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1Personal Recollections

Henry P. McKean Jr.1

1.1. Norman Levinson

Thinking of Norman Levinson, I remem-
ber how much I learned from him as a very
young and inexperienced person, and how
much I found to admire, both in his math-
ematical work and in himself, as a man.

Looking back, his choice of mathematical
questions seems memorable enough: mostly
close to applications, rich in their details, sug-
gestive of general phenomena, as in the won-
derful papers on the forced vander Pol equa-
tion, etc. foreshadowing the current vogue of
attractors, chaos, and all that.

What I could better appreciate then was
his mastery of the kind of hard analysis such
questions require, the kind in which every
equality costs you two opposing inequalities.
When we got stuck, working together, he’d
always take an example, and he’d estimate
things with an understanding and a speed
that impressed me equally, and soon we’d
be back on solid ground. It was excitingly
easy, Norman doing all the hard work, as I
understood later. Gap and Density Theorems
(Chap. 8, vol. 2) and the extraordinary papers
on Riemann’s zeta function (Chap. 11, vol. 2)
is where you can see this expertise at its
best.

Other lessons I was not so ready to di-
gest though happy to benefit from. I mean

1Courant Institute, New York University,
New York, NY, USA, mckean@cims.nyu.edu.

his unobtrusive, remarkably effective admin-
istrative style, the way he seemed to run the
department with the back of his hand, and,
on the personal side, his patience and gentle
encouragement.

He was shy. Fagi said: “Norman, he’s ter-
rible. He never wants to go out. He’s afraid
he’ll meet somebody he doesn’t know.” I was
shy, too, but slowly we got to know each other
a little, coming from as different backgrounds
as you could imagine, and I thought myself
lucky when he told me bits about his early life.
He said: “We were very poor, but we didn’t
think of ourselves as poor.” I take the liberty
to transpose that and to say he was a rich
man in his particular way, spreading about
his riches quietly, with an open hand.

Henry McKean, New York, May 1997.

1.2. Will Feller

Will Feller was born in Zagreb, Yu-
goslavia on July 7, 1906, the ninth of 12
children of a well to-do family. They named
him Willy in the then popular German style.
This changed to William upon his coming
here (1939), but everybody called him plain
Will. His early studies called him from Zagreb
(1923–1925) to Gottingen (1925–1928) where
he got his degree in 1926, aged 20! Then
to Kiel as Privatdozent (1928–1933). Nazi
times: Will taught a class on the new ideas
in probability of Kolmogorov, etc., attended,
by chance, by a person of some importance
in the SS. One day, this person and some

© Springer International Publishing Switzerland 2015
F.A. Grünbaum et al. (eds.), Henry P. McKean Jr. Selecta, Contemporary
Mathematicians, DOI 10.1007/978-3-319-22237-0 1
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2 1. PERSONAL RECOLLECTIONS

Figure 1.1. Henry P. McKean Jr.

two or three of his men present themselves
at Will’s apartment. Will lets them in in fear
and trembling, whereupon the boss says how
much he loves Will’s lectures and if there
is somebody Will would like them to beat
up, just to say the word. A courtesy call I
suppose. Will declined this civility and after
a subsequent refusal to sign a Nazi oath,
packed his bags for Copenhagen where he
stayed a year (1933). Then to Stockholm
(1934–1939), Providence (1939–1944), Ithaca
(1945–1950), and Princeton (1950–) which is
where I first knew him (1953). He died, with
difficulty, in New York on January 14, 1970,
aged 63.

I think it is fair to say that Kolmogorov,
Paul Lévy, and Will made probability an
honest woman. They are the people chiefly
responsible for its rise from a not quite re-
spectable rule of thumb to the ubiquitous,
precise, intuitively appealing subject it is to-
day. I think that, of the three, Will had
the wider view. He understood Kolmogorov’s
mostly analytical way and also Paul Lévy’s
way with sample paths, and was a master
of both, as can best be seen in his splendid
book, An Introduction to Probability Theory
(John Wiley & Sons, 1950) and its subsequent
amplifications and revisions (1957/1968 and
1966/1971). Here you can see him endlessly
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Figure 1.2. Henry P. McKean Jr.

perfecting proofs and pictures. I point, for
example, to his simple way with suppos-
edly hard Tauberian theorems and to his so
appealing presentation of Sparre-Andersen’s
combinatorial way with random walks. This
is the book for beginners. It is so full of inter-
esting things, both mathematical and prac-
tical, looked at from an astonishing number
of aspects, and full of Will’s own self: his en-
thusiasm, his high standards, his indefatiga-
ble desire to make you understand “what’s
really going on”.

That was also his watch-word when he
lectured. He would get quite excited, his au-
dience in his hand, and come (almost) to the
point. Then the hour would be over, and he
would promise to tell us “what’s really going
on” next time. Only next time the subject
would be not quite the same, and so a whole
train of things was left hanging, somewhat in
the manner of Tristram Shandy. But it didn’t
matter. We loved it and couldn’t wait for the
next (aborted) revelation.

I was too young to appreciate my luck
in coming so accidentally into his orbit, but
soon realized that I had not only a teacher
but a friend whose generosity and sense of

the ridiculous in the gloomy moments of the
young could be counted on for sure. I remem-
ber a note he sent me at such a moment in
which he said: “You were made for success
and the Lord God himself is kicking Himself
that you do not understand his good inten-
tions”. (Will’s capitals). That’s how he was
with me and many others, too: good company,
a raiser of spirits, smart, kind.

I learned so much from him as a man, and
also in mathematics, from him and others of
my elders and betters: D. Ray, G. Hunt, and
K. Itô.

A bit about Will’s one-dimensional “dif-
fusions” which he was in the middle of when
we were together (1953/1957). It exempli-
fies his simultaneous desire for generality and
simplicity, taking what people thought to
be quite complicated and making it obvi-
ous, as all good mathematics should be. In
short, he reduced the general diffusion to the
simplest one (Brownian motion) by: (1) a
change of “scale” to make the motion ap-
pear unbiased, and (2) a change of “clock”
or “speed” to make the (local, Gaussian)
fluctuations the same at any place. This is
easy enough in simple cases with stringent
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technical conditions imposed. But what Will
realized is that, effectively, no technical condi-
tions are needed at all; in the “natural” lan-
guage, the technicalities evaporate and sim-
ple, perfectly general expressions for objects
of interest are found. Here is an example. Let
S ≡ 1

2e
2(x)∂2/∂x2 + f(x)∂/∂x be the infin-

itesimal operator of a one-dimensional diffu-
sion x(t) : t ≥ 0. Here, f specifies the “drift”
or “bias” and e specifies the “fluctuations”.
Introduce the new “scale”∫ x

0

dy exp

[
−
∫ y

0

(
2f/e2

)]

and the “speed measure”

dm(x) ≡ 2
dx

e2(x)
exp

[
+

∫ x

0

(
2f/e2

)]
,

in terms of which S = (d/dm)(d/dx). Take
a < x < b, start the diffusion at x(0) = x and
let T be the “exit time” min(t : x(t) = a or b).
Then in the new scale,

P
[
x(T ) = a

]
=

b− x

b− a
, P

[
x(T ) = b

]
=

x− a

b− a
,

and E(T ) =

∫ b

a

G(x, y)dm(y)

with the (symmetric) Green’s function
G(x, y) = (x − a)(b − y)/(b − a) for x ≤ y.
What could be simpler?

Back to Will himself. He was short; com-
pact, with a mop of wooly gray hair; irre-
pressible. In conversation quick, always ready
with an opinion (or two), addicted to ex-
aggeration. If you knew the code, you ap-
plied the “Feller factor” (discount by 90%).
If you didn’t, it could be awkward, as with
the immigration official at Providence when
they came to the question: “Do you advo-
cate bigamy?” Will delivered a lengthy opin-
ion on the distinction between practice and
advocacy which, he said, must surely ob-
tain in this great free land about to be his
own. The official was not amused. So he
could seem opinionated, even rude if you
didn’t know him. But the real Will took
a wide view, meeting life with enthusiasm
and good cheer. I think of him often, hear-
ing his voice, remembering him so full of
fun.

Figure 1.3. N. Levinson

Brooklyn,
April 15, 2005

1.3. Kiyoshi Itô: recollections of Kyôto
1957/1958

The following recollections formed a little
talk I spoke in Kyôto on the occasion of K.
Itô’s 88th birthday. They bring the memory
of the happy times we had together and con-
gratulations on his Gauss Prize. The Gauss
Committee will not find it easy to keep to the
standard they have set.
Kyôto 1957/1958 It’s a pleasure to think
back for a little while to the happy days my
family and I spent in Kyôto in 1957/1958.

I met Itô-sensei in Princeton 1954 where
Kosaku Yosida also came for a shorter time.
Dan Ray was there also Hunt & Trotter, and
of course Feller who was the activator, the
regisseur of it all. Feller had just formulated
his ideas on diffusion and I was helping (feebly
to be sure) to bring them together into a little
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Figure 1.4. Will Feller

book. At the same time we were just hearing
about Dynkin’s ideas on stopping times so we
had a seminar to digest these things. It was
lucky for me, being so young and largely uned-
ucated, to find myself at a moment when the
understanding of diffusion was taking a big
jump. I think I never worked so hard (without
fatigue) or learned so much so fast (without
tears) as I did then, and from two such patient
kindly teachers as Feller and Itô.

Then Itô and I began to combine all
that with ideas of Paul Lévy, especially his
“measure du voisinage” or “local time” as
we called it in English, and we understood
quite quickly how this local time is a sort
of 1/2-dimensional measure on the zeros of
the Brownian path, how it could be used to
implement the elastic Brownian motion, and
so on. I say “we” understood. I should say
Itô understood, and since he was patient and
I was pretty quick though ignorant, pretty
soon I understood, too. But invariably, at that
happy moment when you say to yourself “I
see”, it was Itô who saw the whole. It was my

Figure 1.5. K. Ito
Picture by Konrad Jacobs.
With friendly permission
from the Archives of the Math-
ematisches Forschungsinsti-
tut Oberwolfach

first real taste of how mathematics is done and
I cannot think of it now without excitement
and gratitude. So far Princeton.

I stayed on another year or two and then
to Japan (1957/1958) where we continued to
work on our book. Never ever write a book
before everything is proved and never ever let
the junior partner write it! It would have been
a better book had it been written half as many
times at twice the length. But never mind:
Regrets are not very interesting, what’s more
interesting is that year 1957/1958 in Kyôto.

It was a long trip by a little Japanese
freighter from Los Angeles, up past the Aleu-
tians where it was cold and rough with a sick
child of 2 years, but after a couple of weeks
we arrived at Yokohama to be met by Itô and
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Itô-san no okusan and Junko, and after that
all was well, though naturally new and more
than a little foreign.

I might tell you that I already knew a
little about Japan as my great-grandfather in
Boston was an enthusiastic collector of Japan-
ese art. That was in the days of Fenellosa who
first made such things known in America and
who was a friend of that grandfather, so the
chance to see some of the treasures of that
marvelous art with my own eyes and to do
mathematics with Itô was a combination not
to be resisted. Now back to Kyôto.

Itô had rented us a spacious house right
on Takanogawa in the Shimogamo district,
just a short walk from the university. I still
see in my mind’s eye the lovely printed cloths
washing in the current of the river and the
moon coming up from behind the Hieisan, and
I hear in my mind’s ear the call of the noodle-
seller at night. Now the cloths and the noodle-
seller are gone but the river is sparkling clean,
which it was not then. I went to the university
every day walking, and back at night. I had a
vast office with a couch and many chairs and
tables and a huge glass-topped desk, and a
coal stove for the winter which smoked horri-
bly when the wind was wrong and the kind old
librarian (whose name I regret to have forgot-
ten) would try to make it work. I had a sink,
too, to wash my hands, and a big safe—was
it to keep my theorems in? I never figured
out. And after the morning, we had lunch
all seated about a long table, or else if the
weather was fine, we went to a little out door
restaurant a few steps away and had some
kind of domburi and a beer.

Once a week, we had a seminar with so
many quick and eager people, then very young
like me, now not so young like me: Nobuyuki
Ikeda was there and Hiroshi Tanaka, and
Shinzo Watanabe and Takesi Watanabe, Mi-
noru Motoo, Tunekiti Sirao, Tadashi Ueno,
Takeyuki Hida, Makiko Nisio. I must have for-
gotten some names. If so please forgive me. Itô
said that we were “sowing the seeds of dif-
fusion in the mathematical fields of Japan”.
It was all very welcoming and exciting and I
loved it.

To come back for a moment to our joint
work and the way Itô taught me. I remem-
ber we were flying to some place (Fukuoka
I think) and trying to understand Feller’s
most general boundary conditions for Brow-
nian motion on a half-line. Itô sat beside me
drawing pictures of sample paths. These did
not please him until he got to the right one (it
didn’t take him very long) and as soon as he
showed it to me I understood perfectly, but
lacking his experience and deep feeling could
not have thought of it myself. Some things we
missed entirely like the deep facts about the
spatial dependence of stopped local time. We
had prototype formulas in front of us, all per-
fectly explicit, and never imagined what they
meant: That the stopped local time was itself
a diffusion in its spatial parameter. Oh well.

Leaving mathematics, I remember a con-
tinual attentive kindness from Itô and Itô-
san no okusan. I remember happy suppers at
their house when Itô, knowing next to noth-
ing about cooking, would explain what his
wife had placed before us by saying: “You
take it and you put it and then it’s very
good.” I remember also excursions near and
far: To Shugakuin, Hieisan, Kokedera, Nara,
and so on, with Itô always on the lookout
that we should be comfortable and at ease.
Once at the zoo, when the little Japanese chil-
dren were staring at my odd-looking Ameri-
can children, Itô said to them sharply: “You
are here to look at the animals!” and they did
that.

So now you can see what a load of obliga-
tion (of on or giri if you like) I must carry, but
that is not Itô’s way. Itô’s father was a very
traditional, correct man who kept a record
of every kindness done to himself and to his
family over the years. When he died, Itô dis-
charged each recorded debt meticulously, as
his father would have wished him to do. Af-
ter that, he went his own way, marrying his
dear Shizue by inclination and for love, giv-
ing always freely: to myself, to many of you in
this room, and I must suppose to many many
others unknown to me.

Arigato gozaimashita, arigato gozaimasu.
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Figure 1.6. M. Kac
Picture by Konrad Jacobs.
With friendly permission
from the Archives of the Math-
ematisches Forschungsinsti-
tut Oberwolfach

1.4. Mark Kac, August 16,
1914–October 25, 1984

Poland. Mark Kac was born “to the sound
of the guns of August on the 16th day of that
month, 1914,” in the town of Krzemieniec—
then in Russia, later in Poland, now in
the Soviet Ukraine (1985, 1, p. 6). In this
connection Kac liked to quote Hugo Stein-
haus, who, when asked if he had crossed the
border replied, “No, but the border crossed
me.”

In the early days of the century Krzemie-
niec was a predominantly Jewish town sur-
rounded by a Polish society generally hostile
to Jews. Kac’s mother’s family had been mer-
chants in the town for three centuries or more.
His father was a highly educated person of
Galician background, a teacher by profession,

holding degrees in philosophy from Leipzig,
and in history and philosophy from Moscow.

As a boy Kac was educated at home and
at the Lycée of Krzemieniec, a well-known
Polish school of the day. At home he stud-
ied geometry with his father and discovered a
new derivation of Cardano’s formula for the
solution of the cubic—a first bite of the math-
ematical bug that cost Kac père five Polish
zlotys in prize money. At school, he obtained
a splendid general education in science, litera-
ture, and history. He was grateful to his early
teachers to the end of his life.

In 1931 when he was 17, he entered the
John Casimir University of Lwów, where he
obtained the degrees M. Phil. in 1935 and
Ph.D. in 1937.

This was a period of awakening in Polish
science. Marian Smoluchowski had spurred a
new interest in physics, and mathematics was
developing rapidly: in Warsaw, under Waclaw
Sierpinski, and in Lwów, under Hugo Stein-
haus. In his autobiography (1985, 1, p. 29),
Kac called this renaissance “wonderful.” Most
wonderful for him was the chance to study
with Steinhaus, a mathematician of perfect
taste, wide culture, and wit; his adored
teacher who became his true friend and intro-
duced him to the then undigested subject of
probability. Kac would devote most of his sci-
entific life to this field and to its cousin, statis-
tical mechanics, beginning with a series of pa-
pers prepared jointly with Steinhaus on statis-
tical independence (1936, l–4; and 1937, l–2).

Kac’s student days saw Hitler’s rise and
consolidation of power, and he began to think
of quitting Poland. In 1938 the opportunity
presented itself in the form of a Polish fellow-
ship to Johns Hopkins in Baltimore. Kac was
24. He left behind his whole family, most of
whom perished in Krzemieniec in the mass
executions of 1942–1943. Years later he re-
turned, not to Krzemieniec but to nearby
Kiev. I remember him rapt, sniffing about him
and saying he had not smelled such autumn
air since he was a boy. On this trip he met
with a surviving female cousin who asked him,
at parting, “Would you like to know how it
was in Krzemieniec?” then added, “No. It is
better if you don’t know”.
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These cruel memories and their attendant
regrets surely stood behind Kac’s devotion to
the plight of Soviet refusniks and others in
like distress. His own life adds poignancy to
his selection of the following quote from his
father’s hero, Solomon Maimon: “In search of
truth I left my people, my country and my
family. It is not therefore to be assumed that I
shall forsake the truth for any lesser motives”
([1], p. 9).

America. Kac came to Baltimore in 1938 and
wrote of his reaction to his new-found land:

“I find it difficult. . . to convey
the feeling of decompression,
of freedom, of being caught
in the sweep of unimagined
and unimaginable grandeur.
It was life on a different scale
with more of everything—more
air to breathe, more things to
see, more people to know. The
friendliness and warmth from all
sides, the ease and naturalness
of social contacts. The contrast
to Poland. . . defied description.”

After spending 1938–1939 in Baltimore,
Kac moved to Ithaca, where he would re-
main until 1961. Cornell was at that time
a fine place for probability: Kai-Lai Chung,
Feller, Hunt, and occasionally the peripatetic
Paul Erdös formed, with Kac, a talented and
productive group. His mathematics bloomed
there. He also courted and married Katherine
Mayberry, shortly finding himself the father
of a family. So began, as he said, the healing
of the past.

From 1943 to 1947 Kac was associated
off and on with the Radiation Lab at MIT,
where he met and began to collaborate with
George Uhlenbeck. This was an important
event for him. It reawakened his interest in
statistical mechanics and was a decisive fac-
tor in his moving to be with Uhlenbeck at The
Rockefeller University in 1962. There Detlev
Bronk, with his inimitable enthusiasm, was
trying to build up a small, top-flight school.
While this ideal was not fully realized either
then or afterwards, it afforded Kac the oppor-
tunity to immerse himself in the statistical

mechanics of phase transitions in the com-
pany of Ted Berlin and Uhlenbeck, among
others. Retiring in 1981, Kac moved to the
University of Southern California, where he
stayed until his death on October 25, 1984,
at the age of seventy.

I am sure I speak for all of Kac’s friends
when I remember him for his wit, his personal
kindness, and his scientific style. One summer
when I was quite young and at loose ends, I
went to MIT to study mathematics, not re-
ally knowing what that was. I had the luck
to have as my instructor one M. Kac and was
enchanted not only by the content of the lec-
tures but by the person of the lecturer. I had
never seen mathematics like that nor anybody
who could impart such (to me) difficult ma-
terial with so much charm.

As I understood more fully later, his atti-
tude toward the subject was in itself special.
Kac was fond of Poincaré’s distinction be-
tween God-given and man-made problems. He
was particularly skillful at pruning away su-
perfluous details from problems he considered
to be of the first kind, leaving the question in
its simplest interesting form. He mistrusted as
insufficiently digested anything that required
fancy technical machinery—to the extent that
he would sometimes insist on clumsy but ele-
mentary methods. I used to kid him that he
had made a career of noting with mock sur-
prise that ex = 1 + x + x2/2 + etc. when
the whole thing could have been done with-
out expanding anything. But he did wonders
with these sometimes awkward tools. Indeed,
he loved computation (Desperationmatemtik
included) and was a prodigious, if secret, cal-
culator all his life.

I cannot close this section without a Kac
story to illustrate his wit and kindness. Such
stories are innumerable, but I reproduce here
a favorite Kac himself recorded in his autobi-
ography:

“The candidate [at an oral
examination] was not terribly
good—in mathematics at least.
After he had failed a couple
of questions, I asked him a
really simple one. . . to describe
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the behavior of the function
1/z in the complex plane.
‘The function is analytic, sir,
except at z = 0, where it has a
singularity,’ he answered, and
it was perfectly correct. ‘What
is the singularity called?’ I
continued. The student stopped
in his tracks. ‘look at me,’ I
said. ‘What am I?’ His face lit
up. ‘A simple Pole, sir,’ which
was the correct answer.”

[1] Enigmas of Chance. (Autobiography).
New York: Harper and Row.

1.5. Gretchen Warren

I add to these recollections another, from
my boyhood. The first time I met Gretchen
Warren I must have been 10 or 12. It was
her custom then to spend the summer at
the house of my cousin Eleo (much older
than me), looking out over the New England
sea going all the way to Portugal, which I
imagined I could perceive faintly, far away.
Two more different women can hardly be
imagined: Eleo the complete sports-woman,
devoted to swimming, tennis, 100-mile walks,
horses, gossip, handsome men and women.
Grechen intellectual, learned in literature,
philosophy and myth, especially the old
things of East and West: the Icelandia Sagas,
Chanson de Roland, Homer, Villon, the
Bhagavad-Gita, Plotinus, the Bible, in no
particular order; loving music and also Nat-
ural History; a friend of Santayana, Henry
George, and A.K. Coomaraswami; a mixture
you might say, of Emerson and Agassiz. How

these two became (and stayed) friends I do
not know, but they did.

Gretchen was of another generation,
maybe 60 then or more, but she spoke to me
as an equal in a way I have never forgotten.
She took my childish love of Natural History
with perfect seriousness, sharing her books
and her marvelous collection of shells: the
violet snail, thinner than paper, making a
raft of foam to carry her eggs, far out in the
uttermost parts of the ocean; Cuban land
snails with their wonderful variegated colors;
things I still keep, making me think of her.
She introduced me to other things she loved
like Homer and Plotinus, not then but later
on. She encouraged me to think that I might
do something of my own, in science perhaps,
or writing. And nothing heavy here, only
that serious attention to a little child which
was her great charm and kind gift to me. She
was a beautiful woman. You may have seen
her at the Fine Arts in Boston in Sargent’s
painting: Mrs. Warren and her Daughters.
We met less often as time went by. I saw her
last in Boston, Beacon Hill, in 1949 or so.
Then she died, leaving these memories.
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2My Debt to Henry P. McKean Jr.

David Williams1

I was very privileged to have had as research
supervisors, David Kendall and Harry Reuter.
I learnt a great deal from them and from Eu-
gene Dynkin, André Meyer, and of course,
Paul Lévy. But it has been to Henry McKean
that I have most often turned for inspiration.

There is a simple reason for this. If any-
one else writes a book on Stochastic Inte-
grals, Fourier Series and Integrals, or Ellip-
tic Curves, they might produce a fine book
on the topic. But Henry (either alone, or
with Harry Dym, or with Victor H. Moll)
writes Mathematics, not mere exposition of
a topic. One is left awestruck by the rich in-
terconnectedness of the subject as evidenced
by a dazzling array of examples and (usually
very challenging) exercises. What a great an-
tidote to the too prevalent ‘elegant abstrac-
tion’ culture in which (for example) Num-
ber Theory is OK provided one keeps away
from those common-or-garden numbers, and
in which even the Generalized Riemann Hy-
pothesis, astoundingly deep though it is, is
perhaps rather closer to the ground than one
should be flying.

A few years ago, I had to have a brain
tumour removed in something of an emer-
gency. It was explained to me that the opera-
tion might seriously impede my ability to un-
derstand Mathematics. (I had great surgeons,

1Wales Institute of Mathematical and Com-
putational Sciences (WIMCS), Swansea Univer-
sity, Singleton Park, Swansea SA2 8PP, UK,
dw@reynoldston.com.

and I don’t think it has!) How glad I was that
I had McKean and Moll [14] with me for what
might have been my last few hours of Mathe-
matics! Yes, there are a few slips in the book,
but these are fussed over only by those who
could never write anything a tenth as inspira-
tional.

I started my research career on
Markov-chain theory, and soon became
haunted by the then recent paper by William
Feller and McKean [4]. This showed that
there exists a chain with all states instanta-
neous, counter to what Lévy had thought,
though it was he who then gave the beautiful
probabilistic construction of the F-M chain.
From the viewpoint of the time, the F-M
chain was even more amazing because all its
off-diagonal jump rates are zero. I became
rather obsessed by the Q-matrix problem of
characterizing what could be the off-diagonal
jump rates of a totally instantaneous chain.

When I realized that I could then make
no progress with this problem, I decided
to switch fields and to read the great Itô-
McKean book on diffusion processes. Again
I had to work very hard to do the exercises. I
felt that Itô and McKean had calculated ev-
erything there is to calculate about Brownian
motion. (This was in the days before Marc
Yor and coworkers had found, and solved, lots
more explicit problems.)

When it came to the famous Section 2.8
of Itô-McKean on local time, I despaired of

© Springer International Publishing Switzerland 2015
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Mathematicians, DOI 10.1007/978-3-319-22237-0 2

11



12 2. MY DEBT TO HENRY P. MCKEAN JR.

having a full understanding. I therefore tried
hard to decompose the problem into simpler
ones. Henry included a nice exposition of my
efforts as part of his paper [13].

What I had never expected was that
thinking hard about Brownian local time
would lead me to solve that Q-matrix prob-
lem. (I also made heavy use of ideas of
Kendall, Reuter, Jacques Neveu and Lèvy.)
Things really are interconnected!

For many years, I had been intrigued
by McKean’s paper [9] on a winding prob-
lem driven by white noise. In this, he looks
at windings around the origin of the two-
dimensional process with Brownian motion
as one component and its integral up to cur-
rent time as the other. The winding process
is not at all easy to analyze. However, in
this case, the joint process is Gaussian, and
this allows one to describe a key distribution
by an integral equation. In a typical tour de
force of transform theory, McKean obtained
the explicit solution as an unfamiliar distri-
bution, and derived striking probabilistic con-
sequences. This was the first paper on what
came to be known as Markovian Wiener-Hopf
theory.

I became interested in more general
Wiener-Hopf winding problems in which one
component of the two-dimensional process is
a Markov process, and the other a fluctuating
additive functional of that process. One of
the simplest problems required calculation
of a jump distribution from 0 of an induced
Brownian motion on a half-line of the type
studied by Feller and, more fully, by Ito and
McKean [5]. When Henry visited Swansea,
I told him that I conjectured that the jump
distribution in the W-H context must be to-
tally monotone. A day later (I recall Michael
Atiyah’s saying to me that Henry thinks at a
million miles per hour!), Henry told me that
he had proved both this conjecture and, by
using Krein theory as in Dym and McKean,
that all totally monotone jump laws arise
this way. See London, McKean, Rogers and
Williams [6].

My most recent paper (http://arxiv.
org/abs/1011.6513), which I hope to be an

amusing divertissement, is on the simplest
non-linear version of Markovian W-H prob-
lems. Its W-H aspects can all be traced back
to McKean on windings.

The paper’s non-linear aspects can be
traced back to McKean’s paper on travel-
ling waves and the KPP equation [12] which
prompted massive developments on branching
diffusions, measure-valued processes, and the
like. How often he has sparked off new fields
of investigation! He was way ahead of the field
even in financial mathematics [10].

McKean has also been interested in wind-
ing problems of non-W-H type: in particu-
lar, topological problems on windings of the
Brownian path. See, in particular, the pa-
pers [7, 15] by McKean with Lyons and with
Sullivan, a formidable trio indeed, and doing
Mathematics, not mere Probability.

His expertise in Gaussian processes
was also used to great effect in his paper
[8] on Lèvy’s Brownian motions in multi-
dimensional (and even Hilbert-space) time.
There is profound work here on splitting
fields, etc., and there are really surprising
results. See also papers [2, 3] with Dym.

In 1980, I organized a conference at
Durham in which the then-brand-new Malli-
avin calculus played a large part. I decided to
write an introduction to the proceedings, and
found McKean’s paper [11] on the geometry
of differential space invaluable for this. The
fundamental Malliavin process is Henry’s
Brownian motion on an infinite-dimensional
sphere of radius the square-root of infinity.
(Surreal?!)

Though perhaps primarily interested in
seeing principles put to good use in the con-
crete, he is a master of the abstract too. His
paper [1] with Blumenthal and Getoor, proves
that two Markov processes with identical hit-
ting distributions are time-changes of each
other. No result in Markov-process theory is
deeper than this.

The above is just a hint as to how Henry’s
work has enriched the life of one probabilist.
I have concentrated on books and papers
which, as it were, have become part of me:

http://arxiv.org/abs/1011.6513
http://arxiv.org/abs/1011.6513
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ones on which I do not need to refresh my
memory. Other, better, probabilists could say
much more.

I know that Henry’s work is regarded with
the same admiration and gratitude by people
working in differential equations and in other
fields.

If there is an explicit solution to be found,
then Henry is the man to find it. But his al-
most unique skill at calculation is always com-
bined with deep new insights into the under-
lying principles.

My sincere thanks, and my very best
wishes, Henry!
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3Henry P. McKean Jr.
and Integrable Systems

Hermann Flaschka1

Henry McKean’s first contribution to inte-
grable systems appeared in 1975 [15]. Over
a period of more than 30 years since, in
some 50 papers, he has explored integrable
systems from uniquely original points of
view. His selecta could have included the
pioneering work, with Airault and Moser, on
the time-dynamics of poles of meromorphic
solutions of KdV [2]; or the series on invariant
measures for wave equations, integrable or
otherwise; or one of the seminal papers with
Trubowitz [12, 13] that created a theory of
infinite-genus hyperelliptic curves (= Rie-
mann surfaces) and infinite-dimensional
Jacobian varieties, which they applied to
KdV under periodic boundary conditions,
or subsequent extensions of that theory
motivated by the desire to understand all the
iconic integrable partial differential equation
on the circle.

There is another project, of great scope,
in which “Geometry of KdV (1)” [7], in
this volume, is the first step. Read in iso-
lation, without appreciation of the develop-
ments in papers [8] and [10] at least, this pa-
per is incomplete. It sets out the vocabulary
for the striking results to follow. I thought
that Henry’s invention of unimodular spec-
tral classes and additive classes would serve
as exemplar of his imagination and techni-
cal virtuosity (and fearlessness, one might
add). Moreover, there are many questions to

1Department of Mathematics, University of Ari-
zona, Tucson, AZ, USA, flaschka@math.arizona.edu.

be thought about; some are natural, though
probably hard, but the most difficult task is
to think of workable examples that will reveal
something new.

The papers [7, 8, 10] are themselves build-
ing blocks of a sweeping conjecture. Henry
proposes to interpret the spectral theory of
differential operators2 Q = −D2 + q(x) as a
reflection of infinite-dimensional algebraic ge-
ometry in the space of all such operators. The
space is stratified into classes labeled by spec-
tral data of some sort, and parametrized by
an additive group; the classes are Jacobian va-
rieties of objects resembling, somehow, qua-
dratic algebraic curves with perhaps a con-
tinuum of branch cuts or singular points; and
the coefficients q(x) and properly normalized
eigenfunctions e(x, λ) on each class are repre-
sented by an object resembling, somehow, a
Riemann theta function, and these represen-
tations, quoting from [10], “may be viewed
as uniformizing, class by class, the eigenvalue
problem Qe = λe. It seems that such a ge-
ometrical attitude would be new to spectral
theory”.

Substantial evidence suggests that yes,
“something must be going on”. Supporting
examples draw on quantum scattering,
analytic functions, algebraic curves, and the
geometry of infinite-dimensional manifolds,
all intertwined and placed into a framework
of the infinite-dimensional dynamical systems

2D stands for the operator d/dx, and dot and
prime will indicate time and space derivatives.

© Springer International Publishing Switzerland 2015
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16 3. HENRY P. MCKEAN JR. AND INTEGRABLE SYSTEMS

sometimes called “integrable”. This name
is often used more as a suggestion than a
definition, and equally often merely indicates
the origin of a piece of mathematics that has
little to say about dynamical systems. The
historical context, however, is still relevant
to the story.

The modern theory of integrable systems
was born in 1965, when Gardner, Greene,
Kruskal, and Miura [4] invented a nonlinear
version of the Fourier transform, based on
the inverse scattering method from quantum
mechanics, in order to solve the KdV equa-
tion. This is the partial differential equation
q̇ = −q′′′ + 6qq′; it governs a certain as-
ymptotic regime of the nonlinear motion of
waves on water, or in a plasma, or in an
atomic lattice. A few years later, Zakharov
and Faddeev [16] interpreted the inverse scat-
tering solution of KdV as a transformation of
an infinite-dimensional Hamiltonian system
to action-angle coordinates, thereby translat-
ing a successful, but unmotivated and mys-
terious, technique into the more familiar lan-
guage of classical mechanics. As the supply
of integrable Hamiltonian ordinary and par-
tial differential equations grew, so did the
scope of their applications, in mathematics
and physics, and the breadth of techniques
brought to bear on the analysis of their dy-
namics. In the early years, it was not terribly
misleading to refer to this corner of math-
ematical physics as “the inverse scattering
method”, or “soliton theory”, or “KdV the-
ory”. However, much as Fourier series, in-
vented for the purpose of solving the heat
equation, evolved into the all-encompassing
paradigm called harmonic analysis, so has the
invention of the inverse scattering method for
the solution of KdV transformed mathemat-
ics through the creation of a new paradigm;
one that has no official name, but “integrable
systems” is as good a label as any, since, like
“harmonic”, it reminds one of the origin of
the ideas that have emerged from the first
examples.

I would have liked to spend time on theta
functions and their incarnation in scatter-
ing theory [3] and in the quantum harmonic
oscillator [14], since algebraic geometry is an

integral part of the broad picture, but my de-
scription of the background and implications
of [7] is of substantial length already. In any
case, I could not improve on Henry’s expo-
sition, in [9], of the evidence for a theory of
Riemann surfaces of countably and uncount-
ably infinite genus.

I start with a summary of that part of
KdV and the inverse scattering method that
is needed for an appreciation of Henry’s ideas,
and only that part. Maybe it is of use to a
non-expert. KdV (1)–(3) enter in Section 3,
where I explain the content of [7]. Section (4)
deals with a remarkable result, from [8], about
the class of operators known as “finite-gap”
operators. It says that if the orbit of a certain
group of transformations acting on the space
of all −D2 + q is finite dimensional, then q is
an Abelian function.

3.1. KdV Manifolds in the Scattering
Class

The inverse scattering method was cre-
ated to solve KdV with localized initial condi-
tions, and this is also the starting point here;
the coefficient q is taken to be in the space
C∞

↓ of rapidly decreasing smooth functions.

The spectrum of −D2 + q then consists of
a continuous part, 0 ≤ λ < ∞, and possi-
bly a finite number of negative eigenvalues.
These are of great importance in applications
of KdV, but complicate the analysis. There-
fore it is assumed throughout that there is no
discrete spectrum.3 The collection S of suchQ
is called the scattering class. The KdV equa-
tion defines a flow on S.

The first order of business is to introduce
an equivalence relation that stratifies S into
infinite-dimensional tori4 invariant under the

3This assumption leads to incorrect conclusions in
the Hamiltonian approach to KdV, but that difficulty
is ignored.

4It would be (usually) possible to give precise
characterizations, in terms of analyticity, growth,
smoothness, etc., of the function classes introduced
below. Statements about geometry, for instance, that
something is “stratified” or a “manifold” or a “torus”,
are more problematical; the intuition is very impor-
tant, but there is often no proof or even precise for-
mulation. I do not try to separate fact from useful
fiction.
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KdV flow. These are called KdV manifolds.
They are labeled by a kind of integral trans-
form Z(k) of q(x) constructed from the gen-
eralized eigenfunctions of Q. The functions Z
are known as action variables in Hamiltonian
mechanics.

KdV is in fact only one of an infinite fam-
ily of commuting vector fields on S that are
tangent to the KdV manifolds and span the
tangent spaces. The next step will be to un-
derstand their flows; they can be interpreted
as action of a huge additive group of oper-
ators, the so-called group A of additions. It
generates the KdV manifold from a reference
potential. The coordinates on the tori intro-
duced by A are (related to) the angle variables
of Hamiltonian mechanics.

Finally, one needs an algorithm to pass
from the torus coordinates Z and A ∈ A
back to q. This is implemented by an op-
erator determinant indexed by the torus la-
bel Z. Schematically, q(x) = det(A(x);Z),
where A(x) is a 1-parameter subgroup of A.

This picture is a rewording of the inverse
scattering solution of KdV, formulated with
an eye towards generalizations to q that are
not of scattering class. The geometric inter-
pretation is enriched by incorporation of ideas
from the theory of algebraic curves. That
comes later.

3.1.1. Model: A Geometric Picture
of Linear KdV. The KdV manifolds are
infinite-dimensional, except for the opera-
tor Q0 := −D2 which is a fixed point–
the only one in S–of KdV. One can lin-
earize KdV, and in fact the whole (yet to
be explained) construction at Q0; the tangent
space TQ0S is naturally identified with C∞

↓ ,
and the linearized KdV manifolds are infinite-
dimensional tori indexed by the modulus of
the Fourier transform. This familiar setting
affords a convenient starting point. It is meant
to introduce the idea of stratification by tori,
their labeling, and coordinates on them.

Consider the KdV equation linearized at
q = 0,

q̇ = M0q := −D3q, q(x, 0) given, x ∈ R.

(LKdV)

It is diagonalized by the Fourier transform,
which we define by

(3.1.1) q̂(k) =

∫
q(x)e−2ikx dx.

The Fourier transformed LKdV equation,

(3.1.2) ˙̂q(k, t) = 8ik3q̂(k, t),

is solved by inversion. Evidently, |q̂(k, t)|2 is
independent of time t, signifying that the en-
ergy in the k-th Fourier mode is conserved by
LKdV. More generally, every equation of the
form

q̇ = DΩ(−D2)q, with transform

˙̂q = 2ikΩ(4k2)q̂,(3.1.3)

preserves modal energy; here Ω denotes a real
function of slow growth. The PDEs

q̇ = D(−D2)mq, m = 1, 2, 3, . . . ,

belong to this class. They are the lineariza-
tions, about q = 0, of the equations in the
so-called KdV hierarchy, which will be intro-
duced shortly.

Equations (3.1.3) define commuting vec-
tor fields YΩ on C∞

↓ . They are tangent to
the subsets of C∞

↓ characterized by com-

mon modal energies. Following [3], the sets
of q with Fourier transforms q̂ = |q̂0|eiψ
whose modulus |q̂0| is fixed and phase ψ(k)
is a slowly increasing odd function are called
LKdV manifolds and denoted by J(|q̂0|). An
LKdV manifold is shaped like an infinite-
dimensional torus. It is a product of contin-
uum many circles, one for each k; the radii
are labeled by |q̂0(k)|, and the circumferences
are coordinatized by exp(iψ(k)).

Even though LKdV appears initially to
be the central object, the goal, were we to
continue in the linear approximation, would
really be to understand the totality of vector
fields YΩ, their interaction with the LKdV
manifolds, and the stratification of C∞

↓ into
tori. We now begin this program in the non-
linear setting.

The review of scattering theory contains
nothing that is not known to experts. It is in
the nature of an appendix, but placed where
it should logically appear.
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3.1.2. Scattering Theory: A Nonlin-
ear Fourier Transform. The KdV equa-
tion is a nonlinear modification of LKdV:

(KdV)
q̇ = −q′′′ + 6qq′ = (M0 + 2(qD +Dq)) q := Mq.

It, too, can be diagonalized, in a basis formed
by eigenfunctions Φ, not quite of M but of
the pseudodifferential operator L := D−1M
and its adjoint. There is a Φ-transform of
q, denoted by R(k), whose time dependence
is governed by the same decoupled system,
(3.1.2), as the linearized equation. However,
because M depends on q, the expansion basis
{Φ} will also depend on q, and to invert this
Φ-transform one must reconstruct both q and
{Φ} from R.

The KdV miracles happen because M
is a very special object. In differential Ga-
lois theory, it is known as the 2nd symmet-
ric power of the Schrödinger operator Q :=
−D2 + q(x). The name signifies that prod-
ucts Φ = f2, fg, g2 of two solutions f, g of
Qy = k2y satisfy the generalized eigenvalue
equation

(3.1.4) MΦ = 4k2Φ′,

Therefore, to understand the Fourier-like ex-
pansions in the squared eigenfunctions Φ, one
must first study the solutions of Qy = k2y.

This reasoning “explains” why the
Schrödinger operator Q is so fundamental in
KdV theory.5

3.1.2.1. Scattering Matrix. Since −D2+q
is approximately −D2 for large |x|, there are
two solutions f± of Qy = k2y normalized as
shown in the table.

x → ∞ x → −∞
f+(x, k) T+(k) exp(ikx) exp(ikx)

+R−(k) exp(−ikx)

f−(x, k) exp(−ikx) T−(k) exp(−ikx)
+R+(k) exp(ikx)

5The squared eigenfunction approach to inte-
grable PDEs and the interpretation of inverse scatter-
ing as nonlinear Fourier transform were introduced in
the early days of soliton theory in the seminal paper
by Ablowitz et al. [1].

Incoming plane waves exp(±ikx) are scat-
tered by a “potential” q(x). A portion car-
rying energy |T±(k)|2 is transmitted, and
|R±(k)|2 worth is reflected. The scattering
matrix

(3.1.5) S(k) =

[
T+(k) R−(k)
R+(k) T−(k)

]

is unitary. The condition |R±|2 + |T±|2 =
1 signifies conservation of energy at each
wavenumber k. One finds that T+ = T−;
the common value is the transmission coeffi-
cient T . We will rarely need R−, and write R
for R+. It is the (right) reflection coefficient.

The reflection coefficient R(k) deter-
mines q(x). This crucial fact will be taken
for granted. The inversion formula is stated
below in the section on the quantum harmonic
oscillator.

3.1.2.2. Tools from Complex Function
Theory. Analyticity properties of f± and T
in the upper half plane Im k > 0 play an
essential role. Key pieces of the evidence
for Henry’s conjecture, presented in [8], are
essentially theorems about analytic functions.
To give a flavor of the tools required, I list
some essential facts that are used in many
proofs.

Analyticity of f±(x, k) for Im k > 0, for
each fixed x, is a simple side product of the
Neumann series argument that proves exis-
tence of these functions. The Wronskian of
f± is −2ik/T (k), so T is also analytic. The
reflection coefficient R is rapidly decreasing
as |k| → ∞ on the real axis.

More careful analysis shows that the func-
tions

(3.1.6) k �→ e±(x, k) :=
1

T (k)
f±(x, k)e∓ikx

are outer functions in the Hardy space (1 +
H2+)∩H∞+, and that T (k) is determined for
Im k > 0 by its values along the real axis by
the Poisson formula

(3.1.7)

lnT (k) =
1

2πi

∫ ∞

−∞

ln |T (k′)|2
k′ − k

dk′, Im k > 0.

The reflected functions e∗±(x, k) =

e±(x,−k) belong to (1 + H2−) ∩ H∞−. The
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pairs e∗± and e± are patched across the real
axis according to

e∗± +R±e∓2ikxe± = Te∓.(3.1.8)

The Fourier transform of this relation
amounts to an integral equation from which q
can be determined. This is inverse scattering.

3.1.2.3. Squared Eigenfunction Expan-
sion. The so-called squared eigenfunctions
Φ± := f2

± and Φ0 := f+f−, are solutions
of the pseudodifferential eigenvalue problem
obtained by integrating (3.1.4),

D−1MΦ := LΦ = 4k2Φ, where

L = −D2 + 4q − 2D−1q′.(3.1.9)

Their derivatives satisfy the adjoint equation,
L∗Φ′

± = 4k2Φ′
±.

The product Φ0 is Green’s function Gxy

for x = y, up to factor. The other two squared
eigenfunctions Φ± are of decisive importance
for (at least) two reasons.

They are derivatives, with respect to q(x),
of the reflection coefficient R(k). When one
leaves the scattering class, and normalization
at |x| = ∞ is no longer possible, the gradients
of other spectral quantities are often natural
substitutes (cf. the quantum harmonic oscilla-
tor, below). They always satisfy MΨ = 4λΨ′.

The sets Φ± and Φ′∓ form the bi-
orthogonal bases used to diagonalize KdV.
The representation of q itself is simple and
elegant:

q̃(k) =

∫
qΦ′

− dx = 4k2R(k)(3.1.10a)

q(x) =
2i

π

∫
kR

T 2
Φ+ dk.(3.1.10b)

This takes a familiar form when q is “small”.
To first order, Φ±(x, k) ∼ e±2ikx. The small
scatterer q reflects but a small portion of the
incoming wave, whence T ∼ 1. The orthog-
onality relations between Φ and Φ′ become
the standard ones for exponentials, and the
relations (3.1.10) reduce to

R(k) ∼ −iq̂(k)/2k.

The reflection coefficient is hereby revealed
to be a nonlinearization of the Fourier trans-
form. A number of later formulas are prof-
itably understood as perturbations of familiar
Fourier facts.

The orthogonality of Φ,Φ′ can also be
seen as consequence of a geometric property:
the Φ′ are tangent, and the Φ are normal, to
the nonlinear analogs of the LKdV manifolds;
these will now be introduced.

3.1.3. The KdV Manifold. In
Sect. 3.1.1 we defined an LKdV manifold as
a set of q with prescribed modal energies
|q̂(k)|2. A KdV manifold6 consists of the set
of q with the reflected and transmitted energy
in each mode, |R(k)|2 and |T (k)|2, prescribed
(they add to 1).

Let J(r) denote such a set. It consists of
all q whose reflection coefficient has the form
R(k) = r(k)eiψ(k) with fixed r and odd func-
tion ψ of slow growth. Since |R| determines T ,
one may also write J(T ).

In complete analogy with the linear case
(3.1.3), there is a distinguished family of vec-
tor fields tangent to J(r). Take the evolution
equation (a priori nonlocal)

(3.1.11) q̇ = YΩq := DΩ(L)q.
Substitution of (3.1.10b) for q and application
of (3.1.9) lead to

(3.1.12) Ṙ(k, t) = 2ikΩ(4k2)R(k, t).

Thus, |R(k)|2 is independent of time and the
flows (3.1.11) preserve the KdV manifolds.
Furthermore, they are simultaneously diago-
nalized, and so commute.

The vector fields

q̇ = Xmq := DLmq = (−1)mD2m+1q

+nonlinear terms,m = 0, 1, 2, 3, . . . ,

(3.1.13)

are known as the KdV hierarchy (m = 0 is
translation of the potential, q̇ = q′, andm = 1
is KdV). The iterated antiderivatives in DLm

magically cancel, and the Xm are polynomial
in q and its derivatives.

The nonlocal equation defined by the re-
solvent of L, namely Ω(L) = −2(L+4κ2

0)
−1, is

an infinitesimal addition. It will soon assume
a place of prominence.

6The “KdV” indicates no more than invariance
under the flows of a family of commuting vector fields
that includes KdV; often, KdV per se has nothing to
do with the matters of interest.
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3.1.4. KdV as Integrable Hamilton-
ian System. At this point, we know7 that
the scattering class S is stratified by infinite-
dimensional tori that are orbits of a huge
group denoted by A above. This is the group
of translations of angles in the phase func-
tions, generated by the vector fields YΩ. The
torus-angle picture is familiar in classical
Hamiltonian mechanics, and it will be very
convenient to express KdV geometry with a
Hamiltonian vocabulary. The list of defini-
tions and facts is relegated to an appendix.

3.1.4.1. Complete Integrability of KdV.
Hamiltonian systems are a skew analog of gra-
dient systems. In Euclidean space, they have
the form

ẋ = P gradH(x).
For KdV, the so-called Poisson operator P is
the derivative D = d

dx . Its non-invertibility
causes complications, but these are ignored.

The Poisson bracket and Hamiltonian
vector field have the form

{F,G}(q) =
∫

(gradF ) ( gradG)
′
,

q̇ = XHq = (gradH(q))′.(3.1.14)

The Hamiltonian for KdV is 1
2

∫
(q′)2 + 2q3;

the quadratic term by itself is the Hamilton-
ian for LKdV.

The KdV manifolds are interpreted as
follows. They are common level sets J(r) =
∩k∈R{q | |R(k)| = r(k)} of the family of func-
tions q �→ |R(k)|, indexed by k. These func-
tions Poisson commute; for every pair k, � one
has

(3.1.15) {|R(k)|, |R(�)|} = 0.

Remarkably, this geometric property is
merely a rewording of bi-orthogonality of the
squared eigenfunctions. The gradients of the
right and left reflection coefficients are

gradR± =
1

2ik
Φ∓,

and, up to factors,

{R−(k), R+(�)}
=

∫
Φ+(x, k)Φ

′
−(x, �) dx = δ(k − �).

(3.1.16)

7Once more: this is the guiding picture; what we
really know may be a lot or a little.

Equation (3.1.15) for the moduli is then de-
rived by appeal to unitarity of the scattering
matrix (3.1.5).

The KdV manifolds J(|R|) are continuum
tori labeled by |R| and parametrized by argR;
a little rewriting turns these coordinates into
canonical variables of action-angle type,8

Z(k) = −k

π
ln |T (k)|2 and θ(k) = arg

R(k)

T (k)
.

(3.1.17)

3.1.4.2. Tangent Spaces to J(r). The
functions T (iκ), κ > 0, are in involution since
the Poisson representation (3.1.7) determines
T in the upper half plane from R on the
real axis. The gradient of T (iκ) is Green’s
function Gxy on the diagonal and generates
the Hamiltonian vector field

q̇ = Xκq := (gradT (iκ))′ = −G′
xx(−κ2|Q).

(3.1.18)

The Xκ span the tangent spaces to the KdV
manifold.

The transform of Xκ to R(k, t), which
is needed later, can be computed in action-
angle variables from the Poisson representa-
tion (3.1.7) of T (iκ):

(3.1.19) Ṙ(k, t) = − ik

k2 + κ2
R(k, t).

According to (3.1.12), the vector field (3.1.18)
can also be represented in terms of the resol-
vent of L, namely, q̇ = −2D(L+ 4κ2)−1q.

3.1.4.3. KdV Hierarchy. The role of the
KdV hierarchy of local equations, (3.1.13), de-
serves special emphasis. Green’s function sat-
isfies MGxx = 4λG′

xx; the coefficients of the
asymptotic expansion of G′

xx(k
2|Q) in inverse

powers of k can be determined recursively,
and are nothing but the KdV vector fields Xm:

(3.1.20)

G′
xx(k

2|Q) ∼ 1

2
q′

1

k3
+
1

8
(6qq′−q′′′)

1

k5
+X3

1

k7
+· · ·

Thus, Eq. (3.1.18) contain the KdV hierarchy,
albeit in a very implicit manner.

8For small q, they reduce to Z0(k) = 1
4πk

|q̂(k)|2
and θ0(k) = arg q̂(k), k > 0.
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3.2. Geometry of KdV: Additive
and Unimodular Classes

We now leave the scattering class S and
only ask that q be a smooth function and that
the spectrum of Q be positive. The class of
such operators is denoted by Q.

The steps to be accomplished are:

(a) to find an equivalence relation on
Q whose equivalence classes in the
scattering case are the tori J(r);

(b) to generate an equivalence class
from one of its members by a pro-
cedure that generalizes translation
of R by all possible phase functions;

(c) to find a family of commuting vector
fields that span the tangent spaces
of the equivalence classes and, in the
scattering case, contains the KdV
hierarchy.

Paper (1) in the Geometry of KdV series
proposes solutions of these three problems.
The equivalence classes are the unimodular
spectral classes of the title. The analogs of
the phase functions are generated by addi-
tions. The tangent vectors are infinitesimal
additions, which generalize the vector fields
(3.1.18) with Hamiltonians T (iκ0).

Paper (2) verifies that the scattering
class, the class of operators with periodic
potential (the Hill operators), and a certain
finite-dimensional subclass thereof, all fit the
framework. It will become clear that this is a
highly nontrivial result.

Paper (3) integrates a large subset of the
vector fields from (c), by the “simple” expe-
dient of exhibiting an explicit solution as in-
finite determinant.

Some of these results, particularly
(c), were motivated by earlier work [14] of
McKean and Trubowitz9 on the quantum me-
chanical harmonic oscillator, Q0 := −D2 + q0
with q0 = x2 − 1. This operator is the
complete opposite of the scattering type
(and Hill’s operator); it has pure discrete
spectrum λn = 2n, n ≥ 0, and the KdV
vector field −q′′′ + 6qq′ cannot be integrated

9As far as I know, this is still the only paper to
analyze an operator from outside the traditional KdV
world.

because the x3 growth of the nonlinearity is
not balanced by the linear terms. The analog
of the KdV manifold is parametrized by the
exponential map of Hamiltonian vector fields,
Xn = (gradλn)

′, that are no longer local
in q,

(t0, t1, t2, . . .) : Q0 �→ exp(
∞∑
0

tnXn) ·Q0,

In the generality of class Q, a continuum
version of this map will be required; loosely
speaking, it is a superposition of vector fields
Xλ of infinitesimal additions, smeared by a
measure μ,
(3.2.1)

t(λ) : Qreference �→ exp
(∫∞

0
t(λ)Xλ dμ(λ)

)
·Qreference.

For the oscillator, μ is concentrated on the
nonnegative integers.

3.2.1. The Harmonic Oscillator and
Paired Additions. The goal is to describe
the spectral manifold10 Q of Q0, meaning the
set of operators of the form Q = −D2 + q
whose eigenvalues are also λn = 2n, for q in
the space x2 − 1 + C∞

↓ . It is the analog of

the KdV manifold in the scattering class (but
recall that KdV has no meaning in Q).

The spectral manifold Q will be imag-
ined as submanifold of an ambient space of
“all” operators Q that have eigenvalues λn =
λn(Q) “near” those of the harmonic oscillator.
We picture Q as one of a stack of level setsQc

of operators with all λn(Q) = cn prescribed.
The geometry of Φ± and Φ′

± is replayed sim-
ply and cleanly. The normal and tangent di-
rections of Q are spanned, respectively, by11

gradλn = e2n and (e2n)
′. Bi-orthogonality

translates into {λm, λn} = 0. The Hamilton-
ian vector fields Xn = (gradλn)

′ commute,
and it is possible to solve the equations

(3.2.2)
∂q

∂tm
= (e2m)′, 0 ≤ m ≤ n,

10This time it really is a manifold.
11en is the normalized eigenfunction corresponding

to λn.
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simultaneously. Miraculously, there is an ex-
plicit formula:

q(x; t0, t1, . . . , tn)

= q0 − 2
d2

dx2

(
ln det

[
δk� + (etk − 1)∫ ∞

x

e0ke
0
� , 0 ≤ k, � ≤ n

])

(3.2.3)

(superscript zero denotes initial values). One
can even take n → ∞ as long as t = {tm}∞0
decreases rapidly. The sequences t form a co-
ordinate grid on the spectral manifold Q, or
equivalently, on the group A of additions men-
tioned at the beginning of Section 2.

3.2.1.1. Additions in General. Additions
are substitutes for the local flows, like KdV,
that may no longer exist in the generality of
the class Q. They are special instances of a
classical transformation of 2nd-order ODEs,
the Darboux transformation,12 which takes a
zero-free solution y1 of Q1y = −y′′+q1y = μy
as input and creates a new operator according
to
(3.2.4)
q2 = q1 − 2(ln y1)

′′, and Q2 = −D2 + q2.

The map13 P : y �→ y−1
1 W (y, y1) sends solu-

tions of Q2y = λy to solutions of Q1y = λy,
for λ �= μ; for λ = μ, the new solutions are

(3.2.5) y−1
1 (a1 + a2

∫ x

y21).

Thus, everything about the new operator is
known. Moreover, Darboux transformations
commute and preserve the Poisson bracket.

The determinant (3.2.3) is constructed
from repeated additions that start at the ini-
tial condition q0 and use the data λm and e0m.
However, because e0m has zeros when m > 0,
so that the new potential (3.2.4) has poles,
the additions must be done in pairs. If y1 is
not zero-free, do the first Darboux transfor-
mation as above, simply ignore the singular
nature of the resulting q2, and perform a sec-
ond transformation with the solution (3.2.5).

12[6].
13W is the Wronskian.

The result of this paired addition will be the
1× 1 version of (3.2.3),

new q := q1 − 2
d2

dx2

(
ln[1 + a

∫ ∞

x

y21 ]

)
.

(3.2.6)

It is rather surprising that the new potential
is smooth (when a ≥ 0). The determinant
in (3.2.3) is built by iterating paired addi-
tions. This procedure is not peculiar to the
harmonic oscillator; if an operator Q has sim-
ple eigenvalues λ0 < λ1 < λ2 < · · · , then
the solution of (3.2.2) is given by the same
formula.

3.2.1.2. The Group of Additions Acts
Freely and Transitively. It is shown in [14]
that the map t �→ exp(

∑
tmXm)q0 is 1:1

onto Q, by a method reminiscent of inverse
scattering. For the normalized eigenfunctions
of −D2 + q(x; t), define

cn±(t) :=
en(x = ±∞, t)

e0n(x = ±∞, t = 0)
.

These asymptotic data satisfy

(3.2.7) cn+c
n
− = 1,

cn+
cn−

= etn .

When a q̃ ∈ Q is given, and is to be writ-
ten as exp(

∑
tmXm)q0, look at the ratios

(3.2.7) built from its eigenfunctions to deter-
mine what t must be, and then verify (diffi-
cult) that the formula (3.2.3) in fact repro-
duces the given q̃.

3.2.1.3. The Dyson Determinant in In-
verse Scattering. The beautiful representa-
tion (3.2.3) of the solution of the system
(3.2.2) is universal.

In [10], Henry shows that the commuting
Hamiltonian flows q̇ = (gradT (iκ))′ from the
scattering class retain meaning in Q, and that
their solutions have the form (3.2.3), but with
a regularized continuum limit of the Z≥0 ×
Z≥0 determinant.

In the Hill class, there is a similar expres-
sion,

(3.2.8) q(x) = −2
d2

dx2
lnΘ(A(x);Z).
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The function Θ has two arguments. The sec-
ond one labels the KdV manifolds; Z de-
notes a Riemann surface of (generically) in-
finite genus. The first one is a one-parameter
subgroup of A, which is the group of trans-
lations on the Jacobian variety of Z. A sum-
mary and references may be found in [11].

In the scattering class, the function Θ is
the Fredholm determinant14 of an integral op-
erator,

(3.2.9)

Θ(θ;Z) = det

[
I +

1

2π

∫
eik(x+y)R(k) dk, 0 ≤ x, y

]
.

The notation indicates that the dependence
of Θ on R should be thought of as split into an
angle part (the additions) and an action part
(the unimodular invariant), as in (3.1.17).
The inversion formula that recovers the po-
tential from the scattering data again has the
form (3.2.8), with A(x) = arg (exp(ikx)R(k)).

3.2.2. The Unimodular Class.
3.2.2.1. Unimodular: Definition. We now

turn to the definition of KdV manifolds for
operators in the class Q. By the spectral the-
orem, all self-adjoint Q give rise to an expan-
sion in eigenfunctions, generalized or square
integrable. The measure that appears in the
inversion formula will be the replacement for
the scattering matrix.

Fix an operator15 Q0 = −D2+q0, and let
E0(x, λ) be the fundamental system satisfying
[E0, E

′
0] = 2 × 2 identity at x = 0. In the

resolution of the identity16

δ(x− y) =
1

2π

∫ ∞

0

E0(x, λ)
‡dF0(λ)E0(y, λ) ,

the matrix dF0(λ) is the spectral weight . If Q0

and Q1 are unitarily equivalent, their spectral
weights are related by

(3.2.10) dF1(λ) = G(λ) dF0(λ)G(λ)
‡.

Conversely, this relation between spectral
weights implies unitary equivalence.

Now define the unimodular class U(Q0)
to be the set of all Q = −D2 + q for which

14Introduced into inverse scattering by Dyson.
15Note that Q0 is not −D2.
16The dagger ‡ denotes transpose.

G(λ) ∈ SL(2), or equivalently, for which
det dF = det dF0.

The unimodular classes are Henry’s sub-
stitute for the KdV manifolds . Some motiva-
tion is suggested in the next article.

For this proposal to be sensible, a uni-
modular class must coincide with a KdV man-
ifold in the scattering case; i.e. if Q0 has trans-
mission coefficient T0, then

J(T0) = U(Q0)

should be true. Now, for Q of scattering class
the spectral weight can be computed in terms
of the scattering matrix; in particular,

(3.2.11) det dF/dλ = |T |2.
For two operators Q0, Q1, relation (3.2.10)
implies |T1|2 = (detG)2|T0|2; if Q1 ∈ J(Q0),
then T1 = T0 and so detG = 1. Hence a KdV
manifold is contained in a unimodular class.
The converse is much harder and is addressed
in Sect. 3.2.4.

3.2.2.2. Unimodular: Interpretation. The
condition detG = 1 is not as different from
the parametrization of KdV manifolds by
transmission coefficients as it appears on first
glance. All operators of scattering class are
unitarily equivalent, with identical continu-
ous spectrum {λ ≥ 0}. For every pair there
is a scattering matrix S(λ;Q0, Q1) that en-
codes the relation between their plane wave
solutions (λ = k2). When Q0 = −D2, this is
our standard scattering matrix (3.1.5).

The scattering matrix relating operators
in the same KdV manifold is unimodular:
detS(λ;Q0, Q1) = 1. This property has a
very pretty and suggestive translation into
an eigenvalue perturbation picture.

Let dP1
λ and dP0

λ be the spectral projec-
tions of Q1 = −D2 + q1 and Q0 = −D2. The
increment (Tr is the operator trace)

dξ(λ) := Tr(dP1
λ − dP0

λ)

should be the difference between the number
of eigenvalues of Q0, Q1 in an infinitesimal
interval about ω. This trace does not exist,
but one can convert the formula into some-
thing meaningful. The spectral shift function
ξ(λ;Q0, Q1), introduced by Krĕın, quantifies
the displacement of “virtual eigenvalues” of
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Q0 to “virtual eigenvalues” of Q1. The scat-
tering matrix S(λ;Q0, Q1) instead looks at
the “rotation” of the eigenfunctions at fixed
eigenvalue λ. A general theorem of Birman
and Krĕın relates the two:

(3.2.12) detS(λ;Q0, Q1) = e−2πiξ(λ;Q0,Q1).

The determinant of the standard scatter-
ing matrix (3.1.5) is T (k)/T (k), and is the
same throughout a KdV manifold J. Then
according to (3.2.12), the spectral shift from
−D2 remains the same as well. Put differ-
ently, the operators in J have identical “vir-
tual” eigenvalues, and the pairwise scattering
matrices are unimodular.

The condition detG = 1 similarly re-
stricts the deformation of a basis at fixed λ,
but I do not know a more transparent in-
terpretation. It would be very pleasant if it
were equivalent, for an interesting class of op-
erators, to the rigidity of virtual eigenvalues,
whatever that might mean.

3.2.3. Additive Class. The KdV man-
ifolds in the scattering case were interpreted
as tori of an integrable Hamiltonian system,
labeled by detS(k). Instead of tori there
are now unimodular strata inside a unitary
equivalence class, labeled by detG. The KdV
manifolds were swept out by the group of
translations acting on the angular coordinate,
argR(k). We need a replacement for the an-
gles. It was suggested earlier that the unimod-
ular manifolds are generated by the action of
a big additive group A. These are the addi-
tions, which now need to be described in a
little more detail, first for the scattering class,
followed by the generalization.

3.2.3.1. Additions in Scattering. Let
λ0 = −κ2

0 < 0. Let p denote the pair (λ0,+)
or (λ0,−), and let e(x, p) be f+ or f− in
accordance with that choice. Define addition
of p as before,

(3.2.13) Ap : Q �→ Qp := Q− 2(ln e(x, p))′′.

Repeated additions change Q by a Wronskian
determinant,

Ap1 · · ·ApnQ = Q−2
d2

dx2
lnW (e(x, p1), . . . , e(x, pn)).

From this it is clear that additions commute
and that ApA−p = identity.

Additions change R by a factor of modu-
lus 1,

A±p : R(k) �→ κ∓ ik

κ± ik
R(k), λ = −κ2;

(3.2.14)

they preserve J(|R|) and translate the coordi-
nate argR by an odd function.

An infinitesimal addition is the derivative
of Ap with respect to p. Set p=(λ,+) and

p′ =(λ+Δλ,+) and work out Ap′
A−pQ. The

p′ factor has an f+, the −p has an f−, and
together they give f+f−, which is Green’s
function:

Ap′
A−pQ = Q − 2G′

xx(λ|Q)Δλ + · · · .
(3.2.15)

It is now clear why infinitesimal additions
are so important: they are precisely the
Hamiltonian vector fields (gradT (iκ))′,
which were denoted by Xλ in (3.1.18) (up
to irrelevant factor). They span the tangent
spaces to the KdV tori (redundantly), and
generate the big additive group A that acts
on the tori. Integration of an infinitesimal
addition vector field does not produce a
global addition (3.2.14). To get one of those,
one must piece together segments of integral
curves of many Xλ, along the lines of

e
∫
t(λ)Xλ dμ(λ) q0.

3.2.3.2. Additions in General. No major
adjustments are needed to define additions for
general Q because there are natural substi-
tutes for f±. Take λ0 < 0, to the left of the
spectrum of Q. There exist solutions h± of
Qy = −λ2y characterized by17

h± ∈ L2(R±) and h± �∈ L2(R∓)

and a normalization at x=0. In the scat-
tering class, h± are proportional to f±. The
vector fields of infinitesimal addition, Xλ := −
2G′

xx(λ|Q), are everywhere defined, since ev-
ery Q has a Green function; they include KdV
when it makes sense, because the KdV vector
field appears in the asymptotic expansion of
−2G′

xx(λ|Q); they preserve the unimodular
class (this is not as obvious as in the scatter-
ing case, cf. (3.2.14)); and finally, remarkably,

17
R+ = [0,∞) etc.
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the flows of Xλ exist for all time, as mentioned
in Sect. 3.2.1.3. More on this below.

3.2.4. Unimodular Class = Addi-
tive Class. Additions will be an acceptable
substitute for the nonexistent angles only if
every unimodular class U(Q) is the closure18

of an orbit of A. Such a set is called the addi-
tive class of Q [7], written A(Q).

Conjecture: U(Q0) = unimodular class =
additive class = A(Q0).

The conjecture is verified for three examples
in [8]. I will indicate briefly how one goes
about proving it in one case, just to show how
intricate and difficult such an argument turns
out to be.

Fix a Q0 of scattering class. Additions
preserve J(|R0|) and generate all argR. Hence
A(Q0) = J(|R0|). It is to be shown that the
unimodular class is not larger. Suppose then
that Q = −D2+ q ∈ U(Q0); we know nothing
about it, other than detG = 1, so for instance
the potential q could be unbounded. It is to
be shown that in fact q ∈ C∞

↓ , which implies

that Q belongs to J(|R0|).
Since q may not decay, one cannot nor-

malize eigenfunctions at infinity, and works
with h± instead. There is a still a kind of scat-
tering matrix connecting the x < 0 behavior
with the x > 0 behavior:

h+ = r11h− + r12h+(3.2.16)

h− = r21h− + r22h+.

To prove that Q is of scattering class, one
must use the rij to define functions R and T
that possess the numerous decay and analyt-
icity properties required of realistic scattering
data, use them to get an operator Q̃ by the
Dyson determinant formula (3.2.9), and then

verify that the Q̃ so constructed is the same
as the starting Q.

If Q were of scattering type, the f±
(which we don’t really have) and the h±
(which we do have) would be proportional,
say f+ = ch+ for an unknown normalizing
function c(k); further, there would be four re-
lations between rij and the scattering coeffi-
cients R±, T and the factor c(k). Two of them

18There is not yet a precise definition of “closure”.

say that scattering data, if they exist, must
satisfy

(3.2.17) r21 = R−c̄/c and 2ikr22 = |c|2.
They are to be solved for R− and c.

The unimodularity condition must of
course be used somewhere, and it enters
right at the start. The spectral weight has an
expression in terms of h±, and from it one
computes that

1− |r12|2 = det
dF

dλ
,

According to (3.2.11) and unimodularity,

det
dF

dλ
= det

dF 0

dλ
= |T 0|2.

But because T 0 comes from a scattering class
potential, one knows that its modulus be-
longs to 1+C∞

↓ (qua function of k), and thus

|r12|2 ∈ C∞
↓ . If r12 passes all the other tests

required of scattering data, its rapid decay
translates into rapid decay of q (as it would
in Fourier theory).

The rest is exploitation of analyticity
properties of h±(0, λ) and the induced ana-

lyticity properties of rij in the upper k =
√
λ

plane. Here is a sample.
The normalizing coefficient c(k), Im k >

0, can be reconstructed from its modulus
|c| =

√
2ikr22. Then the Hilbert transform

produces the phase c̄/c, so that R− can be de-
termined from the first equation in (3.2.17).
Next, one defines |T |2 = 1− |R−|2 and recov-
ers T by the Poisson formula (3.1.7). This has
produced candidates R and T , and one now
goes on to check a list of properties of realistic
scattering data, and so on.

3.2.5. Integration of Smeared Addi-
tion Flows. The vector fields of infinitesimal
addition were claimed to be superior to the
more famous KdV hierarchy, because the lat-
ter might fail to exist, while the former was
of controllable size. This assertion is proved
to be true in [10]. Henry considers not only
q̇ = −2G′

xx(λ|Q), the infinitesimal addition,
but more generally q̇ = −2H ′

xx(λ|Q), where
Hxy is the kernel of a fairly general func-
tion H(Q) of Q, and he is able to write global
solutions as regularized determinants.
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These determinants are honest versions
of the symbolic superposition of paired addi-
tions in (3.2.1). We first reinterpret the matrix
(3.2.3) as a Fredholm determinant. Take19

f = c0e0 + c1e1 + c2e2 + · · · , and map it by
the row-wise action on the coefficients

ck �→ ck + (etk − 1)
∞∑
�−0

∫ ∞

x

eke�c�.

The effect on f is

f �→ f +

∞∑
k=0

(etk − 1)ek ⊗ ekPxf,

where Pxf is projection f �→ 1[x,∞)f .
If nowH(Q) is defined on the spectrum of

Q by H(λk) = tk then (3.2.3) may be written
in the compact form

q = q0 − 2
(
ln det[I + (eH(Q) − I)Px]

)′′
.

The formula extends to more general H
satisfying certain (natural) technical condi-
tions. The regularized determinant

Θ(H |Q) = det
I + (eH(Q) − I)Px

I + (eH(Q) − I)P0
.

is shown to exist and be smooth in x. The
vector field20

XH = −2H ′
xx(Q)

has integral curves

Q �→ Q − 2
d2

dx2
lnΘ(H |Q).

Ordinary infinitesimal addition at parame-
ter λ′ is −2Gxx(λ

′|Q); this corresponds to
H(λ) = 1/(λ− λ′).

3.3. Finite-Gap Operators

The KdV manifolds J(|R|), alias additive
classes, for operators of scattering type are
all infinite dimensional.21 When is an addi-
tive class a finite-dimensional manifold? How
do you translate this geometric property in
the space of all operators into analytic proper-
ties of individual operators? Remarkably, this
question has a complete answer.

19The superscript zero is dropped for convenience.
20Hxy is the kernel of the integral operator H(Q).
21But for Q = −D2.

The operators are of the type known as
finite gap or algebro-geometric; the names re-
fer, respectively, to a characteristic property
of the spectrum of Q and to the techniques
by which the explicit form of the potentials
is obtained. The connected components of
the finite-dimensional additive classes will be
products R

k × (S1)g−k, the case in “general
position” being a pure torus (S1)g.

Much is known about finite-gap opera-
tors. According to McKean-van Moerbeke [15]
(this volume) and Its-Matveev [5], these two
conditions are equivalent:

(a) The equation MΦ = −Φ′′′ + 4qΦ′ +
2q′Φ = 4λΦ′ has a solution that is
a polynomial of degree g in λ, with
x-dependent coefficients;

(b) the spectrum of Q consists of g in-
tervals, with some perhaps shrunk
to a point, and one infinite inter-
val extending to +∞; the spectral
weight dF is singular at the points,
and det(dF/dλ) = 1 on the intervals;

and, as shown in [8], both are
equivalent to

(c) the additive class A(Q) is a smooth,
finite-dimensional manifold of
dimension g.

The potential q will then be quasiperi-
odic in x. It is obtained from a multiply
periodic function of g complex variables,
say P (z1, . . . , zg), by evaluation along a
line zj = cjx + dj . This P is an Abel-Jacobi
function,22 meaning that its periods are loop
integrals of holomorphic differentials on a
Riemann surface.

It is remarkable that such complete
information can be deduced from the finite-
dimensionality of an additive class, with
no assumptions about any operator in the
class.23 Matters were quite different in the
scattering setting. It was shown that the
additive (= unimodular) class of a given
operator consists of operators with similar
decay properties and spectral invariants,

22In the terminology of Siegel, Topics in Complex
Function Theory, v. 2.

23Other than the standing hypothesis of semi-
boundedness and smoothness of q.
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not that an additive class possessing such-
and-such geometric properties was forced
to contain only Q of such-and-such type.
Additive classes of Hill operators are likewise
characterized with reference to a given
operator, but in constrast to the scattering
case, where the KdV manifolds are still
rather amorphous objects, the Hill additive
classes have a very clearcut structure. They
are generically smooth and compact infinite-
dimensional tori admitting a certain kind of
complexification; one may conjecture that
this geometry forces the potentials to be
(evaluations of) Abel-Jacobi functions asso-
ciated with infinite genus curves.24 I believe
this question has not been investigated.

3.3.1. Jacobi Inversion. Hill oper-
ators are a chapter in the theory of the
multivalued function

√∏
(λ − λm), the

product being finite or infinite. The most
direct introduction to this circle of ideas
starts with condition (a).

So suppose we seek a polynomial solu-
tion Φ(x, λ) = λg + Ag−1(x)λ

g−1 + · · · of
MΦ = 4λΦ′. The coefficients can be deter-
mined recursively, down to the constant term,
which does not vanish automatically. It will
be zero if q satisfies an ordinary differential
equation of order 2g + 1. Repeated integra-
tions reduce its order until only g unknowns
remain, which are then found by inversion of
integrals of algebraic functions.

The steps are implemented by a standard
trick. The equation MΦ− 4λΦ′ = 0 is multi-
plied by Φ to produce a perfect x-derivative
(of the left side in (3.3.1) just below). The
integration constant is a polynomial in λ, in-
dependent of x, that may be prescribed arbi-
trarily. So we have

(3.3.1)

ΦΦ′′− 1

2
(Φ′)2−2(q+λ)Φ2 = �(λ)2 = −2

2g∏
0

(λ−λj ).

The g roots of Φ(x, λ) =
∏g

1(λ − μj(x))
are now introduced as new variables. Substi-
tute the product into (3.3.1) and successively

24See [11] and references therein.

set λ = μj(x). The resulting equations,

1

2
(−μ′

j(x)
∏
i, 	=j

(μi(x)− μj(x)))
2 = �(μj(x))

2,

(3.3.2)

are then solved for μ′
j . Because of the ambi-

guity of sign of the square root, there must
be a signature to indicate the sheet on which
μj is found. Write pj = (μj ,

√
Δ(μj)2 − 1).

Now (3.3.2) can be organized into a system of
Abelian integrals

(3.3.3)

g∑
j=1

∫ pj

p0

ωk = ζk, k = 0, . . . , g − 1,

where ωk = sk ds
�(s) and ζk = 2xδk,g−1. The po-

tential q can be found from the so-called trace
formula,

(3.3.4) q(x) =

2g∑
m=0

λm − 2

g∑
j=1

μj(x),

which follows from comparison of the λ2g

coefficients in (3.3.1), provided we are able
to express the symmetric function

∑
μj of

the upper limits in terms of the right side.
Riemann’s theory of his theta function was
created to solve precisely this Jacobi inversion
problem. A. Its and V. B. Matveev exploited
the classical theory to derive a representation
for q:

q(x) = const − 2
d2

dx2
(ln θ(V x+W )) .

(3.3.5)

Some elaboration will come later; for now, it
is enough to know that θ is an entire function
on C

g, and that V,W ∈ C
g are parameters

depending on the roots of �(λ)2 and the initial
values.

3.3.2. The Unimodular and Addi-
tive Finite-Gap Classes. The theta func-
tion vanishes on a (g − 1)-dimensional set.
If the λm and the initial conditions μj(0)
are chosen carelessly, then q will have poles.
The correct disposition of these parameters is
identified by use of the spectral theory of the
operator Q with smooth potential q. Here are
the essentials.
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The spectrum of Q is determined by the
λm. It consists of g possibly degenerate finite
intervals called bands,25 [λ2j , λ2j+1], which
are separated by g “gaps” [λ2j+1, λ2j+2], for
j = 0, 1, . . . , g − 1, and to the right an
infinite band [λ2g,∞). The bands that are
shrunk to a point form the discrete spectrum.
Gaps are assumed to be nondegenerate. They
are the branch cuts of the algebraic func-
tion

√
Δ(λ)2 − 1.

The unimodular class U(Q) is character-
ized by the band structure and the nature of
the spectral weight dF(λ). The latter is com-
puted (by general spectral theory) to be sin-
gular on degenerate bands, absolutely contin-
uous with det(dF/dλ) = 1 on the other bands,
and zero elsewhere.

The pj provide coordinates on U(Q).
There is exactly one per gap. As function
of x, each moves in a circle around the branch
cut, turning around when it hits the bordering
band; if that band happens to be degenerate,
then pj(x) moves towards it in infinite time.

Thus, the general q(x) is built from
bounded oscillations of different frequencies,
and localized waves that asymptote to a
constant at |x| = ∞. As manifold, this set
of Q is diffeomorphic to a disjoint union of
cylinders over tori, Rk × (S1)g−k.

3.3.3. Finite-Dimensional Additive
Classes. Now suppose there is an additive
class A, of operators with yet unknown prop-
erties, that is a finite-dimensional manifold.

Henry proves this striking result: the class
A is a manifold of operators as just described,
and therefore the potentials are expressed in
terms of Abelian functions by the Its-Matveev
formula.

I want at least to indicate how such a
proof gets under way. What is the immediate
consequence of finiteness?

One has to get hold of dF somehow. It is
obtained as boundary value of a matrixM(λ),
the Weyl matrix, built from the solutions h±
introduced earlier:

dF(λ = a) = lim
ε↓0

ImM(a+ iε) da.

25The term comes from solid state physics.

The (1, 1) entry of M is the most important.
It is m11 = 2h−h+ at x = 0, so G00(λ|Q)
up to factor, and dF11 is essentially a jump in
Green’s function.

Since A has dimension g, any g+1 infini-
tesimal additions are linearly dependent; if Xk

is addition with λ′
k, then X :=

∑g
0 ckXk = 0.

Next, Xm11(λ) is computed, and its vanishing
leads to identities on the Weyl matrix that
imply √

dF(λ) =
√
r(λ) × dF11,

where r is a rational function of the
form [

∑g
0

ak

λ−λ′
k
]−1. (The fact that

Xk = −G′
xx(λ

′
k|Q) is reflected in the

factor 1/(λ− λ′
k).)

The proof continues with careful exploita-
tion of the properties of

√
r(λ), which follow

from known facts about the behavior of h±.
Sign changes under the radical introduce the
band-gap structure. One then makes contact
with Sect. 3.3.1 by deriving a representation

2h+h− = m11 =
Πg

1(λ − μj)

�(λ)
,

with one μj per gap. These are the μj(x)
from earlier, evaluated at x = 0. They can
be moved to arbitrary positions in the gaps
by the flows of vector fields of infinitesimal
addition; by this procedure one can reach
the whole set of quasiperiodic potentials con-
tained in the trace formula (3.3.4).

3.3.4. Hill Operators. The extension
of the finite-gap picture to operators with
arbitrary smooth periodic potential requires
substantial new ideas. There are now infin-
itely many bands and gaps, infinitely many
pj, and a theta function in infinitely many
complex variables, see [11] for more informa-
tion.

The conjecture U(Q0) = A(Q0) is verified
in [8]. The unimodular class is characterized
by absolutely continuous spectrum on a set
of intervals (of certain asymptotic spacing and
length), on which det dF = 1. As in Sect. 3.2.4,
suppose Q ∈ U(Q0). At first, nothing–aside
from smoothness and semicoundedness–is as-
sumed about Q. Combining function theory
and spectral theory in a masterful way, Henry
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succeeds in proving that Q is a Hill opera-
tor, which means: it has a period 1 potential
whose divisor {pj} is distributed one per gap.

3.3.5. Other Operators. Modifica-
tions and combinations of inverse scattering
and the band-gap spectral theory have been
worked out for potentials with rapid decay
to nonzero constants at |x| = ∞ and for
rapidly decaying perturbations of finite-gap
potentials, but not, I believe, for local
perturbations of general Hill operators. The
characterization of unimodular and additive
classes for potentials of the first two types
would be of interest; perhaps the requisite
techniques can be extracted from [8]. In [7],
Henry makes brief mention of preliminary
results about operators with almost periodic
potentials. One may expect that progress,
for instance a log det representation of the
potentials, characterization of unimodular
classes, equality of unimodular and additive,
etc., will require entirely new ideas.

Afterword

Early in my years at Arizona, a group of en-
thusiastic aspiring probabilists organized an
ambitious reading seminar, meeting, I recall,
twice a week without fail. During one partic-
ularly intense semester, we worked through
every line of Henry’s recently published Sto-
chastic Integrals. My colleagues continued to
careers in probability and statistics, whereas I
was introduced to, and seduced by, integrable
systems. After my U-turn away from stochas-
tic matters, I published a note about Hill’s
equation. Just in time to insert an “added
in proof” amendment, I discovered the pa-
per “The Spectrum of Hill’s Equation”, and
was astonished to find that Henry had made
the U-turn with me (better, I made it with
him). Thereupon, during another intense se-
mester, I worked through every line of that
paper. Over decades since then, I have contin-
ued to learn from Henry, sometimes in person,
more often by poring over his writings. I am
glad to have been given a reason to study the
KdV papers, which I really did not appreciate
25 years ago. Today, I am closer to the goal. It
is always exciting to come to understand his

ideas, even if imperfectly and slowly. Thank
you, Henry, for making mathematics so much
fun.

Appendix: Hamiltonian Mechanics

The prototypical Hamiltonian system in
Euclidean space has the form

(A-1) ẋ = P gradH(x), x ∈ R
N ,

where P is a constant, skew-symmetric lin-
ear operator called Poisson operator and H
is a given function called the Hamiltonian
of (A-1). For simplicity, we assume P to be
invertible, which forces N to be even, say
N = 2n.

The vector field defined by the right side
of (A-1) is written XH . The commutator of
Hamiltonian vector fields is again Hamilton-
ian, [XH ,XG] = XF , where F , called Poisson
bracket of G and H , is given by the dot prod-
uct

F = {G,H} := gradG · P gradH.

When {G,H} = 0, one says that G,H are in
involution or Poisson commute. Equivalently,
[XG,XH ] = 0, which also implies that G is
constant along integral curves of XH , and vice
versa.

Suppose C1, . . . , Cn are (independent)
functions in involution; there can be no more
because their gradients span an isotropic
subspace of P . The commuting vector fields
XCj leave the n-dimensional level manifolds26

J(c) := ∩j{Cj = cj} invariant. If these are
compact they must be tori. After a choice
of origin, the flows of XCj define a transfor-
mation group (t1, . . . , tn) �→ x(t1, . . . , tn) on
each torus.

On an open set filled by n-dimensional
tori J(c) one can introduce special coordi-
nates, the action-angle coordinates, also called
action-angle variables, Zj , θj. The actions Zj

are functions of the ck and label the tori,
and the angles go around the cycles of the
torus. These coordinates are canonical, mean-
ing that all Poisson brackets vanish except for
{Zj, θ1} = 1.

26 c = (c1, . . . , cn} is given.
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If a function H depends only on the ac-
tions Zj, the Hamiltonian system takes the
canonical form

(A-2) θ̇j =
∂H

∂Zj
, Żj = −∂H

∂θj
= 0,

and since θ̇j is a constant, call it ωj , the solu-
tion is

Zj(t) ≡ Zj(0), θj(t) = ωj · t+ θj(0).

Thus, in action-angle coordinates, the integral
curves of the vector field XH̃ are exhibited as
straight lines on the covering spaces of the
tori.
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4Some Comments

Henry P. McKean Jr.1

4.1. Options

McK [49, ‘A free boundary problem for
the heat equation arising from a problem in
mathematical economics’] is my one and only
excursion into “mathematical finance”. It is
an appendix to P. Samuelson [90, ‘Rational
theory of warrant pricing’] in which the cor-
rect recipe for pricing an American put op-
tion is worked out. My contribution was to
reduce the recipe to a free boundary prob-
lem for a (backward) diffusion equation re-
lated to the “geometrical Brownian motion”
x(t) = exp[σb(t) + δt] and to compute, con-
cretely, as much as I could. I believe this the
worst written paper I ever did (though the
version printed here has been cleaned up) and
refer you to P. Myneni [83, ‘The pricing of
an american option’] for a much better ac-
count. Anyhow, what we did was a novelty
then (1965), so I include it here. The work of
Black-Scholes [4, ‘The pricing of options and
corporate liabilities’] and Merton [82, ‘The-
ory of rational option pricing’] is similar, but
with them the derivation of the mathemat-
ical problem is done, more transparently, in
terms of the individual Brownian path (Itô’s
Lemma) and the principle of “no free lunch”,
and would seem to lie deeper from a financial
point of view. This is an important difference.

1Courant Institute, New York University,
New York, NY, USA, mckean@cims.nyu.edu.

4.2. Geometry and the Laplacian

The main paper here, McK-Singer [76,
‘Curvature and the eigenvalues of the Lapla-
cian] has to do with the spectrum of the
Laplacian on a manifold. Kac’s celebrated pa-
per [32, ‘Can you hear the shape of a drum?’]
got me started. There, he had made a beauti-
ful proof of H. Weyl’s estimate for the eigen-
values 0 > λ1 ≥ λ2 ≥ λ3 etc.2 of the ordinary
Laplacian acting on functions that vanish at
the boundary of a nice domain D ⊂ R

d of
volume V :

−λn �
(
2π

(
d

2

)
!

)d/2

×
( n

V

)2/d

for n ↑ ∞,

or what is the same,

Z = trace etΔ =

∞∑
1

exp(tλn)

� (4πt)−d/2 × V for t ↓ 0.

This he made obvious: The Brownian motion,
started inside D and killed at the boundary
∂D, does not know that death is around the
corner, so its transition density p(t, x, y), ex-
pressive of etΔ/2, imitates the density for the

2The numbers w =
√−λ are the “fundamental

tones” of a drum-head spanning ∂D, whence Kac’s
title.
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free Brownian density on the diagonal, i.e. in-
side D, p(t, x, x) � (2πt)−d/2 for t ↓ 0. But
then Z =

∫
p(2t, x, x)dx � (4πt)−d/2 × V .

That’s it! Kac went further in dimension 2,
conjecturing that for smooth ∂D,

Z =
area D

4πt
− length ∂D√

4πt

+
1

6
(1− the number of holes) + o(1).

This is true. Singer and I proved it to-
gether with a general extension to manifolds
of higher dimension, both closed and with
boundary, and to other elliptic operators.
Kac is asking: Does the spectrum of Δ deter-
mine the region, up to a rigid motion, say?
His hunch was no, and that’s correct. Very
different iso-spectral regions were found by
Gordon, Webb and Wolpert [23, ‘Isospectral
plane domains and surfaces via Riemannian
manifold’]; see also Buser, Conway, Doyle
and Semmler [7, ‘Some planar isospectral
domains’] for a whole gallery of such, and
Sarnak [91, ‘Determinants of Laplacians,
heights and finiteness’] who proves that
isospectral classes of (compact) manifolds are
compact. Now the 1

6 (1 − h) in Kac’s formula
can be traced back to the Gauss-Bonnet
formula for the manifold (with crease) made
by doubling D: indeed, you can “hear” the
Euler number of any closed manifold, as de
Bruijn and Arnold had already proved but
not published. It appears in the form of an
integral over the manifold of a complicated
expression in the curvature, hopefully re-
ducible to Chern’s integrand, but we could
not see into the necessary cancellations.
Patodi [85, ‘Curvature and the eigenforms of
the Laplace operator’] did so; see Gilkey [21,
‘Curvature and eigenvalues of the Laplacian
for elliptic operators’] for a much simplified
version and more; see also Sakharov [104]
where the method is applied to the physical
problem of polarization.

McK [53, ‘Selberg’s trace formula as
applied to a compact Riemann surface’] is
mostly expository. It explains the application
of the marvelous trace formula of Selberg [94,
‘Harmonic analysis and discontinuous groups
in weakly symmetric Riemannian spaces

with applications to Dirichlet series’] to a
compact Riemann surface X of genus g ≥ 2,
equipped with its natural Laplacian. For
genus 1, X is the quotient of the plane by
a lattice Z + ωZ with ω = a +

√−1b in the
upper half-plane, and Poisson’s summation
formula shows that you can hear the area b
and also a2 + b2, so that the fundamental cell
is known up to a reflection a → −a and X,
itself, is known up to a triviality. Selberg’s
formula reveals that knowing spec Δ is the
same as to know, in each (free) deformation
class of closed paths of X, the length of the
shortest one. Remarkable! Then I could prove
with help of Fricke-Klein that any isospectral
class is finite, improving upon a remark
of Gelfand [20, ‘Automorphic functions
and the Theory of Representations’]. Later
M. F. Vigneras [99, ‘Variétés riemanniennes
isospectrales et non isométriques’] produced
conformally inequivalent isospectral surfaces,
showing that my result can’t be improved.
There is a blunder on pp. 236–237 which
purports to prove that the top eigenvalue is
≤ −1/4. This is not so, as many more knowl-
edgeable people told me: already for g = 2,
it can be as close to 0 as you like; see [93,
‘Geometric bounds on the low eigenvalues of
a compact manifold’].

