type 1 and Type 2. The service times of 
servers in Group 1, Group 2 and Group 3 are all exponentially distributed with 

parameters 1μ , 2μ and 3μ , respectively. 

3. Routing Policy: A arriving customer of Type 1 (or Type 2) have priority to be 
served by a server in Group 1 (or Group 2) if there are free servers in Group 1 
(or Group 2) and free servers in Group 3. If all servers in Group 1 (Group 2) are 
busy, the customer will be serviced by a free server in Group 3. If all servers are 
busy in Group 3, the customer must wait in Queue 1 or Queue 2.  

4. Queuing Discipline: A free server in Group 1 (Group 2) serve the waiting 
customers in Queue 1 (Queue 2) according to a First-come First-served (FCFS) 
discipline, and a free server in Group 3 serve the waiting customers in Queue 1 
or Queue 2 according to FCFS discipline. If all servers in Group 1 and Group 2 
are busy and there are waiting customers both in Queue 1 and Queue 2, a free 
server in Group 3 will select randomly (with equal probability) a customer of 
Type 1 and Type 2 for service. 

3 The Steady-State Probabilities 

In this section, we firstly define the states of the model. Then, we derive the 
state-transition rates by using results of M/M/c/c and M/M/c queueing systems. 
Finally, we obtain equations for the steady-state probabilities of the system. It is 
assumed that the system is stationary. 

3.1 The State Space 

The M-design model has three skill groups. Each group has three states: an idle state 
(denoted by 1), that being the case where at least one agent is idle; a busy state 
(denoted by 2), the case where all agents in the group are busy and there no calls 
waiting for service rendered by this group; and an overload state (denoted by 3), the 
case where all agents in the group are busy and there is at least one call waiting for 
service by this group. Theoretically, the system has 27 states. However, due to the 
routing policy assumed in Section 2, the 15 states above marked in boldface do not 
exist. Therefore, the state space actually consists of 12 states, which are given by 

)}332(),322(),312(),232(),221(),222(),212(),211(),132(),122(),121(),111{(=E  
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Let 1 2( )n n  be the number of customers waiting for service including those being 
serviced by servers of Group 1 (2), and 3n be the number of customers being 
serviced by servers of Group 3. The i th state in E is denoted by , 1,2,...,12iS i = .  

3.2 The Calculation of the State-Transition Rates  

The transition of states occurs due to either the arrival of a call or the completion of 
a service. 

1. The state-transition due to the arrival of calls. 

Consider the state 1S . The trigger for the transfer from state 1S  to state 3S is a 

call of Type 1. The transition rate 1 3q − from state 1S  to state 3S  is given as 

follows: 

 1 3 1 1 1( 1)q P n Nλ− = = −  (1) 

where 1 1( 1)P n N= − is the probability that there are 1 1N − calls of Type 1 

needing to be serviced by the agents in Group 1.  

Note that if the process is in the state 1S  then the number of calls of either Type 

1 or Type 2 is less than the number of the agents either in Group 1 or Group 2, i.e., 

1 1n N<  and 2 2n N< . In this case, each queue behaves like an M/M/c/c loss 

queuing system. Thus, using the results of the M/M/c/c loss queuing system, we 
have 

 
1

1

1
1

1 1
1

1
0

( 1)

( 1)!
!

N

N j

j

P n N

N
j

ρ
ρ

−

=

= − =
− 

 (2) 

where 1
1

1

λρ
μ

= . Similarly, the other transition rates jiq − caused by the arrival of 

calls are given as follows:   

)1( 222119865321 −===== −−−− NnPqqqq λ , 

)1( 111107845231 −===== −−−− NnPqqqq λ , 

)1( 33
1

242 −==− NnPq λ , )1( 33
2

163 −==− NnPq λ , 

)1()( 33
3

2185 −=+=− NnPq λλ ,  

2121110874 λ=== −−− qqq , 1121011896 λ=== −−− qqq  
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where   
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 (6) 

where 2
2

2

λρ
μ

= , 1
3

3

λρ
μ

= , 2
4

3

λρ
μ

= . 

5. The state-transition due to the completion of a service of a call.  

Consider the state 2S . The trigger of the transfer from state 2S  to state 1S  is 

due to a service completion of a call of Type 2. If the state process is in state 2S , 

then all 2N agents are busy. Thus, the transition rate from state 2S  to state 1S  is 

2 1 2 2q N μ− = . Similar analysis gives the other transition rates jiq −  caused by a 

service completion which are given as follows: 

  22911683512 μNqqqq ==== −−−− ,  11710482513 μNqqqq ==== −−−− , 

  33583624 μNqqq === −−− ,  )1()( 22332281047 +=+== −− NnPNNqq μμ , 

  )1()( 11331181169 +=+== −− NnPNNqq μμ , 
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  12 11 2 2 3 3 2 2

1
( ) ( 1),

2
q N N P n Nμ μ− = + = +   

  12 10 1 1 3 3 1 1

1
( ) ( 1)

2
q N N P n Nμ μ− = + = +   

where the probabilities of )1( 11 += NnP and 2 2( 1)P n N= + can be obtained 

by using the results of the M/M/c queuing system which are given as follows: 

 
1 1

11
1 1 0

1 1

( 1) ,
( )!

N

P n N P
N N

ρ +

= + =  (7) 

 
2 1

22
2 2 0

2 2

( 1)
( )!

N

P n N P
N N

ρ +

= + =  (8) 

where 

 
11

1
1

1 1 1 1
0

0 1 1 1

,
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j N N
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ρ
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  (10) 

3.3 The Equations for the Steady-State Probabilities  

Let , 1, 2,...,12iP i = be the steady-state probabilities of the state process. Then, we 

can obtain the equations for the steady-state probabilities of the system as follows: 

13312231211 )( −−−− +=+ qPqPqqP , 

2552442115242122 )( −−−−−− ++=++ qPqPqPqqqP , 

3663553116353133 )( −−−−−− ++=++ qPqPqPqqqP , 

4884774228474244 )( −−−−−− ++=++ qPqPqPqqqP , 

5885335228535255 )( −−−−−− ++=++ qPqPqPqqqP , 

6996886339686366 )( −−−−−− ++=++ qPqPqPqqqP , 

71010744107477 )( −−−− +=+ qPqPqqP , 
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81111810108668558441181086858488 )( −−−−−−−−−− ++++=++++ qPqPqPqPqPqqqqqP , 

91111966119699 )( −−−− +=+ qPqPqqP ,   

10121210881077121081071010 )( −−−−−− ++=++ qPqPqPqqqP , 

11121211991188121191181111 )( −−−−−− ++=++ qPqPqPqqqP , 

1211111210101112101212 )( −−−− +=+ qPqPqqP , 

1
12

1

=
=i

iP . 

