The Rise of “the Mathematicals”: Placing Maths
into the Hands of Practitioners—The Invention
and Popularization of Sectors and Scales

Joel S. Silverberg

Abstract Following John Napier’s invention of logarithms in 1614, the remainder
of the sixteenth century saw an explosion of interest in the art of mathematics as
a practical and worldly activity. Mathematics was no longer the exclusive realm
of scholars, mathematicians, astronomers, and occasional gentlemen. Teachers of
mathematics, instrument makers, chart makers, printers, booksellers, and authors of
pamphlets, manuals, and books developed new audiences for the study of mathemat-
ics and changed the public’s perception of the status and aims of mathematics itself.
The inventions of mathematical instrument makers facilitated the rapid expansion
of sophisticated mathematical problem solving among craftsmen and practitioners
in areas as diverse as navigation, surveying, cartography, military engineering,
astronomy, and the design of sundials.

1 Introduction

During the period between Johann Miiller (Regiomontanus) (1436-1476) and Bar-
tolomeo Pitiscus (1561-1613) the entire science of planar and spherical trigonom-
etry was reimagined and systematized. The development of new functions, new
tables, new instruments, new applications and new audiences flourished. Increas-
ingly, the geometry of regular shapes was seen to have real-world applications
of importance beyond the realm of scholars, and beyond its traditional area of
application: astronomy (Finck 1583; Pitiscus 1600; Regiomontanus 1967; Rheticus
and Otho 1596; Viete 1579).

Subsequent to this restructuring of trigonometry, a family of instruments that
came to be called “sectors” were developed in England and on the continent that
greatly broadened the community of practitioners who would come to employ this
new trigonometry in areas of more practical concern (Galilei 1606; Gunter 1623;
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Hood 1598). In a very real sense, the mathematics of the heavens was brought down
to the realm of earthly concerns and endeavors.

Immediately following this period a second revolution in trigonometric appli-
cations was ushered in by the invention of logarithms by Napier (1614, 1618)
and the rapid development of tables of the logarithms of both natural numbers
and trigonometric values by Napier and Briggs (1619) and others. A second
family of mathematical instruments was promptly developed and refined which
enabled the easy manipulation of these new logarithmic or artificial values. These
instruments were called rules or scales, often referred to as Gunter’s Rules or simply
Gunters in England (Gunter 1623). Originally engraved on the arms of a cross-staff,
they became instruments in their own right, engraved on a two-foot long oblong
shaped piece of wood, bone, ivory, or brass, with a multiplicity of scales (most of
which were logarithmic scales) which were manipulated with the aid of a pair of
dividers.

Due to limitations of time and space, this paper limits its discussion to sectors
and scales of English origin. English instruments were not only among the very
first to be developed, but it is the English tradition that led to the most highly
complex and sophisticated of these instruments, and among those whose use was
most widespread and long lasting. The comparison between English instruments
and their continental counterparts in Italy, France, and Germany will be reserved for
another time and place.

2 The Importance of Proportional Analogies in General
Problem Solving

An analogy is a comparison between two things which have some features that are
similar and other features which differ. In mathematics, we may wish to compare
two lines or two circles or two spheres, but the two similar objects may have
different lengths, areas, volumes. This comparison of differences is expressed as
aratio.

A proportional analogy may be understood as an analogy between four things, in
which the relationship between A and B is the same as the relationship between C
and D, or A:B = C:D, or as in the notation I will use in this paper, A:B :: C:D. In
this case A and B are like objects, and C and D are like objects. If the relationship
between like objects is expressed as a ratio of some characteristic which differs
between the like objects, then a proportional analogy states that, the ratio of the
differing characteristic of similar objects A and B is the same as the ratio of the
differing characteristic between similar objects C and D, for some characteristic of
A and B and some (possibly different) characteristic of C and D.

Finding such a relationship was generally the primary approach to framing and
solving many problems for which we today would use arithmetic or algebra. In
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modern times we generally rely on the algebraic solution of equations or systems
of equations. The earlier approach is closely tied to the geometry of similar figures
since the ratios of corresponding or homologous sides of two similar figures always
have the same ratio. This is perhaps best illustrated by way of an example.

Here is a problem drawn from William Kempe’s English translation (Ramus and
Kempe 1592, p. 50) of the arithmetic portion of Pierre de la Ramée’s 1569 book on
arithmetic and geometry (Ramus 1569, Book II, Chap. 7, p.29).

A post goeth from Plimmouth to London in 5 dayes, another commeth from London to
Plimmouth more speedily in 4 dayes, admit that they begin their journey both on Monday
at [3 of the clock and 20 minutes] in the morning, when and where shall they meete?

A modern student might note that since distance traveled is equal to the product
of the rate and duration of travel, it follows that the speed of the slower coach, Rgower
is equal to the unknown distance between Plymouth and London (let us call it D),
divided by 5 days, while the speed of the faster coach Ryager Would be D divided by
4 days. Rearranging the equation D = R x T we have T = %.

Since the two coaches started their journey at the same moment, when the
coaches meet, they will each have traveled the same amount of time, but will have
covered different distances, say x and y, where x + y = D. The time that the faster
coach traveled is thus DL/S and must equal the time that the slower coach traveled,
DL/4' Simplifying the equation we have 5x = 4y. Substituting y = D — x in the
previous equation yields 5x = 4(D — x) orx = %D and y = %D. The time elapsed

4y

will be equal to 5—3 or 3, each of which equals 2—90 of a day, or 2%.

Compare this with the solution given by Kempe.

Set downe the former propositions thus: the first endeth his journey in 5 dayes, therefore in
1 day he will ende é of the journey: the second endeth his journey in 4 dayes, therefore in 1
day, i : these parts, added together [ i + é ], are 2—90 of the journey. Whereupon conclude,
seeing [that] % of the journey is gone in 1 day, [it follows that], %[’h of the journey], that
is [the entirety of the journey, or ] 1, is gone in 2, that is 2% of a day. This is the time

9
of their meeting, to wit, Wednesday at 8 of the clocke and 40 minutes in the fore noone.