McK [52, ‘An upper bound of the
spectrum of Δ on a manifold of negative
curvature’] is, in fact, an afterthought to [53,
‘Selberg’s trace formula. . . ’]. There, I had
noticed that for smooth, compact f on the
half-line y > 0,

∫
f

′2
∫

f2

y2
≥
(∫

ff ′

y

)2

=
1

4

∫ (
f2

y2

)2

,

from which it is easy to see that, if f is a
smooth compact function on the hyperbolic
upper half-plane, then

1

4

∫ ∫
f2dxdy

y2
≤
∫ ∫

f (−Δf)
dxdy

y2

with the hyperbolic Laplacian Δ =
y2(∂2/∂x2 + ∂2/∂y2), i.e. spec Δ ≤ −1/4.
Now the top of spec Δ regulates how fast
the Brownian motion runs off to ∞, as does
the curvature, so I wondered how general
this type of thing might be. McKean [52,
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‘An upper bound of the spectrum . . . ’] is
a home-made proof that if M is a smooth,
simply-connected Riemannian manifold with
all its sectional curvatures less than a fixed
number −k < 0, then spec Δ ≤ 1

4 (n−1)2k. R.
Bishop kindly sent me the much nicer proof
which I reproduce here. My ignorance of
differential geometry being all but complete, I
did not know that on such a manifold with its
geodesic polar coordinates, the determinant
g of the fundamental form satisfies

∂

∂r
ln
√
g ≥ (n− 1)

(
κ
coshκr

sinhκr
− 1

r

)

with κ2 = −k.

Notice that the right side is � (n − 1)κ if
the origin is far away. Take f smooth and
compact and place the origin far from where
f lives. Then

∫ ∞

0

(
∂f

∂r

)2 √
g dr

∫ ∞

0

f2√g dr

≥ 1

4

(∫
f2 ∂

√
g

∂r
dr

)2

much as before

� 1

4
(n− 1)2κ2

(∫ ∞

0

f2√g dr

)2

.

Now proceed, canceling one
∫
f2√g, inte-

grating out the angles, and so on.

4.3. Geometry and ODEs

McK-Scovel [75, ‘Geometry of some
simple non-linear differential operators’]
concerns an entirely different sort of geome-
try. Ambrosetti-Prodi [1, ‘On the inversion
of some differentiable mappings. . . ’] and
Berger-Church [3, ‘Complete integrability
and perturbation of a nonlinear Dirich-
let problem’] had proved that if D is a
nice region in R

d, if −Δ is the standard
Laplacian acting on functions vanishing
at ∂D with eigenvalues 0 < λ1 < λ2

etc., and if K : R → R is convex with
−∞ < K ′(−∞) < λ1 < K ′(+∞) < λ2, then
the map f → Δf +K(f) is a “fold”, meaning
that, in suitable coordinates x = (x1, x2, . . . ),
it looks like x → (x2

1, x2, . . . ). What Clint

Scovel and I did was to work out the ge-
ometry of the simplest problem of this type
when K ′ crosses the whole spectrum of −Δ,
namely d = 1, D = (0, 1), and K(f) = f2/2,
i.e. the map f → −f ′′ + f2/2, subject to
f(0) = f(1) = 0. The energy levels are now
n2π2 : n ≥ 1 and K ′ crosses them all. The
“singular set” = the locus where the gradient
F = −D2 + f has a null-function is com-
prised of disjoint sheets Mn : n = 1, 2, 3, etc.,
determined by the vanishing of the successive
eigenvalues λn(f) of F , sitting each below
its predecessors. M1 is convex, the rest have
each 1 more principal direction of negative
curvature than the one before. M1 maps to
a convex surface and what lies above this
image is at once the 1:1 image of what lies
above M1, and the full range of the map. As
the image g = −f ′′+f2/2 rises, its preimages
f proliferate: for example, if f lies below Mn,
then there are 2n of these or more; in fact, if
g is constant and if the lowest f is still above
Mn+1, then the count is exact. It would be
amusing to find a sharp approximate count
for g + c and c ↑ ∞. This is not known to
me, but you will find the details for g = 0
worked out in [75, ‘Geometry of some simple
. . . ’]. It is remarkable that such counts can
be made at all. The trick is the fact that
−f ′′

1 + f2
1 /2 and −f ′′

2 + f2
2/2 coincide only if

f = 1
2 (f1 + f2) lies on a singular sheet and

e = 1
2 (f1 − f2) is proportional to the singular

direction at f . For more information, see
McK [61, ‘Curvature of an ∞-dimensional
manifold related to Hill’s equation’] where
the sectional curvatures of the image of
M1 are computed pretty explicitly, and
also McK [63, ‘Geometry of KdV (2): three
examples’] which purports to describe the
singularities (fold, cusp, and so on) of the
singular sheets, but is spoiled by a mistake:
on p. 101, the evaluation Zn+1 = 1 (line 25)
is wrong, as B. Ruf notified me.

McK [69, ‘A quick proof of Riemann’s
mapping theorem’] is just what it says. The
idea is simple: if you can map the half-line to
your favorite polygon, then you will be (al-
most) home. I learned from M. Hausner and
P. Lax that this had been done as early as
1874 by Schläfli [92]. The present proof (just
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a page and a half) wins in respect to brevity
if not priority. The proof is cute and seems to
have dropped out of common knowledge.

McK [66, ‘How real is resonance?’] sug-
gests that the conventional wisdom, that reso-
nance obstructs the smoothness of the change
of coordinates x → y which converts x• =
A(x) into y• = (dA(0) = B)y in the vicin-
ity of a resting point x = 0, is (sometimes)
only a prejudice. The map takes a patch of
R

d onto a patch of an (auxiliary) copy of
R

d, but all you really need is a map into
some, possibly non-linear space that simpli-
fies the flow. Insisting that it be R

d could in-
vite resonance to come in. The example pre-
sented is a caricature of Burger’s equation
∂v/∂t = ∂2v/∂x2 + 2v∂v/∂x. It reads

x• +Δ+ex +Δ−e−x � Δ2x+ 1
2 (Δ

− +Δ+)x2

in which x = (x1, . . . , xd) is considered to
be periodic (x0 = xd and so on), Δ+/Δ− is
the forward/backward difference, and Δ2 =
Δ−Δ+. The Cole-Hopf-type map xn → yn =
exp(x1 + . . .+ xn) is not periodic if the mean
m = d−1(x1+. . .+xd) does not vanish but be-
comes so when regarded as a map to the pro-
jective cone (PR

d)+. It converts the flow into
y• = Δ2y, considered projectively. Then the
inverse map Δ−�n washes out any ambigu-
ous projective multiplier, so everything is fine
and even as smooth as you could want. What
is startling is that no conventional change of
coordinates can be smooth, even for d = 2.
There, the mean m = 1

2 (x1+x2) is a constant
of motion (also for d ≥ 3) and y1 is of the form

y1(x)=A(m)+B(m)| tanh 1
4 (x1−x2)|1/ coshm,

which is not even of class C1 at the diagonal.
Here, and more generally, the moral is this:
if you want to solve non-linear problems,
do not insist upon linear methods. Let the
problem tell you what to do.

4.4. Gaussian Processes

About 1950/1, I read (with tears)
Wiener’s Cybernetics [101] about prediction,
feed-back, etc. for shift invariant Gaussian
processes x(t) : −∞ < t < ∞. It was way
over my head. By 1958 when I came to MIT,

I was better educated and understood what
he had done.

Here are the basic facts: either the re-
mote past determines the whole path x(t) or
else the spectral measure has a density Δ
with

∫
lnΔ′(1 + γ2)−1dγ > −∞, in which

case Δ′ factors as |h|2 with a Hardy function
h ∈ H2+, and if k is the inverse Fourier trans-

form of h, then x(t) =
∫ t

−∞ k(t− t′)db(t′) with
a standard Brownian motion b; in particular,
the field of x(t′) : t′ ≤ t is contained in the cor-
responding Brownian field, and may be made
to match it by taking h to be outer, as can
always be done. Then the best prediction of
the future observation x(T ) knowing the past
x(t) : t ≤ 0 is simply

E[x(T )| the past ] =

∫ 0

−∞
k(T − t)db(t′).

I wanted to understand more about the past,
the future, the projection of the future on the

past (splitting), the germ =
⋂
T>0

span[x(t) :

|t| ≤ T ], etc. and found myself deep into
Hardy functions and entire functions of ex-
ponential type. Pretty much at sea, I went to
Norman Levinson, knowing that he had done
an engineer’s version of Wiener’s recipe and
was expert in complex function theory. Look
at his proof in [39], that more than 1/3 of
the roots of Riemann’s zeta function lie on
the line 1/2, if you want to see what “ex-
pert” means. As I had hoped, he took a fancy
to my stuff, and we worked it out in quite
a lot of detail in [40, ‘Weighted trigonomet-
rical approximation . . . ’] below. Harry Dym
and I made further progress in two papers
[12, ‘Applications of the de Branges spaces of
integral functions to prediction of stationary
Gaussian processes’] and [13] with the added
help of M.G. Krein’s weighted strings, which
proved to be just the right tools; see, also,
our joint book [14, ‘Gaussian processes’] for
the complete story (in overwhelming detail).
The non-stationary case is much much more
complicated, but see P. Lévy [42, ‘Random
functions: general theory . . . ’] for lots of in-
formation about it.
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I do want to comment on the curious
nature of this whole subject. It’s a lot of
fun if you like Fourier and complex function-
theory but very unsatisfactory from a statisti-
cal standpoint. Here’s the simplest example of
what I’m thinking of. The remote past is triv-
ial if (and only if) H =

∫
lnΔ′(1+γ2)−1dγ >

−∞; otherwise, the whole path x is deter-
mined by it. Now H = −∞ if Δ′ vanishes
far out or decays fast. Then x(t) is (real) an-
alytic in −∞ < t < +∞ and the fact is obvi-
ous. But what if Δ′ vanishes for |γ| ≤ 1, say,
or has too hard a root at γ = 0. H diverges
once more, so the prediction of, e.g. x(1) from
x(t) : t ≤ T is perfect for any T ≤ 0, but
why? I mean statistically speaking. It is only
that the path lacks a small band of frequen-
cies, and how could that matter? Besides, you
know how to predict if H > −∞, but nobody
really knows how to do it in the contrary case.
Worse still, I have to say that the path-wise
behavior of x is practically unknown, but see
S.O. Rice [88, 89, ‘Mathematical analysis of
random noise’] and also Kac and Slepian [33,
‘Large excursions of a Gaussian process’].

Back-up to [40] for a bit: Norman and I
had asked what kind of Markovian property
x might have, i.e. how much information is
needed to make past and future conditionally
independent. This is the “splitting” alluded
to before. For example, we found that x splits
over its germ = the intersection over T > 0 of
the field of x(t) : |t| ≤ T if (and only if) Δ′ =
|E|−2 with an entire function E of minimal
exponential type. McK [29] studied splitting
for P. Lévy’s Brownian motion with a several-
dimensional time. This is the Gaussian “field”
with mean 0 and correlation

E[x(a)x(b)]=
1

2
(|a|+|b|−|a−b|) for a, b ∈ R

d.

Fix a smooth closed surface dividing R
d into

an inside and an outside and consider the
past/future to be all information from the in-
side/outside. Then, if d is odd, past and future
split, conditional upon the knowledge of x and
its partial derivatives of degree ≤ [d/2] + 1
taken on the surface. Contrariwise, if d is
even, no amount of surface or interior infor-
mation short of the whole will do, i.e. x has

no Markovian property at all. This is a kind
of Huygens’ principle, conjectured by Lévy,
himself; compare G.M. Golchan [22] and, for
Gaussian fields more generally, L. Pitt [86].

4.5. Mostly Brownian Motion

This was my first love in mathematics
ever since I began to learn probability from
M. Kac (MIT, summer 1950) and to read P.
Lévy [41], from which I first understood the
central place of the individual Brownian path.
In 1954/6, Itô and I were mostly occupied
with Feller’s new picture of 1-dimensional dif-
fusion that he was perfecting just then, and
with Dynkin’s strict Markov property, which
everybody sort of knew in special cases, but
was now comprehensively stated and skillfully
used by him.

4.6. Local Times

But it was P. Lévy’s “mesure du voisi-
nage”, translated as “local time” by us, that
really caught our eye. This refers to the stan-
dard 1-dimensional Brownian motion x(t) :
t ≥ 0, starting at x(0) = 0, say, and is de-
fined as follows:

t(t, x) = lim
h↓0

1

2h
measure (t′ ≤ t : x ≤ x(t′)

< x+ h);

see Lévy [41], p. 228. It is the density of the
Brownian occupation times:

measure (t′ ≤ t : a ≤ x(t′) < b)

= 2

∫ b

a

t(t, x)dx for any a < b,

with apologies for the nuisance factor 2.
H. Trotter [97] proved its continuity in t
and x; see McK [47] for my refinement using
Tanaka’s (unpublished) formula

t(t, x) = (x(t) − x)+ − (x(0)− x)+

−
∫

dx(t′) taken for t′ ≤ t

with x(t′) ≥ x.

The local time has marvelous properties,
many due to Lévy himself, some to Itô and
me, deeper ones due to D.B. Ray [87] and F.B.
Knight [34] and to D. Williams, the virtuoso
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of the Brownian path, in [102] and [103].
These deeper results reveal that the local time
is Markovian in respect to x(!) quite unfore-
seen by Itô and myself, though we had a spe-
cial case in front of us and didn’t have the wit
to see what we were looking at. McK [57] is
a comprehensive review of the whole subject.

4.7. Boundary Conditions

It was one of Feller’s most intuitive re-
marks that the infinitesimal operator G of a
diffusion is really instructions to the particle:
what to do next. You see at once that bound-
ary conditions are nothing special: They only
spell out the instructions at a barrier or at ∞;
in short, they are at an aspect of G like any
other! Then it was a nice problem to find (and
to interpret) the boundary conditions for, say,
Brownian motion on the half-line [0,∞), sub-
ject to the strict Markov property. Feller [18]
had found them all. Inside [0,∞),G is (of
course) 1

2D
2 acting on C2(0,∞), but then it

must be restricted, as in

p1f(0)− p2f
+(0) + p3

1

2
f ′′(0+)

=

∫ ∞

0

[f(x)− f(0)]dp4(x)

with non-negative p1, p2, p3, dp4, subject to

p1 + p2 + p3 +

∫ ∞

0+

(x ∧ 1)dp4(x) = 1.

This was easy to understand in simple cases:
f(0) = 0 means killing, f+(0) = 0 means re-
flection, f ′′(0+) = 0 means the particle sticks,
and the general condition with (p4 = 0) is
a mixture. As to the paths, Feller suggested
that the local time at x = 0 should enter in
the case p1f(0)− p2f

+(0) = 0 with p1p2 > 0
(the elastic barrier, so called), namely that
the Brownian particle should reflect off x = 0
until its local time builds up to the value of an
independent exponential holding time, where-
upon the particle is killed, and we checked
that, Itô and I. The role of p4 was also easy
to understand if p4[0,∞) < +∞: Then it
is proportional to the distribution of jumps
from x = 0 back into the interior x > 0. But

what if p4[0,∞) = +∞? That was mysteri-
ous. Luckily, Itô saw at once that it must de-
scribe “jumps” of a new kind, produced by
the increasing “differential” process with in-
finitesimal operator

f →
∫ ∞

0

[f(x+ h)− f(x)]dp4(h),

and as we were flying one day, to Fukuoka
I think, Itô kept drawing pictures, one after
another, trying to see how these jumps could
be interlaced with the Brownian path. After
a while he got it; after a longer while I got it,
too, and the rest was plain sailing, described
in Itô-McK [29] below.

4.8. Clocks

Another incisive idea of Feller’s was
to write the infinitesimal operator of
a 1-dimensional diffusion in the form
G = (d/dm)(d/ds). The “scale” s describes
exit probabilities: if x(t) : t ≥ 0 is the path
and Tx is the passage time min(t : x(t) = x),
then

Px(Tb <Ta)=
s(x)− s(a)

s(b)− s(a)
for any a<x<b.

It is the road map so to say. The “speed mea-
sure” m tells how fast you go:

Ex(Ta ∧ Tb) =

∫ b

a

G(x, y)dm(y)

with the (symmetric) Green’s function
G(x, y) = (s(x) − s(a)) × (s(b) − s(x)) over
s(b) − s(a). Now, in that scale s, x has the
same road map as the Brownian motion, and
if you reduce to this case (s = x) and suppose
that m has a smooth, positive density 2/σ2,

then G appears as 1
2σ

2 d2

dx2 , i.e. the “drift” is
removed. Think next, for the utmost simplic-
ity, that σ2 is a constant c2 > 0. Then x = cn
with a standard Brownian motion n or, what
is the same by Brownian scaling, x(t) = n(c2t)
with a new Brownian motion n, suggesting
that the general x is just Brownian motion
run with a new “clock”. With the help of
Hale Trotter, Itô and I found the right recipe:
x(t) = n[T−1(t)], in which T−1 is the clock
inverse to T (t) =

∫
t(t, x)dm(x) or, what is

the same, T (t) = 2
∫ t

0 σ
−2[n(t′)]dt′ if m is
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smooth. Volkonskii [100] had proved it, too,
and at about the same time. H. Tanaka and I,
in [96] extended the recipe to diffusions in R

d

with the same road map as the d-dimensional
Brownian motion. A further extension was
made by Blumenthal, Getoor, and myself: any
two diffusions with the same road map differ
by a change of clock [5]. McK [70] is a review
of this stuff for a financial audience; see also
[44], in which fluctuating clocks of the form

T (t) = measure (t′ ≤ t : n(t′) ≥ 0)

−
∫ 0

−∞
t(t, x)dm(x)

are used to reproduce a special class of
Feller’s Brownian motions on the half-line.

4.9. Potentials and Capacity

The now standard connection of Brow-
nian motion to harmonic functions, (electro-
static) potentials, and capacity, clarified by
J. Doob [11] and G. Hunt [26, 27] was cur-
rent news in 1956. The paper Itô-McK [28]
is expository, aiming to explain these ideas in
the simplest format, viz. the standard random
walk in d ≥ 3 dimensions. Then what was
intriguing to Itô and me was the connection
between the equilibrium charge distribution
e for compact K ⊂ R3 and the last leaving-
time from K of the Brownian motion on its
way to ∞. We understood it in part. I made
a little progress in [50], but the real picture is
due to K.L. Chung [9]: The total charge of e
is the capacity C(K), so e/C is a probability
distribution, and any well brought up prob-
abilist must ask: What is it the distribution
of? Chung’s beautiful answer is this: The 3-
dimensional Brownian motion runs off to ∞,
so if it visitsK at all, it has a last leaving-time
f = max(t : x(t) ∈ K), and with the standard
Green’s function G = 1/4πr, G(x, y)de(y) is
the distribution of the last leaving place for
paths starting at x, to wit, Px[x(f) ∈ dy, f > 0].

4.10. Differential Space

This was Norbert Wiener’s name for the
space of Brownian paths. McK [54] takes off
from the observation that if x = (x1, . . . , xn)

is uniformly distributed on the (n − 1)-
dimensional sphere of radius

√
n, then for

fixed m,

lim
n↑∞

P [

m⋂
i=1

(ai ≤ xi < bi)] =

m∏
i=1

∫ bi

ai

e−x2/2

√
2π

dx,

a fact often attributed to Poincaré, but due,
in fact, to Mehler [81] who knew a lot of what
is said in [54]. Anyhow, if you think this way
and reflect that the Brownian path may be
synthesized out of an infinite stock of inde-
pendent Gaussian variables, then you will see
that Wiener measure is (or ought to be) the
round measure on the admittedly fabulous
sphere S∞(

√∞), and a lot of things fall into
place. For example, there is a nice rotation
group acting on the sphere and a perfectly
respectable commuting Laplacian Δ = a sum
of uncoupled Hermite operators; also pleas-
ing spherical harmonics in the guise of prod-
ucts Hermite polynomials, spanning Wiener’s
“polynomial chaos”. There is even a Brownian
motion (of Brownian motion!) with infinites-
imal operator G = 1

2Δ, this being the ∞-
dimensional Ornstein-Uhlenbeck process at
the bottom of P. Malliavin’s calculus in the
Brownian path space [46]. Here’s an instruc-
tive picture in this style: If f : A → B is
a smooth map between manifolds, then the
pushforward (to B via f) of a smooth mea-
sure on A is also smooth. Now the sphere
S∞(

√∞) is eminently smooth – how should
it be otherwise as Feller would say – and its
round measure is as smooth as they come.
Map the Brownian motion n to the diffu-
sion x with smooth G = 1

2σ
2D2 + mD via

Itô’s equation dx = σ(x)dn + m(x)dt. Then
x must be smoothly distributed, e.g. it must
have a smooth transition density. This looks
naive but is not: Malliavin has confirmed it
all by his “integration by parts” in the Brow-
nian path space. The expository McK [55]
belongs to the same circle of ideas. It is an
account of Wiener’s “polynomial chaos” and
what he hoped it could do. I have to say that
his attempt was a gallant failure, but it’s still
interesting.
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4.11. Fisher’s Equation

McK [56] refers to the equation ∂u/∂t =
1
2∂

2u/∂x2+u2−u of Kolmogorov, Petrovskii
and Piscounov [35]. Actually, it was intro-
duced by the great English statistician R.A.
Fisher [19], but no matter. Its solution can be
neatly expressed as the expectation

u(t, x) = Ex[f(x1(t)) . . . f(x#(t))]

in which f = u(0+, ·) and the x’s are the po-
sitions of the #(t) particles produced, up to
time t ≥ 0, by a branching Brownian mo-
tion, rooted at x at time t = 0. I wanted
to use this picture to reproduce the result of
KP2: that if f is the indicator of the half-
line x ≥ 0, then the solution u, tracked at
speed

√
2 (with small corrections), tends to

the traveling wave w of that speed, this being
the only stable wave, rising from 0 to 1, that
the equation supports. The paper is spoiled
by two mistakes, but it is still a favorite of
mine since such a use of Brownian motion was
new then. I comment on it here with apologies
and some account of how it all came out OK.
The trouble starts with the ineffective proof
of 3′). That’s easy, but in §7 comes a seri-
ous mistake. At +∞, the wave w looks like

1− xe−
√
2x, not 1− e−

√
2x as I said, so what

I wrote is simply wrong. Happily, the idea
was salvaged by S.P. Lally and T. Selke [36].

They prove that w(x) = E[exp(−Ze−
√
2x)] in

which 0 ≤ Z < ∞ is the limit of

#∑
n=1

[
√
2t− xn(t)]e

√
2xn(t).

To return to KP2, the tracking of u for f =
the indicator of x ≥ 0 is done by centering
at the median m where u(t, x) = 1/2, and

it’s easy to see that m � √
2t. The refine-

ment m =
√
2t − (3 − 2−3/2) ln t + O(1) of

Bramson [6] is really hard work.

4.12. Oscillators

Kac [31] had studied the motion of a
damped spring driven by white noise. In
McK [48], I took the simplest case and looked
at the winding of (x, x•) about the origin of the

phase plane. I was entertained to find coming
in the Kontorovich-Lebedev transform:

f → f̂(γ) =

∫ ∞

0

f(x)K√−1γ(x)
dx

x

f̂ → f(x) =

∫ ∞

0

f̂(γ)K√−1γ(x)

2

π2
γsh(πγ)dγ.

see Bateman and Erdélyi [2]. Unfortunately,
I was not as clever with them as I thought.
P.G. Gait’s letter to me pointed out that the
derivation of 6 in §3 is obscure to put it kindly,
and he was not the only one to be put off.
E. Wong and Per Ch. Hemmer sent still for-
mal but neat proofs. Finally, I fixed it up in
a pretty laborious way, but it seems this was
never published.

4.13. Winding of Plane Brownian
Motion

This refers to the winding of BM(2)
about a couple of punctures, 0 and 1, say. It
is easy to see that this is a big mess from the
viewpoint of homotopy, i.e. the path gets in-
extricably tangled up as time passes. This is
because the (lifted) Brownian motion on the
universal cover of the twice-punctured plane
is transient, the cover being the (hyperbolic)
half-plane. But what about the viewpoint of
homology, i.e. is the joint motion (x, n0, n1)
of position and winding numbers recurrent or
does it wander off to ∞. This is the Brown-
ian motion on the “class surface” of the punc-
tured plane, which looks like a parking garage
of infinitely many floors connected by (equiv-
alent) helical staircases located at 2π

√−1Z.
I thought I had a proof of the its recur-
rence, but that was wrong, as Dennis Sullivan
noticed: a certain Poincaré sum did not di-
verge as I had believed. T.J. Lyons and McK-
ean [45], corrects this mistake: the two wind-
ing numbers we found to behave like n0 − n∞
& n1 − n∞ with three independent Cauchy
processes n0, n1, n∞, run by a common clock
related to Brownian motion on the Riemann
sphere. Sullivan and McKean [95], is a simpli-
fied, more geometrical proof of the transience
on the class surface per se.
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4.14. Nonlinear Markov Processes

McK [51] is about a simple idea: to permit
a diffusion to be “guided by its present distri-
bution, i.e. to permit drift and any Gauss-
ian fluctuations to be so influenced. Then
the corresponding (forward) equation for p is
non-linear, as in ∂n/∂t = ∂2(lnn)/∂x2 which
comes up in connection with a “central limit
theorem” for Carleman’s model of a gas; see
McK [58]. I have said more about this in [60]
and [59].

4.15. Invariant Distributions
for Diffusion

McKean [74] deals with the following
question: If a several-dimension diffusion has
an invariant distribution, what then is it the
distribution of ? A complete picture is ob-
tained only in dimension 1. There is an enter-
taining interplay between three related pro-
cesses: The original diffusion x↑, x# = x↑ with
its drift reversed, and x↓ = (at each time) the
inverse of the map x → x#(t, x), aka x↑ with
its driving Brownian motion reversed. The
(statistical) stabilization of x↑ is related to
the path-wise existence of x↓(∞) which is dis-
tributed by the invariant density, and this, in
turn, is related to the focusing of x↑. It is strik-
ing that in dimension 1, this focusing takes
place exponentially fast, spectral gap or no.
McK [71] is an∞-dimensional example: Burg-
ers equation ∂v/∂t+v∂v/∂x = 1

2∂
2v/∂x2+f

with a “white” force f . The proof of the ex-
istence of the invariant distribution, based on
ideas of Döblin (“loops”) and Feller, is simpler
than the others which had been put forward.

4.16. KdV and All That

One morning, spring 1973, Pierre van
Moerbeke came and told me that KdV:
∂v/∂t = 3v∂v/∂x − 1

2∂v
3/∂x3 on the

circle 0 ≤ x < 1 had a traveling wave
2℘(x − ct) − c/3, ℘ being Weierstrass’s
function. I’d never heard of KdV before, but
here was an attractive problem (dispersion
completing with shocks), and as I was a fan of
both elliptic functions and special non-linear
PDEs, I took notice. Hochstadt [24, 25] and
Lax [37, 38] helped us to figure out, soon

enough how to solve when the number of
“gaps” is finite [79] printed below, with
revisions of the part on theta functions. Un-
known to us, S.P. Novikov [84] had already
done this. Anyhow, it was obvious then how
to do it generally, for an infinite number of
gaps, though there was still a lot of technical
work to do; see McK-Trubowitz [77] and also
[78]. This work was my real introduction
to Hamiltonian mechanics with many com-
muting constants of motion (integrability),
to theta functions, and to curves of infinite
genus.

The machinery for solving KdV is de-
scribed in my review of the remarkable book
of Feldman, Knörrer and Trubowitz [17] also
printed below, so I won’t say more about it
here. Ercolani-McK [16] is a companion to
McK-van Moerbeke [79] and Dyson [15] had
expressed the solution of KdV in C∞

↓ (R) as a
Fredholm determinant:

v(t, x) = −2
∂2

∂x2
ln det[I + w(t, x+ ξ + η)

: ξ, η ≥ 0]

in which

w(t, x) =
1

2π

∫ +∞

−∞
e−

√−1kxs21(k)e
4
√−1k3tdk

and s21 is the (right-hand) reflection coeffi-
cient of v(0+, ·), this w being a solution of
∂w/∂t = 4∂3w/∂x3, or as you may say, of
KdV with the non-linearity crossed out. Here,
Θ = det[I + w(ξ + η) : ξ, η ≥ 0] has to
be some kind of theta function (compare Its-
Matveev [30]), and we wanted to known how
much of the geometry of Hill’s curves carries
over. Venakides [98] had already found that if

v ∈ C
∞
↓ (R) is periodized as in

∑
Z

v(x + np)

with period p, then the associated Riemann
theta function tends to Dyson’s determinant
as p ↑ ∞. Ercolani and I did that in a more
laborious way, obtaining, as by-product, nice
analogues of everything: curve, divisor, DFK,
Jac, the works. The part I like best is the de-
scription (§ 6) of the (complex) theta divisor
for Dyson’s determinant, reproducing, almost
word for word, the known structure of that



40 4. SOME COMMENTS

divisor for classical hyperelliptic curves. I be-
lieve there is a moral here, to wit: complex
algebraic-geometrical objects are very robust
and may be recognized, if you come without
prejudice, in many objects that seem at first
glance to be of purely analytic type: for ex-
ample, if you think this way, then objects like∫∞
0

(λ − μ)−1dσ(μ) will put you in mind of
Jacobi’s ellipsoidal coordinates.

McK [62] introduces a new theme, “ad-
dition”, based upon Jacobi’s presentation of
divisors on a hyperelliptic curve of genus g <
∞, adapted here to Hill’s curves with g = ∞
compare McK [80] for background. Take Hill’s
operator H = −D2 + v and λ below spec-
trum. Then He = λe has two positive “multi-

plicative” solutions, e− with
∫ 0

−∞ e2− < ∞ and

e+ with
∫∞
0 e2+ < ∞. “Addition” is the map

v → v−2[ln e(·, p)]′′ in which e = e±, and the
point p on the multiplier curve records the
value of λ and the signature of the radical,
this being used to specify which function, e+
or e−, is employed. The reason for the name
(addition) is that, in the case g < ∞, the pole
divisor p1+. . .+pg of e is changed by addition
to a new divisor p′1+ . . .+p′g according to the
rule

p1 + . . .+ pg → −p+ p1 + . . .+ pg

≡ p′1 + . . .+ p′g +∞,

in which the ≡ means equivalence in the Ja-
cobi variety, i.e. the two divisors are, resp.
the roots and poles of a function of ratio-
nal character. In the present paper, addition
is extended to any reasonable v on the line
for which spec(H) does not extend to −∞
(so that you can get below it). In this gen-
erality, the several additions commute, infin-
itesimal additions produce the whole KdV
hierarchy, and (most important) addition is
not only isospectral but respects a foliation
which I called “unimodular isospectrality”. I
explain. H has a spectral resolution involving
a 2 × 2 spectral weight dF (λ) : λ ∈ R, and
two such operators H1 & H2 are isospectral if
and only if dF1 = G−1dF2G with 2× 2 func-
tion G : R → GL(2, R). What is striking now
is that, under addition dF → G−1dFG with
G ∈ SL(2,R), whence the term unimodular.

Then for any H with spec(H) bounded away
from −∞, you have (1) its KdV-invariant
manifold (this can be made sense of in gen-
eral), (2) the class of operators produced from
one operator of that class by repeated addi-
tions (plus a closing up), and (3) its unimodu-
lar spectral class, each included in the one be-
fore, and examples indicate that these should
always be the same. See [63, 65].

McK [64, ‘Curvatura integra, handle
number, and genus of transcendental curves’]
is my attempt to extend the idea of genus to
transcendental curves. It was inspired by the
example of Hill’s curves (see KdV & all that)
but seemed best standing alone.

McK [72] printed here deals with the
equation of Camassa-Holm [8]:

CH :
∂v

∂t
+ v

∂v

∂x
+

∂p

∂x
= 0 with “pressure”

p = (1 −D2)−1(v2 +
1

2
v

′2),

which is, to me, the nicest of the shallow-
water equations. Unlike KdV which is only
a leading edge approximation, CH is reminis-
cent of Euler in its form. Besides, it has soli-
tons that can travel in both directions, right
and left; the wave can break; it has extra
(non-commuting) constants of motion remi-
niscent of (but not all that much like) cir-
culations in a real fluid; and with the right
machinery, it’s easy to work with, easier that
KdV I’d say.

McK-Constantin [10] did it on the circle,
mostly for g < ∞. There is only one surprise
after KdV. You go to the curve and over to its
Jacobian variety where you find straight-line
motion (good) at non-constant speed (bad).
A double cover of the curve cures that–why
I have never understood. The present paper
solves CH on the line provided m = v − v′′

is summable. The “curve” is purely singular
and the solution is found in terms of three in-
terconnected theta-like functions ϑ−, ϑ+, and
ϑ plain, expressed by Fredholm determinants,
mediated by the Lagrangian scale x̄, descrip-
tive of the displacement of the fluid particle.
I remind you: ∂x̄(t, x)/∂t = v(t, x̄) with x̄(0+
x) ≡ x. This is the first (and very valuable)
appearance of x̄ in “KdV & all that”. Now ϑ±
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cannot vanish and v(t, x) = ∂/∂t[ln(ϑ−/ϑ+)]
makes sense for all time! The “breaking” is
seen only in v′ which comes with a ϑ down-
stairs, and that function can and will vanish
for some t ≥ 0 if (and only if) m = v − v′′

takes a positive value to the left of some neg-
ative value: positive/negative stuff likes to
move right/left, and trouble comes when they
collide. I had made a laborious proof of that
[67], corrected in [68]. The present machinery
produced an easy proof, reported here as well.
McK [73] deals mostly with CH on the circle
with m > 0. Then the Liouville correspon-
dence

V (X) =
1

4

1

m(x)
+

1

4

m′(x)
m2(x)

− 5

16

m
′2(x)

m3(x)
with

X =

∫ x

0

√
m

converts the spectral problem −f ′′ + 1
4f =

λmf for CH into the spectral problem for
KdV: −F ′′ + V F = λF with F (X) =
4
√
m(x)f(x). V. Fock suggested that this must

imply a correspondence between the CH and
KdV hierarchies, and we worked at this on
a pleasant afternoon in Providence, but it
wouldn’t come out. We forgot the Lagrangian
scale. Of course, such correspondences must
be fairly common: CH with m > 0 goes
right as does KdV; once that is acknowledged,
there’s no big surprise: everything reduces to
straight-line motion at constant speed on a
torus, and that always looks the same. The
trick is to express the correspondence in an
intelligible way. Still a word about the La-
grangian scale x̄: The extra constants of mo-
tion alluded to above, are m(x̄)(x̄′)2 with
m = v − v′′ as before, one such to each value
of x. They do not commute either with them-
selves or with the CH hierarchy. I wonder
what they are doing here and whether such
objects appear commonly, perhaps in classi-
cal mechanics already. Anyhow, that’s what
I’ve done about CH, but I have still to cite
the beautiful paper of L.-C. Li [43]. There,
the solution is expressed in way reminiscent
of the Toda lattice. It’s not as explicit as my
way but much more elegant.
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625, 1965.

[51] H. P. McKean. A class of Markov pro-
cesses associated with nonlinear para-
bolic equations. PNAS, 56:1907–1911,
1966.

[52] H. P. McKean. An upper bound of the
spectrum of Δ on a manifold of negative
curvature. J. Diff. Geom., 4:359–366,
1970.



BIBLIOGRAPHY 47

[53] H. P. McKean. Selberg’s trace formula
as applied to a compact Riemann sur-
face. Comm. Pure Appl. Math., 25:225–
246, 1972.

[54] H. P. McKean. Geometry of differential
space. Ann. Prob., 1:197–206, 1973.

[55] H. P. McKean. Wiener’s theory of non-
linear noise. SIAM-AMS Symp. Appl.
Math., 6:191–209, 1973.

[56] H. P. McKean. Application of Brownian
motion to the equation of Kolmogorov-
Petrovskii-Piscounov. Comm. Pure
Appl. Math., 28:323–331, 1975.

[57] H. P. McKean. Brownian local times.
Adv. Math., 16:91–111, 1975.

[58] H. P. McKean. The central limit theo-
rem for Carleman’s equation. Israel J.
Math., 21:54–92, 1975.

[59] H. P. McKean. An exponential for-
mula for solving Bolzmann’s equation
for a Maxwellian gas. J. Comb. The-
ory., 2:358–382, 1975.

[60] H. P. McKean. Fluctuations in the
kinetic theory of gases. Comm. Pure
Appl. Math., 28:435–455, 1975.

[61] H. P. McKean. Curvature of an ∞-
dimensional manifold related to Hill’s
equation. Jour. Diff. Geom., 17:523–
529, 1982.

[62] H. P. McKean. Geometry of KdV
(1): addition and the unimodal spectral
class. Rev. Math. Iberoamer., 2:235–
261, 1986.

[63] H. P. McKean. Geometry of KdV (2):
three examples. J. Stat. Phys., 46:1115–
1143, 1987.

[64] H. P. McKean. Curvatura integra, han-
dle number, and genus of transcenden-
tal curves. Comm. Pure Appl. Math.,
44:1057–1066, 1991.

[65] H. P. McKean. Geometry of KdV (3):
Determinants and Unimodular Isospec-
tral Flows. Comm. Pure Appl. Math.,
45:389–415, 1992.

[66] H. P. McKean. How real is resonance?
Comm. Pure Appl. Math., 50:317–322,
1997.

[67] H. P. McKean. Breakdown of a shallow
water equation. Asian J. Math., 2:867–
874, 1998.

[68] H. P. McKean. Correction to “Break-
down of a shallow water equation”.
Asian J. Math., 3:3, 1999.

[69] H. P. McKean. A quick proof of Rie-
mann’s mapping theorem. Comm. Pure
Appl. Math., 52:405–409, 1999.

[70] H. P. McKean. Brownian motion and
the general diffusion: scale and clock.
Bachelier Congress, pages 15–84, 2000.

[71] H. P. McKean. Turbulence without
pressure: existence of the invariant mea-
sure. Math. Appl. Anal, 9:463–468,
2002.

[72] H. P. McKean. Fredholm determi-
nants and the Camassa-Holm hierarchy.
Comm. Pure Appl. Math., 56:638–680,
2003.

[73] H. P. McKean. The Liouville cor-
respondence between the Korteweg-
de Vries and the Camassa-Holm hi-
erarchies. Comm. Pure Appl. Math.,
56:998–1015, 2003.

[74] H. P. McKean. Book reviews: Rie-
mann surfaces of infinite genus by J.
Feldman, H. Knorrer and E. Trubowitz.
Bull. Amer. Math. Soc., 42:79–87,
2005.

[75] H. P. McKean and C. Scovel. Geome-
try of some simple non-linear differen-
tial operators. Ann. Scuola Norm. Sup.
Pisa, 13:299–346, 1986.

[76] H. P. McKean and I. M. Singer. Curva-
ture and the eigenvalues of the Lapla-
cian. J. Diff. Geom., 1:43–69, 1967.

[77] H. P. McKean and E. Trubowitz. Hill’s
operator and hyperelliptic function the-
ory in the presence of infinitely many
branch points. Comm. Pure Appl.
Math., 29:143–226, 1976.

[78] H. P. McKean and E. Trubowitz.
Hill surfaces and their theta functions.
Bull. Amer. Math. Soc., 84:1042–1085,
1978.

[79] H. P. McKean and P. van Moerbeke.
The spectrum of Hill’s equation. Inv.
Math., 30:217–274, 1975.

[80] H. P. McKean and P. van Moerbeke.
Hill and Toda curves. Comm. Pure
Appl. Math., 33:23–42, 1980.



48 4. SOME COMMENTS
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5Some Words from Three Students

F. Alberto Grünbaum,1 Pierre van Moerbeke,2,3

and Victor H. Moll4

5.1. My Own Debt to Henry, and
Others: F. Alberto Grünbaum

Henry writes that he has been very lucky
in his mathematical life.

I am sure that the sentiment is shared
by the many youngsters who, like myself a
long time back, some way or another ended
up becoming one of his graduate students.

When I was in my third year of college in
Córdoba, Argentina, having just decided to
switch from physics to mathematics, we had
a short visit from A.P. Calderón. A couple of
us took him out for a cup of coffee to get ad-
vice as to what to do after graduation. I told
him very openly that I wanted to pursue some
combination of analysis, physics, and (my new
love) probability theory. I had just discovered
the book by W. Feller. Calderón was not an
impulsive man, but it took him about one sec-
ond to say “I know the guy for you: Henry
McKean”.

1Department of Mathematics, University of
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Two years went by, I had already writ-
ten a couple of papers with E. Zarantonello
and had gone to Buenos Aires to start work-
ing with Mischa Cotlar. Cotlar had suggested
extending to the multidimensional case some
work of I.Gohberg and M.G.Krein. It was just
too hard for me and I was going nowhere.
Another visitor showed up in Buenos Aires
in May ’66 : J. J. Kohn. I sat in a class he
was teaching and told him about my serious
doubts about my progress on this problem
as well as my interest in the three topics I
had mentioned to Calderón some years ear-
lier. Kohn immediately said “I know the guy
for you: Henry McKean”.

I remember, or maybe I only made this
up, but I think I went to my wife Loli that
night and said: either I drop out of math-
ematics or I try to follow the advice of
these two guys. Luck intervened again and in
September ’66 I arrived at Rockefeller Univer-
sity where Henry had just moved from MIT.

In a million years I could not have made a
better choice. For quite a while I was (almost)
the only student that Henry had at his new
place and going to him with a question usually
turned into a few hours of his explaining to me
all sorts of things. I was too shy to address
him as Henry, or to tell him that I needed to
take a break.

I could go on for pages on the many ways
in which Henry was an exceptional teacher.

© Springer International Publishing Switzerland 2015
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I will just mention two: I was rather impa-
tient, trying to finish my thesis quickly and
asked him very early on for an open problem.
He suggested looking at the harmonic oscil-
lator forced by white noise, a problem that
went back to George Uhlenbeck, the father
figure of physics at Rockefeller U. I managed
to extend something that Henry had done for
the free particle, but just then Henry got a
preprint from Eugene Wong from EECS in
Berkeley, who had done just what I had done
(but better). I felt quite bad but Henry just
said: do not worry, work on something else
and if nothing works out come back to what
you have done and we will make this into a
thesis.

He then did something fantastic; he gave
me a thick notebook full of problems, one in
each page. I could take it home and pick some-
thing I liked, with no pressure to work in any
particular area.

After a few days I started focusing on
the Boltzmann equation and invented my own
problem: using the ideas of H. Poincare to re-
late the full nonlinear flow with its linearized
version. This worked out and I sort of had a
thesis.

I was also tempted by a problem that
I seem to recall was in the notebook: the
approach of Mark Kac to the equation of
Boltzmann by means of his “propagation of
chaos”. I ended up writing sort of a second
thesis on a rather general way of formulating
this problem, but in the end there were two
“technical conditions” that I could not verify.
Henry could have insisted that I keep working
on this, but he had a better suggestion: write
this up making it very clear that there were
gaps to be filled.

It was clear to me that these were highly
technical points that I was most likely never
going to make progress on. So with the thesis
finished thanks to Henry allowing for this gap
to be left open, I left this nice program of Kac
alone and went to do very different things,
never looking back.

I am incredibly happy to report to Henry
(and to myself too) that this gap in my

approach has been recently taken care of
by S. Mischler and C. Mouhot in the pa-
per “Kac’s program in kinetic theory”, In-
vent. Math. (2013) 193:1–47. These young au-
thors, strongly influenced by P.L. Lions and
C. Villani, may be giving me too much credit
in their paper. But for someone who had left
the field a long time ago, this is very nice feel-
ing.

Coming back to the matter of luck, Henry
was not too wise or lucky when a (not so) few
years ago, having been approached by some
publisher to put some of his papers together,
he asked me to take charge of this project. Af-
ter a year or so of going nowhere, it occurred
to me to ask Pierre van Moerbeke to join me
in this adventure. We moved very slowly for
a very long time. About July 2013 I had an-
other good idea: I asked Victor H. Moll to
join us in this effort, and now less than a year
later we are done. I hope that Henry is happy
that we have finished, with the great contri-
butions of two people that care deeply about
him: David Williams and Hermann Flaschka.
He knows that I am at least as happy as he
is. Apologies for being so slow.

Readers of this collection may wonder
how the selection of papers was made. The
answer is simple: after a few arguments in-
volving Pierre, Henry and myself, we usually
left it to Henry to decide what to put in. For
someone with such a rich collection of gems
having to settle on a few papers was not easy
at all.

I hope that people looking at this book
will get a glimpse of the breadth, depth and
joy that is typical of Henry’s work. For the
lucky ones, like me, the real pleasure has al-
ways been talking to Henry and trying to
share and practice his vision of mathematics
as the engine and the language for the many
very different fields he has enriched. Equally
important are the many lives he has molded in
very positive ways. I consider myself incred-
ibly lucky to be able to call him my teacher
and my friend. I am sure this is true for the
many people that love him.
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5.2. Reminiscences: Pierre van
Moerbeke

I remember very vividly my first en-
counter with Henry McKean on the ninth
floor of South Lab (Rockefeller University)
summer 1968 on my first visit to New York
and the US. I had been assigned to make notes
of lectures given by Mark Kac at the CRM in
Montreal that same summer. Henry’s unusual
mathematical style, taste for good problems,
originality and kindness attracted me. My de-
cision to stay on was made instantaneously!
Me, coming from a Bourbaki stronghold: woe
betide you for non-orthodoxy!

I started my PhD-work with Henry on a
famous appendix he wrote to a paper of Paul
Samuelson on the warrant pricing problem.
Henry taught me a great deal on Brownian
motion, local time, Green functions, PDE’s
and functional analysis, etc. . . ., but never in-
structed me what to do, except occasionally
what not to do. He also taught me the value of
alternative views; he was always supportive,
because for a young apprentice there are so
many hurdles that depression and loss of mo-
tivation are a constant danger. I was fortunate
to have met such an astonishingly generous
advisor. Henry’s office door on the 9th floor
was always open; he was always at work and
available, he seemed undisturbed in spite of
the many blasts next door, rocking the whole
building.

Having written a thesis on a free bound-
ary problem, which was rooted in a finan-
cial question, I was predestined to start a
career in financial mathematics. But then
Ludwig Faddeev and others came to explain
to us, at Rockefeller, about KdV and the mo-
tion on spectral data for the one-dimensional
Schrodinger equation. Soon after, Henry and I
embarked into an exciting project on the reso-
lution of the periodic KdV equation, in terms
of hyperelliptic theta functions; in more ge-
ometrical terms: the periodic KdV equation
with finite band initial condition can be lin-
earized on the Jacobi variety of a hyperelliptic
Riemann surface. That year 1973 I commuted
regularly between Princeton and the Courant
Institute.

This collaboration was for me a fantastic
learning experience with Henry in the field of
Riemann surfaces and in hands-on algebraic
geometry: it kept me from pursuing a career
in financial math. Rather it launched me
in an exciting integrable adventure which
via ‘Random Matrices’ brought me back
in recent years- to probabilistic models
utilizing the tools of my youth: it gave
me again the joy of reading ‘stochastic
integrals’, the ‘Ito-McKean’ and Henry’s
beautiful papers on diffusion processes.
Henry’s style and taste left on us (and in
turn on the next generation) an indelible
mark!

I have unforgettable memories from
Henry’s logging big timber at South-Landaff,
New Hampshire; dinners at 186 E 93rd
street; candlelight math discussions at the
Hotel des Grandes Ecoles; cheese fondue
at Lenk, with Henry playing the blues on
his guitar; canoeing in the Pine Barrens;
garden suppers at Orange street; exploring
the wetlands and bird watching at Essex,. . .
Henry made us discover the beauty of
New-England!

This volume contains only a few of
Henry McKean’s works. There are many
other McKean gems lying out there, which
do not appear in these limited Selecta.
This volume truly reflects Henry’s exquisite
choice of problems, broad and inspira-
tional insights, terrific mathematical power
and groundbreaking results, occasionally
surrealistic.

These Selecta, a 7-year project, was to
be published in the series of Drs Klaus and
Alice Peters. After the unfortunate merger
with Taylor and Francis, Anne Boutet de
Monvel came at our rescue and kindly put us
in contact with Executive Editor Dr Thomas
Hempfling at Birkhäuser-Springer, who very
enthusiastically encouraged us to publish this
volume in the present series. Thank you,
Anne!

We are very grateful to our co-editor
Victor H. Moll who put in an enormous
amount of work wrapping up this project in
such a short amount of time.
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I also would like to thank David Williams
charming tribute to Henry McKean and also
Hermann Flaschka for a sweeping essay on
McKean’s huge contribution to integrable
systems.

5.3. More Than Words Can Express:
Victor H. Moll

The setting: September 16, 1980, my first
class of graduate Complex Variables at the
Courant Institute. Enters Henry McKean.

The beginning of my graduate education
was not very standard. A couple of years
before I had finished my undergraduate de-
gree at Universidad Santa Maria, Valparaiso,
Chile. At that time it was still possible to ob-
tain a position in a regional university with-
out a graduate degree. So I did. My advisor,
Luis Salinas C., always insisted that I should
go abroad for a Ph.D. During the chilean win-
ter, Eugene Trubowitz visited Chile and, be-
ing able to speak English, I became part of
the local welcoming committee. My visit to
the Courant was arranged between Luis and
Eugene. At that time I was interested in Num-
ber Theory, so going to Courant was not the
obvious choice. Being so ill-informed is some-
times a blessing.

I thought that my background was very
good and I specially liked Complex Variables.
So when Henry taught for the first class (in
the usual Courant schedule: one 2-h class
per week), I enjoyed the review. The next
week, when the material somehow newer and
the speed did not change, it was time to
panic. My favorite recollection of that class
was when Henry gave us the midterm exam.
It contained a problem involving Phragmen-
Lindelöf. A student stated that this had not
been covered and Henry, paused for a mo-
ment, and claimed ‘I do not recall the exact
statement, but this is how the proof goes’ and
then he proceeded to present a beautiful com-
plete argument. Having been educated in the
third-world version of Bourbaki, this was very
illuminating. I thought that this was the way
Mathematics should be presented.

After my graduation, Henry taught a
course in Elliptic Functions. I commuted from
Philadelphia every Monday to attend his lec-
tures. It was simply a fascinating subject and
Henry’s presentation of it made it even better.
I worked on the class notes, trying to fill all
the gaps and kept Henry informed of what
I was doing. It was a very exciting moment
when Henry, waiting on line for coffee at
the International Congress in Berkeley (1986),
asked me if I wanted to convert this into a
joint book. My state of complete happiness
did not last very long: he thought for a mo-
ment and said to me ‘It is not a good idea,
you would have a book, and not tenure’. This
was absolutely correct. In the coming years,
while aspiring for tenure, I continue to work
on the notes and when the moment came,
I called him. My sabbatical at Courant was
spent dealing with the finishing touches of the
book. It was an incredible experience. Spe-
cially receiving his hand-written notes with
comments on each chapter. I can actually read
his hand-writing.

Through the years, I have had a chance to
visit him periodically. The only change that
I have noticed, is that his door is no longer
open: it has to be closed to be able to smoke.
My mathematical interests have moved in a
different direction, but telling him about a
result that interests me, is always rewarding.
The mathematics that I learned form him is
everywhere in what I have tried to pursue.
One day, a conversation with a graduate stu-
dent, developed into a map of rational func-
tions that preserve the integral. The beauty
of Landen, learned from Henry in his elliptic
functions class, was the key idea to place our
work in the right context.

My involvement in this project came late.
I was aware that Alberto and Pierre were in
charge of Henry’s selected papers, but I knew
no details. One day I decided to email Al-
berto to find out the status of the project.
He told me that he had a large collection of
files that needed editing. I offered my help
and I was lucky that they accepted it. This
effort is a small way of me saying: Thanks
Henry.
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6Curvature and the Eigenvalues
of the Laplacian

H. P. McKean, Jr.1,2 and I. M. Singer3

6.1. Introduction

A famous formula of H. Weyl [17] states that if D is a bounded region of Rd with a
piecewise smooth boundary B, and if 0 > γ1 ≥ γ2 ≥ γ3 ≥ etc. ↓ −∞ is the spectrum of the
problem

Δf =
(
∂2/∂x2

1 + · · ·+ ∂2/∂x2
d

)
f = γf in D,(6.1.1a)

f ∈ C2(D) ∩ C(D),(6.1.1b)

f = 0 on B,(6.1.1c)

then

−γn ∼ C(d)(n/vol D)2/d (n ↑ ∞),(6.1.2)

or, what is the same,

Z ≡ sp etΔ =
∑
n≥1

exp
(
γnt

) ∼ (4πt)−d/2 × volD (t ↓ 0),(6.1.3)

where C(d) = 2π[(d/2)!]d/2.

A. Pleijel [13] and M. Kac [6] took up the matter of finding corrections to (6.1.3) for
plane regions D with a finite number of holes. The problem is to find how the spectrum of Δ
reflects the shape of D. Kac puts things in the following amusing language: thinking of D as
a drum and 0 < −γ1 < −γ2 ≤ etc. as its fundamental tones, is it possible, just by listening
with a perfect ear, to hear the shape of D? Weyl’s estimate (6.1.2) shows that you can hear
the area of D. Kac proved that for D bounded by a broken line B,

Z =
areaD

4πt
− lengthB/4√

4πt

+ the sum over the corners of
π2 − γ2

24πγ
+ o(1) (t ↓ 0),

(6.1.4a)

1Rockefeller University, New York, NY, USA.
2Communicated April 6, 1967. The partial support of the National Science Foundation under NSF GP-

4364 and NSF GP-6166 is gratefully acknowledged.
3Massachusetts Institute of Technology, Cambridge, MA, USA.
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0 < γ < 2π being the inside-facing angle at the corner,4 esp., you can hear the perimeter
of such D. By making the broken line B approximate to a smooth curve, Kac was led to
conjecture

Z =
area

4πt
− length /4√

4πt
+

1

6
(1− h) + o(1) (t ↓ 0)(6.1.4b)

for regions D with smooth B and h < ∞ holes, and was able to prove the correctness of the
first two terms. This jibes with an earlier conjecture of A. Pleijel and suggests that you can
hear the number of holes. Equation (6.1.4b) will be proved below in a form applicable both
to open manifolds with compact boundary and to closed manifolds.

Given a closed d-dimensional, smooth Riemannian manifold M with metric tensor g =
(gij), let Δ be the associated Laplace-Beltrami operator:

Δ =
1√
det g

∂

∂xi
gij

√
det g

∂

∂xj
,

where (gij) = g−1, and let 0 = γ0 > γ1 ≥ γ2 ≥ etc. ↓ −∞ be its spectrum. Define also the

scalar curvature K at a point of M (= the negative of the spur
∑

i<j R
ij
ij of the Ricci tensor)

and the partition function Z ≡ sp etΔ =
∑

exp(γnt). Then, as will be proved in Sects. 6.4
and 6.7,

(4πt)d/2Z = the (Riemannian) volume of M

+
t

3
× the curvatura integra

∫
M

K

+
t2

180

∫
M

(10A−B + 2C) + o
(
t3
)
,

(6.1.5a)

where
∫
M stands for the integral relative to the Riemannian volume element

√
det g dx, and

A,B,C stand for a particular basis of the space of polynomials of degree 2 in the curvature
tensor R which are invariant under the action of the orthogonal group (see (6.7.2)); o(t3)
cannot be improved. For d = 2, 10A−B+2C = 12K2, and by an application of the classical
Gauss-Bonnet formula for the Euler characteristic E of M(2πE =

∫
M

K), (6.1.5a) simplifies
to

Z =
area

4πt
+

E

6
+

πt

60

∫
M

K2 + o
(
t2
)
,(6.1.5b)

esp., the Euler characteristic of M is audible.
Consider now an open d-dimensional manifoldD with compact (d−1)-dimensional bound-

aryB,D = D∪B being endowed with a smooth Riemannian geometry, and let 0 > γ−
1 ≥ γ−

2 ≥

4Kac [6] expresses the corner correction (π2 − γ2)/24πγ as complicated integral. D. B. Ray [private
communication] derived it by a simpler argument, beginning with the Green function G for s − Δ(s > 0)
expressed as a Kantorovich-Lebedev transform

G(A,B) = x−2
∫ ∞

0
dxK√−1x

(√
sa

)
K√−1x

(√
sb
)

×
[
cosh

(
π − |α− β|)x− sinhπx

sinh γx
cosh(γ − α− β)x+

sinh(π − γ)x

sinhγx
cosh(α− β)x

]
,

in which A = ae
√−1α, B = be

√−1β , and K is the usual modified Bessel function. The corner correction
(π2 − γ2)/24πγ follows easily, and this jibes with Kac’s integral upon applying Parseval’s formula to the
latter.
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etc. ↓ −∞ and 0 = γ+
0 > γ+

1 ≥ γ+
2 ≥ etc. ↓ −∞ be the spectra of

Δ− = Δ | C∞(D) ∩ (u : u = 0 on B),

Δ+ = Δ | C∞(D) ∩ (u : u• = 0 on B),

where • stands for differentiation in the inward-pointing direction perpendicular to B.
Bring in also the mean curvature J at a point of B (= double the spur of the second

fundamental form) and the partition function Z± ≡ sp etΔ± =
∑

exp(γ±
n t). Then, as will be

proved in Sect. 6.5,

(4πt)d/2Z± = the (Riemannian) volume of D

± 1

4

√
4πt× the (Riemannian) surface area of B

+
t

3
× the curvatura integra

∫
D

K

− t

6
× the integrated mean curvature

∫
B

J + o
(
t3/2

)
,

(6.1.6)

where
∫
B

stands for the integral over B relative to the element of Riemannian surface area;

o(t3/2) cannot be improved. Kac-Pleijel’s conjecture (6.1.4b) for a plane regionD with smooth
boundary B and h < ∞ holes is obtained from (6.1.6) and the Gauss-Bonnet formula (

∫
M K+∫

B
J = 2π × the Euler characteristic) for the closed manifold M = the double of D upon

noting that the Euler characteristic of the handle-body M is just 2(1− h).
The estimates leading to (6.1.5) and (6.1.6) will be proved not just for Δ but for any

smooth elliptic partial differential operator of degree 2 (Sects. 6.2, 6.3, 6.4 and 6.5), and some
additional comments will be made about Z = sp etΔ for Δ acting on exterior differential
forms (Sect. 6.6). The basic idea, due to Kac, is to make a pointwise estimate of the pole of
the elementary solution of ∂u/∂t = Δu and then to integrate over M to get an estimate of
Z = sp etΔ. The curvatura integra coefficient in (6.1.5a) is computed directly in Sect. 6.4 and
then re-computed (for Δ only) in Sect. 6.7 using more sophisticated algebraic ideas about
differential invariants of the orthogonal group. A list of open problems is placed at the end
of the paper (Sect. 6.8).

The new results of this paper are mainly for the case of manifolds with boundary. For
a closed manifold, N. G. de Bruijn [private communication] obtained the curvatura integra
coefficient independently as did V. Arnold [private communication from M. Berger]. Berger
also kindly communicated his formula for the next coefficient, which suggested the approach
in Sect. 6.7. Berger’s results for closed manifolds can be found in [1]. His method is different
from ours, but we arrive at the same formula for the coefficient of t2; his norms τ2, |ρ|2, and
|R|2 are equal to our 4A, B, and 2C respectively.

It is a pleasant duty to thank M. Kac for suggesting this problem and for a number of
stimulating conversations about it. Thanks are also due to T. Kotake for help with the Levi
sums of Sect. 6.3.

6.2. Manifolds and Elliptic Operators

Consider a closed, d-dimensional, smooth manifold M and let Q : C∞(M) → C∞(M) be
an elliptic partial differential operator of degree 2, with Q(1) = 0. On a patch U ⊂ M , Q can
be expressed as

Q = aij∂2/∂xi∂xj + bi∂/∂xi ≡ a∂2 + b∂

with coefficients a = (aij) and b = (bi) from C∞(U). By changing the sign of Q if necessary,
we can take the quadratic form based upon a as positive (

∑
aijyiyj > 0, y �= 0), and under
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a change of local coordinates x → x with Jacobian c, a transforms according to the rule
a = cac∗, so g = a−1 transforms like a Riemannian metric tensor. M is now endowed with this
Riemannian geometry, and Q is re-expressed as the sum of the associated Laplace-Beltrami
operator Δ plus a part of degree 1:

Q = Δ+ h∂, h∂ = hi ∂

∂xi
, Δ =

1√
det g

∂

∂xi
gij

√
det g

∂

∂xj
.

Because Δ does not depend upon the choice of local coordinates, h∂ is a vector field.
Δ is symmetric (

∫
uΔv =

∫
vΔu) and non-positive (

∫
uΔu ≤ 0) relative to the Riemann-

ian volume element
√
det g dx, where

∫
f =

∫
M f always means

∫
M f

√
det g dx. Q enjoys the

same properties relative to some volume element ew
√
det g dx if and only if the vector field

h∂ is conservative; this is the same as to say that the exterior differential 1-form dual to this
field is an exact differential (= dw), as is plain from the fact that, for a patch U and compact
u and v ∈ C∞(U),∫

U

(uQv − vQu)ew =

∫
U

(u gradv − v gradu)
(
h− g−1 gradw

)

cannot vanish unless h = g−1 gradw (Nelson [12]). Here, grad = (∂/∂x1, . . . , ∂/∂xd).
Consider, next, the elementary solution e = e(t, x, y) of ∂u/∂t = Qu computed relative

to the volume element
√
det g dx and recall the following facts:

0 < e ∈ C∞[
(0,∞)×M2

]
,(6.2.1a)

∂e/∂t = Qxe = Q∗
ye,(6.2.1b) ∫

e
√
det g dy = 1,(6.2.1c)

lim
t↓0

t−1 lg e = −1

4
[xy]2,(6.2.1d)

where Q∗ is the dual of Q relative to
√
det g dx, and [xy] is the Riemannian distance between

x and y; see [15] for (6.2.1d) and [10] for the rest.
Now if Q is symmetric relative to the volume element ew

√
det g dx, then

e(t, x, y) exp[−w(y)] is symmetric in x and y, and since its spur Z =
∫
e(t, x, x) converges,

etQ : f → ∫
ef is a compact mapping of the (real) Hilbert space H = L2[M, ew

√
det g dx].

This implies that Q has a discrete spectrum

0 = γ0 > γ1 ≥ γ2 ≥ etc. ↓ −∞(6.2.2)

with corresponding eigenfunctions fn ∈ C∞(M) forming a unit perpendicular basis of H ; in
addition,

e =
∑
n≥0

exp
(
γnt

)
fn ⊗ fn

with uniform convergence on compact figures of (0,∞)×M2, and the spur Z is easily evaluated
as (see for example [10])

Z =

∫ ∑
n≥0

exp
(
γnt

)
f2
ne

w =
∑
n≥0

exp
(
γnt

)
.(6.2.3)

Kac’s method for the proof (6.1.4a) is now imitated to obtain (6.1.5a): one estimates the pole
e(t, x, x) locally and then integrates over M . This is done in Sects. 6.3 and 6.4 using a method
of E. E. Levi; the actual estimate is just as easy for the general Q, so the condition that the
vector field h∂ be conservative is not insisted upon.
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Now let Q = Δ+h∂ be defined on a smooth open, d-dimensional manifold D with smooth,
compact, (d− 1) -dimensional boundary B, suppose that g = a−1 is positive and smooth on
the whole of D so that it induces a nice Riemannian geometry on D and let the vector field h∂
be smooth on D too. Both Q− = Q | C∞(D) ∩ (u : u = 0 on B) and Q+ = Q | C∞(D) ∩ (u :
u• = 0 on B), • standing for differentiation in the inward-pointing direction perpendicular to
B, have nice elementary solutions e = e± subject to

0 ≤ e ∈ C∞[
(0,∞)×D

2]
,(6.2.4a)

∂e

∂t
= Qxe = Q∗

ye,(6.2.4b)

Q∗ being the dual of Q relative to
√
det g dx,∫
D

e− ↑ 1 (t ↓ 0),(6.2.4c−)

∫
D

e+ = 1,(6.2.4c+)

lim
t↓0

t−1 lg e ≤ −1

4
[xy]2,(6.2.4d)

e− = 0 on B ×D,(6.2.4e−)

e+• = 0 on B ×D.(6.2.4e+)

For Q symmetric relative to some volume element, the spectra are as before except at the
upper end:

0 > γ−
1 ≥ γ−

2 ≥ etc. ↓ −∞,(6.2.5a)

0 = γ+
0 > γ+

1 ≥ γ+
2 etc. ↓ −∞,(6.2.5b)

and the formula for the partition function still holds:

Z± =

∫
D

e±(t, x, x) =
∑

exp
(
γ±
n t
)
,(6.2.6)

so that (6.2.6) can likewise be derived by estimating the pole e±(t, x, x).

6.3. Levi’s Sum for the Elementary Solution

Given closed M and Q = Δ + h∂ as above, one can express the elementary solution
e = e(t, x, y) of ∂u/∂t = Qu by means of a sum due to E. E. Levi; this computation has been
carried out in a very careful manner by S. Minakshisundaram [10], but it will be helpful to
indicate the idea in a form suited to the present use.

Consider a little closed patch U of M with smooth (d−1)-dimensional boundary B, view
U as part of Rd, extend Q′ = Q | U to the whole of Rd in such a way that the coefficients
of the extension belong to C∞(Rd) and Q′ = ∂2/∂x2

1 + · · · + ∂2/∂x2
d near ∞, let e′ be the

elementary solution of ∂u/∂t = Q′u, and let us prove that inside U × U ,

|e′ − e| ≤ exp(−constant/t) (t ↓ 0)(6.3.1)

with a positive constant depending only upon the distance to B.

Proof. Bring in the elementary solution e′′ of ∂u/∂t = Qu subject to u = 0 on B. Given a
compact function v ∈ C∞(U), u =

∫
(e′′ − e)v solves ∂u/∂t = Qu on (0,∞)×U and tends to
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0 uniformly on U as t ↓ 0. But this means that in the figure [0, t]×U , |u| peaks on [0, t]×B,
so that by an application of the estimate of Varadhan [(6.2.1d), (6.2.4d)],

|u| ≤ max
[0,t]×B

∣∣∣∣
∫
(e′′ − e)v

∣∣∣∣ ≤ exp
(−R2/5t

)‖v‖1,
R being the shortest (Riemannian) distance from (v �= 0) ⊂ U to B. The rest of the proof is
self-evident.

Because of (6.3.1), it is permissible, for the estimation of the pole e(t, x, x) up to an
exponentially small error, to replace M by Rd and to suppose that Q = ∂2/∂x2

1+ · · ·+∂2/∂x2
d

far out; this modification of the problem is now adopted.

Define now Q0 to be Q with its coefficients frozen at y ∈ Rd, and let e0(t, x, y) be the
elementary solution of ∂u/∂t = Q0u evaluated at t > 0, x ∈ Rd, and the same point y ∈ Rd

at which the coefficients of Q0 are computed:

e0(t, x, y) = (4πt)−d/2 exp
(
− ∣∣a0 1

2

(
y − x− b0t

)∣∣2/4t)(6.3.2)

with an obvious notation. Because of (6.2.1b), (6.2.1c) and (6.2.1d),

e(t, x, y)− e0(t, x, y) =

∫ t

0

ds
∂

∂s

∫
Rd

e(s, x, ·)e0(t− s, ·, y)

=

∫ t

0

ds

∫
Rd

(
e0Q∗e− eQ0e0

)

=

∫ t

0

ds

∫
Rd

e(s, x, ·)(Q−Q0
)
e0(t− s, ·, y),

(6.3.3a)

in short,

e = e0 + e�f,(6.3.3b)

with � denoting the composition on the final line of (6.3.3a) and

f =
(
Q−Q0

)
e0(t− s, x, y).

Upon iteration, this identity produces the (formal) sum for e:

e = e0 +
∑
n≥1

e0�f� · · · �f (n-fold).(6.3.4)

Actually this formal sum converges to e uniformly on compact figures of (0,∞) × R2d; the
main point is that since

Q = ∂2/∂x2
1 + · · ·+ ∂2/∂x2

d near ∞,

|f | ≤ c1

(
|x− y|3

t2
+

|x− y|
t

+ 1

)
t−d/2 exp

(− c2|x− y|2/t)

≤ c3t
−(d+1)/2 exp

(− c4|x− y|2t),
(6.3.5a)

c1, . . . , c4 standing for positive constants, as can easily be verified by a direct computation,
and this leads easily to the bound∣∣e0�f� · · · �f ∣∣ ≤ cn5

[
(n/2)!

]−1
t(n−d)/2 exp

(− c6|x− y|2/t),(6.3.5b)

Accordingly, the formal sum (6.3.4) converges rapidly to a nice function e of magnitude

|e| ≤
∑
n≥0

(
c5
√
t
)n

(n/2)!
t−d/2 exp

(− c6|x− y|2/t),(6.3.6)
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which satisfies (6.3.3b). A moment’s reflection shows that e is an elementary solution of
∂u/∂t = Qu. But ∂u/∂t = Qu has only 1 elementary solution subject to (6.3.6), so e = (6.3.4)
is it. This is proved by noticing that any elementary solution subject to (6.3.6) is also a solution
of (6.3.3b), and then proving that (6.3.3b)+ (6.3.6) has just 1 solution.

6.4. Estimation of the Pole

Levi’s sum (6.3.4) can now be used to estimate the pole e(t, x, x) for t ↓ 0, up to terms
of magnitude t1−d/2:

(4πt)d/2e(t, x, x) = 1 +
t

3
K − t

2
div h− t

4
|h|2 + o

(
t2
)
,(6.4.1)

in which K is the scalar curvature (= the negative spur
∑

i<j R
ij
ij of the Ricci-tensor), div h

is the (Riemannian) divergence [= (det g)−
1
2 ∂hi(det g)

1
2 /∂xi], and |h| is the (Riemannian)

length (= gijh
ihj). Equation (6.4.1) can be integrated over M to get an estimate of Z =∫

e(t, x, x) (since
∫
div h = 0):

(4πt)d/2Z =

∫
1 +

t

3

∫
K − t

4

∫
|h|2 + o

(
t2
)
,(6.4.2)

esp., if Q = Δ, then h = 0 and (6.4.2)= (6.1.5a). A little extra attention to the proof, which
is left to the industrious reader, shows the existence of an expansion

(4πt)d/2e(t, x, x) = 1 + k1t+ k2t
2 + · · ·+ knt

n + o
(
tn+1

)
.(6.4.3)

This was proved by S. Minakshisundaram [10] forQ = Δ; the only novel point is the evaluation
k1 = K/3−(div h)/2−|h|2/4. k2 is computed in Sect. 6.7, using a more sophisticated method.

Proof of (6.4.1). e can be replaced by the sum (6.3.4), and the terms of index n ≥ 4 can be
neglected in view of (6.3.5b). Put x = 0 for simplicity and bring in new coordinates on Rd

coinciding with the old near ∞ and such that

gij(x) = δij +
1

3
Rikjlxkxl + o

(|x|3) near 0,(6.4.4)

R being the curvature tensor associated with g; this is accomplished by applying the expo-
nential map to the tangent space at 0 to obtain coordinates on a patch and then fixing things
up outside [3, Chapter 10]. An estimate of f = (Q −Q0)e0(t − s, x, y) finer than (6.3.5a) is
now possible:

∣∣f(t, x, y)∣∣ ≤ c1

( |x| |y − x|3
t2

+
|x| |y − x|

t
+ 1

)
exp

(− c2|x− y|2/t),(6.4.5)

where c1, c2, etc. stand for positive constants. This is used to prove

∣∣e0�f�f ∣∣ ≤
∫ t

0

ds1

∫ t

0

ds2

∫
R2d

c3e
−c4|x|2/(t−s1)

(
t− s1

)d/2

×
( |x| |y − x|3

t2
+

|x| |y − x|
t

+ 1

)
e−c4|x−y|2/(s1−s2)

(
s1 − s2

)d/2

×
( |y|4

t2
+

|y|2
t

+ 1

)
e−c4|y|2/s2

s
d/2
2

≤ c5t
−d/2

∫ t

0

ds1

∫ s1

0

ds2

√
t− s1
s1 − s2

= c6t
2−d/2,

(6.4.6a)
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and the similar but easier bound

∣∣e0�f�f�f ∣∣ ≤ c7t
2−d/2,(6.4.6b)

which shows that, up to terms of magnitude ≤ constant ×t2−d/2, one is left with

e(t, 0, 0) = e0(t, 0, 0)

+

∫ t

0

ds

∫
Rd

e0(t− s, 0, x)
(
Q−Q0

)
e0(s, x, 0)

√
det g dx.

(6.4.7)

A moment’s reflection will convince the reader that, up to the desired precision, the integrand
e0(t− s, 0, x)(Q−Q0)e0(s, x, 0)

√
det g can be replaced by the product of a factor 1+ a linear

function f of x+ o(t) + o(|x|2) and the expression

e−|x|2/4(t−s)

[4π(t− s)]d/2

[
1

2

∂2gij

∂xk∂xl
(0)xkxl

∂2

∂xi∂xj

+

(
∂

∂xk

1√
det g

∂

∂xi
gij

√
det g

)
(0)xk

∂

∂xj

+
∂hi

∂xk
(0)xk

∂

∂xi

]
e−|x|2/4s

(4πs)d/2

= (4πt)−d/2 e
−|x|2/4r

(4πr)d/2

[
1

2

∂2gij

∂xk∂xl
(0)xkxl

(
xixj

4s2
− δij

2s

)

−
(

∂

∂xk

1√
det g

∂

∂xi
gij

√
det g

)
(0)

xkxj

2s
− ∂hi

∂xk
(0)

xixk

2s

]
,

(6.4.8)

where r = s(t − s)/t. Now the factor alluded to above (6.4.8) can be replaced by 1, since
f × (6.4.8) integrates to 0 while the last 2 terms contribute ≤ c8t

2−d/2. Consequently, up to
the desired precision,

t−1(4πt)d/2e0�f = t−1

∫ t

0

ds

∫
Rd

(6.4.8)dx

=
1

2

∂2gij

∂xk∂xl
(0)× (0, 1/3, or 1 according as ijkl comprises

≤ 1 pair, 2 unequal pairs, or 2 equal pairs)

− 1

4

∂2gij

∂xk∂xl
(0)δklδij

− 1

2

(
∂

∂xk

1√
det g

∂

∂xi
gij

√
det g

)
(0)δkj − 1

2

∂hi

∂xk
(0)δki

=
1

6

∂2gii

∂x2
j

+
1

3

∂2gij

∂xi∂xj
(summed for i �= j) +

1

2

∂2gii

∂x2
i

− 1

4

∂2gii

∂x2
j

− 1

2

∂

∂xj

1√
det g

∂

∂xi
gij

√
det g − 1

2

∂hi

∂xi
,

all evaluated at x = 0.(6.4.9a)
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Cartan’s formula (6.4.4), combined with the skew symmetry of the curvature tensorR, permits
an additional simplification of (6.4.9a) to

− 1

6

∂2gij

∂xi∂xj
− 1

2

∂2
√
det g

∂x2
i

− 1

12

∂2gii

∂x2
j

− 1

2
div h

= − 1

18
Rijij − 1

6
Rijij +

1

18
Rijij − 1

2
div h

= −1

3

∑
i<j

Rijij − 1

2
div h =

K

3
− 1

2
div h,

(6.4.9b)

and (6.4.1) follows upon noting that

(4πt)d/2e0(t, 0, 0) = e−|h(0)t|2/4t = 1− t

4
|h|2 + o

(
t2
)
.(6.4.10)

6.5. Manifolds with Boundary

Now let D be an open manifold with compact boundary B as at the end of Sect. 6.2, M =
D∪B ∪D∗ = the (closed) double of D, and Q the double to M of a smooth elliptic operator
of degree 2 on D, and, as in Sect. 6.2, define Q−(Q+) to be Q | C∞(D) subject to u = 0

(u• = 0) on B. The coefficients (det g)−
1
2 ∂gij(det g)

1
2 /∂xi occurring in Q jump as x crosses B,

but ∂u/∂t = Qu still has a nice elementary solution e of class C∞[(0,∞)×(M−B)2]∩C1(M2),
approximable even on B by Levi’s sum, and the elementary solutions e± of ∂u/∂t = Q±u can
be expressed on (0,∞)×D2 as

e±(t, x, y) = e(t, x, y)± e
(
t, x,

∗
y
)
,(6.5.1)

∗
y ∈ D∗ being the double of y ∈ D. By use of this formula, Z± =

∫
D e±(t, x, x) can be

estimated as follows:

(4πt)d/2Z± = the (Riemannian) volume

∫
D

1(6.5.2)

±1

4

√
4πt× the (Riemannian) surface area

∫
B

1

± t

2

∫
B

flux h+
t

3
× the curvatura integra

∫
D

K

− t

6
× the integrated mean curvature

∫
B

J

− t

2

∫
D

div h− t

4

∫
D

|h|2 + o
(
t3/2

)
.

To explain the new terms involved in this formula, pick a self-double patch U of M covering
a patch U ∩B of B endowed as in the diagram (Fig. 6.1) with local coordinates x such that
(a) 1 > x1 > 0 in U ∩ D, (b) x1 = 0 on U ∩ B, (c) x1(x

∗) = −x1(x), and (d) the positive
x1-direction is perpendicular to B. This has the effect that

gij(x
∗) = −gij(x) for i = 1 < j or i > j = 1

= +gij(x) for i = j = 1 or i, j ≥ 2,
(6.5.3a)

gij(x) = 0 for i = 1 < j or i > j = 1 on B,(6.5.3b) √
det g/g11dx2 · · · dxd=the element of (Riemannian) surface area on B.(6.5.3c)

Now
∫
B

stands for integration relative to
√
det g/g11dx2 · · · dxd, flux h is the (outward-

pointing) flux of h at a point of B(= −√
g11h

1), and the mean curvature J at a point of
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Figure 6.1.

B is (double) the spur of the second fundamental form [= (g11 det g)•
√
g11/ det g],

5 repre-
senting (twice) the sum of inner curvatures of 2-dimensional sections perpendicular to B.
Because of Green’s formula (

∫
D
div h =

∫
B
flux h), a little cancellation occurs in (6.5.2) for

Q+. Equations (6.5.2)= (6.1.6) for Q = Δ (h = 0). The proof of (6.5.2) is broken up into a
number of steps.

Step 1. Consider a subregion D′ ⊂ D at a positive distance from B. Varadhan’s bound

(6.2.4d) implies that
∫
D′ e(t, x,

∗
x) ≤ exp(−c1/t), so by (6.4.1),

(4πt)d/2
∫
D′

e±(t, x, x) =
∫
D′

[
1 +

t

3
K − t

2
div h− t

4
|h|2

]

+ an exponentially small error,

(6.5.4a)

esp., it is enough to estimate
∫
U∩D

e±(t, x, x) for such a patch U as described above. A close

look at Levi’s sum will convince the reader that (4πt)d/2
∫
U∩D

e±(t, x, x) can be developed in

5As before • stands for the one-sided partial in the positive 1-direction perpendicular to B. To prove that
(g11 det g)•√g11/det g is (double) the spur of the second fundamental form of B, it is preferable to further
specialize the local coordinates on U so as to make

g =

(
g11 0

0 h

)
on U and g11 = 1 on U ∩ B.

The second fundamental form f is the (Riemannian) gradient along B of the inward-pointing unit normal
field n:

fij =
∂ni

∂xj
+

{ i
jk

}
nk =

{ i
1j

}
= the Christoffel bracket (i, j ≥ 2).

Computing this for the special g adopted above gives 1
2
h−1h•, so that double the spur is

sph−1h• = (lg det h)• =
(
lg g11 det g

)•
=

(
g11 det g

)•
/det g,

as desired (g11 = g11 = 1 on B).
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powers of
√
t. B can be covered by a finite number of patches U of small total volume, so terms

like t × volU can be neglected: they can only influence the coefficient of t3/2. As a simple
application of this fact, the first term e0(t, x, x) of the expansion of e±(t, x, x) contributes

(4πt)d/2
∫
U∩D

e0(t, x, x) =

∫
U∩D

1

+ an error of magnitude ≤ a constant multiple of t× volU,

(6.5.4b)

so that, in view of (6.5.4a) and the fact that (6.3.5b) still holds, it suffices for the proof of
(6.5.2) to check that

(4πt)d/2
∫
U∩D

e0
(
t, x,

∗
x
)

=
1

4

√
4πt

∫
U∩D

1 +
t

2

∫
U∩D

flux h+ o(t× volU),

(6.5.5a)

(4πt)d/2
∫
U∩D

e0�f(t, x, x)

= − t

6

∫
U∩D

(
g11 det g

)•
det g

√
g11 + o(t× volU),

(6.5.5b)

(4πt)d/2
∫
U∩D

e0�f
(
t, x,

∗
x
)
= o(t× volU).(6.5.5c)

Step 2 (proof of (6.5.5a)).

(4πt)d/2
∫
U∩D

e0
(
t, x,

∗
x
)

=

∫
U∩B

dx2 · · · dxd

∫ 1

0

√
det g exp

{
− g

(∗
x
)1/2[∗

x− x− b
(∗
x
)
t
]2
/4t

}
dx1

=

∫
U∩B

dx2 · · · dxd

∫ 1

0

√
det g exp

(− g11x
2
1/t− fx1 − |b|2t/4)dx1(6.5.6)

where Q = Δ+ h∂ = a∂2 + b∂ and f = g1kb
k; the following simplifications can be made by

ignoring negligible terms:

(a)
√
det g can be replaced by

√
det g0 + (

√
det g)•x1, where 0 stands for evaluation at

x0 = (0, x2, . . . , xd) ∈ B, since

∫ 1

0

x2
1dx1e

−c1x
2
1/t ≤ c2t

3/2.

(b) exp(−g11x
2
1/t− fx1 − |b|2t/4) can be replaced by e−g0

11x
2
1/t(1− g•11x

3
1/t− f0x1) for

the same reason. (0 ≤ e−x − 1 + x ≤ x2/2 for x ≥ 0.)

(c)
∫ 1

0 can be replaced by
∫∞
0 , since

∫∞
1 e−c1x

2
1/t ≤ exp(−c2/t).
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After these simplifications, (6.5.6) becomes∫
U∩B

dx2 · · · dxd

√
det g0

∫ ∞

0

e−g0
11x

2
1/tdx1

[
1 +

(√
det g

)•
√
det g0

− x1 − g•11
x3
1

t
− f0x1

]
(6.5.7)

up to a negligible error, and performing the inside integral gives

1

4

√
4πt

∫
U∩B

√
det g0√
g011

dx2 · · · dxd

+
t

2

∫
U∩B

√
det g0√
g011

dx2 · · · dxd
1√
g011

[
(
√
det g)•√
det g0

− g•11
g011

− f0

]
.

(6.5.8)

f0 is now computed with the aid of (6.5.3):

f0 = g011b
0
1 = g011

(
g11

√
det g

)•
√
det g0

+ g011h
1 =

(√
det g

)•
√
det g0

− g•11
g011

−
√
g011flux h,

and (6.5.5a) follows.

Step 3 (proof of (6.5.5b)). This is not so cheap.

(4πt)d/2e0�f(t, x, x)

= (4πt)d/2
∫ t

0

ds

∫
Rd

exp
{
− ∣∣g1/2(y)[y − x− b(y)(t− s)

]∣∣2/4(t− s)
}

[
4π(t− s)

]d/2

×
exp

{
− ∣∣g1/2(y)[x− y − b(x)s

]∣∣2/4s}

(4πs)d/2

√
det g(y)dy

×
{[

gij(y)− gij(x)
]

×
[

1

4s2
gik(x)

(
yk − xk − bk(x)s

)
gjl(x)

(
yl − xl − bl(x)s

)− gij(x)

2s

]

− [
bi(y)− bi(x)

]gik(x)[yk − xk − bk(x)s
]

2s

}
.(6.5.9a)

Equation (6.5.9a) can actually be replaced by
∫ t

0

ds

∫
Rd

e−|g1/2(x)(y−x)|2/4r

(4πr)d/2

√
det g(y)dy

×
{[

gij(y)− gij(x)
][gik(x)(yk − xk

)
gjl(x)

(
yl − xl

)
4s2

− gij(x)

4s

]

− [
f i(y)− f i(x)

]gik(x)(yk − xk

)
2s

}
(6.5.9b)

up to the desired degree of precision, where

r = s(t− s)/t, f j = (det g)−
1
2 ∂gij(det g)

1
2 /∂xi (j ≤ d).

For example, to replace the first exponential in (6.5.9a) by

exp
[
− ∣∣g1/2(x)(y − x)

∣∣2/4(t− s)
]
,
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it suffices to note the following points:

(a) The integration over Rd can be restricted to the figure |y− x| < (t− s)2/5 since, for
t ↓ 0, the remainder makes a contribution of magnitude smaller than

c1t
d/2

∫ t

0

ds

∫
|y−x|≥(t−s)2/5

dy
e−c2|y−x|2/(t−s)

(t− s)d/2
e−c2|y−x|2/s

sd/2

× (
terms like s−2|y − x|3, s−1|y − x|, etc., replaceable
by c3s

−1/2 after reducing c2 to c4 < c2
)

≤ c5

∫ t

0

ds√
s

∫
|w|>(t−s)2/5

dw
e−c4|w|2/r

rd/2

≤ c6

∫ t

0

ds√
s
e−c7(t−s)4/5/r < c7e

−c8/t,

which is negligible.
(b) Performing the integral just over |y − x| < (t − s)2/5 and using e−A − e−B ≤

(B − A)e−A (0 ≤ A ≤ B) to estimate the difference between the 2 integrands, one
finds that the indicated replacement produces an error of magnitude smaller than

c9t
d/2

∫ t

0

ds

∫
|y−x|<(t−s)2/5

dy
e−c10|y−x|2/(t−s)

(t− s)d/2

×
[ |y − x|3

t− s
+ |y − x|2 + t− s

]
e−c10|y−x|2/s

sd/2

× (
terms like s−2|y − x|3, s−1|y − x|, etc.)

≤ c11

∫ t

0

√
t− s

s
= c12t,

which is also negligible after integrating over U ∩D.
(c) Finally, one makes use of the fact that for the new exponential, the integral over

|y − x| > (t− s)2/5 is likewise negligible.

Equation (6.5.9b) is also to be integrated over U ∩D; for this purpose, similar estimates
permit us to replace it by

∫ t

0

ds

∫
Rd

e−|g0 1
2 (y−x)|2/4r

(4πr)d/2

√
det g0dy

×
{[

ĝij
(
y1, x

0
)− ĝij(x)

][g0ik(yk − xk

)
g0jl
(
yl − xl

)
4s2

− g0ij
2s

]

− [
f̂ i
(
y, x0

)− f̂ i(x)
]g0ik(yk − xk

)
2s

}
.

(6.5.9c)

̂ has the following meaning: for fixed x0 = (0, x2, . . . , xd) ∈ B, ĝ is a broken line with the

same corner as g at x1 = 0 (and no other corners), while f̂ is a step function with a single
jump at x1 = 0 agreeing with f at x1 = 0±.
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Do the integration
∫
Rd−1 dy2 · · · dyd and use the special form of g0 (6.5.3b). This gives

∫ t

0

ds

∫ +∞

−∞

e−g0
11(y1−x1)

2/4r√
4πr/g011

dy1

×
{[

ĝij
(
y1, x

0
)− ĝij(x)

][g0i1g0j1(y1 − x1

)2
4r2

+
∑
k,l≥2

g0ikg
0
jlg

0
kl

2r

4s2
− g0ij

2s

]

− [
f̂ i
(
y1, x

0
)− f̂ i(x)

]g0i1(y1 − x1

)
2s

}

=

∫ t

0

ds

∫
R1

e−g0
11(y1−x1)

2/4r√
4πr/g011

dy1

×
{[

ĝ11
(
y1, x

0
)− ĝ11(x)

][(g011)2(y1 − x1

)2
4s2

− g001
2s

]

−
∑
i,j 	=1

[
ĝij

(
y1, x

0
)− ĝij(x)

]g0ij
2t

− [
f̂1
(
y1, x

0
)− f̂1(x)

]g011
2s

(
y1 − x1

)}
.

(6.5.10a)

Equation (6.5.3a) implies that for i = j = 1 or i, j ≥ 2, ĝij(y1, x
0)− ĝij(x) = (y1−x1)g

ij•

or −(y1 + x1)g
ij• according as y1 > 0 or y1 < 0, g11

√
det g being even across B, so (6.5.10a)

simplifies to

∫ t

0

ds

∫ −x1

−∞

e−g0
11w

2
1/4r√

4πr/g011
dw1

×
{

− 2
(
x1 + w1

)
g11·

[(
g011

)2
w2

1

4s2
− g011

2s

]

+ 2
(
x1 + w1

) ∑
i,j 	=1

gij·
g0ij
2t

+

(
g11

√
det g

)·
√
det g0

g011
s

w1

}
.

(6.5.10b)

Do next the integral
∫ 1

0
(6.5.10b)

√
det gdx1, replacing g by g0, extending the integration

from 1 to +∞, and changing
∫∞
0 dx1

∫ −x1

−∞ dw1 into
∫ 0

−∞dw1

∫ −w1

0 dx1:

√
det g0

∫ t

0

ds

∫ 0

−∞

e−g0
11w

2
1/4r√

4πr/g011
dw1

×
[
w2

1

2
g11•

((
g011

)2
w2

1

4s2
− g011

2s

)

−
∑
i,j 	=1

gij•g0ij
w2

1

4t
−
(
g11

√
det g

)•
√
det g0

g011
w2

1

s

]

=
√
det g0

∫ t

0

ds

{
g11•

2

[
3
(t− s)2

t2
− t− s

t

]

− 1

2

∑
i,j 	=1

gij•g0ij/g
0
11

s(t− s)

t2
−
(
g11

√
det g

)•
√
det g0

t− s

t

}
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= t
√
det g0 ×

[
g11•

4
− 1

12

∑
i,j 	=1

gij•g0ij/g
0
11 −

1

2

(
g11

√
det g

)•
√
det g0

]

= − t

6

√
det g0

(
g11 det g

)•
det g0

,(6.5.11)

since gij•gij = −(det g)
√
det g. An integration

∫
U∩B

(6.5.11)dx2 · · · dxd now gives the desired
formula (6.5.5b).

Step 4. The proof of (6.5.5c) is practically the same, so it is left to the industrious
reader.