All the steady-state probabilities can be obtained by solving these equations. 
However, the calculation of these probabilities are very cumbersome. In next 
section, these probabilities are calculated numerically by using Matlab software. 

4 Optimization Problem 

In this section, we first consider the calculation of the service level. Then, we 
consider the staffing problem. 

4.1 The Calculation of the Service Level 

The service level is defined as the percentage of the serviced calls in a given fixed 
waiting time. Actually, the 80/20 principle is a general rule, that is to say at least 80 
percent of the calls should be serviced within a 20 second waiting time. We can 
derive the service level using the steady-state probabilities.  

Let 1
slP  and 2

slP  be the probabilities that the call of Type 1and Type 2 is 

serviced in a fixed time 1T  and 2T , respectively. Let 1 11ns slP P= −  and 
2 21ns slP P= − .  

Consider a call of Type 1. Calls of Type 1 form a queue when the process is in 

states 9 11 12, ,S S S . It can be seen that the service rate for calls of Type 1 in each 

state of 9S and 11S is 1 1 3 3N Nμ μ+ , and the service rate in state 12S is 

1 1 3 3

1

2
N Nμ μ+ , Thus, we get the probability 1

nsP  that a call of Type 1 can not be 

serviced in time 1T  as follows: 

 
∞

=

∞

=

∞

=

=+=+==
211

)()()( 11211119
1

kikiki
ns inPPinPPinPPP  (11) 
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where 

 )( 33111311 μμ NNTNNk +++= , (12) 

 )
2
1

(
2
1

33111312 μμ NNTNNk +++= . (13) 

Similarly, we get the probability 2
nsP  that a call of Type 2 can not be served in  

time 2T   as follows: 

 
∞

=

∞

=

∞

=

=+=+==
433

)()()( 21221027
2

kikiki
ns inPPinPPinPPP  (14) 

where 

 )( 33222323 μμ NNTNNk +++= , (15) 

 )
2
1

(
2
1

33222324 μμ NNTNNk +++= . (16) 

Remark 1. The probability 1( )P n i= [ 2( )P n i= ] in Eq. (11)[Eq. (14)] is the 

probability that there are i customers in the M/M/ 1N [ 2N ] queuing system with 

arrival rate 1λ [ 2λ ] and service rate 1μ [ 2μ ] which is given in [8]. Their 

expressions are omitted. 

Table 1 gives numerical results for the service levels 1
slP  and 2

slP  for λ1=5，
μ1=0.5，λ2=4，μ2=0.3，μ3=0.2，T1=20，T2=30.  

Table 1 The numerical results of the service levels
1
slP  and 

2
slP  

1N  
2N  3N  1

slP  
2

slP  

20 20 20 1.0000 1.0000 
20 15 25 1.0000 0.9765 
15 20 25 1.0000 1.0000 
15 20 10 0.9988 0.9995 
15 15 15 0.9994 0.9547 
20 15 10 1.0000 0.8693 
15 15 10 0.9984 0.9135 
11 15 10 0.8200 0.8983 
11 14 11 0.8028 0.6677 
11 16 9 0.8075 0.9551 
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4.2 Optimization of a Staffing Problem 

Let 1 2,C C and 3C be the costs for each server in Group 1, Group 2 and Group 3, 

respectively. In order to minimize the cost, we try to find the optimal number of 

servers 1 2,N N and 3N  subject to the constraint conditions. The optimization of 

a staffing problem can be expressed as follows:  

 

in  1 1 2 2 3 3

1
1

2
2

1 2 3

m

s.t. ,

,

, ,

sl

sl

C N C N C N

P

P

N N N Z

α
α

+

+ +

≥

≥

∈

  

where 1α  and 2α are the given service rate of the call of Type 1 and the call of 

Type 2, +Z denote the set of positive integer. 

5 Conclusions  

This paper has studied a queuing model of the M-design multi-skill call center. We 
have obtained the transition rates of states by using results from an M/M/c/c and 
M/M/c queueing system and then established equations for the steady-state 
probabilities of the system. We have derived the computational formula for the 
service level and presented an optimization of a staffing problem. In this work,  
we studied an exponential model in a multi-skill call center. A further extension for 
future research would be to study non-exponential models or models with impatient 
customers. 
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Multi-server Queue with Job Service Time
Depending on a Background Process

Tomoyuki Sakata and Shoji Kasahara

Abstract One of approaches to reducing energy consumption in a data center is
to power down a group of servers. In this paper, we consider a power management
scheme for distributed parallel processing over clusters of servers, where part of
servers in each cluster are turned off in power-saving mode. We model the system
as a multi-server queue in which the service time of a job depends on the state
of a background process at the beginning of the job service. We analyze the joint
distribution of the number of jobs in system and the state of the background process,
deriving the mean job-response time and mean amount of energy consumption. In
numerical examples, we investigate how the mean job-response time and energy
consumption are affected by energy saving level and the number of clusters.

1 Introduction

Recently, cloud computing has been attracted considerable attention, and various
kinds of computing services such as virtual machines and MapReduce software
framework are provided by data centers. A data center contains a large number of
server machines, resulting in high energy consumption. With the increase in cloud
computing demand, the number of data centers is growing rapidly, and the amount
of energy consumption for data centers is extremely huge. Therefore, considerable
research efforts have been devoted to developing schemes which can save energy
without degrading job-processing performance.

There existmuch literaturewhich concerns strategies of efficient energy saving for
data centers. A typical scheme for reducing energy consumption in data centers is to
manage the power of server machines according to demand for computing resources.
In [5], the authors propose a scheme of server-power management for a data center,
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with which the number of running servers is varied according to the number of jobs
in system. If the number of waiting jobs exceeds a predefined threshold, all the
servers are turned on. If the number of servers busy for job processing are below
another threshold, a given number of servers are turned off. In [5], the trade-off
between job-waiting time and energy consumption is analyzed by an M/M/c queue
with threshold-based on/off control.

In [1], the authors propose Berkeley Energy Efficient MapReduce (BEEMR),
an efficient power management scheduling for MapReduce-type job processing. In
BEEMR, servers in a data center are divided into two grouping zones, an interactive
zone and a batch zone. The servers in the interactive zone are always turned on
and serve small-sized jobs. On the other hand, the servers in the batch zone process
huge-sized jobs that are insensitive to the response time. BEEMR controls the power
of servers in the batch zone so that the amount of power consumption is reduced.
The authors in [1] investigate the performance of BEEMR by simulation and on-site
practical experiments. In [2], the performance of BEEMR is investigated by queueing
theoretical approach.