Then say, the first [post] in 5 dayes goeth 1 [that is, the entire distance from Plymouth to
London], therefore in % dayes he will go % of the journey, which is the place of meeting,
and then the second hath gone the rest of the journey, to wit, % [of the journey].

Since most problems were framed as proportional analogies, instruments which
aided in visualizing and solving them were a useful aid to the mathematical
practitioner. Three such instruments are examined in this paper: sectors, plain
scales, and Gunter’s scales. There are many seventeenth- and eighteenth-century
works devoted to these instruments, but they are frequently incomplete, relying
on the reader’s knowledge of conventions that frequently go unexplained, or even
unmentioned—conventions that are unknown to the modern reader. Readers of that
era had access to physical instruments that are difficult to obtain today, as well as
access to tutors, teachers, instrument makers, and shopkeepers anxious to give hands
on instruction in their application and use. Such mentors are no longer available
to those desirous of understanding these instruments. I have relied primarily upon
the writings of Galilei (1606), Hood (1598), Gunter (1623)—the inventors of these



26 J.S. Silverberg

instruments—together with manuals written by their contemporaries and close study
and experimentation with antique instruments that I have purchased to help me
understand how the instruments were used.

3 Description and Use of the Lines of the Sector

The construction of the sector is modeled after the demonstration by Euclid that the
corresponding sides of similar triangles are proportional.

In equiangular triangles the sides about the equal angles are proportional, and those are
corresponding sides which subtend the equal angles [Euclid, Book VI, Prop. 4].

In practice, nearly all sectors (excepting those of Thomas Hood) employ pairs
of triangles that are not only equiangular (i.e., similar), but also isosceles. The
sectors are constructed by joining two legs at a pivot point. The legs are inscribed
with pairs of identical scales which originate at the pivot point. A pair of dividers
can be used to measure the distance from the pivot of the sector to a number
engraved on one of these paired scales on the leg of a sector. We call this a parallel
distance. The dividers can also be used to measure or set the distance between
like numbers engraved on some pair of scales on the two legs of the sector. This
we call a transverse distance. The pairs of scales are offset in such a way that the
transverse distance between paired scales at the same parallel distance from the
pivot are the same for each pair of scales. The various pair of scales are designed
that certain scales can be used by performing some manipulations on one pair of
scales, followed by a manipulation on a second (and different) pair of scales, as we
will explain below.

Early sectors contained a pair of scales of equal parts (sometimes called
arithmetic lines), a pair of scales of surfaces (geometric lines) and a pair of scales
of solids (stereometric lines). There were also polygonal lines, tetragonal lines, and
lines of metals. A quadrant was often attached with which to protract or to measure
angles (Fig. 1).

3.1 Line of Lines

The purpose of these lines is to solve proportional analogies of the form A:B ::
C:D where A, B, and C are known, and D is desired. Euclid V1.4 proves that
corresponding parts of similar triangles are proportional. The form of the sector
(comprising a pivot point, two lateral or lengthwise lines and two transverse or
parallel lines) creates similar triangles. If we open the sector so that the transverse
distance between A and A on the lines of lines is equal to C, then the transverse
distance measured from B to B will be the desired value of D. See Fig.2 for a
numerical example.
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Transverse, or parallel, distance

Fig. 1 Each leg of the sector has a scale marked Sine, labeled from 0° to 90°. The lowermost of
the scales on each leg are marked Tangent, and are marked from 0° to 45°. The distance from the
pivot or center point of the sector to any point on the leg is proportional to the sine or tangent of the
angle marked at that point. The right-hand ends of each of these four scales lie on the circumference
at a circle centered at the pivot. The length of the chord on this circle connecting the two 90° marks
on the Lines of Sines is the same as the length of the chord connecting the two 45° marks on the
Line of Tangents. That common value is the radius upon which all trigonometric values are based,
and can be set by the user by widening or narrowing the opening of the sector, any transverse or
parallel distances changing accordingly

Similarly if two transverse distances and one parallel distance are known the
problem may be solved as follows. Open the sector until the transverse distance
from A to A is equal to the lateral distance from the pivot point to B. Then open
the dividers to a transverse distance equal to C and move the transverse along the
legs of the sector until it extends between numerically identical labels on the lateral
scales, which will indicate the value of D.

3.2 Line of Superficies

The purpose of these lines is to allow the solution of proportional analogies
that relate the ratio of the areas of similar figures to the ratio of the lengths of
corresponding sides. The lengths of corresponding sides are measured on the Line
of Lines, whereas the areas of the similar figures are measured on the Line of
Superficies. These lines may also be used to determine the ratio of areas in similar
figures whose ratio of corresponding sides are known, or to determine the ratio by
which the side of a given figure must be increased or decreased in order to enlarge
or reduce the area according to a desired ratio.



28 J.S. Silverberg

4 10
4 10

desired fourth proportional

Fig. 2 Given three numbers, to find a fourth in discontinual proportion. Find a value, x, such that
10 : 4 :: 15 : x using the Lines of Lines. The dividers are set to the lateral distance from the
pivot to the point 4 on one of the lines of lines. The sector is then opened so that the parallel
distance between the points marked 10 on the two lines of lines is the same as the distance between
the points of the divider. This establishes the transverse or parallel distance of four units between
the points marked ten. Without changing the opening angle of the sector, set the dividers so the
distance between its points is equal to the transverse or parallel distance between the points marked
15 on the two Lines of Lines, and then, without changing the opening of the dividers, measure the
distance between the divider’s points on either of the Lines of Lines. One point of the dividers will
rest on the pivot point, the other will point to the value engraved on the scale indicating the value
of the desired fourth proportional. In our example the value of the desired fourth proportional, x,
will equal six