6.6. Δ on Differential Forms

Given a closed manifold M , let Δ act on the space Λp of smooth exterior differential
p-forms (p ≤ d). Λp is a pre-Hilbert space relative to the inner product (f1, f2) =

∫ 〈f1, f2〉,
〈f1, f2〉 being the Riemannian inner product of p-forms at a point of M , and Δ can be
expressed as −(dd∗ + d∗d), d : Λp−1 → Λp (1 ≤ p ≤ d) being the exterior differential and
d∗ : Λp+1 → Λp (0 ≤ p < d) its dual relative to the above inner product. Δ acting on Λp is
symmetric with a discrete spectrum:

0 ≥ γ0 ≥ γ1 ≥ γ2 ≥ etc. ↓ −∞,

the corresponding eigenforms f form a unit perpendicular basis of Λp, the sum

ep =
∑
n≥0

exp
(
γnt

)
fn ⊗ fn

converges uniformly on compact figures of (0,∞)×M2 to the elementary solution of ∂u/∂t =
Δu for p-forms, and the spur Zp =

∑
exp(γnt) of e

tΔ on Λp can be expressed as the integral
over the manifold of the pole sp ep =

∑
exp(γnt)〈fn, fn〉 : Zp =

∫
sp ep.

Define Z to be the alternating sum of Zp (p ≤ d): Z = Z0 − Z1 + · · · ± Zd. Then

Z = the Euler Characteristic E of M,(6.6.1)

as will be proved below. Poincaré duality makes this trivial for odd dimensions (Zp = Zd−p);
also, in 2 dimensions Z0 = Z2 for the same reason, so from (6.1.5b) and (6.6.1) it follows that
for d = 2,

Z1 = 2Z0 − E =
area

2πt
− 2

3
E +

πt

30

∫
K2 + o

(
t2
)
.(6.6.2)

Given a number γ ≤ 0, define 3p to be the eigenspace of p-forms f such that Δf = γf . By
de Rham’s theorem [5],

dim 30 − dim31 + · · · ± dim3d = E for γ = 0,(6.6.3a)

so (6.6.1) is the same as

dim30 − dim 31 + · · · ± dim3d = 0 for γ < 0.(6.6.3b)

Chern [4] discovered a beautiful extension of the classical Gauss-Bonnet formula to man-
ifolds of even dimension d > 2. Chern’s formula states that

∫
C = E. C is a (complicated)

homogeneous polynomial of degree d/2 in the entries of the curvature tensor, reducing to
the classical integrand K/2π = −R12

12/2π for d = 2. Because of the complete cancellation of
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the time-dependent part of the alternating sum Z, it is natural to hope that some fantastic
cancellation will also take place in the small, i.e., in the alternating pole sum:

sp e0 − sp e1 + · · · ± sp ed =

⎧⎨
⎩
0

+ o(1)
C

for d

{
odd

even
.(6.6.4)

Poincaré duality does it for odd d with o(1) = 0, but the even-dimensional proof eludes us,
except for d = 2; in which case

sp e0 − sp e1 + sp e2 = C +
t

6
ΔC + o

(
t2
)

(6.6.5)

(see Sect. 6.8 for additional information for d = 4). The proof of (6.6.5) is postponed until
after the

Proof of (6.6.1) = (6.6.3b). Choose γ < 0, let 3p (p ≤ d) be the corresponding eigenspaces,
and make the convention that 3−1 = 3d+1 = 0. Δ = −(d∗d+ dd∗) commutes with d and d∗,
so d3p−1 + d∗3p+1 ⊂ 3p. Because d2 = 0, (d3p−1, d∗3p+1) = (d23p−1, 3p+1) = 0, so the sum is
direct, and it fills up the whole of 3p(= d3p−1

⊕
d∗3p+1) since, for f ∈ 3p,(

f, d3p−1
)
=
(
d∗f, 3p−1

)
= 0 and

(
f, d∗3p+1

)
=
(
df, 3p+1

)
= 0

make d∗f = df = 0, so that γf = Δf = 0 and f = 0 (γ �= 0); esp.,

dim 3p = dim d3p−1 + dim d∗3p+1 (p ≤ d ),

and so ∑
p≤d

(−1)p dim3p =
∑(− dim d∗32p + dim32p − dim d32p

)
.(6.6.6)

But 32p = d32p−1
⊕

d∗32p+1, so that

dim 32p − dim d∗32p − dim d32p

= dim d32p−1 + dim d∗32p+1 − dim d∗d32p−1 − dim dd∗32p+1 ≥ 0,

and also

dim 32p − dim d∗32p − dim d32p

= dimΔ32p − dim d∗32p − dim d32p

≤ dim dd∗32p + dim d∗d32p − dim d∗32p − dim d32p ≤ 0;

in brief, dim 32p = dim d32p + dim d∗32p, and the whole of the alternating dimension sum
(6.6.6) collapses to 0.

Proof of (6.6.5) (d = 2). 31 = d30
⊕

d∗32 for γ < 0, and for f ∈ 30,

‖df‖2 ≡ (df, df) = −(d∗df, f) = −(Δf, f) = −γ‖f‖2

with a similar result (‖d∗f‖2 = −γ‖f‖2) for f ∈ 32. Because of this,
∑

exp
(
γ0
nt
)〈
df0

n, df
0
n

〉
+
∑

exp
(
γ2
nt
)〈
d∗f2

n, d
∗f2

n

〉
= −

∑
γ1
n exp

(
γ1
nt
)〈
f1
n, f

1
n

〉

with a self-evident notation. But, for f ∈ Λ0,

〈df, df〉 = gij
∂f

∂xi

∂f

∂xj
=

1

2
Δf2 − fΔf,
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so, by the Poincaré duality between 30 and 32,

− ∂

∂t
sp e1 = −

∑
γ1
n exp

(
γ1
nt
)〈
f1
n, f

1
n

〉
= 2

∑
exp

(
γ0
nt
)〈
df0

n, df
0
n

〉

=
∑

exp
(
γ0
nt
)[
Δ
(
f0
n

)2 − 2f0
nΔf0

n

]
= Δsp e0 − 2

∂

∂t
sp e0,

or, what is the same,

∂

∂t

(
sp e0 − sp e1 + sp e2

)
= Δsp e0.

sp e0 has an expansion beginning with a multiple of t−1 and proceeding by ascending powers
of t as stated in Sect. 6.4, and a little extra attention to the proof shows that the formal
application of Δ to this expansion gives the expansion for Δ sp e0. Consequently, (6.4.1)
implies

sp e0 − sp e1 + sp e2 = B +
t

6
ΔC + o

(
t2
)

with C = the Gauss-Bonnet integrand K/2π. To complete the proof of (6.6.5), it remains to
check that B = C. Pick local coordinates so that Cartan’s formula (6.4.4) holds. A moment’s
reflection shows that B can be expressed as a (universal) combination of second partials of gij
(i, j ≤ 2); as such, it is a (universal) constant multiple of the one nonzero component R1212 of
the Riemann tensor, and the constant can be identified as −1/2π by using the Gauss-Bonnet
formula in the special case of the Riemann sphere:

2 = E =

∫ (
sp e0 − sp e1 + sp e2

)
= B

= constant×
∫

R1212 = −constant× 4π.

6.7. Algebraic Computation of k1 and k2

The style of proof just used to finish the verification of (6.2.5) will now be exploited to
compute the third coefficient of the Minakshisundaram expansion (6.4.3) for Q = Δ:

k2 =
1

180
(10A−B + 2C) + constant×ΔK,(6.7.1)

with

A =

(∑
i<j

Rijij

)2

= K2,(6.7.2a)

B =
∑
j,k

(∑
i

Rijik

)2

,(6.7.2b)

C =
∑
i,j,k,l

(
Rijkl

)2
.(6.7.2c)

The constant multiplier of ΔK in (6.7.1) is not known, but
∫
M

ΔK = 0, so∫
M

k2 =
1

180

∫
M

(10A−B + 2C),(6.7.3)

as needed for (6.1.5a); in any case, this constant is universal, i.e., it is the same for all manifolds
M . The method will also provide us with a new derivation of the formula k1 = K/3. A short
table of special expansions will be helpful for the proof; in this table Z is computed up to
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Table 6.1

M K A B C Z/(4πt)d/2 × volM

S2 1 1 2 2
et/4√
πt

∫ 1

0

e−x/t

sin
√
x
dx = 1 +

t

3
+

t2

15
+ · · ·

S3 3 9 12 6 et = 1+ t+
1

2
t2 + · · ·

D2 −1 1 2 2
e−t/4

√
πt

∫ 1

0

e−x/t

sinh
√
x
dx = 1− t

3
+

t2

15
+ · · ·

D3 −3 9 12 6 e−t = 1− t+
1

2
t2 + · · ·

an exponentially small error for several standard manifolds. D2(D3) is the 2(3)-dimensional
Lobachevsky space modulo a discontinuous group of motions.

Pick exponential coordinates on a patch about a point o ∈ M as for (6.4.4). The co-
efficients of the power series expansion of g about o will be polynomials in the curvature
tensor R and its covariant derivatives [3, Chapter 10, §4], and it follows from this and from
Levi’s sum for the pole of e that the coefficients of (6.4.3) are expressible as polynomials
of the same kind. A scaling argument now gives the degree of these polynomials. Change g
into C2g (C2 > 0). Then Δ is changed into C−2Δ, and the pole of the elementary solution
becomes e(t/C2, o, o)C−d, so that kn is simply multiplied by C2n. But also, an l-fold covari-
ant derivative of R(C2g) is a multiple of C2+l. Consequently, kn = kn(g) is a “homogeneous
polynomial” of degree 2n in R and its covariant derivatives, if to an l-fold covariant derivative
is ascribed the degree 2 + l, esp., k1 is a form of degree 1 in R, while k2 is a form of degree 2
in R plus a form of degree 1 in second covariant derivatives of R. Clearly, the coefficients of
these forms depend upon M only via the dimension.

The next step is to exploit the fact that an orthogonal transformation of the tangent space
changes one exponential coordinate system x into another. Because the pole of e depends on
x only via

√
det g, which is an orthogonal invariant, the coefficients of its expansion are

likewise orthogonal invariants, esp., k1 is an invariant form of degree 1 in R, and as such,
it is a constant multiple of K = −∑

i<j Rijij [18, Chapter 5]. This constant depends upon
the dimension of M only, so to complete the evaluation of k1, it suffices to check that the
constant is dimension-free and to compute it for M = S2, say (see Table 6.1). To settle the
first point, look at a product manifold, M = M1 ×M2. Δ(M) = Δ(M1)

⊗
1
⊕

1
⊗

Δ(M2),
so e(M) = e(M1)

⊗
e(M2), and it follows from (6.4.3) that k1(M) = k1(M1) + k1(M2). But

also R(M) = R(M1)
⊕

R(M2), so that K(M) = K(M1)+K(M2), and varying the dimension
of M2 leads at once to the proof.

k2 is not so simple.

STEP 1 is to notice that the forms of degrees 2 and 1 into which k2 is split are separately
invariant under the action of the orthogonal group. As stated before, the coefficients of these
forms depend upon dimension only.
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Step 2. For d > 3, the space of curvature tensors at a point of M , viewed as a repre-
sentation space of the orthogonal group o(d), splits into 3 irreducible pieces. One piece is the
kernel of the contraction map Rijkl → Rijil. The orthogonal complement can be viewed as
the space of symmetric matrices with o(d) acting by similarity (x → o∗xo), and this piece
splits into the scalars plus symmetric matrices with spur 0 [18, Chapter 5]. Consequently,
the space of invariant polynomials of degree 2 is 3-dimensional, the 3 polynomials A, B, C
exhibited in (6.7.2) provide us with a nice basis, and the corresponding part of k2 is simply
c0A+c1B+c2C with coefficients depending (perhaps) on the dimension. The same still holds
for dimensions 2 and 3, except that

B = C = 2A (d = 2),(6.7.4a)

B = A+ C/2 (d = 3),(6.7.4b)

which make the splitting simpler.

Step 3. The part of k2 which is an invariant form of degree 1 in second covariant deriva-
tives of R can only be obtained by a three-fold contraction [18, Chapter 5], and only 2
candidates present themselves: Rijij;kk = −2ΔK and Rikjk;ij . But, by the Bianchi identities,

Rikjk;ij +Rikki;jj +Rikij;kj = 0,

so the second candidate is half the first, and

k2 = c0A+ c1B + c2C + c3ΔK(6.7.5)

with coefficients depending upon dimension only.

Step 4. is to prove that the coefficients are dimension-free. This is done, as in the proof
of k1 = K/3, by looking at a product M = M1 ×M2, R(M) = R(M1)

⊕
R(M2), so

A(M) = A
(
M1

)
+A

(
M2

)
+ 2K

(
M1

)
K
(
M2

)
,(6.7.6a)

B(M) = B
(
M1

)
+B

(
M2

)
,(6.7.6b)

C(M) = C
(
M1

)
+ C

(
M2

)
;(6.7.6c)

also

e(M) = e
(
M1

)⊗ e
(
M2

)
,(6.7.6d)

and a comparison of the expansion

1 + tk1(M) + t2k2(M) + o
(
t3
)
= 1 +

t

3

[
K
(
M1

)
+K

(
M2

)]

+ t2 ×
{
c0(d)

[
A
(
M1

)
+A

(
M2

)
+ 2K

(
M1

)
K
(
M2

)]
+ c1(d)

[
B
(
M1

)
+B

(
M2

)]
+ c2(d)

[
C
(
M1

)
+ C

(
M2

)]
+ c3(d)

[
ΔK

(
M1

)
+ΔK

(
M2

)]}
+ o

(
t3
)
,

(6.7.7a)
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d being dimM , with the expansion[
1 + tk1

(
M1

)
+ t2k2

(
M1

)][
1 + tk1

(
M2

)
+ t2k2

(
M2

)]
+ o

(
t3
)

= 1 +
t

3

[
K
(
M1

)
+K

(
M2

)]

+ t2 ×
[
1

9
K
(
M1

)
K
(
M2

)
+ c0

(
d1
)
A
(
M1

)
+ c1

(
d1
)
B
(
M1

)

+ c2
(
d1
)
C
(
M1

)
+ c3

(
d1
)
ΔK

(
M1

)
+ c0

(
d2
)
A
(
M2

)

+ c1
(
d2
)
B
(
M2

)
+ c2

(
d2
)
C
(
M2

)
+ c3

(
d2
)
ΔK

(
M2

)]

+ o
(
t3
)

(6.7.7b)

in case M1 is a flat torus [R(M1) = 0] shows that the expression

c0(d)A
(
M2

)
+ c1(d)B

(
M2

)
+ c2(d)C

(
M2

)
+ c3(d)ΔK

(
M2

)
(6.7.8)

is independent of d ≥ d2. The fact that the coefficients are dimension-free for d ≥ 4 is
immediate from this. For d ≤ 3, the coefficients can be chosen to be the same as for higher
dimensions.

STEP 5 is to compute the actual values of the coefficients. Comparison of the terms
involving K(M1)K(M2) in (6.7.7a) and (6.7.7b) gives

c0 = 1/18,(6.7.9a)

and, from Table 6.1 placed at the beginning of this section,

c1 = −1/180,(6.7.9b)

c2 = 1/90,(6.7.9c)

so that only c3 is still unknown. This completes the proof.

For d = 4, the integrand for Chern’s extension of the Gauss-Bonnet formula [4] is easily
evaluated as (8π2)−1(A − B + C/2). The formula states that this integrates to the Euler
characteristic E of M , whence, for d = 4,∫

k2 =
2π2

45
E +

1

180

∫
(9A+ 3C/2) ≥ 2π2

45
E,(6.7.10a)

M is a flat space if

∫
k2 = 0 and E ≥ 0,(6.7.10b)

∫
k2 �= 0 if M is simply connected,(6.7.10c)

and if the sectional curvatures of M do not change sign, then∫
k2 = 0 only for a flat space,(6.7.10d)

while, for d ≤ 3, ∫
k2 ≥ 0 and

∫
k2 = 0 only for a flat space.(6.7.10e)

Proof. Equation (6.7.10a) is immediate from Chern’s formula and (6.7.10b) follows, since∫
C = 0 makes M flat. E ≥ 0 if M is simply connected. But a flat compact space is not

simply connected, so (6.7.10c) is proved. Equation (6.7.10d) is proved in the same way using
the fact that E ≥ 0 if the sectional curvatures of M do not change sign [4]. The proof of
(6.7.10e) is immediate from (6.7.1) and (6.7.4).
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The computation of k3, k4, etc. is a problem of classical invariant theory; see for instance
[16]. It looks pretty hopeless.

6.8. Open Problems

1◦. For Q = Δ, compute all the coefficients of Minakshisundaran’s expansion (6.4.3) and ex-
plain the geometrical significance of each. It is an open problem to find the corresponding
corrections to Weyl’s formula (6.1.2). But notice that even for M = S2, −γn does not
behave like c−1n+ c0 + c1n

−1 + etc.
2◦. Prove or disprove (6.6.4) for even d ≥ 4; see (6.7.10a) for partial information in case d = 4.
3◦. J. Milnor [8] proved that the spectrum of Δ acting on the differential forms of a closed

manifold M is not sensitive enough to discriminate between the possible Riemannian
geometries on M . Milnor’s example depends upon an example of E. Witt of 2 self-dual
16-dimensional lattices Γ, dissimilar under the action of o(16), but with �(R) = �(ω ∈ Γ :
|ω| ≤ R) the same for both. Because the lattices are dissimilar, the tori M = R16/Γ are
not isometric. But the spectrum of Δ on functions is just the numbers 4π2|ω|2 with ω from
Γ. Because Δ(fdxi1 ∧ · · ·∧dxip ) = (Δf)dxi1 ∧ · · ·∧dxip , the spectrum of Δ on p-forms is
the same, but just repeated 16!/p!(16− p)! times, so that the 2 tori are identical from the
spectral point of view. Despite this example, it may be possible to “hear” the geometry of
M for small dimensions (d = 2, for instance) or for a special class of manifolds (topological
spheres, for instance). Kac [6] has asked if the spectra of both Δ± for a flat plane region
D suffice to determine D up to a rigid motion; his conjecture is no. If that is so then
probably the complete geometry of a closed manifold cannot be heard even for d = 2 and
M a topological sphere. But it should be noted that for D = (0, 1), 0 < f ∈ C[0, 1], and
Qu = fu′′, f can be recovered from the spectra of Q± [2].

4◦. Jacobi’s transformation of the theta-function shows that for Δ acting on functions on a
flat torus M = Rd/Γ,

Z =
∑

e−4π2|ω|2t =
volM

(4πt)d/2

∑
ω∈Γ

e−|ω|2/4t

=
volM

(4πt)d/2
+ an exponentially small error,

where Γ∗ is the dual lattice of Γ. Does there exist a Jacobi like transformation of Z for any
other manifolds? To our knowledge the only similar thing is the so-called Kramers-Wannier
duality for the 2-dimensional Ising model of statistical mechanics. Both Kramers-Wannier
and Jacobi’s transformation are instances of Poisson’s summation formula [7]. Perhaps
Selberg’s trace formula could be helpful in this. A simple case to look at would be a
compact symmetric space M = G/K of rank 1, since the pole sp e0 is constant on M
and can be computed using just the radial part A−1 ∂

∂RA ∂
∂R of Δ (A = the area of the

spherical surface of radius R about the north pole). A second interesting case would be
that of a closed Riemann surface of genus ≥ 2, viewed as the open unit disc modulo a
discontinuous group. One may conjecture that the breaking off the expansion of Z at the
first (volume) term happens for flat spaces only (see (6.7.10) for the proof in case d ≤ 3
and for partial information in case d = 4).



76 6. CURVATURE AND THE EIGENVALUES OF THE LAPLACIAN

5◦. A Jacobi transformation for Z goes over into a Riemann like identity for the zeta-like
function

∑
n≥1 |γn|−s via the transformation

Z −→ Γ(s)−1

∫ ∞

0

ts−1(Z − 1)dt.

Minakshisundaram [9] used (6.4.3) to prove that this zeta-function is meromorphic in the
whole s-plane; see [11] for additional information. Expanding Z as c0t

−d/2 + c1t
−d/2+1 +

etc., one finds that the zeta-function has simple poles with residues cn at the places d/2−n
(n ≥ 0) if d is odd, (0 ≤ n < d/2) if d is even. For even d, the value of the zeta-function
at s = 0 is cd/2 =

∫
kd/2, so that contact is made with R. Seeley’s computation of this

number [14] and with 2◦.
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7Hill’s Operator and Hyperelliptic
Function Theory in the Presence
of Infinitely Many Branch Points

Henry P. McKean Jr. and E. Trubowitz1

7.1. Hill’s Operator: Preliminaries

Ck
1 , k ≤ ∞, is the class of k times continuously differentiable real-valued functions of

period 1. Q denotes the Hill’s operator −d2/dx2 + q(x) with a fixed q of class C∞
1 . The func-

tion y1(x, λ), respectively y2(x, λ), is the solution of Qy = λy with y1(0, λ) = 1, y′1(0, λ) = 0,
respectively y2(0, λ) = 0, y′2(0, λ) = 1. The topics to be discussed are (1) the behavior of
y1(x, λ) and y2(x, λ) as λ → ±∞, (2) the periodic spectrum of Q arising from the eigenfunc-
tions of period 1 or 2, (3) the discriminant Δ(λ) = y1(1, λ) + y2/(1, λ), (4) the tied spectrum
comprising the roots of y2(1, μ) = 0, and (5) the reflecting spectrum comprising of the roots of
y′1(1, ν) = 0. Most of the material can be found in Levitan-Sargsjan [25] and Magnus-Winkler
[26]. Readers familiar with such matters can skip at once to Section 2.

Appraisal of y1 and y2. The proofs require a number of simple estimates of y1(x, λ)
and y2(x, λ). These may be derived by elementary means from

y1(ξ, λ) = cos
√
λξ +

∫ ξ

0

sin
√
λ(ξ − η)√
λ

q(η)y1(η, λ) dη,

y2(ξ, λ) =
sin

√
λξ√
λ

+

∫ ξ

0

sin
√
λ(ξ − η)√
λ

q(η)y2(η, λ) dη.

The necessary results are

y1(ξ, λ) = cos
√
λξ +

sin
√
λξ

2
√
λ

∫ ξ

0

q(η) dη +O(λ−1),

y2(ξ, λ) =
sin

√
λξ√
λ

− cos
√
λξ

2λ

∫ ξ

0

q(η) dη +O(λ−3/2),

for λ ↑ ∞ and

y1(ξ, λ) = cos
√
λξ [1 + o(1)] ,

y2(ξ, λ) =
sin

√
λξ√
λ

[1 + o(1)] ,

for λ ↓ −∞. These estimates may be differentiated with respect to ξ and/or λ and they are
uniform on 0 ≤ ξ ≤ 1 and in any ball max

0≤η≤1
q(η) ≤ constant. They will be employed below

without additional comment.

1Courant Insitute, New York, NY, USA
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Periodic spectrum. This is the spectrum of Q acting on the class of twice differentiable
functions of period 2; it is a sequence of simple or double eigenvalues tending to infinity:

λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < λ5 ≤ λ6 < · · · ↑ ∞.

The lowest eigenvalue λ0 is simple, the eigenfunction f0 being root-free and of period 1. Then
come pairs of eigenvalues λ2i−1 ≤ λ2i, i = 1, 2, · · · , equality signifying that the eigenspace
is of dimension 2. Both the eigenfunctions f2i−1 and f2i have i roots in a period 0 ≤ x < 1
and are themselves of period 1 or 2 according to the parity of i, i.e. being of period 1 if
i = 2, 4, 6, · · · and of period 2 if i = 1, 3, 5, · · · . The eigenfunctions are normalized by∫ 1

0

f2
i (x) dx = 1, i = 0, 1, 2, · · · .

The eigenvalues obey the estimate

λ2i−1, λ2i = i2π2 +

∫ 1

0

q(x) dx +O(i−2) as i ↑ ∞.

The periodic spectrum falls into two parts: the double spectrum of pairs λ2i−1 = λ2i and the
simple spectrum comprising λo

0 = λ0 and n ≤ ∞ pairs λo
2i−1 < λo

2i, i = 1, 2, · · · , n, listed in
natural order as

λo
0 < λo

1 < λo
2 < · · · < λo

2n−1 < λo
2n.

The interval (λ2i−2, λ2i−1) is an interval of stability; the nomenclature is explained by the
fact that every solution of Qy = λy is bounded on the line if λ2i−2 < λ < λ2i−1. The
complementary intervals of instability (−∞, λ0], [λ2i−1, λ2i], i = 1, 2, · · · , have the opposite
property: no solution of Qy = λy is bounded for λ < λ0 or for λ2i−1 < λ < λ2i. The simple
eigenfunctions fo

2i−1, f
o
2i both have mi roots in a period; naturally, m1 < m2 < · · · < mn.

The number mi −mi−1 is one more than the number of pairs of double eigenvalues between
λo
2i−2 and λo

2i−1.

Discriminant. The periodic spectrum may also be described by means of the discrim-
inant Δ(λ) = y1(1, λ) + y′2(1, λ); in fact, Δ(λi) = ±2 with signature +1 or −1 according
to whether i ≡ 0, 3 mod 4 or i ≡ 1, 2 mod 4, the periodic spectrum being just the roots of
Δ2(λ) − 4 = 0. The discriminant is an integral function of order 1

2 and type 1, so Δ(λ) − 2,
respectively Δ(λ) + 2, may be expressed as a constant multiple of the canonical product
formed from the roots λ0, λ3, λ4, · · · , respectively λ1, λ2, λ5, λ6, · · · , and the multiplier may
be determined from the known estimate

y1(x, λ) ∼ y′2(1, λ) ∼ cos
√
λ as λ ↓ −∞.

The moral is that the periodic spectrum λi, i = 0, 1, 2, · · · , and the discriminant Δ(λ)
are equivalent pieces of information. The general shape of Δ(λ) is seen in Fig. 7.1 below;
in particular, the roots of 2 Δ•(λ) = 0 interlace the periodic spectrum: a so-called trivial
root appears at a double eigenvalue [λ2i−1 = λ2i], while the remaining non-trivial roots
λ·
i, i = 1, · · · , n, fall inside the non-degenerate intervals of instability [λo

2i−1 < λ•
i < λo

2i].

Tied spectrum. The roots μi, i = 1, 2, · · · , of y2(1, μ) = 0 form the spectrum of Q
acting on the class of functions f ∈ C2[0, 1] with f(0) = f(1) = 0. These interlace the
periodic spectrum

λ1 ≤ μ1 ≤ λ2 < λ3 ≤ μ2 ≤ λ4 < λ5 ≤ μ3 ≤ λ6 < · · ·
and fall into two classes: the trivial roots at the double periodic eigenvalues and the remaining
non-trivial roots in the non-degenerate intervals of instability [λo

2i−1, λ
o
2i], i = 1, · · · , n: the

2• means d/dλ.
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Figure 7.1.

latter are denoted by μo
i , i = 1, · · · , n. The i-th eigenfunction is proportional to y2(x, μi) with

norming constant3 ∫ 1

0

y22(x, μi) dx = y′2(1, μi)y
•
2(1, μi).

The roots μi, i = 1, 2, · · · , determine y2(1, μ), the latter being an integral function of order
1
2 , type 1, and of growth (1/

√
μ) sin

√
μ for μ ↓ −∞.

Reflecting spectrum. A second useful spectrum is formed by the roots νi, i =
0, 1, 2, · · · , of y′1(1, ν) = 0 forming the spectrum of Q acting on the class of functions
f ∈ C2[0, 1] with f ′(0) = f ′(1) = 0. These are disposed in the same way as the roots of
y2(1, μ) = 0 except that there is an extra root ν0 in the interval of instability (−∞, λ0].
The non-trivial roots are denoted by νo0 = ν0 and νoi ∈ [λo

2i−1, λ
o
2i], i = 1, · · · , n. The i-th

eigenfunction is proportional to y1(x, νi) with norming constant∫ 1

0

y21(x, νi) dx = −y1(1, νi)y
′•
1 (1, νi).

The roots νi, i = 0, 1, 2, · · · , suffice to determine y′1(1, ν) with the aid of the estimate
y′1(1, ν) ∼ −√

ν sin
√
ν for ν ↓ −∞.

7.2. General Introduction

Let M be the class of functions q ∈ C∞
1 giving rise to a fixed periodic spectrum λ0 <

λ1 ≤ λ2 < λ3 ≤ λ4 < · · · . The purpose of this paper is to study the geometry of M ,
with special emphasis upon the connection to hyperelliptic function theory in the presence
of infinitely many branch points and with a view to applications to a class of non-linear
partial differential equations arising naturally as Hamiltonian flows on M , the Korteweg-de
Vries equation ∂q/∂t = 3q(∂q/∂x)− 1

2 (∂
3q/∂x3) being the most notable example. Let 2n+1

be the number of simple periodic eigenvalues. The case of n < ∞ was studied by Novikov
[32, 33], Dubrovin and Novikov [6], Its and Matveev [16] and McKean and Moerbeke [28].
The case n = 1 was already investigated by Hochstadt [13] and partial results were obtained
by Flaschka [9, 10], Goldberg [11], and Lax [22]. The investigations of Flaschka [9, 10], Kac-
Moerbeke [17, 18], and Moser [29] are closely related. Lax [22] and McKean-Moerbeke [28]
may be consulted for additional literature. A general review of the contents of these papers is
presented below together with a sketch of the principal results obtained in the present paper.

3′ means ∂/∂x, • means ∂/∂μ.



82 7. HILL’S OPERATOR

Local Hamiltonian flows: n ≤ ∞. The partition function

Z(t) =
∞∑
i=0

e−λit

possesses an expansion4

Z(t) ∼ 1√
πt

∞∑
j=0

(−t)jHj−1

(2j − 3) · · · 3 · 1 as t ↓ 0

in which H−1 ≡ 1, the other coefficients Hj , j ≥ 0, being integrals over a period 0 ≤ x < 1 of
universal polynomials in q(x), q′(x), etc., without constant term. They may be computed by
the rule5

Vjq = L∂Hj−1/∂q, j = 1, 2, · · · ,
in which

Vj : q → D∂Hj/∂q

and L is the skew symmetric operator6 qD +Dq − 1
2D

3. The results obtained for j = 0, 1, 2

are displayed in the table. Now7

j 0 1 2

H
∫ 1

0 q 1
2

∫ 1

0 q2 1
2

∫ 1

0 q3 + 1
4

∫ 1

0 q′2

∂H/∂q 1 q 3
2q

2 − 1
2q

′′

V q 0 q′ 3qq′ − 1
2q

′′′

V = Vj induces a local Hamiltonian flow exp(tV ) in C∞
1 . This means that ∂q/∂t = V q can be

solved in C∞
1 for all time −∞ < t < ∞; the nomenclature refers first to the fact that q → V q

is a local (differential) operator, and second, to the Hamiltonian form of V q : the gradient of
H followed by the skew symmetric operator D. These flows preserve M . For instance, if λ is
a simple periodic eigenvalue of Q and if f is the associated eigenfunction, then ∂λ/∂q = f2

and Lf2 = 2λDf2 by elementary computation, so that under the flow ∂q/∂t = Viq

2λViλ = 2λ

∫ 1

0

∂λ

∂q
Viq =

∫ 1

0

f22λD
∂Hi

∂q

= −
∫ 1

0

∂Hi

∂q
2λDf2

= −
∫ 1

0

∂Hi

∂q
Lf2

=

∫ 1

0

f2L
∂Hi

∂q

=

∫ 1

0

f2Vi+1q

= Vi+1λ.

Viλ = 0, i = 1, 2, · · · , follows inductively from the self-evident fact that translation of q does
not change λ, i.e., V1λ = 0.

42j − 3 is to be interpreted as 1 if j − 0 or 1.
5∂/∂q stands for the gradient defined by H• =

∫ 1
0
[∂H/∂q(x)] q•(x) dx for any smooth functional H and

any reasonable infinitesimal variation q• of q, precisely as in advanced calculus.
6D means d/dx.
7Sjöberg [35] proved the existence of the flow exp{tV } in C∞

1 ; this fact will be confirmed for all the flows
exp(tVj) in a different way in Section 13, below.
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Figure 7.2.

M as a torus: n < ∞. Now for a bit of geometry. The vectors Viq, i = 1, · · · , n,
span the tangent space of M at each point; in particular, Vn+1q must be dependent upon
Viq, i = 1, · · · , n, i.e., you must have an identity c1V1q + · · · + cnVnq + Vn+1q = 0 with
coefficients ci, i = 1, · · · , n, depending upon M but not upon q. This is a differential equation
for q; for n = 0, it states that V1q = q′ = 0, proving a theorem of Borg [2] that the periodic
spectrum is all double except for λ0 if and only if q is constant, while, for n = 1, it states that
c1V1q + V2q = c1q

′ + 3qq′ − 1
2q

′′′ = 0, from which you may derive the theorem of Hochstadt
[12] that n = 1 if and only if q = a℘+ b with a = 2 and a Weierstrassian elliptic function ℘
with real period 1 and real elliptic invariants e1 = −λo

2 + c, e2 = −λ1 + c, e3 = −λo
0 + c, c =

1
3 (λ

o
0 + λo

1 + λo
2), looked at on (0 ≤ x < 1) + 1

2× the imaginary period, but this is to digress.
The geometrical fact that the Viq, i = 1, · · · , n, span the tangent space of M permits the
introduction of a natural coordinate system: a point t ∈ R

n is associated with a point on M
by letting exp(t1V1+ · · ·+ tnVn) act on a fixed origin of M , and this association is 1:1 modulo
the lattice L of periods ω ∈ R

n such that exp(ω1V1 + · · ·+ ωnVn) acts as the identity on M .
The upshot is that M may be identified as the factor space R

n/L.
M can be visualized as a torus in a second way. The periodic spectrum is fixed, so that

the discriminant Δ(λ) is known. Let the non-trivial tied spectrum μo
i , i = 1, · · · , n, be fixed,

also. Then the trivial tied spectrum, alias the double periodic eigenvalues, is known, and the
norming constants ∫ 1

0

y22(x, μi) dx = y′2(1, μi)y
•
2(1, μi), i = 1, 2, · · · ,

are almost known. In fact, y2(1, μ) is determined from the full tied spectrum; thus y′2(1, μi) is
known. Besides, y1(1, μi)y

′
2(1, μi) = 1 in view of y1y

′
2− y′1y2 = 1 and y2(1, μi) = 0. Therefore,

you may solve Δ(μi) = y1(1, μi) + y′2(1, μi) for

y′2(1, μi) =
1
2

[
Δ(μi)±

√
Δ2 − 4

]
,

up to an ambiguous signature in front of the radical. This presents a bona fide ambiguity only
if Δ2(μi) �= 4. i.e., only for the non-trivial roots μo

i �= λo
2i−1, λ

o
2i. Borg [2] proved that the

roots μi, i = 1, 2, · · · , together with the norming constants determine q uniquely; see Levinson
[24] for a simple proof. This means that you have a 1:1 map into the n-dimensional torus
of Fig. 7.2, this being the product of n circles, one for each non-trivial interval of instability
[λo

2i−1, λ
o
2i], i = 1, · · · , n, the upper (lower) semi-circle corresponding to the positive (negative)

determination of the radical
√
Δ2(μo

i )− 4. The fact that the map is onto is not hard to
confirm.

Geometry of M . Let the periodic spectrum λi, i = 0, 1, 2, · · · , be fixed. Then M is the
variety comprising the common roots q in8 L2

1 of the relations

2× (−1)i = Δ(λ2i) when λ2i is simple,

8L2
1 denotes the space of real-valued measurable functions of period 1 with

∫ 1
0 |f(x)|2 dx < ∞.
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and

(−1)i = y1(1, λ2i) when λ2i is double.

0 = y′1(1, λ2i)

These relations are analytic as regards q, so that M is an analytic variety. The proof appears
in Section 8.

This way of presenting M suggests a candidate for its normal space. By analogy with
finite-dimensional geometry, the gradients

∂Δ

∂q
(λ2i) = −Δ′(λ2i)f

2
2i(x) when λ2i is simple,

and
∂y1

∂q (1, λ2i) = −y1(1, λ2i)y1(x, λ2i)y2(x, λ2i)

∂y′
1

∂q (1, λ2i) = y′2(1, λ2i)y
2
1(x, λ2i)

⎫⎬
⎭ when λ2i is double

ought to be normal fields spanning out the normal space at every point of M . Write No

for the span of the gradients
∂Δ

∂q
(λo

2i), i = 0, 1, · · · , n, Nx for the span of ∂y1(1, λ)/∂q and

∂y′1(1, λ)/∂q for such double eigenvalues as may exist, and N for the sum of these two. The
latter is the normal space.

By the same analogy, it is natural to ask if M is non-singular in the sense that the
gradients are independent at each point. This is indeed the case: no single gradient lies in the
span9 of the others. Now in a finite number of dimensions, it is a consequence of the implicit
function theorem that a non-singular variety is both smooth and smoothly imbedded, but
here this is not at all apparent. First of all, if M is infinite-dimensional, it cannot have a local
structure modeled by an infinite-dimensional topological vector space, because M is compact
while such a vector space is never locally compact, so it is not even clear what smooth
means. Another problem is that the gradients may be independent but the “proportion” of
the ambient space spanned by them may very well change from point to point, and this is an
intuitively unacceptable characteristic of an imbedding. These difficulties may be overcome.
The normal spaces can be compared with one another in a very satisfactory way; for example,
if M is finite-dimensional, then the infinite-dimensional normal spaces all have the same finite
codimension, and in general it will develop that M “sits smoothly” in L2

1.
The next topic is the tangent space. In Section 3, it is shown that the flows

∂q

∂t
= D

∂Δ

∂q
(λo

2i) ≡ Xiq, i = 0, 1, · · · , n,
preserve M , and so it makes good sense to regard the X ′s as tangent fields defined on M ,
acting on functions F of q by the rule

Xi applied to F at q =

∫ 1

0

∂F

∂q
Xiq dx.

Write T for the closed span of the Xiq, i = 1, · · · , n. The latter is the tangent space. Note
that X0(q) is omitted, the reason being that X0 is dependent upon the other fields.

This picture of how M is situated in L2
1 is justified in Sections 8, 9, and 13. N and T are

seen to be perpendicular subspaces adding up to L2
1. The perpendicularity confirms the idea

that N is normal and T is tangent, and the fact that they span the whole of L2
1 shows that

every direction of the ambient space has been accounted for. Moreover, it is shown that the
normal and tangent spaces, as framed respectively by the gradients of the defining relations
and Xq′s, “look alike” from point to point in a very satisfactory sense, elaborated in Section 8.

9Span means the closed linear span in L2
1.
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Figure 7.3.

The implication that M is smoothly imbedded in L2
1 is confirmed in Section 13. where it is

shown that M is the smooth imbedding in L2
1 of the product of n circles.

It is an important geometrical fact that M has a symplectic structure, or something like
one. D maps No onto T . This provides M with a symplectic structure with Poisson bracket∫ 1

0

∂F

∂q
D

∂G

∂q
dx;

moreover, the system is completely integrable. The only discrepancy between this and the
classical case is that the dimension of the normal space is now 1 more than the dimension
of the tangent space, reflecting the non-classical one-dimensional degeneracy of the Poisson
bracket. Relative to the bracket, the flows induced by the vector fields Xi, i = 1, · · · , n,
are in Hamiltonian form, i.e., Xiq is the gradient ∂/∂q of the Hamiltonian Δ(λo

2i) followed
by the skew-symmetric operator D. Moreover, they commute. The skew-symmetric operator
L = qD + Dq − 1

2D
3 also maps No onto T owing to the identity Lfo2

2i = 2λo
2iDfo2

2i . The
interaction between D and L is very important for the whole subject; it would be valuable to
understand its real significance from the standpoint of symplectic geometry.

Connection with Hyperelliptic function theory: n < ∞. Now comes the main
point. The Riemann surface S of the hyperelliptic irrationality

�(λ) =
√
−(λ− λo

0)(λ − λo
1)(λ − λo

2) · · · (λ− λo
2n)

is a sphere with n handles, obtained by cutting 2 copies of the number sphere along the
intervals of instability [−∞, λo

0], [λ
o
2i−1, λ

o
2i], i = 1, 2, · · · , n, and pasting them together as in

Fig. 7.3. Let oi be the point λo
2i−1 of S and let pi = (μo

i ,
√
Δ2(μo

i )− 4) be a variable point of
S situated on the circle arising from [λo

2i−1, λ
o
2i]. Then (p1, · · · ,pn) is a point of the torus of

Fig. 7.2 and is related to the point t ∈ R
n by the Jacobi map

n∑
i=1

∫ pi

oi

μj−1 dμ

�(μ)
= tj , j = 1, · · · , n,

the point being that M is, so to say, the real part of the Jacobi variety of the Riemann surface
S.10 The Jacobi map, or better the addition theorem for abelian integrals, may be regarded as
an isomorphism between the two different operations of addition with which M is equipped:

10To be quite honest, this is not correct. The present coordinate t agrees with the previous one modulo the
period lattice L only after an affine transformation, but that is of no importance now.
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the natural addition on the torus of Fig. 7.2 and the addition provided by the presentation of
M as Rn/L.11

Connection with Hyperelliptic function theory: n = ∞. The general case n = ∞
leads to a similar theory, though new obstacles arise; it is the purpose of this paper to overcome
them. Most importantly, it is necessary to develop to some extent the hyperelliptic function
theory in the presence of infinitely many branch points. The only previous attempt known
to us is that of Myrberg [30, 31]. The methods employed below are quite different from his.
M is now an infinite-dimensional torus identifiable (with tears) as the real part of the Jacobi

variety of the transcendental hyperelliptic irrationality
√
Δ2(λ)− 4. The new aspect of this

identification is best explained for a purely simple spectrum. M is pictured as in Fig. 7.2 with
n = ∞, and the Jacobi map takes the form

∞∑
i=1

2

∫ pi

oi

φ(μ) dμ√
Δ2(λ)− 4

=

∞∑
j=1

φ(λ2j)xj ,

in which oi = λ2i−1 and pi = (μi,
√
Δ2(μi)− 4), i = 1, 2, · · · , φ belongs to the class I3/2 of

integral function of order 1
2 and type at most 1 with∫ ∞

0

|φ(μ)|2μ3/2 dμ < ∞,

x is a point of the Hilbert space I3/2† for the quadratic form
∑ |xi| i−4, and the path of

integration from oi to pi is permitted to wind about the circle ni times provided
∑

n2
i i

−2 <
∞. The map requires some explanation. The left-hand side defines and element x of the space
I3/2† dual to I3/2. Now any function φ ∈ I3/2 can be interpolated off λ2i, i = 1, 2, · · · , the
quadratic form

∑
φ(λ2i)

2i−4 being comparable to∫ ∞

0

|φ(μ)|2μ3/2 dμ.

Therefore, the sum at the left-hand side in the Jacobi map may be expressed by the kind of sum
at the right, x ∈ I3/2† being identified with the point (x1, x2, · · · ), from the Hilbert space of the
dual quadratic form

∑ |xi|2i−4. This explains the Jacobi map pi, i = 1, 2, · · · ,→ x ∈ I3/2†.
The paths of integration are not specified, so the map is well-defined if and only if you factor
out the lattice L3/2 of periods ω ∈ I3/2† arising from closed paths of integration, permitting
the identification of M as the factor space I3/2†/L3/2, alias the real part of the Jacobi variety
of S. The primitive periods ωi, i = 1, 2, · · · , are determined by the rule

4

∫ λ2i

λ2i−1

φ(μ) dμ√
Δ2(μ)− 4

=

∞∑
j=1

φ(λ2j)ωij ≡ ωi(φ)

and every period ω ∈ L3/2 can be expressed as
∑

niωi with
∑

i−2n2
i < ∞. The chief new

point in all this is that the differential of the first kind on the Riemann surface S employed
classically if n < ∞, namely μj−1�−1(μ) dμ, j = 1, 2, · · · , n, must now be replaced by the
more recondite differentials φ(μ)[Δ2(μ) − 4]−1/2 dμ with φ ∈ I3/2. This is confirmed by the
fact that the map φ → ωi(φ), i = 1, 2, · · · , is 1:1 from I3/2 onto the Hilbert space for the
quadratic form

∑ |ωi(φ)|2i2; in particular, ωi(φ) = 0, i = 1, 2, · · · , only of φ = 0, this being
an extension of the classical theorem that if the periods of a differential of the first kind
vanish on the cycles of S arising from [λo

2i−1, λ
o
2i], i = 1, · · · , n, then the differential itself

must vanish identically. This kind of result is based upon a general interpolation theorem

11Siegel [34] is the best source of information about the classical function theory involved here.
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to the effect that φ ∈ I3/2 can be interpolated off any tied spectrum μi, i = 1, 2, · · · , the
quadratic form

∑ |φ(μi)|2i4 being comparable to∫ ∞

0

|φ(μi)|2μ3/2 dμ;

but more of this below. The case of partly simple spectrum is more complicated; see Section
15 for full explanations. The theory of the complex part of the Jacobi variety for n = ∞ is
not yet fully understood. Now, the map

q → pi, i = 1, 2, · · · ,→ x ∈ I3/2†

is defined modulo periods. It is inverted by the exponential map of I3/2† onto M , namely,

x → X =

∞∑
i=1

xiXi → q = eX applied to the origin.12

This permits the identification of L3/2 with the lattice of points x ∈ I3/2† for which
exp(

∑∞
i=1 xiXi) acts as the identity on M . It is clear that the exponential map cannot be

locally 1:1 because M is compact while the unit ball of I3/2† is not. Indeed, every ball in I3/2†

contains periods from L3/2.
Off hand, it seems that I3/2† ought to be called a tangent space of M even though

the space of tangent vectors Xq =
∑∞

i=1 xiXiq with x ∈ I3/2† is much smaller than T :

unfortunately, I3/2† does not contain any of the local Hamiltonian vector fields such as the
infinitessimal translation V1q = q′ or the Korteweg-de Vries field V2q = 3qq′ − 1

2q
′′′. This

defect is remedied by the introduction of a hierarchy of tangent spaces Ij/2†, j odd,

I3/2† ⊂ I5/2† ⊂ · · · ⊂ I∞/2† ⊂ T

with Vi ∈ I(4i+1)/2†, i = 1, 2, · · · , as well as corresponding period lattices Lj/2 ⊂ Ij/2† intro-
duced in such a way that M may be identified with Ij/2†/Lj/2 by means of a generalization of
the Jacobi map. Ij/2† is the Hilbert space for the quadratic form

∑∞
i=1 x

2
i i

−j−1, and Ij/2† ⊂ T

in the sense that Xq ∈ T if x ∈ Ij/2†. I∞/2† is not a Hilbert space, being simply the union
of the Ij/2†s; in spite of this I∞/2† is a very nice tangent space, accounting for all the local
flows induced by V1, V2, etc.; see Section 14 for more information.

Applications to partial differential equations. The relationship between M, S and
the pair Ij/2†, Lj/2(j odd) provided by the sequence of maps

M −−−−−−−−−−−−−−−→
tied spectrum and
norming constants

S −−−−−−−−−−→
Jacobi map

Ij/2
†
/Lj/2 −−−−−−−−−−−−−→

exponential map
M

for j = 4i + 1 can be used to study the local Hamiltonian flow ∂q/∂t = Viq. The first
application is a proof of the existence and smoothness of all the local flows. Sjöberg [35]
proved global existence for exp{tV2} in a different way. Another application is to prove that
exp{tVi}q, i = 1, 2, · · · , is almost periodic in time for any q ∈ C∞

1 as conjectured by Lax [22]
and numerically confirmed by M. Hyman in the appendix to [22]; see Section 16.

The machinery can also be used to study the periodicity of the local flows. For example,
the Korteweg-de Vries flow induced by V2q = 3qq′ − 1

2q
′′′ is of period T if and only if

2

∞∑
i=1

ni

∫ λ2i

λ2i−1

y2(1, μ)

μj

dμ√
Δ2(μ)− 4

=

⎧⎪⎨
⎪⎩
cT for j = 1,

2T for j = 2,

0 for j ≥ 3,

12The origin is now fixed as the point on M with μi = λ2i−1, i = 1, 2, · · · .
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with c = λ0 −
∑∞

i=1(λ2i − λ2i−1) and integers ni, i = 1, 2, · · · , satisfying ∑n2
i i

−8 < ∞. The

periodicity of the flows induced by Vi ∈ I(4i+1)/2† can be discussed in a similar manner.
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Helv. Phys. Acta 30, 1957, p. 515 − 520. Dyson also told us that W. Kohn has studied
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F. J. Dyson for this information and for providing us with a copy of his 1965 La Jolla Seminar,
Determination of a Periodic Potential from its Band Structure.

7.3. A New Class of Hamiltonian Flows

The study of the geometry of M is based upon the fact that the periodic spectrum, and so
M itself, is preserved by the flow with Hamiltonian H = Δ(λ), λ fixed. The flow is defined by
solving ∂q/∂t = Xq with Xq = D∂H/∂q; its existence is proven below. The present flows are
closely allied to those of Lax [22]. They represent an improvement over the local Hamiltonian
flows of Section 2 in that it seems the latter need not be transitive on M ; see Section 10
below. They are also easier to deal with from a technical standpoint. A number of additional
facts about ∂Δ/∂q are prepared in this section. L stands for the skew symmetric operator
qD +Dq − 1

2D
3.

LEMMA 1.

∂y1(ξ, λ)

∂q(η)
= y2(η, λ)y

2
1(η, λ) − y1(ξ, λ)y1(η, λ)y2(η, λ),

∂y2(ξ, λ)

∂q(η)
= y2(η, λ)y1(η, λ)y2(η, λ) − y1(ξ, λ)y

2
2(η, λ),

for 0 ≤ η ≤ ξ ≤ 1, the gradients vanishing otherwise. Both evaluations may be differentiated
with regard to ξ.

Proof: Let q• be an infinitessimal variation of q. Then (λ−Q)y•1 = q•y1 can be solved for
y•1(ξ, λ):

y•1(ξ, λ) =
∫ ξ

0

[y2(ξ, λ)y1(η, λ)− y1(ξ, λ)y2(η, λ)]q
•(η)y1(η, λ) dη,

and ∂y1/∂q can be read off. The computation of ∂y2/∂q is similar.

LEMMA 2.

∂Δ(λ)

∂q(x)
= [y′2(1, λ)y1(1, λ)]y1(x, λ)y2(x, λ) − y′1(x, λ)y

2
2(x, λ) + y2(1, λ)y

2
1(x, λ).

Proof: See Lemma 1.

LEMMA 3. The product z of any 2 solutions of Qy = λy satisfies Lz = 2λz′; in
particular, y21 , y1y2, y

2
2 is a base for the null space of L− 2λD since the three functions are

independent and the dimension of the null space is deg L = 3.

Proof: Let z = y−y+. Then

Lz = (qD +Dq)z − 1
2D(y′′−y+y + y−y′′+)− (y′′−y

′
+ + y′−y

′′
+)

= (qD +Dq)z −D(q − λ)z − (q − λ)Dz

= 2λz′.

The rest is plain.
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THEOREM 1. Let λ be fixed and let Δ(λ) = H. Then X : q → D∂H/∂q induces a smooth
flow exp{tX} in C∞

1 by solving ∂q/∂t = Xq; this flow preserves Δ(μ) for any value of μ and
so also the manifold M .

AMPLIFICATION 1. The theorem may be interpreted as saying that X is a tangent field
to M .

AMPLIFICATION 2. The flows commute. The point is that ∂q/∂t = Xq is in Hamiltonian
form: Xq is the gradient of H followed by the skew symmetric operator D. Now it is a general
fact of Hamiltonian mechanics that if two flows preserve each other’s Hamiltonian, then they
commute, and so it is here: the λ-flow preserves the Hamiltonian Δ(μ) of the μ-flow; compare
[28], pp. 228–229, for the kind of computation involved.

Proof of Theorem 1: It is required to solve ∂q/∂t = Xq in C∞
1 . We have

Xq =
d

dx
[(y′2(1, λ)− y1(1, λ))y1y2 + y2(1, λ)y

2
1 − y′1(1, λ)y

2
2 ]

by Lemma 2. Introduce the conventional Sobolev norms

‖f‖i =
√√√√∑

j≤i

∫ 1

0

|Dif |2 dx, i = 0, 1, 2, · · · ,

and the dual (negative) norms ‖f‖i, i = −1, −2, · · · .Then it is easy to see from

y1(ξ, λ) = cos
√
λξ +

∫ ξ

0

sin
√
λ(ξ − η)√
λ

q(η)y1(η, λ) dη,

y2(ξ, λ) =
sin

√
λξ√
λ

+

∫ ξ

0

sin
√
λ(ξ − η)√
λ

q(η)y2(η, λ) dη

that ‖y1‖i and ‖y2‖i are controlled by ‖q‖i−2. Now use Lemma 1 to prove that13

‖∂(Xq)/∂q(η)‖i is bounded in any ball B : ‖q‖i ≤ b of the i-th Sobolev space of func-
tions of period 1. This permits you to solve ∂q/∂t = Xq in B until such time as q hits ∂B. In
[22] and [28] it was proved that ‖q‖i is controlled by Hj , j ≤ i+1, with the local Hamiltonian
of Section 2. The flow ∂q/∂t = Xq preserves these Hamiltonians; in fact, it preserves Δ(μ)
for any fixed μ and hence the periodic spectrum from which the Hamiltonians are derived.
The proof is easy: ∂Δ/∂q = f satisfies Lf = 2λf ′, so

2λXΔ(μ) =

∫ 1

0

∂Δ(μ)

∂q
2λXq dx

=

∫ 1

0

∂Δ(μ)

∂q
2λ

d

dx

∂Δ(λ)

∂q
dx

=

∫ 1

0

∂Δ(μ)

∂q
L
∂Δ(λ)

∂q
dx,

which is antisymmetric in λ and μ in view of the skew-symmetry of L, i.e.,

2λXΔ(μ) = −2μXΔ(μ) = −μ

∫ 1

0

∂Δ(μ)

∂q

d

dx

∂Δ(μ)

∂q
dx = 0,

by periodicity of ∂Δ/∂q. Now fix a region A in the i-th Sobolev space of functions of period
1 by limiting the values of Hj , j = 0, 1, · · · , i+ 1, and enclose it in a ball B : |q|i ≤ b. Then
a solution of ∂q/∂t = Xq starting in A exists until such time as it meets ∂B, and as that
cannot happen, the solution exists for all time, the point is that the solution cannot exit from
A since the Hamiltonians are preserved. A flow in C∞

1 is now obtained by noting that, for

13‖∂(Xq)(ξ)/∂(η)‖i is the Sobolev norm in 2 variables 0 ≤ ξ, η ≤ 1.
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initial data from C∞
1 , the solution of ∂q/∂t = Xq in the i-th periodic Sobolev space does not

depend upon i and so belongs to their intersection C∞
1 . The smoothness of the flow is proved

as follows. Let q0 be the initial value of q. Formally, ∂q/∂t = Xq implies

d

dt

∂q(ξ)

∂q0(η)
=

∂Xq(ξ)

∂q0(η)
=

∫ 1

0

∂Xq(ξ)

∂q(x)

∂q(x)

∂q0(η)
dx,

which is to say that the operator J(ξ, η) = ∂q(ξ)/∂q0(η) out to satisfy ∂J/∂t = KJ with
K(ξ, η) = ∂Xq(ξ)/∂q(η). Now K(ξ, η) is smooth on [0, 1]2 × C∞

1 by Lemma 1, and ∂J/∂t =
KJ can be solved for J , starting from the unit operator J0 = 1. It is required to prove that,
with this determination of J ,

etX(q0 + εq1) = etXq0 + εq1 + o(ε).

This is easy: ε−1[etX(q0 + εq1)− etXq0] = p solves

∂p/∂t = ε−1]X(q + εp)−Xq] = Kp+O(ε),

so p = Jq1 +O(ε), as required. The existence of the higher derivatives of q(ξ) with regard to
q0(η) is proved in a similar way.

A number of additional facts about ∂Δ/∂q are collected below.

LEMMA 4. ∂Δ(λ)/∂q(x) is the only function of period 1 in the null space of L − 2λD
unless [y1(1, λ)]

2 + [y′2(1, λ)]
2 = 2.

Proof: Lz = 2λz′ only if f = ay21 + by1y2+ cy22, by Lemma 3. The condition of periodicity
is that z, z′, and z′′ match at x = 0 and at x = 1, i.e., that (a, b, c) be annihilated by

K =

⎡
⎣ [y1(1, λ)]

2 − 1 y1(1, λ)y2(1, λ) [y2(1, λ)]
2

y1(1, λ)y
′
1(1, λ) y′1(1, λ)y2(1, λ) y2(1, λ)y

′
2(1, λ)

[y′1(1, λ)]
2 y′1(1, λ)y

′
2(1, λ) [y′2(1, λ)]

2 − 1

⎤
⎦ .

The condition for two independent solutions of period 1 is that det(K − k) = 0 have a root
of multiplicity at least 2 at k = 0, that is to say [y1(1, λ)]

2 + [y′2(1, λ)]
2 = 2, by a tiresome

computation. The proof is finished by noticing that ∂Δ/∂q = z solves Lz = 2λz′, is of period 1,
and cannot vanish if [y1(1, λ)]

2+[y′2(1, λ)]
2 �= 2 because you cannot have (a) y′2(1, λ) = y1(1, λ)

and (b) y′1(1, λ) = y2(1, λ) = 0; in fact, (b) places you at a double eigenvalue [Δ(λ) = ±2], so
(a) implies y1(1, λ) = y′2(1, λ) = ±1 and [y1(1, λ)]

2 + [y2(1, λ)]
2 = 2.

LEMMA 5. Let 0 ≤ x ≤ 1 be fixed. Then ∂Δ(λ)/∂q(x) coincides with the function y2(1, λ)
computed for q translated by x.

Proof: The cited function y2(1, λ) is expressed in terms of the original functions y1 and
y2 as

y2(1 + x, λ)y1(x, λ) − y1(1 + x, λ)y2(x, λ)

= [y2(1, λ)y1(x, λ) + y′2(1, λ)y2(x, λ)]y1(x)

− [y1(1, λ)y1(x, λ) + y′1(1, λ)y2(x, λ)]y2(x, λ)

= [y′2(1, λ)− y1(1, λ)]y1(x, λ)y2(x, λ)

− y′1(1, λ)y
2
2(x, λ) + y2(1, λ)y

2
1(x, λ),

in agreement with the formula for ∂Δ/∂q of Lemma 2.

LEMMA 6. ∫ 1

0

[∂Δ(λ)/∂q(x)] dx = −Δ•(λ).
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Proof: Under the flow ∂q/∂t, Δ(λ) is changed into Δ(λ− t), thus

−Δ•(λ) =
∫ 1

0

(∂Δ/∂q)q• =

∫ 1

0

∂Δ/∂q,

as stated.

LEMMA 7. ∂Δ(λ)/∂q(x) = −Δ•(λ)f2(x) at any simple periodic eigenvalue λ = λo
i , i =

0, · · · , 2n, with eigenfunction f = fo
i . The same holds at a double periodic eigenvalue λ =

λ2i−1 = λ2i, except that Δ
•(λ) = 0 there so that ∂Δ(λ)/∂q(x) = 0.

Proof: At a double eigenvalue λ2i−1 = λ2i, y
′
1(1, λ) = y2(1, λ) = 0 and y1(1, λ) = y′2(1, λ)

since y1(1, λ)y
′
2(1, λ) = 1 and Δ2 = [y1(1, λ) + y′2(1, λ)]

2 = 4 = 4y1(1, λ)y
′
2(1, λ). This implies

that ∂Δ(λ)/∂q(x) = 0, by Lemma 2. Contrariwise, at a simple eigenvalue λo
i , ∂Δ(λ)/∂q(x)

is a non-trivial member of the null-space of L− 2λD of period 1, as is [fo
i (x)]

2, by Lemma 3;
hence ∂Δ/∂q is proportional to (fo

i )
2 if [y1(1, λ)]

2 + [y′2(1, λ)]2 �= 2, by Lemma 4. Besides,
Δ(λ) = y1(1, λ) + y′2(1, λ) = ±2, and you cannot have [y1(1, λ)]

2 + [y′2(1, λ)]
2 = 2 unless

y1(1, λ) = y′2(1, λ) = ±1, y′1(1, λ)y2(1, λ) = 0, and either y′1(1, λ) = 0 or y2(1, λ) = 0, so that
the proportionality of ∂Δ/∂q and (fo

i )
2 takes place anyhow. The proof is finished by use of

Lemma 6: ∫ 1

0

(fo
i )

2 = 1,

while ∫ 1

0

∂Δ/∂q = −Δ•,

so ∂Δ/∂q = −Δ•(fi)2.
LEMMA 8. Let λ �= λi, i = 0, 1, 2, · · · , be fixed and let G(ξ, η) be the Green function for

λ−Q acting on functions of period 2. Then

2G(x, x) =

∞∑
i=0

(λ− λi)
−1f2

i (x) =
2Δ(λ)

4−Δ2(λ)

∂Δ(λ)

∂q(x)
.

Proof: The normalized eigenfunctions forQ acting on functions of period 2 are 2−1/2fi, i =
0, 1, 2, · · · . This explains the factor 2 in the identity between 2G(x, x) and the sum. Now
G(x, x) is of period 1, and you have only to rehearse mentally the standard computation of
the G(ξ, η) to realize that G(x, x) is a sum of products y21(x, λ), y1(x, λ)y2(x, λ), y

2
2(x, λ) and,

as such, a solution of Lf = 2λf ′ of period 1. G(x, x) is seen to be proportional to ∂Δ/∂q
by Lemma 4, if [y1(1, λ)]

2 + [y′2(1, λ)]
2 �= 2 and the constant of proportionality is fixed by

Lemma 6 and the self-evident identity

2

∫ 1

0

G(x, x) dx =
∞∑
i=0

(λ − λi)
−1 = [log(Δ2(λ)− 4)]•.

Clearly, the exceptional values of λ �= λi, i = 0, 1, 2, · · · , at which [y1(1, λ)]
2 + [y′2(1, λ)]

2 = 2
may be dealt with by continuity.

AMPLIFICATION 3. The formula [−Δ•(λo
i )]

−1∂Δ(λo
i )/∂q(x) = [fo

i (x)]
2 of Lemma 7

has a counterpart for any double periodic eigenvalue λ2i−1 = λ2i: at such eigenvalue

2× [−Δ•(λ)]−1 ∂Δ(λ)

∂q(x)
= f2

2i−1(x) + f2
2i(x) > 0,

as can be seen from Lemma 8, and the functions

f−(ξ)
f+(ξ)

=

√
2∂Δ(λ)/∂q(ξ)

−Δ•(λ)
sin
cos

[ √
2√|Δ••(λ)|

∫ ξ

0

−Δ•(λ) dη
∂Δ(λ)/∂q(η)

]
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form a unit perpendicular base of the eigenspace. The proof employs the identity(
∂Δ′

∂q

)2

− 2
∂Δ

∂q

∂Δ′′

∂q
+ 4

(
∂Δ

∂q

)2

(q − λ) = Δ2 − 4.

The latter is verified by differentiation of the left-hand side to prove its constancy. The value
is now computed at x = 0; compare [28], p. 20, for the case n < ∞.

AMPLIFICATION 4. The formula of Lemma 2 may be used to prove that the case of
purely simple spectrum is typical of q ∈ C∞

1 . The proof is easy. The part of C∞
1 in which

λ2i−1 = λ2i is closed; it is to be proved that is cannot contain an open region. In such a region,
Δ(λ12) ≡ ±2 for λ12 = 1

2λ2i−1 +
1
2λ2i. But Δ(λ) is an analytic function of q ∈ C∞

1 for fixed
−∞ < λ < ∞, as is apparent from Lemma 3.2 and the integral equations for y1(x, λ) and
y2(x, λ) cited in Section 1. The same is true of λ12; this follows from the preceding remark
and from the formula

λ12 =
1

4π
√−1

∮
Δ•(μ)

Δ(μ)± 2
μ dμ

in which the integral is extended about a circle enclosing λ2i−1 and λ2i but excluding λj , j �=
2i− 1, 2i. Therefore, the composite function Δ(λ12) is also analytic in q. Thus Δ(λ12) ≡ ±2
in the whole of C∞

1 , and that is not the case: namely, if q = sin 2πx, then λ2i−1 < λ2i and
Δ(λ12) �= ±2; see Magnus-Winkler [26], p. 90.

AMPLIFICATION 5. The prevalence of purely simple spectra may be confirmed in an-
other way. The fact is that if q has only simple periodic spectrum, then so does cq for all but
a countable number of exceptional values of −∞ < c < ∞ with no finite limit point. The
case q(x) = c sin 2πx with purely simple spectrum if c �= 0 was mentioned above. A second
example is due to Ince [14, 15]: Let q(x) = (2kK)2sn2(2kKx, k), sn(x, k) being the custom-
ary Jacobi elliptic function and K the complete elliptic integral of the first kind, both with
modulus 0 < k < 1. Then cq has 2n+1 simple periodic eigenvalues if c = n(n+1), n integral,
and only simple periodic eigenvalues in every other case. Now let q be general and let Δ(λ, c)
be the discriminant of cq. This function is analytic in the pair (λ, c), permitting you to view
the periodic spectrum λi(c), i = 1, 2, · · · , as the branches of one or more multiple-valued
functions of c produced by solving Δ2(λ, c) − 4 = 0. For c = 1, the spectrum is simple, i.e.,
the sheets of the Riemann surface are distinct, and as c ranges over the line, these sheets may
meet, but only in pairs, and then only at a countable number of exceptional values of c with
no finite limit point. The proof is finished.

7.4. Tied Spectrum: M as a Torus

Figure 7.2 of Section 2, depicting M as an n-dimensional torus, is also valid if n = ∞.
Recall what is involved. The periodic spectrum is fixed so Δ(λ) is known as well as the trivial
part of the tied spectrum, alias the double eigenvalues λ2i−1 = λ2i. Let the non-trivial tied
spectrum μo

i , i = 1, · · · , n, be fixed, too. Then y•2(1, μ
o
i ) is known and so is the norming

constant ∫ 1

0

y22(x, μ
o
i ) dx = y•2(1, μ

o
i )

1
2 [Δ(μo

i )±
√
Δ2(μo

i )− 4],

up to the signature of the radical; the latter presents a bona fide ambiguity only if λo
i < μi <

λo
2i. Now the theorem of Borg [2]14 cited in this connection in Section 2 state that the map

q → pi = (μo
i ,
√
Δ2(μo

i )− 4), i = 1, 2, · · · , n,
of M into the n-dimensional torus of Fig. 7.4 is 1:1.

THEOREM 1. M is topologically equivalent to the n-dimensional torus of Figure 7.4.

14See [24].
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Figure 7.4. n = ∞

Proof: It is required to prove that the map is onto, i.e., that the eigenvalue μo
i can be

placed arbitrarily in the interval of instability [λo
2i−1, λ

o
2i] with an arbitrary signature to the

radical
√
Δ2(μo

i )− 4, simultaneously for i = 1, · · · , n.
LEMMA 1. Let i = 1, · · · , n be fixed. Then the vector field

X : q → D∂Δ(λ)/∂q evaluated at λ = μo
i

induces a smooth flow on M under which

Xμo
j =

{
1
2

√
Δ2(μo

j)− 4 for j = i,

0 for j �= i.

Warning. The present flows commute among themselves but not with the flows induced
by X : q → D∂Δ(λ)/∂q with λ fixed. Besides, the present flows are not Hamiltonian:
D[∂Δ(μo

i )/∂q] �= D∂Δ(λ)/∂q evaluated at λ = μo
i .

Proof: The proof of the existence of the flow is routine, making use of Theo-
rem 3.1 and the fact that ∂μo

i /∂q = f2, f(x) being the normalized eigenfunction

[y•2(1, μo
i )y

′
2(1, μ

o
i )]

−1/2y2(x, μ
o
i ). Now let f be the normalized eigenfunction for μ = μo

i . Then

Xμo
i =

∫ 1

0

∂μo
j

∂q
Xq dx =

∫ 1

0

f2(x)D
∂Δ(λ)

∂q(x)
dx evaluated at λ = μo

i ,

and for general λ,

2(λ− μ)

∫ 1

0

f2D
∂Δ(λ)

∂q
dx =

∫ 1

0

f2L
∂Δ(λ)

∂q
dx+

∫ 1

0

∂Δ(λ)

∂q
Lf2 dx

= −(f ′)2
∂Δ

∂q

∣∣∣1
0

=
1− [y′2(1, μ)]

2

y•2(1, μ)y
′
2(1, μ)

y2(1, μ).

Therefore, Xμo
j = 0 if j �= i, while for j = i,

Xμo
j = 1

2 [y
′
2(1, μ

o
j)]

−1 − y′2(1, μ
o
j)

= 1
2

√
Δ2(μo

j)− 4,

as advertised.

The proof of the theorem is now before you. The flow induced by X fixes μo
j , j �= i, and

moves pi = (μi,
√
Δ2(μo

i )− 4) about the circle of Fig. 7.5 according to Xμo
i =

1
2

√
Δ2(μo

i )− 4.

This motion does not pause at the critical points μo
i = λo

2i−1, λ
o
2i even, though

√
Δ2(μo

i )− 4
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Figure 7.5.

vanishes there. The point is that if μo
i sticks at λo

2i−1 on λo
2i, then nothing moves, not even q

by Borg’s theorem, while

Xq =
d

dx
{[y′2(1, μo

i )− y1(1, μ
o
i )]y1(x, μ

o
i ) + y′1(1, μ

o
i )y

2
2(x, μ

o
i )}

cannot vanish unless y′1(1, μo
i ) = 0, and that is never the case, μo

i being at a simple periodic
eigenvalue. These observations permit you to move the pi, i = 1, · · · ,m, to any desired
positions for any m < ∞ if n = ∞ and for m = n if n < ∞. The proof that the map is onto is
finished for n < ∞, while for n = ∞, it suffices to note that M is compact : M is closed in C∞

1 ,
the discriminant Δ(λ) being a nice function of q; also, the Hamiltonians Hi, i = 0, 1, 2, · · · ,
are constant upon M and15 for any i the i-th Sobolev norm of q is controlled by H0, · · · , Hi+1.
The proof that the map is topological is self-evident.

AMPLIFICATION 1. The fields X : q → D∂Δ(λ)/∂q, λ fixed, act upon μo
j , j = 1, 2, · · · ,

by the rule

Xμo
j =

√
Δ2(μo

j)− 4

2y•2(1, μ
o
j)

y2(1, λ)

λ− μo
j

;

in particular, for Xi = X evaluated at λ = λ2i, detXiμ
o
j , 1 ≤ i, j ≤ m, does not vanish if

μo
i �= λo

2i−1, λ
o
2i, i = 1, · · · , n. This fact will be helpful in Section 9.

AMPLIFICATION 2. The origin of M is now fixed as that point at which μo
i = λo

2i−1, i =
1, · · · , n. In this connection, it is noted that μo

i = λ2i−1 or λ2i, i = 1, · · · , n, if and only if
q(x) = q(−x).

Proof: If q(x) = q(−x), then both y2(1 + x, μo
i ) and −y2(1 − x, μo

i ) solve Qy = μo
i y

and they agree by computation of value and slope at x = 0. Now compute the value and
slope at x = −1 to obtain y2(0) = y2(0) = 0 and y′2(0) = y′2(2) = 1. The conclusion is
that y2 is of period 2 and μo

i = λ2i−1 or λ2i. As to the converse, the change of q(x) into
q̄(x) = q(−x) = q(1 − x) does not change either the periodic or tied spectrum; you are
merely flipping over the interval 0 ≤ x ≤ 1. The proof is finished by observing that the
tied eigenfunctions −y2(−x, μi) for q̄ have the same norming constants as the eigenfunctions
y2(x, μi) for q if μo

i = λo
2i or λ

o
2i−1, i = 1, · · · , n. The point is that y22(x, μi) is of period 1 for

i = 1, 2, · · · .

15See [21], p. 147; [28], p.226.
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The points of M at which μo
i = λo

2i−1 or λo
2i for m ≤ n values of i = 1, · · · , n are points

of ramification of M over the cell

C =
n×

i=1

[λo
2i−1, λ

o
2i]

in which the nontrivial tied spectrum lies. M is a 2n-sheeted covering of C. The covering
group G = Z2 × . . .× Z2 (n-fold) is the group of changes of signature generated by

σipj = pj , j �= i,

σipi = (μo
i ,−

√
Δ2(μo

i − 4) i = 1, · · · , n,

σiq(ξ) = q(ξ) + 2
d2

dξ2
log

[
1 +

√
Δ2(μo

i )− 4

y•2(1, μo
i )

∫ ξ

0

y22(η, μ
o
i ) dη

]
;

see [28], p. 221. The map σ = σ1σ2 · · ·σn acts on q as σ q(x) = q(−x). As noted above,
q̄(x) = q(−x) and q(x) have the same tied spectrum, the tied eigenfunctions of q̄ being
−y2(−x, μi), i = 1, · · · , n. To identify q̄ with σq, it is enough to check that the norming
constants ∫ 1

0

y22(−x, μo
i ) dx = y′2(−1, μo

i )[−y•2(−1, μo
i )]

are the same as those for q

∫ 1

0

y22(x, μ
o
i ) dx = 1

2 [Δ(μo
i ) +

√
Δ2(μo

i )− 4]y•2(1, μ
o
i )

with the signatures of the radicals flipped. The y•2(1, μ
o
i ), i = 1, · · · , n, are the same by the

coincidence of the tied spectra, while

y′2(−1, μo
i ) =

1
2 [Δ(μo

i )−
√
Δ2(μo

i )− 4] = [y2(1, μ
o
i )]

−1

because y2(−1, μo
i ) = 0 and

y′2)(−1, μo
i )y

′
2(1, μ

o
i ) = y2(−1, μo

i )y
′
1(μ

o
i ) + y′2(−1, μo

i )y
′
2(1, μ

o
i )

= y′2(0, μi)

= 1.

AMPLIFICATION 3. μo
i = λo

2i−1, say, if and only if fo
2i−1(0) = 0. Now, under translation

of q, f2i−1 is also translated. Therefore, under translation thorough a full period 0 ≤ x ≤ 1, μo
i

hits λo
2i−1 as many times as fo

2i−1(x) = 0 has roots, namely mi times; clearly, μo
i hits λo

2i the
same number of times. This may be confirmed by Lemmas 5 and 7 which yield the formulas

−Δ•(λo
2i−1)[f

o
2i−1(x)]

2 = (μo
i − λo

2i−1)× a nonvanishing factor,

−Δ•(λo
2i)[f

o
2i(x)]

2 = (λo
2i − μo

i )× a nonvanishing factor.

The picture is clarified by the computation of V1μ
o
i , i = 1, · · · , n, V1 being

the infinitessimal translation q → q′. Let f(x) be the normalized eigenfunction
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[y•2(1, μ
o
i )y

′
2(1, μ

o
i )]

−1/2y2(x, μ
o
i ); then

V1μ
o
i =

∫ 1

0

f2q′ dx

=

∫ 1

0

f2L 1 dx

= 2qf2
∣∣∣1
0
− 1

2 (f
2)′′

∣∣∣1
0
−
∫ 1

0

Lf2 dx

= −(f ′)2
∣∣∣1
0
− 2μo

i

∫ 1

0

(f2)′ dx

=
1− [y′2(1, μ

o
i )]

2

y•2(1, μ
o
i ) y

′
2(1, μ

o
i )

= ±
√
Δ2(μo

i )− 4

y•2(1, μo
i )

.

Now y′2(1, μo
i ) is of one signature since it cannot vanish, and it is clear that when pi =

(μo
i ,
√
Δ2(μo

i )− 4) hits λo
2i−1 or λo

2i it passes thought with change of signature. The upshot is
that pi moves steadily about its little circle mi times, returning to its starting place at x = 1.

7.5. Interpolation Theorems

The purpose of this section is to prepare some interpolations theorems for integral func-
tions of order 1

2 and type at most 1. They will be in continual use below. Let νi, i = 0, 1, 2, · · · ,
be the reflecting spectrum of Q comprising the roots of y′1(1, ν) = 0, one from each of the
intervals of instability (−∞, λ0], [λ2i−1, λ2i], i = 1, 2, · · · , and let ν0 = 0 for ease of writing.16

Then

e(ω) = y1(1, ω
2) +

√−1

ω
y′1(1, ω

2)

is an integral function of order 1 and type 1 with no roots on the line.

LEMMA 1. |e(ω)| > |e(ω∗)| in the open upper half-plane.

Proof: Fix ω in the open upper half plane. Then

1
4 |e(ω)|2 − 1

4 |e(ω∗)|2 = imag
1

ω∗ y1(1, ω
2)y′∗1 (1, ω2)

= imag
1

ω∗

∫ 1

0

[y1(x, ω
2)y′∗1 (x, ω2)]′ dx

= imag
1

ω∗

∫ 1

0

[|y′1(x, ω2)|2 + q(x)|y1(x, ω2)|2] dx

−imag ω∗
∫ 1

0

|y1(x, ω2)|2 dx

> |ω|−2imag ω × inf

∫ 1

0

f∗Qf dx.

The infimum is computed for f ∈ C2[0, 1], say, with f ′(0) = f ′(1) = 0 and∫ 1

0

|f |2 dx =

∫ 1

0

|y1(x, ω2)|2 dx,

16If ν0 	= 0, replace y1(1, ω2) by y1(1, ω2 + ν0) and y′1(1, ω
2) by y′1(1, ω

2 + ν0).
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the value of the infimum being

0 =

∫ 1

0

|f |2dx × the lowest reflecting eigenvalue (ν0 = 0).

To spell it out, the final term

−imag ω∗
∫ 1

0

|y1|2 dx
is dropped causing a strict inequality. The remaining integral I can be approximated as closely
as you please by ∫ 1

0

(|f ′|2 + q|f |2) dx =

∫ 1

0

f∗Qf dx

with f as stated. This is done by choosing f ′ in C1[0, 1] vanishing near x = 0 and x = 1 with∫ 1

0

|f ′ − y′1|2 dx
small. Take

f(x) = 1 +

∫ x

0

f ′(y) dy.

Then I is well-approximated by ∫ 1

0

f∗Qf dx

and is therefore larger than

inf

∫ 1

0

f∗Qf dx.

The proof is finished.

The function e is now use to define a class B of integral functions f with

(a) B[f, f ] =
1

π

∫ ∞

−∞
|f/e|2 dω < ∞,

(b) |f(ω)|2 ≤ a constant multiple of | imag ω|−1 × |e(ω)|2,
and you prove that

1α(β) =
e∗(α)e(β) − e(α∗)e∗(β∗)

−2
√−1(β − α∗)

belongs to B for each complex number α and that17 and to verify that B is a Hilbert space;
see De Branges [4] for such matters.

Now let A be the Hilbert space of functions f defined on · · ·−√
ν1, 0 =

√
ν0,

√
ν1,

√
ν2, · · ·

with

A[f, f ] = 1
2

∞∑
i=1

�−2
i |f(−√

νi)|2 + �−2
0 |f(0)|2 + 1

2

∞∑
i=1

�−2
i |f(√νi)|2 < ∞,

�i =

∫ 1

0

y21(x, νi) dx = −y1(1, νi)y
′•
1 (1, νi), i = 0, 1, 2, · · · .

LEMMA 2. The restriction map

f → · · · , f(−√
ν1), f(0), f(

√
ν1), f(

√
ν2), · · ·

is an isomorphism of B upon A, inner products and all, inverted by18 f(ω) = A[f,1ω].

17B[f,1ω ] is the inner product (1/π)
∫
f 1∗

ω|e|−1.
18A[f,1ω] is the inner product of A.
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Proof: The functions 1ω span B because f(ω) = B[f,1ω] cannot vanish identically if
f �= 0. Besides, the restrictions of these functions also span A: for α = ±√

νi and β =
±√

νi, 1α(β) = −(β − α)−1y1(1, α
2)y′1(1, β

2) vanishes for β �= α, while for β = α, it assumes
the value �20 if i = 0 and the value 2�2i if i �= 0. It remains to prove that A[1α,1β] = B[1α,1β].
To begin with,

A[1α,1β] = �−2
0 1α(0)1

∗
β(0) +

1
2

∞∑
i=1

�−2
i [1α(−√

νi)1
∗
β(−

√
νi) + 1α(

√
νi)1

∗
β(
√
νi)]

=
y′∗1 (1, α2)y′1(1, β

2)

α∗β

∞∑
i=0

�−2
i y21(1, νi)

α∗β + νi
(α∗2 − νi)(β2 − νi)

by substitution of

1ω(±√
νi) = −y1(1, νi)y

′∗
1 (1, ω2)

ω∗(ω∗ ±√
νi)

.

The sum is now computed by means of the identity

∞∑
i=0

�−2
i (ω2 − νi)

−1y1(ξ, νi)y1(η, νi)= y1(ξ, ω
2)
y′
2(1, ω

2)y1(η, ω
2)− y′

1(1, ω
2)y2(η, ω

2)

−y′
1(1, ω

2)

valid for 0 ≤ ξ, η ≤ 1, which you recognize to be the expansion in terms of the unit perpen-
dicular eigenfunctions �−1

i y1(x, νi), i = 0, 1, 2, · · · , of the Green function of ω2 − Q acting
on the class of functions f ∈ C2[0, 1] with f ′(0) = f ′(1) = 0. The identity is employed for
ξ = η = 1, only: it reads

∞∑
i=0

�−2
i (ω2 − νi)y

2
1(1, νi) = −y1(1, ω

2)

y′1(1, ω2)
,

the upshot being that

A[1α,1β] =
y′∗1 (1, α2)y′1(1, β

2)

α∗β

[ −β

α∗ − β

y∗1(1, α
2)

y′1(1, α2)
+

α∗

α∗ − β

y1(1, β
2)

y′1(1, β2)

]

=
1

α∗ − β

[
y∗1(1, α

2)
y′1(1, β

2)

β
− y′1(1, α

2)

α∗ y1(1, β
2)

]

=
e∗(α)e(β) − e(α∗)e∗(β∗)

2
√−1(β − α∗)

= 1α(β)

= B[1α,1β ],

as required.

LEMMA 3. A may be identified as the space of functions f defined on ±√
νi, i =

0, 1, 2, · · · , with ∑ |f(±√
νi)|2 < ∞, the sum being comparable19 to A[f, f ]. B may be iden-

tified as the space of integral functions f of order 1 and type at most 1 with∫ ∞

−∞
|f |2 dω < ∞,

the integral being comparable to B[f, f ].

Proof: The statement about A is self-evident from the estimate

�2i =

∫ 1

0

y21(x, νi) dx =

∫ 1

0

cos2
√
νix dx + o(1) = 1

2 + o(1).

19The adjective comparable signifies that
∑ |f(±√

νi)|2 is bounded above and below by positive multiples
of A[f, f ], independent of f ∈ A. The meaning is similar for B.
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As to B, the fact that
∫ |f |2 is comparable to B[f, f ] =

∫ |f/e|2 is immediate from the
estimate

|e(ω)|2 = y21(1, ω
2) + ω−2[y′1(1, ω

2)]2 = cos2 ω + sin2 ω + o(1) = 1 + o(1)

for large real ω. Let I be the class of integral functions of order 1 and type at most 1 with∫ |f |2 < ∞. Then 1ω ∈ I by inspection and B ⊂ I follows by comparability of
∫ |f |2 and

B[f, f ] and by the fact that I is closed in L2(R1). The opposite inclusion is only a little less
transparent. To begin with, f ∈ I can be expressed as

f(ω) = (2π)−1/2

∫ 1

−1

e−
√−1ωxf̂(x) dx

by the Paley-Wiener theorem; hence

|f(ω)|2 ≤ 1

2π

∫ 1

−1

|f̂(x)|2 dx
∫ 1

−1

e2bx dx = O(b−1 sinh 2b)

for b = imag ω. The proof that f ∈ B is now achieved by confirming (a) that
∫ |f/e|2 < ∞

and (b) that |f(ω)|2 ≤ a constant multiple of |b|−1|e(ω)| for b > 0, say. (a) is trivial, while
(b) follows from the appraisal |e(ω)|−1 ≤ O(eb) for ω → ∞ in the upper half-plane. To begin
with, |e(ω)| > |e(ω∗)| in the upper half-plane implies |e(ω)| is increasing on vertical lines
ω = a +

√−1b, 0 ≤ b < ∞. Therefore, |e(ω)|−1 is bounded in the closed upper half-plane.
Besides,

|e(√−1b)| = y1(1,−b2) + b−1y′1(1,−b2) ∼ eb as b ↑ ∞.

The proof is finished by a self-evident application of the Phragmén-Lindelöf principle to the
function exp{−√−1ω}[e(ω)]−1 in the sector [0, 12π] and [ 12π, π].

The results obtained to date are now applied to the class I−1/2 of integral functions φ of
order 1

2 and type at most 1 with

‖φ‖2−1/2 =

∫ ∞

0

|φ(ν)|2ν−1/2 dν < ∞.

Let I−1/2∗ be the space of functions φ defined for ν = νi, i = 0, 1, 2, · · · , with

‖φ‖2−1/2∗ =

∞∑
i=0

|φ(νi)|2 < ∞.

THEOREM 1. The restriction φ → φ(νi), i = −0, 1, 2, · · · , is a 1:1 map of I−1/2 onto
I−1/2∗, the sum ‖φ‖2−1/2∗ being comparable to the integral ‖φ‖2−1/2. Moreover, φ may be

recovered from its restriction by means of the interpolation formula20

φ(ν) =

∞∑
i=0

φ(νi)y
′
1(1, ν)

y′•1 (1, νi)(ν − νi)
=

∞∑
i=0

φ(νi)
∏
j 	=i

1− ν/νj
1− νi/νj

.

Proof: The functions f(ω) = φ(ω2) with φ ∈ I−1/2 fill up the even part of B, by Lemma 3.
The rest is immediate from Lemma 2; especially, the interpolation formula is just a spelling

20νi 	= 0, i = 0, 1, 2, · · · , is now assumed for ease of writing.
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out of f(ω) = A[f,1ω] for ω
2 = ν:

φ(ν) = A[f,1ω]

=
∞∑
i=0

�−2
i φ(νi)

1
2 [1

∗
ω(−

√
νi) + 1∗

ω(
√
νi)]

=

∞∑
i=0

φ(νi)y
′
1(1, ν)

y′•1 (1, νi)(ν − νi)

=

∞∑
i=0

φ(νi)
∏
j 	=i

1− ν/νj
1− νi/νj

.

The last line employs the canonical product for y′1(1, ν) in terms of its roots νi, i = 0, 1, 2, · · · .
A couple of similar results concerning interpolation off the tied spectrum μi, i = 1, 2, · · · ,

are developed for future use. Let I1/2 be the class of integral functions of order 1
2 and type

at most 1 with

‖φ‖21/2 =

∫ ∞

0

|φ(μ)|2μ1/2 dμ < ∞,

and let I1/2∗ be the class of functions φ defined for μ = μi, i = 1, 2, · · · , with

‖φ‖21/2∗ =

∞∑
i=1

|φ(μi)|2i2 < ∞.

THEOREM 2. The restriction φ → φ(μi), i = 1, 2, · · · , is a 1:1 map of I1/2 onto I1/2∗,
the sum ‖φ‖21/2∗ being comparable to the integral ‖φ‖21/2. Morever, φ may be recovered from

the restriction by means of the interpolation formula21

φ(μ) =

∞∑
i=1

φ(μi)y2(1, μ)

y•2(1, μi)(μ− μi)
=

∞∑
i=1

φ(μi)
∏
j 	=i

1− μ/μj

1− μi/μj
.

Proof: The proof is similar to that of Theorem 1, employing

e(ω) = y′2(1, ω
2)−√−1ω y2(1, ω

2)

in place of the previous function of that name. The details may be left to the reader.

THEOREM 3. The same interpolation formula applies to the class I3/2 of integral func-
tions φ of order 1

2 and type at most 1 with

‖φ‖23/2 =

∫ ∞

0

|φ(μ)|2μ3/2 dμ < ∞.

The map φ → φ(μi), i = 1, 2, · · · , is now a 1:1 application of I3/2 onto the class I3/2∗ of
restricted functions with

‖φ‖23/2∗ =

∞∑
i=1

φ(μi)|i4 < ∞,

the latter being comparable to the integral ‖φ‖23/2.
Proof: The functions f(ω) = ω φ(ω2) with φ ∈ I3/2 fill up the odd part of the space B

associated with the current function e.

21μi 	= 0, i = 1, 2, · · · , for ease of writing.
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7.6. A Remarkable Identity

A number of consequences of the application of Theorem 5.1 to the gradient of Δ are
derived below, both for their own interest and for future use. The chief result is the remarkable
identity embodied in Proposition 2; it will have numerous consequences below.

USAGE. νi = λ2i, i = 0, 1, 2, · · · , at the origin of M ; in fact, q(x) = q(−x) at the
origin (Amplification 4.2), so y1(x, νi) is even, y1(−1, νi) = y1(1, νi), y

′
1(−1, νi) = 0, and

consequently

y1(2, νi) = y1(−1, νi)y1(1, νi) + y′1(−1, νi)y2(1, νi) = y1(0, νi) = 1,

y′1(2, νi) = y1(1, νi)y
′
1(1, νi) + y′1(1, νi)y

′
2(1, νi) = 0.

Therefore, y1(x, νi) is of period 2, which is to say νi = λ0 if i = 0 and νi = λ2i−1 or λ2i of
i ≥ 1. The final step is to note that μo

i and νoi cannot sit at the same end of their interval of
instability, λo

2i−1 and λo
2i being simple periodic eigenvalues. The moral is that Theorem 4.1

may be used with νi = λ2i, i = 0, 1, 2, · · · . The function y′1(1, λ) employed below is computed
for that circumstance, regardless of the actual position of q ∈ M ; such abuses of notation will
be noted specifically every time they occur.

PROPOSITION 1.

∂Δ(λ)

∂q(x)
=

n∑
i=0

y′1(1, λ)
y′•1 (1, λo

2i) (λ− λo
2i)

×−Δ•(λo
2i)[f

o
2i(x)]

2.

Proof: Fix 0 ≤ x < 1. Then ∂Δ(λ)/∂q(x) is of class I−1/2 by Lemma 3.5 and the estimate
y2(1, λ) = O(λ−1/2) for λ ↑ ∞. The formula follows by interpolation off λ2i, i = 0, 1, 2, · · · ,
and by the evaluation ∂Δ(λ2i)/∂q = −Δ•(λ2i)f

2
2i of Lemma 3.7.

LEMMA 1.

εi ≡ Δ•(λo
2i)

y′•1 (1, λo
2i)

= o(λo
2i − λo

2i−1) as i ↑ ∞.

AMPLIFICATION 1. Hochstadt [12] proved that λ2i − λ2i−1 is of rapid decrease22 as
i ↑ ∞ if q ∈ C∞

1 , and thus the same is true of εi; see Amplification 3 below for the converse
of Hochstadt’s therem.