In this paper, we consider a power-management scheme for data centers with
server clusters. We focus on a data center accommodating a large number of server
clusters, each of which consists of several server machines, providing parallel dis-
tributed computing service. The data center alternates two power-operation modes:
normal-operation and power-saving. The periods of normal-operation mode and
power-saving one are determined a priori, and the system alternates between two
modes independently of the number of jobs in the system. The power of server
machines is managed in a cluster-based manner. When the data center is in normal-
operation mode, all the servers of all clusters are powered on. When the data center
switches to power-saving mode, a part of servers in each cluster are powered off after
completing the existing job. In both operation modes, a job is served by a cluster
according to processor sharing discipline. Therefore, the service rate of a cluster in
power-saving mode is smaller than that in normal mode.

In order to investigate the performance of the cluster-based power management
scheme, we model the data center as a multi-server queueing system with job service
depending on the state of a background process. Here, a server of the queueingmodel
corresponds to a cluster of machines in the data center. The service time of a job
depends on the state of the background process at the beginning of the job’s service.
We construct a trivariate continuous-time Markov chain for the system, deriving
the steady-state probability vector by matrix geometric method. We consider the
mean job-response time and mean amount of energy consumption as performance
measures, and investigate how the performance measures are affected by system
parameters such as the number of clusters and the parameter indicating energy-saving
level.

This paper is organized as follows. In Sect. 2, we describe the queueing model
considered in this paper, and analyze the steady-state distribution by matrix analytic
method in Sect. 3. Numerical examples are shown in Sect. 4, and finally in Sect. 5
our conclusion is presented.
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2 Queueing Model

We assume that the number of servers is c, and that the buffer capacity is infinite.
Jobs arrive at the system according to a Poisson process with rate λ. The service
time of a job depends on the state of a background process when the job service
starts. The background process is continuous-time Markov chain with two states,
Slow (S) and Fast (F), independent of the arrival process. The state S describes the
power-saving mode in which a part of worker machines are turned off for energy
saving, and hence the resulting service rate of a server is low. When the state of the
background process is F , on the other hand, all the worker machines composing a
server are turned on and the resulting service rate of the server is greater than that
in state S. The state-transition rate from S to F and that from F to S is given by αS

and αF , respectively.
When a job enters a server for its service, its service time depends on the state

of the background process. If the background process is in state S (resp. F) at the
service initiation point, the service time of the job follows an exponential distribution
with rate μS (resp. μF ). In the following, μS < μF . We also assume that when the
background process switches from S to F (and vice versa), the service rate of the
existing job remains the same as that at its service initiation point. Hereafter, a job
served with rate μS and that with rate μF are called S job and F job, respectively.

3 Analysis

Wedefine N (t) as the number of jobs in the system at time t . Let S(t) and F(t) denote
the numbers of S jobs and F jobs at t , respectively. We denote J (t) (∈ {S, F}) as the
state of the background process at t . F(t) can be expressed with N (t) and S(t) by

F(t) = min(N (t), c) − S(t).

From the assumptions, {(N (t), S(t), J (t)) : t ≥ 0} is a trivariate continuous-time
Markov chain with state space IF, where IF is given by

IF = IN ∪ {0} × {0, 1, . . . , c} × {S, F}.

Let Q denote the infinitesimal generator of the Markov chain {N (t), S(t), J (t) :
t ≥ 0}, whose states are arranged in lexicographic order. Then, Q is given by

Q =

⎡

⎢⎢⎢⎢⎢⎣

B B0 O O O O · · ·
B1 A1 A0 O O O · · ·
O A2 A1 A0 O O · · ·
O O A2 A1 A0 O · · ·

. . .
. . .

. . .

⎤

⎥⎥⎥⎥⎥⎦
. (1)
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In what follows, we describe the details of block matrices B, B0, B1, A0, A1, and A2
in (1). Hereafter, i is an integer such that the inequality k(k +1) < i ≤ (k +1)(k +2)
holds for any k ∈ [0, c], and [x] is the largest integer not greater than x .

(a) c(c + 1) × c(c + 1) matrix B

(i) For odd i ,

[B]i j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αS, j = i + 1,

λ, j = i + 2k + 4,

d(k + 1, i + 1) μF , j = i − 2k,

−d(k, i − 1) μS, j = i − 2k − 2,

−αS − λ − d(k + 1, i + 1) μF + d(k, i − 1) μS, j = i,

0, otherwise,

where d(n, m) = n(n + 1) − m

2
.

(ii) For even i ,

[B]i j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αF , j = i − 1,

λ, j = i + 2k + 2,

d(k + 1, i) μF , j = i − 2k,

−d(k, i − 2)μS, j = i − 2k − 2,

−αF − λ − d(k + 1, i) μF + d(k, i − 2)μS, j = i,

0, otherwise.

(b) c(c + 1) × 2(c + 1) matrix B0

(i) For odd i ,

[B0]i j =
{

λ, j = i − c(c − 1) + 2 and j �= 1,

0, otherwise.

(ii) For even i ,

[B0]i j =
{

λ, j = i − c(c − 1),

0, otherwise.

(c) 2(c + 1) × c(c + 1) matrix B1

[B1]i j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
c −

[
i − 1

2

])
μF , j = i + c(c − 1),

[
i − 1

2

]
μS, j = i + c(c − 1) − 2,

0, otherwise.

(d) 2(c + 1) × 2(c + 1) matrix A0
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[A0]i j =
{

λ, j = i,

0, j �= i.

(e) 2(c + 1) × 2(c + 1) matrix A1

(i) For odd i ,

[A1]i j =

⎧
⎪⎪⎨

⎪⎪⎩

αS, j = i + 1,

−αS − λ −
[

i − 1

2

]
μS −

(
c −

[
i − 1

2

])
μF , j = i,

0, otherwise.

(ii) For even i ,

[A1]i j =

⎧
⎪⎪⎨

⎪⎪⎩

αF , j = i − 1,

−αF − λ −
[

i − 1

2

]
μS −

(
c −

[
i − 1

2

])
μF , j = i,

0, otherwise.

(f) 2(c + 1) × 2(c + 1) matrix A2

(i) For odd i ,

[A2]i j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i − 1

2
μS, j = i,

(
c − i − 1

2

)
μF , j = i + 2,

0, otherwise.

(ii) For even i ,

[A2]i j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
c − i − 2

2

)
μF , j = i,

i − 2

2
μS, j = i − 2,

0, otherwise.

We define the steady-state probability as

π(i, j, k) = lim
t→∞Pr{N (t) = i, S(t) = j, J (t) = k}, (i, j, k) ∈ IF.

We also define the following notations.

π−1 = (π(0, 0, S), π(0, 0, F), π(1, 0, S), π(1, 0, F),

π(1, 1, S), π(1, 1, F), . . . , π(c − 1, 0, S), π(c − 1, 0, F),

π(c − 1, 1, S), π(c − 1, 1, F), . . . , π(c − 1, c − 1, S), π(c − 1, c − 1, F)),

πi = (π(c + i, 0, S), π(c + i, 0, F), π(c + i, 1, S), π(c + i, 1, F), . . . ,

π(c + i, c, S), π(c + i, c, F)), i ≥ 0.
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Let π = (π−1,π0,π1, . . .). π is the steady-state probability vector which satisfies
π Q = 0 and πe = 1.