The Lines of Superficies were designed so that the distance from the pivot point
to a number engraved on the scale is equal to the area of a square, the length of
whose side is the number engraved on the scale at that point. In modern terms the
distance to the pivot is the square of the number on the scale, or equivalently, the
number inscribed at any point on the scale is the square root of the distance from
that point to the pivot of the sector. The purpose of this line is to allow the solution
of proportional analogies that relate the ratio area of similar figures to the ratio of
the lengths of corresponding sides. This is based on Euclid VI.20 which proves that
the area of similar polygons are to each other as the ratio duplicate of that which the
corresponding sides have to each other, i.e., in modern terms, the areas of similar
polygons varies as the square of the lengths of their corresponding sides. In the
case of circles, Euclid XII.2 proves that the areas of circles are to each other as
the squares on their diameters. The Lines of Solids provided a similar set of scales
which could be used to adjust the linear measure of any regular solid (or a sphere) so
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Fig. 3 The legs on the upper image (the Lines of Superficies) are labeled 1, 1, 2, 3, ..., 10. The
distance of these labels from the central pivot represent areas of 1, 10, 20, 30, ..., 100 square units.
In other words, the first point labeled 1 represents an area of 1, the second occurrence represents
an area of 10, the following labels represent areas of 20, 30, 40, etc. The distance from the pivot
point to any such label when measured on the Line of Line (the inner most scales on the lower
image in this figure) is the linear measure (radius, diameter, or side) of the figure whose area is
on the label. The side of the figure with area 100 (or any other value) can be set by changing the
angle of the sector opening. The Lines of Solids in the lower image is marked 1, 1, 1,2, 3, ...,
10, and the distance from the pivot point to these labels represent volumes of 1, 10, 100, 200, 300,
..., 1000 cubic units, respectively. These distances when measured on the line of lines provide the
linear measure of a figure with the associated volume

that the volume was altered according to any given ratio. Conversely, if the volume
was changed according to a certain ratio, one could calculate the corresponding ratio
by which the side of the solid or the diameter of the sphere would change. See Fig. 3.

For example, given a figure with one side equal to 3 inches representing a 20
acre piece of land, and a similar figure (in the geometric sense of the word) with
corresponding side equal to 5 inches, we desire the acreage of the enlarged piece of
land. First set the dividers to extend from the pivot to 3 on the Line of Lines. Then
open the sector until the transverse distance between 2 and 2 (representing 20 acres)
on the Lines of Superficies is equal to the extent of the dividers. Without disturbing
the pivot, reset the dividers to extend from the pivot to 5 (inches) on the Lines of
Lines. Finally find identical numbers on the Line of Superficies with a transverse or
parallel distance of 5 inches. Read the value on the Line of Superficies and that will
be your area in acres. In Fig. 4 we see that the plot with a 5 inch side contains 55.5
acres. One can confirm this by noting that the area of the figures will be in the ratio
of the square of the sides. Thus 9 : 25 :: 20 : x and therefore the requested acreage
is 25 x 20 divided by 9, or 500/9 which is 55 and 5/9 acres.

On the other hand, if we know the ratio of areas and the side of one of the figures,
we can determine the length of the side in the second figure. Suppose we know that



30 J.S. Silverberg

Line of Lines

Fig. 4 If a plot with one side measuring 3 inches represents 20 acres of land, what is the area of a
similar figure with the corresponding side equal to 5 inches?

the first field contains 2 acres, and the second field contains 5 acres. If the length
of a certain side is 4 inches as measured on the first plot, when we draw a similar
figure for the 5 acre plot, how long will the line be? Set the dividers to extend from
the pivot to 4 on the line of lines and open the sector’s pivot until the transverse
distance between 2 and 2 on the line of superficies agrees with the dividers.

Without changing the angle at which the sector is open, reset the dividers to
extend from 5 to 5 on the line of superficies and measure that extent as a lateral
distance on the line of lines to determine the length of the corresponding side on the
second plot. This line of lines in combination with the line of superficies could also
be used to find squares and square roots of numbers within the accuracy with which
the scales could be read.

3.3 Lines of Circular Parts

In his Introductio in analysin infinitorum of 1748 Leonhard Euler introduced the
modern concept of trigonometric functions as ratios of sides of a triangle (Euler
1748). Prior to that year, trigonometric values were conceived as physical line
segments, related to a base circle of arbitrary radius. The lines of circular parts
often included lines of chords, sines, tangents, and secants. See Fig. 5.
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Fig. 5 Prior to the mid eighteenth century, circles of different radii had different trigonometric
values and trigonometric tables were based on circles of a particular radius, often referred to as the
total sine, or sinus totus. Euler’s expanded view of trigonometric functions was not widely adopted
by teachers and practitioners of mathematics unit the mid-nineteenth century

3.4 The Particular Lines

If any room remained on the sector after inscribing the Lines of Lines, Sines,
Tangents, Chords, Superficies, and Solids, the instrument maker might fill up the
unused space with an assortment of lines which would be most useful to the
applications of most interest to his client. Some of the more common included extra
lines are described below.

3.4.1 The Lines of Quadrature

The purpose of the Lines of Quadrature was to determine the length of the side of
a square equal in area to the area of any given circle, or to determine the radius of
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Radius of a quadrant of a circle

The Line of Quadratures (90)

Semidiameter of a Circle (S)

—_— = B pu— o S e i = —, ee— — 4

Sides of regular Polygons of Side of a Square (Q)

10,9, 8, 7, 6, or 5 sides

Fig. 6 The Lines of Quadrature are used to determine the length of the side of a square equal in
area to a polygon with a side of known length or vice versa

a circle equal in area to any given square, or determine the length of the side of
a regular polygon of 5 through 10 sides equal in area to a given circle or a given
square.

The Lines of Quadrature were labeled Q, 5, 6, 7, 8, 9, 10, and S. The numerical
labels indicate that the transverse distance between like numbers is the length of a
regular polygon with that number of sides. The transverse distance between points
labeled Q is the side of a square whose area is equal to that polygon. The transverse
distance between points labeled S is the length of the semi-diameter (i.e., the radius)
of a circle with an area equal to that of the polygon. See Fig.6. All transverse
distances are measured on the Line of Lines.

3.4.2 The Lines of Segments

The Lines of Segments were designed to divide a circle of any given diameter into
two parts by a chord perpendicular to the diameter in such a way that the areas of
the two segments created were in a given ratio, or to find the proportion between the
area of the entire circle and that of a given segment thereof.