Proof: Let y2(1, λ) be computed for the point of M with the non-trivial tied spectrum
μo
i = λ•

i , i = 1, · · · , n, so that Δ•(λ) is a constant multiple of y2(1, λ). Then εi is a constant
multiple of

y2(1, λ
o
2i)

−y′•1 (1, λ
o
2i)

=
(λo

2i − λ•
1)y

•
2(1, λ)y1(1, λ

o
2i)

−y1(1, λo
2i)y

′•
1 (1, λo

2i)

for some intermediate λ ∈ [λ•
i , λ

o
2i]. Now −y1(1, λ

o
2i)y

′•
1 (1, λo

2i) is a norming constant of the
form ∫ 1

0

y21(x, λ
o
2i) dx =

∫ 1

0

cos2
√
λo
2ix dx+ o(1) = 1

2 + o(1),

while y1(1, λ
o
2i) = ±1 according to whether Δ(λo

2i) = −2 or +2 and y•2(1, λ) = O(1/λ). The
whole quantity is therefore o(λo

2i − λ•
i ). The proof is finished.

PROPOSITION 2. 1 =
∑∞

i=0 εi[f
o
2i(x)]

2; in particular, 1 =
∑n

i=0 εi.

AMPLIFICATION 2. The statement is that for any 0 ≤ x < 1, the point

[fo
0 (x), f

o
2 (x), · · · , fo

2n(x)] ∈ R
n+1 lies on the ellipsoid with semi-axes ε

−1/2
i , i = 1, · · · , n. The

geometrical meaning of this fact is unclear to us. The derived identity 0 =
∑n

i=1 εiD(fo
2i)

2

may be viewed as a dependency upon M between the vector fields Xi : q → D∂Δ(λo
2i)/∂q,

22Rapid decrease means that λ2i − λ2i−1 = O(i−p) as i ↑ ∞ for every p = 1, 2, · · · .
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i = 0, · · · , n, and it is the only such dependency, as will appear in Section 8; for n < ∞, it
reduces to a differential equation for q, as in [11, 22], or [27].

Proof: The first identity follows from Proposition 1 upon letting λ ↓ −∞, indeed,
∂Δ(λ)/∂q ∼ λ−1/2 sin

√
λ by Lemma 3.5 and y′1(1, λ) ∼ −√

λ sin
√
λ; hence

1 ∼ −λ
∂Δ/∂q

y′1(1, λ)
=

n∑
i=0

λ

λ− λo
2i

εi(f
o
2i)

2 ∼
n∑

i=0

εi(f2i)
2,

making use of Lemma 1 and the elementary estimates

fo
2i(x) = aiy1(x, λ

o
2i) + bi

√
λo
2iy2(x, λ

o
2i)

= ai cos
√
λo
2ix+ bi sin

√
λo
2i + o(1),

1 =

∫ 1

0

|fo
2i|2 dx = 1

2 (a
2
i + b2i )[1 + o(1)] + o(

√
a2i + b2i ) + o(1),

|fo
2i(x)| ≤

√
a2i + b2i + o(1) = O(1)

in order to deal with the sum.

PROPOSITION 3. Fix m = 0, 1, 2, · · · . Then
∂Hm

∂q
=

n∑
i=0

εipn(λ
o
2i)[f

o
2i(x)]

2

with a polynomial pn of precise degree n depending upon M but not upon q.

Proof: The case n = 0 is covered by Proposition 2. For λ = λo
2i and f = fo

2i,

f(ξ) = f(0) cos
√
λξ + f ′(0)

sin
√
λξ√
λ

+

∫ ξ

0

sin
√
λ(ξ − η)√
λ

q(η)f(η) dη,

from which you may derive |Dmf(x)| = O(λm/2), uniformly in 0 ≤ x < 1, for m = 1, 2, · · · ,
starting from the case m = 0 established in the proof of Proposition 2. This permits you to
apply L = qD +Dq − 1

2D
3 to the identity 1 =

∑
εi(f

o
2i)

2 of proposition 2:

Dq = L1 =

n∑
i=0

εiL(f
o
2i)

2 =

n∑
i=0

εi2λ
o
2iD(fo

2i)
2,

and this may be integrated with respect to x to obtain

q =

n∑
i=0

εi2λ
o
2i(f

o
2i)

2 + a constant of integration.

The stated identity for m = 1 is now before you: the left-hand side is just ∂H1/∂q and the
constant of integration can be incorporated into the sum by means of 1 =

∑
εi(f

o
2i)

2. The
procedure can be repeated. L may be applied to the identity for m = 1:

D
∂H2

∂q
= L

∂H1

∂q
=

n∑
i=0

εip1(λ
o
2i)2λ

o
2iD(fo

2i)
2,

and you can integrate back and incorporate the constant of integration to get the identity for
m = 2. The proof is finished by induction, using the recursion L∂Hm−1/∂q = D∂Hm/∂q at
the m-th stage.

AMPLIFICATION 3. Hochstadt [12] proved the rapid decrease of λ2i−λ2i−1 for q ∈ C∞
1

as noted in Amplification 1. Now the formula of Proposition 2 and its derivation are valid if
q ∈ L2

1 and λ2i − λ2i−1 is rapidly decreasing. This remark may be used to prove the converse
of Hochstadt’s theorem. If q ∈ L2

1 and if λ2i − λ2i−1 is rapidly decreasing, then q ∈ C∞
1 . The
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first step is to deduce from 1 =
∑

εi(f
o
2i)

2 that q can be expressed as q =
∑

εi2λ
o
2i(f

o
2i)

2 + c,
as in Proposition 3. Fix ψ ∈ C∞

1 . Then∫ 1

0

2λo
2i(f

o
2i)

2Dψ dx =

∫ 1

0

(fo
2i)

2(qD − 1
2D

3)ψ dx−
∫ 1

0

qψD(fo
2i)

2 dx

by approximation of q ∈ L2
1 by functions from C∞

1 . Now multiply by εi and sum to obtain∫ 1

0

∑
εi2λ

o
2i(f

o
2i)

2Dψ dx =

∫ 1

0

∑
εi(f

o
2i)

2(qD − 1
2D

3)ψ dx

−
∫ 1

0

qψ
∑

εiD(fo
2i)

2 dx

=

∫ 1

0

(qD − 1
2D

3)ψ dx

=

∫ 1

0

qDψ dx.

The interchange of sums and integrals is justified by the elementary estimates (fo
2i)

2 =
O(1), D(fo

2i)
2 = O(i) and by the rapid decrease of εi. The disappearance of the sum∑

εiD(fo
2i)

2 is a consequence of 1 =
∑

εi(f
o
2i)

2. Therefore q =
∑

εi2λ
o
2i(f2i)

2+c, and now you
may proceed inductively. The eigenfunctions fo

2i are of class C
1
2 or better with D(fo

2i)
2 = O(i)

uniformly in 0 ≤ x < 1, so q ∈ C1
2 , and if q ∈ Cm−2

1 for m ≥ 3, then fo
2i ∈ Cm

2 and
Dm(fo

2i)
2 = O(im) uniformly in 0 ≤ x < 1 as in the proof of Proposition 2. This permits the

sum for q to be differentiated twice more, so q ∈ Cm
2 , and the result follows.

7.7. Reflecting Spectrum

The interpolation theorems of Section 5 permits a full discussion of the reflecting spectrum
νi, i = 0, 1, 2, · · · , comprising the roots of y′1(1, ν) = 0, parallel to the discussion of the tied
spectrum in Section 4. Borg [2] proved that νi, i = 0, 1, 2, · · · , together with the norming
constants ∫ 1

0

y21(x, νi) dx = −y1(1, νi)y
′•
1 (1, νi)

determining q uniquely. Let the non-trivial eigenvalues νoi , i = 0, 1, · · · , n, be fixed. The rest
of the reflecting spectrum is already known from the double periodic spectrum; hence y′•1 (1, νi)
is known, and the remaining part of the i-th norming constant can be determined by solving
Δ(νi) = y1(1, νi) + [y1(1, νi)]

−1 for

y1(1, νi) =
1
2 [Δ(νi)±

√
Δ2(νi)− 4],

up to signature of the radical. The latter represents a bonafide ambiguity only if λ2i−1 < νi <
λ2i if i ≥ 1 or ν0 < λ0 if i = 0, suggesting a picture of M as a product of a line and a circle,
as in Fig. 7.6 drawn for n < ∞. Figure 7.6 appears to contradict Figs. 7.2 and 7.4; in fact,
the line arising from (−∞, λ0] is superfluous. The suspicion that ν0 is anomalous introduces
itself upon noting that ν0 ≥ min0≤x<1 q(x).

LEMMA 1. ν0 and the signature of
√

Δ2(ν0)− 4 are already determined by νi and the

signature of
√
Δ2(νi)− 4, i = 1, 2, · · · .

Proof: The method of Propositions 6.1 and 6.2 can be used to prove that

1 =

∞∑
i=0

Δ•(νi)[y′•1 (1, νi)]
−1,
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Figure 7.6.

in which νi, i = 0, 1, 2, · · · , and y′1(1, ν) are computed for the actual point q ∈ M in hand;
you have only to perform the interpolation of ∂Δ/∂q off νi, i = 0, 1, 2, · · · , instead of λ2i, i =
0, 1, 2, · · · . This is a relation between ν0 and νi, i = 1, 2, · · · . To spell it out,

1 =
Δ•(ν0)∏

j 	=0(1− ν0/νj)(−1/ν0)
+

∞∑
i=1

Δ•(νi)∏
j 	=i,0(1− νi/νj)(−1/νi)(1 − νi/ν0)

,

the right-hand side being a known function φ(ν0) of ν0 if the νi, i = 1, 2, · · · , are known. The
function φ(λ) may be computed by means of Theorem 7.5.1: Δ•(λ) is of the form y2(1, λ) ∈
I−1/2, the roots of Δ•(λ) = 0 being the tied spectrum of some point of M , so Δ•(λ) may be
interpolated off νi, i = 0, 1, 2, · · · , and you have

∞∑
i=1

Δ•(νi)

⎡
⎣ ∏
j 	=i,0

(
1− νi

νj

)(
− 1

νi

)(
1− νi

λ

)⎤⎦
−1

=

∞∑
n=1

Δ•(νi)
1 − (νi/ν0)

y′•1 (1, νi)

λ

λ− νi

=
λ

ν0

∞∑
i=0

Δ•(νi)
y′•1 (1, νi)

[
1− λ− ν0

λ− νi

]

=
λ

ν0

[
1− (λ− ν0)

Δ•(λ)
y′1(1, λ)

]

from which you deduce

φ(λ) =
λ

ν0
+

1− (λ/ν0)

1/λ

Δ•(λ)
y′1(1, λ)

+
1− (λ/ν0)

−1/λ

Δ•(λ)
y′1(1, λ)

=
λ

ν0
.

Thus, φ(λ) = 1 only if λ = ν0, which is thereby determined from νi, i = 1, 2, · · · . It remains

to prove that the signature of
√
Δ2(ν0)− 4 is also determined by νi,√

Δ2(νi)− 4, i = 1, 2, · · · . Let the latter be fixed and let y−1 (1, λ) and y+1 (1, λ) be the two

determinations of y1(1, λ) corresponding to the two possible signatures of
√
Δ2(ν0)− 4. Then

φ(λ) = y+1 (1, λ) − y−1 (1, λ) is of class I1/2 being O(1/λ) for λ ↑ ∞, it vanishes at νi, i =

1, 2, · · · , because y+1 (1, νi) = y−1 (1, νi) = 1
2 [Δ(νi) ±

√
Δ2(νi)− 4] is determined, and the

conclusion is that φ(λ) = 0 by Theorem 5.2, νi, i = 1, 2, · · · , being the tied spectrum of a
point of M . In particular, y−1 (1, ν0) = y+1 (1, ν0) which is to say that the change of signature

in
√
Δ2(ν0)− 4 was illusory. The proof is finished.

THEOREM 1. M is topologically equivalent to the product of the n ≤ ∞ circles depicted
in Fig. 7.6.

Proof: The present state of affairs is that you have a 1:1 map of M into the torus
formed by the n circles of Fig. 7.6; it is required ti prove that the map is onto. Pick a point



7.7. REFLECTING SPECTRUM 105

pi = (νoi ,
√
Δ2(νoi − 4)), i = 1, 2, · · · , n, of the image. Then if νoi = λo

2i−1, say, you will

have (fo
2i−1)

′
(0) = 0, and a small translation of q will break all such equalities, keeping

q on M . The moral is that every point of the image is close to image points in general
position [λo

2i−1 < νoi < λo
2i, i = 1, 2, · · · , n]. Now let Xi : q → D∂Δ(λ)/∂q evaluated at

λ = μo
i , i = 1, 2, · · · , n, as in Section 4. Then

Xiν
o
j =

1

2
×
√
Δ2(νoi )− 4

−y′•1 (1, νoj )

y′1(1, μ
o
i )

μi − νoj
, i, j = 1, 2, · · · ,

much as in Lemma 4.1, so detXiν
o
j , 1 ≤ i, j ≤ m, cannot vanish while νoi , i = 1, · · · ,m, is

in general position for any m ≤ n if n < ∞, respectively m < ∞ if n = ∞, and it follows
from the compactness of M that its image is a sum of closed sheets of the torus, picturing the
latter as a 2n-sheeted covering in the cell C =×n

i=1
[λo

2i−1, λ
o
2i] with sheets distinguished by

the signatures of the radicals
√
Δ2(νoi )− 4, i = 1, 2, · · · , n; compare Amplification 4.2. The

final step is to prove that every sheet appears in the image, i.e., that the covering map σi

of M over C which fixes the signature of
√
Δ2(νoj )− 4, j �= i, and reverses the signature of√

Δ2(νoi )− 4 is a bonafide automorphism of M . This may be done in the manner of Faddeev
[8]. The procedure will be outlined; compare Amplification 4.2. To begin with, σi would have

to flip the signature of
√
Δ2(ν0)− 4; in fact, the difference φ(λ) ∈ I1/2 of the functions

y1(1, λ) for q and for σiq could be interpolated off νj , j = 1, 2, · · · , producing a relation

between φ(νoi ) and φ(ν0) which forces the signature of
√
Δ2(ν0)− 4 to flip with the signature

of
√
Δ2(νoi )− 4. Let Aj , respectively Bj , stand for the reciprocal of

∫ 1

0 y21(x, νj) dx evaluated
at σiq, respectively q, Introduce the kernel

L(ξ, η) =

∞∑
j=0

y1(ξ, νj)y1(η, νj)× (Aj −Bj)

= y1(ξ, ν0)y1(η, ν0)×
√
Δ2(ν0)− 4

−y′•1 (1, ν0)

+y1(ξ, νi)y1(η, ν
o
i )×

√
Δ2(νoi )− 4

−y′•1 (1, νoi )
.

Now solve K + KL + L (η ≤ ξ) for the triangular kernel K(ξ, η) vanishing for ξ < η and
expressed for ξ ≥ η by

K(ξ, η) =

⎡
⎣
√

Δ2(νo
i )−4

y′•
1 (1,νo

i )
y1(ξ, ν

o
i )√

Δ2(ν0)−4

y′•
1 (1,ν0)

y1(ξ, ν0)

⎤
⎦

[
k11 k21
k12 k22

]

(k11k22 − k12k21)

[
y1(η, ν

o
i )

y1(η, ν0)

]

with

k11 = 1−
√

Δ2(ν0)− 4

y′•1 (1, ν0)

∫ ξ

0

y21(x, ν0) dx,

k12 =

√
Δ2(νoi )− 4

y′•1 (1, νoi )

∫ ξ

0

y1(x, ν0)y1(x, ν
o
i ) dx,

k21 =

√
Δ2(ν0)− 4

y′•1 (1, ν0)

∫ ξ

0

y1(x, ν0)y1(x, ν
o
i ) dx,

k22 = 1−
√

Δ2(νoi )− 4

y′•1 (1, νoi )

∫ ξ

0

y21(x, ν
o
i ) dx.
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Then you can check (with tears) that the function

σiq(x) = q(x) − 2
d

dx
K(x, x) = q(x) +

d2

dx2
log(k11k22 − k12k21)

belongs to M and has reflecting spectrum νi, i = 0, 1, 2, · · · , with the same signatures for

the radicals
√
Δ2(νoj )− 4, j = 1, · · · , n, as for q except that the signature of

√
Δ2(νoi )− 4 is

flipped. The computations are too lengthy to reproduce here, but do not offer any difficulty.
M is now seen to map onto the torus. The fact that the map is topological is self-evident.

AMPLIFICATION 1. The reflecting spectrum is in special position ν0 = λ0, νi = λ2i−1 or
λ2i, i = 1, 2, · · · , , if and only if q(x) = q(−x), just as for the tied spectrum; see Amplification
4.2. The proof is similar. Notice that if νoi sits at one end of [λo

2i−1, λ
o
2i], i = 1, · · · , n, then

μo
i sits at the other end, λo

2i−1 and λo
2i being simple eigenvalues. The map σ : q(x) → q(−x)

is the product of the sheet maps σi, i = 1, 2, · · · , n, as before.

7.8. Normal and Tangent Spaces: Formal Discussion

So far nothing has been made of the fact that M sits inside the Euclidean space L2
1.

It turns out that the geometry of M is clarified by this point of view. For example, the
normal and tangent spaces can be calculated. A formal account is given here, the proofs
being postponed until Sections 9 and 13.

As a start, it is not hard to see that M is an (n ≤ ∞)-dimensional analytic variety in L2
1.

For if q0 ∈ C∞
1 is fixed and λi(q0), i = 0, 1, 2, · · · , is its periodic spectrum, then the space M

in which q0 lies is the variety comprising the common roots q in L2
1 of the analytic relations

2× (−1)i = Δ(λ2i(q0)), i = 0, 1, 2, · · · .

Proof: The analyticity of Δ(λ2i(q0)) qua function of q is clear, since the numbers
λ2i(q0), i = 0, 1, 2, · · · , are fixed; see Amplification 3.4. Now let Δ(λ) be computed for q ∈ L2

1

and let it satisfy the stated relations. Then [λ − λ0(q)]
−1[Δ(λ) − 2] is in I1/2 and so can be

interpolated off its known values [λ2i(q0)−λ0(q0)]
−1× (−4 or 0) at λ = λ2i(q0), i = 1, 2, · · · .

The same is true of the discriminant of q0, so the two coincide. Therefore q and q0 have the
same periodic spectrum. Finally, q is in C∞

1 by the result of Amplification 6.3.
Now a finite-dimensional variety defined by smooth relations ri(x) = 0, i = 1, · · · , c,

the gradients ∂ri/∂x are normal vectors, and provided they are everywhere independent,
the variety is smooth. By analogy, the gradients ∂Δ(λ2i)/∂q = −Δ•(λ2i)f

2
2i, i = 0, 1, · · · ,

ought to be normal vector fields on M . So far so good. But the gradient ∂Δ(λ2i)/∂q vanishes
identically when λ2i is double, so the relations may not determine the normal space even
though they do determine M . Therefore we seek a new set of relations with nowhere vanishing
gradients. These will account for all normal directions since now there cannot be more normals
than defining relations. Naturally, we would like the new relations and their gradients to be
independent.

Now the eigenvalue λ2i is double only if

(a) (−1)i = y1(1, λ2i), 0 = y′1(1, λ2i),

(b) 0 = y2(1, λ2i), (−1)i = y′2(1, λ2i).

In fact, y1y
′
2 = 1, and y1 = (−1)i = y′2 follows from y1 + y′2 = 2× (−1)i. On the other hand,

either (a) or (b) implies Δ(λ2i) = 2× (−1)i. Therefore, M can be presented as the variety of
common roots of the analytic relations

2× (−1)i = Δ(λ2i(q0)) when λ2i(q0) is simple,
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supplemented by

(−1)i = y1(1, λ2i(q0))

0 = y′1(1, λ2i(q0))

}
when λ2i(q0) is double

The choice of the supplementary relations (a) is a matter of taste. The relations (b) would
do just as well. Clearly, none of the relations may be omitted since the interpolation of
[λ − λ0(q)]

−1[Δ(λ) − 2] requires the use of every λ2i, i = 1, 2, · · · , and both y1(1, λ2i) =
(−1)i, y′1(1, λ2i) = 0 are necessary to recover Δ(λ2i) = 2 · (−1)i. Therefore, the relations
ought to be independent and their non-vanishing gradients:

∂Δ

∂q
(λ2i) = −Δ•(λ2i)f

2
2i when λ2i is simple,

∂y1

∂q (1, λ2i) = −y1(1, λ2i)y1(x, λ2i)y2(x, λ2i)

∂y′
1

∂q (1, λ2i) = y′2(1, λ2i)y
2
1(x, λ2i)

⎫⎬
⎭ when λ2i is double.

ought to be independent normal vectors. Now for any double eigenvalue λ2i = λ2i−1, the
gradients of the relations (b):

∂y2
∂q

(1, λ2i) = −y1(1, λ2i)y
2
2(x, λ2i),

∂y′2
∂q

(1, λ2i) = y′2(1, λ2i)y1(x, λ2i)y2(x, λ2i)

should also be normal, so that the 3-dimensional null-space of L − 2λ2iD, spanned by
f2
2i−1, f2i−1f2i and f2

2i, is normal to M . But three normal vectors is one too many; indeed,

f2
2i−1 + f2

2i already lies in the span of (fo
2i)

2, i = 0, 1, · · · , n, in view of Proposition 6.1 and
the evaluation

f2
2i + f2

2i−1 = lim
λ→λ2i

(λ− λ2i)2Δ(λ)[4 −Δ2(λ)]−1 ∂Δ(q)

∂q
,

which follows from Lemma 3.8. Thus, we ought to keep the product f2i−1f2i and only one of
the pairs f2

2i−1, f
2
2i. The discussion of the normal space is finished for now.

The next topic is the tangent space. It was shown in Section 3 that the flows

∂q

∂t
= D

∂Δ

∂q
(λo

2i) = −Δ•(λo
2i)D(fo

2i)
2 ≡ Xiq, i = 0, 1, · · · , n,

preserve M . Thus the X ’s should be tangent fields. By Amplification 6.2,

0 =

n∑
i=0

εiD(f2i)
2;

X0 may be omitted. A formal dimension count now shows that you have as many normal
as tangent directions as the dimension of the ambient space L2

1. The X ’s span a tangent
space of dimension n while the dimension of the proposed normal space is n + 1 + (2 ×
the number of double eigenvalues) for a total count of

(2n+ 1 = the number of simple eigenvalues)

+ (2× the number of double eigenvalues).

The precise theorem may now be stated.

THEOREM 1. Let T be the span in L2
1 of D(f2i)

2, i = 1, · · · , n, and let N be the span of
(fo

2i)
2, i = 0, 1, 2, · · · , n, supplemented by the span of 23 (f×

2i−1)
2 and f×

2i−1f
×
2i for such double

23f×
2i−1, f

×
2i is the i-th pair of double eigenfunctions.
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eigenvalues as may exist. Then (i) N and T are perpendicular, (ii) N ⊕T = L2
1, (iii) the unit

function 1 belongs to N , while the functions

F :
√
2[f2

2i − 1],
√
2[(f×

2i)
2 − 1], −23/2f×

2i−1f
×
2i , −

√
2(πi)−1fo

2i(f
o
2i)

′

form an oblique base to the annihilator 1◦ of the unit function, meaning that any function in
1◦ can be uniquely written as f =

∑
ciFi, the length√∫ 1

0

|f(x)|2 dx

being comparable to
√∑

c2j .

AMPLIFICATION 1. The geometry is most transparent if the periodic spectrum is
purely simple. The normal space is the span of the gradients ∂Δ(λ2i)/∂q = −Δ•(λ2i)f

2
2i, i =

0, 1, · · · , of the defining relations 2× (−1)i = Δ(λ2i), i = 0, 1, · · · , and the skew-symmetric

operator D carries it onto the tangent space T = span f2if
′
2i, i = 1, 2, · · · , annihilating the

extra function 1. This state of affairs may be thought as a symplectic structure as explained
in Section 2. The fact that dimM = ∞ while dimN = ∞ + 1 reflects the one-dimensional
degeneracy of the Poisson bracket ∫ 1

0

∂F

∂q
D
∂G

∂q
dx;

in classical symplectic geometry the Poisson bracket is always non-degenerate.

AMPLIFICATION 2. Item (iii) of the theorem may be regarded as stating that M sits in
L2
1 without creases, to wit, the local splitting L2

1 = N ⊕T looks the same at every point of M .
In a finite-dimensional setting, you would say that M is nicely embedded in the ambient space.
This line of thought will be developed further in Section 13. The connection of T with flows
on M will be explained in Amplification 14.1 in which it is proved for simple spectrum that (a)
every vector Xq ∈ T can be uniquely written as

∑∞
j=1 xjXjq with Xjq = −Δ•(λ2j)Df2

2j , j =
1, 2, · · · , and ∑

i2|Δ•(λ2i)|2x2
i

comparable to ∫ 1

0

|Xq|2 dx,
and (b) that for fixed x, the vector field X defines a continuous flow on M ; the same is
true for mixed spectrum, only it is a little more complicated to state, see Section 15 for more
information. More refined tangent spaces are introduced in Sections 11–14 in connection with
the Jacobi variety.

EXAMPLE 1. The simplest case of all is when q is constant. The lowest eigenfunction
f0 ≡ 1 is the only simple one, the tangent space evaporates, and the double eigenspaces
[sinπix, cosπix], i = 1, 2, 3, · · · , produce all the normal vectors perpendicular to the unit
function via the trigonometrical identities

2 sin2 πix = cos 2πix+ 1,

2 sinπix× cosπix = sin 2πix,

2 cos2 πix = cos 2πix+ 1.

EXAMPLE 2. The next simplest case (n = 1) is already quite complicated. Hochstadt
[13] proved that q = 2℘+ c, in which 3c = λo

0 + λo
1 + λo

2 and ℘ is the Weierstrassian elliptic
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functions with invariants e1 = −λo
2 + c, e2 = −λo

1 + c, e3 = −λo
0 + c, primitive real period

ω =
1

m
=

∫ λo
2

λo
1

dμ√
(μ− λo

0)(μ − λo
1)(λ

o
2 − μ)

,

and primitive imaginary period

√−1ω′ =
√−1

∫ λo
1

λo
0

dμ√
(μ− λo

0)(λ
o
1 − μ)(λo

2 − μ)
,

℘ being evaluated at x +
√−11

2ω
′, 0 ≤ x < 1. The simple eigenfunctions fo

0 , f
o
1 , f

o
2 are

constant multiples of the 3 Jacobi functions
√
℘− e3,

√
℘− e2,

√
℘− e1. The tangent space

is one-dimensional (c℘′, −∞ < c < ∞), the simple part of the normal space is two-dimensional
(a+ b℘, −∞ < a, b < ∞), and the rest of the normal space comes from the double spectrum.
The latter is determined by the formula of Hochstadt [13]

Δ(λ) = 2 cos

[
1

2

∫ λ

λ0

(μ− λo
1) dμ√

(μ− λo
0)(μ− λo

1)(μ− λo
2)

]

with

λ•
1 = m

∫ λo
2

λo
1

μ dμ√
(μ− λo

0)(μ− λo
1)(λ

o
2 − μ)

.

The perpendicular double eigenfunctions are√
2
λ×
2i + ℘(ξ)− 1

3c

λ×
2i − λ•

1

× sin
cos

[√
(λ×

2i − λo
0)(λ

×
2i − λo

1)(λ
×
2i − λo

2)

∫ ξ

0

dη

λ×
2i + ℘(η)− 1

2c

]
,

λ×
2i being the i-th double eigenvalue; see Amplification 3.3 and, for more information, [28],

p.238.

7.9. Normal and Tangent Spaces: Proofs

The informal discussion of Section 8 was made precise in Theorem 1. Here, for simplicity,
we prove the theorem for a purely imaginary spectrum; the proof in the presence of double
eigenvalues will be outlined. The method of proof goes back, in part, to Borg [2].

THEOREM 1. Let q ∈ C∞
1 have a purely simple spectrum, let N be the span of f2

2j , j =

0, 1, 2, · · · , and T be the span of Df2
2j, j = 1, 2, · · · . Then (i) N and T are perpendicular,

(ii) N ⊕ T = L2
1, and (iii) the unit function 1 belongs to N , while the functions

F :
√
2[f2

2j − 1], −
√
2(πj)−1f2jf

′
2j , j = 1, 2, · · · ,

form an oblique base for the space perpendicular to the unit function.

Proof: For any i = 0, 1, 2, · · · , f2
i (x) is of period 1; in fact, at a simple eigenvalue,

fi(x+1) = ±fi(x), the former being a solution of Qf = λif and so proportional to the latter.
Item (i) now follows from the skew-symmetry of the operator L = qD +Dq − 1

2D
3 and the

fact that Lf2
i = 2λiDf2

i . In detail,

2λ2i

∫ 1

0

f2
2iDf2

2j dx =

∫ 1

0

f2
2iLf

2
2j dx = −

∫ 1

0

f2
2jLf

2
2i dx

= −2λ2i

∫ 1

0

f2
2jDf2

2i dx = 2λ2i

∫ 1

0

f2
2iDf2

2j dx

and λ2i �= λ2j , so the integral must vanish.
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LEMMA 1. As j ↑ ∞,

f2j(x) =
√
2 cosπj(x+ φj) +O(1/j),

f ′
2j(x) = −√

2πj sinπj(x + φj) +O(1),

with suitable phases 0 ≤ φj < 2π, uniformly in 0 ≤ x < 2 and in any ball ‖q‖0 ≤ C.

Proof: Recall the estimate λ2j = π2j2 +O(1); see Section 1. Now

∫ 1

0

[f2
2j + λ−1

2j f
′2
2j ] dx = 1− λ−1

2j

∫ 1

0

f2jf
′′
2j dx

= 1 + λ−1
2j

∫ 1

0

f2
2j(λ2j − q) dx

= 2 +O(1/j2);

thus

f2
2j(xj) + λ−1

2j f
′2
2j(xj) = 2 +O(1/j2)

for some 0 ≤ xj < 1, making use of the fact that f2j(x + 1) = ±f2j(x). Let y1(x, λ) and
y2(x, λ) be normalized in the usual way at x = xj instead of at x = 0, i.e., y1(xj , λ) = 1, etc.

Then with f2j(xj) = a, (λ2j)
−1/2f ′

2j(xj) = b, and λ = λ2j = π2j2 +O(1), you have

f2j(x) = ay1(x, λ) + b
√
λy2(x, λ)

= a cos
√
λ(x− xj) + b sin

√
λ(x− xj) +O(λ−1/2)

=
√
a2 + b2 cos

√
λ(x+ φj) +O(λ−1/2)

=
√
2 cosπj(x + φj) +O(1/j)

with a suitable phase 0 ≤ φj < 2π. This confirms the first estimate. The proof of the second
is similar.

COROLLARY 1. As j ↑ ∞,

f2
2j − 1 = cos 2πj(x+ φj) +O(1/j),

−(πj)−1f2jf
′
2j = sin 2πj(x+ φj) +O(1/j).

Let

Fj =
√
2(f2

2j − 1), F o
j =

√
2 cos 2πj(x+ φj),

F−j = −
√
2(πj)−1f2jf

′
2j, F o

−j =
√
2 sinπj(x+ φj),

for j = 1, 2, · · · . Items (ii) and (iii) are proven together. The plan is as follows. F o
j , j �= 0, is

a unit perpendicular base for the annihilator 1◦ of the unit function. F ø
j , j �= 0, also lies in

1◦ and may be compared to F o
j , j �= 0, by means of the matrix J with entries

Jij =

∫ 1

0

FiF
o
j dx, i, j �= 0.

J acts on the space l2 of vectors c = (· · · , c−1, c1, c2, · · · ) with
∑

c2i < ∞ by the rule (Jc)i =∑
j 	=0 Jijcj . It is easy to prove that J is of the form identity + compact. If it were invertible,

Fj , j �= 0, would span 1◦, and the identity 1 =
∑∞

i=0 εif
2
2i of Proposition 6.3 would finish the

proof of item (ii). Item (iii) would also follow from the existence of J−1. Assume that J is not
invertible. Then you can find (with some tears) numbers ci, i = 1, 2, · · · , with fairly rapid
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decrease at infinity so as to make
∑∞

i=1 cif2if
′
2i = 0, with excellent convergence of the sum.

Introduce the vector field

Y : p →
∞∑
i=1

cif2if
′
2i

for general p ∈ M . Then Y p = 0 at p = q from which it follows that Y p = 0 on M . One can
see this fact in the following way. Let X be a finite linear combination of the Hamiltonian
vector fields p → D∂Δ(λ)/∂p(x) of Section 3. Then the induced mappings exp{X} of M
commute and distribute a fixed point, such as q, densely over M . Now Y is an infinite linear
combination of Hamiltonian fields (see Lemma 3.1). Technical difficulties aside, you ought to
have etY eX = eXetY on M , and you should be able to differentiate this identity with respect
to t at t = 0 to obtain the vanishing of Y at the general point p = eXq of M :

Y p =
d

dt
etY eXq =

d

dt
eXetY q =

∫ 1

0

∂eXq

∂q
Y q dx = 0.

A contradiction is then obtained by direct computation of Y p �= 0 at the point p on M with
tied spectrum μi = λ2i, i = 1, 2, · · · . The plan will be implemented by a series of simple
lemmas.

LEMMA 2. J is of the form: identity + compact.

Proof: Let Kij = Jij , i �= j, and let Kii = Jii − 1. We know that24∑
j 	=0

K2
ij =

∑
j 	=i,0

(Fi, F
o
j )

2 + [(Fi, F
o
i )− 1]2

=
∑
j 	=i,0

(Fi − F o
i , F

o
j )

2 + (Fi − F o
i , F

o
i )

2

= ‖Fi − F o
i ‖2

= O(i−2),

by Corollary 1 and the fact that Fj , j �= 0, is a unit perpendicular base of 1◦. Therefore,∑
K2

ij < ∞ and K is compact.

LEMMA 3. J is invertible and Fj , j �= 0, spans 1◦ if and only if
∑

j 	=0 cjFj �= 0 for every

c �= 0 in l2.

Proof: The sum converges in L2
1 by Corollary 1. F ∈ 1◦ is perpendicular to Fi, i �= 0, if

and only if

0 =
∑
j 	=0

(Fi, F
o
j )(F, F

o
j ), i �= 0,

which is to say that J annihilates the non-trivial vector c ∈ l2 with cj = (F, F o
j ), j �= 0. Now

J = identity + compact ; thus the dimension of the null space of J is the same as that of J†.
The proof is finished by observing that J†c = 0 if and only if F =

∑
cjFj is perpendicular

to F o
i , i �= 0.
A refinement of Lemma 3 is needed. Let l2+ be the space of vectors c = (c1, c2, · · · ) with∑

i>0 c
2
i < ∞.

LEMMA 4. The condition of Lemma 3 may be replaced by
∑

j>0 cjFj �= 0 for every c �= 0

from l2+.

Proof: The content of the lemma is that
∑

j 	=0 cjFj = 0 with c �= 0 from l2 implies∑
j>0 c

′
jFj = 0 for some c′ �= 0 from l2+. The vanishing of

∑
j 	=0 cjFj implies the vanishing

24(F,G) =
∫ 1
0 F (x)G(x) dx; ‖F‖2 =

∫ 1
0 F 2 dx.
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of the sums for j < 0 and for j > 0, separately, by perpendicularity, and either cj �≡ 0, j > 0,
in which case the proof is finished, or cj �≡ 0, j < 0, in which case

0 =
∑
j<0

cjFj = −
∑
j>0

c−j

√
2

πj
f2jf

′
2j,

and you may integrate with regard to x to obtain a sum of the required form:

0 =
∑
j>0

c−j(πj)
−1(f2

2j − 1) =
∑
j>0

c′jFj ,

the constant of integration being absorbed in the −1’s.

LEMMA 5. Let
∑

j>0 ajFj = 0 for some a �= 0 from l2+. Then it is possible to find

b �= 0 in l2+ so that
∑

j>0 bjf2jf
′
2j , qua function of 0 ≤ x < 1 and a general point p ∈ M , is

continuous in the pair (x, p) and vanishes at p = q.

Proof: Fix λ �= λi, i = 0, 1, 2, · · · . The estimates f2j = O(1) and f ′
2j = O(j) of Lemma 1

are uniform on [0, 2)×M . In view of the first estimate,
∑

j>0 aj(λ−λ2j)
−1f2

2j = ψ converges

uniformly for 0 ≤ x < 1 in view of λ2j ∼ π2j2 as j ↑ ∞. For any ψ ∈ C∞
1 ,

(f2
2j , (L− 2λD)ψ) = −((L− 2λD)f2

2j , ψ) = 2(λ2j − λ)(f2
2j , Dψ);

consequently,

(ψ, (L− 2λD)ψ) =
∑

aj(λ− λ2j)
−1(f2

2j , (L− 2λD)ψ)

= −2
∑

aj(f
2
2j , Dψ)

= −
√
2
∑

aj(Fj , ψ)

= 0.

Therefore, ψ is a weak solution of Lψ − 2λDψ = 0, and as such, a bonafide solution of class
C∞

1 . Thus, by Lemma 3.4 and choice of λ (almost any one will do), ψ = c × ∂Δ/∂q with a
constant depending upon λ. By Section 6,

ψ = −c

∞∑
j=0

y′1(1, λ)
y′•1 (1, λ2j)

1

λ− λ2j
Δ•(λ2j)f

2
2j

with rapidly decreasing Δ•(λ2j)/y
′•
1 (1, λ2j) = εj. Now you have two expansions for ψ in terms

of f2
2j, j = 0, 1, 2, · · · , and subtracting one from the other produces the identity

0 =

∞∑
j=1

aj
λ− λ2j

f2
2j + c

∞∑
j=0

y′1(1, λ)
y′•1 (1, λ2j)

Δ•(λ2j

λ− λ2j
f2
2j

=

∞∑
j=1

[
aj

λ− λ2j
+

cy′1(1, λ)
λ− λ2j

εj

]
(f2

2j − 1) +
cy′1(1, λ)
λ− λ0

ε0(f
2
0 − 1)

=

∞∑
j=1

[
aj

λ− λ2j
+

cy′1(1, λ)
λ− λ2j

εj − cy′1(1, λ)
λ− λ0

εj

]
(f2

2j − 1)

=

∞∑
j=1

bj(f
2
2j − 1).

The insertion of the −1′s in line 2 is justified by the fact that∫ 1

0

(f2
2i − 1) dx = 0;
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the identity 0 =
∑∞

i=0 εi(f
2
2i − 1) is used in line 3. The proof is finished by observing that∑∞

j=1 bjf2jf
′
2j converges uniformly on [0, 1)×M and that the coefficients bj do not all vanish.

The first point is settled by the estimates f2jf
′
2j = O(j), λ2j ∼ π2j2, bj = aj × O(j−2) +

O(j−4), say, and
∑

a23j < ∞. The second is dealt with as follows: If bj = 0, j = 1, 2, · · · ,
then aj = kεj(λ2j − λ0), j = 1, 2, · · · , with k �= 0, so

0 =
∑
j>0

ajFj =

∞∑
j=0

εj2(λ2j − λ0)(f
2
2j − 1) = q,

by Proposition 6.4 and the identity
∑∞

j=0 εj(f
2
2j − 1) = 0. This is a contradiction. The proof

is finished.

We are now in a position to prove item (ii). Let J be non-invertible, pick b ∈ l2+ as in
Lemma 5, and let Y be the vector field

Y : p →
∞∑
j=1

bjf2jf
′
2j

defined for general p ∈ M ; Y p is continuous on [0, 1)×M and Y q = 0, by Lemma 5.

LEMMA 6. Let Fj and Gj = −2−1/2D[y1(x, λ2j)y2(x, λ2j)] be computed for j = 1, 2, · · ·
at the point of M with tied spectrum μi = λ2i, i = 1, 2, · · · . Then (Fi, Gj) = 1 or 0 according
to whether i = j or not.

Proof: If μj = λ2j , then f2j(x) = constant × y2(x, λ2j) vanishes at x = 0 and at x = 1.
Now √

2

∫ 1

0

FiGj dx = −
∫ 1

0

f2
2i(x)D[y1(x, λ2j)y2(x, λ2j)] dx,

and the stated perpendicularity for i �= j follows from λ2i �= λ2j by a familiar partial integra-
tion:

2λ2j

∫ 1

0

f2
2iD[y1y2] dx =

∫ 1

0

f2
2iLy1y2 dx

= 2qf2
2iy1y2 − 1

2f
2
2i(y1y2)

′′ + 1
2 (f

2
2i)

′(y1y2)′ − 1
2 (f

2
2i)

′′y1y2
∣∣∣1
0

−
∫ 1

0

y1y2Lf
2
2i dx

= −2λ2i

∫ 1

0

y1y2Df2
2i dx

= 2λ2i

∫ 1

0

f2
2iD[y1y2] dx.

Finally, for i = j, ∫ 1

0

FiGi dx = −
∫ 1

0

f2
2i(y1y2)

′ dx

=

∫ 1

0

y1y2(f
2
2i)

′ dx

=

∫ 1

0

f2
2i(y1y

′
2 − y1y

′
2) dx

=

∫ 1

0

f2
2i dx

= 1,
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by use of f2j(x) = constant × y2(x, λ2j) to pass from line 2 to line 3. The proof is finished.

COROLLARY 2. Y does not vanish identically on M .

Proof: Let p be the point distinguished in Lemma 6, at which μi = λ2i, i = 1, 2, · · · .
Then Y p =

∑
bjf2jf

′
2j = 0 would imply ψ =

√
2
∑

bj(f
2
2j − 1) =

∑
bjFj = 0 also, and hence

bj = (ψ,Gj) = 0, j = 1, 2, · · · , contradicting the choice of the b’s.

LEMMA 7. Let X be any finite linear combination of the vector fields

Xj : p → D∂Δ(λ2j)/∂p(x) = −Δ•(λ2j)Df2
2j .

Then Y vanishes at p = eXq.

Proof: Let
Ym : p →

∑
j≤m

bjf2jf
′
2j.

Then etY commutes with eX , and, by differentiation at t = 0,

YmeXq =
d

dt
etYmeXq =

d

dt
eXetYmq =

∫ 1

0

∂eXq

∂q
Ymq dx.

The proof is finished by the uniform convergence of Ymp to Yp; see Lemma 5.

The proof of item (ii) is now before you. To obtain a contradiction, you have only to
pick eXq as in Lemma 7, tending to the point p of Lemma 6, and to use the fact that Y
is continuous on M . This is achieved as follows. Besides the maps eX , it is also permissible
to use the flow of translation. If μi = λ2i, say, then f2i(0) = 0 and an appropriate small
translation will break that for every i, simultaneously; in short, you can assume that q is in
general position: λ2i−1 < μi < λ2i, i = 1, 2, · · · . The fact that detXjμi, 1 ≤ i, j ≤ m, does
not vanish for m = 1, 2, · · · and q in general position (see Amplification 4.1) permits you to
move q as close as you please to p by a suitable map eX . The proof of item (ii) is finished, and
item (iii) is easily disposed of. Every function f ∈ 1◦ can be uniquely expressed as

∑
j 	=0 cjFj

and also as
∑

j 	=0 c
o
jF

o
j ; the coefficients being related by

∑
i	=0 c

o
iJij = cj , j �= 0. The rest is

clear from the fact that J−1 must be bounded, being everywhere defined: co = (J∗)−1c, and
so

‖J‖2
∑
i	=0

c2i ≤
∑
i	=0

(coi )
2 =

∫ 1

0

|f |2 dx ≤ ‖J−1‖2
∑
i	=0

c2i ,

i.e., the functions Fj , j �= 0, form an oblique base for 1◦.
The proof in the presence of double eigenvalues. The proof for a mixed spectrum

is much the same. We have F−j = −√
2(λo

2j)
−1fo

2jf
o
2j, j = 1, · · · , n, while the functions25

√
2fo

2i−1,
√
2(f×

2i − 1), −23/2f×
2i−1f

×
2i

are listed in any convenient order as Fj , j = 1, 2, · · · . The only substantial change is in

Lemma 4 in which the condition
∑∞

j=1 cjFj is replaced by
∑n

j=1 cj(f
o2

2j − 1), and the point
at issue is whether

n∑
j=1

cj(f
o2

2j − 1) +
∑

aj(f
×2

2i − 1) +
∑

bif
×
2i−1nf

×
2i = 0,

implies ai = bj = 0, i = 1, 2, · · · .

25f×
2i−1, f

×
2i is the i-th pair of double eigenfunctions.
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Proof: (f×
2i−1f

×
2i)

′, respectively (f×2

2i )′, is perpendicular to every summand except perhaps

f×2

2i − 1, respectively f×
2i−1f

×
2i , so it is enough to check

∫ 1

0

f×2

2i (f×
2i−1f

×
2i)

′ dx = −
∫ 1

0

f×
2i−1f

×
2i(f

×2

2i )′ dx �= 0.

Now f×
j (x + 1) = ±f×

j (x), j = 2i − 1, 2i, so f×2

2i and (f×
2i−1f

×
2i)

′ are of period 1 and the

integration may be performed over any period. Thus, you may assume f×
2i−1(x) = ay1(x, λ)+

by2(x, λ) and f×
2i(x) = cy2(x, λ) with a �= 0, λ being the eigenvalue. Then the inner product

of f×
2i−1f

×
2i and (f×

2i)
′ is a non-vanishing multiple of

∫ 1

0

y1(x, λ)y2(x, λ)[y
2
2(x, λ)]

′ dx = −y1(1, λ)y
•
2(1, λ)[y

′
2(1, λ)]

2

= −y•2(1, λ)y
′
2(1, 1, λ)

= −1

2
Δ(λ)

= ±1.

The first line is proved by partial integration of∫ 1

0

y1(x, μ)y2(x, μ)Dy22(x, λ) dx for λ �= μ,

using Lemma 3.3 and the skew-symmetry of D and L = qD+Dq− 1
2D

3. The proof is finished.

7.10. Local Hamiltonian Tangent Vectors

Let Vi, i = 1, 2, · · · , be the local Hamiltonian fields V1 : q → q′, V2 : q → 3qq′ − 1
2q

′′′,
etc. Then Viq ∈ T, i = 1, 2, · · · ; in fact, by Proposition 6.2,

Viq =
∞∑
j=0

εjpi(λ
o
2j)D(fo

2j)
2

with rapidly deceasing coefficients εj = Δ•(λo
2j)/y

′•
1 (1, λo

2j) and a polynomial pi of precise
degree i.

Warning. The function y′1(1, λ) is computed for the origin of M , so that y′1(1, λ2i) =
0, i = 0, 1, 2, · · · .

The vectors Viq, i = 1, · · · , n, span T if n < ∞; it is believed that this can fail if n = ∞.
The next theorem presents a criterion; see Amplification 1 below for more information.

THEOREM 1. The vectors Viq, i = 1, · · · , n, span T if and only if polynomials span the
space of functions φ(λo

2j), j = 1, · · · , n, with
n∑

j=1

(λo
2j − λo

2j−1)
2|φ(λo

2j)|2 < ∞;

naturally, this is automatic if n < ∞.

Proof: The proof starts from the expansion of Viq, i = 1, 2, · · · , in terms of D(fo
2j)

2, j =

0, 1, 2, · · · , revised by use of the identity V0q = 0 =
∑∞

j=0 εjD(fo
2j)

2 to make the sum

commence at j = 1 instead of j = 0. The condition that D(fo
2i)

2 belong to the span of
Viq, i = 1, 2, · · · , is

inf

∥∥∥∥∥∥
n∑

j=1

εjp(λ
o
2j)D(fo

2j)
2 −D(fo

i )
2

∥∥∥∥∥∥
2

= 0,
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the infimum being reckoned over all polynomials p with p(λ0) = 0. Now√
2(λo

2j)
−1/2D(fo

2j)
2, j = 1, · · · , n, is an (oblique) base of T as explained in Theorem 8, so

the condition that D(f2i)
2, i �= 0, belongs to the span can be reexpressed as

inf

n∑
j=1

λo
2jε

2
j |p(λo

2j)− χi(λ
o
2j)|2,

in which χi(λ) is the indicator of λ = λo
2i and the infimum is reckoned as before, The rest of

the proof consists of a sharpening of Lemma 6.1.

LEMMA 1. εi is comparable to (λo
2i)

−1 × (λo
2i − λo

2i−1) as i ↑ ∞.

Proof: Let y2(1, λ) be computed for a point of M with μo
i = λ•

i , i = 1, · · · , n, so that
Δ•(λ) is proportional to y2(1, λ), as in the proof of Lemma 6.1, and follow that proof so far
as to see that εi is comparable to (λo

2i − λ•
i )y

•
2(1, λ) with an intermediate λ ∈ [λ•

i , λ
o
2i]. For

any λo
2i−1 ≤ λλo

2i,

y•2(1, λ)y
′
2(1, λ)− y2(1, λ)y

′•
2 (1, λ) =

∫ 1

0

y22(x, λ) dλ

=
1

λ

∫ 1

0

sin2
√
λxdx [1 + o(1)]

∼ 1

2λ
,

while y2(1, λ) = o(λ−λ•) = o(λo
2i−λo

2i−1), and y′2(1, λ) = O(1), where |2λy•2(1, λ)| is bounded
away from 0 for λo

2i−1 ≤ λ ≤ λo
2i, independently of i = 1, 2, · · · . Besides, y•2(1, λ) = O(1/λ)

as λ ↑ ∞ anyhow, and the upshot is that y•2(1, λ) is comparable to 1/λo
2i, in the whole of

[λo
2i−1, λ

o
2i] independently of i and that εi is comparable to (λo

2i)
−1 × (λo

2i−λ•
i ). It remains to

prove that λo
2i − λ•

i is comparable to λo
2i − λo

2i−1. Δ
•(λ) = constant× y2(1, λ), so from the

estimate of y•2(1, λ), you have

c1(λ
•
i − λ) ≤ ±λo

2iΔ
•(λ) ≤ c2(λ

•
i − λ), λo

2i−1 ≤ λ ≤ λ•
i ,

c1(λ− λ•
i ) ≤ ∓λo

2iΔ
•(λ) ≤ c2(λ− λ•

i ), λ•
i ≤ λ ≤ λo

2i,

with positive constants c1 and c2 not depending upon i and the same signature as Δ(λo
2i) =

±2. But ∫ λ•
i

λo
2i−1

Δ•(λ) dλ = −
∫ λo

2i

λ•
i

Δ•(λ) dλ,

so
c1
c2

(λ•
i − λo

2i−1)
2 ≤ (λo

2i − λ•
i )

2 ≤ c2
c1
(λ•

i − λo
2i−1)

2,

by integration of the inequalities for λo
2iΔ

•(λ). The proof of the lemma is finished.

The proof of the theorem is now before you: The condition of spanning is expressed as26

inf

n∑
j=1

(λo
2j)

−1(λo
2j − λo

2j−1)
2|(λo

2j − λ0)p(λ
o
2j)− χi(λ

o
2j)|2 = 0.

The proof is finished by an elementary remark: the success or non-success of polynomial
approximation is unaffected by removal of the factor λo

2j in front of (λo
2j − λo

2j−1)
2.

AMPLIFICATION 1. Magnus-Winkler [26], p. 65, cite the fact that λ2i − λ2i−1 ≤ ae−bi

with a, b > 0 if q(x) = sin(2πx), so the spanning takes place; presumably, the same is true
for any real analytic q. Let �2p =

∑
(λo

2i)
p(λo

2i − λo
2i−1)

2, p = 0, 1, 2, · · · . Then the spanning

26λ0 = 0 is now assumed so that λo
2j > 0, j 	= 0, for ease of writing.
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takes place if
∑

(�p)
−1/p = ∞ by a criterion of Carleman [3]; see Akhiezer [1], p. 45. Let

λ2i−1 < λ2i, i = 1, 2, · · · , so that λo
2i = λ2i ∼ i2π2 as i ↑ ∞. Then the spanning cannot take

place unless
∑

i−2 log(λ2i−λ2i−1) = −∞; see Koosis [19]. The result of Erdélyi [7] should be

mentioned at this point: if k =
∫ 1

0
q2 dx is uniformly small, then λ2j −λ2j−1 is approximately

k ×
∣∣∣∫ 1

0
e2π

√−1jxq(x) dx
∣∣∣ for each j, separately. McKean-Moerbeke [28] p.251, proved that

the Hamiltonian series Hj , j = 0, 1, 2, · · · , determines M if n < ∞; it is believed that this
happens for n = ∞ if and only if the spanning takes place.

7.11. M as a Jacobi Variety: Purely Simple Spectrum

Let λ2i−1 < λ2i, i = 1, 2, · · · , so that the whole periodic spectrum is simple. The purpose
of this section is to prove that M can be visualized as the real part of the Jacobi variety of
the Riemann surface S of

√
Δ2(λ) − 4. This surface is a sphere with an infinite number of

handles obtained by cutting two copies of the number sphere along the intervals of instability
[−∞, λ0], [λ2i−1, λ2i], i = 1, 2, · · · , and pasting them together; compare Fig. 7.3. The present
development represents an extension of the classical function theory of the hyperelliptic irra-
tionality

√−(λ− λo
0)(λ− λo

1) · · · (λ− λo
2n) to the case of infinitely many branch points. To

the best of our knowledge, the papers of Myrberg [30, 31] represent the only previous work
on this subject.

LEMMA 1.
∣∣∣∫ 1

0 [Δ
2(μ)− 4]−1/2 dμ

∣∣∣ is comparable to i as i ↑ ∞.

Proof: Let y′1(1, λ) and y2(1, λ) be computed at the origin27 of M so that28 y′1(1, λ2i) =
0, i = 0, 1, 2, · · · , and y2(1, λ2i−1) = 0, i = 1, 2, · · · . Then Δ2(λ) − 4 = y′1(1, λ)y2(1, λ), up
to a multiplicative constant which is ignored for simplicity. For λ2i−1 ≤ μ ≤ λ2i, you have

Δ2(μ)− 4

(λ2i − μ)(μ− λ2i−1)
= −y•2(1, μ

∗)y′•1 (1, μ∗∗)

for some intermediate points λ2i−1 ≤ μ∗, μ∗∗ ≤ λ2i, But y•2(1, μ) is comparable to 1/λ2i in
the whole interval λ2i−1 ≤ μ ≤ λ2i, as in the proof of Lemma 7.10.1, while if y′•1 (1, μ) is
comparable to 1 by a similar proof. Therefore,∫ λ2i

λ2i−1

dμ√
Δ2(μ)− 4

is comparable to

(λ2i)
1/2

∫ λ2i

λ2i−1

dμ√
(λ2i − μ)(μ− λ2i−1)

∼ π2i as i ↑ ∞,

as required.

USAGE. The functions y′1(1, λ) and y2(1, λ) are computed at the origin of M until further
notice. The notation

1j(μ) =
∏

1≤i	=j

1− μ/λ2i

1− λ2j/λ2i
=

y′1(1, μ)
μ− λ0

λ2j − λ0

y′•1 (1, λ2j)

1

μ− λ2j
, j = 1, 2, · · · ,

is employed is connection with interpolation of I3/2 off λ2j , j = 1, 2, · · · , by means of Theo-
rem 7.5.3.

27μi = λ2i−1, i = 1, 2, · · · .
28See Amplification 7.1.
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Now define a map of the point p with coordinates pi = (μi,
√
Δ2(μi)− 4), i = 1, 2, · · · ,

of the ∞-dimensional torus of Fig. 7.4 to a point x = (x1, x2, · · · ) of the ∞-dimensional real
number space by the rule

2

∞∑
i=1

∫ pi

oi

1j(μ)
dμ√

Δ2(μ)− 4
, j = 1, 2, · · · ,

in which oi = (λ2i−1, 0), i = 1, 2, · · · , and the integral is extended clockwise about the i-th
circle of Fig. 7.4 less than once around.

THEOREM 1. p = (p1,p2, · · · ) maps to x if and only if

2

∞∑
i=1

∫ pi

oi

φ(μ)
dμ√

Δ2(μ)− 4
=

∞∑
j=1

φ(λ2j)xj

for every integral function φ of class I3/2; moreover, x belongs to the (real) dual space I3/2†

of I3/2∗, i.e.
∑

j−4x2
j < ∞.

Proof: The sum 2
∑∫ pi

oi
φ(Δ2 − 4)−1/2 defines a bounded functional on I3/2. To see this,

let φ be the real or imaginary on the line, every function of class I3/2 being expressible as the
sum of such. Then, by the mean value theorem

∫ pi

oi

φ(μ)
dμ√

Δ2(μ)− 4
= φ(μ̄i)

∫ pi

oi

dμ√
Δ2(μ)− 4

for some intermediate μ̄i ∈ [λ2i−1, λ2i], and

∞∑
i=1

∣∣∣∣∣
∫ pi

oi

φ(μ)
dμ√

Δ2(μ)− 4

∣∣∣∣∣ ≤
∞∑
i=1

|φ(μ̄i)| × 2

∣∣∣∣∣
∫ λ2i

λ2i−1

dμ√
Δ2(μ)− 4

∣∣∣∣∣

≤ constant ×
√√√√ ∞∑

i=1

i4|φ(μ̄i)|2 ×
√√√√ ∞∑

i=1

i−2

≤ constant × ‖φ‖3/2,
in view of Lemma 1 and the fact that μ̄i, i = 1, 2, · · · , is the tied spectrum of a point of M so
that

∑
i4|φ(μ̄i)|2 is comparable to ‖φ‖23/2 =

∫∞
0

|φ(μ)|2μ3/2 dμ, by Theorem 5.3. Therefore,

2

∞∑
i=1

∫ pi

oi

φ(μ)
dμ√

Δ2(μ)− 4
=

∞∑
j=1

φ(λ2j)xj

with x ∈ I3/2†, by a second application of Theorem 5.3 with λ2j , j = 1, 2, · · · , as tied

spectrum, and x identified as the image of p by choice of φ = 1j ∈ I3/2 for j = 1, 2, · · · , in
turn.

THEOREM 2. The map p → x is 1:1.

Proof: If the map is not 1:1, you can find points p′ and p′′ of the torus of Fig. 7.4 such
that

∞∑
i=1

∫ p′′
i

p′
i

φ(μ)
dμ√

Δ2(μ)− 4
= 0



7.11. M AS A JACOBI VARIETY: PURELY SIMPLE SPECTRUM 119

for every φ ∈ I3/2. Let p′
i �= p′′

i , i = 1, 2, · · · , for simplicity and fix m < ∞. Then

det

∫ p′′
i

p′
i

1i(μ)
dμ√

Δ2(μ)− 4

=

∫ p′′
1

p′
1

dμ1√
Δ2(μ1)− 4

· · ·
∫ p′′

m

p′
m

dμ1√
Δ2(μm)− 4

det1j(μi) �= 0, 1 ≤ i, j ≤ m,

since

det1j(μi) = det
1

μi − λ2j
× a non-vanishing factor

=

∏
i>j(μi − μj)

∏
i>j(λ2i − λ2j)∏

i,j(μi − λ2j)
× the same factor

is of one signature for μi ∈ [λ2i−1, λ2i], i = 1, · · · ,m. This permits you to pick φ(λ) =∑m
i=1 ci�i(λ) ∈ I3/2 with real coefficients, so as to make

∫ p′′
i

p′
i

φ(μ)
dμ√

Δ2(μ)− 4
=

⎧⎨
⎩
∫ p′′

1

p′
1

dμ√
Δ2(μ)−4

for i = 1,

0 for 2 ≤ i ≤ m.

But now φ(μ̄1) = 1, φ(μ̄i) = 0, i = 2, 3, · · · ,m, for some intermediate μ̄i ∈ [λ2i−1, λ2i], i =
1, 2, · · · ,m, while φ(λ2i) = 0, i > m, so that

1 =

m∑
i=1

i4|φ(μ̄i)|2 +
∑
i>m

i4|φ(λ2i)|2

and the comparable ‖φ‖23/2 is bounded independently of m, μ̄i, i = 1, · · · ,m, augmented by

λ2i, i > m, being the tied spectrum of a point of M . The proof is finished by letting m ↑ ∞
in such a way that the above φ = φm tends weakly in I3/2 to a function φ∞ with

∫ p′′
i

p′
i

φ∞(μ)
dμ√

Δ2(μ)− 4
=

⎧⎨
⎩
∫ p′′

1

p′
1

dμ√
Δ2(μ)−4

for i = 1,

0 for i �= 1,

contradicting
∞∑
i=1

∫ p′′
i

p′
i

φ∞(μ)
dμ√

Δ2(μ)− 4
= 0.

LEMMA 2. Let Xi be the Hamiltonian vector field q → D∂Δ(λ2j)/∂q, j = 1, 2, · · · . Then
x ·X =

∑
xjXj induces a smooth flow exp{tx ·X} on M for any choice of x ∈ I3/2†.

Proof: Let ξ and η be any two tame points of I3/2† and write eX in place of of exp{X}.
Then for any q ∈ M and 0 ≤ x < 1,

eξ·Xq(x)− eη·Xq(x) =

∫ 1

0

(ξ − η) ·Xeζ·Xq(x) dc

with ζ = η + c(ξ − η). Let ‖ ‖i be any Sobolev norm. Then

‖eξ·Xq − eη·Xq‖i ≤
∫ 1

0

dc

∞∑
j=1

|ξi − ηi||Δ•(λ2j)|‖Df2
2j‖i

with f2j evaluated at the point eζ·Xq ofM . But now j−1−i‖Df2
2j‖i is controlled by ‖eζ·Xq‖i−1

and hence29 by H0, · · · , Hi, independently of ζ and q, while Δ•(λ2j) is rapidly decreasing as

29See [22], p. 147 and [28], p. 226.
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j ↑ ∞, so
‖eξ·Xq − eη·Xq‖i ≤ ci(M)‖ξ − η‖3/2†

with a constant depending only upon i and M .
Now approximate x ∈ I3/2† by tame y ∈ I3/2†. Then by the above estimates, p =

exp{ty · Y }q converges in the topology of infinitely differentiable functions from C∞
1 to C∞

1

to a point p∞ ∈ C∞
1 . Moreover,

p∞ − q = lim

∫ t

0

y ·Xpdt′ =
∫ t

0

x ·Xp∞ dt′ :

thus p∞ is the unique smooth solution of ∂p∞/∂t = x · Xp∞ reducing to q at t = 0. This
proves that x ·X induces a flow in C∞

1 which is once differentiable in t.
The proof is finished.

THEOREM 3. Extend the map p = (p1,p2, · · · ) → x ∈ I3/2† by permitting such paths of
integration oi, pi, i = 1, 2, · · · , as make

∑∫ pi

oi

φ (Δ2 − 4)−1/2

convergent in the dual space of I3/2. Then the extended map is onto I3/2† and is inverted by
application of exp{x · X} to the origin of M, x · X =

∑
xjXj being formed with the image

x ∈ I3/2† of p.

Proof: Fix x ∈ I3/2†. Then under the flow ∂q/∂t = x · Xq, the tied spectrum moves
according to the rule

2μ•
i√

Δ2(μi)− 4
=

∞∑
j=1

xj

∏
k 	=i

1− λ2j/μk

1− μi/μk
;

see Amplification 4.1. Let the flow carry o = (o1,o2, · · · ) to p in unit time and fix φ ∈ I3/2.
Then

2

m∑
i=1

∫ pi

oi

φ(μ)
dμ√

Δ2(μ)− 4
=

∞∑
j=1

xj

∫ 1

0

⎡
⎣ m∑

i=1

φ(μi)
∏
k 	=i

1− λ2i/μk

1− μi/μk

⎤
⎦ dt,

in which μi, i = 1, 2, · · · , depends upon 0 ≤ t ≤ 1. The inner sum tends to φ(λ2i) as m ↑ ∞
in I3/2∗, uniformly in 0 ≤ t ≤ 1; hence the functional

2

m∑
i=1

∫ pi

oi

φ(Δ2 − 4)−1/2

converges in the dual space I3/2† to

2

∞∑
i=1

∫ pi

oi

φ(μ)
dμ√

Δ2(μ)− 2
=

∞∑
j=1

φ(λ2j) dt

=

∞∑
j=1

φ(λ2j)xj .

The proof is finished.

THEOREM 4. Let the primitive periods ωi ∈ I3/2† be defined by the rule

ωij = 4

∫ λ2i

λ2i−1

1j(μ)
dμ√

Δ2(μ)− 4
, j = 1, 2, · · · .

Then ωi, i = 1, 2, · · · , is a basis of I3/2†: every point x ∈ I3/2† can be uniquely written as∑
yiωi with

∑
i−2y2i < ∞, the sum being comparable to

∑
i4x2

i = ‖x‖23/2†.
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Proof: Let φ ∈ I3/2 take real values on the line and pick intermediate μ̄i ∈ [λ2i−1, λ2i] so
that ∫ λ2i

λ2i−1

φ(μ)
dμ√

Δ2(μ)− 4
= φ(μ̄i)

∫ λ2i

λ2i−1

dμ√
Δ2(μ) − 4

, i = 1, 2, · · · .

Then μ̄i, i = 1, 2, · · · , is the tied spectrum of a point of M , so
∑

i4|φ(μ̄i)|2 is comparable to

‖φ‖23/2 =

∫ ∞

0

‖φ(λ)|2λ3/2 dλ.

Now think of x ∈ I3/2† as an element of the dual space of I3/2 (x(φ) =
∑

φ(λ2j)x2j). Then

x =
∑

yiωi is convergent in I3/2† if and only if

x(φ) =
∑

yiωi(φ) =
∑

yi4

∫ λ2i

λ2i−1

φ(Δ2 − 4)−1/2

=
∑

yi4φ(μ̄i)

∫ λ2i

λ2i−1

(Δ2 − 4)−1/2

is convergent for every φ ∈ I3/2, i.e., if and only if
∑

i−2y2i < ∞, the point being that

∫ λ2i

λ2i−1

(Δ2 − 4)−1/2

is comparable to i and ‖x‖3/2† is comparable to
∑

i−2y2i . The proof of the uniqueness of the

expansion
∑

yiωi proceeds as in Theorem 2: if
∑

yiωi = 0, then you can pick φ ∈ I3/2 so
that ωi(φ) = 0, i �= j, and ωj(φ) = 1, whence yj = 0, j = 1, 2, · · · . The proof is finished by

observing that ωi, i = 1, 2, · · · , spans I3/2†: if not, you could find non-trivial φ ∈ I3/2 and
μ̄i ∈ [λ2i−1, λ2i], i = 1, 2, · · · , as above so that

0 = ωi(φ) = 4φ(μ̄i)

∫ λ2i

λ2i

(Δ2 − 4)−1/2, i = 1, 2, · · · ,

contradicting the fact that
∑

i4|φ(μ̄i)|2 is comparable to ‖φ‖23/2 > 0.

Now let the extended map p → x of Theorem 3 be expressed as p → ∑
yiωi =

∑
(ei +

ni)ωi with 0 ≤ ei < 1 and integral ni, i = 1, 2, · · · , and let n′
i be the number of times the

path of integration oi, pi winds clockwise about the i-th circle. Then

x(φ) =

∞∑
i=1

2

∫ p′
i

oi

φ(Δ2 − 4)−1/2 +

∞∑
i=1

n′
iωi(φ)

=
∞∑
i=1

eiωi(φ) +
∞∑
i=1

niωi(φ),

in which the path oi, p
′
i extends clockwise less than once around the i-th circle. Now

2

∫ p′
i

oi

φ(Δ2 − 4)−1/2 =
∞∑
j=1

ε′ijωj(φ),

and it is easy to prove, as in Theorem 2, that e′ij = 0, i �= j. Therefore ,

2

∫ p′
i

oi

φ(Δ2 − 4)−1/2 = e′iωi(φ)
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for every φ ∈ I3/2, and by choice of φ(λ) = (λ − λ1)
−1y2(1, λ) which is one signature in

[λ2i−1, λ2i], you see that 0 ≤ e′i < 1. Therefore,

x(φ) =
∞∑
i=1

∫ pi

oi

φ(Δ2 − 4)−1/2 =
∞∑
i=1

(e′i + ni)ωi,

and you identify e′i = ei and n′
i = ni, i = 1, 2, · · · . This proves almost all of

THEOREM 5. Let L be the lattice of periods ω ∈ I3/2† such that exp{ω ·X} acts trivially
on M . Then ω ∈ L if and only if ω =

∑
niωi with integral ni, i = 1, 2, · · · , subject to∑

i−2n2
i < ∞. The extended map p → x is well-defined precisely for such winding numbers

ni, i = 1, 2, · · · , effecting a 1:1 topological map of M onto the factor space I3/2†/L. The latter
is compact and may be identified with the fundamental cell [0, 1)∞ with edge identifications by
means of the expansion of x ∈ I3/2† as x =

∑
(ei+ni)ωi with 0 ≤ ei < 1 and integral ni. The

map p → x is ambiguous owing to the indeterminacy of the winding numbers ni, i = 1, 2, · · · ,
but the ambiguity is removed by reduction to e.

Proof: ω ∈ I3/2† belongs to the period lattice if and only if all the paths oi, pi are trivial,
i.e., if and only if they consist of an integral number of full revolutions. Then ω =

∑
niωi, the

sum being convergent in I3/2† and
∑

i−2n2
i < ∞, and conversely. The rest of the proof is just

as easy. The only point requiring comment is the compactness of the factor space I3/2†/L.
This follows easily from

∑
i2|ωi(φ)|2 ≤ constant × ‖φ‖23/2, which permits you to bound the

tail of the sum
∑

eiωi independently of 0 ≤ ei < 1, i = 1, 2, · · · . The fact that the map
M → I3/2†/L is topological is plain.

AMPLIFICATION 1. The fact that ωi, i = 1, 2, · · · , spans I3/2† is the same as to say
that a differential of the first kind φ(Δ2 − 4)−1/2 dμ with φ ∈ I3/2 is completely determined
by its periods

ωi(φ) = 4

∫ λ2i

λ2i−1

φ(Δ2 − 1)−1/2, i = 1, 2, · · · .

The analogy with classical function theory is perfect.

AMPLIFICATION 2. The exponential map

x → exp{x ·X} applied to the origin of M

carries I3/2† onto M , permitting you to view I3/2† as a common tangent space to I3/2†/L and
M . The map is not 1:1 in any ball of I3/2† centered at x = 0, unlike the exponential map of
finite-dimensional differential geometry. The reason is that every ball contains infinitely many
primitive periods in view of

∑
i2|ωi(φ)|2 ≤ constant × ‖φ‖23/2. Actually, this is fortunate: if

the map had been 1:1, it would have effected a topological map of a non-compact closed ball
in I3/2† into a compact piece of M !

AMPLIFICATION 3. x is now regarded as a global coordinate on M and the relation
of p to x is interpreted as saying that M = I3/2†/L is the real part of the Jacobi variety of

the Riemann surface S of
√
Δ2(λ)− 4. The same state of affairs is epitomized by the vector

field identity

2
∞∑
i=1

(
D
∂Δ

∂q
evaluated at λ = μi

)
× dμi√

Δ2(μi)− 4

=

∞∑
j=1

(
D
∂Δ

∂q
evaluated at λ2j

)
× dxj .
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The relation may also be expressed somewhat more vaguely by means of the addition theorem

∫ p′

o

φ(Δ2 − 4)−1/2 +

∫ p′′

o

φ(Δ2 − 4)−1/2 =

∫ p

o

φ(Δ2 − 4)−1/2,

in which φ ∈ I3/2, ∫ p

o

=
∑∫ pi

oi

,

and the theorem asserts the existence of p and appropriate paths of integration on the right-
hand side for every choice of p′,p′′, and permissible paths of integration on the left.

The next few sections contain additional information about these matters.

7.12. Volume elements

The line element identity

2y•2(1, μi)√
Δ2(μi)− 4

dμi =

∞∑
j=1

y2(1, λ2j)

λ2j − μi
dxi

is easily verified by putting φ(λ) = (λ − μi)
−1y2(1, λ) in the differential form of the Jacobi

map, y2(1, λ) being computed for the actual point q of M in hand. This leads to entertain-
ing formulas of volume elements. The plan is to compute the formal wedge product of the
differentials

2y•2(1, μi)√
Δ2(μi)

dμi, i = 1, 2, · · · ,

by means of the line element identity and the evaluation

det
1

ai − bj
=

∏
i>j(ai − aj)

∏
i>j(bi − bj)∏

i, j(ai − bj)
.

The latter is employed freely even though i and j run from 1 to ∞. The computation is
elementary: the left-hand side produces

∏
i

2y•2(1, μi)√
Δ2(μi)− 4

dμi =
∏
i

2 dμi√
Δ2(μi)− 4

∏
j 	=i

(
1− μi

μj

)(
− 1

μi

)
,

while the right-hand side produces

∏
j

y2(1, λ2j)dxj × det
1

λ2j − μi

=
∏
j

dxj

∏
i

(
1− λ2j

μi

)
×
∏

i>j(λ2i − λ2j)
∏

i>j(μi − μj)∏
i,j(λ2j − μi)

,

and if you carry out all the (formal) cancellations, you will find

∏
i>j

μi − μj

λ2i − λ2j
×
∏
i

2 dμi√
Δ2(μi)− 4

=
∏
j

dxj .

Notice that the left-hand side is one of one signature and that the “density”

f(μ1, μ2, · · · ) =
∏
i>j

μi − μj

λ2i − λ2j



124 7. HILL’S OPERATOR

is bounded from 0 and ∞ because

∑
i>j

∣∣∣∣1− μi − μj

λ2i − λ2j

∣∣∣∣ ≤
∑
i>j

λ2i − λ2i−1 + λ2j − λ2j−1

λ2i − λ2j

≤ constant×
∞∑
i=1

(λ2i − λ2i−1)
∑
i	=j

1

|i2 − j2|

is bounded independently of μi, i = 1, 2, · · · .
The volume of a finite-dimensional torus is the determinant of the primitive periods

defining the associate lattice. The primitive periods ωi, i = 1, 2, · · · , of the Jacobi variety are
expressed by

ωij = 4

∫ λ2i

λ2i−1

y′1(1, μ)
y′•1 (1, λ2j)

1

μ− λ2j

dμ√
Δ2(μ)− 4

with y′1(1, λ) computed for the origin of M , and det ωij may be computed in the same formal
way:

det ωij =
∏
i

4

∫ λ2i

λ2i−1

y′1(1, μi)√
Δ2(μi)− 4

dμi ×
∏
j

1

y′•1 (1, λ2j)
× det

1

μi − λ2j

=
∏
i

4

∫ λ2i

λ2i−1

∏
j

(
1− μi

λ2j

)
dμi√

Δ2(μi)− 4
×
∏
j

∏
i	=j

1

(1− λ2j/λ2i)(−1/λ2i)

×
∏

i>j(μi − μj)
∏

i>j(λ2i − λ2j)∏
i,j(μi − λ2j)

=

∫ λ2

λ1

∫ λ4

λ3

∫ λ6

λ5

· · · f(μ1, μ2, · · · )
∏
i

4 dμi√
Δ2(μi)− 4

.

This is precisely the normalization constant needed in the preceding formula, the upshot being
that

f(μ1, μ2, · · · )
∏

i
2 dμi√

Δ2(μi)−4∫ λ2

λ1

∫ λ4

λ3
· · · f(μ1, μ2 · · · )

∏
i

4dμi√
Δ2(μi)−4

=

∏
j dxj

det(ωij)

is the normalized invariant volume element of M viewed as I3/2†/L. Notice that the right-
hand side is formally the same as the normalized volume element de =

∏
i dei in view of

dxj =
∑

i deiωij .
Naturally, these results have only a formal status until verified in a more convincing

manner, but as they are not needed below it is unnecessary to do so.

7.13. An Imbedding

Consider the map

e → x =
∑

eiωi → X =
∑

xjXj → q = eX(origin)

of the standard torus, [0, 1)∞ with edge identifications, onto M ⊂ L2
1. The purpose of this

section is to prove that this map is an imbedding of the torus into L2
1 in the following sense: (i)

the map is topological, (ii) q(x), 0 ≤ x < 1, has indefinitely many tame partials with regard to
ei, i = 1, 2, · · · , (iii) the differential map from the natural tangent vectors ∂/∂ei, i = 1, 2, · · · ,
of the torus to the tangent space T is non-singular at every point. (iii) needs to be spelled
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out. The differential map carries ∂/∂ei to ∂q/∂ei ∈ T ; it is to be proved that these vectors
comprise an oblique base for T , meaning that every Xq ∈ T can be uniquely written as

Xq =

∞∑
i=1

ci�
−1
i

∂q

∂ei
, �2i =

∫ 1

0

∣∣∣∣ ∂q∂ei
∣∣∣∣
2

dx,

and that ∫ 1

0

|Xq|2 dx
is comparable to

∑
c2i . (i) is known from Section 11, so the next step is the proof that e → q is

differentiable. Pick x ∈ I3/2† and expand it as
∑

eiωi. Then ∂x/∂ei = ωi, ∂X/∂ei =
∑

ωijXj,
and

∂q

∂ei
=

∂

∂ei
eX( origin )

=
∂X

∂ei
q

=

∞∑
j=1

ωijXjq

=

∞∑
j=1

4

∫ λ2i

λ2i−1

1j(Δ
2 − 4)−1/2 dμXjq.

This formal computation may be used to confirm the existence of ∂q/∂ei, but for the discussion
of the higher partials it is better to bring the final sum into a more compact form. One would
like to pull the sum inside the integral and interpolate to obtain

∂q

∂ei
= 4

∫ λ2i

λ2i−1

⎡
⎣ ∞∑
j=1

1jD
∂Δ(λ2j)

∂q

⎤
⎦ dμ√

Δ2(μ)− 4

= 4

∫ λ2i

λ2i−1

D
∂Δ

∂q

dμ√
Δ2(μ)− 4

but that is not legitimate sinceD(∂Δ/∂q), qua function of μ, does not belong to I1/2. However,
it does belong to I−1/2, so

∞∑
j=1

ωij
∂Δ

∂q
(λ2j) =

∞∑
j=1

4

∫ λ2i

λ2i−1

1j(Δ
2 − 4)−1/2dμ

∂Δ

∂q
(λ2j)

= 4
∞∑
j=1

∫ λ2i

λ2i−1

[
1

μ− λ2j
− 1

μ− λ0

]
y′
1(1, μ)

y′•
1 (1, λ2j)

dμ√
Δ2(μ)− 4

∂Δ

∂q
(λ2j)

= 4

∫ λ2i

λ2i−1

[
∂Δ

∂q
+

y′
1(1, μ)

μ− λ0

]
dμ√

Δ2(μ)− 4
.

The rapid decrease of the factor Δ•(λ2j) in ∂Δ(λ2j)/∂q = −Δ•(λ2j)f
2
2j permits term wise

differentiation of the sum with regard to 0 ≤ x < 1, and the stated formula for ∂q/∂ei drops
out. The rest of the proof will be plain.

Proof that the differential map is non-singular. j−1(f2
2j)

′, j = 1, 2, · · · , is an oblique
base for T , by Theorem 8. Now

∂q

∂ei
=

∞∑
j=1

ωijXjq = −
∞∑
j=1

ωijjΔ
•(λ2j)[j

−1(f2
2j)

′];
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thus

�2i =

∫ 1

0

∣∣∣∣ ∂q∂ei

∣∣∣∣
2

dx

is comparable to
∞∑
j=1

ω2
ijj

2|Δ•(λ2j)|2,

by the same theorem, and it is required to prove that the matrix⎡
⎣ ωijjΔ

•(λ2i)√∑∞
j=1 ω

2
ijj

2|Δ•(λ2j)|2

⎤
⎦ , i, j = 1, 2, · · · ,

regarded as an operator in the Hilbert space of the quadratic form
∑

c2i is bounded, 1:1, onto,
and so boundedly invertible. The proof occupies the next three lemmas.

LEMMA 1.
∞∑
j=1

ω2
ijj

2|Δ•(λ2j)|2

is comparable to ω2
iii

2|Δ•(λ2i)|2 as i → ∞.

Proof: The lemma states that the (off-diagonal) sum for j �= i is majored by the (diagonal)
summand for j = i. Now

|ωij | = 4

∣∣∣∣∣
∫ λ2i

λ2i−1

1j(Δ
2 − 4)−1/2

∣∣∣∣∣ ≥ constant| ×
∣∣∣∣∣
∫ λ2i

λ2i−1

(Δ2 − 4)−1/2

∣∣∣∣∣
is comparable to i, by Lemma 1.1, so that the diagonal summand is comparable to |λ2i −
λ2i−1|2, by Lemma 10.1. The estimate of the off-diagonal sum is just as easy: if j �= i and if
λ2i−1 ≤ μ ≤ λ2i, then

|1j(μ)| =
∣∣∣∣y

′
1(1, μ)

μ− λ0

λ2j − λ0

y′•1 (1, λ2j)

1

μ− λ2j

∣∣∣∣ ≤ λ2i − λ2i−1 × j2

i2
,

so

|ωij | ≤ 4

∫ λ2i

λ2i−1

∣∣∣1j(Δ
2 − 4)−1/2

∣∣∣

≤ constant× λ2i − λ2i−1 × j2

i2
× i,

and the sum is over-estimated by a constant multiple of

∑
j 	=i

(λ2i − λ2i−1)
2

i2
× j6 × (λ2j − λ2j−1)

2

j4
≤ constant× i−2(λ2i − λ2i−1)

2,

which is plenty.

The estimate of Lemma 1 implies that is suffices to deal with the modified matrix

(Jij) =

[
ωij

ωii

j

i

Δ•(λ2j)

Δ•(λ2i)

]
, i, j = 1, 2, · · · .

LEMMA 2. J is of the form: identity + compact.
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Proof: The lemma is proved by noting that J − 1 is of Hilbert-Schmidt class: Jii = 1, and
by the estimate of the off-diagonal sum in the proof of Lemma 1,

∞∑
i=1

∞∑
j 	=i

J2
ij =

∞∑
i=1

[ωiiiΔ
•(λ2i)]

−2
∑
j 	=i

[ωijjΔ
•(λ2j)]

2

≤ constant×
∞∑
i=1

i−2(λ2i − λ2i−1)
2

i4 × i−4(λ2i − λ2i−1)2

= constant×
∞∑
i=1

i−2

< ∞.

Lemma 2 implies that J is 1:1, onto, and boundedly invertible as soon as it is 1:1, so the
proof is finished by proving this.

LEMMA 3. J is 1:1.

Proof: Pick cj , j = 1, 2, · · · , with
∑

c2j < ∞ so as to make
∑

Jijcj = 0 for every
i = 1, 2, · · · . The condition states that

0 =

∞∑
j=1

ωijjΔ
•(λ2j)cj = 4

∫ λ2i

λ2i−1

φ(Δ2 − 4)−1/2, j = 1, 2, · · · ,

with an integral function

φ(λ) =

∞∑
j=1

1j(λ)jΔ
•(λ2j)cj ∈ I3/2,

as you know from Amplification 11.2 that such functions must have nontrivial periods or
vanish identically. Therefore, 0 = [jΔ•(λ2j)]

−1φ(λ2j) = cj, j = 1, 2, · · · , as required.

7.14. The Hierarchy of Tangent Spaces for a Purely Simple Spectrum

The point x ∈ I3/2† gives rise to the vector field x ·X =
∑

xjXj permitting the interpre-

tation of I3/2† as a tangent space to M , as in Amplification 11.2. Unfortunately, this space
does not contain any of the local Hamiltonian fields Vi = D∂Hi/∂q, i = 1, 2, · · · , the study
of which the Jacobi variety is supposed to facilitate; in fact

Vi =

∞∑
j=1

pi(λ2j)[y
′•
1 (1, λ2j)]

−1Xj

with a polynomial pi of precise degree i (see Section 10), and the corresponding point x with
coordinates

xj = pi(λ2j)[y
′•
1 (1, λ2j)]

−1 ∼ constant× j2i

never belongs to I3/2† for i = 1 or more.
The remedy is not far off. Define Im/2† as the Hilbert space for the quadratic form∑

j−m−1x2
j < ∞ for odd m = 3, 5, 7, · · · . Then Vi belongs to Im/2† if and only if m > 4i,

and thus V1 ∈ I5/2†, V2 ∈ I9/2†,etc., with a self-explanatory abuse of notation. In this way
you obtain a hierarchy of tangent spaces

I3/2† ⊂ I5/2† ⊂ I7/2† · · · ⊂ Im/2† ⊂ T,

I∞/2† being the union of Im/2† for m = 3, 5, 7, · · · . The exponential map x → exp{x · X}
provides a topological map of Im/2† onto M as before, and M can be identified with the factor
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space Im/2†/Lm/2 in which Lm/2 is the lattice of periods ω ∈ Im/2† such that exp{ω ·X} acts
as the identity on N . The proof is the same as for m = 3.

AMPLIFICATION 1. The inclusion I∞/2† ⊂ T requires some explanation. T ⊂ L2
1 is the

space of space of tangent vectors Xq to M at q expressible as
∑∞

i=1 ci[−
√
2(πi)−1f2if

′
2i] with∫ 1

0

|Xq|2 dx

comparable to
∑

c2i . Now you may write −√
2(πi)−1f2if

′
2i as [

√
2πiΔ•(λ2i)]

−1Xiq and so

express Xq as
∑

xiXiq with xi = [
√
2πiΔ•(λ2i)]

−1ci, i = 1, 2, · · · . The upshot is that T may
be visualized as the Hilbert space for the quadratic form

∑
i2|Δ•(λ2i)|2x2

i , thus placing it on

the same footing as Im/2†, m = 3, 5, 7, · · · .
THEOREM 1. ω ∈ Lm/2 if and only if it can be written as

∑
niωi with the primitive

periods of Theorem 11.4 and integral ni, i = 1, 2, · · · , subject to ∑
i−m+1n2

i < ∞.

Proof: The case m = 3 was treated before; thus you may take m = 5 or more. First, you
prove that ω =

∑
niωi is convergent in Im/2† if and only if and only if

∑
i−m+1n2

i < ∞,
precisely as in Theorem 11.4, and you prove that exp{ω ·X} acts trivially on M , the moral
being that ω ∈ Lm/2. Now let x be any point of Lm/2. Then, the flow exp{tx ·X} is of period
1, and during this motion

2μ•
i√

Δ2(μi)− 4
=

∞∑
j=1

xj

∏
k 	=i

1− λ2j/μk

1− μi/μk
,

as in the proof of Theorem 11.3. The result of the motion during a full period 0 ≤ t < 1 is
that pi = (μi,

√
Δ2(μi)− 4) makes an integral number ni of full revolution about the i-th

circle, so

ni4

∫ λ2i

λ2i−1

(Δ2 − 4)−1/2 =

∞∑
j=1

∫ 1

0

⎡
⎣∏
k 	=i

1− λ2j/μk

1− μi/μk

⎤
⎦ dt× xj

for i = 1, 2, · · · . The proof is finished by two simple lemmas.

LEMMA 1.
∑

i−m+1n2
i < ∞.

Proof: The product inside the right-hand integral is expressed as y2(1, λ2j)[(λ2j −
μi)y

•
2(1, μi)]

−1, the function y2(1, λ) being computed for the actual point of M at hand.
Therefore,

∫ 1

0

⎡
⎣∏
k 	=i

1− λ2j/μk

1− μi/μk

⎤
⎦ dt =

{
O(1) for j = 1,

O(λ2j − λ2j−1)× i2/j2 for j �= i,

by a self-evident appraisal; hence the modulus of

4ni

∫ λ2i

λ2i−1

(Δ2 − 1)−1/2

cannot exceed a constant multiple of

|xi|+
∑
j 	=i

(λ2j − λ2j−1)
i2

j2
|xj | = O(|xi|+ i2),

and ∑
i−m+1n2

i ≤ O(1)
∑

i−m−1(|xi|2 + i4) < ∞,

m being 5 or more.

LEMMA 2. x =
∑

niωi.
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Proof: Let y2(1, λ) be computed for the actual point of M in hand, as in the proof of
Lemma 1. Then

niωik = 4ni

∫ λ2i

λ2i−1

1k(μ)
dμ√

Δ2(μ)− 4

=

∞∑
i=1

∫ 1

0

[
y2(1, λ2j)

(λ2j − μi)y•2(1, μi)
1k(μi)

]
dt× xj .

This is to be summed over i and the latter sum is to be interchanged with the sum over k
and with the integral to obtain the desired result:

∞∑
i=1

niωij =

∞∑
j=1

∫ 1

0

[ ∞∑
i=1

y2(1, λ2j)

(λ2j − μi)y•2(1, μi)
1k(μi)

]
dt× xj

=

∞∑
j=1

1k(λ2j)xj

= xk.

The only point at issue is the interchange, and that can be settled directly:

∞∑
i=1

∞∑
j=1

∫ 1

0

∣∣∣∣ y2(1, λ2j)

(λ2j − μi)y•2(1, μi)
1k(μi)

∣∣∣∣ dt |xj |

≤ O(1) ×
∞∑
i=1

⎡
⎣|xi|+

∑
j 	=i

(λ2j − λ2j−1)
i2

j2
(λ2i − λ2i−1)

k2

i2
|xj |

⎤
⎦ < ∞.

The methods employed above lead easily to the principal result.

THEOREM 2. Define a map p to a point x of the infinite-dimensional number space by
the rule

2

∞∑
i=1

∫ pi

oi

1j(μ)
dμ√

Δ2(μ)− 4
= xj , j = 1, 2, · · · ,

permitting such paths of integration oi, pi as make ni revolutions about the i-th circle with∑
i−m+1n2

i < ∞. Then the map is onto Im/2† and can be rendered 1:1 by identification
modulo the period lattice Lm/2, i.e., p → x can be viewed as a topological map of M onto the
compact factor space Im/2†/Lm/2. The inverse map is implemented by the exponential map
as for m = 3.

AMPLIFICATION 2. The existence and smoothness of the exponential map

x ∈ Im/2† → X =
∑

xjXj → exp{X}
is proven exactly as in Lemma 11.2 for eachm = 3, 5, 7, · · · , separately. The local Hamiltonian
flows exp{tVi}, i = 1, 2, · · · , form a special case; in particular, for i = 2, you obtain an
extraordinarily simple proof of the existence and smoothness of solutions of the Korteweg-de
Vries equation ∂q/∂t = 3q∂q/∂x − 1

2D
3q; see Sjöberg [35] for a proof in another style. The

same methods may be employed to prove the existence and continuity of exp{tX} for any
vector field X with ∑

j2|Δ•(λ2j)|2 x2
j < ∞, for X ∈ T ⊃ I∞/2†.