From (1), this continuous-time Markov chain is a quasi birth-and-death process.
The steady-state probability vector π can be calculated by matrix-analytic method
[3].

In terms of the system stability, we have the following theorem.

Theorem 1. ([4], p. 411, (9.36)) We assume that 2(c+1) dimensional square matrix
A = A0 + A1 + A2 satisfies πA A = 0 and πAe1 = 1.

Then, the stability condition for the system is

πA A0e1 < πA A2e1.

In our case, we can conjecture the following stability condition.

λ <
cμSμF

(
α2

S + 2αSαF + α2
F + αSμF + αFμS

)

(αS + αF )(αSμS + αFμF + μSμF )
. (2)

Finally, we consider two performance measures: the mean job-response time and
mean amount of energy consumption. Let a denote the 1 × c(c + 1) vector whose
i th element is given by

[a]i = k, k(k + 1) < i ≤ (k + 1)(k + 2),

for k = 0, 1, 2, . . . , c − 1. The mean number of jobs in system is then given by

E[L] = aπ−1 +
∞∑

i=0

(c + i)πi e1. (3)

Using Little’s law, the mean job-response time E[T ] is given by E[T ] = E[L]/λ.
Let E denote the mean amount of energy consumption per unit time. E can be

expressed as

E =
∑

(i, j,k)∈IF
π(i, j, k){ jμS + min(c − j, i − j)μF + max(0, c − i)κμk},

where κ is the ratio of the amount of energy consumption of a single idle server to
that of a single busy server.

4 Numerical Examples

We define ζ as ζ = μS/μF . ζ is related to the ratio of the service rate of power-
saving mode to that of normal-operation mode. A large ζ indicates that the number
of worker machines turned off in power-saving mode is small. In other words, a large
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Fig. 1 c vs. E[T ].

ζ implies a small amount of energy saving for the system. Note that when the system
is in power-saving mode, all servers keep running for ζ = 1, whereas all the servers
are turned off for ζ = 0.

In the following, we set κ = 170/240 according to [5]. We only consider the case
of λ = 12 and αS = αF = 1 due to page limitation.

Figure 1 illustrates the mean job-response time E[T ]. The horizontal axis is the
number of clusters c, and E[T ]’s for ζ = 0.1, 0.5, 1 are plotted. Note that ζ = 1
under αS = αF corresponds to the case of an M/M/c with service rate μF . We
observe from the figure that when c increases, E[T ]’s for the three cases decrease and
converge to some constants. We also observe that E[T ] increases with the decrease
in ζ . A remarkable point here is that the discrepancy between ζ = 1 and ζ = 0.5 is
significantly smaller than that between ζ = 1 and ζ = 0.1. When ζ = 0.5, a half
of servers in a cluster are powered off in power-saving mode. This figure shows that
energy-saving level of ζ = 0.5 does not degrade the job-response time.

Figure 2 represents E against the number of clusters c. In this figure, the amount
of energy consumption increases linearly for any ζ , as expected. We also observe
that E for ζ = 1 is the largest for any c, and that E becomes small with the decrease
in ζ . Note that the power-saving level of ζ = 0.5 effectively reduces E even for a
small c. This result suggests that the power-saving level of ζ = 0.5 is effective both
for reducing the energy consumption and for keeping the job-response time small.

We also investigated the job-response time and energy consumption in cases of
different λ’s, observing the same tendency as Figures 1 and 2. This suggests that
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turning a half of servers in a cluster off is effective for keeping the mean job-response
time small.

5 Conclusion

In this paper, we considered a queueing model for data centers with BEEMR-like
energy-saving management mechanism. We modeled a data center as a multiple-
server queue with job service depending on a background process. Using matrix-
analytic method, we derived the joint distribution of the number of jobs in system
and the state of the background process, yielding the mean job-response time and
mean amount of energy consumption as performancemeasures. Numerical examples
showed that the amount of energy consumption grows linearly with the increase in
the number of clusters. We also confirmed that turning a half of servers in a cluster
off is effective for keeping the mean job-response time small.

In our model, the system alternates between normal-operation mode and power-
saving one independently of the number of jobs in system. For future work, we
consider more practical scheme of power management, with which the system
operation mode changes according to the number of jobs in the system.
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A Mixed Discrete-Time Delay/Retrial Queueing
Model for Handover Calls and New Calls
Competing for a Target Channel

Rein Nobel

Abstract To study the performance of handover calls approaching a target cell in
combination with arrivals of new calls competing for the same cell, a mixed discrete-
time delay/retrial model with one server andwith priorities for the delayed customers
is discussed. The handover calls are modeled as high-priority customers and the new
calls as low-priority customers. The priority is non-preemptive. Upon arrival high-
priority customers are put in a queue which is served on a first come first served
basis. The behavior of the low-priority customers is modeled as in a retrial queue.
Arrivals are in batches and all customers are served individually according to gener-
ally distributed and independent service times. The joint steady-state distribution of
the queue length of the high priority customers and the orbit size of the low-priority
customers is studied using probability generating functions. Several performance
measures will be calculated, such as the mean queue length of the handover calls and
the orbit size of the new calls. Also the covariance between the queue length and the
orbit size will be studied, among others.

Keywords Handover calls ·Discrete-time retrial queue · Priority customers ·Gen-
erating functions

1 Introduction

In mobile telephony the problem how to handle handover calls is a important topic.
When a mobile phone user is moving from one cell [the source] to another cell [the
target] then his ongoing call has to be switched from the channel of the source cell
to a channel of the target cell. Because neighboring cells cover overlapping regions,
usually a so-called soft handover protocol is used, i.e. the ongoing call joins a queue,
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waiting for a free channel at the target cell, but the call continues to use the channel of
the source cell until a channel at the target cell is available. Meanwhile also new calls
will try to get a free channel at the target cell. To avoid unnecessary interruptions
of the ongoing calls waiting for a free channel at the target cell, priority is given
to the handover calls over the new calls. When all channels are busy new calls are
temporarily rejected and the new calls have to be initiated anew some time later.