3.4.3 The Lines of Inscribed Bodies and the Line of Equated Bodies

The Lines of Inscribed Bodies were labeled D, I, C, S, O, T, which signified the
length of the sides of a dodecahedron, icosahedron, cube, octahedron, tetrahedron
inscribed in a sphere of semidiameter (i.e., radius) S. See Fig. 7.

3.4.4 The Lines of Metals

The scales were calibrated according to the volume of any metal, which would
have the same weight as a specified volume of any reference metal. English sectors



The Rise of “the Mathematicals”: Placing Maths into the Hands. . . 33

Fivee .,/.'xm....-/.,./zﬂma,-..,

Side of a Cube

Side of an .l’rr.l.wr;n".'{'{!r'un N Side of an Octohedron

/ 2 Y e B
| | |
Side of Dodecahedron  Semidiameter of a Sphere Side of a Tetrahedron

Fig. 7 The Lines of Inscribed Bodies. The transverse distance (from the Line of Lines) was set
between any like markings, and the transverse distance measured between any other matching
markings (when measured on the Line of Lines) would give the radius of the sphere or the length
of the side of a different platonic solid of equal volume

3 Lead 1(\"!:'::\: (Saturn)
(..uld (Jupiter) _ . -3
Line of Metals Sun) :____;__{)H_Q--‘é"_—\‘
e o ——¥Y - _
[ ] e -] -
. —t—E— ' ' -
=t ' Quicksilver  Silver Iron
(Mercury) (Moon)  (Mars)
3l LA - £ =1 —
o T ———
—F—h—o—p % L]
” Gold B
Used in Combination with the Line of Solids (Sun) l,(:il(l Copper e
(Jupiter) (Venus) e
(Saturn)

Fig. 8 The lines of metals

provided markings for Gold, Mercury, Lead, Silver, Copper, Iron, and Tin. Each was
marked with its alchemical symbol at a distance from the sector pivot related to the
volume needed to match the weight of a volume of another metal.

The least dense of the metals (tin) was a distance of 10 from the pivot. The
symbol for Gold was that of the sun, for Quicksilver: Mercury, for Lead: Jupiter,
for Silver: the moon, for Copper: Venus, for Iron: Mars, and for Tin: Saturn. See
Fig. 8. When used in combination with the Line of Solids, the linear measure (most
often the radius of a sphere or the side of a cube) which corresponded to the volume
determined to have the desired weight. The scale could be used in either direction,
i.e., to find the volume of a different metal of equivalent weight, or to find the weight
of a different metal of equivalent volume. Such calculations were central to the art
of gunnery and artillery.

4 Logarithmic Scales and Rules

Edmund Gunter’s De sectore et radio contains a detailed description of the
construction and use of his version of Hood’s sector. The English title of this work is
The Description and Use of the Sector, The crosse-staffe and other instruments For
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such as are studious of Mathematical practice. The work is divided into six “books”:
the first three books are devoted to the sector and the second three are devoted to
the crosse-staffe. The crosse-staffe is composed of the Staffe, the Crosse, and three
sights. Gunter’s staff was three feet in length, the cross 26 inches long. On the Staffe
are inscribed a line of equal parts for measure and protraction, and a line of tangents
for measuring of angles, a line conversion between the sea chart and the plain chart,
and four lines for working with proportions.

The lines for working with proportions are one of the first appearances of
logarithmic scales. Gunter served as the third Gresham Professor of Astronomy
(1619-1620). Henry Briggs, his mentor, was the first Gresham Professor of
Geometry who left Gresham College in 1619 to become the first Savilian Professor
of Geometry at Oxford, and Gunter assumed his position at Gresham upon Briggs’s
departure for Oxford. It was Briggs who traveled to Edinburgh to visit Napier and
worked for 1015 years to develop and popularize Napier’s logarithms. It is not a
surprise then to find that the four new lines upon Gunter’s Crosse-Staffe were scales
of logarithms, log-sines, log-tangents, and log-versed sines. The “bookes of the
crosse-staffe” explain how to use these scales together with a set of dividers to solve
proportional analogies with a pivoting instrument such as the sector, but with a linear
rule. This proved so useful and popular that a separate instrument was developed for
purposes of calculation which consisted of a simple oblong shaped rule, inscribed
with scales for protraction and measurement. The scales included a line of equal
parts, a line of chords, scales for either orthographic or stereographic projection
of the sphere onto the plane (a scale of natural sines and a scale of natural semi-
tangents), and a set of logarithmic scales (numbers, sines, tangents, secants, and
versed sines) for solving proportional analogies and for performing multiplications
and divisions. The instrument became known as a Gunter’s Rule or a Gunter’s Scale
and remained in use from the 1620s until the third quarter of the nineteenth century.
It survived in a modified form as the slide-rule from the seventeenth century until
the invention and commercialization of electronic calculators and computers in the
1970s.

The key to the importance and utility of this new instrument was the ease
with which proportional analogies could be resolved with the aid of a variety of
logarithmic scales. Since the scales are logarithmic, the logarithm of the ratio of
a to b is the distance between the points labeled a and the point labeled b on the
line of numbers. This can be used to find a fourth proportional (the Golden Rule or
Regula Aurea of problem solving techniques), with two simple movements of a pair
of dividers. First open the dividers so that its legs extend from point @ to point b on
the Line of Numbers. Then move the dividers so that one leg points to the point c.
The other leg will point to point d whose value as read on the scale is the desired
fourth proportional. See Fig. 9.
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Fig. 9 To solve the proportional analogy A:B :: C: ??, simply set the dividers to extend from A to
B in the Line of Numbers, then move the dividers to C and they will extend to the desired fourth
proportional. Note that the direction from A to B (whether to the left or to the right) must be the
same as the direction from C to the desired proportional

5 Construction and Use of the Scales of the Gunter’s Rule

The scales on Gunter’s Rule were many, but they can easily be divided into
categories. The rule does not have any paired scales as do sectors, since it does
not use Euclid’s postulate on similar triangles to solve proportions, but instead
uses logarithmic scales. There are, however, a small number of non-logarithmic,
or natural, scales. There are scales of equal parts which are used for constructing
lines of a particular length or for measuring the length of lines. There is a line of
chords for measuring angles or laying out angles of a particular size. There are also
lines of sines, tangents, semi-tangents, and secants which are not logarithmic. These
were not used for solving proportions or performing arithmetic with trigonometric
values. Rather, they were used for the geometric construction of both orthographic
and stereometric projections of arcs on the surface of a sphere onto the plane. These
projections were used in navigation, astronomy, and cartography, and they allowed
the practitioner to draw planar projections of spherical triangles, great and lesser
circles, etc. and to measure and interpret their properties in the plane.