The current restriction to a purely simple spectrum is for ease of writing, only. The facts and
their proofs have a general validity, as will be plain in the next section.
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AMPLIFICATION 3. Im/2† is closely allied to the space Im/2 of integral functions φ(λ)
of order 1

2 and type at most 1 with

‖φ‖2m/2 =

∫ ∞

0

|φ(λ)|2λm/2 dλ < ∞.

Let x ∈ Im/2† be the image of p. Then

2

∞∑
i=1

∫ pi

oi

φ(Δ2 − 4)−1/2 =

∞∑
j=1

φ(λ2j)xj

for φ ∈ Im/2, much as for m = 3. The key to the proof is the fact that
∑

im+1|φ(μi)|2 is
comparable to ‖φ‖2m/2 for any choice of tied spectrum μi, i = 1, 2, · · · . The formula embodies

a map of Im/2† into the dual space of Im/2; indeed, the map is already onto, with this defect: it
ceases to be 1:1 for m = 5, 7, · · · , the kernel being the span of Vi, i = 1, · · · , p, for m = 2p+3.

Proof form = 5: y′1(1, λ)×[(λ−λ0)(λ−λ2i)(λ−λ2j)]
−1 is of class I5/2 for any 0 < i < j,

so
∑

φ(λ2k)xk = 0 for φ ∈ I5/2 implies

0 =
y′•1 (1, λ2i)

(λ2i − λ0)(λ2i − λ2j)
xi +

y′•1 (1, λ2j)

(λ2i − λ0)(λ2i − λ2j)
xj ,

and either x = 0 or else xj is proportional to −2(λ2j − λ0)[y
′•
1 (1, λ2j)]

−1; it is to be proved

that the second choice of x annihilates I5/2. Let φ ∈ I5/2. Then (λ− λ0)φ(λ) is of class I
1/2,

and
∞∑
j=1

y′1(1, λ)
(λ− λ2j)y′•1 (1, λ2j)

(λ2j − λ0)φ(λ2j) = (λ− λ0)φ(λ).

Now a simple application of the Paley-Wiener theorem confirms that

φ(λ) = O
(
e
√−λλ−7/4

)

for λ ↓ −∞; hence

∞∑
j=1

λ2j − λ0

y′•1 (1, λ2j)
φ(λ2j) = lim

λ↓−∞
λ2φ(λ)

y′1(1, λ)
= lim

λ↓−∞
O(λ−1/4) = 0.

The proof is finished by checking that Vi is, in fact, the vector field x ·X corresponding to x:

V1 = −
∞∑
j=1

2(λ2j − λ0)

y′•1 (1, λ2j)
Xj ;

this is immediate from Proposition 7.6.3.

7.15. The Jacobi Variety in the Presence of Double Eigenvalues

It is necessary to modify the presentation of Sections 11–14 in the presence of double
eigenvalues. Let y1(1, λ) be formed for the point with tied spectrum μi = λ2i−1, i = 1, 2, · · · ,
and y′1(1, λ) for the point with reflecting spectrum νi = λ2i, i = 0, 1, 2, · · · , as in Section 11.
Then y2(1, λ) splits as y

o
2(λ)y

×
2 (λ), in which the first, respectively second, factor accounts for

the simple, respectively double, periodic eigenvalues; similarly, y′1(1, λ) splits as y
′o
1 (λ)y

×
2 (λ)

and Δ2(λ)− 4 = 4y′1(1, λ)y2(1, λ) as [Δ
o2(λ)− 4]× [y×2 (λ)]

2. The Jacobi map from the torus
of Fig. 7.2 or 7.4 into the n-dimensional number space is now defined much as in Section 11:
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the image x = (x1, · · · , xn) of a point pi = (μo
i ,
√
Δo2(μo

i )− 4), i = 1, 2, · · · , n, of the torus
is given by

xj = 2

n∑
i=1

∫ pi

oi

1o
j(μ)

dμ√
Δo2(μ)− 4

, j = 1, · · · , n,

in which oi = (λo
2i−1, 0), i = 1, · · · , n, and 1o

j is formed for the simple eigenvalues in the
obvious way. The rule may be spelled out as

xj = 2

n∑
i=1

∫ pi

oi

y′1(1, μ)
μ− λ0

λo
2j − λ0

y′•1 (1, λo
2j)

1

μ− λo
2j

dμ√
Δ2(μ)− 4

× y×2 (λ
o
2j),

and it follows from Section 11 that

‖x‖23/2† =
n∑

j=1

(λo
2j)

−2|y×2 (λo
2j)|−2x2

j < ∞

provided the winding numbers ni, i = 1, 2, · · · , of the paths of integration satisfy
n∑

i=1

(λo
2i)

−1n2
i < ∞.

Now it is easy to prove much as before

(1) that the map q → p → x is inverted by the exponential

x → X =

n∑
j=1

xjD∂Δo(λo
2j)/∂q → q = eX(origin),

in which ∂Δo/∂q is the quotient of ∂Δ/∂q by y×2 ,
(2) that the image if the full Hilbert space I3/2† for the quadratic form ‖x‖23/2† =∑

(λo
2j)

−1|y×2 (λo
2j)|−2x2

j ,

(3) that the map is 1:1 modulo the lattice L3/2 of integral sums ω =
∑

niωi of the
primitive periods

ωij = 4

∫ P

λo
2i−1

λo
2i1

o
j(μ)

dμ√
Δo2(μ)− 4

, j = 1, 2, · · · ,

with
∑n

j=1(λ
o
2j)

−1n2
j < ∞, and

(4) that M may be identified thereby as the factor space I3/2†/L3/2, alias the real part

of the Jacobi variety of
√
Δo2(λ)− 4.

Let I3/2 be the class of integral functions φ(λ) of order 1
2 and type at most

1− ( the type of y×2 ) with

‖φ‖23/2 =

∫ ∞

0

|φ(λ)y×2 (λ)|2λ3/2 dλ < ∞.

Then you have a perfect analogy with the results of Section 5:
(5) the restriction φ → φ(μo

i ), i = 1, · · · , n, is a 1:1 map of I3/2 onto the Hilbert
space of the quadratic form

∑n
i=1(μ

o
i )

2|φ(μo
i )y

×
2 (μ

o
i )|2, the latter being comparable

to ‖φ‖23/2, and
(6) I3/2 inherits from the former class of that name the interpolation formula

φ(λ) =

n∑
i=1

φ(μo
i )
∏
j 	=i

1− λ/μo
j

1− μo
i /μ

o
j

;

also,
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(7) the Jacobi map p → x is equivalent to the relation

2

n∑
i=1

∫ pi

oi

φ(μ)
dμ√

Δo2(μ)− 4
=

n∑
j=1

φ(λo
2j)xj

for φ ∈ I3/2, and
(8) a differential of the first kind φ(μ)(Δo2(μ)− 4)−1/2 dμ is uniquely determined by its

periods

4

∫ λo
2i

λo
2i−1

φ(μ)
dμ√

Δo2(μ)− 4
i = 1, · · · , n.

The higher tangent spaces Im/2†, m = 3, 5, 7, · · · ,∞, and period lattices are introduced
in a similar way, and the upshot is that everything goes through routinely provided you
systematically factor out the function y×2 (λ) containing the double eigenvalues.

AMPLIFICATION 1. Let n be finite. Then Δo2(λ)− 4 is proportional to �2(λ) = −(λ−
λo
0) · · · (λ− λo

2n), and I3/2 is the class of polynomials of degree less than n. This may be seen
from the fact that, for φ(λ) from that class,∫ ∞

0

|φy×2 |2 λ3/2 dλ =

∫ ∞

0

|φy2|2
|yo2 |2

λ3/2 dλ

is comparable to ∫ ∞

0

|φ(λ)|2|λ−1/2 sin
√
λ+O(λ−3/2)|2λ3/2(1 + λ2)−n dλ,

and so, by a standard sampling theorem for functions of order 1 and type at most 1, compa-
rable to ∫ ∞

0

|φ(λ)|2λ1/2(1 + λ2)−n dλ.

This is the case of classical hyperelliptic function theorem treated in [5, 16, 32], and [28].

AMPLIFICATION 2. In connection with the present development, it is comforting to
observe that the simple periodic spectrum uniquely determines the double periodic spectrum.30

To begin with,

Δ(λ) = 2 cos

[
√−1ε

∫ λ

λ0

Δ•(μ)√
Δ2(μ)− 4

dμ

]

with a real constant ε so determined as to make Δ(λ) ∼ 2 cos
√
λ for λ ↓ −∞. Now

Δ•(μ)√
Δ2(μ)− 4

= constant×
∏n

i=1(1− μ/λo
i )√∏2n

i=0(1 − μ/λo
i )
,

from which it appears that the simple spectrum λo
i , i = 0, · · · , 2n, determines the double if

the non-trivial roots λ•
i , i = 1, · · · , n, of Δ•(λ) = 0 are known; the fact is that the simple

spectrum already determines them uniquely.

Proof: The increment to the argument of the cosine across a non-trivial interval of insta-
bility [λo

2i−1, λ
o
2i] is pure imaginary and must vanish if you are to have Δ(λo

2i−1−) = Δ(λo
2i+).

Threfore ∫ λo
2i

λo
2i−1

∏n
i=1(1− μ/λ•

i )√∏2n
i=0(1− μ/λo

i )
dμ = 0, i = 1, · · · , n.

30Compare Hochstadt [13].
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Now
∏n

i=1(1 − μ/λ•
i )y

×
2 (μ) is proportional to y2(1, μ) at some point of M and thus can be

estimated as a constant multiple of λ−1/2 sin
√
λ+O(λ−3/2) for λ ↑ ∞. Let λ′

i and λ
′′
i be two

different determinations of λ•
i , i = 1, · · · , n. Then the difference

φ(μ) =

n∏
i=1

(
1− μ

λ′
i

)
− c

n∏
i=1

(
1− μ

λ′′
i

)

belongs to I3/2 for some choice of c �= 0, determining a differential of the first kind with
vanishing periods ∫ λo

2i

λo
2i−1

φ(μ)
dμ√

Δo2(μ)− 4
= 0, i = 1, · · · , n.

But such a φ has to vanish identically by (8), and you must have λ′
i = λ′′

i , i = 1, · · · , n. The
proof is finished.

7.16. Periodicity, Almost Periodicity, and Metric Transitivity

A rectilinear motion on a compact torus such as M = I3/2†/L3/2 is periodic, or metrically
transitive, or else a mixture of the two. The purpose of the present section is to study this
aspect of the flows exp{tX} arising from I∞/2†. For ease writing, the material is presented
for a purely simple spectrum; the modifications necessary for a mixed spectrum will be self-
evident from Section 15.

PERIODICITY. The fact that translation exp{tV1} is of period 1 on M is expressed in
the language of the Jacobi variety as

2

∞∑
i=1

i

∫ λ2i

λ2i−1

y′1(1, μ)
μ− λ0

1

μ− λ2i

dμ√
Δ2(μ)− 4

= −1, j = 1, 2, · · · .

Proof: As t runs from 0 to 1, pi moves through i full revolutions, and during the motion

2μ•
i√

Δ2(μi)− 4
=

∞∑
j=1

−2(λ2j − λ0)

y′•1 (1, λ2j)

∏
l 	=i

1− λ2i/μl

1− μi/μl

according to the expansion

V1 = −
∞∑
j=1

2(λ2j − λ0)[y
′•
1 (1, λ2j)]

−1Xj

of Amplification 13.3. Therefore,

∞∑
i=1

4i

∫ λ2i

λ2i−1

1k(μ)
dμ√

Δ2(μ)− 4
=

∞∑
j=1

−2(λ2j − λ0)

y′•
1 (1, λ2j)

∫ 1

0

∞∑
i=1

⎡
⎣1k(μi)

∏
l �=i

1− λ2j/μl

1− μi/μl

⎤
⎦ dt

=

∞∑
j=1

−2(λ2j − λ0)

y′•
1 (1, λ2j)

1k(λ2j)

=
−2(λ2k − λ0)

y′•
1 (1, λ2k)

.

The proof is finished by the substitution

1k(μ) =
y′1(1, μ)
μ− λ0

λ2k − λ0

y′•1 (1, λ2k)

1

μ− λ2k
.

The periodicity of the Korteweg-de Vries flow exp{tV2} may be discussed in the same
way.
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LEMMA 1.

V2 = −
∞∑
j=1

(2λ2j + c)2(λ2j − λ0)

y′•1 (1, λ2j)
Xj

with c = λ0 −
∑∞

i=1(λ2i − λ2i−1).

Proof: Let the expansion for V1 act on q and integrate back with regard to x to produce

q = −
∞∑
j=1

2(λ2j − λ0)

y′•1 (1, λ2j)

∂Δ(λ2j)

∂q
+ c

with a constant of integration c. This number is now evaluated as c = λ0 −
∑

(λ2i − λ2i−1)
by noting that it must be constant on M :

H0 =

∫ 1

0

q dx = −
∑ 2(λ2j − λ0)

y′•1 (1, λ2j)
Δ•(λ2j) + c

and then evaluating q(0) at the special point of M with tied spectrum μi = λ2i, i = 1, 2, · · · ,
with the help of the first trace formula

q(0) = λ0 +

∞∑
i=1

(λ2i−1 + λ2i − 2μi)

in [28], p. 254, and the fact that ∂Δ(λ2j)/∂q(0) = 0, j = 1, 2, · · · , at the point in hand. The
expansion of V2 is obtained by applying L = qD +Dq − 1

2D
3 to the formula for q and then

using the expansion of V1.
Now V2 ∈ I9/2†, and if the flow is of period T , then as time runs from t = 0 to t = T, pi

moves through ni full revolutions with
∑

i−8n2
i < ∞; whence

4

∞∑
i=1

ni

∫ λ2i

λ2i−1

1j(μ)
dμ√

Δ2(μ)− 4
=

−(2λ2j + c)2(λ2j − λ0)

y′•1 (1, λ2j)
T, j = 1, 2, · · · ,

and similarly in general: if x ∈ Im/2† and if X is the corresponding vector field, then exp{tX}
is of period T on M if and only if there exists integers ni, i = 1, 2, · · · , with ∑ i−m+1n2

i < ∞
such that

4
∞∑
i=1

ni

∫ λ2i

λ2i−1

1j(μ)
dμ√

Δ2(μ)− 4
= xjT, j = 1, 2, · · · ,

i.e., if and only if xT ∈ Lm/2.

ALMOST PERIODICITY. Hyman31 and Kruskal-Zabusky [20] demonstrated numeri-
cally that the Korteweg-de Vries flow is almost periodic in C∞

1 . Let x ∈ I∞/2† and let X be
the associated vector field. Then the flow exp{tX} is almost periodic on M in the following
extraordinarily strict sense: Fix i ≥ 1. Then to every ε > 0 corresponds a number l(ε) < ∞
such that any interval of length l(ε) or more contains an approximate period T for which32∥∥∥e(t+T )Xq − etXq

∥∥∥
i
< ε,

independently of −∞ < t < ∞ and of q ∈ M . Lax conjectured this fact in a less precise form
in [23].

31See the appendix to [22].
32‖f‖i is the i-th Sobolev norm

√∑
j≤i

∫ 1
0 |Dif |2 dx.
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Proof: Let x ∈ Im/2†. The bound∥∥eξ·Xq − eη·Xq
∥∥
i

≤ Cm(M)d(ξ, η)

d(ξ, η) = inf
Lm/2

‖ξ − η − ω‖m/2†

is immediate from the proof of Lemma 11.2, revamped for general m = 3, 5, 7, · · · . The proof
of the almost periodicity of etX is now before you: The rectilinear flow x0 → x0+ tx is almost
periodic on Im/2†/Lm/2 by the compactness of that space. But also,∥∥∥e(t+T )Xq − etXq

∥∥∥
i
≤ cm(M)d(Tx, x),

independently of −∞ < t < ∞ and of q ∈ M ; thus every approximate period T of the
rectilinear motion is an approximate period of etXq, independently of q ∈ M . The proof is
finished.

METRIC TRANSITIVITY. M is a compact commutative group. The dual group M ′

comprises of the characters e2π
√−1k·x, with k from the dual lattice (L∞/2)′, i.e., the points

k of the ∞-dimensional number space with
∑

imk2i < ∞ for every m = 1, 2, · · · and k · ω
integral for every ω ∈ L∞/2. Notice that if ωi, i = 1, 2, · · · , are the primitive periods of M ,
then ni = k · ωi is tame:

|ni| ≤ constant× ‖ωi‖3/2 = O(i−1) as i ↑ ∞;

thus ni = 0 from some i = j < ∞ on. The rest of the discussion follows Weyl [36]. The
condition of metric transitivity for a rectilinear motion x0 → x0 + tx of I∞/2†/L∞/2 is that

lim
T↑∞

1

T

∫ T

0

e2π
√−1k·(x0+tx) dt = 1 or 0

according to whether k = 0 or not; hence the transitivity takes place if and only if k · x does
not vanish for any k ∈ (L∞/2)′. The criterion can be reformulated without reference to the
dual lattice. Let ni = k · ωi, i = 1, 2, · · · , be as above and recall that ni = 0 from some i = j
on. Expand x as

∑
yiωi. Then k · x =

∑
i≤j yini �= 0 for every k if and only if the numbers

yi, i = 1, 2, · · · , are rationally independent. For the Korteweg-de Vries flow exp{tV2} the
condition may be spelled out as follows: the numbers yi, i = 1, 2, · · · , determined by

−2

∞∑
i=1

yi

∫ λ2i

λ2i−1

y′1(1, μ)
μ− λ0

1

μ− λ2j

dμ√
Δ2(μ)− 4

= λ2j + c, j = 1, 2, · · · ,

must be rationally independent ; it looks hopeless to check this.
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8Book Reviews: Riemann Surfaces
of Infinite Genus by J. Feldman,
H. Knörrer, and E. Trubowitz.
CRM Monograph series. Vol. 20,
Amer. Math. Soc.

Henry P. McKean Jr.1

8.1. The Classical Story

One of the loveliest parts of mathematics is the subject of projective curves, developed,
notably, by Jacobi, Abel, Riemann, and Poincaré over most of the nineteenth century. “Pro-
jective curve” means that you take an irreducible polynomial p ∈ C[x1, x2], bring each of its
terms up to top degree by means of an auxiliary variable x0, and think of the vanishing of
the homogeneous polynomial p(x0, x1, x2) so produced as cutting out a locus or “curve” X

in the projective space CP
2 of triples (x0, x1, x2) ∈ C

3 − 0 with identification of (complex)
lines c(x0, x1, x2): c �= 0 to single points. X is then a compact, complex manifold of (complex)
dimension 1, with possible singularities which may be resolved in a routine way, and con-
versely: any such manifold arises in this way. Alternatively, the solution x2 of p(x1, x2) = 0
is a many-valued “algebraic” function of x1 and X is its “Riemann surface”.

X is an (oriented) sphere with 0 ≤ g < ∞ handles attached, this number being its genus. It
carries a field K of functions of “rational character”, imitating the common rational functions
K = C(x) on the sphere (g = 0), but more complicated, e.g. for the torus (g = 1), K is an

elliptic function field of the form K = C(x)[
√

(x − e1)(x − e2)(x− e3)] with distinct numbers
e. Here, it is already a remarkable fact that the algebra carries within it all the geometry: if
the K’s are isomorphic as fields, then the underlying curves X have a 1:1 onto “morphism”
between them, rationally expressible both forward and back.

X also carries exactly g independent differentials of the first kind (DFK) of the form
ω = f(z)dz with pole-free f on any little patch with “local parameter” z. These may be
organized as follows. Let a1, . . . , ag and b1, . . . , bg be a standard homology basis of X, the
a’s/b’s passing around/through the holes. The standard basis of DFK is specified by requiring
[ai(ωj) : 1 ≤ i, j ≤ g] = the identity.

Now form the “Abel sum” as follows: Take (1) a base point o ∈ X, fixed, (2) a variable
“divisor” P comprising so and so many points p1, . . . , pn of X, (3) paths from o to each p,
and write ∫ P

O

ω ≡
n∑

i=1

∫ pi

o

(
ω1, . . . , ωg

)
= x ∈ C

g.

Here, the paths of integration produce ambiguities, which may be removed by considering
x modulo “periods”, i.e. modulo the lattice L ⊂ C

g produced by closed paths, from o and

1Courant Institute of Mathematical Sciences, New York, NY, USA, mckean@cims.nyu.edu.
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back again, in each summand. In this way, x is reduced to an unambiguous point of Cg/L ≡
Jac = the Jacobi variety of X, this being a compact torus because the several periods a(ω)
and b(ω) span Cg over R. The beautiful theorem of Abel is expressed in this language: P/Q
is the divisor of poles/roots of a function f ∈ K if and only if they comprise an equal number
of points and have the same image in Jac. Riemann-Roch may also be mentioned here. It
states that the class F ⊂ K of functions with poles P or softer and the class D ⊂ DFK of
differentials of the first kind with these roots or harder are related by dimF = the number
of points in P+ 1− g + dimD, showing (in part) how K and DFK are intertwined.

The next item in the classical story is Riemann’s theta function: with the prior nor-
malization A = [ai(ωj)] = the identity, it turns out that B = [bi(ωj)] is symmetric, with
positive-definite imaginary part, guaranteeing the rapid convergence of the sum

ϑ(x) =
∑
n∈Zg

e2π
√−1n•x+π

√−1n•Bn = “theta”

for x ∈ C
g. This is almost a function on Jac itself: ϑ is unchanged by addition to x of any

“real” period a(ω), while addition of any “imaginary” period b(ω) multiplies it by a simple
exponential factor. It follows that the vanishing of ϑ cuts out a sub-variety Θ of Jac, the so-
called “theta divisor”. This may be described by Riemann’s “vanishing theorem” to the effect
that if P is comprised of exactly g points p1, . . . , pg in general position and if x is its image

in Jac, then, with a suitable fixed “Riemann constant” K, f(p) = ϑ(x − ∫ p

o
+K) vanishes

simply at p = p1, . . . , pg and no place else. This fact can now be used to express the general
function f ∈ K as a ratio of products of translates of ϑ, comparable to the way an ordinary
rational function is written as a ratio of products of translates of x. Here it must be mentioned
that ϑ contains all the information about X in a deeper sense: if the imaginary period matrix
B = [bi(ωj)] is known, then so is X, up to a morphism. This is “Torelli’s theorem”.

These are the bare bones of the classical story.

8.2. Bigger and Better Curves

Think about curves which are 2-sheeted covers of the plane, of which Jacobi’s elliptic curve
y2 = (1− x2)(1− k2x2) with k �= 0, 1,∞ is the genus 1 prototype. But why just a polynomial
in x? Why not y2 = Πn	=0(1 − x2/n2)? In short, why not a “transcendental” curve? Now
the old (projective) compactness is lost and transcendental points of a new character appear
where infinitely many handles pile up, as over x = ∞ in the present example.

Historically, a number of attempts were made to come to grips with such curves. Here are
a few references: Nevanlinna [26], Myrberg [22, 23, 24], Ahlfors [2], Heins [11], Andreotti [4],
and Accola [1]. But I think it is fair to say that these trials, gallant as they may have been,
were none of them fully satisfactory, and this for three reasons: (1) It is necessary to deal
with the piling up of handles at “transcendental” points of X. (2) It is also pretty obvious
that you must bring in transcendental functions to the function field. Already, H.F. Baker
[6] understood this point, introducing the analogue of the exponential function which bears
his name, together with that of Akhiezer [3], who reinvented it for another reason. (3) To
extend the classical story to transcendental curves, it is, if not indispensable, then surely
an enormous help to have in mind some concrete problem to which the machinery is to be
applied as an aid to finding the best technical conditions: not so wide that the story comes to
a stop, not so narrow that no application of any consequence can be accommodated. Baker
[7] was almost successful in this respect, too: on p. 48, close inspection will reveal the solution
of KdV expressed in the fashion of Its-Matveev [12] reported below. Unfortunately, KdV was
unknown to him (Baker), so he did not understand what he had. But this is jumping ahead.
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8.3. KdV and All That

A few connections between mechanics and projective curves were known in the nineteenth
century. Jacobi in his Vorlesungen über Dynamik [13] had used Abel sums to separate variables
in the Hamilton-Jacobi equation in connection with the geodesic flow on the surface of a 3-
dimensional ellipsoid, etc. Turning things backwards, he even made a mechanical proof of the
addition theorem for such integrals in the case of 2-sheeted curves. C. Neumann [25] employed
the same trick to integrate a system of initially uncoupled harmonic oscillators, constrained to
have their joint displacements move on a fixed sphere. Kovalevskaya’s integration of her top by
means of theta functions [15] is the most famous instance—this in the face of Picard’s advice
that theta functions are surely too simple to solve any interesting mechanical problem. These
are all examples of “completely integrable” Hamiltonian mechanics, meaning that the system
of (say) 2d degrees of freedom has, in addition to its own Hamiltonian, d-1 more, independent,
“commuting” constants of motion, where the adjective signifies that all the Hamiltonian flows
produced by these commute, one with another. The number d is maximal in this regard: you
cannot have more than d such flows in 2d dimensions. But if you do have so many, then (in
principle) you can change coordinates to convert the original flow into straight-line motion
at constant speed and map that back to solve your problem. The only trouble is that there
is no effective way to be sure you have enough constants of motion and no effective recipe to
find the correct change of coordinates. Jacobi complains of this in his Vorlesungen, where he
says something like this: “We are supposed to be solving differential equations but of course
we don’t known how to do it. What we can do is look for some geometrically attractive
substitution and, having found one that pleases us, seek out mechanical problems that could
yield to this particular trick.” The moral is that integrability, as defined above, is elusive.
I much prefer Hermann Flaschka’s practical definition, to wit : “You didn’t think I could
integrate that, but I can!” Take your choice. There are effectively no useful theorems, only
a series of beautiful examples; indeed, the whole subject died a sad and early death when
Poincaré showed that the 3-body problem is not integrable.

But then came startling news in Gardiner, Greene, Kruskal, and Miura [10] that the
Korteweg-de Vries equation KdV: ∂v/∂t = 3v∂v/∂x−(1/2)∂3v/∂x3, descriptive of the leading
edge of long waves in shallow water, had an apparently unlimited number of commuting
constants of motion and could be integrated explicitly. Now the number of degrees of freedom
is 2d = 2∞, and it is not enough to exhibit d = ∞ constants of motion. Somehow, you
must have d = ∞ such exactly, not one more or less. Be that as it may, KdV was solved in a
completely satisfactory way, using (and this is really odd) the quantum-mechanical apparatus
of reflection and transmission coefficients (“scattering”) for the allied “spectral problem”
−ψ′′ + vψ = λψ. I have no space to explain this right now but will come back to it briefly at
the end after describing what happens when v is periodic, of period 1, say.

KdV was first expressed in a clever way by P. Lax [16, 17]: with Lψ = −ψ′′ + vψ
and Pψ = (3/2)(v′ψ + 2vψ′) − 2ψ′′′, KdV may be expressed in commutator language as
v• = L• = [P,L], in which I have obeyed Gelfand’s rule that the right-hand side should read
P(eter) L(ax). Here L is symmetric and P is skew, which leads at once to the easily verified
surmise that the periodic/anti-periodic eigenvalues of L are constants of motion as v moves
under KdV; in fact, this a complete list of such constants.

Now Lψ = λψ is Hill’s problem, studied by him in connection with the motion of the
moon, and well-understood. There is a simple periodic ground state λ0 followed by an infinite
number of separated, alternately anti-/periodic pairs λ−

n ≤ λ+
n , tending to +∞ like π2n2. The

whole discussion now centers upon a variant of Hill’s “discriminant” Δ in the form

Δ2(λ)− 1 =
(
λ0 − λ

)
Π∞

n=1

(
λ+
n − λ

)(
λ−
n − λ

)
/π4n4.
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For each value of λ ∈ C, Lψ = λψ has two “multiplicative” solutions ψ− and ψ+ with
multipliers m−/m+ = Δ ± √

Δ2 − 1, meaning that ψ(x + 1) = mψ. Here, the irrationality√
Δ2 − 1 comes in, and it is natural to think in terms of the transcendental curve μ2 = Δ2−1,

lying in two sheets over the complex plane where λ sits. I write p = (λ,
√
Δ2 − 1) for points of

X and e(x, p) = ψ±(x), the signature of the radical
√
Δ2 − 1 in p dictating which of the two

functions ψ is meant. With the normalization e(0, p) ≡ 1, this is the Baker-Akhiezer function
I spoke of before. Over λ = ∞, e(x, p) is of the form exp[kx + o(1)] with k =

√−λ, 1/k
serving as local parameter there. This is the only transcendental point of X where holes pile
up, and even there things are pretty nice: the holes are spaced more and more widely and (if
v is smooth) of rapidly vanishing diameter, so as to approximate common double points and
to be, so to say, self-effacing. The “finite” part of X imitates a sphere with handles, one such
to each open spectral “gap” λ−

n < λ+
n , and on the “real oval” an covering [λ−

n , λ
+
n ] is found

(a) a simple “immovable” pole of e(x, p), independent of 0 ≤ x < 1, and (b) a simple moving
root pn(x) starting at pn(0) = the pole. The projection of this root to the spectral plane is
the nth eigenvalue of Le = μe subject to e(x, p) = 0; that is why it moves with x.

Now it is fortunate that

(1) There are plenty of differentials of the first kind.
(2) The moving root divisor of e(x, p) is in “real position”; i.e. it has just one point in

each real oval a.
(3) For such divisors, Abel’s sum can be adjusted so as to make perfect sense, mapping

the divisor to the (highly compact) real part of a nice Jacobi variety.
(4) The composite map from (a) the class of velocity profiles with common constants

of motion, i.e. with fixed Hill’s anti-/periodic spectrum, to (b) the root divisor, to
(c) the Jacobi variety is 1 : 1 and onto, and better still:

(5) v moves in a complicated way under KdV; likewise the motion of the root divisor is
not simple, but (and this is quite a miracle) the corresponding point x ∈ Jac moves
in straight lines at constant speed, both under translation of v and under KdV.

It remains to undo this “substitution” to return from the simple motion of x to the
complicated motion of v. Riemann’s theta function, adapted to infinite genus, comes in here.
The commuting flows of v, by translation and by KdV, show up as infinitesimal directions n1
and n2 tangent to Jac, and if now x ∈ Jac corresponds to the initial velocity profile, then the
moving profile is

v(t, x) = −2
(
∂2/∂x2

)
�nϑ

(
x+ xn1 + tn2

)
.

This was worked out for g < ∞ open gaps, first by S.P. Novikoff [27] and later (independently)
by McKean-van Moerbeke [18]. For the general transcendental case (g = ∞), see McKean-
Trubowitz [19, 20]. The final recipe v = −2(�nϑ)′′ is due to Its-Matveev [12]. This is the
formula, cited before, that Baker [7] had, not knowing its hydrodynamical interpretation.

8.4. Other Examples

KdV is not the only problem that such machinery can solve. I have said that what we
have is a body of examples, lacking much of a general theory, so all I offer here is a selection
of these:

(1) Cubic-Schrödinger:
√−1∂ψ/∂t = ∂2ψ

∂x2 ± |ψ2|ψ, coming from optics, waves in deep
water, etc.;

(2) Sine-Gordon: ∂2θ/∂t2 = ∂2θ/∂x2 +sin θ, coming from nineteenth century geometry
of surfaces of constant negative curvature, super-conductivity, fiber optics, etc.;

(3) Boussinesq: ∂2v/∂t2 = ∂2v2/∂x2−(1/3)∂4v/∂x4, coming from long waves in shallow
water once more;
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(4) Camassa-Holm: ∂v/∂t+v∂v/∂x+∂p/∂x= 0 with “pressure” p(x) = 1
2

∫
e−|x−y|[v2+

1
2 (v

′)2]dy, much simpler than KdV and a lot closer to 3-dimensional Euler: ∂v/∂t+
(v • grad)v + grad p = 0 (Feynman’s “dry water”).

(5) Kadomtsev-Petviashvilli: ∂
∂x1

(∂v∂t − 3v ∂v
∂x2

− 1
2
∂3v
∂x2

2
)+ 3

2
∂2v
∂x2

1
= 0, a (2+1)-dimensional

variant of KdV coming from lasers, etc.

For each of these systems, and more besides, the KdV story, a little modified, is repeated.
The flow is expressed by a Lax-type pair L• = [P,L], permitting the motion to be inter-
preted as an isospectral deformation of an associated spectral problem Lψ = λψ. The latter
produces spectral invariants forming a complete list of commuting constants of motion; a
(normally transcendental) multiplier curve comes in, comparable to the Riemann surface of

Hill’s
√
Δ2 − 1; and then the machine rolls: BA functions, root divisors, Abel sums, Jacobi

variety and all: The multiplier curves of (1), (2), and (4) lie in two sheets over the plane having
1 or 2 transcendental points; that of (3) in three sheets, with two transcendental points; while
(5) leads to effectively arbitrary curves with a limited number of transcendental points.

This sounds simpler than it really is: You have to find the Lax pair and its attendant
spectral problem, in which connection I must mention the name of V. Zakharov and his
indispensable role in this regard. The joke used to be: “You have a problem. Send it to
Zakharov. If he sends you the Lax pair (waiting time 2 weeks), then it is integrable; if not, then
it is not.” This has been the best known way to hit upon Jacobi’s “attractive substitution”,
in accord with Flaschka’s “You didn’t think I could integrate that, but I can!”

8.5. Aside on Complex Structure

What is it doing here? Nobody really knows, but here’s an idle thought. Classical inte-
grability with 2d degrees of freedom requires d independent, commuting constants of motion:
H1, . . . , Hd. These functions have vanishing Poisson brackets

[
Hi, Hj

]
=

∂Hi

∂P
• ∂Hj

∂Q
− ∂Hi

∂Q
• ∂Hj

∂P
= 0 (i < j),

representing “d choose 2” partial differential constraints imposed upon are mere d functions,
and if d is 100, say, then “d choose 2” is already 4950 of these. This over-kill reflects the
delicacy of the situation (poke it and you break it) and may perhaps imply, what all experience
confirms, that this over-kill entails some complex structure in the background.

Besides, it is not only in the periodic case that complex structure is present. I go back to
KdV in the “scattering” case when v(±∞) = 0. This was solved by GGKM [10] as reported
before, put into a proper (integrable) Hamiltonian form by Faddeev-Zakharov [31], and re-
formulated by Dyson [8] in the following elegant manner, reminiscent of the Its-Matveev
formula v = −2(�nϑ)′′ of Sect. 8.3. Think of the velocity v as the potential in

√−1∂ψ/∂t =

−ψ′′+ vψ and send in a wave e−
√−1kx from +∞: part will be reflected back off v in the form

s−(k)e
√−1kx and part will be transmitted in the form s+(k)e

−√−1kx; the (complex) numbers
s±(k) are, resp. the “transmission” and “reflection” coefficients at (real) wave number k. Now
turn on KdV: ∂v/∂t = 3v/ (∂v/∂x) − (1/2)∂3v/∂x3. It turns out that the several numbers

s+(k) are (commuting) constants of motion, while s−(k) is modified by a factor e−
√−14k3t.

Besides, in the absence of bound states, which I ignore for simplicity, the initial reflection
coefficient determines the whole KdV flow, as in Dyson’s version of the recipe: v(t, x) =
−2(∂2/∂x2)�nϑ, where now ϑ is the Fredholm determinant det[I + w(ξ + η) : ξ, η ≥ x] with

w(ξ + η) =
1

2π

∫
e
√−1k(ξ+η)s−(k)e−

√−14k3tdk.
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Now comparison with Its-Matveev is instructive: (1) |s−|2+ |s+ |2 ≡ 1, so it is only the phase
of s− that moves (in “straight lines” at constant speed), by addition of 2kx in response to
translation by x, and by −4k3t in response to KdV, which I take to mean that the phase of s−
lives in some “Jacobi variety”. (2) ϑ as a function of that phase must be Riemann’s function.
(3) There must be some kind of BA function and an Abel sum mapping its root divisor to
phase s−, and so forth. This speculation could be confirmed by a simple experiment: Take
your favorite profile v, decaying rapidly at ±∞, periodize it as in v(x) =

∑
Z
v(x+np), apply

Its-Matveev to that, and hope that Riemann’s theta will pass over into Dyson’s determinant as
the period p ↑ ∞. This was done most elegantly by Venakides [30] and in a more synthetic way
by Ercolani-McKean [9]. In fact, Dyson’s ϑ, properly complexified, imitates Riemann’s ϑ in
nearly every aspect, a nice instance being a nearly perfect analogue of Riemann’s description
of his theta divisor alluded to in Sect. 8.1, for which see Kempf [14]. But enough of such
details.

What I want to suggest is that the language and the technology of projective curves, like
everything stemming from complex structure, is extraordinarily robust: Pushed in favorable
directions, it will enable you to recognize old projective friends going about their business in
new ∞-dimensional settings—such friends as, formerly, you might have thought to have no
algebraic meaning at all.

8.6. The Present Book

I come back to my theme: that to get a hold of transcendental curves, you need a specific
problem you want to solve. It will tell you what to do: what technical conditions are favorable
and, too, by what machinery to compute. Speaking for a moment classically, the introduction
of moduli permits the most efficient description of a projective curve. But efficiency is in the
eye of the beholder. It depends what you want to do. If you want to compute anything, efficient
moduli are hopeless, since it is next to impossible (g ≤ 1 excepted) to decode them into
useful information. How about inefficient moduli? For example, a Hill’s curve is determined
by a single profile v with the right constants of motion. Horribly redundant to be sure, but
what an advantage here with the whole machinery of Hill’s equation behind you for help in
computation.

The present book arises out of evidence obtained in this way, as to the “true” idea
of a transcendental curve, at once effectively computable and flexible enough to cover all
applications that have come to light so far. The class of curves described here is very wide.
They are “small” deformations of a sphere with widely spaced double points (nodes), pasted
together out of patches and handles under strict (but not too strict) rules of behavior, so
that everything is true that should be true. I cannot enter now into the details, which are
scrupulously explained, nothing too much or too little. It will be enough to say that, some
few mysteries aside, K, DGK, BA=Baker-Akhiezer, Abel’s sum, Jacobi variety, Riemann’s
theta and its vanishing theorem, Riemann-Roch, and Torelli’s theorem, too, all survive in
a robust form. Here are included (1) very general 2-sheeted curves, as for KdV, but more;
(2) “heat curves” connected to Kadomtsev-Petviashvilli [(5) of Sect. 8.4], imitating most any
classical curve you could want; (3) “Fermi curves” which enter into a separate, very elaborate
story about superconductivity, not explained here. These are the chief examples spelled out
in detail.

The few complaints I have may be quickly told. (1) A little more chat would have been
welcome, both mathematical and historical. The exposition is determinedly technical, and
while it is lucid and done with much care, it could be discouraging to the immature reader.
These may find Schmidt [28] helpful. (2) I would have liked to see more about Riemann-Roch,
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but for this there is the splendid article of Merkl [21]. (3) And last: the omission of an index
makes it nearly impossible to browse.

Be that as it may. This is a big piece of work, brought to a very successful conclusion
after some 10 laborious years, for which the authors have my warmest congratulations.

But isn’t it all remarkable, this whole story? I mean, who would have guessed that pro-
jective curves could help us to understand long waves in shallow water, not to mention fiber
optics, self-transparency, and so on and on. And who would ever have thought that physical
problems of this type could be any guide to algebraic geometry. I will take just a moment to ex-
plain this last allusion. Riemann’s theta function involves the imaginary periods B = [bi(ωj)].
These Riemann matrices are special: They are symmetric with positive imaginary part, and
something more, something hidden, owing to their origination from a curve. What is it? Well,
there is an Its-Matveev-type formula expressing the solution of Kadomtsev-Petviashvilli in
terms of Riemann’s theta function, and this works only if the B appearing in the theta sum
of Sect. 8.1 is a bona fide Riemann matrix. S.P. Novikoff conjectured this; the proof is due to
Arbarello and de Concini [5] and to Shiota [29]. You never can tell.
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[9] Fredholm Determinants and the Camassa-Holm Hierarchy

[9] Fredholm Determinants and the Camassa-Holm Hierarchy. Comm. Pure Appl. Math. 56
(2003), 638–680.

c©2003 Wiley Periodicals, Inc. All rights reserved. Reprinted with permission.





9Fredholm Determinants and the
Camassa-Holm Hierarchy

Henry P. McKean Jr.1

9.1. Introduction

The equation of Camassa and Holm [2]2 is an approximate description of long waves in
shallow water. It reads

CH :
∂m

∂t
= −(mD +Dm)v

in which D = ∂/∂x and m = v − v′′: in extenso,

CH :
∂v

∂t
− ∂3v

∂t∂x2
+ 3v

∂v

∂x
− 2

∂v

∂x

∂2v

∂x2
− v

∂3v

∂x3
= 0.

Its Eulerian form is more attractive: In terms of Green’s function G = (1−D2)−1 = 1
2e

−|x−y|,
it reads

CH′ :
∂v

∂t
+ v

∂v

∂x
+

∂p

∂x
= 0 with the “pressure” p = G

[
v2 +

1

2
(v′)2

]
.

It is also important to emphasize the Lagrangian standpoint, tracking the moving “fluid” in
the natural scale x = x(t, x) determined by ∂ x/∂t = v(t, x) with x(0, x) ≡ x: In this language,
the equation reads

CH′′ :
d

dt
v(t, x) + p′(x) = 0.

The flow can break down: For example, if v is odd to start with, it stays odd and it is easy
to see that v′(t, 0) ≡ s(t) satisfies s• ≤ − 1

2s
2, which drives it down to −∞ at some time T < ∞

if s(0) < 0. It is the special purpose of this paper to show that this type of unpleasantness
is only apparent. More precisely. I will prove that if m is summable at the start together
with m′, then the Lagrangian form of the flow is perfectly fine for all time 0 ≤ t < ∞. The
flow is integrable3: In fact, I will integrate it explicitly in terms of certain theta-like Fredholm
determinants, providing expressions of v(t, x) and the scale x(t, x) that are always sensible
for any (t, x) ∈ [0,∞) × R; it is only v′(t, x) that misbehaves, and this does not spoil the
Lagrangian version CH′′. Consequently, the Eulerian version CH′ is also fine: v′(t, x) can be

1Courant Institute, 251 Mercer Street, New York, NY 10012-1185, USA, mckean@cims.nyu.edu.
2See also Camassa, Holm, and Hyman [3].
3I recall H. Flaschka’s definition of integrability, the only honest one around: “You didn’t think I could

integrate that, but I can!”
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infinite now and then, but this is not very serious; it is just that ∂v/∂t+ v∂v/∂x+∂p/∂x= 0
must be treated with the obvious precautions.

H2 = 1
2

∫
mGm = 1

2

∫
[(v′)2+v2] serves as the Hamiltonian for the (back-wards) flow, and

there is a whole series of further constants of motion obtained from the “spectral problem”
(14 − D2)f = λmf . Introduce the operators K = (12 − D)−1 = ex/2

∫∞
x

e−y/2 and K† =

(12 +D)−1 = e−x/2
∫ x

−∞ ey/2 mapping H0 onto H1. Then the spectral problem for f ∈ H1 is

equivalent to4 K†mKF = F/λ for F = (12 − D)f ∈ H0, and it is not hard to see that you

have a simple spectrum5 1/λn : n ∈ Z−0 serving as a complete list of (commuting) constants
of motion, with finite (absolute) trace Σ1/|λn| ≤

∫ |m|. Section 9.2 explains all this together
with the appropriate Hamiltonian formalism.

Section 9.3 investigates the “individual” flows based upon the Hamiltonians Hn = 1/λn

for n ∈ Z − 0. The corresponding vector fields are Xn : m → (mD +Dm)f2
n, in which fn is

the associated eigenfunction with ‖fn‖2 ≡
∫
[(f ′

n)
2+ 1

4f
2
n] = 1, and it is the content of Sect. 9.3

that such a flow can be integrated in elementary terms with the help of the Lagrangian-
like scale x = x(t, x), determined by ∂ x/∂t = −f2

n, (t, x) and x(0, x) ≡ x, which has an
elementary expression, too.6 Section 9.4 carries over this piece of luck to the “composite” flow7

etX ≡ ∏
Z−0 e

tnXn with t = [tn : n ∈ Z− 0] tame so as to avoid any technicalities. Everything
is expressed in terms of three “theta functions” ϑ−, ϑ+, and ϑ, now to be described.

Let m have its initial value and let fn : n ∈ Z− 0 be the associated eigenfunctions. Then8

ϑ−
ϑ

ϑ+

⎫⎬
⎭ = det

⎡
⎢⎢⎢⎢⎢⎣
1 +

(
eti − 1

) ∫ x

−∞

(
f ′
if

′
j +

1

4
fifj

)
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1

2
fifj(x)

−f ′
ifj(x)

+
1

2
fifj(x)

⎤
⎥⎥⎥⎥⎥⎦

in terms of which the updated etXm and etXfn may be expressed with the help of the La-
grangian scale x(t, x), determined by ∂ x/∂tn = −(etXf2

n)(x) and x(0, x) ≡ x, as follows:

ex =
exϑ−
ϑ+

or, what is more or less the same, x′ =
ϑ2

ϑ−ϑ+
,(9.1.1)

(
etXm

)
(x) =

m(x)

(x′)2
,(9.1.2)

and

(
etXf

)
(x) =

et/2ϑ√
ϑ−ϑ+

[
1 +

∫ x

−∞
mf ⊗ f

(
et − 1

)
λ

]−1

f(x)(9.1.3)

in which t is the vector [tn : n ∈ Z − 0], etc., f ⊗ f is the matrix [fifj : i, j ∈ Z − 0],
and m and f have their initial values as in the three theta functions. The formula for x′ in
(9.1.1) comes from the pretty identity ϑ2 = ϑ−ϑ+ + ϑ′

−ϑ+ − ϑ−ϑ′
+. Here, ϑ− and ϑ+ do not

vanish, so x always makes sense. ϑ can vanish. Then (9.1.2) goes bad, but (9.1.3) does not:
ϑ = det[1 + (et − 1)λ

∫ x

−∞ mf ⊗ f ] so ϑ[1 +
∫ x

−∞ mf ⊗ f(et − 1)λ]−1 is a Fredholm cofactor
and always makes sense.

40 is not in the spectrum.
5The indexing will be explained later.
6The computation can be found in McKean [12] I repeat it here for the reader’s convenience.
7The individual flows commute so the order of the product is immaterial.
8McKean and Trubowitz [13] encountered similar theta-like determinants in connection with the isospectral

class of the quantum-mechanical oscillator −D2 + x2 − 1.
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Section 9.5 deals with technicalities when t = [tn : n ∈ Z− 0] is not tame: as needed for
application to CH: If both m and m′ are summable and if tn = c/λn + 0(1/λ2

n) for large n
with a fixed constant c, then all three determinants are fine, representing functions that are
real analytic with respect to t and of class C2 or better with respect to x.

Section 9.6 applies the formulae of Sect. 9.4 to CH. The (forward) Hamiltonian is

H = −1

2

∫ [
(v′)2 + v2

]
= −1

4
sp
(
K†mK

)2
= −1

4

∑
Z−0

λ−2
n ,

so the corresponding vector field X is nothing but −∑
(2λn)

−1
Xn, and if now t ≥ 0 is the

running time of the flow, then the parameters tn = −t/2λn : n ∈ Z − 0 obey the technical
condition of Sect. 9.5. The three theta functions are

ϑ−
ϑ
ϑ+

⎫⎬
⎭ = det

⎡
⎢⎢⎢⎢⎢⎣
1 + (e−t/2λ − 1)

∫ x

−∞

(
f ′ ⊗ f ′ +

1

4
f ⊗ f

)
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1

2
f ⊗ f(x)

−f ′ ⊗ f(x)

+
1

2
f ⊗ f(x)

⎤
⎥⎥⎥⎥⎥⎦
,

so CH is integrated in the Lagrangian scale determined by ∂ x/∂t = (etXv)(x) as follows:

ex =
exϑ−
ϑ+

or, what is more or less the same, x′ =
ϑ2

ϑ−ϑ+
,(9.1.4)

(
etXm

)
(x) =

m(x)

(x′)2
,(9.1.5)

and
(
etXv

)
(x) =

∂ x

∂t
=

[
ln

ϑ−
ϑ+

]•
=

ϑ•−
ϑ−

− ϑ•
+

ϑ+
.(9.1.6)

(9.1.6) is the most gratifying aspect of the recipe: ϑ can vanish so (9.1.5) can go bad, but
ϑ− and ϑ+ do not, so both x as in (9.1.4) and etXv as in (9.1.6) are perfectly fine for t ≥ 0
and, indeed, for t ≤ 0, too. It is only when you differentiate etXv that trouble starts:

(
etXv

)′
(x) =

x•′

x
(lnx′)• =

(
ln

ϑ2

ϑ−ϑ+

)•
=

2ϑ•

ϑ
+ nice stuff

which can (and will) be bad if ϑ vanishes. Actually, nothing bad can happen if m− lies wholly
to the left of m+,

9 a fact more or less due to Constantin and Escher [4]. This has a very
simple proof in the present theta format. McKean [11] proved the converse: If any part of m+

is located to the left of some part of m−, then the flow must break down, i.e., (etXv)′ = −∞
someplace. I had hoped to find an equally simple theta-format proof of this fact but did
not succeed. Be that as it may, it is a source of satisfaction that the Lagrangian version
CH′′ : (d/dt)(etXv)(x) + (∂/∂ x)p(t, x) = 0 does not break down at all!

Xin and Zhang [15] have proved that a nice (weak) solution of CH may be obtained by
introducing a dispersive term (0+) ×∂3v/∂3x. I presume their recipe has the same outcome
as mine but did not prove it. I must also say that Beals, Sattinger, and Szmigielski [1] have
adapted beautiful old formulae of Stieltjes [14] to solve CH in the “many soliton” case when
mdx reduces to a (finite) collection of signed point masses. The formulae in question permit

9m+/m− is the positive/negative part of m.
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Figure 9.1.

the recovery, by means of certain determinants; of the numbers a and b appearing in the
continued fraction

1
λa1

+
1
b1

+
1
λa2

+
1
b2

+ · · ·+ 1
λan

+
1
bn

=
∑ rn

λ− cn

from its poles c and residues r. Here, effectively, the a & b determine masses & locations while
the c & r determine spectrum & norming constants.10 This recipe is an extreme case of mine
but it is prettier as it stands: Under the CH flow, the spectrum is fixed while the norming
constants move simply as per rn(t) = et/2λnrn(0), and because the correspondence of a & b to
c & r is purely algebraic, the recipe holds for all time regardless of the signatures of the masses;
in particular, any breakdown of v′ is evanescent. This is a nice example of the ubiquitous and
still mysterious fact that, in every known example, integrability is accompanied by complex
projective structure: It may lie deep and hidden but it is always there.

Section 9.7 presents a partial description of what happens when m is odd with m(x) > 0
for x < 0, m(x) < 0 for x > 0, and m′(0) < 0. Breakdown (of v′) is sure to happen in these
circumstances. ϑ (x = 0) has an infinite number of (double) roots at times 0 < T1 < T2 <
etc. ↑ ∞. These roots are double in respect to x and immediately split into symmetrically
disposed pairs of simple roots ±r1(t), ±r2(t), etc., of ϑ as a function of x, moving steadily to
the right/left. At such a root, (etXv)(x) has a cusp of the form const× |x(t, x) − x(t, r)|2/3+
something nice, as in the Fig. 9.1, and I believe but cannot yet prove that for large time these
little cusps shape themselves into well-separated “solitons” of the form (p/2)e−|x−q−(p/2)t|

moving at speeds p/2 = 1/2λn : n ∈ Z − 0, with “phase shifts” q related to the norming
constants cited before, meaning that

(
etXv

)
(x) �

∑
Z−0

1

2λn
e−|x−qn−t/2λn| as t ↑ ∞.

This would be in agreement with the exact result of Beals, Sattinger, and Szmigielski [1]
for many solitons and with the numerical observations of Camassa [private communication] in
more general circumstances. The discussion of the roots of ϑ relies upon the curious identity

ϑ′′
−ϑ+ ϑ−ϑ′′ + ϑ′

−ϑ− ϑ−ϑ′ − m′

m
ϑ′ϑ− − 2ϑ′ϑ′

− = 0.

Ercolani and McKean [7] encountered a similar identity for the determinant of Dyson [6]
appearing in the solution of KdV. That is how I guessed the present one.

10fn(x) � a “norming constant” ×e−x/2 at +∞.
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Section 9.8 is in the nature of an appendix. The classical theta function of Riemann and
its translates obey an astonishing number of identities and it is the same here: The identity
ϑ2 = ϑ−ϑ+ + ϑ′

−ϑ+ − ϑ−ϑ′
+ cited in connection with (9.1.1) is an example; the last display

is another—only now you must ask yourself what translation is and whether ϑ− and ϑ+ are
related to ϑ in this way.

The answer is couched in terms of the “addition,” so-called. introduced by McKean [10]
in the context of KdV and revamped in McKean [12] for CH. It is properly defined only
if m is of one sign, e.g. m(x) > 0. Fix Λ < 0. Then (14 − D2)e = Λme has two positive

solutions: e � −ex/2 at −∞ and e+− � e−x/2 at +∞. I write e± = e(•, p) in which p records
the eigenvalue Λ and a signature to indicate which function is meant. The corresponding
“addition” Ap is defined by its action (Apm)(x) = m(x)/(x′)2 in the scale determined by

ex = ex
e′ − 1

2e

e′ +1
2 e

or, what is more or less the same,

x′ =
−Λme2

e′2 − 1
4e

2
.

The several additions are the proper counterpart of translation. They are invertible,11 they
commute, and what is most important, they are part of (commute with) the whole CH
hierarchy; in fact, successive additions are more or less coextensive with the hierarchy in that
any CH flow can be well approximated by them. The terminology and the identification of
“addition” as translation stem from the fact that, for periodic m, Ap corresponds to addition
of −p+∞ in the Jacobi variety of a (singular, transcendental) projective curve. I realize that
this is all a little cryptic. I do not explain more here, but see McKean [10, 12].

Now addition also makes sense at Λ = 0 and, with o = (0,±) in place of p = (Λ,±), you
have (Λoϑ) (x) = ϑ±(x) in the associated scale, which I take to mean that there is really
only one theta function here, the others being produced from it by “translation,” just as
Jacobi’s four theta functions are produced from anyone of them, by addition of half periods.
The action on ϑ of the general addition Ap is also amusing:

etXe(•, p) taken in the scale for the composite flow etX

=
e(x, p)√
ϑ−ϑ+(x)

×Apϑ taken in the scale for the addition Ap.

This rule is a (relative) version of the formula of Its and Matveev [9] for the Baker-Akhiezer
function associated to KdV; compare also Ercolani and McKean [7]. Section 9.8 closes with
a “composition rule.” Write ϑ with both t = [tn : n ∈ Z − 0] and x displayed, as in ϑ(t, x).
Then ϑ(t+s, x) = ϑ(t, x)[etXϑ(s, •)](x) in the scale for the composite flow. In this respect and
others, too, the present ϑ is reminiscent of the theta function of McKean and Trubowitz [13]
associated with the isospectral class of the quantum-mechanical oscillator −D2 + x2 − 1.

Section 9.9 describes some open questions.

9.2. Preparations

I collect here the necessary information about the CH hierarchy in its particular Hamil-
tonian format; most of this can be found in the literature already; see, for instance, Camassa
and Holm [2] and Camassa, Holm, and Hyman [3].

11Ap inverse is A−p, in which −p is p with signature reversed.
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9.2.1. Brackets. Let A, B, C, etc., be nice functions ofm. The Poisson bracket of A and
B is declared to be [A,B] =

∫ ∇AJ∇B with the gradient ∇ = ∂/∂m and the skew operator
J = mD + Dm. The vector field X associated with the Hamiltonian H is X : C → [C,H ];
in particular, Xm = J∂H/∂m. For example, if H = 1

2

∫
mGm = 1

2

∫
[(v′)2 + v2],12 then

∂H/∂m = Gm = v, and you will recognize the flow ∂m/∂t = Xm = (mD+Dm)v as CH run
backwards.

9.2.2. Spectral Problem and Trace. The spaceH1 is equipped with the nonstandard
norm ‖f‖21 =

∫
[(f ′)2 + 1

4f
2]. It is mapped 1 : 1 onto H0 by (12 −D) : f → F , ‖f‖21 = ‖F‖20 ≡∫

F 2, and you have the simple inverse map K : F → f = ex/2
∫∞
x e−y/2F (y)dy; similarly,

(12 +D) : H1 → H0 is inverted by the transposed K† = e−x/2
∫ x

−∞ ey/2, and K†K = KK† =
(14 − D2)−1 = exp(− 1

2 |x − y|). Now the spectral problem for CH is ( 14 − D2)f = λmf

for f ∈ H1. Write f = KF with F ∈ H0. Then K†mKF = K†(14 − D2)KF/λ = F/λ.
This makes sense because λ = 0 does not belong to the spectrum. It is to be proved that
K†mK : H0 → H0 is compact with simple spectrum 1/λn : n ∈ Z − 0 and finite absolute
trace

∑
1/|λn| ≤

∫ |m|. The spectrum is indexed so that λn < 0 for n < 0 and λn > 0 for
n > 0, with the understanding that λ−1, λ−2, etc. = −∞ if no negative spectrum is present,
as for m > 0, and so on.

Step 1. |ff ′| ≤ f ′2 + 1
4f

2, so ‖f‖∞ ≤ √
2‖f‖1 and∫

F1K
†mKF2 =

∫
f1mf2 ≤ 2

∥∥f1∥∥1
∥∥f2∥∥1

∫
|m|,

whence ‖K†mK‖0 ≤ 2
∫ |m|.

Step 2. (K†mK)2 is symmetric and nonnegative (-definite), by inspection. It is also of
trace class: in fact, for nice m,

sp
(
K†mK

)2
= sp

(
KK†mKK†m

)

=

∫∫
e−

1
2 |x−y|m(y)e−

1
2 |x−y|m(x)dx dy ≤

(∫
|m|

)2

.

This carries over to the general (summable) m, so K†mK is compact; in particular, it has
pure point spectrum 1/λn : n ∈ Z − 0, subject to

∑
λ−2
n < ∞, and this must be simple

since (14 −D2)f = λmf cannot have two independent solutions of class H1: Their Wronskian
[f1, f2] = f ′

1f2 − f1f
′
2 would be constant and must vanish at ±∞.

Step 3. This step is preparatory: The (normalized) eigenfunctions Fn : n ∈ Z − 0 span
the closure L of K†mKH0. This is the whole of H0 if m does not vanish on any set of positive
measure (and only then) since K†mK has no null space in this circumstance. Be that as it
may, for the (likewise) normalized eigenfunctions f = KF , you have∑

Z−0

fn ⊗ fn = K
∑
Z−0

Fn ⊗ FnK
† = KPK†,

P being the projection on L, so that
∑

f2
n ≤ KK† on diagonal ≡ 1. This fact will be helpful

in the next step. Note in passing that
∑

fn ⊗ fn = KK† = e−
1
2 |x−y| and

∑
f2
n ≡ 1 if

P = I (L = H0).

12G = (1−D2)−1 = 1
2
exp(−|x− y|) as before.



9.3. INDIVIDUAL FLOWS 157

Step 4. This step elicits the trace. Fix n > 0. Then

1

λn
=

∫
FnK

†mKFn =

∫
m
(
KFn

)2
=

∫
mf2

n ≤
∫

m+f
2
n,

whence ∑
n>0

1

λn
≤
∫

m+

∑
n>0

f2
n ≤

∫
m+ and similarly

∑
n<0

1

λn
≥
∫

m−.

The proof is finished, but note still that the signature of the spectrum is predictable: If m ≥ 0,
it is all positive; if m ≤ 0, it is all negative; and if m is capable of both signatures, then there
is an infinite number of eigenvalues of both signs, both K†m+K and K†m−K being of infinite
rank.

9.2.3. Constants of Motion. The spectrum represents a “complete” list of commuting
constants of motion of the CH hierarchy. I do not enter into the completeness here since it is
irrelevant to the sequel, but commutativity is important in view of the form of the (backwards)
CH Hamiltonian H = 1

2

∫
mGm = 1

4 sp(K
†mK)2 = 1

4

∑
λ−2
n and the inherent possibility,

pointed out in Sect. 9.1, of building up CH out of the individual flows associated with the
Hamiltonians Hn = 1/λn : n ∈ Z− 0 as they compose in a simpler manner if they commute.
The proof is easy13: ∂(1/λn)/∂m = f2

n and λnJf
2
n = 1

2D(1−D2)f2
n by routine computation,14

so

λj

[
1

λi
,
1

λj

]
=

∫
f2
i λjJf

2
j =

∫
f2
i

1

2
D(1−D2)f2

j

= −
∫

f2
j

1

2
D(1 −D2)f2

i = −λi

∫
f2
j Jf

2
i

= λi

∫
f2
i Jf

2
j = λi

[
1

λi
,
1

λj

]

must vanish if i �= j. The fact that the numbers λn : n ∈ Z− 0 really are constants of motion
for CH is now obvious from the form of H = 1

4

∑
λ−2
n .

9.2.4. More Constants of Motion. Let H be any nice function of m and define (1) a
flow etX by ∂m/∂t = Xm = J∂H/∂m in the standard scale x and (2) a new (Lagrangian) scale
x by ∂ x/∂t = −(∂H/∂m)(x) with x(0, x) ≡ x. Then (etXm)(x)x′2 is a constant of motion
≡ m(x), as you will readily check. This observation plays an essential role below. But what
do these new constants of motion represent? They are “foreign” to the hierarchy since they
do not commute with the spectrum, nor do they commute among themselves. In the special
case of CH flow, they may be likened to the vorticity for two-dimensional, incompressible
Eulerian flow because they have similar brackets. but this is both far fetched and unhelpful,
and because none of it matters for the sequel, let’s forget about it and press on.

9.3. Individual Flows

Let H = 1/λ0 be the reciprocal of any eigenvalue of the spectral problem and let f0 be
the associated eigenfunction with ‖f0‖2 = λ0

∫
mf2

0 = 1. ∂H/∂m = f2
0 as noted in Sect. 9.2,

so the flow is regulated by ∂m/∂t = Xm = (mD +Dm)f2
0 , while the associated scale obeys

∂ x/∂t = −f2
0 (x) with x(0, x) ≡ x.

13Here and below fn is always normalized as in ‖fn‖2 =
∫
[(f ′

n)
2 + 1

4
f2
n] = λn

∫
mf2

n = 1.
14J = mD +Dm as before.
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9.3.1. Computing the Flow. It is desired to integrate this flow explicitly in terms of
the initial values m0 and f0

0 of m ≡ etXm0 and f ≡ etXf0. The discussion is broken up into
eight little steps, with a summary at the end.

Step 1. Xf0 = −λ0f0
∫ x

−∞ mf2
0 + f0(x)/2. Let • denote the action of the vector field

X. A routine computation shows that the stated function f•
0 ≡ Xf0 solves (14 − D2)f•

0 =
(λ•

0 = 0)×mf0 + λ0m
•f0 + λ0mf•

0 , as it should. The added f0/2 is killed. Its role is to keep
‖f0‖2 = λ0

∫
mf2

0 ≡ 1; Indeed, with N = λ0

∫
mf2

0 ,

N• = λ0

∫
f2
0 (mD +Dm)f2

0 + λ0

∫
m2f0

[
− λ0f0

∫ x

−∞
mf2

0 +
f0(x)

2

]

15 = 0−N2 +N = N(1−N),

of which the only solution with N(0) = 1 is N ≡ 1.

Step 2. Now consider the scaled integral I(x) = λ0

∫ x

−∞ mf2
0 and look for a piece of luck!

d

dt
I(x) = λ0mf2

0 (x)x
• + λ0

∫ x

−∞
f2
0 (mD +Dm)f2

0 − I2 + I,

in which −I2 + I comes out just like −N2 +N in Step 1. But also x• = −f2
0 (x) and∫ x

−∞
f2
0 (mD +Dm)f2

0 =

∫ x

−∞

(
m′f4

0 + 4mf3
0f

′
0

)
=

∫ x

−∞

(
mf4

0

)′
= mf4

0 (x),

so I• = 1(1− I), plain, and you can integrate back to obtain

I(t) =
etI(0)

1 + (et − 1)I(0)
≡ ϑ•

ϑ

with ϑ = 1 +
(
et − 1

)
I(0) = 1 + (e− 1)λ0

∫ x

−∞
m0f02

0 .

This happy outcome should convince you of the utility of the scale x.

Step 3. This step is to differentiate the formula for I with respect to the original scale
x, keeping in mind that m(x)x′2 ≡ m0(x), as per Sect. 9.2.4.16 The routine computation
produces

f0(x) =
et/2

√
x′f0

0 (x)

ϑ

with the same function as in Step 2. Naturally, this may not make sense for all t ≥ 0: ϑ and/or
x′ might vanish, but not for small times, so let’s continue and see what happens.

Step 4. Here we combine ∂ x/∂t = −f2
0 (x) with Step 3 to obtain

∂x

∂t
+

[
et
f02
0 (x)

ϑ2

]
∂ x

∂x
= 0.

In principle, this serves to determine x fully, x(0, x) ≡ x being known, but is not really helpful.
A better way is to think of ex/2 as the update of the (improper) eigenfunction ex/2 associated
with eigenvalue λ = 0 and to imitate Steps 2 and 3 for the new integral

J(x) = λ0

∫ x

−∞
mf0e

y/2 =

∫ x

−∞
ey/2

(
1

4
−D2

)
f0 = ex/2

(
1

2
f0 − f ′

0

)
(x).

15mD +Dm is skew.
16The computation is the same.
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Step 5. This step imitates Step 2: In the scale x,

d

dt
J(x) = −λ0mf3

0 (x)e
x/2 + λ0

∫ x

−∞
m•f0ey/2 + λ0

∫ x

−∞
mf•

0 e
y/2

= λ0

∫ x

−∞

[
−m′f3

0 − 3mf2
0f

′
0 −

1

2
mf3

0 +m′f3
0 + 4mf2

0f
′
0

− λ0mf0

∫ y

−∞
mf2

0 +
mf0
2

]
ey/2

17 = −
∫ x

−∞

[(
λ0

∫ y

−∞
mf2

0

)′
J + λ0

∫ y

−∞
mf2

0 × J ′
]
+

1

2
J(x)

=

(
1

2
− ϑ•

ϑ

)
J(x),

by Step 2, or what is the same, [ln J(x)]• = 1
2 − ϑ•/ϑ and so also

∫ x

−∞
mf0e

y/2 =
J(x)

λ0
=

et/2J0(x)

λ0ϑ
=

et/2
∫ x

−∞ m0f0
0 e

y/2

1 + (et − 1)λ0

∫ x

−∞ m0f02
0

.

Step 6. This step imitates Step 3 in differentiating the present display with respect to
x: Assuming m0, f0

0 , and x′ do not vanish, it develops after some cancellation that

ex/2 = −
√
x′

ϑ
× ex/2

[
1 +

(
et − 1

)
λ0

∫ x

−∞
m0f02

0 − (
et − 1

)
λ0f

0
0

∫ x

−∞
m0f0

0 e
y/2

]

18 =

√
x′

ϑ
× ex/2 × 1 +

(
et − 1

) ∫ x

−∞

[(
1

2
−D

)
f0
0

]2
≡

√
x′

ϑ
× ex/2 × ϑ−.

Step 7. Here we finish the determination of x by integrating

ex/2 =

√
x′ex/2ϑ−

ϑ
with the aid of a companion to the function ϑ− introduced two lines above, to wit, ϑ+ =
1+(et−1)

∫ x

−∞[(12 +D)f0
0 ]

2. The identity ϑ2 = ϑ−ϑ++ϑ′−ϑ+−ϑ−ϑ′
+ is readily checked. Then

e−xx′ = e−x ϑ2

ϑ2−
= e−x

[
ϑ+

ϑ−
−
(
ϑ+

ϑ−

)′]
= −

(
e−xϑ+

ϑ−

)′
,

whence e−x = e−xϑ+/ϑ− plus an additive constant depending upon time alone. This must
vanish if x(∞) = +∞ since both ϑ− and ϑ+ reduce to et out there, so I propose ex = exϑ−/ϑ+.

Step 8. Now, if you like, this is only an educated guess, but if you will observe that
ϑ± cannot vanish and put the proposed x = x+ ln(ϑ−/ϑ+) back into the partial differential
equation of Step 4, you will have complete success, x(0, x) ≡ x included. This ends the
computation of the individual flow.

17The preliminary evaluation of J from the previous display is used.
18λ0m0f0 = ( 1

4
−D2)f0 is used to reduce the integrals to their final form.
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Summary

I replace the initial values m0 and f0
0 by m and f0, plain, and rewrite the recipe for the

individual flow in terms of the three “theta functions”:

ϑ− = 1 + (et − 1)

∫ x

−∞

[(
1

2
−D

)
f0

]2

= 1 + (et − 1)

[∫ x

−∞

[
(f ′

0)
2 +

1

4
f2
0

]
− 1

2
f2
0 (x)

]

ϑ = 1 + (et − 1)λ0

∫ x

−∞
mf2

0

= 1 + (et − 1)

[∫ x

−∞

[
(f ′

0)
2 +

1

4
f2
0

]
− f0f

′
0(x)

]

ϑ+ = 1 + (et − 1)

∫ x

−∞

[(
1

2
+D

)
f0

]2

= 1 + (et − 1)

[∫ x

−∞

[
(f ′

0)
2 +

1

4
f2
0

]
+

1

2
f2
0 (x)

]
.

The rules are

(1) ex =
exϑ−
ϑ+

or, what is more or less the same, x′ =
ϑ2

ϑ−ϑ+
,

(2) (etXm)(x) =
m(x)

(x′)2
, and

(3) (etXf0)(x) = et/2f0(x)×
√
x′

ϑ
=

et/2f0(x)√
ϑ−ϑ+(x)

.

It is a tiresome but comforting exercise to check directly that (3) solves the updated spectral
problem. I do not repeat it here.

9.3.2. When ϑ Vanishes. This is all very fine if ϑ (and with it x′) does not vanish: (1)
and (3) still make sense, but (2) can go bad, though even that does not spoil the application
to CH, as will be seen in Sect. 9.6. The fact that ϑ can vanish is simply illustrated by the
extreme soliton/antisoliton case when mdx reduces to point masses ± 1 at x = ∓1; see
Sect. 9.7.2 for details. Then there are just two eigenvalues ±Λ, with eigenfunctions f±, so
with λ0 = λ−1 = −Λ, the function ϑ = 1− (et − 1)Λ

∫ x

−∞ mf2
− reduces

to 1 for x < −1,

to 1− (
et − 1

)
Λf2

−(−1) for − 1 < x < +1, 19

to et for x > +1.

Here, f−(−1) cannot vanish,20 so ϑ vanishes for |x| < 1 at time T = ln[1 + 1/Λf2−(−1)] and
only then; at this moment, x′ ≡ 0 in the whole interval |x| < 1; i.e., x collapses the interval
to a single point, ceasing to be a diffeomorphism. Then it recovers and there is no further
trouble.

19−Λ
∫+∞
−∞ mf2− = 1.

20f−(−1) = 0 implies f− ≡ 0. which is not so.
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9.3.3. Other Eigenfunctions. These evolve a little differently from f0: In the notation
of Steps 1 through 8 above, X fn = −λnf0

∫ x

−∞ mf0fn, without a corrective term, and you
may imitate Sect. 9.3.1 to obtain

(
etXfn

)
(x) =

ϑfn(x) +
(
et − 1

)(
1− λn/λ0

)−1[
f0, fn

]
f0(x)√

ϑ−ϑ+(x)
,

normalization and all, where now the right-hand eigenfunctions have their initial values and
[f0, fn] is the Wronskian f ′

0fn − f0f
′
n. It is a nice exercise to check this directly: ‖etXfn‖2 =

λn

∫
(etXmf2

n)(x)dx is maintained (≡ 1) and everything works out, as you may confirm with

the help of the identity [f0, fn] = (λn − λ0)
∫ x

−∞ mfnf0.

9.4. Composite Flows

The several individual flows etXn based upon the Hamiltonians Hn = 1/λn commute since
[Hi, Hj ] = 0 (i �= j), and it is not hard to integrate the “composite” flow etX ≡ ∏

etnXn with
many parameters t = [tn : n ∈ Z − 0]. In principle, this could be done already, by iteration
of the rules of Sect. 9.3, but to express the result in an agreeable way it is simpler to start
over, following the pattern of Sect. 9.3. Here, it is technically necessary that the individual
parameters tn vanish fast enough at n = ±∞. What that should mean will be clarified in
Sect. 9.5. For the present, it is better to take t tame and not to worry. Temporarily. it is
convenient to denote the action of tX ≡ ΣtnXn by a black spot (•) and to write m = etXm0,
as in the bulk of Sect. 9.3. A more explicit notation for subsequent use is adopted in the final
summary.

Step 1. f•
i =

∑
tjXjfi =

∑
tj [−λifj

∫ x

−∞ mfifj + fi(x)/2 if i = j] is immediate from
Step 1 of Sect. 9.3.1 and from Sect. 9.3.3 above.

Step 2. This step is to compute I(x) =
∫ x

−∞ mf ⊗ f as in Step 2 of Sect. 9.3.121:

[
Iij(x)

]•
= mfifj(x)×

[
x• = −

∑
tkf

2
k (x)

]

+

∫ x

−∞

[
(m′ + 2mD)

∑
tkf

2
k

]
fifj

+

∫ x

−∞
mfj

∑
tk

[
− λifk

∫ y

−∞
mfifk +

fi(y)

2
if i = k

]

+

∫ x

−∞
mfi

∑
tk

[
− λjfk

∫ y

−∞
mfjfk +

fj(y)

2
if j = k

]

= (1) + (2) + (3) + (4)

=

∫ x

−∞

[
mfifj

(∑
tkf

2
k

)′
−m

∑
tkf

2
k

(
fifj

)′]

= (1) + (2)−
∫ x

−∞
m
∑

λitkfjfk −
∫ y

−∞
mfifk +

1

2
ti

∫ x

−∞
mfifj

21f ⊗ f is the matrix [fifj : i, j ∈ Z− 0].
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= (3)−
∫ x

−∞
m
∑

λjtkfifk

∫ y

−∞
mfjfk +

1

2
tj

∫ x

−∞
mfifj = (4)

=

∫ x

−∞
m
∑

tkfk
(
f ′
kfi − f ′

ifk
)
fj +

∫ x

−∞
m
∑

tkfk
(
f ′
kfj − f ′

jfk
)
fi

+ (3) + (4)

=

∫ x

−∞
m
∑

tkfkfj
(
λi − λk

) ∫ y

−∞
mfifk

+

∫ x

−∞
m
∑

tkfkfi(λj − λk)

∫ y

−∞
mfjfk + (3) + (4).

Here (3) + (4) cancel out the terms in λi, and λj , leaving only

−
∑

tkλk

∫ x

−∞
m

[
fjfk

∫ y

−∞
mfifk+fifk

∫ y

−∞
mfjfk

]

+
1

2
ti

∫ x

−∞
mfifj +

1

2
tj

∫ x

−∞
mfifj

= −
∑

tkλkIikIjk +
1

2

(
tiIij + Iijtj

)
;

in short, I• = −ItλI+ 1
2 (tI+It) in a self-explanatory notation.22 This can be integrated back

to obtain I =
∫ x

−∞ mf ⊗ f in terms of its initial value I(0) =
∫ x

−∞ m0f0 ⊗ f0 ≡ M , to wit,

I = et/2M [1+(e′−1)λM ]−1et/2. The verification is routine, assuming det[1+(et−1)λM ] ≡ ϑ
does not vanish; but watch out: The notation is a little tricky in that (et)• = tet, you will
also need to keep in mind that A(I +BA)−1 = (I +AB)−1A for any matrices A and B.

Step 3. This step is to differentiate I(x) by the original scale x to obtain the updated
eigenfunctions f = [fn : n ∈ Z − 0]: With the abbreviation (et − 1)λ ≡ C and the help of
m(x)(x′)2 ≡ m0(x), you find

m0(x)

x′ × f ⊗ f(x) = (mf ⊗ f)(x)x′ = I ′

= et/2m0f0 ⊗ f0(x)(1 + CM)−1et/2

−et/2M(1 + CM)−1Cm0f0 ⊗ f0(1 + CM)−1et/2

23 = m0(x)et/2(1 +MC)−1f0 ⊗ f0(1 + CM)−1et/2,

which is to say that if m0(x), x′, and ϑ = det(1 + CM) = det(1 +MC) do not vanish, then

f(x) =
√
x′et/2

(
1 +MC

)−1
f0(x).

This will be expressed in a more robust form presently.

Step 4. This step would be to imitate the partial differential equation for the scale x
from Step 4 of Sect. 9.3.1, but this is not really needed.

22t is the diagonal matrix tn : n ∈ Z− 0, and similarly for λ.
231−M(1 + CM)−1C = (1 +MC)−1, (1 + CM)−1C being symmetric.
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Step 5. The serious computation of the scale begins by evaluating J(x) ≡ ∫ x

−∞ mfey/2.

[J(x)]• = 1
2 tJ−ItλJ , much as in Step 2, and now the known value I = et/2M(1+CM)−1et/2

leads quickly to J(x) = et/2(1 +MC)−1J0(x) with J0(x) ≡ ∫ x

−∞ m0f0ey/2.

Step 6. This step is to differentiate J(x) with respect to x to obtain[
J(x)

]′
= mf(x)ex/2x′

= −et/2
[
(1 +MC)−1m0f0 ⊗ f0C(1 +MC)−1

]
J0(x)

+ et/2(1 +MC)−1m0f0ex/2.

Now use m(x)(x′)2 ≡ m0(x), Step 3, and a bit of cancellation to produce

ex/2 =
√
x′[ex/2 − Cf0(x) • (1 +MC)−1J0

]
.

This may be put into a better form with the help of the three theta functions:

ϑ−
ϑ
ϑ+

⎫⎬
⎭ = det

⎡
⎢⎢⎢⎢⎣1 +

(
et − 1

) ∫ x

−∞

(
f0′ ⊗ f0′ +

1

4
f0 ⊗ f0

)
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1

2
f0 ⊗ f0(x)

−f0′ ⊗ f0(x)

+
1

2
f0 ⊗ f0(x)

⎤
⎥⎥⎥⎥⎦ ,

the middle ϑ being nothing but det(1+CM) = det(1+MC). Here ϑ− and ϑ+ cannot vanish,
as will be seen in Sect. 9.5, and with the notation F = 1

2f − f ′ and the proviso that ϑ does
not vanish either, you find

ϑ−
ϑ

=
det

[
1 + CM − (

et − 1
)
F 0 ⊗ f0

]
det(1 + CM)

= det
[
1− f0 ⊗ (1 + CM)−1Cλ−1F 0

]

= 1− f0 • C(1 +MC)−1e−x/2

∫ x

−∞
m0f0ey/2

= e−x/2
[
ex/2 − f0 • C(1 +MC)−1J0

]

=
ex/2e−x/2

√
x′ .

This identity was the aim of Step 6.

Step 7. This step prepares the identity ϑ2 = ϑ−ϑ+ + ϑ′
−ϑ+ − ϑ−ϑ′

⊥ for the final de-
termination of x. This is a purely algebraic fact, so it is harmless to assume the invertibility
of

Q ≡ 1 +
(
et − 1

) ∫ x

−∞

[
f0′ ⊗ f0′ +

1

4
f0 ⊗ f0

]
.

Then

ϑ−
ϑ
ϑ+

⎫⎬
⎭ = (detQ)×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1− 1

2
ξ •Q−1η

1− ξ •Q−1η′

1 +
1

2
ξ •Q−1η
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with ξ = f0 and η = (et − 1)f0. In this language, ϑ−ϑ+ + ϑ′−ϑ+ − ϑ−ϑ′
+ is the product of

(detQ)2 and

1− 1

4

(
ξ •Q−1η

)2 − 1

2

(
ξ •Q−1η

)′[
1 +

1

2
ξ •Q−1η + 1− 1

2
ξ •Q−1η

]

= 1− 1

4

(
ξ •Q−1η

)2 − ξ′ •Q−1η − ξ •Q−1η′

+ ξ •Q−1

(
η′ ⊗ ξ′ +

1

4
η ⊗ ξ

)
Q−1η

=
(
1− ξ′ •Q−1η

)(
1− ξ •Q−1η′

)
= 24

(
1− ξ′ •Q−1η

)2
= ϑ2.

Step 8. This step puts it all together: By Steps 6 and 7,

e−xx′ = e−x ϑ2

ϑ2−
= e−x

[
ϑ+

ϑ−
−
(
ϑ+

ϑ−

)′]
= −

(
e−xϑ+

ϑ−

)′
,

so e−x = e−xϑ+/ϑ−, up to an additive constant depending possibly upon time. This constant
vanishes. One proof employs ∂x/∂tn = −f2

n(x) and x(0, x) ≡ x. A better way is to note that
x(∞) = ∞ is inherited by the composite flow from the individual flows of Sect. 9.3. This kills
the constant since, for tame t, you have

ϑ±(x = ∞) = det

[
1 +

(
et − 1

) ∫ ∞

−∞

(
1

2
f0 ± f0′

)
⊗
(
1

2
f0 ± f0′

)]

=
∏

etn > 0.

Summary

I change notation as in Sect. 9.3, replacing the initial values m0 and f0 by m and f , plain,
and writing

ϑ−
ϑ
ϑ+

⎫⎬
⎭ = det

⎡
⎢⎢⎢⎢⎢⎢⎣
1 +

(
et − 1

) ∫ x

−∞

(
f ′ ⊗ f ′ +

1

4
f ⊗ f

)
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1

2
f ⊗ f(x)

−f ′ ⊗ f(x)

+
1

2
f ⊗ f(x)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

In this language, the rules for composite flow are

(1) ex =
exϑ−
ϑ+

or, what is more or less the same, x′ =
ϑ2

ϑ−ϑ+
,

(2) (etXm)(x) =
m(x)

(x′)2
=

m(x)ϑ2−ϑ2
+

ϑ4
,

(3) (etXf)(x) =
et/2√

ϑ−ϑ+(x)
ϑ[1 +M(et − 1)λ]−1f(x).

Note that x = x+lnϑ−/ϑ+ always makes sense since ϑ± do not vanish25; another nice feature
is that x(−∞) = −∞ and x(+∞) = +∞ in view of ϑ±(−∞) = 1 and ϑ±(+∞) =

∏
etn .

ϑ can and often will vanish as pointed out in Sect. 9.3 already, but (3) always makes sense,

24Q−1(et − 1) is symmetric and η = (et − 1)ξ.
25See Sect. 9.5.2.
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ϑ[1+M(et−1)λ]−1 being a Fredholm co-factor; it is only the skimpy notation that is at fault.
It is a nice exercise to recover the individual recipe of Sect. 9.3 from the present composite
one.

9.5. Technicalities About Theta

The three theta functions ϑ−, ϑ+, and ϑ are written, here and below, as in the summary
to Sect. 9.4. I collect some technical facts about them, anticipating the discussion of CH in
Sects. 9.6 and 9.7: There, tn = −t/2λn, t ≥ 0 being the “running time” of the flow, so I do
not apologize for taking tn = c/λn +O(1/λ2

n) here. It is convenient to assume, in addition to
the summability of m, that it be smooth and that m′ be summable, too.

9.5.1. Convergence of ϑ±. Let F = 1
2f − f ′. Then ϑ− = det[1 + (et − 1)P ] with

P =
∫ x

−∞ F ⊗ F , and from P 2 ≤ P ≤ 1, you conclude that the spectrum of (et − 1)P [(et −
1)P ]† ≤ (et − 1) ⊗ (et − 1) is majorized by (etn − 1)2 : n ∈ Z − 0 and that (et − 1)P has
absolute trace sp |(et − 1)P | ≤ ∑ |etn − 1| < ∞, et − 1 being comparable to 1/λ, which is
summable as per Sect. 9.2. The convergence of the determinant ϑ+ is similar.

9.5.2. Positivity of ϑ±. Write (et − 1) = σC2 will σn = +1 or −1 according as tn ≥ 0
or tn < 0, and introduce the projections ξ → ξ± = 1

2 (1 ± σ)ξ. ϑ± is the determinant of
I + σCPC, and since CPC has finite absolute trace, it suffices to confirm the positivity of
the associated quadratic form:

ξ(1 + σCPC)ξ = ξ2 + ξ+CPCξ − ξ−CPCξ

= ξ2 + ξ+CPCξ+ − ξ−CPCξ−

≥ ξ2 − ξ−C2ξ−

=
∑
σ=+1

ξ2n +
∑
σ=−1

(
I − C2

n

)
ξ2n

=
∑
σ=+1

ξ2n +
∑
σ=−1

etnξ2n.

The finer result ϑ± ≥ ∏
emin(tn,0) is pretty and not hard to prove. It may be reduced to a

simple statement in the (d < ∞)-dimensional space:

det
[
1 +

(
et − 1

)
P
] ≥ ∏

emin(tn,0)

for any t = (t1, . . . , td) ∈ R
d and P : Rd → R

d subject to 0 < P = P † ≤ 1.

Proof. Let e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), etc., be the standard basis of Rd

and take t1 ≥ 0. Then Q ≡ 1 + (et1 − 1)e1 ⊗ Pe1 has determinant 1 + (et1 − 1)e1 • Pe1 ≥ 1
and inverse Q−1 = 1− (detQ)−1(et1 − 1)e1 ⊗ Pe1. Now

1 +
(
et − 1

)
P = Q +

(
et2 − 1

)
e2 ⊗ Pe2 + etc.

= Q × [
1 +Q−1

(
et2 − 1

)
e2 ⊗ Pe2 + etc.

]

= Q × P−1
[
1 +

(
et2 − 1

)
e2 ⊗ PQ−1e2 + etc.

]†
P,

so

det
[
1 +

(
et − 1

)
P
] ≥ det

[
1 +

(
et2 − 1

)
e2 ⊗ P ′e2 + etc.

]
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in which P ′ ≡ PQ−1 is subject to the same conditions as for P : In fact,

detQ × ξP ′η = ξ • P [1 + (
et − 1

)
e1Pe1 −

(
et1 − 1

)
e1 ⊗ Pe1

]
η

= ξ • Pη +
(
et1 − 1

)[(
e1Pe1

)
(ξPη)− (

ξPe1
)(
ηPe1

)]
,

from which the symmetry of P ′ is plain, while the quadratic form detQ× ξP ′ξ is minorized
by ξPξ > 0 and majorized by

ξPξ
[
1 +

(
et1 − 1

)
e1 • Pe1

]
= ξPξ × detQ ≤ ξ2 detQ;

in short, t1 ≥ 0 permits the reduction of det[1 + (et − 1)P ] to the product of detQ ≥ 1 times
a determinant det[1+ (et− 1)P ′] of the same type with t1 = 0. This means that it is harmless
to take t1, . . . , td < 0 from the start. But then

det
[
1 +

(
et − 1

)
P
]
= det[1− CPC] with C2 = 1− et,

and the estimate

ξ(1 − CPC)ξ = ξ2 − ξCPCξ ≥ ξ2 − (Cξ)2 =
∑(

1− C2
n

)
ξ2n =

∑
etnξ2n,

shows, by min/max, that the (positive) spectrum of 1−CPC is minorized by etn : 1 ≤ n ≤ d,
whence

det
[
1 +

(
et − 1

)
P
] ≥ ∏

emin(tn,0),

as required. �
9.5.3. Convergence of ϑ. Let F = 1

2f − f ′ and note that

ϑ = det

[
1 +

(
et − 1

)[ ∫ x

−∞

(
f ′ ⊗ f ′ +

1

4
f ⊗ f

)
− f ′ ⊗ f(x)

]]

= det

[
1 +

(
et − 1

)[ ∫ x

−∞
F ⊗ F + F ⊗ f(x)

]]

= det
[
1 +

(
et − 1

)
P +

(
et − 1

)
F ⊗ f

]

= det
[
Q+

(
et − 1

)
F ⊗ f

]
with P as before and Q = 1+ (et − 1)P . Here detQ = ϑ− does not vanish, so Q is invertible
and ϑ is or ought to be

ϑ− × det
[
1 +Q−1

(
et − t

)
F ⊗ f

]
= ϑ− × [

1 +Q−1
(
et − 1

)
F • f].

That does the trick.

9.5.4. Differentiability of ϑ±. Write Q = 1 + (et − 1)P with P =
∫ x

−∞ F ⊗ F and

F = 1
2f ± f ′ as in Sect. 9.1. Formally,

ϑ′
±

ϑ±
= sp

(
Q−1Q′) = spQ−1

(
et − 1

)
F ⊗ F

26 = sp
(
et − 1

)
F ⊗ F − sp

(
et − 1

)
PQ−1

(
et − 1

)
F ⊗ F.

The second piece is not troublesome: It is PQ−1(et − 1)F • (e′ − 1)F and is controlled by27

|(et − 1)F |2; compare Sect. 9.3.

26Q−1 = 1− (Q − 1)Q−1.
27PQ−1 is bounded.
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It remains to deal with the first piece: sp(et − 1)F ⊗F = F • (et− 1)F . This is where the
summability of m′ comes in: Indeed,

F 2
n

λn
= −mf2

n + e−x

∫ x

−∞
(m′ + 2m)f2

ne
y,

as you may check by application of 1 +D to both sides, so

∑ F 2
n∣∣λn

∣∣ ≤ |m|+
∫ x

−∞

[|m′|+ 2|m|] < ∞

in view of f2 ≤ 1. I will need the actual value:
∑

F 2
n/λn = e−x

∫ x

−∞ mey. This is easily

obtained from the display for F 2/λ if m �= 0 on any interval: Then f2 = 1 and

∑ F 2
n

λn
= −m+ e−x

∫ x

−∞

(
m′ + 2m

)
ey = e−x

∫ x

−∞
mey.

Obviously, the proviso on m has nothing to do with the result.