To model this protocol of soft handover calls at a target cell in combination with
the arrival of new calls at this cell we study a mixed delay/retrial model in discrete
time with one server [channel]. More specifically, we consider a one-server queue-
ing model in discrete time with two types of customers. Time is divided in slots, and
all events [arrivals, start of a service and departures] are considered to occur at the
slot boundaries only. The high-priority customers [handover calls] arrive in batches
following a general probability distribution. Upon arrival a batch of high-priority cus-
tomers is put in awaiting line fromwhich the customers are servedonebyoneonafirst
come first served basis. The low-priority customers [new calls] also arrive in batches
(primary arrivals), possibly following a different probability distribution, and when
upon arrival a batch of low-priority customers sees the server busy, all incoming low-
priority customers are sent into orbit, a virtual waiting space fromwhich they will try
to reenter the system individually some random time later (secondary arrivals). The
service times of the high-priority and the low-priority customers are all independent
and follow [possibly] a different general distribution. To resolve the conflict of simul-
taneous arrivals and departureswe have chosen for the late arrival set up with delayed
access, i.e. arrivals have precedence over departures and a service of newly arrived
customers can only start at the time slot following the slot of the arrival at the earli-
est. Also the modeling assumption is made that the time slot after any departure the
server always stays idle, evenwhen high-priority customers arewaiting in line. A new
high-priority customer will start service the next slot when the queue of high-priority
customers is not empty or a batch of high-priority customers will have arrived during
the idle slot. In that case all possibly arrived low-priority customers are sent (back)
into orbit. Otherwise, i.e. no high-priority customers present at the end of the idle
slot, the server starts the service of a low-priority customer, randomly chosen from
the mixed batch of primary and secondary low-priority arrivals. When neither high-
priority customers are present at the end of the idle slot, nor low-priority customers
will have arrived during the idle slot, the server stays idle also the following slot. All
customers are served one by one, and in case a low-priority customer is taken into
service all other primary and secondary low-priority customers having arrived in the
same slot are sent (back) into orbit.

As is well-known retrial models have receivedmuch less attention in the literature
than thewell-known queueingmodels such as delay-models and loss-models, mainly
because the arrival stream of the customers consists of two types, the primary arrivals
who enter for the first time, and the secondary arrivals from the orbit, making the
‘arrival intensity’ dependent of the number of customers in the orbit. Also overtaking
takes place, i.e. customers are not served according to a specific queueing discipline,
which severely complicates the study of the waiting-time distribution of a customer,
here defined as the total time that the customer spends in the orbit. It is probably fair
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to say that the unpopularity of the research on retrial models is partly due to their
intractability, because from a practical point of view retrial models often describe
a more realistic picture of many queueing situations than any of the other type of
models. Notwithstanding the mathematical difficulties encountered in the study of
retrial systems some models, with the M/G/1 retrial queue in a prominent position,
have been analyzed thoroughly, and we refer to the monographs of Falin and

Templeton [4] and Artalejo and Gómez- Corral [1] for an overview of the
main results.

Although most papers on retrial queues discuss models in continuous time, as a
consequence of the revolutionary developments in the computer and telecommuni-
cation technology, at the end of the past century people started to study also retrial
models in discrete time. Li and Yang [5], [6] and [9] made a start. Nobel and

Moreno [8] were the first to study a discrete-time classical retrial queueing model
with the so-called late-arrival setup, i.e. precedence is given to arrivals over depar-
tures. We recall that in a classical retrial model an idle server accepts exactly one
customer for service from the batch of all the incoming customers [a mixture of pri-
mary customers and customers arriving from the orbit] and sends all the other newly
arrived customers (back) to the orbit. As a consequence of the late-arrival setup, after
a departure the server always stays idle for at least one time slot, due to the fact that
the most recently arrived customers have seen the server still busy and therefore they
have been sent into the orbit.

In this paper we will extend the classical discrete-time one-server retrial model
of Nobel and Moreno [8] by adding a second type of customers [the handover
calls] who will be put in a queue and are served one by one on a first come first
served basis. These customers are given non-preemptive priority over the original
customers [the new calls] who continue to act as retrial customers. In a previous
paper (Nobel and Moreno [7]) the high-priority customers were lost when upon
arrival they found the server busy. Amodel similar to our delay/retrial model has been
studied in Choi and Kim [2], but they discuss only single arrivals and all customers
follow the same service-time distribution. Further, they have chosen the early arrival
setup. A continuous-time retrial model with priority customers has been studied by
Falin, Artalejo and Martin [3], but in that paper only single arrivals have been
considered. The model discussed in this paper can be seen both as an extension and
as the discrete-time counterpart of that model.

We will study the joint steady-state distribution of the length of the queue of high-
priority customers and the size of the orbit with low-priority customers. Not sur-
prisingly, the mathematical analysis of our mixed delay/retrial model differs greatly
from the analysis of the models discussed in the papers [2], [7] and [8].

Firstly, we will derive the generating function of the joint steady-state distribution
of the number of low-priority customers in orbit, the number of high-priority cus-
tomers in the queue and the residual service time of the customer in service [either
a high-priority customer, or a low-priority customer]. This generating function will
be used to calculate several performance measures, e.g. the mean queue length, the
mean orbit size and the covariance of the queue length and the orbit size. In Section 2
we describe the model in detail. Section 3 discusses the steady-state distributions of
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the orbit size and the queue length, among others. In Section 4 we derive an expres-
sion for the mean busy period. Numerical results will be presented in a forthcoming
extended version of this paper.

2 Description of the Model

For a detailed description of the discrete-time setup with late arrivals and delayed
access [LAS/DA] we refer to Nobel and Moreno [8]. Recall that in the classical
retrial model the time slot after a departure the server always stays idle for at least
one slot, due to the late-arrival setup with delayed access. For the mixed delay/retrial
model to be discussed in this paper we make the technical assumption that the slot
following a departure the server always stays idle, also in case high-priority cus-
tomers are waiting in the queue. We can interpret this idle slot as a preparation time
for the next service, but we admit that the main reason to include this idle slot fol-
lowing a departure is to enable tractability: a small price to pay for a deeper insight
into this mixed delay/retrial model with priorities for the delayed customers.

We will now give the precise description of our discrete-time mixed delay/retrial
queueingmodelwithoneserver andpriorities.Duringeach timeslothigh-prioritycus-
tomersarrive inbatches.Thebatchsizesaremutually independentandfollowageneral

probability distribution
{

a(H)
i

}∞
i=0

with probability generating function (p.g.f.)

AH (y) =
∞∑

i=0

a(H)
i yi .

In every time slot also low-priority customers arrive in batches. These batch sizes

follow a general probability distribution
{

a(L)
k

}∞
k=0

with p.g.f.

AL(z) =
∞∑

k=0

a(L)
k zk .

These batch sizes are again mutually independent and they are also independent of
the batch sizes of the high-priority customers. We call these arrivals primary arrivals.
Each individual high-priority customer requires a service time,measured as a number

of time slots,which follows the discrete probability distribution
{

b(H)
j

}∞
j=1

with p.g.f.

BH (w) =
∞∑

j=1

b(H)
j w j .

Similarly, every low-priority customer requires a generally distributed service time

with distribution
{

b(L)
j

}∞
j=1

and p.g.f.
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BL(w) =
∞∑

j=1

b(L)
j w j .