The logarithmic scales included the Line of Numbers, Line of Sines, Line
of Tangents, and Line of Secants. Despite this nomenclature these were scales
of common logarithms, log-sines, log-tangent, and log-secants. There was also
a scale labeled Versed Sine. That scale was in fact a scale of the logarithm of
half of the versed sine of the supplement of the angle marked on the scale. This
scale allowed the use of logarithms to solve spherical triangles where either all
three sides or all three angles were known. Unlike planar triangles, in spherical
trigonometry knowing three angles is sufficient information to determine all three
sides. In particular, the determination of local time, and therefore the determination
of longitude from celestial observations alone require the solution of such triangles.

The next section will explain how the scales on the sector and on the rule
were constructed. With the exception of the logarithmic scales, these scales were
not constructed by calculating values and measuring them out on the instru-
ments; neither were they obtained from tables of values and then measured and
inscribed or engraved. Instead they were geometrically constructed—often through
Euclidean methods, sometimes with an instrumental approach, and occasionally
using mechanical or approximate methods for trisecting an angle or squaring a
circle.
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5.1 Construction of Lines of Equal Parts

The line of lines or line of equal parts requires dividing the length of the sector
or scale into 100 equal parts. Although creating a line that is n times the length of
another is straightforward, given only a straightedge and a pair of dividers, dividing
a line into n equal parts is not. The details of how this was accomplished are
described in Fig. 10.

5.2 Construction of Circular Lines

These scales were generally determined by dividing a quadrant of a circle into
90 divisions, then geometrically constructing the line segments corresponding to
various trigonometric values for each division, and using dividers to transfer those
lengths onto a linear scale. The radius of the circle was chosen to be equal to the
desired length of the scale. Such a diagram was called a Plain Scale. The ingenious
diagram in Fig. 11 contains no fewer than nine scales of circular parts.

Construction of Lines of Equal Parts

A

Fig. 10 Lines of Equal Parts. Suppose we wish to divide a line segment DE into five equal parts,
labeled 2, 4, 6, 8, 10. Construct a perpendicular to DE at D, extending the line an arbitrary distance
to A. Then construct a long line perpendicular to DA at A, extending to B. On line AB mark off 5
equal segment of a convenient length, labeled 2, 4, 6, 8, 10. Draw a line between the point labeled
10 on AB and the point E. Draw a second line from A through D, extending until it meets the
previously drawn line at C. Connect the points 2, 4, 6, and 8 on AB to the point C. Line DE is now
divided into 5 equal parts which may be labeled as desired
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Fig. 11 Construction of the Circular Lines. The arc AD is divided into 9 equal parts, with divisions
every 10°. The distance from point D to each of the arc’s divisions is used to construct a line of
chords upon the chord AD. The divided arc is used to construct a line of sines on radius CD. Lines
of tangents and secants are likewise constructed upon Line DG and AP, respectively. Radius AC
is divided into a line of semi-tangents (the tangent of half the angle marked on the scale). Line
BE is divided into a line of chords of the 8 points of one quadrant of the compass and is marked
Rhumbs. The remaining four scales are specialized scales used for navigation and for the laying
out of sundials. All lines are constructed geometrically

5.3 Construction of Lines of Superficies

The Line of Superficies is a line of the square roots of the corresponding value
on the Line of Lines, and that of the Line of Solids is a line of cube roots of the
corresponding values on the Line of Lines. The reason for this is that the ratio of
the length of the sides of similar figures is equal to the ratio of the square roots of
their corresponding areas and to the ratio of the cube roots of their corresponding
volumes. Since the scale is to be constructed geometrically, the method is to find
the mean proportional between the two values, or to find two mean proportionals
between two values. Those will be equal to the square root of the product of the
two values, or the cube root (and square thereof) of the product of two values. See
Fig. 12.

The construction takes unity for one of those values, and the area or volume as
the other. The mean proportional will be the side of a square of equal area to the
figure. If one determines two mean proportionals between unity and a volume, the
first mean proportion will be the side of a cube with the same volume as the original
figure.

5.4 Construction of Logarithmic Lines

The logarithmic scales were laid out in a different manner. They were taken from
tables of logarithmic values of numbers and logarithms of circular parts, which were
then measured out on an accurate scale of equal parts with a set of diagonal scales
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Fig. 12 Construction of the Line of Superficies. The standard construction (Euclid 1956, Book
VI, Proposition 13) of the mean proportional between 10 and x provides a line segment of length
square root of 10x. If the segments were 1 and x, the altitude of the right triangle formed would
be the square root of x. The purpose of the larger semicircle in this figure is to emphasize that the
value of x may range from O to 10

<3 log 100 - log a feet
[~ log 100 - log b feet
<& , log 100 - log ¢ feet
1< , (log 100 - log 10) feet
Line of (logarithmic)
: e , i il 100 Numbers

Fig. 13 Since the difference of two logarithms is the logarithm of the ratio of their arguments, we
may construct the scale from the difference between the position desired and the right-hand end of
the scale as the difference of their logarithms

L’( { \\Jb \\—1 Lines

??

0° Q7 30° y777°  45° 60° 909 Sines

a:b:sin(0°) :sin(??77?°)

Fig. 14 Application of the artificial (i.e., logarithmic) scales. Using only the Line of (artificial)
Numbers, a fourth proportional is determined. Using the Line of Numbers together with the Line
of (artificial) sines provides solutions to the planar law of sines. Using only the Line of (artificial)
Sines provides solutions to the spherical law of sines

which could measure lengths to three significant figures. These lengths were then
transferred to the rule. However, these scales were laid out as measured from the
right hand (higher valued) end of the scale, towards the lower valued left end of the
scale. These scales have no zero point, but are anchored at the log-sine of a right
angle, or at the log-tangent of 45°, etc. See Figs. 13 and 14.
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6 Three Applications from Astronomy: Solutions
by Sector and Scale Compared

This paper concludes with three practical applications of the sector and scale to solve
important problems in spherical trigonometry related to astronomy, navigation, and
astrology.