9.5.5. Higher Derivatives of ϑ±. I deal with ϑ−. The discussion of ϑ+ is similar. Now
F = 1

2f − f ′ and formal differentiation of ϑ′
−/ϑ− = F •Q−1(et − 1)F produces

ϑ′′−
ϑ−

=

(
ϑ′−
ϑ−

)2

+ F ′ •Q−1
(
et − 1

)
F

− F • [Q−1
(
et − 1

)
F ⊗ FQ−1

(
et − 1

)
F
]
+ F •Q−1

(
et − 1

)
F ′

≡ (1) + (2)− (3) + (4),

in which you recognize (3) as [(1)]2 and (2) as the same as (4), Q−1(et − 1) being symmetric.
But

(2) = (4) = F ′ •Q−1
(
et − 1

)
F

=

(
− 1

2
F + λmf

)
•Q−1

(
et − 1

)
F

= −1

2

(
ϑ′
−

ϑ−

)
+mF •Q−1

(
et − 1

)
λf

28 = −1

2

(
ϑ′−
ϑ−

)
+mF • (et − 1

)
λf −mF • (et − 1

)
PQ−1

(
et − 1

)
λf

≡ (5) + (6)− (7),

in which (5) is fine, as is (7) since |f | ≤ 1, |(et−1)F | < ∞, and PQ−1 is bounded, leaving only
(6) = mF • (et − 1)λf for serious consideration. Here, (et − 1)λf = cf + 0(1/λ), permitting
the reduction of (6) to c × F • f , plus a piece under the safe control of |f | and |F/λ|. But
what, in fact, is F • f? The answer is contained in the identity

λn

∫ b

a

mFnfn =

∫ b

a

Fn

(
1

2
+D

)
Fn =

1

2

∫ b

a

F 2
n +

1

2
F 2
n

∣∣∣∣
b

a

28Q−1 = 1− (Q − 1)Q−1.
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whence ∫ b

a

mF • f = Σ

∫ b

a

mFnfn

=
1

2

∫ b

a

mΣF 2
n/λn +

1

2
ΣF 2

n/λn

∣∣∣∣
b

a

=
1

2

∫ b

a

e−x

∫ x

∞
mey +

1

2
e−x

∫ X

−∞
mey

∣∣∣∣
b

a

,

with the interpretation

mF • f =
1

2
e−x

∫ x

−∞
mey +

1

2

(
e−x

∫ x

−∞
mey

)′
=

1

2
m.

Indeed, inspection of the proof shows that this rule produces a perfectly correct expression
for ϑ′′−, and more: that ϑ′′− is a continuous function of x ∈ R. Quicker but more formal is the
derivation F • f = (f/2 − f ′) • f = (1 − D)f2/2 = 1/2 in case m does not vanish on any
interval (f2 ≡ 1).

9.5.6. Derivatives of ϑ. Write ϑ = ϑ−[1 + f • Q−1(et − 1)F ], as in Sect. 9.3, with
Q = 1 + (et − 1)P , P =

∫ x

−∞ F ⊗ F , and F = 1
2f − f ′, reducing the differentiability of ϑ to

that of (0) ≡ f •Q−1(et − 1)F . Formally,

(
f •Q−1

(
et − 1

)
F
)′

=

[
f ′ =

1

2
f − F

]
•Q−1

(
et − 1

)
F

− f • [Q−1
(
et − 1

)
F ⊗ FQ−1

(
et − 1

)
F
]

+ f •Q−1
(
et − 1

)[
F ′ = −1

2
F + λmf

]

= −F •Q−1
(
et − 1

)
F

− [
f •Q−1

(
et − 1

)
F
]× [

F •Q−1
(
et − 1

)
F
]

+mf •Q−1
(
et − 1

)
λf

≡ −(1)− (0)× (1) +m× (2).

But (2) takes care of itself and (1)=ϑ′−/ϑ− as per Sect. 9.4—in short, ϑ′ is fine.
ϑ′′ requires only a little more talk: (0)′ was just dealt with, Sect. 9.5 takes care of the

present (1)′ and m′ × (2) is fine, leaving for further consideration only the product of m and

(2)′ =
[
f •Q−1

(
et − 1

)
λf

]′

=

(
1

2
f − F

)
•Q−1

(
et − 1

)
λf

− f • [Q−1
(
et − 1

)
F ⊗ FQ−1

(
et − 1

)
λf

]

+ f •Q−1
(
et − 1

)
λ

(
1

2
f − F

)
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=
1

2
× (2)− F •Q−1

(
et − 1

)
λf − [

f •Q−1
(
et − 1

)
F
]×

× [
F •Q−1

(
et − 1

)
λf

]

+
1

2
× (2)− f •Q−1

(
et − 1

)
λF

≡ (2)− (3)− (4)× (3)− (5),

in which (2) needs no more discussion, (3) is related to the (2)=(4)=(5)−(6)−(7) of Sect. 9.5,
and (4) takes care of itself, so only m × (5) is left. But, up to well-controlled connections,
m × (5) = mf • Q−1(et − 1)λF = c × mf • Q−1F , and mf • Q−1F succumbs to the trick
applied to mF • f = m/2 in Sect. 9.5. Indeed, you have the formal identity

f •Q−1F = f • F − f • (et − 1
)
PQ−1F,

in which the third piece is perfectly fine—in short, all is well with ϑ′′, too, first on a formal
level and then in fact. It is even a continuous function of x ∈ R, just like ϑ′′

− and ϑ′′
+, as

inspection of the proof will confirm.

Summary

If m is smooth, if both m and m′ are summable, and if t = c/λ+O(1/λ2), then ϑ−, ϑ+,
and ϑ are all of class C2(R). Obviously, these conditions could be much relaxed, but that is
not my purpose here.

9.6. Application to Camassa-Holm

The Hamiltonian for Camassa-Holm run forward is29

H = −1

2

∫
mGm = −1

4
sp
(
K†mK

)2
= −1

4
Σλ−2

n ,

so the corresponding vector field X : m → −(mD +Dm)v is a combination of the individual
fields Xn : m → (mD +Dm)f2

n of Sect. 9.3:

X =
∑
Z−0

−1

2λn
Xn,

the flow being etX =
∏

e−(t/2λn)Xn with “running time” t ≥ 0. The parameters tn = −t/2λn

obey the technical condition of Sect. 9.5, so if the initial value of m = v − v′′ is smooth and
if both m and m′ are summable, then the three theta functions

ϑ± = det

[
1 +

(
e−t/2λ − 1

) ∫ x

−∞

(
1

2
f ± f ′

)
⊗
(
1

2
f ± f ′

)]

and

ϑ = det

[
1 +

(
e−t/2λ − 1

)
λ

∫ x

−∞
mf ⊗ f

]

are twice differentiable in respect to x; they are also real analytic functions of the running
time t ≥ 0, as you will readily check. Here, the Lagrangian scale obeys ∂ x/∂t = (etXv)(x), so
from the general rules for composite flows in Sect. 9.4, you find x = x+ lnϑ−/ϑ+ and

(
etXv

)
(x) =

[
ln

ϑ−
ϑ+

]•
=

ϑ•
−

ϑ−
− ϑ•

+

ϑ+
.

29G = (1−D2)−1 = 1
2
exp(−|x− y|) as before.
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This is of immediate interest: It makes sense for any t ≥ 0 since ϑ± does not vanish. What
does occasionally break down is (etXv)′: In fact, x′ = ϑ2/(ϑ−ϑ+), as usual, and

(
etXv

)′
(x) =

x′•

x′ = (lnx′)• =
2ϑ•

ϑ
− (ln ϑ−ϑ+)

•,

in which the second piece is always nice, but ϑ•/ϑ can and will be bad if ϑ vanishes. Be
that as it may, the formalism of Sect. 9.4 provides an effective continuation of CH past any
conventional “breakdown.” Most of Sect. 9.6 is devoted to a more detailed description of what
is really happening when ϑ vanishes.

9.6.1. CH Is Solved. The fact that etXv solves CH in its original form [∂v/∂t−∂v′′/∂t+
3vv′−2v′v′′−vv′′′ = 0] is a tautology if x′ �= 0: In the scale x, etXm is nothing but m(x)/(x′)2

and x• = (etXv)(x), so

d

dt

[(
etXm

)
(x)

]
+ 2

(
etXmv′

)
(x) = m(x)

[(
x′)−2]•

+ 2m(x)(x′)−2x•′(x′)−1

= m(x)(x′)−3
[− 2x′• + 2(x− 1)•

]

= 0,

which is the same thing. This can be improved so that any vanishing of ϑ causes no difficulty.
To illustrate the point in its simplest aspect, let’s look at the (backward) Hamiltonian H =
1
2

∫
[(v′)2 + v2]: With etXv in place of v,

H =
1

2

∫ [(
etXv

)′2
(x) +

(
etXv

)2
(x)

]
dx

=
1

2

∫ [(
x′•

x′

)2

+ (x•)2
]
x′dx

=

∫ [
2
(√

x′
)•2

+
1

2

(
x•)2x′

]
dx

=

∫ [
2

(
ϑ√
ϑ−ϑ+

)•2
+

1

2

(
ln

ϑ−
ϑ+

)•2
ϑ2

ϑ−ϑ+

]
dx

is a perfectly sensible integral (≤ ∞) for all t ≥ 0.30 This is constant in time, regardless of
any vanishing of ϑ, being (real) analytic for t ≥ 0 and constant when t is small (ϑ �= 0). Now
back to CH, but write it in its Lagrangian form relative to the scale x:

d

dt

(
etXv

)
(x) +

(
etXp

)′
(x) = 0,

i.e.,

d

dt

[(
etXv

)
(x)

]
=

1

2
e−x

∫ x

−∞
eyetX

[
v2 +

1

2
(v′)2

]
(y)dy

− 1

2
ex
∫ ∞

x

e−yetX
[
v2 +

1

2
(v′)2

]
(y)dy,

30You may think line 3 is a little shaky but you can check line 4 directly from line 2.
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which is to say(
ln

ϑ−
ϑ+

)••
=

1

2
e−xϑ+

ϑ−

∫ x

−∞
ey

ϑ−
ϑ+

[(
ln

ϑ−
ϑ+

)•2
+

1

2

(
ln

ϑ2

ϑ−ϑ+

)•2]
ϑ2

ϑ−ϑ+
dy

− 1

2
ex

ϑ−
ϑ+

∫ ∞

x

e−y ϑ+

ϑ−

[(
ln

ϑ−
ϑ+

)•2
+

1

2

(
ln

ϑ2

ϑ−ϑ+

)•2]
ϑ2

ϑ−ϑ+
dy.

It is needless to spell it out further: The integrals to the right are perfectly sensible after
some cancellation of ϑ’s above and below, and the identity is valid for all t ≥ 0 by the same
reasoning employed in respect to H : In short, etXv solves the Lagrangian form of CH that
does not break down at all, regardless of any vanishing of ϑ!

9.6.2. No Breakdown. Constantin and Escher [4] proved that forward CH does not
break down if m is positive (or negative), and their method extends to the case when m has
positive partm+ situated wholly to the right of its negative partm− [private communication].
This fact is readily verified in the present format. The question is: Does ϑ vanish or not? Let
m be ≤ 0 for x ≤ 0 and ≥ 0 for x ≥ 0 and observe that −C2

n = (e−t/2λn − 1)λn is negative
for every n ∈ Z − 0. ϑ = det[1 − C

∫ x

−∞ mf ⊗ fC] is now seen to be: (a) equal to 1 at −∞,

(b) increasing for x ≤ 0, and (c) decreasing for x ≥ 0 until it vanishes (if it ever does). But, in
fact, it cannot vanish: As x ↑ ∞, 1− C

∫ x

−∞ mf ⊗ fC decreases to 1− C2/λ = e−t/2λ > 0,31

so ϑ stays positive:

ϑ ≥ exp

[
−
(
t

2

)∑ 1

λn

]
= exp

[
−
(
t

2

)∫
m

]
.

Thus, the good behavior of etXv is assured, slope and all; indeed, it is even of class C3(R)
under the present assumptions.

9.6.3. Breakdown. I had hoped to find an equally simple proof of the result of
McKean [11] that breakdown must occur in the opposite case, i.e., if any part of m+ lies
to the left of some part of m−. I did not succeed but record here a few simple indications.
The condition ϑ �= 0 for the absence of breakdown means that the spectrum of C

∫ x

−∞ mf⊗fC

lies properly below 1 for every t ≥ 0 and x ∈ R.32 This requires that the associated quadratic
form be positive: ξ2 − ∫ x

−∞ m|∑ ξnCnfn|2 > 0 unless ξ = 0. Now C2
n � t/2 as n tends to

±∞, so the condition for no breakdown can be restated as∫ x

−∞
m

∣∣∣∣
∑

ξnfn

∣∣∣∣
2

<
∑ ξ2n

C2
n

for every t ≥ 0 and x ∈ R,

and since C2
n increases as t ↑ ∞, to λn or to +∞ according as n > 0 or n < 0, you have the

equivalent condition33∫ x

−∞
mf2 ≤

∑
n>0

1

λn

〈
f, fn

〉2
for any x ∈ R and f ∈ H1.

This must be the same as to say that m− lies wholly to the left of m+. I could not see it in
general, but here are two simple examples where I can.

31λ
∫∞
−∞ mf ⊗ f = the identity.

32C
∫ x
−∞ mf ⊗ fC is compact with finite absolute trace; compare Sect. 9.5.3.

33〈f1, f2〉 is the inner product
∫∞
−∞(f ′

1f
′
2 + 1

4
f1f2).
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Figure 9.2.

Example 9.6.1. Let m be positive for x < 0 and let it be negative someplace to the right.
Then there are plenty of negative eigenvalues and the condition for no breakdown requires∫ 0

−∞ mf2−1 = 0, and so also f−1 ≡ 0 unless m ≡ 0 for x ≤ 0; i.e., if that is not the case, then
breakdown must occur.

Example 9.6.2. Now let m be as in Fig. 9.2 and take the artificial case indicated there
when mdx : x < 0 reduces to a finite number of negative point masses p1, . . . , p5, say, placed
at q1 < q2 < · · · < q5 < 0. The negative part of m situated to the right of x = 1 ensures
the existence of ≥ 6 (indeed, of infinitely many) negative eigenvalues, and you may choose
numbers c1, . . . , c6, not all zero, so that f = c1f−1 + · · · + c6f−6 vanishes at x = q1, . . . , q5.

Then the condition for no breakdown requires
∫ 1

0
mf2 = 0, whence f ≡ 0 for 0 < x < I if

m > 0 there. But this is not possible in the face of

[
1

m

(
1

4
−D2

)]j−1

f =

6∑
i=1

λj−1
−i cif−i = 0 for j = 1, . . . , 6

and the nonvanishing of the Vandermonde determinant

det
[
tj−1
−i : 1 ≤ i, j ≤ 6

]
=
∏
i>j

(
λ−i − λ−j

)
.

No individual eigenfunction can vanish on any interval, i.e., breakdown occurs.

9.6.4. A Differential Equation for ϑ. To investigate (etXv)(x) more fully, I need the
curious fact that

ϑ′′ϑ− + ϑϑ′′
− + ϑ′

−ϑ− ϑ−ϑ′ − m′

m
ϑ′ϑ− − 2ϑ′ϑ′

− = 0 when m �= 0.

This is valid for general parameters t = [tn : n ∈ Z − 0] subject to the technical condition
of Sect. 9.5 that t = c/λ+ 0(1/λ2). Be warned that, for the present section only, t is not the
“running time” of Sects. 9.1, 9.2, and 9.3 above. Ercolani and McKean [7, p. 536] suggested
the identity. The proof can be made in a number of ways; indeed, it is all implicit in the
computations of Sect. 9.5, but it would be tiresome to unscramble all that. Better to start
over and, recognizing that the question is a purely algebraic one, to take t tame so as to
finesse all technical considerations.
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Proof. Write ϑ = det[Q+ (et − 1)F ⊗ f ] with Q = 1+ (et − 1)P , P =
∫ x

−∞ F ⊗ F , and

F = 1
2f − f ′ as in Sect. 9.5. Then

ϑ = ϑ− × [
1 + f •Q−1

(
et − 1

)
F
]

(0)

as before, and

ϑ′−
ϑ−

= spQ−1
(
et − 1

)
F ⊗ F = F •Q−1

(
et − 1

)
F,(1)

ϑ′′
−

ϑ−
=

(
ϑ′
−

ϑ−

)2

+ 2F •Q−1
(
et − 1

)
F ′(2)

− F • [Q−1
(
et − 1

)
F ⊗ FQ−1

(
et − 1

)
F
]

34 = 2F •Q−1
(
et − 1)

(
− 1

2
F + λmf

)

= −ϑ′
−

ϑ−
+ 2F •Q−1

(
et − 1

)
λmf,

ϑ′

ϑ−
=

ϑ′−
ϑ−

[
1 + f •Q−1

(
et − 1

)
F
]
+
[
f •Q−1

(
et − 1

)
F
]′

(3)

= F •Q−1
(
et − 1

)
F × [

1 + f •Q−1
(
et − 1

)
F
]

+

(
1

2
f − F

)
•Q−1

(
et − 1

)
F

− f • [Q−1
(
et − 1

)
F ⊗ FQ−1

(
et − 1

)
F
]

+ f •Q−1
(
et − 1

)(− 1

2
F + λmf

)

35 = f •Q−1
(
et − 1

)
λmf,

and

ϑ′′

ϑ−
=

ϑ′ϑ′
−

ϑ2−
+
[
f •Q−1

(
et − 1

)
λmf

]′
(4)

=
[
f •Q−1

(
et − 1

)
λmf ]× [

F •Q−1
(
et − 1

)
F
]

+

[
1

2
f − F

]
•Q−1

(
et − 1

)
λmf

− f • [Q−1
(
et − 1

)
F ⊗ FQ−1

(
et − 1

)
λmf

]

+ f •Q−1
(
et − 1

)
λm′f

34The rest cancels.
35The rest cancels.
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+ f •Q−1
(
et − 1

)
λm

(
1

2
f − F

)

= (5) + (6) + (7) + (8) + (9),

in which

(5) =
ϑ′ϑ′

−
ϑ2−

,

(6) =
1

2

ϑ′

ϑ−
− 1

2

(
ϑ′′
−

ϑ−
+

ϑ′
−

ϑ−

)
by (2) and (3),

(7) =

(
1− ϑ

ϑ−

)
× 1

2

(
ϑ′′−
ϑ−

+
ϑ′

ϑ−

)
by (0) and (2),

(8) =
m′

m

ϑ′

ϑ−
by (3),

and

(9) =
1

2

(
ϑ′

ϑ−

)
− 1

2

(
ϑ′′
−

ϑ−
+

ϑ′
−

ϑ−

)
ϑ

ϑ−
+

ϑ′ϑ′
−

ϑ2−
by (0), (1), (2), and (3).

This is all obvious except for the last two pieces of the formula for (9), representing the
product of m and −f •Q−1(et − 1)λF , which requires a little trick. Let

R = 1 +
(
et − 1

)
λ

∫ x

−∞
mf ⊗ f = Q+

(
et − 1

)
F ⊗ f(x) = Q(1 + ξ ⊗ η)

with ξ = Q−1(et − 1)F and η = f , and suppose, what is harmless, that ϑ �= 0 so that R is
invertible. Then Q−1 = (1 + ξ ⊗ η)R−1 and R−1(et − 1)λ is symmetric (which is the point of
this maneuver), permitting you to compute as follows:

f •Q−1
(
et − 1

)
λF = f • (1 + ξ ⊗ η)R−1

(
et − 1

)
λF

= F •R−1
(
et − 1

)
λ(1 + η ⊗ ξ)f

36 = F •
[
1− ξ ⊗ η

1 + ξ • η
]
Q−1

(
et − 1

)
λ(1 + η ⊗ ξ)f.

This is reduced, after a little manipulation, to

F •Q−1
(
et − 1

)
λf × [

1 + f •Q−1
(
et − 1

)
F
]

− F •Q−1
(
et − 1

)
F × f •Q−1

(
et − 1

)
λf.

The evaluation of (9) now follows from (1), (2), and (3). It remains only to put (4)= (5) +
· · ·+ (9) together to obtain the differential equation for ϑ stated at the start. �

9.6.5. Application to the Roots of ϑ = 0. To make life easy, let m(x) = 0 have only
a finite number of simple roots. It is to be proved that the roots of ϑ(x) = 0 are likewise
isolated and either double or simple according as m(x) = 0 there or not.

Proof. Let ϑ = 0 have a double root at a point where m �= 0. Then, by the differential
equation of Sect. 9.6.4, ϑ ≡ 0 out to the next root of m = 0 to the left or right. This
cannot happen if the way is clear (m �= 0) out to −∞ or to +∞ since ϑ(−∞) = 1 and
ϑ(+∞) = det[1+ (et− 1)] =

∏
etn > 0. Thus, m = 0 must have a root at x = 0, say, where ϑ,

36(1 + ξ ⊗ η)−1 = 1− (1 + ξ • η)−1ξ ⊗ η.
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ϑ′, and ϑ′′ all vanish. This cannot happen either: The root of m is simple, so that m′/m−1/x
is smooth nearby; then the differential equation of Sect. 9.6.4 above takes the form

(
ϑ′

x

)′
=

ϑ′′

x
− ϑ′

x2
= A

ϑ′

x
+B

ϑ

x

with continuous

A =
m′

m
− 1

x
+ 1 +

2ϑ′
−

ϑ−
and −B =

ϑ′′
−

ϑ−
+

ϑ′
−

ϑ−
,

and ϑ′/x = o(1) implies
∣∣∣∣ϑ

′

x

∣∣∣∣ ≤
∫ x

0

∣∣∣∣Aϑ′

y
+

B

y

∫ y

0

ϑ′
∣∣∣∣dy ≤ constant×

∫ x

0

∣∣∣∣ϑ
′

y

∣∣∣∣dy.
This forces ϑ′/x and, with it, ϑ itself to vanish in a whole neighborhood of x = 0; in short,
the vanishing of ϑ propagates across any intervening roots of m = 0 all the way out to ±∞,
contradicting ϑ(±∞) > 0; i.e., the original root of ϑ = 0 must have been simple. Now let ϑ = 0
at a point where m = 0 (simply). Then m′ϑ′ϑ− = 0 by the differential equation multiplied
by m, so ϑ′ = 0, too, and the vanishing of ϑ′′ is ruled out by the same reasoning as before;
i.e., the root is double. This is all I need for the sequel. �

9.6.6. How (etXv)′ Breaks Down. This takes place when ϑ = 0 in accordance with

(
etXv

)′
(x) =

(
ln

ϑ2

ϑ−ϑ+

)•
=

2ϑ•

ϑ
+ nice stuff.

I keep the assumption of Sect. 9.6.5 that m(x) = 0 has only simple roots. If ϑ = 0 and m �= 0,
then ϑ′ �= 0—i.e., the root is simple—but what about ϑ•? The fact that (etXm)(x)(x′)2 ≡
m(x) is a constant of motion provides the answer:

(
etXv

)′′
(x) =

(
ln

ϑ2

ϑ−ϑ+

)•′
× 1

x′ =
[
2ϑ•

ϑ
− (

lnϑ−ϑ+

)•]′ϑ−ϑ+

ϑ2

so, putting the root at x = 0, say, you have

m(x) =
[
etXv − (

etXv
)′′]

(x)× (x′)2

=

[(
ln

ϑ−
ϑ+

)•
−
[
2ϑ•

ϑ
− (

lnϑ−ϑ+

)•]′ϑ−ϑ+

ϑ2

]
× ϑ4

ϑ2−ϑ2
+

� −2

ϑ−ϑ+

[
ϑ•′ϑ− ϑ•ϑ′] near the root,

=
2ϑ•ϑ′

ϑ−ϑ+
at the root;

i.e., ϑ•ϑ′(0) = 1
2m(0)ϑ−ϑ+(0) �= 0 has the same sign as m(0). The behavior of etXv is clarified

thereby: Taking x(0) = 0 for ease of writing, you find

x′ =
ϑ2

ϑ−ϑ+
� x2

[
ϑ′(0)

]2
ϑ−ϑ+(0)

so that x− � x3

3

[
ϑ′(0)

]2
ϑ−ϑ+(0)
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and
(
etXv

)′
(x) � 2ϑ•

ϑ
� m(0)ϑ−ϑ+[

ϑ′(0)
]2
x

� a positive multiple of m(0)(x)−1/3

whence (etXv)(x) is of the approximate form a+ bm(0)(x)2/3 with b > 0, i.e., a cusp is seen
rising/falling to the left/right of x = 0 in case m(0) < 0; in particular, up to uninteresting
positive multipliers, [(

etXv)′(x)
]2
x′ � (x)−2/3ϑ2 � x−2 × x2 = 1

is summable across the root, in agreement with the fact that H = 1
2

∫
[(v′)2v2] is a constant

of motion.
Now let ϑ = 0 have a double root at x = 0. Then m(0) = 0, ϑ′(0) = 0, ϑ′′(0) �= 0, and

m′(x) =
2

ϑ−ϑ+

[
ϑ′′ϑ• − ϑ•′ϑ′]+ o(1) near the root

=
2ϑ•ϑ′′

ϑ−ϑ+
at the root

by the preceding display for m, whence ϑ•ϑ′′(0) = 1
2m

′(0)ϑ−ϑ+(0) �= 0 has the same sign

as m′(0). Besides, up to harmless positive multipliers, x′ � x4, so that x � x5, (etXv)(x) �
2ϑ•/ϑ � m′(0)x−2 � m′(0)(x)−2/5, and etXv(x) � a+bm′(0)(x)3/5 exhibits a slightly different
type of cusp with summable[(

etXv
)′
(x)

]2
x′ � (x)−4/5x4 � x−4 × x4 = 1,

as before.

9.7. Breakdown and Soliton Train

I want to follow the breakdown of CH in as much detail as I currently know how in the
simple case when m is odd and positive/negative to the left/right of the origin with m′(0) < 0.

9.7.1. Solitons Reviewed. CH has “solitons” of the form

(etXv(x) = (p/2)e−|x−q−(p/2)t|,

moving to the right or left, according as p > 0 or p < 0, and it is reasonable to expect that,
as t ↑ ∞, quite a general solution will separate out into a “train” of such solutions, moving
at different speeds and so widely separated, with a little trailing “radiation” behind, i.e., to
a first approximation.

etXv
)
(x) �

∑ pn
2
e−|x−qn−(pn/2)t|.

In the “pure soliton” case, the initial m is a sum of (signed) point masses p located at
points q, and the initial v is an exact sum

∑
(pn/2)e

−|x−qn| of this type. Remarkably enough,
etXv retains this shape under the flow, only now the p’s and q’s move in accordance with the
classical Hamiltonian flow q• = ∂H/∂p, p• = −∂H/∂q with H = − 1

4

∑
pipje

−|qi−qj |[2, 3]. I
omit the verification in favor of a formal discussion of what happens as t ↑ ∞. The conventional
wisdom already quoted has it that solitons ought to “disperse,” i.e., to move at different
speeds, so that |qi − qj | should be large if i �= j, with the following effect on the constants of
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motion37:∑ 1

λn
= spK†mK = spKK†m =

∫
m =

∑
pn,

∑ 1

λ2
n

= sp
(
K†mK)2 = sp

(
KK†mKK†m

)
=
∑

pipje
−|qi−qj | �

∑
p2n,

∑ 1

λ3
n

= sp
(
K†mK

)3
=
∑

pipjpke
− 1

2 |qi−qj |e−
1
2 |qj−qk|e−

1
2 |qk−qi| �

∑
p3n,

and so on. Thus, the p’s must tend to the 1/λ’s (in some order), H � − 1
4

∑
p2n, and q• �

− 1
2p � −1/2λ, whence

(
etXv

)
(x) �

∑ 1

2λn
e−|x−qn−t/2λn|

with some new constants q, these being in the nature of “phase shifts.” Beals, Sattinger, and
Szmigielski [1] present the full computation in their format; compare Sect. 9.7.6 below.

9.7.2. Two Solitons. It is instructive to see exactly what happens in the “soli-
ton/antisoliton” collision when mdx is a positive mass p(0) placed at −q(0) < 0 and
a symmetrically disposed negative mass −p(0) placed at +q(0). The flow of n solitons∑

(pi/2)e|x − qi| is regulated by q• = −∂H/∂p and p• = +∂H/∂q with Hamiltonian
−H = − 1

4

∑
pipj exp(−|qi−qj|),38 so for n = 2, q1 = −q, p1 = +p, q2 = +q, and p2 = −p you

find (1) q• = − p
2 (1−e−2q) = −H/p and (2) p• = 1

2p
2e−2q = 1

2p
2−H with H = 1

2p
2(1−e−2q),

the symmetries q2 = −q1 and p2 = −p1 being maintained. (2) is integrated to obtain

p(t) =
√
2H

1 + e(t−T )
√
2H

1− e(t−T )
√
2H

,

T being the “breakdown time.” At this moment, q = 0 and p = ∞, so (2) implies

T =

∫ ∞

p(0)

dp
1
2p

2 −H
=

1√
2H

ln
p(0) +

√
2H

p(0)−√
2H

=
1√
2H

ln
1 +

√
1− e2q(0)

1−
√
1− e2q(0)

.

(1) can now be integrated to obtain39

q(t) = ln ch

[
(t− T )

√
H

2

]
.

Taking the formulae literally, you see that q decreases to 0 at time T and then increases,
while p increases to +∞ and comes back with the opposite sign—in short, the two solitons
pass through each other.40

The function (etXv)(x) = p
2e

−|x+q|− p
2e

−|x−q| is, of course, odd: For x > q it is −pe−x sh q,

while for 0 < x < q it is −pe−q shx, so that, as t ↑ T , |etXv| is comparable to pq � H/p �
H/p ↓ 0; likewise, for x > q, (etXv)′ = −etXv vanishes as t ↑ T , but (etXv)′(0) = −pe−q ↓ −∞,
as it should. Next comes the scale x: If x = q, then x• = (etXv)(x) = −pe−q sh q = − p

2 (1 −

37KK† = e−
1
2
|x−y|.

38See [2] and/or [3].
39q(0) = ln ch(T

√
H/2) is used; it comes from the second version of T .

40If you think of the two solitons as particles, you might prefer to say they “bounce off each other,” but
all such descriptions are just a manner of speaking, not the thing itself.
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e−2q) = q•, so x[t, q(0)] = q(t); in particular, x(t, x) > q(t) if x > q(0) and only then, whence

x• = −p sh qe−x =

√
H

2
sh

[
(t− T )

√
H

2

]
e−x if ∞ > x > q(0)

= −pe−q shx = 2

√
H

2

1

sh
[
(t− T )

√
H
2

] shx if 0 < x < q(0),

which can be integrated, too:

ex = ex + ch

[
(t− T )

√
H

2

]
− ch

[
T

√
H

2

]
if ∞ > x > q(0)

ex − 1

ex + 1
=

ex − 1

ex + 1

[
1− e(t−T )

√
H/2

1 + e(t−T )
√

H/2

1 + eT
√

H/2

1− eT
√

H/2

]2
if 0 < x < q(0).

x ceases to be a proper scale at breakdown: At this moment (and only then) it collapses the
whole interval |x| ≤ q(0) to the single point x = 0. Otherwise, it is perfectly fine: x′(t, x) = 0
only if t = T and |x| < q(0), and likewise for ϑ, it is needless to know the actual values of ϑ±
and ϑ, but observe that if ±Λ are the two eigenvalues of the spectral problem and if f± are
the values of the associated eigenfunctions at x = −q(0), then, with p(0) = p for short,

ϑ(x = 0) = det

[
1 +

(
e−t/2Λ − 1

)
Λpf2

+

(
e−t/2Λ − 1

)
Λpf−f+

−(et/2Λ − 1
)
Λpf−f+ 1− (

e−t/2Λ − 1
)
Λpf2−

]

= 1 +
(
e−t/2Λ − 1

)
Λpf2

+ − (
et/2Λ − 1

)
Λpf2

−
decreases steadily to −∞; compare Sect. 9.7.5 below. Now back to the main story with
(smooth) odd m, positive/negative to the left/right of x = 0, with m′(0) < 0.

9.7.3. Parity of ϑ. The parity of m implies that the spectrum λn : n ∈ Z − 0 is also
odd in respect to n and that fn(−x) = f−n(x). It follows that ϑ is an even function of x:
Indeed.

ϑ(−x) = det

[
1 +

(
e−t/2λi − 1

)
λi

∫ −x

−∞
mfifj

]

= det

[
1− (

e−t/2λi − 1
)
λi

∫ ∞

x

mf−if−j

]

41 = det

[
1 +

(
et/2λi − 1

)
λi

(
1− λi

∫ x

−∞
mfifj

)]

= det

[
et/2λi +

(
1− et/2λi

) ∫ x

−∞
mfifj

]

=
∏
Z−0

et/2λn det

[
1 +

(
e−t/2λi − 1

) ∫ x

−∞
mfifj

]

= ϑ(x).

The same type of manipulation shows that ϑ+(−x) = ϑ−(x).

41Change n to −n and use λ
∫∞
−∞ mf ⊗ f = 1.
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9.7.4. Roots of ϑ (x = 0). Write ϑ(0) = det(1 − CMC) with M =
∫ 0

−∞ mf ⊗ f and

C2 = (1 − e−t/2λ)λ > 0. Here CMC is positive since m(x) > 0 to the left of 0; it is also of
finite trace ∫ 0

−∞
m
∑

C2
nf

2
n ≤ max

Z−0
C2

n ×
∫ 0

−∞
m,

and so you may write ϑ(0) =
∏∞

n=1(1 − μn), in which μ1 ≥ μ2 ≥ etc. are the (strictly)
positive eigenvalues of CMC. ϑ(0) vanishes when one of these numbers hits the level +1, and
these events are isolated in time since ϑ(0) is an analytic function of t ≥ 0, with initial value
+1. Now it is known from Sect. 9.6.6 that ϑ•ϑ′′(0) = 1

2m
′(0)ϑ−ϑ+(0) < 0 when ϑ(0) vanishes,

so the roots are double with respect to x and simple with respect to t. I aim to prove that
there is an infinite number of such roots: More precisely, that CMC has an ∞-dimensional
null space and also an infinite number of nontrivial eigenvalues μ1 ≥ μ2 > etc. > 0, crossing
the level +1 one at a time, μ1 at time T1 > 0, μ2 at time T2 > T1, etc., passing on to +∞
as t ↑ ∞; actually, Tn ↑ +∞. I believe that the individual eigenvalues are always simple and
increase with time but could not prove it. The proof is broken up into four little steps.

Step 1. Fix t > 0. The numbers C2
n = (1 − e−t/2λn)λn tend to t/2 as n tends to ±∞,

so42 any function h ∈ H1 vanishing for x ≤ 0 (of which there are many) may be written

h =
∑

ξnCnfn with ξ2 < ∞, and you have ξ • CMCξ =
∫ 0

−∞ mh2 = 0; i.e., CMC has an
∞-dimensional null space. But it is also obvious that it is of infinite rank and, as such, must
have an infinite number of positive eigenvalues μ1 ≥ μ2 ≥ etc. ↓ 0.

Step 2. This step shows that these positive eigenvalues cross level +1 one at a time (if
at all). In fact, if, let us say, three of them cross at the same instant t0 > 0, then one of three
things must happen: Either (1) they are all (local) analytic functions of T = t− t0, or (2) one
of them is such while the other two branch as in

μ2

μ3

}
= 1 +

∞∑
n=1

RnT
n/2 ×

{
1

(−1)n,

or else (3) you see a triple branching as in

μ1

μ2

μ3

⎫⎬
⎭ = 1 +

∞∑
n=1

RnT
n/3 ×

⎧⎨
⎩

1
ωn

ω2n
with ω = the cube root of unity e2π

√−1/3.

Both (1) and (2) violate ϑ• �= 0 at the root, and (3) is not possible either since you cannot
keep all three roots real without having the leading term of the sum be T n/3 with n ≡ 0(3),
in which case ϑ vanishes triply at T = 0. This is contradictory.

Step 3. This step reveals that once it has crossed the level +1, no eigenvalue returns:
Near the crossing time, the eigenvalue μ is simple, and both it and its associated normalized
eigenvector ξ are smooth. Then a routine calculation produces

μ• = 2μξC−1C•ξ =
1

2

∑
e−t/2λnμnC

−2
n ξ2n > 0.

That does the trick.

Step 4. This step shows that each eigenvalue really does cross the level +1, passing on
to +∞ with increasing time. This follows from min/max. Let η1, . . . , ηn−1 be unit vectors
in general position, and let the unit vector ξ be perpendicular to them. It is the content of

min/max that μn = minη maxξ ξ • CMCξ. Now the matrix [
∫ 0

−∞ mfifj : −1 ≥ i, j ≥ −n]

42m 	= 0 on any interval, so the functions fn : n ∈ Z− 0 spanH1; see Sect. 9.2.2.
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is positive definite with spectrum ≥ Λ > 0. Pick ξ with vanishing components except for
ξ−1, . . . ξ−n and make it perpendicular to the η’s, as you may, having one extra degree of
freedom. Then

μn ≥ Λ
n∑
1

ξ2−iC
2
−i ≥ Λ min

1≤i≤n
C2

−i ≥ Λλ−1

(
e−t/2λn − 1

) ↑ ∞

with t, as desired.

9.7.5. Shape of ϑ(x). The information obtained to date already tells a lot. Let
0<T1<T2<etc.↑∞ be the roots of ϑ(0) = 0, alias the crossing times. ϑ(x) = det[1 −
C
∫ x

−∞ mf ⊗ fC] is seen at various stages of its development in Fig. 9.3. Figure 9.3a shows

it before time T1: ϑ decreases to its minimum at x = 0, rising symmetrically to ϑ(∞) = 1.
Figure 9.3b shows it at time T1: At x = 0, ϑ•ϑ′′ < 0, so ϑ• < 0 and ϑ′′ > 0. Thus, ϑ(0)
continues to decrease as in Fig. 9.3c, and the old root at x = 0 disappears, or rather it splits
into two symmetrically disposed simple roots ±r1(t), one to the right and one to the left. The
appearance of any other roots is ruled out for a while: If there were another (simple) root
r2 to the right of r1, there would have to be yet a third root r3 > r2 since ϑ(∞) = 1, and,
running every thing backwards, the simplicity of these roots would force ϑ to vanish sixfold
at x = 0 at time T1!

Thus: Fig. 9.3c is realistic; moreover, at x = r1 > 0, ϑ•ϑ′ has the same sign as m(r1) < 0,
so from 0 = [ϑ(r1)]

• = ϑ•+ϑ′r•1 , you find r•1 = −ϑ•/ϑ′ > 0, i.e., r1 moves steadily to the right,
as in the picture. Once μ1 crosses the level +1, it never comes back, passing on to +∞, but
pretty soon μ2 crosses, at time T2 > T1. This moment is the next root of ϑ(0) = 0 at which
ϑ has the shape seen in Fig. 9.3d: At x = 0, ϑ vanishes and ϑ•ϑ′′ is negative in accord with
m′(0) < 0, so ϑ′′(0) < 0, ϑ•(0) > 0, and ϑ(0) is rising. This rise produces two new simple roots
±r2 moving symmetrically to right and left as in Fig. 9.3e, and so on; i.e., there is a continual
production of double roots at x = 0 that split into pairs of simple roots, moving steadily
right and left. Section 9.6 explained what that means: Near each such simple root r > 0,
(etXv)[x(t, x)] exhibits a little cusp of the approximate form a − bm(r)|x(t, x) − x(t, r)|2/3
with b > 0, so there is produced a whole train of cusps as in Fig. 9.4.

9.7.6. The Soliton Train. Now it will be clear what must be happening. Though this
part is mere conjecture, it is hard to disbelieve. The roots r1 > r2 > r3 > etc. should tend to
+∞, x(r1) > x(r2) > x(r3) > etc. should follow suit, and if, as I believe, etXv is a train of cusps
as seen in Fig. 9.4, plus a little trailing radiation, and if these move at diminishing speeds, the
leader being fastest, then the individual cusps should shape themselves into solitary traveling
waves and what should these be but solitons? And, on the evidence of Sect. 9.1, what should
their speeds be but 1/(2λ1), 1/(2λ2), etc.; in short, for t ↑ ∞, large positive x, and suitable
“phase shifts” qn : n ≥ 1, you should see a “soliton train”

(
etXv

)
(x) �

∞∑
n=1

1

2λn
e−|x−qn−t/2λn|.

Here, m was odd and positive/negative to the left/right with m′(0) < 0, but I believe that
ultimately a similar picture will be seen for general m. I do not know how to prove any of
this and can merely record that it is in agreement with numerical calculations of R. Camassa
[private communication]. Note. however, that the conjecture is exact for any m vanishing near
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Figure 9.3.
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Figure 9.4.

+∞ and x way out there: In fact, near x = ∞, fn, (x) = some norming constant cn × e−x/2,

ϑ+(x) = det

[
1 +

(
e−t/2λ − 1

) ∫ x

−∞

(
1

2
f + f ′

)
⊗
(
1

2
f + f ′

)]

= ϑ+(∞) =
∏
Z−0

e−t/2λn = 143

and likewise

ϑ(x) = det

[
1 +

(
e−t/2λ − 1

)
λ

∫ x

−∞
mf ⊗ f

]
= ϑ(∞) = 1,

while

ϑ−(x) = det

[
1 +

(
e−t/2λ − 1

)[
1−

∫ ∞

x

(
1

2
f − f ′

)
⊗
(
1

2
f − f ′

)]]

= det

[
e−t/2λ +

(
1− e−t/2λ

) ∫ ∞

x

c⊗ ce−y

]

=
∏
Z−0

e−t/2λn det

[
1 +

(
et/2λ − 1

)
c⊗ ce−x

]

= 1+ e−x
∑

c2n
(
et/2λn − 1

)
,

so that

ex = ex ×
[
1 + e−x

∑
Z−0

c2n
(
et/2λn − 1

)]

43The spectrum is odd.
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and

(
etXv

)
(x) =

ϑ•
−

ϑ−
=

e−x
∑

Z−0 c
2
n/2λne

t/2λn

1 + e−x
∑

Z−0 c
2
n

(
et/2λn − 1

)

44 =
∑
Z−0

1

2λn
e−x+qn+t/2λn ,

as advertised.

9.8. Appendix on Theta

I revert to general parameters t = [tn : n ∈ Z − 0] as in Sects. 9.4 and 9.5 to describe
some amusing features of ϑ. Jacobi’s theta function and its three companions, produced by
addition of half periods, obey an astonishing number of identities, and this is only a hint of
what happens for Riemann’s function and its translates. A similar thing happens here, only
now it is not at first apparent what translation means. This is explained in the next section.

9.8.1. Addition. I take m > 0, the “addition” to be described below being ill-defined
otherwise, and I fix Λ < 0 below the spectrum. Then (14 − D2)e = Λme has two positive,

increasing/decreasing solutions e−/e+ imitating ex/2/e−x/2 at −∞/+∞. I write e± = e(•, p)
in which p records the eigenvalue Λ together with a signature to indicate which function is to
be employed. The associated “addition” is the map Ap : m(x) → Apm(x) ≡ m(x)/(x′)2 with
scale determined by

ex = ex
e′ − 1

2e

e′ + 1
2e

or, what is more or less the same,

x′ =
−Λme2

e′2 − 1
4e

2
.

The analogy with the formulae of Sect. 9.4 will be plain if you write, just for the moment,
ϑ± = e′ ± 1

2e and ϑ2 = −Λme2; for instance, ϑ2 = ϑ−ϑ+ + ϑ′
−ϑ+ − ϑ−ϑ′

+.
The several additions commute, and ApA−p = 1 in which −p is p with its signature

reversed. Addition is part of the CH hierarchy in that the two commute; in fact, addition
is more or less coextensive with the hierarchy in that any CH flow can be approximated
by successive applications of Ap : Λ < 0. The name stems from the fact that, in the case
of periodic m, addition is reflected in the Jacobi variety of the associated “multiplier curve”
where the analogue of p now lives, by subtraction of p and addition of∞—in short, “addition”
is some kind of translation. McKean [10] explains this type of thing in the context of KdV.
The present addition is explained independently in McKean [12]. For the moment, I record
only the familiar-looking Apm(x) = m(x)/(x′)2 and the updated eigenfunctions:

(
Apfn

)
(x) =

(
1− λn

Λ

)−1/2 [
e(x, p), fn(x)

]
45√[

(e′)2 − 1
4e

2
]
(x, p)

9.8.2. How ϑ− and ϑ+ Are Reduced to ϑ. I want to convince you that there is really
only one theta function here, namely ϑ itself. The other two, ϑ− and ϑ+, may be produced
from it by “addition” with Λ = 0; i.e., they are “translates” of ϑ. Indeed, for Λ = 0, the

44q = ln c2.
45[a, b] is the Wronskian a′b− ab′.
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action of addition is expressed as46

Aom(x) =
m(x)

(x′)2
and Aofn(x) =

[
e∓x/2, fn(x)

]
√
λn

e±x/2,

in which o = (0,±1), the scale x is ln
∫ x

−∞ mey or − ln
∫∞
x me−y according as the signature

is −1 or +1, and you have the pretty rule Aoϑ(x) = ϑ±(x). The proof is easy: For example,
with signature −1,

Aoϑ(x) = Ao det

[
1 +

(
et − 1

)
λ

∫ x

−∞
mf ⊗ f dy

]
taken at x

= det

[
1 +

(
et − 1

)
λ

∫ x

−∞
Ao(mf ⊗ f)(y)dy

]

= det

[
1 +

(
et − 1

)
λ

∫ x

−∞
Ao(mf ⊗ f)(y)dy

]

= det

[
1 +

(
et − 1

)
λ

∫ x

−∞

m(y)

y′2

(
1
2f − f ′)ey/2√

λey/2
⊗
(
1
2f − f ′)ey/2√

λey/2
y′dy

]

47 = det

[
1 +

(
et − 1

) ∫ x

−∞

(
1

2
f − f ′

)
⊗
(
1

2
f − f ′

)
dy

]

= ϑ−(x).

The computation with signature +1 is similar.

9.8.3. The General Addition Applied to ϑ. Fix p with Λ < 0 and let e(•, p)
be the associated eigenfunction. Then, with x = the scale for the addition Ap and x =
the scale for the composite flow etX,

etXe(•, p)(x) = e(x, p)Apϑ(x)√
ϑ−ϑ+(x)

.

The proof employs the method of Sect. 9.4 to obtain

etXe(•, p)(x) = ϑ(x)√
ϑ−ϑ+(x)

[
e(x, p)− (1 +MC)−1f(x) • C

∫ x

−∞
mef

]

with the usual f = [fn : n ∈ Z− 0], C = (et − 1)λ, and M =
∫ x

−∞ mf ⊗ f . Now apply Ap to
ϑ: In the associated scale x, you find, much as in Sect. 9.2 above,

Apϑ(x) = det

[
1 + C

∫ x

−∞
Ap

(
mf ⊗ f

)
(y)dy

]

= det

[
1 + C

∫ x

−∞

m

y′2
[e, f ]√
1− λ

Λ

⊗ [e, f ]√
1− λ

Λ

y′dy
e′2 − 1

4e
2

]

48 = det

[
1 +

C

λ− Λ

∫ x

−∞

(
e′f − ef ′)⊗ (

e′f − ef ′)
e2

dy

]
.

46The scale x must be adjusted by an additive − ln(−Λ) before making Λ ↑ 0.
47x′ = mex/ex.
48m/y′ = −(e′2 − 1

4
e2)/Λe2.
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Now the inner integral is∫ x

−∞

[(
e′

e

)2

f ⊗ f − e′

e
(f ⊗ f)′ + f ′ ⊗ f ′

]

=

∫ x

−∞

[
f ′ ⊗ f ′ +

e′′

e
f ⊗ f

]
− e′

e
f ⊗ f(x)

= (λ− Λ)

[ ∫ x

−∞
mf ⊗ f dy − 1

e(x)

∫ x

−∞
mef dy ⊗ f(x)

]
,

as you will readily check, so the whole reduces to

det

[
1 + C

∫ x

−∞
mf ⊗ f − C

1

e

∫ x

−∞
mef ⊗ f(x)

]

=
ϑ

e

[
e− f • (1 + CM)−1C

∫ x

−∞
mef

]
.

It remains only to compare the start and the finish.

9.8.4. A Composition Rule.49

ϑ is now written ϑ(t, x) with the parameters t = [tn : A ∈ Z− 0] displayed. The rule is

ϑ(t+ s, x) = ϑ(t, x) × [
etXϑ(s, •)](x)

with the scale x for the composite flow etX. The proof is simple enough: With the usual
C = (et − 1)λ,

etXfn(x) = et/2ϑ(1 +MC)−1fn/
√
ϑ−ϑ+ in the original scale x,

so [
etXϑ(s, •)](x)

= det

[
1 +

(
es − 1

)
λ

∫ x

−∞

m

y′2
et/2ϑ(1 +MC)−1f√

ϑ−ϑ+

⊗ et/2ϑ(1 +MC)−1f√
ϑ−ϑ+

y′dy

]

50 = det

[
1 +

(
es − 1

)
λet

∫ x

−∞
m(1 +MC)−1f ⊗ (1 +MC)−1f

]
.

But51 [(
1 +MC

)−1]′
= −m

(
1 +MC)−1f ⊗ (1 +MC)−1fC,

49McKean and Trubowitz [13] served as a model.
50x′ = ϑ2/ϑ−ϑ+.
51(1 + cM)−1C is symmetric.
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whence
[
etXϑ(s, •)](x) = det

[
1− (es − 1

)
etλ

∫ x

−∞

[
(1 +MC)−1

]′
C−1

]

= det
[
1− (

es − 1
)
etλ

[
(1 +MC)−1 − 1

]
C−1

]

= det
[
1 +

(
es − 1

)
etλ(1 +MC)−1M

]
.

Now multiply from the right by ϑ = det(1 + CM) to obtain

det
[
1 + CM +

(
es − 1

)
etλ(1 +MC)−1M(1 + CM)

]

= det
[
1 +

(
et − 1

)
λM +

(
es − 1

)
etλM

]

= det
[
1 +

(
et+s − 1

)
λM

]

= ϑ(t+ s, x),

as advertised.

9.9. Some Open Questions

A task for the future is to verify the formation of the soliton train described in Sect. 9.7.
KdV also produces soliton trains, but with this difference: Except for reflectionless v, the KdV
soliton train accounts only for the part of the total energy ascribed to the bound states of the
associated spectral problem, the deficiency being carried by the evanescent radiation ascribed
to the continuous spectrum. Now for summable m, CH has only bound states, the individual
soliton vn ≡ (1/(2λn)) exp(−|x−t/(2λn)|) carries energy 1

2

∫
[(v′n)

2+v2n] = 1/(4λ2
n), and these

individual energies add up to the whole: H2 =
∑

1/(4λ2
n), so here nothing is lost. A special,

more primitive version of soliton formation is seen when v is run by one of the individual flows
of Sect. 9.3 with Hamiltonian H = 1/λn. Now a single soliton vn is kicked out and runs away
to ±∞, leaving behind a “residual” v∞ with the same spectrum as for v but with λn removed.
Doubtless the map v → v∞ is the counterpart of the standard Darboux transformation for
removing one bound state for KdV and can be expressed much like the “addition” cited in
Sect. 9.8. These questions are under current investigation by Sr. E. Loubet.

CH is the special case c = 2 of m• + vm′+ cv′m = 0, which is integrable for c = 3 as well
but not otherwise; moreover, it exhibits solitons for any c > 1.52 What happens then? Does
my method apply at all? I do not know.

The introduction of the term 2c∂v/∂x into standard CH raises further questions. This is
equivalent to taking a solution w of standard CH that vanishes at ±∞ and putting v(t, x) =
w(t, x − ct) + c so that v(±∞) = c �= 0. It introduces continuous spectrum [1/(4c),+∞) or
(−∞, 1/(4c)] according as c is positive or negative, producing radiation over and above the
solitons associated with any bound states, and it may be that some version of the present
theta formalism applies. I do not know about that either.
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52See Holm and Staley [8] and Degasperis, Holm, and Hone [5].



BIBLIOGRAPHY 187

Bibliography

[1] R. Beals, D. H. Sattinger, and J. Szmigielski. Multipeakons and the classical moment
problem. Adv. Math., 154:229–257, 2000.

[2] R. Camassa and D. Holm. An integrable shallow water equation with peaked solitons.
Phys. Rev. Lett., 71(11):1661–1664, 1993.

[3] R. Camassa, D. D. Holm, and M. Hyman. A new integrable shallow water equation.
Adv. Appl. Math., 31:1–33, 1993.

[4] A. Constantin and J. Escher. Well-posedness, global existence, and blow up phenomena
for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math., 51:475–504,
1998.

[5] A. Degasperis, D. D. Holm, and A. N. N. Hone. A new integrable equation with peakon
solutions. Theoretical and Mathematical Physics, 133:1463–1474, 2002.

[6] F. J. Dyson. Fredholm determinants and inverse scattering. Comm. Math. Phys., 47:171–
183, 1976.

[7] N. Ercolani and H. P. McKean. Geometry of KdV (4). Abel sums, Jacobi variety, and
theta function in the scattering case. Invent. Math., 99(3):483–544, 1990.

[8] D. Holm and M. F. Staley. Wave structure and nonlinear balances in a family of evolu-
tionary PDEs. SIAM J. Appl. Dyn. Syst., 2:323–380, 2003.

[9] A. R. Its and V. B. Matveev. Hill operators with a finite number of lacunae. Funkcional.
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10Breakdown of the Camassa-Holm
Equation

Henry P. McKean Jr.1

10.1. Introduction

The Camassa-Holm equation2 is written in its Eulerian form as

CH:
∂v

∂t
+ v

∂v

∂x
+

∂p

∂x
= 0,

with “pressure” p = G[v2 + 1
2 (v

′)2]. Here G = (1 −D2)−1 = 1
2e

−|x−y|. It is easy to see that
if, at time t = 0, v is odd with v(x) > 0 for x < 0 and v′(0) < 0, then the slope s(t) = v′(t, 0)
satisfies s• < − 1

2s
2 and so is driven down to −∞ at some time T ≤ −2/s(0): in short, the

flow may “break down.” This is the “steepening lemma” of Camassa and Holm [2]. Nothing
worse happens: v(t, x) itself cannot jump like the usual kind of shock. Actually, it is not the
obvious v but rather the auxiliary function m = v − v′′ that controls this; m is a caricature
of the vorticity that controls the behavior of honest Euler in dimensions 2 and 3; see Bertozzi
and Majda [1] for a full account.

McKean [6] proved that CH breaks down if and only if some portion of the positive part
of m lies to the left of some portion of its negative part. The proof was made under the
condition that m be smooth and summable, with a finite number of simple roots. It was a
little complicated and even wrong at one point, as Xin Zhouping kindly pointed out to me;
see McKean [5] for the correction. Here, I want to present a very simple proof using the
machinery of McKean [4], summarized in Sect. 10.2. The prior condition on the roots of m is
dropped.

10.2. Solving CH by Fredholm Determinants

CH is integrated by means of the eigenfunctions fn : n ∈ Z− 0 of the associated spectral
problem −f ′′+ 1

4f = λmf considered at time t = 0. These are labeled so that the correspond-
ing eigenvalues λn : n ∈ Z − 0 are positive (negative) for n > 0 (n < 0). They form a unit
perpendicular basis of H1 with nonstandard norm |f | = (

∫
[(f ′)2 + 1

4f
2])1/2. The finiteness

1Courant Institute, 251 Mercer Street, New York, NY 10012-1185, USA, mckean@cims.nyu.edu.
2[2]; see also [3].
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of the absolute trace
∑

Z−0 |λn|−1 ≤ ∫ |m| permits formation of the 3 “theta functions”:

ϑ−
ϑ

ϑ+

⎫⎪⎬
⎪⎭ = det

⎡
⎢⎢⎢⎢⎣I +

(
e−t/2λi − 1

)×
∫ x

−∞

(
f ′
if

′
j +

1

4
fifj

)
dy

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1

2
fifj(x)

− f ′
if

′
j(x)

+
1

2
fifj(x)

⎤
⎥⎥⎥⎥⎦ .

ϑ− and ϑ+, cannot vanish, but ϑ may and that causes breakdown. The solution of CH
with initial data v = Gm is expressed in the associated Lagrangian scale x̄(t, x), determined
by ∂x̄/∂t = v(t, x̄) with x̄(0+, x) ≡ x, thus:

x̄ = x+ ln

(
ϑ−
ϑ+

)
and v(t, x̄) = x̄• =

[
ln

(
ϑ−
ϑ+

)]•
.

This makes perfect sense for all times 0 ≤ t < ∞ due to the nonvanishing of ϑ±, and CH
is solved thereby in its Lagrangian form (d/dt)v(t, x̄) + p′(x̄) = 0. It is only v′ that can
go bad, and this at isolated instants only. The identity ϑ2 = ϑ−ϑ+ϑ

′
−ϑ+ − ϑ−ϑ′

+ leads to
x̄′ = ϑ2/ϑ−ϑ+, whence

v′(t, x̄) =
1

x̄′
d

dx
v(t, x̄) =

1

x̄′
d

dx
x̄• = (ln x̄′)• =

2ϑ•

ϑ
+ nice stuff.

Here, ϑ• cannot vanish when ϑ does, so v′ misbehaves precisely when ϑ = 0. Now ϑ can be
re-expressed as

ϑ = det

[
I − Ci

∫ x

−∞
mfifjCj

]
with Cn =

√
λn

(
1− e−t/2λn

)
> 0,

from which it is easy to see that ϑ does not vanish (for any t or x) if and only if you always
have3

∫ x

−∞ mh2 <
∑

Z−0 C
−2
n 〈h, fn〉2 for every h of class H1; moreover, C2

n increases with
t ↑ ∞ to +∞ if n < 0 and to λn if n > 0, leading to the final condition for absence of
breakdown:

max
x∈R

∫ x

−∞
mh2 ≤

∑
n>0

λ−1
n

〈
h, fn

〉2
for every h ∈ H1.

10.3. Discussion of Breakdown

The condition is met if the negative part of m lies wholly to the left of its positive part
(Fig. 10.1). Then

∫ x

−∞ mh2 is at first ≤ 0 and then increases to its maximum at x = ∞. But

λi

∫
−∞ mfifj = 〈fi, fj〉 = 1 or 0 according as i = j or not, so for the general function h,∫ ∞

−∞
mh2 =

∑
Z−0

λ−1
n

〈
h, fn

〉2 ≤
∑
n>0

λ−1
n

〈
h, fn

〉2
.

Figure 10.1.

3〈h, f〉 is the inner product
∫
(h′f ′ + 1

4
hf).
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Now let m be as in the figure (which is merely illustrative) and look at the reduced
spectral problem −h′′ + 1

4h = μmh for h of class H1 vanishing to the left of x = 0. The
presence of negative m between x = 1 and x = 2 ensures the existence of infinity of many
negative eigenvalues μ ↓ −∞. The associated eigenfunctions h will violate the condition of
Sect. 10.2. Indeed, with h(0) = 0 and h′(0) = 1, say, you have

〈
h, fn

〉
= hf ′

n

∣∣∞
0

+

∫ ∞

0

h

(
− f ′′

n +
1

4
fn

)
= λn

∫ ∞

0

mhfn

and also
〈
h, fn

〉
= h′fn

∣∣∞
0

+

∫ ∞

0

(
− h′′ +

1

4
h

)
fn = −fn(0) + μ

∫ ∞

0

mhfn,

i.e.,

〈
h, fn

〉
= −fn(0)

(
1− μ

λn

)−1

,

providing the bound∑
n>0

λ−1
n

〈
h, fn

〉2 ≤
∑
n>0

λ−1
n f2

n(0) ≤ λ−1
1

∑
n>0

〈
e, fn

〉2 ≤ λ−1
1 |e|2

with e = exp(− 1
2 |x|), independently of μ < 0. But also m is positive between x = 0 and

x = 1 so that h′′ = (14 − μm)h > 0 there, and if, for example, m(x) ≥ 1 between x = 1
3 and

x = 2
3 , then h(x) will be ≥ 1√−μ

8h
√−μ(x− 1

3 ) in that interval, causing
∫ 1

−∞ mh2 to be large

for μ ↓ −∞. That’s all there is to it.
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11Rational Theory of Warrant
Pricing

Paul A. Samuelson1

11.1. Introduction

This is a compact report on desultory researches stretching over more than a decade.
In connection with stock market fluctuations, L. Bachelier [3], a French mathematician,

discovered the mathematical theory of Brownian motion five years before Einstein’s classic
1905 paper, Bachelier gave the same formula for the value of a warrant (or “call” or put)
based upon this “absolute” or “arithmetic” process that Dr. R. Kruizenga [20, 21] developed
years later in a thesis under my direction. Under this formula, the value of a warrant grows
proportionally with the square-root of the time to go before elapsing; this is a good approxi-
mation to actual pricing of short-lived warrants, but it leads to the anomalous result that a
long-lived warrant will increase in price indefinitely, coming even to exceed the price of the
common stock itself—even though ownership of the stock is equivalent to a perpetual warrant
exercisable at zero price!

The anomaly apparently came because Bachelier had forgotten that stocks possess limited
liability and thus cannot become negative, as is implied by the arithmetic Brownian process,
To correct this, I introduced the “geometric” or “economic Brownian motion,” with the
property that every dollar of market value is subject to the same multiplicational or percentage
fluctuations per unit time regardless of the absolute price of the stock. This led to the log-
normal process for which the value of a call or warrant has these two desired properties: for
short times, the

√
t law holds with good approximation; and for t → ∞, the value of the call

approaches the value of the common stock. (All the above assumes that stock-price changes
represent a “fair-game” or martingale—or certain trivial generalizations thereof to allow for
a fair return. In an unpublished paper and lecture, I made explicit the derivation of this
property from the consideration that, if everyone could “know” that a stock would rise in
price, it would already be bid up in price to make that impossible. See my companion paper
appearing in this same issue, entitled “Proof That Properly Anticipated Prices Fluctuate
Randomly.”)

1Massachusetts Institute of Technology, Cambridge, MA, USA.
Acknowledgment is made to the Carnegie Corporation for research aid, but sole responsibility for the results
is mine.
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The above results, which have been presented in lectures since 1953 at M.I.T., Yale,
Carnegie, the American Philosophical Society, and elsewhere have also been presented by
such writers as Osborne [25, 26], Sprenkle [27], Boness [4], Alexander [1, 2, 16, 17] and no
doubt others.

However, the theory is incomplete and unsatisfactory in the following respects:

1. It assumes, explicitly or implicitly, that the mean rate of return on the warrant is
no more than on the common stock itself, despite the fact that the common stock
may be paying a dividend and that the warrant may have a different riskiness from
the common stock.

2. In consequence of the above, the theory implies that warrants (or calls) will never
be converted prior to their elapsing date. Necessarily, therefore, no proper theory is
provided for the conditions under which warrants will cease to be outstanding.

3. The existing theory, in effect, assumes that the privilege of converting the warrant
at any time in the interval (rather than at the end of the period) is worth literally
nothing at all.

4. Finally, the theory leads to the mentioned result, that the price of a perpetual war-
rant should be literally equal to the stock itself—a paradoxical result, and one that
does not agree with the observed facts of life (for example, the fact that perpetual
Tri-Continental Warrants sell for less than their equivalent amount of common stock,
and are in fact being continuously converted into stock in some positive volume).

The present paper publishes, I believe for the first time, the more difficult theory of
rationally evaluating a warrant, taking account of the extra worth of the right to convert at
any time in the interval and deducing the value of the common stock above which it will
pay to exercise the warrant. I am glad to acknowledge the valuable contribution of Professor
Henry P. McKean, Jr. of the M.I.T. Department of Mathematics, in effecting certain exact
solutions and in proving the properties of the general solutions. His analysis appears as a
self-contained mathematical appendix. It will be clear that there still remain many unsolved
problems. (For example, exact explicit solutions are now known in the case of perpetual
warrants only for three cases: the log-normal, the log-Poisson, and the case where the only two
possibilities are those of instantaneous complete loss or of a gain growing exponentially in time.
Only for this last case is an exact explicit solution known for the finite-time warrant. These
exact solutions, which are all due to McKean, correspond to various intuitive conjectures
and empirical patterns and can be approximated by the solutions to the simpler problem of
discrete, albeit small, time periods.)

11.2. The Postulated Model

Let the price of a particular common stock be defined for all time and be denoted byXt. If
we stand at the time t, we know with certainty Xt (and all of its past values Xt−T ). Its future
price Xt+T is knowable only in some probability sense, its probability distribution being in
the most general case a function of the whole past profile of Xt−T . A special simplification
involves postulating a Markov property to the process, so that future Xt+T has a distribution
depending only on present Xt—namely

Prob
{
Xt+T ≤ X | Xt = x

}
= P (X, x;T ).(1)

Obviously, (1) involves the critical assumption of a “stationary time series.”
I further posit that each dollar of present value must be expected to have some mean

gain per unit time, α, where α may perhaps be zero or more likely will be a positive quantity
whose magnitude depends on the dispersion riskiness of X , and the typical investor’s utility
aversion to risk. (A deeper theory would posit concave utility and deduce the value of α for
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each category of stocks.) This expected-returns axiom says

E
[
Xt+T | Xt

]
=

∫ ∞

0

X dP
(
X,Xt;T

)
= Xte

αT , α ≥ 0.(2)

(Since money bears the safe return of zero, α cannot be less than zero for risk averters; indeed,
it cannot be less than the safe return or pure interest on funds, if such exists. If utility were
convex rather than concave, people might be willing to pay for riskiness, and α might be
permitted to be negative—but not here.)

The integral in (2) is the usual Stieltjes integral: if the probability distribution P (X,Xt;T )
has a regular probability density ∂P (X,Xt;T )/∂X = p(X,Xt;T ), we have the usual Rie-
mann integral

∫∞
0 Xp(X,Xt;T )dX ; if only discrete probabilities are involved, at X = X1

with probabilities P1(Xt;T ), the integral of (2) becomes the sum ΣX1P1(Xt;T ), which may
involve a finite or countably-infinite number of terms. The reader can use the modern notation∫∞
0 XP (dX,Xt;T ) rather than that of (2) if he prefers.

In (2) the limit of integration is given as 0 rather than −∞, because of the important
phenomenon of limited liability. A man cannot lose more than his original investment: General
Motors stock can drop to zero, but not below.

If the probability of a future price Xt+T depends solely on knowledge of Xt alone, having
the Markov property of being independent of further knowledge of past prices such as Xt−s,
then

P
(
Xt+T | Xt, Xt−s

) ≡ P
(
Xt+T | Xt

)
(3)

and (1) will satisfy the so-called Chapman-Kolmogorov equation

P
(
Xt+T , Xt;T

) ≡
∫ ∞

0

P
(
Xt+T , x;T − S

)
dP

(
x,Xt;S

)
, 0 ≤ S ≤ T.(4)

11.3. Remarks About Alternative Axioms

To see the meaning of this, suppose t takes on only discrete integral values. Then, without
the Markov property (3), (1) would have the general form

Prob
{
Xt+k ≤ X | Xt, Xt−1, . . .

}
= P

(
X,Xt, Xt−1, . . . ; k

)
(5)

with

E
[
Xt+1 | Xt, Xt−1, . . .

]
=

∫ ∞

0

X dP
(
X,Xt, Xt−1, . . . ; 1

)
= eαXt.(2′)

Instead of (4), we would have

P
(
Xt+2, Xt, Xt−1, . . . ; 2

)

=

∫ ∞

0

P
(
Xt+2, Xt+1, Xt, . . . ; 1

)
dP

(
Xt+1, Xt, Xt−1, . . . ; 1

)(4′)

where the integration is over Xt+1 and where Xt is seen to enter in the first factor of the
integrand. Even without the Markov axiom of (3), from (2′) applied to the next period’s
gains, we could deduce the truth of (2) for two periods’ gains as well and, by induction, for
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all-periods’ gains—namely

E
[
Xt+2 | Xt, Xt−1, . . .

]

=

∫ ∞

0

X dP
(
X,Xt, Xt−1, . . . ; 2

)

=

∫ ∞

0

X d

∫ 2

0

P
(
X, x,Xt, Xt−1, . . . ; 1

)
dP

(
x,Xt, Xt−1, . . . ; 1

)

=

∫ ∞

0

eαx dP
(
x,Xt, Xt−1, . . . ; 1

)
= e2αXt.

(6)

Then, by induction, (2) or

E
[
Xt+k | Xt, Xt−1, . . .

]
= ekαXt

follows from the weak assumption of (5) and (2′) alone even when the Markov property (3)
and Chapman-Kolmogorov property (4) do not necessarily hold.

However, I shall assume (3), and a fortiori (4), in order that the rational price of a warrant
be a function of current common stock price Xt alone and not be (at this level of approxi-
mation) a functional of all past values Xt−T . A more elaborate theory would introduce such
past values, if only to take account of the fact that the numerical value of α will presumably
depend upon the estimate from past data that risk averters make of the riskiness they are
getting into when holding the stock.

I might finally note that Bachelier assumed implicitly or explicitly

P (X, x;T ) ≡ P (X − x;T ), α = 0(7)

so that an absolute Brownian motion or random walk was involved. He thought that he could
deduce from these assumptions alone the familiar Gaussian distribution—or, as we would say
since 1923, a Wiener process—but his lack of rigor prevented him from seeing that his form
of (4):

P (X − x;T ) ≡
∫ ∞

−∞
P (X − x− y;T − S)dP (y;S), 0 ≤ S ≤ T(8)

does have for solutions, along with the Gaussian distribution, all the other members of the
Lévy-Khintchin family of infinitely-divisible distributions [22, 12]. including the stable distri-
bution of Lévy-Pareto, the Poisson distribution, and various combinations of Poisson distri-
butions.

11.4. The “Geometric or Relative Economic Brownian Motion”

As mentioned, Bachelier’s absolute Brownian motion of (7) leads to negative values for
Xt+T with strong probabilities. Hence, a better hypothesis for an economic model than
P (X, x;T ) = P (X − x;T ) is the following

P (X, x;T ) ≡ P

(
X

x
;T

)
, x > 0

P (X, 0;T ) ≡ 1 for all X > 0.

(9)

By working with ratios instead of algebraic differences, we consider logarithmic or percentage
changes to be subject to uniform probabilities. This means that the first differences of the
logarithms of prices are distributed in the usual absolute Brownian way. Since the arithmetic
mean of logs in the geometric mean of actual prices, this modified random walk can be called
the geometric Brownian motion in contrast to the absolute or arithmetic Brownian motion.
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The log-normal distribution bears to the geometric Brownian motion the same relation
that the normal distribution does to the ordinary Brownian motion. As the writings of Man-
delbrot [23, 24] and Fama [9, 10] remind us, there are non-log-normal stable Pareto-Lévy
distributions (of logs) satisfying the following form of (4):

P

(
X

x
;T

)
≡
∫ ∞

0

P

(
X

y
;T − S

)
dP

(
y

x
, S

)
.(10)

Some of our general results require only that (1), (2), and (4) hold. But most of
our explicit solutions are for multiplicative processes, in which (9), (10) and the following
hold:

E
[
Xt+T | Xt

]
=

∫ ∞

0

X dP

(
X

Xt
;T

)
= Xte

αT , α ≥ 0.(11)

Actually, (9) and (10) alone require that the family P (X ;T ) is determined once a single
admissible function P (X ;T1) = P (X) is given, as for T1 = 1. Then if α is defined by

eαT1 = E
[
Xt+T1/Xt

]
=

∫ ∞

0

X dP (X),(12)

(11) is provable as a theorem and need not be posited as an axiom. McKean’s appendix
assumes the truth of (9) and (10) throughout. It is known from the theory of infinitely-
divisible processes that P (X) above cannot be an arbitrary distribution but must have the
characteristic function for its log, Y = logX , of the Lévy-Khintchin form:

E
[
eiλY

]
=

∫ ∞

−∞
etλY dP (eY ) = eg(λ)

g(λ) = μiλ+

∫ (
etλz − 1− iλz

1 + z2

)
1 + z2

z2
dψ(z),

(13)

where ψ(z) is itself a distribution function. In the special cases of the log-normal distribution,
the log-Poisson distribution, and the log-Lévy distribution, we have respectively

g(λ) = μiλ− σ2

2
λ2

g(λ) = etλμ − i

g(λ) = μiλ− γ|λ|α0[
1 + iβ

(
λ/|λ|) tan (α0π/2

)]
, 0 ≤ α0 ≤ 2.

(14)

All of (14) is on the assumption that

lim
X→0

P (X) = P (0) = 0.

If P (0) > 0, there is a finite probability of complete ruin in any time interval, and as the
interval approaches infinity that probability approaches 1. An example (the only one for which
exact formulas for rational warrant pricing of all durations are known) is given by

Prob
{
Xt+T = Xte

aT
}
= e−bT a, b > 0

Prob
{
Xt+T = 0

}
= 1− e−bT

(15)

where α = a− b ≥ 0.
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Letting w(X ;T ) be an infinitely-divisible (multiplicative) function satisfying (13), the
most general pattern would be one where

P (0, T ) = 1− e−bT b > 0

P (X,T ) = e−bTw(X, t) + P (0, T )
(16)

with P (∞, T ) = e−bT 1 + 1− e−bT = 1.
One final remark. Osborne, by an obscure argument that appeals to Weber-Fechner and

to clearing-of-free-markets reasoning, purports to deduce, or make plausible, the axiom that
the geometric mean of the distribution P (X/x;T ) is to be unity or that the expected value
of the logarithmic difference is to be a random walk without mean bias or drift. Actually,
if α = 0 in (2), so that absolute price is an unbiased martingale, the logarithmic difference
must have a negative drift. For α sufficiently positive, and depending on the dispersion of the
log-normal process, the logarithmic difference can have any algebraic sign for its mean bias.
Only if one could be sure that P (X/X ;T ) = P (1;T ) ≡ 1

2 , so that the chance of a rise in price
could be known to be always the same as the chance of a fall in price, would the gratuitous
Osborne condition turn out to be true.

If P (X, x;T ) corresponds to a martingale or “fair game,” with α = 0 as in the Bachelier
case, the arithmetic mean of the ratio X/x in always exactly 1 and the geometric mean, being
less than the arithmetic mean if P has any dispersion at all, is less than 1. Its logarithm, the
mean or expected value of log Xt+T /Xt is then negative, and the whole drift of probability
for P (X, x;T ) shifts leftward or downward through time. In long enough time, the probability
approaches certainty that the investor will be left with less than 1 cent of net worth—i.e.,
P (0+, x;∞) = 1. This virtual certainty of almost-complete ruin bothers many writers. They
forget, or are not consoled by, the fact that the gains of those (increasingly few) people
who are not ruined grow prodigiously large—in order to balance the complete ruin of the
many losers. Therefore, many writers are tempted by Osborne’s condition, which makes the
expected median of price Xt+T neither grow above nor decline below Xt.

However, in terms of present discounted value of future price, Xt+T e
−αT , where the mean

yield α is used as the discount factor, most people’s net worth does go to zero, and this occurs
in every case of α ≥ 0. Relative to the expected growth of Xt+T—i.e., relative to Xte

αT ,
Xt+T does become negligible with great probability. I call this condition “relative ruin,” with
the warning that a man may be comfortably off and still be ruined in this sense. And I now
state the following general theorem:

Theorem 11.4.1. Let P (X, x;T ) have non-zero dispersion, satisfying∫ ∞

0

X dP (X, x;T ) ≡ eαT ,

P (X, x;T ) =

∫ ∞

0

P (X, y;T − S)dP (y, x;S), α ≥ 0

as in (2) and (4). Then

lim
T→∞

P (Xe−αT , x;T ) = 1 for all (X, x) > 0.

In the multiplicative-process case, P (X, x;T ) = P (X/x;T ) and the theorem follows almost
directly from the fact that the geometric mean is less than the arithmetic mean.

In words, the theorem says that, with the passage of ever longer time, it becomes more
and more certain that the stock will be at a level whose present discounted value (discounted
at the expected yield α of the stock) will be less than 1 cent, or one-trillionth of a cent.
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As is discussed on page 220, we can replace relative ruin by absolute ruin whenever
the dispersion of the log-normal process becomes sufficiently large. Thus, even if α > 0 in
accordance with positive expected yield, whenever the parameter of dispersion σ2 > 2α,
there is virtual certainty of absolute ruin. Indeed, for the log-normal case we can sharpen the
theorem to read

lim
T→∞

P (0+, x;T ) = 1, σ2 > 2α.

11.5. Summary of Probability Model

The Xt+T price of the common stock is assumed to follow a probability distribution
dependent in Markov fashion on its Xt price alone and on the elapsed time:

Prob
{
Xt+T ≤ X | Xt

}
= P

(
X,Xt;T

)
(1)

P
(
Xt+T , Xt;T

) ≡
∫ ∞

0

P
(
Xt+T , x;T − S

)
dP

(
x,Xt;S

)
, 0 ≤ S ≤ T(4)

with the expected value of price assumed to have a constant mean percentage growth per
unit time of α, or

E
[
Xt+T | Xt

]
= Xte

αT =

∫ ∞

0

X dP
(
X,Xt;T

)
, α ≥ 0.(2)

In many cases P (X, x;T ) will be assumed to be a multiplicative process, with the ratio
Xt+T /Xt independent of all Xt−w. Then we can write

P (X, x;T ) ≡ P

(
X

x
;T

)
,

where P (u;T ) belongs to the special family of infinitely-divisible (multiplicative) distributions
of which the log-normal, log-Poisson, and log-Lévy functions are special cases. (If the Lévy
coefficient α0 in (14), which must not be confused with α of (2), were not 2 as in the log-
normal case, we can show that α in (2) will be infinite. Ruling out that case will rule out the
Lévy-Pareto-Mandelbrot distributions.)

11.6. Arbitrage Conditions on Warrant Prices

A warrant is a contract that permits one to buy one share of a given common stock at
some stipulated exercise price X0 (here assumed to be unchangeable through time, unlike
certain real-life changing-terms contracts) at any time during the warrant’s remaining length
of life of T time periods. Thus, a warrant to buy Kelly, Douglas stock at $4.75 per share until
November, 1965, has X0 = $4.75 and (in March, 1965) has T = 7/12 years. A perpetual
warrant to buy Allegheny Corporation at $3.75 per share has X0 = $3.75 and T = ∞.

When a warrant is about to expire and its T = 0, its value is only its actual conversion
value. If the stock now has Xt = X0, with the common selling at the exercise price to anyone
whether or not he has a warrant, the warrant is of no value. If Xt < X0, a fortiori it is worth
nothing to have the privilege of buying the stock at more than current market price, and
the warrant is again worthless. Only if Xt > X0 is the expiring warrant of any value, and—
brokerage charges being always ignored—it is then worth the positive difference Xt −X0.

In short, arbitrage alone gives the rational price of an expiring warrant with T = 0, as
the following function of the common price known to be Xt = X , F (X,T ) = F (X, 0), where
F (X, 0) = Max[0, X −X0].
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A warrant good for T1 > 0 periods is worth at least as much as one good only for T2 < T1,
periods and generally is worth more. Hence, arbitrage will ensure that the rational price for
a warrant with T1 time to go, denoted by F (X,T1), will satisfy

F
(
X,T1

) ≥ F
(
X,T2

)
if T1 ≥ T2.

A perpetual warrant is one for which T = ∞. But recall that outright ownership of the
common stock, aside from giving the owner any dividends the stock declares, is equivalent to
having a perpetual warrant to buy the stock (from himself!) at a zero exercise price. Hence,
a perpetual warrant cannot now sell for more than the current price of the common stock.
Or, in general, arbitrage requires that

X ≥ F (X,∞) ≥ F
(
X,T1

) ≥ F
(
X,T2

) ≥ F (X, 0) = Max
[
0, X −X0

]
(17)

where

∞ ≥ T1 ≥ T2 ≥ 0.

In all that follows we shall, by an admissible choice of conventional units, be able to assume
that the exercise price is X0 = 1. Thus, instead of working with the price of one actual Kelly,
Douglas warrant, which gives the right to buy one share of Kelly, Douglas common stock
at $4.75, we work with the standardized variable X/X0 = X/4.75—the number of shares
purchasable at $1, which is of course 1/4.75 actual shares; correspondingly, the warrant price
Y , we work with is not the actual Yt but the standardized variable Yt/X

0, which represents
the price of a warrant that enables the holder to buy 1/4.75 actual shares at the exercise price
of $1. We are able to do this by the following homogeneity property of competitive arbitrage:

F (X,X0;T )

X0
≡ F

(
X

X0
, 1;T

)
,(18)

a property that says no more than that two shares always cost just twice one share. Wherever
we write F (X ;T ), we shall really be meaning (18). (Note that Tri-Continental perpetual
warrants involve the right to buy 1.27 shares at $17.76 per share. In calculating X/X0 =
X/17.76, we use for X the price of 1.27 shares, not of one share.)

Our conventions with respect to units ought to be adopted by advisory services dealing
with warrants, to spare the reader the need to calculate X/X0 and Y/Y 0. All this being
understood, we can rewrite the fundamental inequalities of arbitrage shown in (17) as follows:

X ≥ F (X,∞) ≥ F
(
X,T1

) ≥ F
(
X,T2

) ≥ F (X, 0)

= Max
(
0, X − 1

)
, ∞ ≥ T1 ≥ T2 ≥ 0.

(19)

In Fig. 11.1a, b, the outer limits are shown in heavy black: OAB is the familiar function
Max(0, X−1). (In McKean’s appendix, this is written in the notation (X−1)+.) The 45◦ line
OZ represents the locus whose warrant price equals X , the price of the common stock itself.

11.7. Axiom of Expected Warrant Gain

Mere arbitrage can take us no further than (19). The rest must be experience—the
recorded facts of life. Figure 11.1a shows one possible pattern of warrant pricing. The ex-
piring warrant, with T = 0, must be on the locus given by OAB. If positive length of life
remains, T > 0, Fig. 11.1a shows the warrant always to be worth more than its exercise price:
thus, OCD lies above OAB for all positive X ; because OEF has four times the length of life
of OCD, its value at X = 1 is about twice as great—in accordance with the rule-of-thumb√
T approximation; because T is assumed small, and P (X/x;T ) approximately symmetri-

cal around X/x = 1, the slope at C is about 1/2—in accordance with the rule-of-thumb
approximation that if two warrants differ only in their exercise price X0, the owner should
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pay $1/2 for each $1 reduction in X0, this being justifiable by the reasoning that there in
only a half-chance that he will end up exercising at all and benefitting by the X0 reduction.
Note that all the curves in the figures are convex (from below) and all but the OAB and OZ
limits are drawn to be strictly convex (as would be the case if P (u; 1) were log-normal or a
distribution with continuous probability density). Our task is to demonstrate rigorously that
the functions shown in the figures are indeed the only possible rational pricing patterns.

The pricing of a warrant becomes definite once we know the probability distribution of
its common stock P (X, x;T ) if we pin down buyers’ reactions to the implied probability
distribution for the warrant’s price Yt(Tt), in the form of the following axiom:

Axiom of mean expectation. Whereas the common stock is priced so that its mean ex-
pected percentage growth rate per unit time is a non-negative constant α, the warrant is
priced so that it, too, will have a constant mean expected percentage growth rate per unit
time for as long as it pays to hold it, the value of the constant being at least as great as that
for the stock—or β ≥ α. Mathematically

E
[
Yt+T

(
Tt − T

) | Yt

(
Tt

)]
= eβtY

(
Tt

)
(20)

for all times T it pays to hold the warrant, where

β ≥ α = loge

∫ ∞

0

X dP (X, x; 1) ≥ 0.(21)

The reader should be warned that the expected value for the warrant in (20) is more
complicated than the expected value of the stock in (2). The latter holds for any prescribed
time period; but in (20), the time period T must be one in which it pays to have the warrant
held rather than converted. (In the appendix, McKean’s corresponding expectation is given
in 2.8 and in 4.8.) It is precisely when the warrant has risen so high in price (above CT in
Fig. 11.1b) that it can no longer earn a stipulated positive excess β−α over the stock that it
has to be converted. Actually if β is stipulated to equal α, we are in Fig. 11.1a rather than
Fig. 11.1b: there is never a need to convert before the end of life, and hence all points like
C1, . . . , CT are at infinity; as we shall see, the conventional linear integral equations enable
us easily to compute the resulting functions in Fig. 11.1a.

Warrants, unlike calls, are not protected against the payment of dividends by the common
stock. Hence, for any stock that pays a positive dividend, say at the instantaneous rate of δ
times its market value, the warrant will have to have a β > α if it is to represent as good
a buy as the stock itself. Taxes and peculiar subjective reactions to the riskiness patterns of
the two securities aside, at the least β = α + δ > α. However, even if δ = 0 and there is no
dividend, buyers may feel that the volatility pattern of warrants is such that owners must be
paid a greater mean return to hold warrants than to hold stocks. I do not pretend to give a
theory from which one can deduce the relative values of β and α. Here, I merely postulate
that they are constants (independent, incidentally, of T , the life span of the warrant).

My whole theory rests on the axiomatic hypotheses:

1. The stock price is a definite probability distribution, P (X, x;T ), with constant mean
expected growth per unit time α ≥ 0.

2. The warrant’s price, derivable from the stock price, must earn a constant mean
expected growth per unit time, β ≥ α ≥ 0.

Once these axioms, the numbers α, β, and the form of P (X, x;T ) are given, it becomes a
determinate mathematical problem to work out the rational warrant price functions Yt(Tt) =
F (Xt, Tt) for all non-negative Tt, including the perpetual warrant F (Xt,∞).
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Figure 11.1. Rational warrant pricing2

11.8. Some Intuitive Demonstrations

Before giving the mathematical solutions, I shall indicate how one can deduce the para-
doxical result that a perpetual warrant must have the same price as the common stock if they
both have to earn the same mean yield. The reader may want to think of the fair-game case
where β = α = 0, a case which has a disproportionate fascination for economists because
they wrongly think that if prices were known to be biased toward rising in the future, that
fact would already be “discounted” and the price would already have risen to the point where
α can be expected to be zero. (What is forgotten here by Bachelier and others—but not by
Keynes, Houthakker, Cootner [18, 13, 14, 6, 5]. See my cited companion paper in this issue and
other exponents of “normal backwardation”—is that time may involve money, opportunity
cost, and risk aversion.)

A warrant is said to involve “leverage” in comparison with the common stock, and in the
real world where brokerage charges and imperfect capital rationing are involved, leverage can
make a difference. The exact meaning of leverage is not always clear, and writers use the term
in two distinct senses. The usual sense is merely one of percentage volatility. Suppose a stock
is equally likely to go from $10 to $11 or to $9. Suppose its warrant is equally likely to go from
$5 to $6 or to $4. Both are subject to a $1 swing in either direction; but $1 on $5 is twice the
percentage swing of $1 on $10, as will be seen if equal dollars were invested in each security.
In this sense, the warrant would be said to have twice the leverage of the stock. Leverage in
the sense of mere enhanced percentage variability is a two-edged sword: as much as it works
for you on the upside, it works against you on the downside. It is perfectly compatible with

2These graphs show the general pattern of warrant pricing as a function of the common stock price (where
units have been standardized to make the exercise price unity). The longer the warrant’s life T , the higher is
F (X, T ). For fixed T , T (X, T ) is a convex function of X. In Fig. 11.1a, the perpetual warrant’s price is equal

to that of the stock, with F (X,∞) falling on OZ; it never pays to exercise such a warrant. In Fig. 11.1b, the
points C1, C4, C25, and C∞ on AB are the points at which it pays to convert a warrant with T = 1, 4, 25 and
∞ years to run. Note that F (X,∞) is much less than X in this case. The pattern of Fig. 11.1b will later be
shown to result from the hypothesis that a warrant must have a mean yield β greater than the stock’s mean
yield α.
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Figure 11.2. Warrant pricing—the perpetual case

α = β = 0. (However, if there were a two-thirds chance of each security’s going up $1 and
a one-third chance of its going down $1, the warrant’s β would be definitely greater than
stock’s α, since a mean expected return of +33 1/3 � c on $5 is twice that of +33 1/3 � c on $10;
and this impinges on the second sense of leverage.)

The second sense of the term leverage is merely enhanced expected yield from the warrant
in comparison with the common stock. Here is an example from the R.H.M. Warrant and
Stock Survey of February 25, 1965: Newconex Holdings Warrant, Toronto Exchange, “would
rise about 2.25 times as fast as the common stock on the upside and decline no faster than
the common on the downside.” To one who believes this, the warrant offers very good value
or “leverage” in this second sense of the term. Indeed, by selling one common short and
buying one warrant, one could presumably break even if the stock went down in price and
make money if the stock rises—a sure-thing hedge that cannot lose if one believes the stated
probability judgment.

Figure 11.2 shows for a hypothetical perpetual warrant a convex corner at the existing
price E, with EF steeper for a rise than EG for a fall. Obviously, GEF could not persist if the
warrant’s β gain were to be no bigger than the stock’s α gain. Similarly, the strongly convex
NRM could not persist with β = α. What pattern for a perpetual warrant could persist?
Only a straight-line pattern, since for any convexity at all the mean of points along a curve
must lie above the curve itself.

What straight line can be fitted in between OZ and OAB of Fig. 11.1? Obviously, only
the line OZ itself—proving that the only rational price for a perpetual warrant must be that
of the common stock itself when α = β. (Any straight line not parallel to OZ and AB will
intersect one or both of them; any intermediate line parallel to OZ and AB will hit the zero
axis at positive X and then develop a corner there. So OZ alone remains as the formula for
F (X,∞) ≡ X .)

The curve of F (X,T ) for finite T can and will be convex. But as time passes, one does
not move up and down the curve itself—say from R to M if X rises or from R to N if X falls.
Instead, as time passes T diminishes, and one moves from R to a point below M or N on the
new F (X,T − t) curve; and if the two convex curves have been sketched correctly and placed
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in the proper shift relationship to each other, it will be found that the mean expectation of
gain from the warrant is precisely that from the stock.

The moral of this is not that surveys are wrong when they recommend a bargain. It is
rather that one recognizes correct or rational pricing and the absence of bargains when the
warrants are priced in a certain way relative to the common stock. It is only as people act
to take advantage of transient bargain opportunities that the bargains disappear. When I
speak of rational or correct pricing, I imply no normative approval of any particular pattern
but merely describe that pattern which (if it were to come into existence and were known to
prevail) would continue to reproduce itself while fulfilling the postulated mean expectations
in the form of α in (2) and β in (20). It would be a valuable empirical exercise to measure
the α for different stocks at different times and deduce the value of β that the warrants earn
ex post and that can rationalize the observed scatter of warrant and stock prices.

Intuition can carry us a bit further and throw light on the case where β > α. With the
warrant having to produce a better gain than the common, the curve for a perpetual warrant
becomes strictly convex—as in Fig. 11.1b and in contrast to Fig. 11.1a. Furthermore, when
the common price becomes very high compared to the exercise price—i.e., when X/1 is very
large—the conversion value of the warrant becomes negligibly less than the common—i.e.,
(X − 1)/X = 1. If in the period ahead the warrant can rise at most $1 more in price than the
common rises, the warrant’s gain will approach indefinitely close to the common’s α. But that
contradicts the assumption that β > α. So for X high enough, X > C∞ < ∞, it will never
pay to hold the warrant in the expectation of getting β > α; above this C∞, cut-off point, the
warrant must be converted. What has been demonstrated here for perpetual warrants holds
a fortiori for finite warrants with finite T . Even sooner, at CT < C∞, it will pay to convert
since with the clock running on and running out, there will be even less advantage in holding
the warrant for an additional period when the stock and it have become very large.