All service times are mutually independent and they are also independent of the
batch sizes of the arriving customers. A service time requires at least one time slot,
so b(H)

0 = b(L)
0 = 0. As said before, the high-priority customers are placed in a

queue and the high-priority customers are served individually on a first come first
served basis [within a batch in random order]. Low-priority customers behave as the
customers in the classical retrial queue, with the only difference that all incoming
low-priority customers [primary and secondary arrivals] are also sent into orbit when
high-priority customers are present in the queue or arrive simultaneously, i.e. in the
same slot, with the low-priority customers. In each time slot low-priority customers
try to reenter the system individually and independently with the so-called retrial
probability r [0 < r < 1].

We are interested in the steady-state behavior of the number of high-priority
customers in the queue, the number of low-priority customers in orbit and the residual
service time of the customer currently in service. To analyze the mixed delay/retrial
queueing model, we define a discrete-time Markov chain (DTMC) by observing the
system at the epochs k−, that is at the start of the time slots k just after, possibly,
a service of a (low- or high-priority) customer has started, but before the arrivals
during time slot k have occurred. We define the following random variables,

Hk = the residual service time of the [high- or low-priority] customer

in service at time k−,

Lk = the number of high-priority customers present in the queue at time k−,

Qk = the number of low-priority customers in orbit at time k−.

We define Hk = 0 when at epoch k− the server is idle. Then, due to the indepen-
dencies stated in the description of the model, the stochastic process {(Hk, Lk, Qk) :
k = 0, 1, 2, . . .} is an irreducible aperiodic DTMC and under the stability condition
that

A′
H (1)[B′

H (1) + 1] + A′
L(1)[B′

L(1) + 1] < 1

it is positive recurrent. A formal proof of this stability condition can be given using
Foster’s criterion [see Nobel and Moreno [8] for the details]. Notice the ‘+1’
added to the mean service times B′

H (1) and B′
L(1), due to our technical assumption

that after every departure the server stays idle for at least one time slot.

3 The Joint Distribution of Queue Length and Orbit Size

In this section we will derive the joint generating function of the steady-state distri-
bution of the DTMC {(Hk, Lk, Qk) : k = 0, 1, 2, . . .}. Under the stability condition
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we can define the following limiting joint distribution of this DTMC

π( j, m, n) = lim
k→∞ IP(Hk = j; Lk = m; Qk = n), j, m, n = 0, 1, 2, . . . ,

with its associated three-dimensional generating function

Π(w, y, z) =
∞∑

j=0

∞∑

m=0

∞∑

n=0

π( j, m, n)w j ym zn .

In the following it is convenient to introduce also the partial generating functions,

Π jm(z) =
∞∑

n=0

π( j, m, n)zn and

Π j (y, z) =
∞∑

m=0

∞∑

n=0

π( j, m, n)ym zn =
∞∑

m=0

Π jm(z)ym .

To find the p.g.f. Π(w, y, z) we write down the system of balance equations,

π(0, m, n) = I{m=0}a(H)
0 a(L)

0 (1 − r)nπ(0, 0, n) +
m∑

i=0

a(H)
i

n∑

k=0

a(L)
k π(1, m − i, n − k), (1)

m, n = 0, 1, 2, . . . ,

π( j, m, n) =
m∑

i=0

a(H)
i

n∑

k=0

a(L)
k π( j + 1, m − i, n − k)

+b(H)
j

m+1∑

i=0

a(H)
i

n∑

k=0

a(L)
k π(0, m + 1 − i, n − k)

+ I{m=0}b(L)
j a(H)

0

{
n+1∑

k=1

a(L)
k π(0, 0, n + 1 − k)

+a(L)
0

(
1 − (1 − r)n+1

)
π(0, 0, n + 1)

}
. (2)

j = 1, 2, . . . ; m, n = 0, 1, 2, . . . .

Notice how our technical assumption that after any departure the server stays idle
for at least one time slot plays its role in these balance equations. This assumption
enforcesmore parallelism between the [services of] low-priority customers and high-
priority customers. Below we will see that only due to this enforced parallelism our
analysis can be pursued successfully.
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From equations (1) and (2) we get by multiplying both sides with zn and summing
over n = 0, 1, . . ., and subsequently multiplying both sides of the result by ym and
summing over m = 0, 1, . . .,

Π0(y, z) = a(H)
0 a(L)

0 Π00((1 − r)z) + AH (y)AL (z)Π1(y, z), (3)

Π j (y, z) = AH (y)AL (z)Π j+1(y, z) +
b(H)

j

y
AL (z)

[
AH (y)Π0(y, z) − a(H)

0 Π00(z)
]

+
b(L)

j a(H)
0

z

[
AL (z)Π00(z) − a(L)

0 Π00((1 − r)z)
]
. (4)

Next, multiplying equation (4) by w j and summing over j = 1, 2, . . . gives after
some simple algebra, using equation (3) to get rid of Π1(y, z),

yz [w − AH (y)AL(z)]Π(w, y, z) = AH (y)AL(z)z [wBH (w) − y]Π0(y, z)

+ a(H)
0 AL(z)w [yBL(w) − zBH (w)]Π00(z)

+ a(H)
0 a(L)

0 wy [z − BL(w)]Π00((1 − r)z).(5)

So, the problem is to find the unknown partial generating functions Π0(y, z) and
Π00(z). Firstly, take w = AH (y)AL(z) in (5) to make the left-hand side zero. This
gives

Π0(y, z) = a(H)
0

AL(z) [yBL(ω(y, z)) − zBH (ω(y, z))]Π00(z)

z [y − ω(y, z)BH (ω(y, z))]

+a(H)
0

a(L)
0 y [z − BL(ω(y, z))]Π00((1 − r)z)

z [y − ω(y, z)BH (ω(y, z))]
(6)

where ω(y, z) := AH (y)AL(z). Now for any z with |z| ≤ 1 let w = φ(z) be a
solution of the system of equations

{
w = AH (y)AL(z)
y = wBH (w)

⇐⇒
{

w = AH (wBH (w))AL(z)
y = wBH (w).

For real z with 0 < z < 1 it is easy to see that there is a unique real solution
w = φ(z) ∈ (0, 1) and further that φ(1) = 1. So we have for z with |z| ≤ 1

φ(z) = AH (φ(z)BH (φ(z)))AL(z) (7)

from which we can calculate the derivative φ′(z) by implicit differentiation. For
future use we give the result

φ′(z) = AH (φ(z)BH (φ(z)))A′
L(z)

1 − A′
H (φ(z)BH (φ(z)))[BH (φ(z)) + φ(z)B′

H (φ(z))]AL(z)
. (8)
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From equation (6) we get [notice that now y = φ(z)BH (φ(z)) and ω(y, z) = φ(z)]

Π00(z) = a(L)
0

φ(z) [z − BL(φ(z))]

AL(z) [z − φ(z)BL(φ(z))]
Π00((1 − r)z). (9)

Introduce (see also Nobel and Moreno [8]) the retrial function

R(z) := a(L)
0

φ(z) [z − BL(φ(z))]

AL(z) [z − φ(z)BL(φ(z))]
.