The first problem concerns the determination of the solar declination on any
given day of the year. Over the course of a year the position of the sun with respect
to the fixed stars moves about a path called the ecliptic. Each day the sun appears to
move along a small circle in the heavens, parallel to the celestial equator. During
the period from the winter solstice to the summer solstice, that circle gradually
moves northward from the tropic of Capricorn to the tropic of Cancer, while the
remainder of the year it gradually moves southwards from the tropic of Cancer to
the tropic of Capricorn. On each of the equinoxes this circle is coincident with the
celestial equator. The angular distance of this small circle, called the day circle,
north or south of the celestial equator is known as the solar declination. Knowledge
of the declination of the sun on a particular day, together with a measurement of
the altitude of the sun above the horizon at its highest point (local apparent noon)
allows the navigator to determine his latitude.

The second problem concerns the determination of the azimuth of the sun at
sunrise, provided that the solar declination and the observer’s latitude have been
determined through calculation and observation. A comparison of the bearing of the
rising sun as read from a magnetic compass with the corresponding bearing given
by the calculated azimuth provides the amount by which celestial (or true) direction
varies from the direction indicated by the magnetic compass. In the seventeenth
century it was believed that magnetic variation varied with longitude and that a
determination of magnetic variation could be used to determine the longitude of
the observer. It was soon discovered that magnetic variation varies with both time
and place and could not be used to determine longitude. The measurement of
variation could, nonetheless, be used to correct the compass direction to provide
true directions, and thus was of considerable value to the navigator.

The third of our sample problems concerns the determination of local solar
time from celestial observation. The standardized time zones we use today did not
exist until the close of the nineteenth century. Time varied continuously across
time zones, and therefore at the very same instant, ships at different longitudes
(however small this difference) observed different solar or local times. Since ships
are constantly moving, no mechanical clock could be used to determine the local
time, thus celestial determination of local time could be used to regulate and correct
any timepieces used on ship. From the mid-eighteenth century onward, with the
appearance of nautical almanacs recording the positions of the moon with respect
to planets, sun, and stars at every hour of the day as seen from some reference
meridian, lunar measurements together with determination of local time would
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provide navigators with knowledge of their longitude. After the development of
chronometers, synchronized to time at a reference meridian, the determination of
local time when compared to the chronometer time also provided knowledge of
longitude. In all of the cases, the ability to determine local apparent time was an
important navigational tool.

Having discussed the motivation for each of these problems, let us examine how
the use of sector or Gunter’s rule was used to approach each problem in turn.

6.1 Problem 1: Given the Distance of the Sun
Jrom the Equinoctial Point, to Find Its Declination

During the course of the year, the position of the sun moves along the ecliptic, a
great circle at an angle of 23° 30’ to the celestial equator, intersecting the equator
at the positions of the vernal and autumnal equinoxes. During the course of a day,
the sun (at roughly the same point on the ecliptic) moves in a lesser circle about
the celestial north pole. Since the sun moves about 1° along the ecliptic during
each day, knowledge of the date determines the distance along the ecliptic from
the nearest equinox. That information may be used to determine the distance of the
sun (its declination) above or below the celestial equator. A right angled spherical
triangle is formed by the celestial equator, the ecliptic, and the meridian of longitude
of the sun. See Fig. 15. Using the spherical law of sines, we know that the ratio of

Fig. 15 Given the sun’s
ecliptic longitude on a
particular day (determined by
the number of days from
since the equinox), to find the
solar declination, i.e., the
sun’s angular distance above
or below the equator

JZenith
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Fig. 16 Use of the sector to solve the spherical law of sines
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Fig. 17 Use of Gunter’s scale to solve a problem using the spherical law of sines

the sine of an angle to the sine of its opposite side is the same for any angle and its
opposite side. Therefore as the sin 90° is to the sin 60° so is sin 23°30’ is to the sine
of the declination.

Solution by Means of the Line of (Natural) Sines on the Sector Set the dividers
to the distance between 0° and 60° on the Line of Sines. Open the sector until the
transverse distance between the 90° marks on each leg of the Line of Sine is equal to
the distance previously set on the dividers. Lastly reset the dividers to the distance
between the 23°30" marks on each leg of the Line of Sines, and use those dividers
to extend from the pivot point of the sector along either leg of the sector on the Line
of Sines, reading the value at that point of the scale as 20°12’, the solar declination.
See Fig. 16.

Solution by Means of the Line of Artificial (Logarithmic) Sines on the Gunter’s
Scale Performing this calculation is even simpler using the Gunter’s scale. Set the
dividers to extend from 90° to 60° on the line of (artificial) sines. Moving in the same
direction (right to left), lay off that same distance from 23°30" on the same line,
reading off the value at the other end of the dividers as 20°12/, the desired solar
declination. See Fig. 17.



42 J.S. Silverberg

6.2 Problem 2: Given the Latitude of Your Location
and the Sun’s Declination at Sunrise, to Find Azimuth
of the Sun at that Time

Assume that on May 21, the sun’s ecliptic longitude is 60° as in Problem 1,
above. Then the solar declination will be 20°12’ north of the equator, as previously
calculated. Let us further assume that we are observing the sunrise from St.
Catharines, ON, Canada, which is at latitude 43°11’ North. What is the azimuth
of the sun, that is, how many degrees along the horizon to the East of the North
point does the sun rise?

The ortive amplitude or rising amplitude is the angular distance along the horizon
between the position of the sun on the horizon at sunrise and the East point of the
horizon (Van Brummelen 2013). In the springtime, the sun rises to the north of the
East point and sets to the north of the West point. Thus the azimuth is determined
by subtracting the ortive amplitude from 90°. See Fig. 18.

As the sine of the complement of the latitude is to the sine of the declination, so
is the sine of a right angle (the sinus rectus) to the sine of the desired azimuth. The
complement of the latitude of St Catharines is 46°49'.