11.9. Linear Analysis Where β = α ≥ 0

If the expected yields of common and warrant are to be the same in (2) and (20), there
is never any advantage in converting the warrant before the end of its life. That is

F (X,T ) > F (X, 0) = Max(0, X − 1), T > 0; β = α ≥ 0.(22)

Equation (20), postulating that the warrant have an expected gain per unit time of β,
can therefore be written, for all times S,

E
[
Yt+S(T − S) = F

(
Xt+S , T − S

) | Yt(T ) = F
(
Xt, T

)]

= eβSF
(
Xt, T

)
=

∫ ∞

0

F (X,T − S) dP
(
X,Xt;S

)(23)

or

F (x, T ) ≡ e−βS

∫ ∞

0

F (X,T − S)dP (X, x;S)

= e−βT

∫ ∞

0

F (X, 0)dP (X, x;T )

= e−βT

∫ ∞

1

(X − 1)dP (X, x;T ).

(24)

This last integral equation provides, by a quadrature, the solution of our problem. From the
fact that P (X, x; 0) = 1, X > x and = 0, X < x, it is evident that

lim
T→0

F (x, T ) = F (x, 0) = Max(0, x− 1).



11.9. LINEAR ANALYSIS WHERE β = α ≥ 0 209

We can now prove that

lim
T→∞

F (x, T ) = x = F (x,∞), β = α ≥ 0.(25)

Substitute F (x,∞) = F (x) into both sides of (24) to get a self-determining integral equation
for F (x),

F (x) = e−βS

∫ ∞

0

F (X)dP (X, x;S).(26)

The substitution F (x) = x does satisfy (26), since by (2)

x = e−βS

∫ ∞

0

X dP (X, x;S)

= e−βSeαSx = e(α−β)Sx = x, β = α.

(27)

Any kx would also satisfy (26), but only for k = 1 do we satisfy

x ≥ F (x) = kx ≥ Max(0, x− 1).

To prove that the stationary solution of (26) does in fact fulfill the limit of (25), rewrite
(24)

F (x, T ) = e−βT

∫ ∞

1

(X − 1)dP (X, x;T )

= e−βT

∫ ∞

0

(X − 1)dP (X, x;T )

+ e−βT (1−X)dP (X, x;T )∫ 1

0 dP (X, x;T )

∫ 1

0

dP (X, x;T )

= e−βT eαTx− e−βT + e−βT θ1(x, T )θ2(x, T ), where
∣∣θ1∣∣ ≤ 1.

(28)

Obviously, if β = α > 0, F (x,∞) = x+ 0, as was to be proved. For α = 0

lim
t→∞ θ2(x, T ) =

∫ 1

0

dP (X, x;∞) = 1, since P (0+, x;∞) ≡ 0

lim
t→∞ θ1(x, T ) =

∫ 1

0 (1− x)dP (X, x;∞)∫ 1

0
dP (X, x;∞)

= 1, since P (0+, x;∞) ≡ 0.

(29)

Hence, for α = 0 = β, F (x,∞) = x− 1 + 1 = x, as required.
Now that (24) gives the explicit solution in the case α = β, we can put in for P (X, x;T )

any specialization, such as

P (X, x;T ) = P (X/x;T ) log-normal with P (x;T ) = N
(
log x;μt, σ

√
t
)

where N(y; 0, 1) = N(y) =
1√
2π

∫ y

−∞
e−u2/2du;

(30)

or

Prob

{
X

x
= eat

}
= e−bt Prob

{
X

x
= 0

}
= 1− e−bt

a− b = α = β; a, b > 0.

(31)
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For this last case, (24) calculates out to

F (x, T ) = Max
(
0, x− e−aT

)
.(32)

Note that the
√
T law does not hold true here for small T , but rather, at x = 1

F (x, T ) = F (1, T ) = 1− e−at = 1− 1 + aT + remainder
(
T 2

)
= aT.(33)

Hence, a warrant for twice the duration of a short-lived warrant should be worth about twice
as much when (31) holds—even though the ratios Xt+T /Xt are strictly independent.

11.10. Valuation of End-of-Period Warrants

The exact solution of (24) holds only for the case β = α ≥ 0. It will be shown that new
formulas must handle the case of β > α. However, the simple integral (24) does give a solution
under all cases to the simpler case of a warrant that can be exercised only at the end of the
period T . We might call this a “European warrant” by analogy with the “European call,”
which, unlike the American call that is exercisable at any time from now to T , is exercisable
only at a specified terminal date.

Obviously, the additional American option of early conversion can do the owner no harm,
and it may help him. Denote the rational price of a European warrant by f(x, T ), in contrast
to F (x, T ) of the American type warrant. Then

f(x, T ) � F (x, T ), 0 ≤ T(34)

and our axiom of expected gain (20) in now applicable in the form that gives the last version
of (24), namely

f(x, T ) = e−βT

∫ ∞

0

Max(0, X − 1)dP (X, x;T )

= e−βT

∫ ∞

1

(X − 1)dP (X, x;T ), β ≥ α ≥ 0.

(35)

Since this is the same formula as held in (24) for F (x, T ) when β = α, we note that in such
a case the American warrant’s early conversion options are actually of no market value; or

f(x, T ) ≡ F (x, T ) if β = α.(36)

When β > α, (35) still holds. But now

f(x, T ) < F (x, T )(37)

for all or some positive (x, T ). In the log-normal case, the strong inequality must always hold.
There seems to be a misapprehension concerning this inequality. Thus some people argue

that the owner of a European call or warrant can in effect exercise it early by selling the
stock short, thereby putting himself in the position of the owner of an American warrant.
If this view were valid there would be no penalty to be subtracted from F (x, T ) to get true
f(x, T ). Such a view is simply wrong—as wrong as the naive view that giving your broker a
stop-loss order gives you the same protection as buying a put. (The fallacy here has naught to
do with the realistic fact that in a bad market break your broker will not be able to execute
your stop-loss order at the stipulated price; waive that point. Suppose I buy a stock at $100
and protect it by buying (say for $10) a six-month put on it at exercise price of $100. You
buy the stock and merely give your broker a stop-loss sell order at just below $100. If the
stock drops below $100 at some intermediate time during the next six months, you are sold
out without loss; but you do as well as I do only if the stock never subsequently rises to
above $100; and the $10 cost of the put is precisely the market value of my opportunity to
make a differential profit over you in case the stock does end up at more than $100, after at
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least once dipping below $100.) By the vector calculus that Kruizenga and I worked out for
various options, after one sells a stock short and still holds a European call or warrant on
it, he is not for the remainder of the time T in the position of a man who has sold out his
American warrant; instead he is in the net position of holding a put on the stock. (If (1, 0) and
(0, 1) represent holding a call and put respectively, the owner of an American warrant goes
through the cycle (+1, 0) and—in midstream—(−1, 0), ending up with (0, 0). The holder of
the European warrant goes through the cycle (+1, 0) and—in midstream—(−1,+1), leaving
him for the remainder of the period with (0,+1).)

To see that (37) does hold when β > α, recall that F (x, T ) cannot decrease with T . But
applying to (35) the version of (24) given in (28), we can see that a long-lived European
warrant does ultimately approach zero in value as T → ∞. Thus, by (28) applied to f(x, T ),

f(x, T ) = e−βT

∫ ∞

1

(X − 1)dP (X, x;T )

= e−βT eαTx− e−βT + e−βT θ1θ2, |θ1| < 1

lim
T→∞

f(x, T ) = f(x,∞) = f(x) = e−(β−α)∞x = 0, β > α ≥ 0.

(38)

11.11. General Formula for β > α ≥ 0

The last section’s demonstration that f(x, T ) < F (x, T ) when β > α provides a rigorous
proof that the linear integral equation of (24) cannot apply to the proper F (x, T ) for this
case. Hence β > α does imply that a warrant cannot possibly be worth holding at very high
prices. I.e., the inequality

F (x, T ) ≥ x− 1, x ≥ 1(39)

must for sufficiently high x become the equality

F (x, T ) = x− 1, x > C∞(T ;β, α) < ∞, β > α(40)

where ∂C∞/∂T ≥ 0, ∂C∞/∂α ≥ 0, ∂C∞/∂β ≤ 0 (McKean’s appendix also proves this fact,
in 2.8 and 4.7.)

In place of the integral equation (24), we have the following basic inequality to define
F (x, T ) where β > α:

x ≥ F (x, T ) ≥ Max

[
0, x− 1, e−βS

∫ ∞

0

F (X,T − S)dP (X, x;S)

]
.(41)

McKean’s appendix terms any solution of this relation an “excessive function,” and he seeks
as the solution to the problem the minimum function that belongs to this class. Rather than
arbitrarily postulate that it is the minimum function which constitutes the desired solution,
I deduce from my axiom of expected gain (20) the only solution which satisfies it and which
satisfies the basic inequality. It follows as a provable theorem that this does indeed give the
minimum of the excessive functions. That is, any excessive function which is not the minimum
will fail to earn β per unit time whenever it is being held.

How shall we find the simultaneous solution to (20) and (41)? I begin from the intuitive
consideration that splitting up continuous time into small enough finite intervals will approach
(from below) the correct solution for the continuous case. If a warrant can be converted only
every hour, its value will be a bit less than one that can be converted at any time—less
because an extra privilege is presumably worth something, only a little less because not much
of a price change is to be expected in a time period so short as an hour. The approximation
will be even better if we split time up into discrete minutes and still better if we use seconds.
In the limit, we get the exact solution.
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Let ΔT = h and define recursively in (41) for fixed h and integral n

Fn+1(x;h) = Max

[(
0, x− 1, eβh

∫ ∞

0

Fn(X ;h)dP (X, x;h))

]

F0(x;h) = Max(0, x− 1).

(42)

Then

lim
h=T

n →0
Fn(x;h) = F (x, T ),(43)

the desired exact solution to our problem as formulated by (20) and (41). In principle, by
enough integrations, the degree of approximation can be made as close as we like.

The general properties of the solution can also be established by this procedure. Thus, if
P (X, x; 1) = P (X/x; 1) is a multiplicative process—or even if some weaker conditions are put
on the way that P shrinks with an increase in x—we begin with a convex function F0(x;h)
and end at each stage with a convex expectation function. Hence, by induction F (x, T ) and
F (x) = F (x,∞) must be convex. (F (x, T ) will be strictly convex if P (X/x; 1) is log-normal
or similarly smooth.) Where the slope ∂Fn(x;h)/∂x exists it can be shown inductively that
its value must lie in the closed interval [0, 1], a property which must hold for F (x, T ). At the
critical conversion point CT , where CT − 1 = F (CT , T ), one expects the slopes of the two
equal branches to be equal.

It will be instructive to work through an example in which time itself is divided into
small, discrete intervals t = 0, 1, 2, . . . , etc. And suppose that P (X, x; 1) corresponds to a
simple, multiplicative random walk of martingale type, where

Prob

{
Xt+1

Xt
= λ > 1

}
= p > 0,

Prob

{
Xt+1

Xt
= λ−1

}
= 1− p = q > 0.

The gain per unit time is now given by

eα = pλ+ qλ−1 = 1, where λ =
1− p

p
.

It will help to keep some simple numbers in mind: e.g. p = 1/3, q = 2/3, λ = 2, making α = 0
and the [Xt] sequence a “fair game” or martingale, with zero net expected yield.

If β is also set equal to zero, so that it never pays to exercise the warrant, (41) reduces
to the simple form (35), and we are left with the familiar partial-difference equation of the
classical random walk (but in terms of logXt, not Xt itself). Specifically, logXt/X0 will take
on only integral values for t > 0; if later we make λ nearer and nearer to 1, the fineness of the
grid of integral values will increase; and it will cause little loss of generality to suppose that
initially X0 = λk, where k is a positive or negative integer. This being assured, a two-way
F (X,m) = F (λn,m) can always be written as a two-way sequence Fnm, where m denotes
non-negative integers and n integers that can be positive, negative, or zero. Corresponding
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to (35), we now have:

Fn0 = Max(0, λn − 1)

Fn1 = pFn+1,0 + qFn−1,0, p+ q = 1

. . . . . . . . . . . . . . . . . . . . .

Fn,m+1 = pFn+1,m + qFn−1,m

. . . . . . . . . . . . . . . . . . . . .

Fn∞ = Fn = pFn+1 + qFn−1.

The last of these is an ordinary second-order difference equation with constant coefficients,
whose characteristic polynomial is seen to be

pσ2 − σ + (1− p) = p(σ − 1)(σ − σ2), where σ2 =
1− p

p
= λ > 1.

Write the general solution for Fn as

Fn = e1(1)
n + e2σ

n
2 .

Since Fn → 0 as n → −∞, we must have e1 = 0. Since

Max(0, X − 1) = Max
(
0, λn − 1

) ≤ F (X) = e2λ
n ≤ λn = X,

we must have

e2 = 1, Fn = λn, F (X) = X

verifying the general derivation of (25).
Now drop the assumption that α = 0, but still keep β = α. The above partial-difference

equations are unchanged except that now (p, q) are replaced by (Bp,Bq) where

B−1 = eα = pλ+ qλ−1 > 1.

Again it can be shown that σ2 = λ is a root of the characteristic polynomial, and that only if
(e1, e2) = (0, 1) can the boundary condition be satisfied. Again we confirm (35)’s F (X) = X
solution for α = β.

Now let B−1 = eβ > eα = pλ+ qλ−1 = Φ(λ) ≥ 1.
Form ≤ ∞, there will exist critical integral constants nm, equal (except for the coarseness

of the integral grid) to logCm, above which warrant conversion is mandatory. The partial-
difference equations derivable from (41) now become

Fn,m = λn − 1, n ≥ nm > 0

Fn,m = BpFn−1,m−1 +BqFn−1,m−1 ≤ λn − 1, n < nm, (m = 1, 2, . . .)

Fn,∞ = Fn = BpFn+1 +BqFn−1, n < n1

= λn − 1, n ≥ n1.

These relations define the sequence (nm) recursively—e.g., n1 is the lowest integer for which

λn1 − 1 ≥ Bp
(
λn1λ− 1

)
+Bq

(
λn1λ−1 − 1

)
.

With n1 known, we have initial conditions to the right to determine Fn+1 for n ≤ n1. The
difference equation for Fn,1, which can be written symbolically in terms of the operators E
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and E−1 defined by EFn,m = Fn+1,m, E−1Fnm = Fn−1,m as Φ(E)Fn,1 = 0 then determines
Fn1. With this known we determine n2 as the smallest integer for which

λn2 − 1 ≥ BΦ(E)Fn,1;

then determine Fn,2 by Φ(E)Fn,2 = 0, etc.
The constant n, can be determined along with Fn,∞ by the following relations

Φ(E)Fn = 0; Fn = e1σ
n
1 + e2σ

n
2 ,

where the characteristic polynomial can be shown to be

σΦ(σ) − σ = Bp
(
σ − σ1

)(
σ − σ2

)
,

where

0 < σ1 < 1 < λ < σ2 = λγ , γ > 1.

If Fn → 0 as n → −∞, e1 = 0; to determine e2, and n2 = a for short, we set

e2λ
γaλγ = λaλ− 1, e2λ

γa = λa − 1,

or (
λa − 1

)
λγ = λaλ− 1,

(
λγ − λ

)
λa = γ − 1

a = log(γ − 1)− log
(
λγ − λ

)
, e2 = (λa − 1)λ−γa,

where of course γ is a function of α and β through its dependence on the coefficients Bp and
λ. Fn = λγn means in terms of X , the antilog of n, that F (X) = eXγ, γ ≥ 1 as our first
general answer.

We can always convert one-period partial difference equations into N -period equations.
When we do this (p, q) are replaced by (p3, 2pq, q2), . . . and by (px, xC1p

x−1q, . . . , qx) where

xC1 are the familiar binomial coefficients. By the usual central limit theorem, these approach
the normal distribution. But since these coefficients apply to the Fn,m, which refer to the
logarithms of X , we arrive at the log-normal distribution. Hence, if we can prove that the
partial-difference equation, not merely for Φ(E)Fn = (BpE +BqE−1)Fn but for any general
set of probabilities

Φ(E)Fn = B

∞∑
−k

pjE
jFn = Fn,

∞∑
−k

pj = 1,

satisfies the F (X) = cXγ power law, we have strong heuristic evidence that this will he the
exact case for the log-normal case—as McKean has rigorously proved in the Appendix. The
characteristic polynomial of this last becomes

−1 + σkΦ(σ) =
(
σ − σ1

)(
σ − λγ

)
Φ2(σ),

where, as before

0 < σ1 < λ ≤ λγ , γ ≥ 1Φ2(σ),

and Φ2(σ) is a polynomial with no roots greater than 1 in absolute value. Hence, in the general
solution

Fn = Σc1σ
n
1 = c2λ

γ +Remainder,

all the c’s except c2 must vanish if Fn → 0. The value of c2 and the critical conversion point
n2, is determined just as in the simple (p, q) case. If the grid in very fine because λ → 1,
λn2 = c2 = γ/(γ − 1) to an increasingly good approximation.

As a preview to McKean’s exact result for the continuous-time case, I shall sketch
the usual Bachelier-Einstein derivation of the partial differential equations of probability
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diffusion—of so-called Fokker-Planck type—by applying a limit process to the discrete par-
tial difference equations. From now on consider n = log x as if it were a continuous rather
than integral variable. Bachelier wrote in 1900

pn,t =
1

2
pn+t,t−1 +

1

2
pn−t,t−1,

or

pn,t+Δt =
1

2
pn+Δn,t +

1

2
pn+Δn,t

Δt

(Δn)2
pn,t+Δt − pn,t

Δt
=

1

2

(
pn+Δn,t − pn,t

)
(Δn)2

+
1

2

(
pn−Δn,t − pn,t

)
(Δn)2

.

Now if Δt → 0, with Δt/(Δn)2 → 2c2, we get the Fourier parabolic equation

c2
∂p(n, t)

∂t
=

∂2p(n, t)

∂n2
.

Bachelier assumed a fair game with probabilities of unit steps in either direction equal to
1/2. If we replace (1/2, 1/2) by (p, q) so that the random walk has a biassed drift of α as its
expected instantaneous rate of growth, we find p(n−αt, t) satisfying the above equation and
hence the requisite distribution r(n, t) ≡ p(n− αt, t) satisfies

∂2r(n, t)

∂n2
= c2

∂r(n, t)

∂t
+ c2α

∂r(n, t)

∂n
.

Bachelier and Einstein were talking about the diffusion of probabilities. But we have
seen that the warrant prices Fn,t, now written as F (en, t) = ψ(n, t), satisfy similar partial-
difference equations, the only difference being (i) that the coefficients add up to less than 1
when β > α; and (ii) the boundary conditions for c1 become rather complicated. Just as we
had a simple second-order (partial) difference equation EΦ(E)Fn,t = EFn,t, we derive in the
limit—as McKean shows in 3, and 5, drawing on the work of E. B. Dynkin—a simple (partial)
second-order differential equation for ψ(n, t), which in terms of log x = n becomes,

σ2

2

∂2Ψ(n, t)

∂n2
+ δ

∂ψ(n, t)

∂n
− ∂Ψ(n, t)

∂t
− βΨ(n, t) ≡ 0, δ = α− σ2

2

Ψ(n, 0) = Max
(
0, en − 1

)
Ψ(ent , t) = ent − 1.

It is understood that the equation holds for (n, t) to the left of n = ent and that ψ(−∞, t) ≡ 0.
However, it is a difficult task to compute the et, function, even using the high contact property
∂F (ct, t)/∂x = 1.

The perpetual warrant is much simpler, since then ψ(n,∞) = ψ(n) with ∂ψ(n,∞)/∂t = 0,
giving the ordinary differential equation

σ2

2
ψ′′(n) + δψ′(n)− βψ(n) = 0, n < c,

ψ(−∞) = 0, ψ(c2) = c2 − 1, ψ′(c2) = en2 .

The general solution can be written as a sum of two exponentials, in terms of the roots of the
characteristic polynomial

σ2

2
ρ2 + δρ− β =

σ2

2

(
ρ− ρ1

)(
ρ− ρ2

)
, ρ1 = γ > 1 > ρ2.
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If the boundary conditions are to be realized, the ρ2 root must be suppressed and we are left
with

ψ(n) =
(
c2 − 1

)enγ
c2

, or

F (x) = (c2 − 1)

(
x

c2

)γ

γ =
c∞

c2 − 1
.

11.12. Intuitive Proofs from Arbitrage

Equation (18), which related the rational price of a warrant with any exercise price X◦ to
the formula for a warrant with X◦ ≷ 1, can be used directly to deduce restrictions on the way
F (x, T ;X◦) varies with X◦. Because F (x, T ) has been shown to be convex with numerical
slope on the closed interval [0, 1], (18) can deduce that the numerical slope of F (x, T ;X◦)
with respect to X◦ must be on the closed interval [−1, 0]—i.e.,

−1 ≤ F
(
x, T ;X◦ +ΔX◦)− F

(
x, T ;X◦)

ΔX◦ ≤ 0,

or

−1 ≤ ∂F
(
x, T ;X◦)
∂X◦ ≤ 0,(44)

where the last partial derivatives, if they do not exist at certain corners, can be interpreted
as either left-hand or right-hand derivatives.

One proves (44) directly by differentiating (18) with respect to X◦, to get

∂F
(
x, T ;X◦)
∂X◦ =

∂

∂X◦

{
X◦F

(
x

X◦ , T
)}

= F

(
x

X◦ , T
)
− x

X◦
∂F

(
x
X◦ , T

)
∂
(
x/X◦) .

(45)

That the right-hand expression in (45) is non-positive follows directly from the definition
of convexity of F (x, T ) when F (0, T ) ≡ 0. That it is not algebraically less than −1 follows
from the fact that F (x, T ) ≥ Max(0, x− 1).

Intuitive economic arguments provide an alternative demonstration that

−1 ≤ ∂F
(
x, T ;X◦)
∂X◦ ≤ 0.(46)

An increase in the exercise price X◦ must, if anything, lower the value of the warrant
since it then entails a higher future payment. But a fall of $1 in X◦ can never be worth more
than $1, since stapling a $1 bill to a warrant with X◦ exercise price is a possible way of
making it the full equivalent of a warrant exercisable at X◦ − $1. Hence, we have established
(46).

The condition for high contact at a conversion point CT , namely ∂F (x, T )/∂x → 1 as
x → CT , seems intuitively related to realization of left-hand equality in (46) as x → CT /X

◦,
which in turn seems intuitively related to the probability that, when x is already near CT , x
will be reaching Ct in a sufficiently short future time. For the log-normal Brownian motion of
(30) and the special case of (31), these conditions for high contact will be realized. But for any
solution of the Chapman-Kolmogorov equation (4) of log-Poisson type, like that discussed by
McKean and involving jumps, high contact will definitely fail. If we rule out combinations of
Poisson jumps, only (30) and (31) and combinations of them like that shown in (16) would
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seem to be relevant. For them high contact is indeed ensured. And for both of these types an
exact power-of-x solution for the perpetual warrant has been shown by McKean to hold.

11.13. Final Exact Formula for Perpetual Warrant in Log-Normal Case

McKean has proved in (30) the following exact smooth formula for F (x,∞) = F (x), for
the log-normal case

F (x) =
(γ − 1)γ−1

γγ
xγ = (c− 1)

(
x

c

)γ

,

x ≤ c =
γ

γ − 1
> 1 = x− 1, x ≥ c, γ =

c

c− 1
> 1.

(47)

This has the nice property of high contact, with F ′(c) = 1 from either direction. Examples of
(47) for different values of γ would be

F (x) = 3

(
x

4

)4/3

, γ = 4/3, c = 4

F (x) = 2

(
x

3

)3/2

, γ = 3/2, c = 3

F (x) =
1

4
x2, γ = 2, c = 2.

The last of these formulas has been proposed, in different notation, on a purely ad hoc
empirical basis by Guigère [11]. The notation there, of course, needs to be related to my
notation involving X

X◦ and Y
Y ◦ , as in Fig. 11.3.

I append a brief table of values (Fig. 11.3) of F (x) for what would seem to be empirically
relevant values of γ.3 Figure 11.4 plots as straight lines on double-log paper F (x) for various
values of γ.

Figure 11.3. Rational price for perpetual warrant in log-normal model

3Acknowledgment is made to F. Skilmore for these computations.
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Figure 11.4. Rational price for perpetual warrant in log-normal model

To relate γ to α, β, and the dispersion parameter σ2 in the log-normal distribution, I
rewrite McKean’s formula for γ (in the Appendix) as

γ =

(
1

2
− α

σ2

)
+

√[
1

2
+

α

σ2

]2
+ 2

[
β

σ2
− α

σ2

]
.(48)

That γ is a function of (α/σ2, β/σ2) follows from the invariance of the problem under transfor-
mations of the unit used to measure time. Similar ratios of parameters occur in the log-Poisson
process and the multiplicative-translation-with-absorbtion process of (15).

It is instructive to hold (α, β) fixed in (48), and examine how γ varies with the dispersion
parameter σ2 of the log-normal process for the stock. When σ2 → ∞, the difference (β −
α)/σ2 → 0 and γ → 1, the case where the warrant never gets prematurely converted. Such a
large value for the dispersion parameter σ2 would create a very large α if the drift of logXt

were not strongly negative. Any such negative drift implies that it is “almost certain” that
the holder of the stock will be “eventually” (“almost completely”) ruined—even though the
stock does have a positive mean capital gain. Note the tricky statement involving a triple
limit, as in the earlier theorem on (virtually) certain (relative) ruin.

We will see in (50) that γ =
√
β/α when σ2 = 2α and there is no drift at all to logXt and

hence to Xt. In this knife-edge case of Osborne, where the geometric mean of future Xt+T

just equals Xt, the probability of a future capital loss (or gain) is exactly one half. At the
other limit, where the dispersion σ2 → 0, we put (α/σ2, β/σ2) = (∞,∞) in (48) and find
γ → β/α. This can be verified by substituting into y = (c − 1)(X/c)γ the now-certain path
X(t) = X0e

αT and deducing Y (t) = Y0e
βt = Y0e

γαT , with γ = β/α.
To estimate γ empirically, one might regress log warrant price against log common price,

γ being the regression coefficient. Then α might be estimated statistically by calculating the
mean percentage gain per unit time of the common, or by computing E[Xt+1]/Xt = eα. Then
β will be determined by the formula (48) for γ once one has an estimate of σ2. Since σ is the
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standard deviation of log(Xt+1/Xt), it can be estimated from the sample variance of this last
variate. The consistency of the model with the facts could then be checked by calculating β
separately as the mean value of the warrant’s gain, or by

E
[
Yt+T

]
/YT = eβT

where T is always less than the time after t when it pays to convert the warrant. A further
check on the log-normality model comes from the fact that, when the “instantaneous variance
per unit of time” of Xt is σ

2, the instantaneous variance for unit time of Yt should work out
to be γ2σ2, greater than σ2 by the factor γ2 > 1.

I am not presenting any empirical results here. But I shall draw upon some findings of
others by way of illustrating the theory. (Incidentally, they suggest remarkably high β/α,
giving the warrants a suspiciously favorable return.)

Osborne [25, p. 108] finds some empirical warrant for his theoretically dubious axiom
that logXt takes an unbiased random walk, with neither upward nor downward drift. If μt
represents the net drift of logXt, we have

μ = α− σ2

2
= 0,

α

σ2
=

1

2
.(49)

Substituting these values into (48) gives

γ =

√
β

α
, when

α

σ2
=

1

2
.(50)

Osborne and many investigators report average capital gains on a stock of three to five per
cent per year. So set α = .04. Finally Giguère in the cited paper [11] infers γ = 2 from
empirical scatters of perpetual warrant prices against their common stock prices. (My casual
econometric measurements suggest γ = 2 is much too high: these days one can rarely buy
a long-lived warrant for only one-fourth of the common when the common is selling near
its exercise price. But accept γ = 4 for the sake of the demonstration.) Combining μ = 0,
α = .04, γ = 2, we get for the mean return per year for holding the warrant no less than 16
per cent!—i.e., β = γ2α = 4(.04) = .16.

This does seem to be a handsome return, and one would expect it to be whittled away
over time—unless people are exceptionally averse to extra risk. The high β return would be
whittled away as people bid up the prices of perpetual warrants until they approached the
value of the common stock itself—at which point β, α, γ = 1, and e = ∞. There is no other
way. Yet this does not seem to happen. Why not? One obvious explanation is that whenever
a stock pays a regular dividend of δ per period, β will, taxes aside, naturally come to exceed
α by at least that much. But there are stocks that pay no dividend which still sell much
above their perpetual warrants. Perhaps a departure from our assumption of a stationary
time series, in the form of a supposition that there will later be a regular dividend, can help
explain away the paradox. Coming events do cast their shadow before them.

I should like now to sketch a theory to explain why β − α cannot become too large.
If β > α so that γ > 1, hedging will stand to yield a sure-thing positive net capital gain
(commission and interest charges on capital aside!). This follows from the concept of leverage
as curvature in Fig. 11.2. Let the stock be initially at X0 with the warrant at F (X0) = Y0.
Then buying $1 long of the warrant and selling $1 short of the common gives the new hedged
variate Z = Y/Yn −X/Xn. Whether X goes up or down, Z is sure to end up greater than
1, with a positive gain. Indeed, its expected gain per unit time is β − α. But there will be a
variance per unit time around this mean value that works out to (γ − 1)2σ2. This variance
will be quite small when γ is near to 1, but with γ = 1 it is likely that the difference β − α
will also be small.
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In the example worked out earlier from the data of Osborne and Giguère, a hedger would
have the same variance as would a buyer of the common stock; but instead of earning 4 per
cent a year, he would earn 12 per cent a year. And, commissions aside, he would have no
risk of a positive loss. This would seem like almost too much of a good thing. Under the
stock exchange rules, I believe he would have to put up about the same amount of money as
margin to engage in the hedged transaction as to buy a dollar’s worth of the warrant or stock
outright; he would not need margin money for each side of the hedged transaction. So he
would have to reckon in the opportunity cost of the safe interest rate per unit time of money
itself, ρ. Presumably though, the buyer of the common stock has already felt that its α = .04
return was adjusted to compensate for that ρ. (If the stock pays a percentage dividend, δ, the
excess β − α includes compensation for δ, ρ and for extra riskiness. Actually, if the excess of
β over α comes only from the fact of the dividend δ, there is no advantage to be gained from
the hedge; this is because the man who sells the common short must make good the dividend,
and that will reduce the apparent profit of the hedge to zero. Hence in what follows, I deal
only with the excess of β over α that in unrelated to dividends, and I ignore all dividends.)

If hedging arbitrage alone is counted on to keep β − α small, under present margin
requirements we should expect β − α = ρ if riskiness were not a consideration. Since there is
some aversion to dispersion around the mean gain from the hedge, we should not expect from
hedging arbitrage alone that β − α < ρ. On the other hand, if people are risk averters and
γ < 2, as seems realistic, it is hard to see how one could get β − α > α, since people would
shift from holding X outright to holding a hedged position Z if the latter had the greater
return, less variance, and no chance of loss. One could, in principle, learn from stock exchange
records how much hedging is in fact being done, since a rational hedger will minimize margins
by dealing with one firm on both sides of his hedge. It is my impression that not much warrant
hedging is in fact done, although in convertible bonds there does seem to be a greater volume
of hedging. Still if γ and β − α threatened to become too large, potential hedgers would
become actual hedgers. Hence, the limits derived above do have some relevance, particularly

β − α < α.(51)

11.14. Conclusion

The methods outlined here can be extended by the reader to cases of calls and puts,
where the dividend receives special treatment different from the case of warrants, and to the
case of convertible bonds.
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Appendix. A free boundary problem for the heat equation arising from a Problem of Math-
ematical Economics.

Henry P. McKean, Jr., M.I.T. 4

11.15. Introduction

Paul Samuelson has developed a model of warrant pricing from the economic standpoint;
the purpose of the present article is to add some mathematical complements.

Samuelson supposes that the motion of the price x(t) ≥ 0 of the common stock is a
(multiplicative) differential process; this means that for each s ≥ 0, the (scaled) future motion
x(t + s)/x(s) : t ≥ 0 is independent of the past x(t) : t ≤ s and has the same statistics as
x(t)/x(0) : t ≥ 0. Define P1(B)[E1(f)] to be the chance of the event B [expectation of the
function f ] for prices starting at x(0) = 1 and impose the condition E1(x) < ∞. E1(x) = eαt

follows; it is assumed that α ≥ 0.
Define h = h(t, ξ)5 to be the “correct” price of a warrant to purchase the common stock

at unit price, as a function of the time of purchase t ≥ 0 and of the current price ξ ≥ 0,
subject to the additional condition that the warrant appreciate at the rate β ≥ α up to such
time as it becomes unprofitable still to hold it. The problem of computing h has the following
mathematical expression: find the smallest solution f = h of

f(t, ξ) ≥ e−βsE1

[
f
(
t− s, ξx(s)

)]
(s ≤ t, ξ ≥ 0)

that lies above (ξ − 1)+ ≡ the greater of ξ − 1 and 0; the simpler problem of finding the
“correct” price h(∞, ·) of the perpetual warrant can be expressed in the same language as
follows: find the smallest solution f = h of

f(ξ) ≥ e−βtE1

[
f
(
ξx(t)

)]
(t ≥ 0, ξ ≥ 0)

that lies above (ξ − 1)+.
The existence of h is proved and its simplest properties discussed in Sects. 11.16 and 11.18

below: if β > α, h turns out to be an increasing convex function of ξ up to a point ξ = c(t) > 1
[the corner], to the right of which it coincides with ξ − 1; c and h increase with time to
c(∞) < ∞ and h(∞, ξ) < ξ. The latter is computed in Sect. 11.17 for a (multiplicative)
Brownian motion of prices [h = (c− 1)(ξ/c)γ , c = γ/(γ − 1)] and also for a (multiplicative)
Poisson process of prices [h = a broken line], and, in Sect. 11.19, h is computed for t ≤ ∞
and a (multiplicative) translation of prices with possible absorbtion at 0. A partial solution
of the problem for t < ∞ and a (multiplicative) Brownian motion of prices is described in
Sect. 11.20: it leads to a free boundary problem for the heat equation, the free boundary being
a solution of an unfortunately intractable integral equation due to I. I. Kolodner [19].

An unsolved problem is to find a nice condition on the prices that will make h−(c) = the
left slope at the corner be 1, as in the Brownian case of Sect. 11.20. h−(c) ≤ 1 is automatic.
Samuelson has conjectured that this will be the case if Q = P1[x(t) ≤ 1, t ↓ 0] = 0 [the
alternative is Q = 1], but I could not prove it in general. Another inviting unsolved problem
is presented by the integral equation for the free boundary of Sect. 11.20.

I must not end without thanking Professor Samuelson for posing me this problem and
for several helpful conversations about it.

4The partial support of the Office of Naval Research and of the National Science Foundation, NSF G-19684,

is gratefully acknowledged.
5Samuelson’s notation for this is F (X, T ).
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11.16. Perpetual Warrants

Consider a (multiplicative) differential process with sample paths t → x(t) = x(t+) ≥ 0,
probabilities P1(B), and expectations E1(f) for paths starting at x(0) = 1, i.e., let P1[x(0) =
1] = 1 and, conditional on x(t1) > 0, let x(t2)/x(t1) be independent of x(s) : s ≤ t1 and
identical in law to x(t2 − t1) for each choice of t2 ≥ t1 ≥ 0. Pa(B) and Ea(f) denote proba-
bilities and expectations for the motion starting at x(0) = a ≥ 0; this motion is identical in
law to [ax, P1]; esp., P0[x(t) = 0, t ≥ 0] = 1 and Pa[x(t) < b] = P1[x(t) < b/a] for b, a > 0.
[x, P ] begins afresh at stopping times. A stopping time is a non-negative function T ≤ ∞ of
the sample path, such as T = 1 or the exit time T = inf(t : x(t) > 1), such that for each t ≥ 0
the event (T < t) depends upon x(s) : s ≤ t alone. Beginning afresh means that if BT is the
field of events B such that B ∩ (T < t) is measurable over x(s) : s ≤ t, then conditional on
the present a = x(T ) and on the event T < ∞, the future x(t + T ) : t ≥ 0 is independent of
the past BT = the field of x(t) : t ≤ T , and identical in law to [x, Pa]:

P•
[
x(t+ T )ε db | BT

]
= Pa

[
x(t)ε db

]
if T < ∞;

see G. Hunt [15] for a complete explanation of stopping times for (additive) differential pro-
cesses.

E1[x(t)] = f(t) is a solution of f(t−s)f(s) = f(t) (s ≤ t) and 0 < f ≤ ∞, so E1(x) = eαt

for some −∞ < α ≤ ∞. P1[x = 1, t ≥ 0] = 0 or 1 because P1[x(s) = 1, s ≤ t] = f(t) is a
solution of f(t− s)f(s) = f(t) (s ≤ t) and 0 ≤ f ≤ 1, so that f = e−γt for some 0 ≤ γ ≤ ∞
and f(∞) = 0 or 1 according as γ > 0 or not. P1[x = 1, t ≥ 0] = 0 is assumed below.

A non-negative function f(x) �≡ ∞ defined on [0,∞) is (β) excessive if e−βtE•[f(x)] ↑ f
as t ↓ 0; in this language the problem of the perpetual warrant is to find the smallest excessive
function h ≥ (ξ − 1)+ in case ∞ ≥ β ≥ α ≥ 0. h is constructed and its simplest properties
derived in a series of brief articles.

1. Define h0 = (ξ − 1)+ and hn = supt≥0 e
−βt Eξ[h

n−1(x)] for n ≥ 1; then (ξ − 1)+ ≤
hn ↑ h ≤ ξ as n ↑ ∞.

Proof. hn−1(ξ) ≤ hn(ξ) = supt≥0 e
−βtEξ[h

n−1(x)] ≤ supt≥0 e
−βtEξ(x) =

supt≥0 e
−βteαtξ = ξ if hn−1 ≤ ξ, and the obvious induction completes the proof. �

2. h is increasing, convex (and so continuous), and its slope is ≤ 1.

Proof. hn(ξ) = supt≥0 e
−βtEt[h

n−1(ξx)] inherits all the desired properties from hn−1;
now use induction and let n ↑ ∞. �

3. h is the smallest excessive function ≥ (ξ − 1)+.

Proof. e−βtE•[h(x)] ≤ h is obvious from 1. Then the differential character of x(t) shows
that the left side decreases as t increases, and since h ∈ C[0,∞) (2), an application of Fatou’s
lemma implies limt↓0 e−βtE•[h(x)] ≥ E•[lim inf h(x)] = h, completing the proof that h is
excessive. Also, h ≥ (ξ − 1)+, and if j is another such excessive function, then the obvious
induction supplies us with the underestimate j ≥ hn ↑ h(n ↑ ∞). �

4. h = (ξ − 1)+ to the right of some point 1 < c ≤ ∞. h > (ξ − 1)+ to the left.

Proof. Given s ≤ t and a, b > 0,

P1

[
x(t) ≥ ab

] ≥ P1

[
x(s) ≥ a, x(t)/x(s) ≥ b

]
= P1

[
x(s) ≥ a

]
P1

[
x(t− s) ≥ b

]
so that P1[x(nt) ≥ dn] ≥ P1[x(t) ≥ d]n, and either P1[x ≤ 1] ≡ 1 (t ≥ 0) violating P1[x =
1, t ≥ 0] = 0 (use E1(x) ≥ 1) or P1[x(nt) ≥ dn] > 0 for some t > 0, d > 1, and each n ≥ 1.
But in the second case, h(ξ) ≥ e−βnt · Eξ[(x(nt) − 1)+] � e−βnt(ξdn − 1)+P1[x(nt) > dn] is
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positive for large n and either h(ξ) > (ξ − 1)t always c = d or else h(ξ) > (ξ − 1)+ for ξ � 1,
h(ξ) > ξ − 1 has a first root 1 < c < ∞, and agrees with ξ − 1 to the right, by 2. �

5. h ≡ ξ if β = α ≥ 0.

Proof. ξ ≥ h ≥ e−βtEξ[x−1] = ξ(1−e−βt) ↑ ξ as t ↑ ∞ if β = α > 0, while if β = α = 0,
then Eξ[(x − 1)+] ≥ (ξ − 1)+ from which it is easy to see that h = limt↑∞ E•[(x − 1)+] =
E•[h(x)]. Because h is convex (2), its 1-sided slope h+ is an increasing function,

h(ξ) = h(1) + (ξ − 1)h+(1) +

∫ ξ

1

[
h+(η) − h∗(1)

]
dη,

and putting ξ = x and taking expectations (E1) on both sides, it follows that h+(ξ) = h+(1)
between 0 < a < 1 and b > 1 if 0 < P1[x ≤ a]P1[x ≥ b] for some t > 0. But P1[x(nt) ≥ dn] > 0
for some t > 0, d > 1, and each n ≥ 1 as in 4, and using the same method, it is also possible to
make P1[x(nt) ≤ d−n] > 0 for the same t > 0, some (perhaps smaller) d > 1, and each n ≥ 1
(use E1(x) = 1). h+ ≡ h+(1) is immediate and h ≡ ξ follows from the bounds ξ − 1 ≤ h ≤ ξ
and the fact that h(0+) = 0. �

Warning: β > α ≥ 0 until the end of the next section.

6. Given a closed interval 0 < a ≤ ξ ≤ b < ∞ with exit time T = Tab ≡ inf(t : x <
a or x > b) and exit place X = x(T ), P•[T < ∞] ≡ 1 and j = jab ≡ E•[e−βTh(X)]
lies under h.

Proof. Adapted from E. B. Dynkin [8]; P•[T < ∞] ≡ 1 since in the opposite case,
0 < p(ξ) = Pξ[a ≤ x ≤ b, t ≥ 0] for some a ≤ ξ ≤ b, and putting pab = supab p(ξ), the
bound p(ξ) ≤ pabPξ[a ≤ x ≤ b, t ≤ n] decreases to pabp(ξ) as n ↑ ∞, proving pab = 1. But
pab = supab P1[a/ξ ≤ x ≤ b/ξ, t ≥ 0] ≤ P1[a/b ≤ x ≤ b/a, t ≥ 0], and this cannot be 1
without violating the estimate P1[x(nt) ≥ dn] > 0 of 4. Define Gγf = E•[

∫∞
0

e−γtf(x)dt] for
non-negative f and γ ≥ 0. Gγh ≡ u < ∞ if γ ≥ β and Gγ = Gβ [1 + (β − γ)Gγ ], so that if
v = h+ (β − γ)u, then u = Gβv = E•[

∫∞
0 e−βtv(x)dt].

Because h is excessive and β − γ ≤ 0, v ≥ h+ (β − γ)
∫∞
0

e−γtdteβth = 0; it follows that

u ≥ E•

[ ∫ ∞

T

e−βtv(x)dt

]
= E•

[
e−βT

∫ ∞

0

e−βtv
[
x(t+ T )

]
dt

]
,

and since x begins afresh at the stopping time T while T itself is measurable over BT ,

u ≥ E•
[
e−βTGβv(X)

]
= E•

[
e−βTu(X)

]
with X = x(T ). Now use the fact that (γ − β)u ↑ h as γ ↑ ∞. �

7. j is excessive.

Proof. Because x begins afresh at time t ≥ 0,

e−βtE•
[
j(x)

]
= E•

[
e−βT◦

h
(
X◦)] ≡ j◦

with T ◦ defined as the next exit time from a ≤ ξ ≤ b after time t and X◦ = x(T ◦). Using the
notation and method of proof of 6,

E•
[
e−βT◦

u
(
X◦)] = E•

[ ∫ ∞

T◦
e−βtv(x)dt

]

≤ E•

[ ∫ ∞

T

e−βtv(x)dt

]
= E•

[
e−βTu(X)

]
,
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and since (γ − β)u ↑ h as γ ↑ ∞, it follows that j◦ ≤ j. But also T ◦ ↓ T as t ↓ 0 and
x(t+) = x(t), so Fatou’s lemma implies

lim
t↓0

j◦ ≥ E•
[
lim inf e−βT◦

h
(
X◦)] = j,

completing the proof. �

8. c < ∞ and E•[e−βTh(X)] ≡ h with T = min(t : x ≥ c), X = x(T ), and e−βTh(X) ≡
0 if T = ∞, in case P1[tab ↓ 0 as a ↑ 1 and b ↓ 1] = 1.

Proof. Define for the moment T = Tab and X = x(Tab). Because x is differential and
h > (ξ − 1)+ near ξ = 1, it is possible to choose a < 1 < b so as to make jab ≥ (ξ − 1)+. But
jab ≤ h is excessive while h is the smallest excessive function ≥ (ξ − 1)+, so jab ≡ h for this
choice of a < 1 < b. Given 2 overlapping closed intervals a1 ≤ ξ ≤ b1 and a2 ≤ ξ ≤ b2 with
0 < a = a1 < a2 < b1 < b2 ≡ b < ∞ and corresponding functions j ≡ h, it is to be proved
that jab ≡ h also. Consider for the proof paths starting at a1 ≤ x(0) = ξ ≤ b1 and define
stopping times

T1 = the exit time from a1b1,

T2 = T1 or the next exit time from a2b2 according as T1 = Tab or not,

T3 = T2 or the next exit time from a1b1 according as T2 = Tab or not,

etc.

T1 ≤ T2 ≤ etc. ≤ Tn is constant (= T = Tab) from some smallest n = m on, and putting
Xn = x(Tn) for n ≤ m and X = x(T ), a simple induction justifies

h(ξ)=Eξ

[
e−βTnh

(
Xn

)]
=Eξ

[
e−βTnh(Xn), n ≥ m

]
+ Eξ

[
e−βTnh

(
Xn

)
, n < m

]
.

As n ↑ ∞, this tends to jab since Pξ[m < ∞] = 1 while h(Xn) ≤ b < ∞ on (n < m). jab ≡ h
follows at once. Now choose 0 < a < 1 < b < c so that jab = h. Repeating the first part of
the proof, it is clear that the function j associated with a small neighborhood of b is identical
to h, and using the second part, it follows that jab ≡ h for a little bigger b. Because a can be
diminished for the same reason, it is clear that if 0 < b < c (or if b = c in ease c < ∞), then
it is possible to find closed intervals 0 < an ≤ ξ ≤ bn ≤ b increasing to 0 < ξ < b with jn ≡ h.
But for paths starting at 0 ≤ x(0) = ξ ≤ b and n ↑ ∞, the exit times Tn from an ≤ ξ ≤ bn
increase to the exit time T = min(t : x = 0 or x ≥ b) while Xn = x(Tn) tends to X = x(T )
(see G. Hunt [15]), so

h(ξ) = lim
n↑∞

jn(ξ) = lim
n↑∞

Eξ

[
e−βTnh

(
Xn

)]
= Eξ

[
e−βTh(X)

]

because of the bound

e−βTnh
(
Xn

)
= e−βTh(X) if Xn ≥ b

< b if Xn < b,

and to complete the proof, it suffices to replace T by T = min(t : x ≥ b) and to prove c < ∞.
As to T , the replacement is obvious since h(0) = 0. As to the proof that c < ∞, if c = ∞,
then h = E•[e−βTnh(Xn)] with Tn = inf(t : x > n) and Xn = x(Tn). Because

ξ − 1 ≤ h(ξ) ≤ Eξ

[
eβTnx

(
Tn

)]
= E1

[
e−βTn/ξξx

(
Tn/ξ

)]
for n > ξ, 1 ≤ E1[e

−βT2x(T2)] as follows on putting n/ξ = 2 and letting n ↑ ∞. Because β > α,
E1[e

−βT2x(T2)] < E1[e
−αT2x(T2)], and adapting the proof of 6 to the (α) excessive function

f ≡ ξ, one finds Eξ[e
−αT2x(T2)] ≤ ξ. But this leads to a contradiction: 1 < E1[e

−αT2x(T2)] ≤
1. �
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9. c < ∞ and E•[e−βTh(X)] ≡ h with T = min(t : x ≥ c) and X = x(T ) in general.

Proof. 8 covers the case P1[tab ↓ 0 as a ↑ 1 and b ↓ 1] = 1; otherwise,

P1

⎡
⎣lim

a↑1
b↓1

tab > 0

⎤
⎦ = 1

according to Kolmogorov’s 01 law, so the particle moves by jumps with exponential holding
times between. Consider the modified motion x◦ = eεtx with so small a positive ε that
β > α◦ ≡ α + ε and let h◦ and c◦ be the analogues of h and c. Because e−βtE•[h◦(x)] ≤
e−βtE•[h◦(x◦)] ≤ h◦, it is clear that h◦ ≥ h and c◦ ≥ c. As ε ↓ 0, h◦ ↓ j ≥ h and c◦ decreases

to some number b ≥ c. Because x◦ satisfies the conditions of 8, h◦ = E•[e−βT◦
h◦(X◦)] with

T ◦ = min(t : x◦ ≥ b) and X◦ = x◦(T ◦). Now an unmodified path starting at x(0) = ξ < b
jumps out of [0, b) landing at X ≥ b; this means that T ◦ = T and X◦ = eεTX for some

ε < β, so e−βT◦
h◦(X◦) ↓ e−βT j(X) as ε ↓ 0 for a class of paths with as large a probability

as desired, while on the complement of this class (T ◦ < T ), e−βT◦
h◦(X◦) ≤ e−βT◦

eεT
◦
b ≤ b.

Because h = j = ξ − 1 (ξ ≥ b) and x ≥ b, it follows that

j(ξ) = lim
ε↓0

Eξ

[
e−βT◦

h◦(X◦)] = Eξ

[
e−βT j(x)

]
= Eξ

[
e−βTh(X)

] ≤ h

for ξ < b, i.e., j ≡ h, and since b ≥ c, the result follows after a moment’s reflection. �

Summing up: if β = α ≥ 0, then h ≡ ξ, while if β > α ≥ 0, then h is convex with slope
0 ≤ h+ ≤ 1, h > (ξ − 1)+ to the left of some point 1 < c < ∞, h ≡ ξ − 1 to the right of c,
and h = E•[e−βTh(X)] with T = min(t : x ≥ c), X = x(T ), and the usual e−βTh(X) ≡ 0 if
T = ∞.

11.17. Two Examples

Consider the multiplicative Brownian motion with drift x(t) = exp[σb + δt] with σ > 0,
b = b(t) a standard (additive) Brownian motion, and −∞ < δ < ∞·E1(x) = exp[σ2/2+δt] so
α = σ2/2 + δ. Because h = E•[e−βTh(X)] with T = min(t : x = c), it follows from a formula
of E. B. Dynkin [7] that if G is the generator of [x, P·]:

Gf(ξ) =
(
σ2/2

)
ξ2f ′′(ξ) +

(
σ2/2 + δ

)
ξf ′(ξ),

then Gh = βh to the left of c. Now solve for h = (c− 1)(ξ/c)γ with an adjustable γ and find
(σ2/2)γ2 + δγ − β = 0, or, what is the same,

γ = −δ/σ2 +
√
2β/σ2 + δ2/σt > 1

(the negative radical is excluded). Besides the above formula for h, the solution requires
us to locate the corner c. Consider for this purpose G expressed in terms of the new scale

ds = ξ−1−2δ/σ2

dξ and the so-called speed measure m(dξ) = 2σ−2ξ−1+2δ/σ2

dξ: Gf = df+/dm
with f+ computed relative to the new scale.

In this language, the fact that h is excessive is expressed by dh+ − βh dm ≤ 0 and
computing the mass that this distribution attributes to the corner c, you find the old left
slope h−(c) = (c− 1)γ/c matches the old right slope h+(c) = 1, which is to say c = γ/(γ− 1).
The reader can easily compute all desired probabilities for this Brownian model with the help
of the formulas:

Pξ

[
x(t) ∈ dη

]
=
(
2πσ2t

)−1/2
e−(lg η/ξ−δt)2/2σ2t dη/η,

Pξ[T ∈ dt] =
(
2πσ6t3

)−1/2
(ξ/c)−δ/σ2

e−δ2t/2σ2

lg(ξ/c)e−(lg ξ/c)2/2σ2tσ2dt,
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and

Pξ

[
x(t)ε dη, t < T

]
= Pξ

[
x(t)ε dη

]

− (η/ξ)δ/σ
2

e−δ2t/2σ2(
2πσ2t

)−1/2
e−(lg ξη/c2)2/2σ2t dη/η;

in the first formula t, ξ, η > 0, while in the second and third, t > 0, 0 < ξ, η < c.
Consider as a second example, the (multiplicative) Poisson process x(t) = exp[p(σt)]

in which p is a standard (additive) Poisson process with jump size 1 and unit rate, i.e.,
P [p(t) − p(0) = n] = tne−t/n!. E1(x) = exp[σ(e − 1)t] so α = σ(e − 1). Given c/e ≤ ξ < c
with exit time T = inf(t : x �= ξ) and exit place X = x(T ) = eξ ≥ c,

h(ξ) = Eξ

[
e−βTh(X)

]
=

∫ ∞

0

σe−σtdte−βth(eξ) =
h(eξ)

1 + β/σ
,

esp., h(ξ) = (eξ − 1)(1 + β/σ)−1 for c/e ≤ ξ < c, and letting ξ ↑ c and solving for c,
one finds c = (1 − α/β)−1. h itself is a broken line with corners at e−nc (n ≥ 0), esp.
h+(c) = 1 > h−(c) = (σ + α)(σ + β)−1.

11.18. General Warrants

Now the problem is to find the smallest excessive function h ≥ (ξ − 1)+ for the stopped
space-time motion

z(s) =
[
t− s, x(s)

]
(s ≤ t)

=
[
0, x(t)

]
(s > t),

i.e., the smallest function h(t, ξ) ≥ (ξ − 1)+ such that e−βtEξ[h(t− s, x(s))] ↑ h(t, ξ) as s ↓ 0
for each (t, ξ)ε[0,∞)× [0,∞).

1. Define h0 = (ξ − 1)+ and hn = sups≤t e
−βsE•[hn−1(t − s, x(s))] for n ≥ 1; then

(ξ − 1)+ ≤ hn ↑ h ≤ ξ as n ↑ ∞.

Proof. As before. �

2. h is a convex function of ξ ≥ 0 with slope 0 ≤ h+ ≤ 1.

Proof. As before. �

3. h is an increasing function of t ≥ 0,

Proof. h0 is independent of t ≥ 0, and

hn
(
t2, ξ

)
= sup

s≤t2

e−βsEξ

[
hn−1

(
t2 − s, x(s)

)]

≥ sup
s≤t1

e−βsEξ

[
hn−1

(
t1 − s, x(s)

)]
= hn

(
t1, ξ

)

if hn−1 is an increasing function of t ≥ 0; now use induction and let n ↑ ∞. �

4. h is the smallest (space-time) excessive function ≥ (ξ − 1)+; it is continuous from
below as function of t > 0.

Proof. h ≥ e−βsE•[h(t− s, x(s))] (s ≤ t) is obvious. Now

lim
s↓0

e−βsEξ

[
h
(
t− s, x(s)

)] ≥ h(t−, ξ) ≥ (ξ − 1)+ for t > 0,
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and since

j = (ξ − 1)+ (t = 0)

= h(t−, ξ) (t > 0)

is a (space-time) excessive function ≥ (ξ − 1)+, it is enough to prove that h is the smallest
solution ≥ (ξ − 1)+ of j ≥ e−βsE•[j(t− s, x(s))]. But this is obvious. �

5.

h(0+, ξ) = lim
t↓0

h(t, ξ) = (ξ − 1)+.

Proof. k(t, ξ) = Eξ[(x(t)−1)+] ≥ (ξ−1)+, and since k = E•[k(t−s, x(s))], e−βsE•[k(t−
s, x(s))] increases to k as s ↓ 0, proving k ≥ h. Now as t ↓ 0,

k(t, ξ) = eαtξ − 1 + Eξ

[
1− x(t), x(t) < 1

]
tends to ξ − 1 if ξ > 1. But 0 ≤ k(0+, ξ) = limt↓0 E1[(ξx − 1)+] is increasing, so the proof is
complete. �

6. h(∞, ξ) = limt↑∞ h(t, ξ) coincides with the perpetual warrant.

Proof. h(∞, ξ) is continuous (its slope falls between 0 and 1), so e−βsEξ[h(∞, x(s))] ≤
h(∞, ξ) increases to h(∞, ξ) as s ↓ 0 i.e., h(∞, ξ) is excessive; that it is the smallest excessive
function ≥ (ξ − 1)+ is obvious. �

7. h ≡ ξ − 1 to the right of some point 1 < c = c(t) < ∞ for 0 ≤ t ≤ ∞. c is
increasing, c(t−) = c(t), and c(∞) < ∞. h > (ξ − 1)+ between c and d = d(t) < 1.
d is decreasing, d(t−) = d(t), and d(∞) = 0. h ≡ 0 to the left of d. d = e−t > 0 if
x(t) = et. d ≡ 0 if x(t) is a multiplicative Brownian motion.

Proof. Use the information above and c(∞) < ∞ (2.9). �

8. h(t, ξ) = Eξ[e
−βTh(t− T,X)] if T is the (space-time) exit time from the region

R : 0 < s ≤ t, 0 < ξ < c(s)

and X = x(T ) is the exit place; see Fig. 11.5 for R and t.

Proof. As before with some (mild) technical complications. �

t

R
z

c = c(t)
ξ = x(0)

ξ

Figure 11.5
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11.19. General Warrant for a Multiplicative Translation with Absorbtion

Consider the motion of translation x(t) = ξ exp[(α+ δ)t] with absorbtion at a rate δ ≥ 0,
i.e., let

P1

[
x = ξe(α+δ)t

]
= e−δt = 1− P1[x = 0],

and let us prove that

h(t, ξ) = e−(β+δ)t
[
ξe(α+δ)t − 1

]+
when ξ ≤ ce−(α+δ)t

= (ξ/c)γ(c− 1) when ce−(α+δ)t ≤ ξ ≤ c

with γ = (β + δ)(α+ δ)−1 and c ≡ c(∞) = γ(γ − 1)−1.
Point 9 in Sect. 11.16 implies that the perpetual warrant is a solution of

e−(β+δ)th
[
ξe(α+δ)t

]
= e−βtEξ

[
h(x)

]
= h(ξ)

for t ≥ 0 and ξ exp[(α + δ)t] ≤ c, or, and this is the same, a solution of

Gh(ξ) = ξ(α+ δ)h′(ξ)− δh(ξ) = βh(ξ) (ξ < c).

Now solve and find h(ξ) = (ξ/c)γ(c − 1) with γ = (β + δ)(α + δ)−1 and an unknown corner
c ≥ 1. Because h−(c) ≤ 1, (γ/c)(c− 1) ≤ 1, while from the fact that h is excessive, it follows
that

e−(β+δ)t
[
ξe(α+δ)t − 1

]
= e−βtEξ

[
h(x)

] ≤ h(ξ) = ξ − 1 (ξ ≥ c),

and this cannot hold for ξ = c and t ↓ 0 unless (γ/c)(c− 1) ≥ 1, i.e., unless c = γ(γ − 1)−1 =
(β + δ)(β − α)−1.

As to the general warrant, if ξ ≥ c(t), then

e−(β+δ)s
[
ξe(α+δ)s − 1

]
= e−βsEξ

[
h
(
t− s, x(s)

)] ≤ h(t, ξ) = ξ − 1,

and solving for ξ = c(t), one finds c(t) ≥ γ(γ − 1)−1 = c = c(∞), i.e., c(t) ≡ c(∞). Now if
c exp[−(α+ δ)t] ≤ ξ ≤ c and if s ≤ t is chosen so that ξ exp[(α+ δ)s] = c, then

h(∞, ξ) ≥ h(t, ξ) ≥ e−βsEξ

[
h
(
t− s, x(s)

)]
= e−(β+δ)sh

[
t− s, e(α+δ)s

]
= e−(β+δ)s(c− 1) = (ξ/c)γ(c− 1),

so that h(t, ξ) = (ξ/c)γ(c− 1), while if ξ ≤ c exp[−(α+ δ)t], then in view of 4.8,

h(t, ξ) = e−βsEξ

[
h
(
t− s, x(s)

)]
= e−(β+δ)sh

(
t− s, ξe(α+δ)s

)

= e−(β+δ)th(0+, ξe(α+δ)t) (s = t−)

= e−(β+δ)t
[
ξe(α+δ)t − 1

]+
,

as stated. Note that h+(t, ξ) jumps at ξ = exp[−(α+ δ)t] but not at ξ = c.

11.20. General Warrant for a Multiplicative Brownian Motion with Drift

Now let us compute as far as possible the general warrant for the multiplicative Brownian
motion x(t) = exp[σb + δt] of Sect. 11.17, granting that c and the left slope h−(t, c) are
continuous, that c(0+) = 1, and that c has a continuous slope c• for t > 0, consider

Gf(ξ) =
(
σ2/2

)
ξ2f ′′(ξ) +

(
σ2/2 + δ

)
ξf ′(ξ) = fφ(dξ)/c(dξ)
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as in 3 and let us prove that h is a solution of the free boundary problem:

(G− ∂/∂t)h = βh on the region R : t > 0, 0 < ξ < c(t)

h(t, 0+) = 0 (t > 0)

h(0+, ξ) = 0 (ξ ≤ 1)

h(t, c−) = c− 1 (t > 0)

h−(t, c) = 1 (t > 0).

R (or, what is the same, the free boundary c) is unknown, and it is the extra (flux) condition
h− = 1 that makes it possible to solve for both R and h. Point 8 in Sect. 11.18 implies
the partial differential equation, and the evaluations of h on the three sides of ∂R follow
from points 1, 5, and 7 in Sect. 11.17. As to the flux condition h−(t, c) = 1, recall how G
was expressed in Sect. 11.17: Gf = df+/dm with slope f+ taken relative to the new scale
ds = ξ−γ dξ (γ = 1+2δ/σ2) and dm = ξγ−2dξ. In this language dht/dm− βh ≤ ∂h/∂t is the
(formal) expression of the fact that h is (space-time) excessive. Note that h is still increasing
and even convex in the new scale since h+ (new) = ξγh+ (old) and γ > 1. Now integrate as
follows:

∫ k
n

k−1
n

[
h+

(
t, c(t)

)− h−(t, c(t))] dt

≤
∫ k

n

k−1
n

[
h+

(
t, c

(
k

n

))
− h−

(
t, c

(
k − 1

n

))]
dt

=

∫ k
n

k−1
n

dt

∫ c( k
n )+

c( k−1
n )−

dh+

≤
∫ k

n

k−1
n

dt

∫ c( k
n )+

c( k−1
n )−

[
∂h

∂t
+ βh

]
dm

=

∫ c( k
n )

c( k−1
n )

dm

[
h

(
k

n
, ξ

)
− h

(
k − 1

n
, ξ

)
+ β

∫ k
n

k−1
n

h(t, ξ) dt

]

≤
∫ c( k

n )

c( k−1
n )

dm

[
h

(
k

n
, c

(
k

n

))
− h

(
k − 1

n
, c

(
k

n

))
+ β

∫ k
n

k−1
n

h(t, ξ) dt

]

=

∫ c( k
n )

c( k−1
n )

[
c

(
k

n

)
− c

(
k − 1

n

)
+O

(
1

n

)]
dm

= O

(
1

n

)

under the assumptions on c(t). But in the old scale (ξ), the first integral is just

∫ k
n

k−1
n

cγ
[
1− h−(t, c)

]

and the flux condition h−(t, c) = 1 follows.
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Now transform the free boundary problem by the substitution h = e−βtw(t, σ−1[lg ξ+δt]):

∂w

∂t
=

1

2

∂2w

∂ξ2
on the region: t > 0, −∞ < ξ < b(t) ≡ σ−1[lg c+ δt]

w(t,−∞) = 0 (t > 0)

w(0+, ξ) = 0 (ξ ≤ 0)

w(t, b) = eβt(c− 1) (t > 0)

w−(t, b) = eβtδc (t > 0).

Because

w(t, ξ) ≤ eβth
(∞, cσξ−δt

)
= eβt

[
c(∞)− 1

]
c(∞)−γeγ[σξ−δt]

to the left of ξ = b, it is legitimate to take a Fourier transform ŵ(t, η) =
∫ b

−∞ eiξηw(t, ξ)dξ.

c(0+) = 1 implies ŵ(0+, ·) ≡ 0; this leads at once to

ŵ(t, η) =

∫ t

0

e−η(t−s)/2eβseiηb(s)
[
c(s)

2
+

(•
b(s)− iη

2

)(
c(s)− 1

)]
ds,

or, what is the same,

∫ t

0

e−[ξ+b(t)−b(s)]2/2(t−s)√
2π(t− s)

eβs
[
c

2
+

[•
b(s)− ξ + b(t)− b(s)

2(t− s)

]
(c(s)− 1)

]
ds

= w
(
t, ξ + b(t)

)
(ξ < 0)

= 0 (ξ > 0),

and from this it is possible to deduce an infinite series of integral equations for the free
boundary c by (a) evaluation at ξ = 0+, (b) evaluation of the slope at ξ = 0+, etc.:

(a)
c− 1

2
=

∫ t

0

e−[b(t)−b(s)]2/2(t−s)√
2π(t− s)

e−β(t−s)

[
c

2
+

[•
b(s)− b(t)−b(s)

2(t−s)

]
(c−1)

]
ds,

(b)
c

2
=

∫ t

0

e−[b(t)−b(s)]2/2(t−s)√
2π(t− s)

e−β(t−s)

[•
b(s) + β(c(s) − 1)− b(t)− b(s)

2(t− s)
c(s)

]
ds,

etc.
I. I. Kolodner [19] treated such free boundary problems and derived (a) and (b) by

a more complicated method. Unfortunately, it is not possible to obtain explicit solutions,
though machine computation should be feasible; as a matter of fact, even the existence and
uniqueness of solutions is still unproved.

Henry P. McKean, Jr., Ph.D., Professor of Mathematics, Massachusetts Institute of Tech-
nology. Author of “Diffusion Processes and Their Sample Paths” (with K. Itô), Grundlehren
der Math. Wiss. 125, Berlin, 1965; and other papers.
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12Geometry of KdV (1): Addition
and the Unimodular Spectral
Classes

Henry P. McKean Jr.1,2

To Alberto Calderón for his 65th birthday

12.1. Introduction

This is the first of three papers on the geometry of KDV. It presents what purports to be
a foliation of an extensive function space into which all known invariant manifolds of KDV
fit naturally as special leaves. The two main themes are addition (each leaf has its private
one) and unimodular spectral classes (each leaf has a spectral interpretation), but first a bit
of background.

Darboux’s Transformation: Scattering Case. Let3 Q = −D2+q(x) be a Schrödinger
operator on R with potential of scattering class4 C∞

↓ . The spectrum of Q acting in L2(R)

comprises 0 ≤ g < ∞ simple bound states −k21 < · · · < −k2g < 0, plus the continuum

[0,∞) of multiplicity 2. The ground state −k21 (if present) has an eigenfunction e1 of one
sign; it is removed by the transformation Q → Q − 2D2 lg e1 = Q−, the bound states of
the latter being the same as for Q with −k21 left out. Bound states can also be added: if
−k20 is any number below specQ, then Qh = −k20h has positive solutions h− ∈ L2(−∞, 0]

with
∫∞
0 h2− = ∞ and h+ ∈ L2[0,∞) with

∫ 0

−∞ h2
+ = ∞, and if e0 = (1 − c)h− + ch+ with

0 < c < 1, then Q+ = Q − 2D2 lg e0 has bound states −k20 < −k21 < · · · < −k2g . This
type of transformation stems from [4]; see also [1, 3, 7]. It can be expressed in other ways: for
example, if e is any positive solution of Qe = −k2e, if AQ = Q−2D2 lg e, and if p = e′/e, then
Q = −D2+ p′+ p2− k2 while AQ = −D2 − p′+ p2− k2, so that the Darboux transformation
A is identified with the Bäcklund transformation B of KDV in the form discovered by Miura
[20], to wit, B : p′+p2−k2 → −p′+p2−k2. A variant is to expressQ as5 (eDe−1)†(eDe−1)−k2

and to exchange the factors: (eDe−1)(eDe−1)† − k2 = AQ; see [5].

Addition Defined. I make two small but important changes in the Darboux transfor-
mation: I insist that −k2 be to the left of specQ and I take for e always h− or h+, which was

1Courant Institute, New York University, New York, NY, USA, mckean@cims.nyu.edu.
2The work presented in this paper was performed at the Courant Institute of Mathematical Sciences with

the support of the National Science Foundation under Grant NSF-MCS-76-07039.
3D signifies differentiation with respect to x ∈ R.
4C∞

↓ is the class of infinitely differentiable real-valued functions vanishing rapidly at ±∞.
5The dagger signifies the transposed.
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not done before. Let p = (λ,−) or (λ,+) with λ = −k2 and take e(x, p) = h−(x) or h+(x) in
accordance with this choice. The map

Ap : Q −→ Q− 2D2 lg e(x, p)

is called addition of p for reasons to be explained presently; unlike the previous maps of its
kind, it is always isospectral, and a great deal more besides, as you will see. The composition
rule6

Ap1 · · ·Apn = Q− 2D2 lg
[
e
(
x, p1

)
, . . . , e

(
x, pn

)]
shows that addition is commutative, and its specialization to n = 2 with p1 = p = (λ,±)
and p2 = −p = (λ,∓) shows that A−p is inverse to Ap, so that repeated additions produce a
commutative group of transformations. The point now to be stressed is that addition makes
sense in a very wide class of operators: the only thing you really need is that specQ is bounded
away from −∞! The corresponding class of (smooth) potentials is the extensive function space
alluded to before.

Addition Explained: Hill’s Case. The name addition7 has a better justification than
its mere commutativity. Let Q be a Hill’s operator with potential of class8 C∞

1 . Then the
spectrum of Q acting in L2(R) consists of bands[

λ+
0 , λ

−
1

] ∪ [
λ+
1 , λ

−
2

] ∪ [
λ+
2 , λ

−
3

] ∪ · · ·
marked off by the periodic/anti-periodic spectrum of Q:

−∞ < λ+
0 < λ−

1 ≤ λ+
1 < λ−

2 ≤ λ+
2 < λ−

3 ≤ · · · ↑ ∞.

Now the class of Hill’s operators Q having one and the same spectrum as some fixed specimen
is faithfully represented by divisors in real position on the (nonclassical) multiplier curve M
determined by the irrationality

√
Δ2 − 1 =

√
λ+
0 − λ

∞∏
n=1

n−2π−2
√(

λ+
n − λ

)(
λ−
n − λ

)
.

I pause to explain what all that means. The points of the curve are pairs p = (λ,±) comprising
a projection λ(p) ∈ C and a signature (of the irrationality). The function e(x, p) introduced
before agrees, to the left of specQ, with the Baker-Akhiezer function of M specified by

(a) Qe = λ(p)e;

(b) e(x+ 1) = m(p)e(x), m(p) being the multiplier Δ−√
Δ2 − 1; and

(c) e(0) = 1.

The pole divisor p1+p2+ · · · of e(x, p) is independent of 0 < x < 1. It is the divisor of Q and
is in real position in the sense that its projections fall one into each of the spectral lacunae:
λ−
n ≤ λ(pn) ≤ λ+

n (n ≥ 1). The association of Q to its divisor is 1:1. The latter form an
∞-dimensional torus J which is (the real part of) the Jacobi variety of M . In this language,
the addition9 of p0 with λ(p0) < λ+

0 to the left of specQ is effected by the following recipe

Q −→ p1 + p2 + · · ·
−→ −p0 + p1 + p2 + · · ·
−→ ∞+ p′1 + p′2 + · · ·
−→ Q′

6Crum [3]. [e1, . . . , en] is Wronski’s determinant.
7McKean and Trubowitz [15] is cited for background.
8C∞

1 is the class of infinitely differentiable real-valued functions of period 1.
9It would be more accurate to speak of subtraction but never mind.
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in which −p0 is p0 reckoned with the opposite signature; p′1 + p′2 + · · · is a new divisor in
real position; the divisors of lines 2 and 3 are equal in J , meaning that the one comprises the
roots and the other the poles of a function of rational character on M ; and Q′ = Ap0Q is the
new Hill’s operator with divisor p′1 + p′2 + · · · . The proof is presented below; compare [14].

Note. The special addition (not permitted by the present recipe) of the point of rami-
fication p0 = λ+

0 is an involution10 of the Jacobi variety corresponding to the addition (in J)
of the sum of all real half-periods; see [19].

KDV-Type Fields. The next item is the connection between addition and KDV. Take
p = (λ,+) and p′ = (λ+Δλ,+) for λ below specQ. Then

Ap′
A−pQ = Q−XQΔλ+ etc.

with11

XQ = 2G′
xx(λ),

Gxy(λ) being the Green’s function (Q − λ)−1
xy . The vector field X , familiar from Hill’s equa-

tion,12 appears in this way as an infinitesimal addition. Now XQmay be expanded as λ ↓ −∞
in diminishing half-integral powers of −λ:

XQ =

∞∑
n=1

(−λ)−(1/2+n)XnQ,

in which X1Q = q′, X2Q = 3qq′ − (1/2)q′′′, etc. are the conventional KDV fields up to unim-
portant constants, the point being that, in the full generality envisaged here, addition provides
a substitute for the flows of the KDV hierarchy even when the latter have no existence.13 This
realization prompts the formation of the additive class produced by closing up the operators
Q obtained from a fixed specimen by repeated additions of points p to the left of specQ. In
this way, the space of operators with spectrum not extending to −∞ is foliated14 by classes
which fill the office of the invariant manifolds of KDV, each class having its private addition.

Note. The vector fields XQ = 2G′
xx(λ), taken for λ to the left of specQ, may be

integrated without obstruction to produce commuting, class-preserving flows. This can be
done by explicit formulae involving Fredholm determinants, much as in [17]; see the third
paper in this series. Mumford [23, 24] has studied these flows in a special case.

Unimodular Spectral Classes. It is known that the invariant manifolds of KDV have a
spectral basis: for example, in the scattering case, the transmission coefficient is the invariant
specifying the manifold, while in the Hill’s case, it is the periodic/anti-periodic spectrum,
alias the discriminant, that is fixed. You will ask: what is the corresponding invariant for
the general additive class? I present a conjecture verified in three examples cited below. Let
dF (λ) be the (2 × 2) spectral weight15 of Q. Then Q is isospectral (= unitarily equivalent)
to a second such operator Q′ if and only if the spectral weight of the latter is related to the
former weight as16 GdF G† with a factor G = G(λ) taking values in GL(2,R). Now it is easy

10p0 = −p0.
11The prime signifies differentiation on diagonal.
12McKean-Trubowitz [15, 16].
13KDV cannot be balanced with initial data x2, for example.
14The usage is informal as the dimensionality of the leaf varies from 0 to ∞!
15Kodaira [12] is cited for background; compare art. 2 below.
16The dagger signifies the transposed, as before.
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to compute the spectral weight dF p = GdF G† of ApQ: isospectrality prevails, the factor
being

G(λ) =
1√

λ− λ(p)

[
c −1

λ− λ(p)− c2 c

]
with c =

e′(0, p)
e(0, p)

,

and you notice that detG = 1! This prompts a definition: two operators Q belong to the
same unimodular spectral class if they are unitarily equivalent and if the factor G takes its
value not just in GL(2,R) but in SL(2,R); evidently, the additive class of Q is part of its
unimodular spectral class. I conjecture that, with the proper technical precautions, these
classes are always one and the same. The second paper of this series verifies this conjecture
in three examples:

(a) the scattering case C∞
↓

17;

(b) the Hill’s case C∞
1 ;

(c) if the additive class is of finite dimension.

Under (a), the class has fixed transmission coefficient, the phase of the reflection coefficient
together with the logarithmic norming constants serving as additive coordinates. Under (b),
the periodic/anti-periodic spectrum is fixed and the class is identified as the real part of the
Jacobi variety, the addition of the latter falling in with the addition of the class. Under (c),
the class is a leaf of the Neumann system and every leaf appears in this way.18

Second Measure Class. The two measure classes determining the conventional isospec-
tral class of Q are typified by19

spdF = df11 + df22

and20

√
det dF =

√
f ′
11f

′
22 −

(
f ′
12

)2
sp dF.

The latter is of special importance in its role of unimodular spectral invariant. It is always
smaller than dλ and the density D =

√
det dF/dλ can be interpreted as the modulus of

a (mean) transmission coefficient ; in fact, it is precisely |s11| in the scattering case. The
evaluation of the gradient:

∂ lgD

∂q(x)
= −the real part of Gxx(λ+

√−1 0+) if D > 0

hints at an attractive connection between the unimodular invariant and the vector fields
XQ = 2G′

xx(λ), but this has not been fully understood.

Acknowledgement. I wish to thank L. Menezes: her comments led to several improve-
ments of the original presentation.

12.2. Preliminary Spectral Theory

I collect for future use a number of standard facts about Q under the sole assumption
that its spectrum is bounded from −∞.

17Q = −D2 is the simplest instance; it is settled in item 7, art. 5.
18McKean [13] and Moser [21] are cited for background.
19dF = [dfij : 1 ≤ i, j ≤ 2].
20f ′

ij = dfij/ spdF (1 ≤ i, j ≤ 2).
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Eigendifferential Expansions. 21

Fix a complex number λ outside specQ so that Qh = λh has independent solutions

h− ∈ L2(−∞, 0] with

∫ ∞

0

∣∣h−
∣∣2 = ∞

and

h+ ∈ L2[0,∞) with

∫ 0

−∞

∣∣h+

∣∣2 = ∞.

The Wronskian [h−, h+] = h′
−h+ − h−h′

+ is always taken as 1. Then Green’s function (Q −
λ)−1

xy = Gxy(λ) is expressed as h−(x)h+(y) if x ≤ y. Let the bottom of specQ be placed at 0
for simplicity. The fundamental matrix

M(λ) =
[
mij(λ) : 1 ≤ i, j ≤ 2

]
=

[
2h−h+

(
h−h+

)′
(
h−h+

)′
2h′−h′

+

]
evaluated at x = 0

is analytic in the cut plane C − [0,∞); it is also symmetric and of determinant −1. It is
real for λ < 0; most important, its imaginary part is positive (−definite) in the open upper
half-plane22 and so has there the presentation

imagM(λ) =
b

π

∫ ∞

0

[
(λ′ − a)2 + b2

]−1
dF (λ′)

with λ = a+
√−1b, b > 0, and a 2× 2, real, symmetric, positive23 spectral weight

dF (λ = a) = lim
b↓0

imagM(a+
√−1b)da =

[
dfij(λ) : 1 ≤ i, j ≤ 2

]
.

The spectral theorem

Q =

∫ ∞

0

λdP(λ)

is implemented thereby: if E(x, λ) = (e1, e2) with Qe = λe, e1(0) = e′2(0) = 1, and e′1(0) =
e2(0) = 0, then the kernel of the projection dP(λ) is

dPxy(λ) = (2π)−1E(x, λ)dF (λ)E†(y, λ).

Measure Classes. The function f1(x) is taken as h−(x)h+(0) if x < 0 and as
h−(0)h+(x) if x ≥ 0 for fixed λ = −1, say, to the left of specQ; similarly, f2(x) is taken
as h−(x)h′

+(0) if x < 0 and as h′
−(0)h+(x) if x ≥ 0. Then24[(

fi, dP(λ)fj
)
: 1 ≤ i, j ≤ 2] = (2π)−1(λ+ 1)−2dF (λ);

also, the families dPf1 and dPf2 together span the whole of L2(R). Now df12 is dominated
by25 df11 and/or df22, so every spectral measure (f, dPf) is dominated by(

f1, dPf1
)
+
(
f2, coprojection of dPf2 upon dPf1

)
=
(
f1, dPf1

)
+
(
f2, dPf2

)− r
(
f2, dPf1

)

21Weyl [27] but see [12] for the present more elegant version.
22This is easily seen from the identity

imagGxy(λ) = imag λ× [
(Q − λ)−1

(
Q− λ∗)−1]

xy
=

∫
Gx•(λ)G

∗
y• (λ).

23The adjective means that f11(Δ) ≥ 0, f22(Δ) ≥ 0, and f2
12(Δ) ≤ f11(Δ)f22(Δ) for arbitrary sets Δ.

24Kodaira [12]. The parenthesis is the inner product.
25f11f22 ≥ f2

12.
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with r = df12/df11, i.e., by df11+df22−r df12. The corresponding top measure class is typified
by the trace sp dF = df11 + df12; indeed, by the positivity of dF , |df12| ≤

√
df11df22,

26 so
that |r df12| ≤ df22, and the vanishing of f11(Δ) + f22(Δ) − ∫

Δ
r df12 implies f11(Δ) = 0,

|f12|(Δ) = 0, and f22(Δ) = 0, in that order. The top measure class is now seen to be
based upon the family (1− r)dPf1 + dPf2: in fact, the associated spectral measure is just
df11 + df22 − r df12. The second class is based upon the perpendicular family

df22 + (1− r)df12
df11 + df22 − r df12

dPf1 − df11
df11 + df22 − r df12

dPf2,

the associated measure being

df11df22 −
(
df12

)2
df11 + df22 − r df12

=
f ′
11f

′
22 −

(
f ′
12

)2
f11 + f ′

22 − r df ′
12

× spdF ;

in particular, the second class is typified by the measure27

√
det dF =

√
df11df22 −

(
df12

)2
=

√
f ′
11f

′
22 −

(
f ′
12

)2
spdF.

Note. Masani-Wiener [28, 29] introduced
√
det dF in a different context and in a different

way: it is an elementary fact that the interval function D(I) =
√
detF (I) is superadditive:

D(A ∪B) ≥ D(A) +D(B) if A ∩B is void. This permits the alternative definition:∫
Δ

√
det dF = the infimum of the sum of D(I),

the infimum being taken over countable covers of Δ by intervals I. This will be helpful later
on.

Unitary Equivalence. The main fact about unitary equivalence can now be stated in
a convenient form28: two operators Q1 and Q2 are isospectral if and only if they determine
the same top and the same bottom measure classes, or, what is the same, if and only if their
spectral weights are related as dF2 = GdF1 G

†, the 2× 2 factor G = G(λ) taking its values in
GL(2,R). I could not find the second criterion stated in just this form, though it is an easy
consequence of the first, which is standard.

Proof. Let Q1 and Q2 be isospectral. The weight dF1 can be expressed as OD1O
†dm

with O ∈ SO(2), 2×2 non-negative diagonalD1, and a positive (numerical) measure dm. Now
as dF2 has a similar expression with the same dm, it suffices to produce G = [gij : 1 ≤ i, j ≤ 2]
taking its values in GL(2,R) so as to make D2 = GD1G

† under the condition that spD2

vanishes simultaneously with spD1, and detD2 with detD1. The rest will be plain. �
Note 1. dF is not intrinsic. The fact is, it depends upon the choice of origin x = 0, and

if the latter is displaced to x = c, then the former weight dF is changed to GdF G† with the
factor

G =

[
e1(c) e2(c)

e′1(c) e′2(c)

]
.

G is unimodular, so
√
det dF is not changed. This already commends it to special attention.

26This type of expression always signifies what is must: here, the radical is
√

f ′
11f

′
22 × spdF , the primed

densities being taken relative to the trace.
27Compare the preceding footnote.
28Stone [26].
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Note 2. The unimodular spectral class of Q1 is the subclass of isospectral operators Q2

having one and the same invariant
√
det dF2 =

√
det dF1; equivalently, the factors G cited

above take their values not just in GL(2,R) but in SL(2,R). The distinction is non-existent
at bound states: if dF2 = GdF1 G

† with G ∈ GL(2,R) at a jump of dF1, then the simplicity
of bound states of Q implies that dF1 and dF2 are of rank 1. Now G may be chosen from
SL(2,R), as you will easily check.

Side Operators. These are employed infrequently and can be skipped for now, as can
the rest of this article. The side operator Q0

+ is the restriction of Q to functions on the half-
line x ≥ 0 vanishing at x = 0; its spectrum is confined to [0,∞), in agreement with the form
of its Green’s function

G0
xy(λ) = e2(x)h+(y)/h+(0) (x ≤ y)

and the fact that h+(0) is root-free off the cut [0,∞).29 The imaginary part of G0
xx(λ) is

positive in the upper half-plane, so

lim
x↓0

x−2 imagG0
xx(λ) = imag

h′
+(0)

h+(0)
=

b

π

∫ ∞

0

[
(λ′ − a)2 + b2

]−1
df0

+(λ
′),

in which λ = a +
√−1b, b > 0, and the spectral weight df0

+ is non-negative. The other side
operator of interest is the restriction Q∞

+ of Q to functions on the half-line with vanishing
slope at x = 0; its spectrum is likewise confined to [0,∞), with the possible exception of an
isolated ground state to the left of 0, in agreement with the form of its Green’s function

G∞
xy(λ) = −e1(x)h+(y)/h

′
+(0) (x ≤ y)

and the fact that h′
+(0) = 0 has at most one (real, simple, negative) root off the cut [0,∞).30

The imaginary part of G∞
00(λ) is positive in the upper half-plane, so

imagG∞
00(λ) = − imag

h+(0)

h′
+(0)

=
b

π

∫ [
(λ′ − a)2 + b2

]−1
df∞

+ (λ′),

in which λ = a +
√−1b, b > 0, and the non-negative spectral weight df∞

+ vanishes off

[0,∞) + ground state, if any. The analogous side operators Q0− and Q∞− for the left half-line
also play a small role below.

Note. The identity for m•
22 of the last footnote shows that if h′

+(0) = 0 has a root < 0,
then h′

−(0) = 0 does not, and it is easy to deduce that if the ground state of Q∞
+ is below 0,

then the bottom of specQ∞
− is at 0.

Inverse Spectral Problem. The association of Q to its 2 × 2 spectral weight dF is
1:1. This is made plausible by a count: 2 degrees of freedom in Q, one for (−∞, 0] and one
for [0,∞), versus 3 degrees of freedom in the symmetric 2 × 2 weight, less 1 to account for
detM = −1.31 The proof is easy, too: dF determines M and so also

−h′
−(0)/h−(0)=

(
1/m11

)(− 1−m12

)
, h′

+(0)/h+(0)=
(
1/m11

)(− 1 +m12

)
,

29h+(0) = 0 off the cut means that h+ is an eigenfunction of the side operator Q0
+. Then λ must be real

and negative, and
∫∞
0 h+Qh+ = λ

∫∞
0 h2

+ < 0 violates specQ ⊂ [0,∞).
30h′

+(0) = 0 off the cut means that h+ is an eigenfunction of the side operator Q∞
+ . Then λ < 0 as before,

and

2
[
h′
−(0)h′

+(0)
]•

= m•
22(λ) =

1

π

∫
(λ′ − λ)−2df22(λ

′)

does the rest, the spot signifying differentiation with regard to λ.
31detM = −1 looks like the loss of 2 degrees of freedom but, as the real part is conjugate to the imaginary,

the count is only 1.
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which determine the side operators Q0− and Q0
+ by the recipe of [9]. Newton [25] proves this

directly in the 2 × 2 format, of which the only drawback is that one does not know what
detM = −1 signifies for dF , i.e., one cannot (to date) satisfactorily describe what are the
2× 2 spectral weights.

12.3. Addition

The letter p0 denotes a pair (λ0,±) comprising a projection λ0 to the left of specQ ⊂
[0,∞) and a signature indicating which function e(x, p0) = h− or h+ is to be employed. The
operation of adding p0 to (the divisor of ) Q is the map

Ap0 : Q −→ Q− 2D2 lg e
(
x, p0

)
= Qp0 .

Its simplest properties will be elicited below.

Item 1. e0(x) = e(x, p0) cannot vanish so that addition is well-defined.

Item 2. Q = P †P + λ0 in which P = e0De−1
0 and P † is its transpose −e−1

0 De0. Q
p0

is produced by exchange of factors: Qp0 = PP † + λ0; in particular, P : h → e−1
0 [h, e0] maps

solutions of Qh = λh into solutions of Qp0h = λh. The proof is routine.

Item 3. Ph− belongs to L2(−∞, 0] if λ is not on the cut [0,∞); similarly, Ph+ belongs
to L2[0,∞).

Proof. h+ is typical32:∫ x

0

∣∣Ph+

∣∣2 =

∫ x

0

[
h+, e0

]∗
D
(
h+/e0

)
=

h+

e0

[
h+, e0

]∗∣∣∣x
0
−
∫ x

0

h+

e0
D
[
h+, e0

]∗

=
h+

e0

[
h+, e0

]∗∣∣∣x
0
+
(
λ− λ0

)∗ ∫ x

0

∣∣h+

∣∣2 ≡ re
√−1θ +O(1)

so that either Ph+ ∈ L2[0,∞) or else (h+/e0)[h+, e0]
∗ = re

√−1θ tends to ∞ as x ↑ ∞ in
such a way that r → +∞ and θ → 0. In the second case,∣∣h+

∣∣−2
= r−2

∣∣Ph+

∣∣2 = r−2
[
Dre

√−1θ +
(
λ− λ0

)∗∣∣h+

∣∣2]

=

[
r′

r2
+

√−1θ′

r

]
e
√−1θ +

(
λ− λ0

)∗
r2

∣∣h+

∣∣2

=
r′

r2
cos θ − θ′

r
sin θ + a summable function,

upon taking the real part. Now the imaginary part of the first formula reveals that r sin θ is
monotone and bounded so that (r sin θ)′ is summable. It follows that

cos θ∣∣h+

∣∣2 =
r′

r2
− sin θ

r2
(r sin θ)′ + a summable function

is itself summable, so
∫∞
0

|h+|−2 < ∞, contradicting
∫∞
0

|h+|2 < ∞. The proof is finished. �
Item 4. The addition of p0 is a unimodular isospectral transformation.

32The star means complex conjugate. D stands for differentiation with regard to x.
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Proof. By Item 3, Ph− and Ph+ play the role of h− and h+ for Qp0 , after accounting
for the fact that [Ph−, Ph+] = λ − λ0 is not unity; in particular, specQp0 is confined to
[0,∞), and

Mp0 =
1

λ− λ0

[
2Ph−Ph+

(
Ph−Ph+

)′
(
Ph−Ph+

)′
2
(
Ph−

)′(
Ph+

)′
]

taken at x = 0

is the fundamental matrix of Qp0 , permitting the evaluation of its 2× 2 spectral weight as

dF p0(λ = a) = lim
b↓0

imagMp0(a+
√−1b)da = GdF G†

with the unimodular factor

G =
1√

λ− λ0

[
c −1

λ− λ0 − c2 c

]
, c =

e′0(0)
e0(0)

.