We see thatR(0) = 1 and after some calculation, using L’Hôpital and result (8) we
find

R(1) = a(L)
0

1 − A′
H (1)[B′

H (1) + 1] − A′
L(1)B′

L(1)

1 − A′
H (1)[B′

H (1) + 1] − A′
L(1)[B′

L(1) + 1] .

Notice that in the denominator the stability condition shows up. Rewriting equation
(9) gives via iteration

Π00(z) = R(z)Π00((1 − r)z) = R(z)R((1 − r)z)Π00

(
(1 − r)2z

)
= · · ·

=
n−1∏

i=0

R((1 − r)i z)Π00
(
(1 − r)nz

)
, (10)

and now, sending n to infinity, we get

Π00(z) =
∞∏

i=0

R((1 − r)i z)Π00(0) (11)

For the technique to prove the convergence of the infinite product
∏∞

i=0 R((1−r)i z)
we refer to [8]. So, our next problem is to calculate Π00(0). From equation (11) we
see that is it sufficient to calculate Π00(1− r). We plug the result (9) in equation (6).
This gives

Π0(y, z) = a(H)
0

AL (z) [yBL (ω(y, z)) − zBH (ω(y, z))]R(z) + a(L)
0 y [z − BL (ω(y, z))]

z [y − ω(y, z)BH (ω(y, z))]
×Π00((1 − r)z). (12)

Because Π0(1, 1) is the long-run fraction of time slots that the server is idle and we
can conclude from Little’s Law that

Π0(1, 1) = 1 − A′
H (1)B′

H (1) − A′
L(1)B′

L(1)

we can find an expression for Π00(1− r) using equation (12). Notice that ω(y, 1) =
AH (y).
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Π0(1, 1) = lim
y→1

a(H)
0

[yBL (AH (y)) − BH (AH (y))]R(1) + a(L)
0 y [1 − BL (AH (y))]

y − AH (y)BH (AH (y))

×Π00(1 − r) =

a(H)
0 a(L)

0

(
1 − A′

H (1)[B′
H (1) − B′

L (1)]) (1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)B′

L (1)
)+

−A′
H (1)B′

L (1)
(
1 − A′

H (1)[B′
H (1) + 1] − A′

L (1)[B′
L (1) + 1])

(
1 − A′

H (1)[B′
H (1) + 1]) (1 − A′

H (1)[B′
H (1) + 1] − A′

L (1)[B′
L (1) + 1])

×Π00(1 − r) =

[after some algebra!] = a(H)
0 a(L)

0
1 − A′

H (1)B′
H (1) − A′

L (1)B′
L (1)

1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)[B′

L (1) + 1]Π00(1 − r),

from which we find

Π00(1 − r) = 1 − A′
H (1)[B′

H (1) + 1] − A′
L(1)[B′

L(1) + 1]
a(H)
0 a(L)

0

.

We remark here that interchanging the limits, i.e. consideringΠ0(1, 1) = limz→1 Π0
(1, z), leads to the same result, because Π0(y, z) is continuous at the point (1, 1),
although at first sight the expression looks very different. To double-check our result
we give the details. Notice that ω(1, z) = AL(z) and we get

Π0(1, 1) = lim
z→1

a(H)
0

AL (z) [BL (AL (z)) − zBH (AL (z))]R(z) + a(L)
0 [z − BL (AL (z))]

z [1 − AL (z)BH (AL z))]

×Π00((1 − r)z) =

a(H)
0 a(L)

0

(
1 − A′

L (1)[B′
L (1) − B′

H (1)]) (1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)B′

L (1)
)+

−[1 − A′
L (1)B′

L (1)] (1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)[B′

L (1) + 1])

A′
L (1)[B′

H (1) + 1](1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)[B′

L (1) + 1])

×Π00(1 − r) =

[again after some algebra!]

= a(H)
0 a(L)

0
1 − A′

H (1)B′
H (1) − A′

L (1)B′
L (1)

1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)[B′

L (1) + 1]Π00(1 − r).

So, slightly rewriting equation (11), we get an explicit expression for the partial
p.g.f. Π00(z),
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Π00(z) =
∞∏

i=0

R((1 − r)i z)

R((1 − r)i )
R(1)Π00(1 − r)

= 1 − A′
H (1)[B′

H (1) + 1] − A′
L(1)B′

L(1)

a(H)
0

∞∏

i=0

R((1 − r)i z)

R((1 − r)i )
. (13)

Next, using this expression for Π00(z) and the expression for R(z) we also get an
expression for Π0(y, z) from equation (12). After canceling out common factors we
find

Π0(y, z) = a(H)
0

AL (z) [yBL (ω(y, z)) − zBH (ω(y, z))]R(z) + a(L)
0 y [z − BL (ω(y, z))]

z [y − ω(y, z)BH (ω(y, z))]
×Π00((1 − r)z) =

(1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)[B′

L (1) + 1])
⎛

⎝
∞∏

i=1

R((1 − r)i z)

R((1 − r)i )

⎞

⎠

×φ(z) [yBL (ω(y, z)) − zBH (ω(y, z))] [z − BL (φ(z))] + y [z − BL (ω(y, z))] [z − φ(z)BL (φ(z))]

z [y − ω(y, z)BH (ω(y, z))] [z − φ(z)BL (φ(z))]
.

(14)

Finally, we approach our main goal, an expression for the three-dimensional p.g.f.
Π(w, y, z). From equation (5) we have

Π(w, y, z) =
AH (y)AL (z)z [wBH (w) − y]Π0(y, z) + a(H)

0 AL (z)w [yBL (w) − zBH (w)]Π00(z)

+a(H)
0 a(L)

0 wy [z − BL (w)]Π00((1 − r)z)

yz [w − AH (y)AL (z)]
.

(15)

For future use it is worthwhile to factorize out the common factor Π00((1− r)z) in
the numerator. This gives after some manipulations and writing throughout ω(y, z)
for AH (y)AL(z),

Π(w, y, z) = 1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)[B′

L (1) + 1]
a(L)
0

⎛

⎝
∞∏

i=1

R((1 − r)i z)

R((1 − r)i )

⎞

⎠

×

⎡

⎢⎢⎢⎣

ω(y, z) [wBH (w) − y]

(
AL (z) [yBL (ω(y, z)) − zBH (ω(y, z))]R(z)

+a(L)
0 y [z − BL (ω(y, z))]

)

+AL (z)w [yBL (w) − zBH (w)]R(z) [y − ω(y, z)BH (ω(y, z))]

+a(L)
0 wy [z − BL (w)] [y − ω(y, z)BH (ω(y, z))]

⎤

⎥⎥⎥⎦

yz [w − ω(y, z)] [y − ω(y, z)BH (ω(y, z))]
.