Thus sin46°49" : sin20°12" :: sin90° : sin( sun’s rising amplitude). The
azimuth of the sun is the complement of that angle, i.e., 61°44’. The needle of a
magnetic compass does not point to true north, but rather to the magnetic north
pole. The amount by which this differs is called magnetic variation. Unfortunately
the difference between true and magnetic north varies from year to year and from
place to place on the globe. Bearings taken from charts or maps are measured in

Fig. 18 The right triangle
under consideration is the
smaller right triangle formed
by the solar meridian, the
horizon, and the equator. The
angle formed by the
intersection of the horizon
and the equator is the
complement of the latitude.
The side opposite that angle
is the declination previously
calculated. The meridian

Ce-latitude of St Catharines
meets the equator, as before in90° -43° 11°=45%49"

at a right angle, and the side
opposite the right angle is the
desired unknown. Thus the
spherical law of sines is again
the relationship of interest
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the direction from true north. If a navigator took a magnetic bearing of the sun
at sunrise and compared it to the azimuth as determined through calculation, the
variation could be determined and compass headings could be converted to true
directions and vice versa.

Solution by Means of the Sector and the Scale Set the dividers to extend from
the pivot of the sector to the point on the Line of (natural) Sines marked 20°12’.
Then open the sector so that the dividers extends between the points marked 46°49’
on each leg on the Line of Sines. Then reset the dividers to measure the distance
between those points marked 90° and note the extent of the newly reset dividers
from the pivot of the sector to a point on the Line of Sines on either leg of the sector.
See Fig. 19.

Using the Lines of artificial (logarithmic) Sines, the dividers are set to extend
from the known angle to its opposite (known) side. The dividers thus set are used to
extend from the second of the known angles to its opposite (but unknown) side. See
Fig. 20.

90° Tine of (natural) sines

46°49’

E'\ Azimuth = 28° 16’ North of East

46°49° 90° line of (natural) sines

Fig. 19 Solution by sector. The known angle (the complement of the latitude) and its (known)
opposite side (the declination) form the leg and the base of the smaller of the two similar isosceles
triangles of the sector. The known angle (the right angle) and its (unknown) opposite side (the
rising amplitude) form the leg and the base of the larger similar isosceles triangle

46°49' N
10° 200 23°30 30° 40° 50° 60° 90°

20°12'N
Azimuth = 28° 16’ North of East

Fig. 20 Solution by Gunter’s Scale. The dividers are set to extend from the complement of the
latitude to the declination, and moved to extend from 90° to the rising amplitude
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6.3 Problem 3: Given the Latitude of Your Location,
Declination of the Sun, and the Sun’s Altitude, to Find
the Local (Solar) Time

This last problem will show a more complicated situation. Here we know three sides
of an oblique spherical triangle, but none of the angles. The spherical law of cosines
applies in this case:

cosc = cosacosb + sinasinbcos y,

where c is the side opposite angle y and a and b are the sides adjoining angle y.
Solving for y we have

cos(c) — cos(a) cos(b)
sin(a) sin(b)

cosy =

These equations are ill-suited for manipulation with either sector or logarithmic
scale, due to the sum or difference of products.

Suppose the sun is observed from St Catharines, ON, to have an altitude of 50°
above the horizon on a day when the solar declination is 20° North. The three sides
of the “astronomical triangle” formed by the solar position, the pole, and the zenith
are the complements of the latitude, the solar declination, and the solar altitude. If
we take the latitude of St Catharines to be 43° N, then the sides of the astronomical
triangle are 47°, 70°, and 40°—the complements of the latitude, the declination, and
the altitude, repectively (Fig. 21).

Fig. 21 The complements of Zenith Co-latitude
the observer’s latitude, the
solar declination, and the
solar altitude form the sides
of the spherical triangle
shaded in the diagram. The
angle 0 at the celestial north
pole, between the meridians
of the sun and the observer,
measures the local solar time.
Angular measure is related to
time at the rgtlo of .15° of arc w
per hour of time (since a
rotation of 360° occurs every
24 h). If the sun is in the east
of the South point in the
horizon, it is the time before
noon, else it is the time since
noon
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An elegant solution published by Pitiscus between 1595 and 1600 is presented
below. The key insight was to replace the law of cosines by a law of versed sines or
a law of suversed sines, where the suversed sine of an angle is the versed sine of the
supplement of that angle. Algebraically, % is equal to half of the suversed
sine the angle y, where S is half of the sum of the three sides of the triangle.

The versed sine of an angle is the difference between the radius or sinus totus and
the sine complement of the angle. In modern terms, the versed sine of y is 1 —cos y.
and therefore the suversed sine of y is equal to 1 4 cos y.

As seen above, the spherical law of cosines, when solved for the unknown angle

may be stated as

cos(c) — cos(a) cos(b)
sin(a) sin(b)

cosy =

Adding $inasinb ¢, both sides, we have
sinasinb

cosc + sinasinb —cosacosb  cosc — cos(a + b)

1 +cosy = - - = : :
v sinasinb sinasinb
Using the trigonometric identity cosx — cosy = 2 sin == x+y sin 5=, where x = ¢
andy =a+ b,
. a+b+c . a+b—c
cosc —cos(a + b) = 2sin > sin >

Thus, we have

l+cosy sinSsin(S—c)
2 ~ sinasinb

The right-hand side of this equation is computed using a sequence of two
proportional analogies. The left-hand side of the equation is one-half of the
suversine of angle y.

The first of the proportional analogies is:

As the sine of 90° is to sina, so is the sin b to “the fourth sine.” Using either the sector and
a pair of lines of sines or using the Gunter and the scale of log-sines, we find the angle, let
us call it x, whose sine is sina - sin b.

The second of the proportional analogies is:

As the value of “the fourth sine” is to sin S, so is sin(S — ¢) to the fourth term in this second
analogy (which Pitiscus terms the “seventh sine”). The term S is called the half-sum, which
is equal to “+b+‘

As before, using either the sector and a pair of lines of sines or using the Gunter
and the scale of log-sines, we find the angle, let us call it y, whose sine is %
the right-hand side of the equation he seeks to solve.