(16)

Notice that in the denominator still the factor a(L)
0 is present because we did not

spell out the retrial functionR(z) in the numerator. Doing that would also cancel out
the factor a(L)

0 .
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From expression (16) we find the marginal p.g.f.’s L(y) := Π(1, y, 1) and
Q(z) := Π(1, 1, z) of the limiting distribution of the queue length and the orbit
size, respectively. To get rid of the factor a(L)

0 introduce R∗(z) = R(z)/a(L)
0 . Then

we find

L(y) = (1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)[B′

L (1) + 1]) 1 − y

y[1 − AH (y)]

×
AH (y)

(
[yBL (AH (y)) − BH (AH (y))]R∗(1)

+y [1 − BL (AH (y))]

)
− R∗(1) [y − AH (y)BH (AH (y))]

y − AH (y)BH (AH (y))
,

(17)

and, using the definition of R∗(z) and some further simplification,

Q(z) = (1 − A′
H (1)[B′

H (1) + 1] − A′
L(1)[B′

L(1) + 1])
( ∞∏

i=1

R((1 − r)i z)

R((1 − r)i )

)

×
(

1 − z

1 − AL(z)

)(
φ(z) − 1

z − φ(z)BL(φ(z))

)
. (18)

Notice that from the expressions (17) and (18) we can check that L(1) = 1 and
Q(1) = 1. Of course we can also write down the two-dimensional p.g.f. T (y, z) :=
Π(1, y, z) of the joint limiting distribution of the queue length and the orbit size,

T (y, z) = (1 − A′
H (1)[B′

H (1) + 1] − A′
L(1)[B′

L(1) + 1])
( ∞∏

i=1

R((1 − r)i z)

R((1 − r)i )

)

×

⎡

⎢⎢⎣
ω(y, z) [1 − y]

(AL(z) [yBL(ω(y, z)) − zBH (ω(y, z))]R∗(z)
+y [z − BL(ω(y, z))]

)

+AL(z) [y − z]R∗(z) [y − ω(y, z)BH (ω(y, z))]
+y [z − 1] [y − ω(y, z)BH (ω(y, z))]

⎤

⎥⎥⎦

yz [1 − ω(y, z)] [y − ω(y, z)BH (ω(y, z))]
.

(19)

Because T (y, z) 
= L(y)Q(z) we see immediately that the queue length and the
orbit size are dependent. Our next step is to calculate the mean queue length L and
the mean orbit size Q. Of course we have

L = L′(1) and Q = Q′(1).

After tedious calculations we find
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L = −
(

A′′
H (1)

2A′
H (1)

+ A′
H (1)B′

H (1) + A′
L (1)B′

L (1)

)

+1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)[B′

L (1) + 1]
1 − A′

H (1)[B′
H (1) + 1]

×
[

A′′
H (1)

2A′
H (1)

+
(
A′

H (1) − A′′
H (1)

2A′
H (1)

− 1

)
B′

H (1) +
(
1 + A′′

H (1)

2A′
H (1)

)
B′

L (1)+

1

2
A′

H (1)
(B′′

L (1) − B′′
H (1)

)]

+ A′′
H (1)[B′

H (1) + 1] + [A′
H (1)

]2 [B′′
H (1) + 2B′

H (1)]
2(1 − A′

H (1)[B′
H (1) + 1])

+ A′
L (1)

1 − A′
H (1)[B′

H (1) + 1]

[
A′′

H (1)

2A′
H (1)

+
(
1 + A′′

H (1)

2A′
H (1)

)
B′

L (1) + A′
H (1)B′

H (1)+

A′′
H (1)

2A′
H (1)

B′′
L (1)

]

and

Q = (1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)[B′

L (1) + 1])
{

φ′′(1)[1 − φ′(1)B′′
L (1)] + [

φ′(1)
]3 [

2B′
L (1) + B′′

L (1)
]

2A′
L (1)

(
1 − φ′(1)[B′

L (1) + 1])2

+
(

φ′(1)
1 − φ′(1)[B′

L (1) + 1]

)⎡

⎣ A′′
L (1)

2
[A′

L (1)
]2 + 1

A′
L (1)

∞∑

i=1

(1 − r)iR′((1 − r)i )

R((1 − r)i )

⎤

⎦

⎫
⎬

⎭ .

Using equation (8) we can easily evaluate φ′(1) and φ′′(1) in terms of the p.g.f.’s
AL(·), AH (·), BL(·) and BH (·). It is more cumbersome to evaluate the terms of
the series because for every argument (1 − r)i the calculation of R((1 − r)i ) and
R′((1 − r)i ) requires that the values φ((1 − r i ) and φ′((1 − r)i ) are determined as
the solution of the two equations (7) and (8) with z = (1 − r)i . This solution must
be found numerically. We skip further details.

To find the covariance of the queue length and the orbit size we first calculate
LQ := ∑∞

i=1
∑∞

n=1 inπ(1, i, n). Using the two-dimensional p.g.f T (y, z) we have

LQ =
[

∂2

∂y∂z T (y, z)
]

y=1,z=1
and then the covariance is Cov(L , Q) = LQ − L · Q,

where we used L and Q as artifact random variables denoting the steady-state queue
length and the orbit size, respectively. We do not spell out the long expression for
LQ, the evaluation simply requires a lot of tedious algebra. We end this section to
announce that numerical results for L, Q and Cov(L , Q) will be presented in an
extended version of this paper. This work is in preparation.
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4 The Mean Busy Period

The busy period in the delay/retrial model is defined as the time lapse from the epoch
that the server starts a first service after the server has been idle due to the fact that
the system was empty, i.e. no waiting high-priority customers in the queue and no
low-priority customers in the orbit, until the first departure epoch leaving behind an
empty system again. Introduce B for this busy period and I for the time lapse that the
system is empty between two successive busy periods. It is clear that the idle period
is geometrically distributed with parameter 1 − a(H)

0 a(L)
0 . So, from the the Renewal

Reward Theorem we get

π(0, 0, 0) =
1
/(

1 − a(H)
0 a(L)

0

)

1
/(

1 − a(H)
0 a(L)

0

)
+ IE[B]

.

From (13) we have

π(0, 0, 0) = Π00(0) = 1 − A′
H (1)[B′

H (1) + 1] − A′
L(1)B′

L(1)

a(H)
0

∞∏

i=0

1

R((1 − r)i )
.

So we get

E[B] = 1

1 − a(H)
0 a(L)

0

⎡

⎣ a(H)
0

1 − A′
H (1)[B′

H (1) + 1] − A′
L (1)B′

L (1)

∞∏

i=0

R((1 − r)i ) − 1

⎤

⎦ .
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