)
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Thus a value, y, has been found which is a solution to the equation

sin Ssin(S — ¢)

siny = ————
sina sin b

The desired value, y, is the solution to the equation

1+ cosy .
——— =siny.
) y
The half-angle trigonometric identity cos® ¥ = H'C% allows us to find a

solution, y to the equation sin?(90° — %) = siny. Thus using the scales of superficies
on the sector together with a lateral distance equal to the “seventh sine” would allow
one to determine 90° — y/2 and thus the value of y. On a Gunter’s scale, the ability
to find square roots by dividing a logarithm by two simplifies the procedure.

However, the solution of this problem was so common, that a special scale,
labeled “versed sine” was provided on both sectors, which was in fact a scale of
half-suversed sines, on which values of y were placed at a distance from the pivot
of %(1 + sin(90° — y)). If the dividers were set to measure the distance between
the pivot and y on the scale of sines, then that same distance would extend from
the pivot to the point marked y on the so-called scale of versed sines. A similar
logarithmic scale was frequently included on the Gunter’s scale. It was labeled the
scale of versed sines, but was in fact a scale of logarithms of half-suversed sines.

The solutions to the problem of determining local time using both sector and
scale together with a scale of “versed sines” is presented in Fig.22 and are
remarkable in their directness and simplicity.

7 Impact of Sectors and Scales on Mathematics,
Science, and Society

We close with a few notes putting these developments into their cultural and
historical contexts. The sixteenth and seventeenth centuries were times of tremen-
dous change both in England and on the continent. The effects of the English
Reformation, recurring bouts of plague, the English Civil War, Commonwealth, and
Restoration (1642-1660), the struggle between Protestant and Catholic sympathiz-
ers, the fire of London (1666), exploration and colonization of the New World all
had a major impact upon the society in which mathematicians and their students
worked and lived. But this period also saw the birth of a panoply of new types of
institutions such as Gresham College (1597), the East India Company (1600), the
Royal Society (1660), the Christ Hospital’s Writing School (1577) and its Royal
Mathematical School (1673).
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The angle at the pole is 39.17 degrees, dividing by 15 deg/hr = 2.6 hours, = 2 hours 36 minutes
before noon. The local time is 9:23 am.
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Fig. 22 Determining local time, via sector and via scale

According to Ellis, the first coffee house in Christendom was opened in Oxford
in 1650 (Ellis 1956). Within a few years coffee houses were open in London and
Cambridge as well, and by the end of that century London could boast of over
2000 coffee houses (O’Connor and Robertson 2006). Not only were the coffee
houses meeting places for discussion on topics from science to politics, but lectures
were given in them. These were not just impromptu lectures given in the course of
discussion, but rather were properly advertised and usually not one-off lectures but
rather extended lecture series. Because of this educational function coffee houses
were often called the Penny Universities—the name arising since they charged an
entrance fee of a penny (Lillywhite 1963; O’Connor and Robertson 2006; Stewart
1999).

Institutions such as Gresham College offered public lectures and demonstrations
on topics of scientific and mathematical interest. Works were increasingly written in
English (or other vernacular language) rather than scholarly Latin or were promptly
translated into English from Latin. Other players in this drama include the recently
introduced commercial schools of writing and mathematics and private teachers of
“the Mathematicks,” and an increasing number of booksellers, printers, publishers,
instrument makers, and sellers of instruments. The fact that Thomas Hood served as
“Mathematical Lecturer to the City of London” and dedicated his work on sectors to
the auditors of his lectures, rather than to a noble patron, underscores this change in
audience and a marked liberalization of accepted ways in which mathematics could
be learned.
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In the end, the cross cultural milieu changed both the way that mathematicians
thought of themselves and the ways in which practitioners viewed the roles of
mathematics and science in their trades and professions (Johnston 2005; Taylor
2011, 2013).

As Katie Taylor elegantly summarizes in her article Vernacular geometry:
between senses and reason,

In Continental debates about the status of mathematics, the separation of the objects of
mathematics from the natural world was a widely cited underpinning for the certainty of
mathematics ... While this debate received relatively little attention in England, it is clear
from the instances in which it was touched upon that there was a perceived distinction
between the world of reason, geometry’s domain, and the world of the senses. In his Alae seu
scalae mathematicae (1573), Thomas Digges himself set up an opposition between “Queen
Reason”, responsible for devising the geometrical methods with which stellar observations
were to be treated, and the “slave senses”, charged with making the observations required
to feed into these geometrical methods . ... Digges went on to stress that these two realms
needed to be united to get at truth itself (Taylor 2013).

Meanwhile many practitioners of mechanical and methodological arts embraced
the spirit of the newly born scientific revolution and of the applications of math-
ematical theory to practical concerns and came to view their fields as based upon
mathematical and scientific foundations rather than upon craft or artistic traditions,
or by appeals to authority (religious or otherwise), tradition, or past practice. The
navigator, the designer of buildings and ships, the astrologer, merchant, surveyor,
and cartographer came to view themselves as practitioners of the mathematicks
and to view the validity of their fields and their practices as supported by a
foundation of mathematical theory (whether or not they personally made use
of these mathematical underpinnings), laying the foundations for the impressive
advances in applied mathematics and the contributions of science and technology to
practical matters in the eighteenth and nineteenth centuries.

8 Credits

Figure 1 is a photograph taken by the author of a sector in his private collection.
Figures 3, 4, 6, 7, and 8 were derived from images from the 1636 edition of Edmund
Gunter’s De sectore et radio, a work in the public domain, which can be viewed
via the Internet Archive at http://www.archive.org/details/descriptionuseofOOgunt.
Figure 11 was taken from John Robertson’s A treatise of such mathematical
instruments, as are usually put into a portable case: containing their various
uses in arithmetic, geometry, trigonometry, architecture, surveying, published in
1775, a work in the public domain and available through ECHO, the European
Cultural Heritage Online, which can be viewed at http://echo.mpiwg-berlin.mpg.
de/MPIWG:NPREVR4U. All other figures were constructed by the author.
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