The computation is routine in view of Mp0 = GMG†. �
Example 12.3.1. If Q = −D2, then dF (λ) is the diagonal matrix [λ−1/2, λ+1/2]dλ and

GdF G† = dF , in agreement with D2 lg e0 = 0: in brief, addition has no effect.

Example 12.3.2. The proviso that λ(p0) lies to the left of specQ may be essential for
isospectrality, as the example Q = −D2 + x2 − 1 shows. Qe0 = 0 with e0(x) = exp(−x2/2) =
the ground state, h− and h+ being coincident, and the addition of p0 = (0,±) shifts the whole
spectrum 2 units: Q → Q− 2D2 lg e0 = −D2 + x2 +1. Contrariwise, if Q = −D2 +a positive
compact function, then specQ = [0,∞), Qh = 0 has 2 independent positive solutions h− = 1
near −∞ and h+ = 1 near +∞, and both additions (0,±) are unimodular isospectral, as in
Item 4.

Item 5. The effect of repeated additions is described next. Let p1 and p2 be distinct
points. The function e(x, p2) associated to Qp1 is proportional to e−1

1 [e2, e1] in which e1 =
e(x, p1) and e2 = e(x, p2) are now formed for Q itself. It follows that

Ap2Ap1Q = Q− 2D2 lg e1 − 2D2 lg e−1
1

[
e2, e1

]
= Q− 2D2 lg

[
e1, e2

]
.

The more general formula33

Ap1 · · ·ApnQ = Q− 2D2 lg
[
e
(
x, p1

)
, . . . , e

(
x, pn

)]
is obtained by induction; in particular, addition is commutative and invertible, the inverse to
Ap being A−p formed with the point −p having the opposite signature to p but the same
projection.

Item 6. Ap approximates the identity as the projection λ(p) tends to −∞.

Proof. Let Q = −D2 + q(x) and take p = (λ,+) for instance. Then D2 lg e = q(x) −
λ− (h′

+/h+)
2, so what is needed is the development

−h′
+(x)

h+(x)
= (−λ)1/2 +

1

2
q(x)(−λ)−1/2 + etc. (λ ↓ −∞).

The idea is to write the Green’s function G∞
00 in the form of a Brownian integral:

G∞
00(λ) = −h+(0)

h′
+(0)

=

∫ ∞

0

eλt(πt)−1/2E00

(
e−Q

)
dt,

in which E00 is the expectation for the reflecting Brownian motion x(t) : t ≥ 0 with infinitesi-

mal operator D2, conditional on x(0) = 0 and x(t) = 0, and Q is the integral
∫ t

0
q[x(t′)]dt′. The

33[e1, . . . , en] is Wronski’s determinant.
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computation is localized by checking that paths with 1 ≤ max[x(t′) : t′ ≤ t] do not contribute
to the development. I omit the routine details.34 �

Item 7. Let p be any point (λ,+) to the left of specQ and let p′ = (λ + Δλ,+). Then

Ap′
A−pQ = Q−XQΔλ+ etc. with XQ = 2G′

xx(λ).

Proof. The composite addition produces Q− 2H ′ with35

H = D lg
[
h−(x, λ), h+(x, λ +Δλ)

]
= D lg

(
1 +

[
h−, h+

]
Δλ+ etc.

)
=
(
h′′
−h

•
+ − h−h•′′

+

)
Δλ =

(
h−Qh•

+ − h•
+Qh−

)
Δλ = h−h+Δλ,

to leading order, by Item 5. �
Note 1. The vector fields X : Q → 2G′

xx(λ) inherit the commutativity of addition.

Note 2. X appears in Item 7 as an infinitesimal addition. This is of particular interest
in view of the fact that, as in the scattering case, Gxx(λ) can be developed, as in Item 6, in
diminishing half-integral powers of λ ↓ −∞, with the conventional KDV fields as coefficients.
It follows that addition commutes with, and shares the invariant manifolds of, the KDV flows
when these have any existence; in particular, addition can be viewed as a substitute for the
KDV hierarchy under the sole condition that specQ is bounded from −∞.

Note 3. X can be expressed in commutator format as XQ = [K,Q] in which K is the
infinitesimal skew operator36 [(3/2)G′

xx − DGxx]G. The skewness of K is equivalent to the
vanishing of

(Q − λ)
(
K +K†)(Q − λ) = qD +Dq − (1/2)D3 − 2λD acting on Gxx,

which is well known and easily checked. This facilitates the evaluation of the commutator:

[K,Q] = K(Q− λ) + (Q− λ)K† =
3

2
G′

xx −DGxx +
3

2
G′

xx +GxxD = 2G′
xx.

Note 4. The gradient ∂Gxx(λ)/∂q(y) = −G2
xy(λ) is easily computed; it is symmetric in

x and y so that in the small, 2Gxx(λ) is itself a gradient ∂H/∂q(x), by Poincaré’s lemma, and
the field X has the conventional KDV form XQ = (∂H/∂q)′. H is termed an integral. The
discussion indicates but does not prove that the additive class of Q should be determined by
fixing the values of these integrals for every λ to the left of specQ. Unfortunately, the appli-
cation of Poincaré’s lemma is only formal in the present very wide generality. The integrals
are morally equivalent to the additive invariant D =

√
det dF/dλ, or rather to its logarithm,

as attested by Item 6, art. 4:

∂D/∂q(x) = the real part of Gxx(• +
√−10+)×D,

but this looks more satisfactory than it really is. For example, in Hill’s case, Gxx(•+
√−10+)

is imaginary on specQ where D lives, and the formula is without content.

Item 8. Concerns an additive duality37 which exchanges the spectral weights of the side
operators Q0

+ and Q∞
+ , and likewise the weights of the side operators Q0− and Q∞− for the

left half-line. The weights are recalled from art. 2: df0
+ represents imag h′

+(0)/h+(0), df
∞
+

represents − imagh+(0)/h
′
+(0), and so on. I take38 the ground state λ0 = bottom specQ∞

+

34McKean and van Moerbeke [18] will serve as a model.
35The spot means differentiation with respect to λ.
36McKean and van Moerbeke [18] misstated this without proof. G is the Green’s operator (Q−λ)−1. DGxx

is now the operator G′
xx +GxxD not the function G′

xx.
37McKean [14] treats Hill’s case; see also [10].
38The spectra of Q∞

− and Q∞
+ cannot both extend to the left of 0; see art. 2 under side operators.
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to the left of 0 = bottom specQ∞− to fix ideas and consider the effect of adding the point
p0 = (λ0,+). Then it is the result of a brief computation that the addition produces a duality
of spectral weights : with m = −h′

−(0)/h−(0) evaluated at the ground state, you find

df∞
+ −→ (λ− λ0)

−1df0
+

df0 −→ (λ− λ0)df
∞
+ knocking out the weight of the ground state

df∞
− −→ (λ− λ0)

−1df0
− plus the positive mass m at the ground state

df0
− −→ (λ− λ0)df

∞
− .

The ground state migrates from Q∞
+ to Q∞− . A further addition of p0 = (λ0,−) re-

produces Q: in short, duality is involutive. A similar duality holds if bottom specQ∞
+ =

bottom specQ∞− = 0. Then e1(x, 0) does not vanish and may be used in place of the former
ground state. The computation is the same.

12.4. Unimodular Classes

The present article investigates the unimodular spectral class with special attention to
the invariant

√
det dF . The fundamental matrix M is written A+

√−1B with A = [aij : 1 ≤
i, j ≤ 2] and B = [bij : 1 ≤ i, j ≤ 2].

Item 1.
√
det dF is independent of the choice of origin x = 0, as noted in art. 2; in

particular, the unimodular class is closed under translation.

Item 2.
√
detB is a superharmonic function in the open upper half-plane.

Proof. Let do be the uniform distribution on the perimeter of a circle C in the open
half-plane. The interval function

D(I) =

√
det

∫
I

B do

is defined for circular arcs I: it is superadditive, B being symmetric and positive, whence39

√
detB(center) = D(C) ≥ lim

N↑∞

N∑
n=1

D
(
In
)
=

∫
C

√
detB do.

�
Item 3.

H
(
λ = a+

√−1b
)
=

b

π

∫ [
(λ′ − a)2 + b2

]−1√
det dF (λ′)

is the greatest harmonic minorant of
√
detB; in particular,√

det dF (a) = lim
b↓0

√
detB

(
a+

√−1b
)
da.

Proof. The superadditivity employed in Item 2 is valid for horizontal lines as well,
whence the interval function

D(I) =

√
det

b

π

∫
I

[
(λ′ − a)2 + b2

]−1
dF (λ′)

39B is harmonic. C is divided into N equal arcs In : n ≤ N .
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formed for fixed a+
√−1b, satisfies40

√
detB = D(R) ≥ ΣD

(
In
) ↓ b

π

∫
[(λ′ − a)2 + b2]−1

√
det dF (λ′) = H,

so that H is overestimated by the harmonic minorant m of
√
detB : H ≤ m. But also, and

for the same reason,
∫
I

mda ≤
∫
I

√
detB da ≤

√
det

∫
I

B da =
√
detF (I) + o(1) as b ↓ 0

for most intervals I, and as the left side in additive while the right side is superadditive, so
m ≤ H . The rest is routine. �

Item 4.

detB =
[
h∗
−(0), h−(0)

][
h∗
+(0), h+(0)

]
= 1− ∣∣[h∗

−(0), h+(0)
]∣∣2 ≤ 1;

in particular,
√
det dF ≤ dλ, and the density D =

√
det dF/dλ is the limiting value√

detB(λ+
√−10+) at almost every point of [0,∞). The computation is routine.

Item 5. Interprets the density D =
√
det dF/dλ of Item 4 as the modulus of a (mean)

transmission coefficient, as advertised in art. 1.

Discussion. D =
√
det dF/dλ = |s11| in the scattering case; see Example 12.5.1 of

art. 5, below. The Jost functions f− and f+ and the scattering matrix [sij : 1 ≤ i, j ≤ 2]
figuring in that computation depend for their definition upon the possibility of standardizing
eigenfunctions at ±∞, as in

f+(x) = s11 exp(
√−1kx) + o(1) at x = +∞,

but this can be side-stepped, even in the most general case. The trick is to standardize
the functions h− and h+ by h−(0) = h+(0) > 0 for λ < 0, keeping [h−, h+] = 1; then
h−(0) = h+(0) everywhere off the cut [0,∞). Now the harmonic functions m11, −1/m11,
and m12 have finite limiting values at almost every point of [0,∞), so the same is true of
h−(0) = h+(0), h

′−(0) + h′
+(0) = m12/h+(0), and h′−(0) − h′

+(0) = 1/h+(0), and so also of
h−(x) and h+(x), independently of x ∈ R, [h−, h+] = 1 being maintained on the cut. The
values h− and h+ from the upper bank of the cut and likewise the values h∗

− and h∗
+ from

the lower bank provide a base of solutions of Qh = λh, so you can patch them across the cut:

h+ = r11h
∗
− + r12h

∗
+, h− = r21h

∗
− + r22h

∗
+

with a matrix [rij : 1 ≤ i, j ≤ 2] reminiscent of the scattering matrix in its role of patcher of
Jost functions. You read off

r11 =
[
h+, h

∗
+

]
, r12 =

[
h∗
−, h+

]
= r∗21, r22 = −[h−, h∗

−
]
,

and −r11r22 + |r12|2 = 1 by Item 4, so that the density

√
det dF/dλ = lim

b↓0

√
detB =

√−r11r22 =

√
1− ∣∣r12∣∣2

is seen as the modulus of a (mean) transmission coefficient.

40
R is divided into small intervals In. The final step is by routine approximation.



12.4. UNIMODULAR CLASSES 247

Example. In the scattering case,

h− = c−f−, h+ = c+f+,

and with c− = c for short, you find −2
√−1ks11 = 1/c−c+ and41

[
r11 r12
r21 r22

]
=

[−1/2
√−1k|c|2 s∗21c

∗/c

s21c/c
∗ 2

√−1k
∣∣s11∣∣2|c|2

]
;

incidentally, (4k)−1 ≤ |c|2 ≤ 4|s11|2 on [0,∞), so that (1 + k2)−1 lg |c| is summable and c
extends to a non-vanishing Hardy function off the cut.

Item 6. There is a close but untransparent connection between
√
det dF and the vector

fields X : Q → 2G′
xx(λ) of arts. 1 and 3: with D =

√
det dF/dλ as before,

∂D(λ)

∂q(x)
= −the real part of Gxx(λ+

√−10+)×D on the cut;

compare Note 4, art. 3.

Proof. D is insensitive to translation so it suffices to compute at x = 0. Let Q# be the
operator Q + c × the unit mass at x = 0, with variable −1 < c < 1. This falls outside the
class of operators permitted before but never mind. Now if the origin is taken at x = 0+,
then with H = 1 + ch−(0)h+(0),

h#
−(0) = H−1h−(0), h#

+(0) = h+(0),

h#′
− (0) = H−1[h′

−(0) + ch−(0)], h#′
+ (0) = h′

+(0),

while if it is taken at x = 0−, then

h#
−(0) = h−(0), h#

+(0) = H−1h+(0),

h#′
− (0) = h′

−(0), h#′
+ (0) = H−1

[
h′
+(0)− ch+(0)

]
,

and it turns out (as it must) that the 2 determinations of detB# are the same: detB# =
H−2 detB. It follows that

D# =
∣∣1 + (c/2)m11

∣∣−1
D

with m11 = m11(• +
√−10+) and42

∂D

∂q(0)
=

∂D#

∂c
evaluated at c = 0

=
∂

∂c

[(
1 +

c

2
a11

)2

+
c2

4
b211

]−1/2

D =
(
a11/2

)
D,

as promised. The computation is a bit formal but reliable, so I leave it at that. �
Item 7 is a test case. I proposed in art. 1 that the unimodular spectral class of Q and its
additive class must be one and the same thing. I prove it now for Q0 = −D2 whose additive
class is the singleton Q0 itself.

41λ = k2 ≥ 0.
42m11 = a11 +

√−1b11.



248 12. GEOMETRY OF KDV (1)

Proof. The spectral weight of Q0 is dF 0 = diag[λ−1/2, λ+1/2]dλ. Let dF be the spectral
weight of an operator Q from the same unimodular class as Q0 so that spdF belongs to the
Lebesgue class on [0,∞) and D =

√
det dF/dλ is the indicator thereof. Then43

p ∗D =
b

π

∫ ∞

0

[
(λ′ − a)2 + b2

]−1
dλ′, taken at λ = a+

√−1b,

is the harmonic minorant of
√
detB, and for any interval I ⊂ [0,∞),∫

I

∣∣[h−, h∗
+

]
taken at x = 0 and a+

√−1b
∣∣2da

≤ 2

∫
I

(
1−

√
detB

)
44 ≤ 2

∫
I

(1− p ∗D)

=
2b

π

∫
I

da

∫ 0

−∞

[
(λ′ − a)2 + b2

]−1
dλ′

=
2b

π

∫
I

da

∫ ∞

a

(
c2 + b2

)−1
dc

≤ 2b

π

∫
I

a−1da,

whence ∣∣∣∣ imag

∫
I

[
h′
−

h−
− h∗′

+

h∗
+

taken at x = 0 and a+
√−1b

]
da

∣∣∣∣
2

≤
∫
I

∣∣[h−, h∗
+

]∣∣2da
∫
I

∣∣h−h+

∣∣−2
da

≤ 2

π

∫
I

da

a

∫
I

4b11∣∣m11

∣∣2
b

b11
da

=
2

π

∫
I

da

a
4

∫
I

imag
(− 1/m11

)×
[
1

π

∫ ∞

0

[
(c− a)2 + b2

]−1
df11(c)

]−1

.

Now introduce the representing measures df0− of − imag h′−(0)/h−(0), df0
+ of

imag h′
+(0)/h+(0), and df00 of −1/m11, and make b ↓ 0 in the preceding display to

obtain (a) the bound

∣∣f0
+(I)− f0

−(I)
∣∣2 ≤ 2

π

∫
I

da

a
4

∫
I

[
1

π

∫ ∞

0

(c− a)−2df11(c)

]−1

df00(a),

(b) an estimate |df0
+−df0

−| ≤ a multiple of a−1/2
√
da df00 in the small, and (c) the conclusion

that df0
− and df0

+ have the same singular part, except perhaps for different jumps at 0. Now

df0− and df0
+ have the same non-singular parts as well: indeed, at almost every point of the

cut [0,∞), the densities f ′
− = df0

−/da and f ′
+ = df0

+/da satisfy

f ′
+ − f ′

− = lim
b↓0

imag

[
h′
−

h−
− h∗′

h∗
+

]
= lim

b↓0
[h−, h∗

+]

h−h∗
+

= 0

43p stands for (b/π)[(λ′ − a)2 − b2]−1. The star signifies convolution.
441− r2 = (1− r)(1 + r) ≤ 2(1 − r) if 0 ≤ r ≤ 1.
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in view of the fact that m11 = 2h−h+ has a non-vanishing limiting value and the estimate at
the start of the proof: ∫

I

∣∣[h−, h∗
+

]∣∣2 da
a

≤ 2b

π

∫
I

da

a
= o(1) as b ↓ 0

if I does not extend to 0. Note, finally, that neither df0
− nor df0

+ can jump at 0; otherwise,
the representing measure df00 of (1/2) imag[h′

+/h+ − h′−/h−] = imag(−1/m11) has a jump
(at 0) so that

−1/m11 ≥ a constant + (−λ)−1f00[0] ↑ ∞ as λ ↑ 0,

contradicting the fact that m11 is positive there. The upshot is that df
0− = df0

+, which is to say
that Q is symmetrical about x = 0. But the unimodular class is invariant under translation,
so the same is true for any choice of origin, whence Q = −D2 + a constant function, and the
constant vanishes because specQ starts at 0. The proof is finished. �

12.5. Examples

Example 12.5.1. Scattering case.45 [sij(k) : 1 ≤ i, j ≤ 2] is the scattering matrix defined

for real k =
√
λ, with values in U(2); it is related to the behaviour at infinity of the Jost

functions f− and f+, as in the table. For k ≥ 0, f− and f+ are the values of h− and h+ along
the upper bank of the cut [0,∞), except that [f−, f+] = −2

√−1ks11(k) is not unity.

x ↓ −∞ x ↑ +∞

f− s22e
−√−1kx e−

√−1kx + s21e
√−1kx

f+ e
√−1kx + s12e

−√−1kx s11e
√−1kx

The 2 × 2 spectral weight is comprised of jumps at the bound states and a pure Lebesgue
part on [0,∞) with density

dF

dλ
= the real part of

1

ks11

[
2f−f+

(
f−f+

)′
(
f−f+

)′
2f ′−f ′

+

]
taken at x = 0.

The additive invariant (second measure class)
√
det dF is readily computed: it is unchanged

by translation, so the entries of the table may be used in place of f− and f+, with the outcome
√
det dF

dλ
=

√
det

[
k
(
1 + real s21e

2
√−1kx

) − imag s21e
2
√−1kx

− imag s21e
2
√−1kx k−1

(
1− real s21e

2
√−1kx

)
]

=

√
1− ∣∣s21∣∣2

=
∣∣s11∣∣.

The KDV invariant manifold is determined by fixing the transmission coefficient s11, which
is to say by fixing the bound states −k21 < · · · ≤ −k2g and the modulus |s12| =

√
1− |s11|2

because s11 encodes just this information:

s11(k) = exp

[
1

π
√−1

∫ ∞

−∞

lg
∣∣s11(k′)∣∣
k′ − k

dk′
]

g∏
i=1

k +
√−1ki

k −√−1ki
;

45Faddeev [8] and/or Deift and Trubowitz [6] are cited for background.
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also, it is known that the phase s12 together with the logarithms of the norming constants

c2i =

∫ ∞

−∞

∣∣f+/s11∣∣2 taken at k =
√−1ki (i ≤ g)

serve as (additive) coordinates on the manifold. Now to elucidate the effect of addition,
take −k20 to the left of specQ and let p0 = (−k20 ,+) to fix ideas. Then e0(x) = e(x, p0) =
f+(x,

√−1k0) = s11(
√−1k0) exp(−k0x) at +∞ with a similar exponential behavior at ∞: in

fact, [lg e0(x)]
′′ vanishes rapidly at ±∞, so adding p0 not only keeps you in the scattering case

but also preserves the KDV manifold in view of note 2, item 7 of art. 3. The effect of addition
upon the coordinates is found by comparison of new eigenfunctions e−1

0 [e0, f+] to old:

e−1
0

[
e0, f+

] � ek0x
[
e−k0x, s11e

√−1kx
]
= −(k0 +√−1k

)
s11e

√−1kx

at +∞; similarly,

e−1
0

[
e0, f+

] � (− k0 +
√−1k

)
s12e

−√−1kx − (
k0 +

√−1k
)
e
√−1kx

at −∞, so

s12 −→ k0 −
√−1k

k0 +
√−1k

= s12.

A similar rule applies to the bound states, the ith norming constant being multiplied by
(k0 + ki)(k0 − ki)

−1 (i ≤ g); in particular, repeated additions followed by closure produce the
whole invariant manifold, as you will easily check.

Example 12.5.2. Hill’s case. Now h− and/or h+ is proportional to the so-called Baker-
Akhiezer function

e(x, p) = e1(x, λ) + e−1
2 (1, λ)

[
m(p)− e1(1, λ)

]
e2(x, λ)

taken at the point p = (λ,±) of the multiplier curve of Q. The latter is the Riemann surface of

the 2-valuedmultiplier46 m(p) = Δ(λ)−√Δ2(λ)− 1; the former is the solution of Qe = λ(p)e
with e(x + 1) = m(p)e(x) and e(0) = 1. The point is that, for λ to the left of specQ, the
number Δ exceeds +1, so that the multipliers satisfy 0 < m+ < 1 and 1 < m− < ∞, with the
result that e(x, p) belongs to L2[0,∞) if m(p) = m+ and to L2(−∞, 0] if m(p) = m−. Now
the KDV invariant manifold may be described either as the class of Hill’s operators with fixed
periodic/anti-periodic spectrum or as (the real part of) the Jacobi variety of the multiplier
curve; moreover, [lg e(x, p)]′′ is of period 1, so addition not only keeps you in the Hill’s case
but also preserves the KDV invariant manifold, just as in Example 1. Kodaira [12] computed
the 2× 2 spectral weight: it is pure Lebesgue with density

dF

dλ
=

±1/2√
1−Δ2

[
2e2(1, λ) e′2(1, λ)− e1(1, λ)

e′2(1, λ)− e1(1, λ) −2e′1(1, λ)

]

on the bands of specQ; the signatures alternate starting with +1. The additive invariant√
det dF is easily elicited:

√
det dF

dλ
=

−4e2e1 −
(
e′2 − e1

)2
4
(
1−Δ2

) = 1 on specQ;

it determines specQ and so also the discriminant Δ, the multiplier curve M , and its Jacobian
J . The use of the word addition can now be fully justified; it will be a by-product of the dis-
cussion that repeated additions (followed by closure) are transitive on the invariant manifold,
just as in the scattering case.

46Δ is the discriminant (1/2)[e1(1, λ) + e′2(1, λ)].
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Discussion. Let p1 + p2 + · · · be the divisor of Q introduced in art. 1, the points
being the poles of e(x, p) determined by the vanishing of e2(1, λ) and the choice of multiplier
m(p) = e′2(1, λ) instead of the other possibility e1(1, λ), one such to each nontrivial gap
[λ−

n , λ
+
n ] (n ≥ 1). Now the operator Q − 2D2 lg e(x, p0) produced by addition of a point p0

with projection to the left of specQ has also such a divisor p′1 + p′2 + · · · , and the recipe of
addition states that the old (umprimed) divisor with47 −p0 adjoined is linearly equivalent to
the new (primed) divisor with ∞ adjoined :

−p0 + p1 + p2 + · · · = ∞+ p′1 + p′2 + · · · in J.

The proof is divided into several steps.

Step 5. The points p1, p2, etc. are the poles of the function

f(p) = e−1
1 (1, λ)

[
m(p)− e1(1, λ)

]
,

aside from an extra pole at ∞ which is detected by the development of f(p) at λ(p) = −∞:

f(p) =
ek − ch k

sh k/k

[
1 + o(1)

]
= k

[
1 + o(1)

]

if k = +
√−λ.

Step 6. The preceding development of f(p) is applied to the operator Qp0 . The corre-
sponding function is48

f0(p) =
m(p)− ep0

1 (1, λ)

ep0

2 (1, λ)
=

m(p)− e−1
0

[
e2, e0

]
taken at x = 1

ep0

2 (1, λ)
− c;

its poles are p′1, p
′
2, etc. and ∞, by definition.

Step 7. f0(p) takes the value −c at the points p = p1, p2, etc. of the divisor of Q and
also at −p0 in view of

e−1
0

[
e2, e0

]
at x = 1 = e′2(1)− ce2(1) = m(p)

in the first case and[
e2, e0

]
at x = 1

e0(1)
=

[
e2, e0

]
at x = 0

e0(1)
=

1

e0(1)
=

1

m(p0)
= m(−p0)

in the second.

Step 4 is to notice that f0(p) = −c has no other roots. This follows from the evaluation
(2π

√−1)−1
∫
d lg f0(p) = 1 for small circles about p = ∞; compare step 1. The upshot is that

−p0 + p1 + p2 + etc. and ∞+ p′1 + p′2 + etc. are the roots and poles of the function f0(p) + c,
which is what linear equivalence is all about, anyhow.

Example 12.5.3. Bohr’s case.49 I cannot do so much if Q is only almost periodic in the
sense of [2]. Fix λ off specQ. Then G = Gxx(λ) is an almost periodic function with the same
frequency module as Q, and

h∓ =
√
G exp

[
± (1/2)

∫ x

0

G−1dx′
]
,

47−p0 is the point on the sheet opposite to that of p0.
48ep01 = cep02 + e−1

0 [e2, e0] with c = e′0/e0 taken at x = 0.
49Johnson and Moser [11] and Moser and Pöschel [22] are cited for background.



252 12. GEOMETRY OF KDV (1)

by elementary computation50 from which it follows that addition preserves :

(1) the almost periodicity,
(2) the frequency module, and
(3) the rotation number

r(λ) = lim
χ↑∞

x−1 imag lg h+(x, λ)

= the mean value of imag−1/2G off specQ.

Proof of (3). Addition of p0 changes h+ into e−1
0 [h+, e0] so that imag lg h+ is changed

by the addition of

imag lg

[
h′
+

h+
− e′0

e0

]
,

and this is bounded off specQ because imag h′
+/h+ is of one signature while e′0/e0 is real.

The values of r(•+√−10+) on the line are known to determine specQ and the frequency
module,51 whence it is natural to conjecture that r and the bound states (if any) determine
the additive class, but this may be naive. �
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potentials. Comment. Math. Helv., 59(1):39–85, 1984.

[23] D. Mumford. Tata Lectures on Theta, I, volume 28 of Progr. Math. Birkhäuser, Boston,
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13Weighted Trigonometrical
Approximation on R

1 with
Application to the Germ Field
of a Stationary Gaussian Noise

N. Levinson and H. P. McKean, Jr.1,2

Notation

f∗(γ) (γ = a+ib) denotes the regular extension of f∗(a) = f(a)∗ so that f∗(γ) = (f(γ∗))∗,
(γ∗ = a− ib).∫

stands for
∫ +∞
−∞ .∫

1
and the like stand for

∫∞
1

, etc.
e(γ) means eγ .

13.1. Introduction

13.1.1. Weighted Trigonometric Approximation. Given a non-trivial, even, non-
negative, Lebesgue-measurable weight function Δ = Δ(a) with

∫
Δ < ∞, let Z be the (real)

Hilbert space L2(R1,Δ da) of Lebesgue-measurable functions f with

f∗(−a) = f(a), ‖f‖ = ‖f‖Δ =

(∫
|f |2Δ

) 1
2

< ∞

subject to the usual identifications, and putting Zcd = the span (in Z) of
e(iat) (c ≤ t ≤ d), introduce the following subspaces of Z:

(a) Z− = Z−∞0,
(b) Z+ = Z0∞,
(c) Z+/− = the projection of Z+ onto Z−,
(d) Z• = the class of entire functions f = f(γ) (γ = a+ ib) with

lim
R↑∞

R−1 max
0≤θ≤2π

lg
∣∣f(Reiθ

)∣∣ ≤ 0,

which, restricted to the line b = 0, belong to Z,
(e) Z0+ =

⋂
δ>0 Z

0δ,

(f) Z• = the span of (ia)d, d = 0, 1, 2, etc.,
∫
a2dΔ < ∞,

(g) Z−∞ =
⋂

t<0 Z
−∞ t.

Z−∞∞ = Z since f ∈ Z implies fΔ ∈ L1(R1), and in that case fΔ = 0 if
∫
fΔe(−iat) =

0 (t ∈ R1); the functions f ∈ Z• are of 0 (minimal) exponential type, so-called.

1Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
2Supported in part by the Office of Naval Research and in part by the National Science Foundation,

GP-149. Massachusetts Institute of Technology.
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Z• is either dense in Z or a closed subspace of Z; the second alternative holds in the case
of a Hardy weight : ∫

lgΔ

1 + a2
> −∞,

and under this condition

Z− ⊃ Z+/− ⊃ Z− ∩ Z+ ⊃ Z0+ = Z• ⊃ Z•.

Given a Hardy weight Δ, the problem is to decide if some or all of the above subspaces
coincide; for instance, as it turns out, Z+/− = Z• if and only if Δ−1 = |f |2 with f entire of
minimal exponential type, while Z• = Z0+ for the most general Hardy weight.

Z �= Z− in the Hardy case, while in the non-Hardy case Z = Z− ∩ Z+ = Z−∞, and, if
Δ ∈↓ also, then Z = Z0+ too. (Δ ∈↓ means that Δ(a) ≥ Δ(b) for 0 ≤ a < b.)

Z+/− and Z0+ receive special attention below for reasons explained in the next part of
the introduction.

S. N. Bernstein’s problem of finding conditions on a weight Δ ≤ 1 so that each continuous
function f with lim|a|↑∞ |f |Δ = 0 should be close to a polynomial p in the sense that |f −p|Δ
be small, is similar to the problem of deciding if Z• = Z or not, and it turned out that S. N.
Mergelyan’s solution of Bernstein’s problem [10] and I. O. Hačatrjan’s amplification of it [5]
could be adapted to the present case.

13.1.2. Probabilistic Part. Δ da can be regarded as the spectral weight of a centered
Gaussian motion with sample paths t → x(t) ∈ R1, universal field B, probabilities P (B), and
expectations E(f):

E
[
x(s)x(t)

]
=

∫
eia(t−s)Δ.

Bring in the (real) Hilbert space Q which is the closed span of x(t) (t ∈ R1) under the

norm ‖f‖ = [E(f2)]
1
2 and map x(t) → e(iat) ∈ Z. Q is mapped 1:1 onto Z, inner products

being preserved, and with the notations Qcd = the span of x(t) (c ≤ t ≤ d) and Bcd = the
smallest Borel subfield of B measuring x(t) (c ≤ t ≤ d), a perfect correspondence is obtained
between

(a) Z−, Q− = Q−∞ 0, and B− = B−∞ 0 = the past,
(b) Z+, Q+ = Q0∞, and B+ = B0∞ = the future,
(c) Z+/−, the projection Q+/− of Q+ onto Q−, and B+/− = the smallest

splitting field of past and future,
(d) Z0+, Q0+ =

⋂
δ>0 Q

0δ, and B0+ =
⋂

δ>0 B
0δ = the germ,

(e) Z•, Q• = the span of x(d)(0), d = 0, 1, 2, etc., E[x(d)(0)2] < ∞, and the associated
field B•,

(f) Z−∞, Q−∞ =
⋂

t<0 Q
−∞ t, and B−∞ =

⋂
t<0 B

−∞ t = the distant past.

B−, B+, B0+, etc. do not just include the fields of Q−, Q+, Q0+, etc., but for instance, if f ∈ Q
is measurable over B0+, then it belongs to Q0+; the proof of this fact and its analogues is
facilitated by use of the lemma of Tutubalin-Frěıdlin [11]: if the field A is part of the smallest
Borel field containing the fields of B and C and if C is independent of A and B then A ⊂ B.

B+/− (= the splitting field) needs some explanation. Given a pair of fields such as B−

(= the past) and B+ (= the future), a field A ⊂ B− is said to be a splitting field of B− and
B+, if, conditional on A, B+ is independent of B−. B− is a splitting field, and as is not hard
to prove, a smallest splitting field exists, coinciding in the present (Gaussian) case with the
field of the projection Q+/− (see H. P. McKean, Jr. [9] for the proof). B+/− and so also Z+/−

is a measure of the dependence of the future on the past.
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Because Z• = Z0+ for a Hardy weight, the condition Δ−1 = |f |2 (f entire of minimal
exponential type) for Z+/− = Z• is equivalent in the Hardy case to the condition that the
motion split over its germ (B+/− = B0+); this is the principal result of this paper from a
probabilistic standpoint. Tutubalin-Frěıdlin’s result [11] that if Δ ≥ |a|−d as |a| ↑ ∞ for some
d ≥ 2 then B0+ = B•, is the sole fact about B0+ that has been published to our knowledge.

13.2. Hardy Functions

An even Hardy weight Δ can be expressed as Δ = |h|2, h belonging to the Hardy class
H2+ of functions h = h(γ) (γ = a+ ib) regular in the half plane (b > 0) with h∗(−a) = h(a)
and

∫ |h(a+ ib)|2 da bounded (b > 0); such a Hardy function satisfies

lim
b↓0

∫ ∣∣h(a+ ib)− h(a)
∣∣2 da=0 and

∫ ∣∣h(a+ ib)
∣∣2 da≤

∫ ∣∣h(a)∣∣2 da (b > 0).

Hardy functions can also be described as the (regular) extensions into b > 0 of the Fourier
transforms of functions belonging to L2(R1, dt) vanishing on the left half line (t ≤ 0). Accord-
ing to Beurling’s nomenclature, each Hardy function comes in two pieces: an outer factor o
with

lg
∣∣o(γ)∣∣ = 1

π

∫
b

(c− a)2 + b2
lg
∣∣h(c)∣∣dc (γ = a+ ib)

and an inner factor j with∣∣j(γ)∣∣ ≤ 1 (b > 0),
∣∣j(γ)∣∣ = 1 (b = 0);

the complete formula for the outer factor of h is

o(γ) = e

[
1

πi

∫
γc− 1

γ + c
lg
∣∣h(c)∣∣ dc

1 + c2

]
.

Z+h = H2+, i.e., e(iγt)h (t ≥ 0) spans out the whole of H2+, if and only if h is outer. H2−

stands for the analogous Hardy class for b < 0. L2(R1, da) is the (perpendicular) direct sum
of H2− and H2+. Hardy classes H1± are defined in the same manner except that now it is∫ |h(a+ ib)|da that is to be bounded. H1+ can be described as those functions h belonging to
L1(R1, da) with

∫
e(−iat)h da = 0 (t ≤ 0); it is characteristic of the moduli of such functions

that
∫
lg |h|/(1 + a2) > −∞ (see [7] for proofs and additional information).

13.3. Discussion of Z− ⊃ Z+/− ⊃ Z− ∩ Z+

Given Δ as in Sect. 13.1.1, Hardy or not, the inclusions Z ⊃ Z− ⊃ Z+/− ⊃ Z− ∩Z+ are
obvious, so the problem is to decide in what circumstances some or all of the above subspaces
coincide. As it happens,

(a) either ∫
lgΔ/

(
1 + a2

)
= −∞ and Z = Z− ∩ Z+ = Z−∞

or ∫
lg Δ/

(
1 + a2

)
> −∞ and Z �= Z− �= Z− ∩ Z+;

in the second (Hardy) case,
∫
lg Δ/(1+ a2) > −∞, Δ = |h|2 with h outer belonging

to H2+, and the following statements hold:
(b) Z− �= Z+/− if and only if i = h/h∗, restricted to the line, coincides with the ratio

of 2 inner functions,
(c) Z+/− = Z− ∩ Z+ if and only if i = h/h∗, restricted to the line, coincides with an

inner function.
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(a) goes back to Szegö; the rest is new.

Proof of (a) adapted from [7]. Z �= Z− implies that for the coprojection f of e(ias)
upon Z−, fΔ �= 0 for some s > 0. Because the projection belongs to Z−, e(−ias)fe(iat) ∈ Z−

(t ≤ 0) and so is perpendicular (in Z) to f ; also, f is perpendicular to e(iat) (t ≤ 0), so∫
eias|f |2Δe−iatda =

∫
fΔe−tatda = 0 (t ≤ 0).

But in view of
∫ |f |Δ ≤ ‖f‖Δ(

∫
Δ)

1
2 < ∞, it follows that fΔ belongs to

the Hardy class H1+, whence
∫
lg(|f |Δ)/(1 + a2) > −∞. But also

∫
lg(|f |2Δ)/

(1 + a2) < ∞ since f ∈ Z, and so
∫
lg Δ/(1 + a2) > −∞, as stated. On the other

hand,
∫
lgΔ/(1 + a2) > −∞ implies Δ = |h|2 with h outer belonging to H2+, and Z �= Z−

follows: indeed, since Δ is even, h∗(−a) = h(a), and since h2 ∈ H1+,∫
e−iath2 da =

∫
e−iatiΔ da = 0 (t ≤ 0)

(
i = h/h∗),

stating that i ∈ Z is perpendicular to Z−. Z− �= Z−∩Z+ follows, since, in the opposite case,
Z− ⊂ Z+ so that Z+ = Z and hence also Z− = Z, against the fact that Δ is a Hardy weight.
Z−∞ =

⋂
t<0 Z

−∞ t = Z follows in the non-Hardy case. �

Proof of (b). Given
∫
lgΔ/(1 + a2) > −∞, let Δ = |h|2 with h outer as before and

prepare three simple lemmas.
Z+h = H2+ since h is outer as stated in 2.
Z−h = iH2− because Z−h∗ = (Z+h)∗ = (H2+)∗ = H2−.
Z+/−h = ipi−1H2+, p being the projection in L2(R1) upon H2−; indeed, ipi−1 is a

projection and coincides with the identity just on iH2−.
Coming to the actual proof of (b), if the inclusion Z− ⊃ Z+/− is proper, then Z−h = iH2−

contains a function f = i(j2o2)
∗ perpendicular to Z+/−h = ipi−1H2+, j2 being an inner and

o2 ∈ H2+ an outer function. Because ipi−1 = 1 on iH2−, it follows that f is perpendicular
in L2(R1) to H2+, so f ∈ H2−, i.e., f = (j1o1)

∗, j1 being an inner and o1 ∈ H2+ an outer
function; in brief, i(j2o2)

∗ = (j1o1)
∗. Because |o1| = |o2| on the line b = 0, the outer factors

can be cancelled, proving that i = j2/j1. On the other hand, if i = j2/j1, then f = i(j2h)
∗ �= 0

belongs to iH2− = Z−h. Also f = (j1h)
∗ ∈ H2− so that f is perpendicular in L2(R1) to

H2+, and since f ∈ iH2−, it must be perpendicular to ipi−H2+ = Z+/−h also. Z− �= Z+/−

follows, completing the proof. �

Proof of (c). Z− �= Z− ∩ Z+ in the Hardy case, so if Z+/− = Z− ∩ Z+, then Z− �=
Z+/−, and according to (b), i = h/h∗ is a ratio j2/j1 of inner functions with no common factor.
f ∈ Z−h = iH2− is perpendicular in L2(R1) to Z+/−h = ipi−1H2+ if and only if i−1f ∈
H2− is perpendicular to pi−1H2+, or, and this is the same, to i−1H2+, and so, computing
annihilators in iH2−, (Z+/−h)0 = iH2− ∩H2−. Now f ∈ iH2− ∩ H2− can be expressed as
(j2/ji)j

∗
3o

∗
3 = j∗4o

∗
4 and the outer factors have to match, so j2j4 = j1j3, and since j1 and

j2 have no common factors, j1 divides j4 [1, page 246] and f ∈ iH2− ∩ (1/j1)H
2−. Because

j∗1H
2− ⊂ H2−, Z+/−h can now be identified as [iH2− ∩ (1/j1)H

2−]0 = iH2− ∩ (1/j1)H
2+,

the annihilator being computed in iH2−; this is because (1/j1)H
2− = ij∗2H

2− ⊂ iH2−

and (1/j1)H
2− ⊕ iH2− ∩ (1/j1)H

2+ is a perpendicular splitting of iH2−. But according
to this identification, if Z+/− = Z− ∩ Z+, then i(j1h)

∗ = (1/j1)h ∈ Z+/−h ⊂ Z+h = H2+,
and h being outer, it follows that j1 has to be constant, completing half the proof; the
opposite implication is obvious using the above identification of Z+/−h in conjunction with
(Z− ∩ Z+)h = iH2− ∩H2+. �
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Example 13.3.1. h = (1 − iγ)−3/2 is outer belonging to H2+ and Z− = Z+/−; indeed,
[(1 + iγ)/(1 − iγ)]3/2 = j2/j1 would mean that j21 [(1 + iγ)/(1 − iγ)]3 = j22 , and this would
make j22 have a root of odd degree at γ = i.

An outer function h belonging to H2+ is determined by its phase factor i = h/h∗ if and
only if dimZ− ∩ Z+ = 1; indeed, if dimZ− ∩ Z+ = 1 and if o is an outer function belonging
to H2+ with o/o∗ = i, then o ∈ iH2− ∩ H2+ = Z− ∩ Z+h and, as such, is a multiple of h.
On the other hand, if o/o∗ = i implies o = constant× h, then dimZ− ∩ Z+ = 1 because if o
is the outer factor of f ∈ Z− ∩Z+h = iH2− ∩H2+, then o/o∗ = i/j with j an inner multiple
of the inner factor of f . (j + 1)o is outer [7, page 76], and since (j + 1)o/(j + 1)∗o∗ = i, it is
a multiple of h. i(j − 1)o is likewise a multiple of h, and so o itself is a multiple of h, j = 1,
and f too is a multiple of h.

13.4. Discussion of Z•

Before proving the rest of the inclusions Z−∩Z+ ⊃ Z0+ ⊃ Z• ⊃ Z•, Mergelyan’s solution
of Bernstein’s problem and his proof also, is adapted to the present needs.

Given Δ, Hardy or not, let Z• = Z•
Δ be the class of entire functions f of minimal

exponential type which, restricted to b = 0, belong to Z, let Δ+ = Δ(1 + a2)−1, suppose∫
Δ+ = 1, and putting

σ•(γ) = the least upper bound of
∣∣f(γ)∣∣ : f ∈ Z•

Δ+ , ‖f‖Δ+ ≤ 1,

let us check that the following alternative holds:

either σ• ≡ ∞(b �= 0),

sup

∫
lg+ |f |
1 + a2

=

∫
lg σ•

1 + a2
= ∞, for f ∈ Z•

Δ+ with ‖f‖Δ+ ≤ 1,

and Z• is dense in Z,

or lg σ• is a continuous, non-negative, subharmonic function,∫
lg σ•

1 + a2
< ∞,

lg σ•(γ) ≤ 1

π

∫
b

(c− a)2 + b2
lg σ•(c)dc (γ = a+ ib, b > 0),

lim
R↑∞

R−1 max
0≤θ<2π

lg σ•(Reiθ
) ≤ 0,

and Z• is a closed subspace of Z;

the second alternative must hold in the case of a Hardy weight as will be proved in Sect. 13.6.2.
Because (f(γ∗))∗ = f(−γ) ∈ Z• if f ∈ Z•,

σ•(γ) = σ•(γ∗) = σ•(−γ);

this fact is used without additional comment below.
Break up the proof into simple lemmas.

(a) σ•(γ) ≡ ∞ (b �= 0) if and only if Z• is dense in Z.

Proof of (a). σ•(β) = ∞(β = a+ ib, b �= 0) implies that f ∈ Z•
Δ+ can be found with

‖f‖Δ+ ≤ 1, |f(β)| > δ−1, and hence∥∥∥∥ 1

c− β
+

f − f(β)

(c− β)f(β)

∥∥∥∥
Δ

=

∥∥∥∥ f

(c− β)f(β)

∥∥∥∥
Δ

≤ ∣∣f(β)∣∣−1
∥∥∥∥ c− i

c− β

∥∥∥∥
∞
‖f‖Δ+

< constant× δ.
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Breaking up [f − f(β)]/(γ − β)f(β) into the sum of its odd and even parts f1 and f2 and
then into the sum (with coefficients of modulus 1) of four pieces:

f11=
1

2

(
f1 + f∗

1

)
, f12=

i

2

(
f1 − f∗

1

)
, f21=

i

2

(
f2 + f∗

2

)
, f22=

1

2

(
f2 − f∗

2

)
,

each of which belongs to Z•
Δ, it follows that if g ∈ Z is perpendicular to Z•

Δ, then
∫
gΔ/

(c− β) = 0 (β = a+ ib, b �= 0), whence∫
b

(c− a)2 + b2
gΔ dc = 0 (b > 0),

and gΔ = 0 as desired. On the other hand, if Z•
Δ is dense in Z, then it is possible to find an

entire function f of minimal exponential type with ‖1/(c− β)− f‖Δ < δ (β = a+ ib, b �= 0).
Bring in an entire function g with [g − g(β)]/(γ − β)g(β) = −f ; then

δ >

∥∥∥∥ g

(c− β)g(β)

∥∥∥∥
Δ

≥ a positive constant depending upon β alone× ‖g‖Δ+∣∣g(β)∣∣ ,
and so ∣∣g(β)∣∣ > constant× δ−1‖g‖Δ+ .

g is now split into the sum (with coefficients of modulus 1) of four members g11, g12, g21, g22
of Z•

Δ+ , and it develops that

constant× δ−1‖g‖Δ+ <
∣∣g(β)∣∣ ≤ ∣∣g11(β)∣∣+ ∣∣g12(β)∣∣+ ∣∣g21(β)∣∣+ ∣∣g22(β)∣∣

≤ σ•(β)
(‖g11‖Δ+ + ‖g12‖Δ+ + ‖g21‖Δ+ + ‖g22‖Δ+

)

≤ 2σ•(‖g1‖Δ+ + ‖g2‖Δ+

) ≤ 2
√
2σ•(‖g1‖2Δ+ + ‖g2‖2Δ+

) 1
2

= 2
√
2σ•‖g‖Δ+,

making use of
∫
g∗1g2Δ

+ = 0. But since δ can be made small, σ•(β) is in fact = ∞. �

(b) Z• dense in Z implies

sup

∫
lg+ |f |
1 + a2

=

∫
lg σ•

1 + a2
= ∞, for f ∈ Z•

Δ+ with ‖f‖Δ+ ≤ 1.

Proof of (b). Given f ∈ Z•
Δ+ , if β = a+ ib (b > 0), then

lg
∣∣f(β)∣∣ ≤ 1

π

∫
b

(c− a)2 + b2
lg+

∣∣f(c)∣∣dc
as follows from Nevanlinna’s theorem [2, 1.2.3] on letting R ↑ ∞ and using

lim
R↑∞

R−1 max
0≤θ<2π

lg
∣∣f(Reiθ

)∣∣ ≤ 0.

Now apply (a). �

(c) lg σ•(β) ≤ 1
π

∫
b

(c−a)2+b2 lg σ
•(c)dc (β = a+ ib, b > 0).

Proof of (c). Obvious from (b). �

(d) Z• non-dense implies that σ• is bounded in the neighborhood of each point β = a+
ib (b > 0); in fact, if Z• is non-dense lg σ• is a non-negative continuous subharmonic
function (b �= 0).
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Proof of (d). Given β = a + ib (b > 0) and a point α near it, take g ∈ Z•
Δ+ with

‖g‖Δ+ ≤ 1 and |g(α)| close to σ•(α), and let f = 1 + [(γ − β)/(γ − α)][(g − g(α))/
g(α)], observing that f need not belong to Z•

Δ+ since f∗(−a) = f(a) can fail.

‖f‖Δ+ =

∥∥∥∥β − α

c− α
− β − α

c− α

g

g(α)
+

g

g(α)

∥∥∥∥
Δ+

≤
∥∥∥∥β − α

c− α

∥∥∥∥
∞

(
1 +

∣∣g(α)∣∣−1
)
+
∣∣g(α)∣∣−1

,

and so, as in the second part of the proof of (a),

1 =
∣∣f(β)∣∣ ≤ 2

√
2σ•(β)‖f‖Δ+

≤ 2
√
2σ•(β)

[∥∥∥∥β − α

c− α

∥∥∥∥
∞

(
1 +

∣∣g(α)∣∣−1
)
+
∣∣g(α)∣∣−1

]
,

proving that σ•(α) is bounded on a neighborhood of β if σ•(β) < ∞. Because 1 ∈ Z•
Δ+ ,

σ• ≥ 1 (
∫
Δ+ = 1 is used at this place), so lg σ• ≥ 0, and since lg |f | is subharmonic for

each f ∈ Z•
Δ+ , lg σ• is also subharmonic. But now it follows that if σ•(β) = ∞ at one point

β = a+ ib (b > 0), then it is also ∞ at some point of each punctured neighborhood of β, and
arguing as in the first part of the proof of (a) with f perpendicular to Z•

Δ,
∫
fΔ/(c− α)dc is

found to vanish at some point of each punctured neighborhood of β and hence to be ≡ 0. Z•

dense in Z follows as before, so Z• non-dense implies the (local) boundedness of σ•. It remains
to prove that σ• is continuous (b �= 0). On a small neighborhood of α = a+ ib, |f | (f ∈ Z•

Δ+)
lies under a universal bound, σ•. An application of Cauchy’s formula implies that |f ′| lies
under a universal bound on a smaller neighborhood of α, and so |f(β2)− f(β1)| lies under a
universal constant B times |β2 − β1| as β1 and β2 range over this smaller neighborhood. But
then ∣∣f(β2

)∣∣ ≤ ∣∣f(β1

)∣∣+B
∣∣β2 − β1

∣∣ < σ•(β1

)
+B

∣∣β2 − β1

∣∣,
so that

σ•(β2

) ≤ σ•(β1

)
+B

∣∣β2 − β1

∣∣,
and interchanging the roles of β1 and β2 completes the proof of (d). �

(e) Z• non-dense implies
∫
lg+ |f |/(1 + a2) ≤ ∫

lg σ•/(1 + a2) < ∞.

Proof of (e). Z• non-dense implies the existence of g ∈ Z perpendicular to Z•
Δ, and

since, if f ∈ Z•
Δ+ , (f − f(β))/(γ − β) is the sum (with coefficients of modulus 1) of four

members of Z•
Δ, ∫

g∗f
c− β

Δ =

∫
g∗Δ
c− β

f(β) ≡ ĝf
(
f ∈ Z•

Δ+ , b �= 0
)
.

Because ĝ is regular and bounded (b ≥ 1),
∫
lg |ĝ(a+ i)|/(1 + a2) > −∞; also

∣∣ĝf(a+ i)
∣∣ ≤ ‖g‖Δ‖f‖Δ+

∥∥∥∥ c− i

c− a− i

∥∥∥∥
∞
,

so that σ•(a+ i) ≤ constant× (1 + a2)
1
2 |ĝ(a+ i)|−1 and

∫
lg σ•(a+ i)/(1 + a2) < ∞. But as

in the proof of (b),

lg
∣∣f(a)∣∣ ≤ 1

π

∫
lg σ•(c+ i)

(c− a)2 + 1
dc

(
f ∈ Z•

Δ+

)
,
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and so ∫
lg σ•(a)
1 + a2

da ≤
∫

lg σ•(c+ i)dc
1

π

∫
da

1 + a2
1

(c− a)2 + 1

= 2

∫
lg σ•(c+ i)

c2 + 4
dc < ∞,

as stated. �

(f) If Z• is non-dense in Z then it is a closed subspace of Z and

lim
R↑∞

R−1 max
0≤θ<2π

lg σ•(Reiθ
) ≤ 0.

Proof of (f).

R−1 lg σ•(Reiθ
) ≤ 1

π

∫
sin θ(1 + c2)

(c−R cos θ)2 +R2 sin2 θ

lg σ•

1 + c2
dc (0 < θ < π)

according to (d). A simple estimate, combined with σ•(γ) = σ•(γ∗) verifies

lim
R↑∞

R−1 lg σ•(Reiθ
) ≤ 0 (θ = π/4, 3π/4, 5π/4, 7π/4).

Phragmén-Lindelöf is now applied to each of the sectors between π/4, 3π/4, 5π/4, 7π/4; for
instance, in the sector [π/4, 3π/4], each f ∈ Z•

Δ+ with ‖f‖Δ+ ≤ 1 satisfies∣∣∣f(γ)eiγ2 1
2 δ
∣∣∣ ≤ ∣∣f(Reiθ

)∣∣e−Rδ ≤ A (π/4 ≤ θ ≤ 3π/4)

∣∣∣f(γ)eiγ2 1
2 δ
∣∣∣ ≤ σ•(Reiθ

)
e−Rδ ≤ B (θ = π/4, 3π/4)

with a constant B not depending upon f , and so∣∣∣f(γ)eiγ(2δ) 1
2

∣∣∣ ≤ B (π/4 ≤ θ ≤ 3π/4),

or

σ•(Reiθ
) ≤ BeR(2δ)

1
2 (π/4 ≤ θ ≤ 3π/4).

Z• closed follows since |f | (f ∈ Z•
Δ) lies under a universal bound (σ•) on any bounded region

of the plane.
Mergelyan’s alternative is now proved; several additional comments follow.
Given f ∈ Z•

Δ+ , (γ + i)−1fh ∈ H2+ while (γ + i)−1 ∈ H2+ is an outer function, so that

lg
∣∣fh(i)∣∣2 ≤ 1

π

∫
lg
∣∣(c+ i)−1fh

∣∣2
1 + c2

+
1

π

∫
lg |c+ i|2
1 + c2

=
1

π

∫
lg |fh|2
1 + c2

≤ lg

(
1

π

∫ |f |2Δ
1 + c2

)
= lg

(
1

π
‖f‖2Δ+

)
,

and so π
1
2σ•(i) ≤ |h(i)|−1. Now it is proved that this upper bound is attained if and only if

h−1 is entire of minimal exponential type. Using the compactness that

lim
R↑∞

R−1 max
0≤θ<2π

lg σ•(Reiθ
) ≤ 0

ensures, it is possible to choose f ∈ Z•
Δ+ with f(i) = σ•(i) and ‖f‖Δ+ = 1. As before,

∣∣fh(i)∣∣2 ≤ e

[
1

π

∫
lg |f |2Δ
1 + a2

]
≤ 1

π

∫ |f |2Δ
1 + a2

=
1

π
,
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so if π
1
2 σ•(i) = |h(i)|−1, then the converse of Jensen’s inequality implies that fh is constant;

the other implication is trivial.
σ•(i) can also be computed from a Szegö minimum problem:

1

σ•(i)2
= inf

|1− f |2Δ
1 + a2

, for f ∈ Z•
Δ+ with f(i) = 0,

as the reader can easily check.
Because of the compactness of Z• used above, it is possible in the non-dense case to find

f = fγ ∈ Z•
Δ+ with f(γ) = σ•(γ) and ‖f‖Δ+ = 1. fγ is unique and is perpendicular (in Z•

Δ+)
to each f ∈ Z•

Δ+ vanishing at γ. fα(β)σ
•(α) acts as a Bergman reproducing kernel for Z•

Δ+

since ∫
f∗
α

[
f − f(α)

]
Δ+ = 0

(
f ∈ Z•

Δ+

)

implies ∫
f∗
αfΔ

+ = f(α)

∫
f∗
αΔ

+ =
f(α)

σ•(α)

∫ ∣∣fα∣∣2Δ+ =
f(α)

σ•(α)
. �

13.5. Proof of Z• ⊂ Z0+ (Δ Hardy or Not)

To begin with, each f ∈ Z• can be split into an even part f1 = 1
2 [f(γ)+f(−γ)] ∈ Z• and

an odd part f2 ∈ Z•; the proof is carried out for an even function f ∈ Z• with Hadamard
factorization

f(γ) = γ2m
∞∏
n=1

(
1− γ2

γ2
n

)
,

the odd case being left to the reader. A simple estimate justifies us in ignoring the root of f at
γ = 0; indeed fδ = δ2m(1 − γ2/δ2)mf/γ2m is an even entire function of minimal exponential
type, |fδ/f | tends to 1 as |γ| ↑ ∞ so that fδ ∈ Z•, and ‖fδ − f‖Δ tends to 0 as δ ↓ 0 so that
if fδ ∈ Z0+ then so does f .

Bring in the function

g(γ) =
∏

|γn|<d

(
1− γ2

γ2
n

) ∏
n>dδ

(
1− γ2δ2

n2

)
,

depending upon a small positive number δ and a large integral number d. Given δ > 0, ε > 0,
and A < ∞, it is possible to find d1 = d1(δ, ε, A) and a universal constant B so that for each
d ≥ d1,

(a) |f − g| < ε (|a| < A)
(b) |g| < B|f | (A ≤ |a| < d/2)
(c) |g| < B (|a| ≥ d/2)
(d) g ∈ L2(R1).

It is best to postpone the proof of (a), (b), (c), (d) and to proceed at once to the

Proof that f ∈ Z0+
. Using (a), (b), (c) above,

‖f − g‖2Δ < ε2
∫

Δ+ 2(B + 1)2
∫ d/2

A

|f |2Δ+ 2

∫
d/2

(
B + |f |)2Δ

tends to 0 as d ↑ ∞, A ↑ ∞, and ε ↓ 0 in that order. Because the entire function g differs
from sinπδγ by a rational factor and, as such, is of exponential type πδ, it follows from (d)
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in conjunction with the Paley-Wiener theorem that

g(α) =

∫
|t|<πδ

eiatĝ(t)dt with

∫
|t|<πδ

|ĝ|2dt < ∞.

But
∫
|t|<πδ e

iatĝ dt ∈ Z |t|≤πδ, as is obvious upon noting the bound

∥∥∥∥
∫
|t|<πδ

eiatĝ dt

∥∥∥∥
2

Δ

≤ 2πδ

∫
|t|<πδ

|ĝ|2
∫

Δ

and so f ∈ ⋂
δ>0 Z

|t|<πδ = Z0+ (see Sect. 13.6.1). �

Coming to the proof of (a), (b), (c), (d) above, it is convenient to introduce

p(γ) = pm(γ) = πγ
m∏

n=1

(
1− γ2

n2

)

and to check the existence of a universal constant B such that Q ≡ | sin(πa)/
p(a)| is bounded as in

(e) Q/B <

⎧⎪⎨
⎪⎩
e−a2/m |a| < m

e−a/2 m ≤ |a| < 2m

e−m−2m lg(a/m) |a| ≥ 2m.

Proof of (e). Q =
∏

n>m (1 − a2/n2) for |a| < m, and since 1 − c ≤ e(−c), Q <

e(−a2/(m+1)). Stirling’s approximation is now used to estimate p below for |a| ≥ m, removing
first a factor a −m in case m ≤ |a| < m + 1

2 , and then | sinπα| is estimated above by 1 on
this range. On the other hand, if m is the biggest integer < dδ and if |a| < d/2, then δ|a| < m
so that the first appraisal listed under (e) supplies us with the bound

Q(aδ) =
∏
n>dδ

(
1− a2δ2/n2

)
< Be−a2δ2/(m+1) < Be−a2δ/2d,

and it follows that

B
∣∣f(a)∣∣ > ∏

|γn|<d

∣∣∣∣1− a2

γ2
n

∣∣∣∣
∏
n>dδ

(
1− a2δ2

n2

)
= |g|,

as desired. �

Proof of (c) and (d). Let #(R) be the number of n’s with |γn| < R. On the range
|a| ≥ d/2,

lg
∏

|γn|<d

∣∣∣∣1− a2

γ2
n

∣∣∣∣ ≤
∫ d

0

lg

(
1 +

a2

R2

)
d#(R)

= #(d) lg

(
1 +

a2

d2

)
+

∫ d

0

2a2

a2 +R2

#

R
dR

≤ 2#(d) lg
(
3|a|/d)+ 2

∫ d

0

#

R
dR

= o
[
d+ d lg

(|a|/d)]
for large d, while according to (e), if |a| ≥ d/2 and if m is the biggest integer < dδ, then

Q(aδ) < Be

[
− 1

2
dδ
(
1 + lg(a/d)

)]
.
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But then |g| < B for large d as stated in (c), while for d > 8/δ

|g| < Be

[
− 1

4
dδ
(
1 + lg(a/d)

)] (|a| > d/2
)
.

But for still larger d, dδ(1 + lg(a/d)) − 8 lg a > 0 for a > d/2, since the left side is positive
at a = d/2 and increasing for a > d/2. Thus

|g| < B/a2
(|a| > d/2

)

so that g ∈ L2(R1) as stated in (d). �

13.6.

13.6.1. Proof of Z− ∩ Z+ ⊃ Z0+ (Δ Hardy or Not). Given f ∈ Z0+ ⊂ Z+, then
e(−iaδ)f ∈ Z−δ0 ⊂ Z−, and

∥∥(e−iaδ − 1
)
f
∥∥
Δ
≤ max

|a|≤n

∣∣e−iaδ − 1
∣∣‖f‖Δ + 2

(∫
|a|>n

|f |2Δ
) 1

2

≤ nδ‖f‖Δ + 2

(∫
|a|>n

|f |2Δ
) 1

2

is small for δ = n−2 and n ↑ ∞, so that f ∈ Z− also. Our proof justifies

Z0+ =
⋂
δ<0

Zδ0 =
⋂
δ>0

Z |t|<δ;

this fact will be used without additional comment below.

13.6.2. Proof of Z0+ = Z• (Δ Hardy). Z0+ ⊂ Z• is proved next for a Hardy weight
Δ. Combined with the previous result Z0+ ⊃ Z•, this gives Z0+ = Z•.

Given f ∈ Z0+, it is possible to find a finite sum

fn =
∑

cnke
(
iγ tnk

)
with 0 ≤ tnk < 1/n,

∥∥f − fn
∥∥
Δ
< 1/n,

and hence
∥∥fn∥∥Δ < 1/n+ ‖f‖Δ ≤ 1 + ‖f‖Δ.

Phragmén-Lindelöf is now applied to obtain bounds on |fn|. Because |fn| is bounded (b ≥ 0)
and fn is entire, fnh ∈ H2+, so∫ ∣∣fnh(a+ ib)

∣∣2 da ≤
∫ ∣∣fn∣∣2Δ

is bounded (b > 0, n ≥ 1), and an application of Cauchy’s formula to a ring supplies us with
the bound

∣∣fnh∣∣ ≤ B1 (b ≥ 1, n ≥ 1).

Also, |e(−iγ/n)fn| is bounded (b < 0), so

∣∣e−iγ/nfnh
∗∣∣ ≤ B2 (b ≤ −1, n ≥ 1)
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with a similar proof. Next, the underestimate

π lg
∣∣h(a+ ib)

∣∣ = π lg
∣∣h∗(a− ib)

∣∣

≥
∫

b lg− |h|
(c− a)2 + b2

dc ≥ B3(1 + a2)

∫
lg− |h|
1 + c2

dc

≥ B4

∣∣e−B5γ
2∣∣ (

1 ≤ b ≤ 2, B4 > 0
)

justifies the bound∣∣gn∣∣ ≤ B6 for 1 ≤ b ≤ 2, n ≥ 1 with gn ≡ e
(−B5γ

2
)
fn.

Because |gn| tends to 0 at the ends of the strip |b| ≤ 2, it is bounded (≤ B6) in the
whole strip according to the maximum modulus principle. In particular, |fn| ≤ B7 on the
disc |γ| ≤ 2. A second underestimate of |h| is obtained from the Poisson integral for lg |h|:
limR↑∞ R−1 lg |h(Reiθ)| = 0 (θ = π/4, 3π/4), and it follows from the resulting bound∣∣fn∣∣ ≤ B8e

δR (R ≥ 1, θ = π/4, 3π/4)

and its companion ∣∣e−iγ/nfn
∣∣ ≤ B9e

δR (R ≥ 1, θ = 5π/4, 7π/4)

combined with an application of Phragmén-Lindelöf to each of the four sectors between
π/4, 3π/4, 5π/4, 7π/4, that ∣∣fn∣∣ ≤ B10e

(δ+1/n)R.

But now it is legitimate to suppose that as n ↑ ∞, fn tends on the whole plane to an entire
function f∞; moreover, this function is specified on the line b = 0 since ‖fn−f‖Δ tends to 0 as
n ↑ ∞. Accordingly, the entire function f∞ is an extension of f , and since |f∞| ≤ B10e(δR),
it is clear that f ∈ Z•

Δ as desired.
If Δ is non-Hardy then it is possible for Z0+ to contain Z• properly. Indeed let Δ(a)

be even, non-increasing for a > 0, and non-Hardy. Then, as will be proved in Sect. 13.8,
Z0+ = Z �= Z•.

Δ non-Hardy does not ensure that Z• is dense in Z; in fact if
∫ 1

−1
lg Δ/

(1 + a2) = −∞ while Δ ≥ 1/a2 (|a| ≥ 1), then f ∈ Z• satisfies
∫ |f |2/(1 + a2) < ∞,

and a simple application of Phragmén-Lindelöf implies that f is constant; in short,
dimZ• = 1.

13.6.3. A Condition That Z− ∩ Z+ = Z• (Δ Hardy). Z− ∩ Z+ = Z• if Δ is a

Hardy weight and if
∫ +d

−d Δ−1 < ∞ (d < ∞).

Proof. The idea is that f ∈ Z− ∩ Z+ is regular for b �= 0 and can be continued across
b = 0 if Δ is not too small (see T. Carleman [3] for a similar argument).

Given f ∈ Z− ∩ Z+, then fh ∈ H+2, limb↓0 f(a+ ib) = f(a) except at a set of points of
Lebesgue measure 0 [7, page 123], and so the Lebesgue measure of

A ≡
(
a : sup

0≤b<δ

∣∣f(a+ ib)
∣∣ > ε−1, |a| < d

)

tends to 0 as δ and ε ↓ 0; it is to be proved that

sup
0≤b<δ

∫
A

∣∣f(a+ ib)
∣∣da



13.6 269

is small for small δ and ε for each d < ∞. Bring in the summable weight

B = Δ−1
(|c| ≤ 2d

)

=
(
1 + c2

)−1 (|c| > 2d
)
.

Then for large d,
(∫

A

∣∣f(a+ ib)
∣∣da

)2

≤
∫ ∣∣fh(a+ ib)

∣∣2 da
∫
A

[
Δ(a+ ib)

]−1
da

≤ ‖f‖2Δ
∫
A

da e

[
1

π

∫
|c|≤2d

b

(c− a)2 + b2
lg Δ−1 dc

]

× e

[
1

π

∫
|c|>2d

b

(c− a)2 + b2
lg Δ−1 dc

]

≤ 2‖f‖2Δ
∫
A

da e

[
1

π

∫
b

(c− a)2 + b2
lgB dc

]

and an application of Jensen’s inequality implies

sup
0≤b<δ

[∫
A

∣∣f(a+ ib)
∣∣da

]2
≤ 2‖f‖2Δ

∫
B dc sup

0≤b<δ

∫
A

b

(c− a)2 + b2
da

π

↓ 2‖f‖2Δ
∫

∩A
δ, ε>0

B dc = 0
(
δ, ε ↓ 0).

Using this appraisal, it follows that

lim
b↓0

∫ +d

−d

∣∣f(a+ ib)− f(a)
∣∣da = 0;

the analogous result for b < 0 follows from a similar appraisal. Choose c so that f(c + ib)
tends boundedly to f(c) as b ↓ 0 and define

g(γ) =

∫ a

c

f(ξ + ib)dξ + i

∫ b

0

f(c+ iη)dη (γ = a+ ib).

g is regular (b �= 0) since f ∈ Z− ∩ Z+ is such, it is continuous across b = 0 and hence
entire, so f = g′ is likewise entire, and all that remains to be proved is that f is of minimal
exponential type.

Because fh ∈ H2+,
∫ | lg |fh||/(1 + a2) < ∞, and since lg+ |f | ≤ lg+ |fh| − lg− |h|, the

integral
∫ | lg |f ||/(1 + a2) is also convergent; also, lg |fh| is smaller than its Poisson integral,

so

lg+
∣∣f(Reiθ

)∣∣ ≤ 1

π

∫
R sin θ lg+

∣∣f(c)∣∣dc
R2 − 2Rc cos θ + c2

(0 < θ < π),

lg |h| being expressible by its Poisson integral since h is an outer function. According to this
bound, ∫ π

0

lg+
∣∣f(Reiθ

)∣∣dθ ≤ 2

π

∫
0

lg+
∣∣f(c)∣∣ lg

∣∣∣∣R+ c

R− c

∣∣∣∣dcc
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and ∫ 2R

R

dR

∫ π

0

dθ lg+
∣∣f(Reiθ

)∣∣ ≤ 2

π

∫
0

lg+
∣∣f(c)∣∣dc

∫ 2R/c

R/c

lg

∣∣∣∣ t+ 1

t− 1

∣∣∣∣dt

< B1

(
1 +R2

) ∫
0

lg+
∣∣f(c)∣∣

1 + c2
,

as a simple appraisal justifies. A similar bound holds for lg+ |f | in the lower half plane b < 0,
so that ∫ 2R

R

dR

∫ 2π

0

dθ lg+
∣∣f(Reiθ

)∣∣ < B2

(
1 +R2

)
,

and it follows that between each large R and its double 2R can be found an R1 with∫ 2π

0

lg+
∣∣f(R1e

iθ
)∣∣dθ < 2B2R1.

An application of the Poisson-Jensen formula now supplies us with the bound

lg+ |f | < B3R
(
R ↑ ∞)

,

and a second application of the fact that lg+ |f | is smaller than its Poisson integral supplies
the additional information that

lim
R↑∞

R−1 lg+
∣∣f(Reiθ

)∣∣ ≤ 0 (θ = π/4, 3π/4, 5π/4, 7π/4).

Phragmén-Lindelöf is now applied to each of the four sectors between, with the result that

lim
R↑∞

R−1 max
0≤θ<2π

lg+
∣∣f(Reiθ

)∣∣ ≤ 0,

and the proof is complete. �
A second proof of Z0+ ⊂ Z• can be based on the above; indeed, if f ∈ Z0+ and if fn is

chosen as in Sect. 13.6.2, then∫ ∣∣(f − fn
)
h(a+ i)

∣∣2 da ≤ ∥∥f − fn
∥∥2
Δ
< 1/n2,

and so f(a+ i) ∈ Z0+
Δ(a+i) with Δ(a+ i) = |h(a+ i)|2. But Δ(a+ i) is positive and continuous,

so

Z0+
Δ(a+i) ⊂ Z−

Δ(a+i) ∩ Z+
Δ(a+i) = Z•

Δ(a+i),

proving that f(a+ i) is entire of minimal exponential type.

Z• �= Z− ∩ Z+ if, for instance,
∫ +1

−1
Δ/a2 < ∞; indeed in this case,

1

±ia+ δ
=

∫ ∞

0

e−δte±iatdt ∈ Z± (δ > 0),

while ∥∥∥∥ 1

ia± δ
− 1

ia

∥∥∥∥
2

Δ

≤ δ2
∫
|a|>1

Δ+

∫
|a|≤1

Δ

a2
δ2

a2 + δ2

tends to 0 as δ ↓ 0, so that 1/ia ∈ Z− ∩ Z+.

The Hardy weight Δ = a2e(−2|a|− 1
2 )/(1 + a4) illustrates the point that f ∈ Z− ∩ Z+

can be regular in the punctured plane but have an essential singular point at γ = 0. Define



13.6 271

f = γ−1 cos(1/γ
1
2 ); then fδ = f(γ + iδ) (δ > 0) is of modulus ≤ |a|−1e(1/|a| 12 ) on the line

so that ‖f − fδ‖Δ tends to 0 as δ ↓ 0, while, as an application of the Paley-Wiener theorem

justifies, fδ =
∫∞
0

e(iat)f̂δ(t)dt with f̂δ and tf̂δ ∈ L2[0,∞). f0+ = f ∈ Z+ follows and a

similar argument with δ < 0 proves that f ∈ Z− also.

13.6.4. A Condition That Genus Z• = 0 (Δ Hardy).

Each f ∈ Z• is of genus 0 and
∫
1 lg max0≤θ<2π |f(Reiθ)|/R2 < ∞ if∫

1 lg
− Δ(ib)/b2 > −∞ or, and this is the same, if

∫
1 lg

− Δ lg a/a2 > −∞.

Proof. To begin with,
∫
1
lg−Δ(ib)/b2 and

∫
1
lg− Δ(a) lg a/a2 converge and diverge to-

gether; indeed, since
∫
1
lg+ Δ(a) lg a/a2 ≤ ∫

1
Δ < ∞, the convergence of

∫
1
lg− Δ(a) lg a/a2

combined with the Poisson formula

lgΔ(ib) =
1

π

∫
b

a2 + b2
lgΔ(a)da,

leads at once to the bound∫
1

∣∣ lgΔ(ib)
∣∣

b2
≤ 1

π

∫ ∣∣ lg Δ(a)
∣∣da

∫
1

db

b
(
b2 + a2

) ,
the second integral converging, since∫

1

db

b
(
b2 + a2

) ∼
lg a

a2
(
a ↑ ∞)

.

On the other hand, if
∫
1 lg

− Δ(ib)/b2 > −∞, then
∫
1 lg

− Δ(a) lg a/a2 is not smaller than a
positive multiple of∫

1

lg−Δ(a)da
1

π

∫
1

db

b
(
b2 + a2

) ≥
∫
1

db

b2
1

π

∫
b

a2 + b2
lg− Δ(a)da

=

∫
1

db

b2

(
lg Δ(ib)− 1

π

∫
b

a2 + b2
lg+ Δ(a)da

)

≥
∫
1

lg−Δ(ib)/b2 − constant×
∫

lg+ Δ(a)>−∞.

Given
∫
1 lg

− Δ(ib)/b2 > −∞, if f ∈ Z•
Δ, then f is of genus 0 and∫

1

lg max
0≤θ<2π

∣∣f(Reiθ
)|/R2 < ∞;

indeed, since Δ(ib) is bounded (b ≥ 1),

Δo(b) = Δo(−b) = Δ(ib)/b2 (b > 1)

= 1 (0 ≤ b ≤ 1)

is a Hardy weight, and if f ∈ Z•
Δ, then |fh| is bounded (b ≥ 1), |fh∗| is bounded (b ≤ −1),

and
∫ |f(ib)|2Δodb < ∞, i.e., f(iγ) ∈ Z•

Δo. But then
∫
1 | lg |f(ib)‖/b2 < ∞, and combining

this with
∫
1
| lg |f(a)‖/a2 < ∞ and an application of Carleman’s theorem, one finds that the

sum of the reciprocals of the moduli of the roots of f has to converge [2, 2.3.14], i.e., that the
genus of f is 0. Because f+ = f + f∗ ∈ Z•

Δ satisfies∫
1

lg+
∣∣f+(ib)

∣∣b2 < ∞ and

∫
1

lg+
∣∣f+(a)

∣∣/a2 < ∞,
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it is of genus 0. It is also even, so
∫
1 lgmax0≤θ<2π |f+(Reiθ)|/R2 <∞ [2, 2.12.5]; the same

holds for f− = f − f∗ ∈ Z•
Δ since γf− is entire, even, and of genus 0, so

∫
1

lg max
0≤θ<2π

∣∣f(Reiθ
)∣∣/R2 < ∞,

as stated.∫
lg−Δ(ib)/b2 can diverge even though each f ∈ Z•

Δ is of genus 0, as can be seen from
the Hardy weight Δ:

ea
1
2 Δ = 1 on [0, 1) + [2, 3) + etc.

= e
[− a/ lg2(a+ 1)] on [1, 2) + [3, 4) + etc.

Δ is Hardy since (a lg2(a+ 1))−1 is summable, while

∫
1

lg−Δ lg a/a2 ≤
∑
d odd
d≥1

∫ d+1

d

(
a lg(a+ 1)

)−1
= −∞,

so that
∫
1 lg Δ(ib)/b2 = −∞. Given f ∈ Z•

Δ,

B1 = ‖f‖2Δ >

∫ 2d+1

2d

|f |2e−2a
1
2 > |f |2e−2a

1
2

at some point 2d ≤ a < 2d+ 1 (d ≥ 0), so an application of the Duffin-Schaeffer theorem [2,

10.5.1] applied to fe(−γ
1
2 ) on the half plane a ≥ 0 supplies us with the bound |f |e(−a

1
2 ) < B2

on the half line a ≥ 0. |f |e(|a| 12 ) < B3 on the left half line for similar reasons. Phragmén-

Lindelöf applied to fe(−(2γ)
1
2 e−iπ/4) on the half plane b ≥ 0 together with an analogous

argument on b > 0 supplies the bound |f | < B4e[(2R)
1
2 ] on the whole plane, and it follows

that f is of genus 0. �

13.6.5. Rational Weights.

dimZ+/− = d < ∞ if and only if Δ is a rational function of degree 2d.

See, for example, Hida [6] from whom the following proof is adapted.

Proof. dimZ+/− = d < ∞ implies Z+/− �= Z, so Δ is a Hardy weight and can be

expressed as |h|2 with h outer. Define the Fourier transform f̂(t) = (1/2π)
∫
e(−iat)f(a)da

and note that if i = h/h∗ and if p is the projection upon H2−, then Z+/−h = ipi−1H2+ is of
the same dimension d as

[
pi−1H2+

]̂
= span

[
pi−1eiath : t > 0

]̂

= span
[
peiath∗ : t > 0

]̂

= span
[(
eiath∗)̂k(s) : t > 0

]

= span
[
ĥ(t− s)k(s) : t > 0

]
,
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where k(s) is the indicator of s ≤ 0. [π−1H2+ ]̂ has a unit perpendicular basis f1, . . . , fd,

and ĥ(t− s) = c1(t)f1(s) + · · ·+ cd(t)fd(s) (s ≤ 0) with (real) coefficients c1, . . . , cd. Choose

g1, . . . , gd ∈ C∞(−∞, 0] vanishing near −∞ and 0 with det[
∫ 0

−∞ figj] �= 0; then

∑
i≤d

ci

∫ 0

−∞
figj ds =

∫ 0

−∞
ĥ(t− s)gj ds (j ≤ d, t > 0),

so that c1, . . . , cd ∈ C∞(0,∞), and it follows that ĥ ∈ C∞(0,∞) also. Given 0 < t0 < · · · < td,

a dependence with non-trivial (real) coefficients must prevail between ĥ(t0 − s), . . . , ĥ(td −
s) (s ≤ 0), and since ĥ ∈ C∞ (0,∞), it is possible to find a differential operator D with

constant (real) coefficients and degree ≤ d annihilating ĥ on the half line t > 0. But this

means that ĥ is a sum of ≤ d terms taebt
cos
sin

ct, the permissible a filling out a series 0, 1, 2,

etc., b < 0, and the trigonometrical factors either absent or both permissible. Δ rational of
degree ≤ 2d follows at once upon taking the inverse Fourier transform. On the other hand, if
Δ is rational of degree 2d, then it is a Hardy weight |h|2 with h outer, h is also rational (of

degree d), ĥ is a sum of terms taebt
cos
sin

ct, as above, the number of them coinciding with deg h

and the trigonometrical factors either absent or present in pairs, and dimZ+/− = d follows

from dim span[ĥ(t− s)i(s) : t > 0] = d. �
Δ rational of degree 2d implies that

(a) h = p0p1/p2, p0, p1, p2 being polynomials in iγ with roots on the line in the case of
p0 and in the open half plane b < 0 in the case of p1 and p2, and of degrees d0, d1,
d2 (= d) with d0 + d1 < d2,

(b) Z• = Z0+ = Z• = polynomials in iγ of degree < d2 − d1 − d0,
(c) Z− ∩ Z+ = 1/p0 × polynomials in iγ of degree < d2 − d1,
(d) Z+/− = 1/p0p

∗
1 × polynomials in iγ of degree < d2(= d),

esp.,
(e) Z• = Z− ∩ Z+ if and only if h has no roots on b = 0,
(f) Z− ∩ Z+ = Z+/− if and only if h has no roots in b < 0,
(g) Z+/− = Z− ∩ Z+ = Z• − Z0+ = Z• if and only if h has no roots at all.

Proof of (a). Obvious. �
Proof of (b). f ∈ Z− ∩ Z•

Δ implies
∫ |f |2/(1 + a2)d < ∞, and a simple application of

Phragmén-Lindelöf implies that f is a polynomial; the bound on its degree is obvious. �
Proof of (c). f ∈ Z− ∩ Z+ implies p0f ∈ Z−

Δo ∩ Z+
Δo (Δo = |p1/p2|2), and since Δo

is bounded from 0 on bounded intervals, p0f ∈ Z•
Δo (Sect. 13.6.3). But then p0f has to be a

polynomial as in the proof of (b) above, the bound on the degree of this polynomial is obvious,
and the rest of the proof is a routine application of Z− ∩Z+h = iH2− ∩H2+ (i = h/h∗). �

Proof of (d). Use the formula Z+/−h = iH2− ∩ (1/j1)H
2+ (i = j2/j1) of Sect. 13.3

and match dimensions. �
Proof of (e), (f), (g). Obvious. �
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13.7. A Condition That Z+/− = Z• (Δ Hardy)

Given a Hardy weight Δ = |h|2 (h outer), Z+/− = Z• if and only if h is
the reciprocal of an entire function of minimal exponential type.

Proof. Suppose h is the reciprocal of an entire function f of minimal exponential type;
then h = 1/f implies

∫
|a|<d

Δ−1 < ∞ (d < ∞), so Z• = Z− ∩ Z+ (Sect. 13.6.3), and to

complete the proof of Z+/− = Z•, it is enough to check that i = h/h∗ = f∗/f is an inner
function (Sect. 13.3(c)). But 1/f = h being outer, it is root-free (b ≥ 0), and

lg |f | = 1

π

∫
b

(c− a)2 + b2
lg |f |dc (b > 0),

while f∗, as an entire function of minimal exponential type with
∫
lg |f∗|/(1 + a2) < ∞,

satisfies

lg
∣∣f∗∣∣ ≤ 1

π

∫
b

(c− a)2 + b2
lg
∣∣f∗∣∣dc (b > 0),

so f∗/f is regular (b > 0) with∣∣f∗/f
∣∣ = 1 (b = 0)

∣∣f∗/f
∣∣ ≤ e

[
1

π

∫
b

(c− a)2 + b2
lg
∣∣f∗/f

∣∣dc
]
= 1 (b > 0),

i.e., f∗/f is inner.
On the other hand, if Z+/− = Z• and if p is the projection upon H2−, then the projection

of e(iat) (t > 0) upon Z−:

h−1ipi−1eiath
(
i = h/h∗)

= h−1ipeiath∗

= h−1i
1

2π

∫ 0

−∞
eiasds

∫
e−icseicth∗ dc

= h−1i
1

2π

∫ 0

−∞
eiasds

(∫
e−ic(t−s)h dc

)∗

= h−1i
1

2π

∫ 0

−∞
eiasds ĥ(t− s)

(
ĥ =

1

2π

∫
e−iath dt = ĥ∗

)
,

belongs to Z•, and since its conjugate also belongs to Z•,

e−iat

2π h

∫ ∞

t

eiasĥ ds ≡ ft(a) ∈ Z•
Δ (t > 0).

Choose t > 0 belonging to the Lebesgue set of ĥ so that limδ↓0 δ−1
∫ t+δ

t
ĥ ds = ĥ(t) �= 0 and

δ−1
∫ t+δ

t |ĥ|ds is bounded as δ ↓ 0.

2π
∥∥ft+δ − ft

∥∥
Δ+

≤
∥∥∥∥
(
e−ia(t+δ) − e−iat

)∫ ∞

t+δ

eiasĥ ds

∥∥∥∥
1/(1+a2)

+

∥∥∥∥e−iat

∫ t+δ

t

eiasĥ ds

∥∥∥∥
1/(1+a2)
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=

∥∥∥∥
(
eiaδ − 1

)∫ ∞

t+δ

eiasĥ ds

∥∥∥∥
1/(1+a2)

+

∥∥∥∥
∫ t+δ

t

eiasĥ ds

∥∥∥∥
1/(1+a2)

≤ constant× δ

∥∥∥∥
∫ ∞

t+δ

eiasĥ ds

∥∥∥∥
1

+

∫ t+δ

t

|ĥ|ds
(∫

da

1 + a2

)1/2

< constant× δ,

and it follows, thanks to the limR↑∞ R−1 max0≤θ<2π lg σ
•(Reiθ) ≤ 0, that

δ−1(ft+δ − ft) can be made to tend on the whole plane to some f• ∈ Z•
Δ+ as δ ↓ 0

via some series δ1 > δ2 > etc. Going back to the definition of ft ≡ f , it develops that

−ĥ(t)/2π h(a) =
[
iaf + f•] ∈ Z•

Δ+ ,

and the proof is complete. �

13.8. A Condition That Z0+ = Z

Z0+ = Z if
∫
1 da/a

2 lg
∫
a Δe−2B = −∞ with 0 ≤ B ∈↑, ∫1 e−2B < ∞, and

∫
1 B/a2 < ∞.

Δ has to be non-Hardy for this integral to diverge since
∫
1

da

a2
lg

∫
a

Δe−2B ≥
∫
1

da

a2
lg

[
a3
∫
a

Δe−2B

c3

]

=

∫
1

lg(2a)

a2
da+

∫
1

da

a2
lg

[
a2

2

∫
a

Δe−2B

c3

]

≥
∫
1

lg(2a)

a2
da+

∫
1

da

a2

[
a2

2

∫
a

lgΔe−2B

c3

]

≥
∫
1

lg(2a)

a2
da+

1

2

∫
1

da

∫
a

lg− Δ

c3
−
∫
1

da

∫
a

B

c3

> constant +
1

2

∫
1

lg− Δ/a2;

also, if Δ ∈↓, then ∫
1
da a−2 lg

∫
a
Δe−2B and

∫
1
lg− Δ/a2 converge or diverge together, since

under this condition, ∫
1

da

a2
lg

∫
a

Δe−2B ≤
∫
1

da

a2

(
lg Δ + lg

∫
a

e−2B

)

≤
∫
1

lg Δ/a2 + lg

∫
1

da

a2

∫
a

e−2B

<

∫
1

lg Δ/a2 + constant;

esp., if Δ ∈↓, then Z0+ = Z if and only if
∫
1 lgΔ/a2 = −∞.

As to the proof of the original statement, if
∫
1
da a−2 lg

∫
a
Δe−2B = −∞ with B as

above and if Z0+ �= Z, then Z |t|<δ �= Z for small δ, and it is possible to find f ∈ Z with∫
fe(iat)Δ da = 0 (|t| < δ). But

∫
a

|f |Δe−B ≤ ‖f‖Δ
(∫

a

Δe−2B

) 1
2

(a ≥ 1),



276 13. WEIGHTED TRIGONOMETRICAL APPROXIMATION

so that ∫
1

da

a2
lg

∫
a

|f |Δe−B = −∞,

and according to Levinson [8, page 81], this cannot happen unless f = 0.

13.9. Discussion of Z•

I. O. Hačatrjan’s contribution to the Bernstein problem [5] is adapted as follows.
Consider the spanZ• = Z•Δ of (real) polynomials p of iγ belonging to Z, let

∫
a2dΔ < ∞

(d ≥ 1), let σ•(γ) be the least upper bound of |p(γ)| for p ∈ Z•Δ+ with ‖p‖Δ+ ≤ 1, and let
us prove that the following alternative holds:

either

σ• ≡ ∞ (b �= 0),

sup

∫
lg+ |p|
1 + a2

=

∫
lg σ•
1 + a2

= ∞, for p ∈ Z•Δ+ with ‖p‖Δ+ ≤ 1,

and Z• = Z,
or lg σ• is a continuous, non-negative, subharmonic function,∫

lg σ•
1 + a2

< ∞,

lg σ•(γ) ≤ 1

π

∫
b

(c− a)2 + b2
lg σ•(c)dc (γ = a+ ib, b > 0),

lim
R↑∞

R−1 max
0≤θ<2π

lg σ•
(
Reiθ

) ≤ 0,

and Z• �= Z;

in the second case, Z• ⊂ Z•, the two coinciding if and only if σ• ≡ σ• (b �= 0).

Proof. The proof is identical to the discussion of Z• (Sect. 13.4), excepting the final
statement to which attention is now directed.

Given σ• = σ• < ∞ while Z• �= Z•, then it would be possible to find f ∈ Z•
Δ, f �≡ 0,

with
∫
f∗adΔ = 0 (d ≥ 0). This implies

∫
f∗ p− p(β)

c− β
Δ = 0 (β = a+ ib, b �= 0),

and it follows that∣∣∣∣
∫

f∗Δ
c− β

∣∣∣∣=
∣∣∣∣
∫

f∗Δp

(c− β)p(β)

∣∣∣∣≤
∥∥∥∥ c− i

c− β
f

∥∥∥∥
Δ

∣∣p(β)∣∣−1‖p‖Δ+ (β = a+ ib, b �= 0),

esp., ∣∣∣∣
∫

f∗Δ
c− ib

∣∣∣∣ = o
(
σ•(ib)−1

)
as |b| ↑ ∞.

Chose g ∈ Z•
Δ+ ; then

∫
f∗gΔ(c− β)−1 tends to 0 at both ends of a = 0 so that

ĝ ≡
∫

f∗ g − g(β)

c− β
Δ
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satisfies

∣∣ĝ(ib)∣∣ ≤ o(1) +
∣∣g(ib)∣∣

∣∣∣∣
∫

f∗Δ
c− ib

∣∣∣∣
= o(1) +

∣∣g(ib)∣∣o(σ•(ib)−1
)

= o(1) +
∣∣g(ib)∣∣o(σ•(ib)−1

)
= o(1)

(|b| ↑ ∞)
,

and since ĝ is entire of minimal exponential type, Phragmén-Lindelöf implies ĝ ≡ 0. But then∫
f∗g(c − β)−1Δ = g(β)

∫
f∗Δ(c − β)−1 = 0 if β is a root of g ∈ Z•

Δ+ (b �= 0), so taking
g = (γ − i)f ∈ Z•

Δ+ and β = i, ‖f‖2 = ∫
f∗g(c− i)−1Δ = 0, and the proof is complete. �

13.10.

13.10.1. Special Case (1/Δ = 1 + c1a
2 + etc.). Hačatrjan [5] states the analogue for

the Bernstein problem of the following result:

If 1/Δ = 1+ c1a
2+ c2a

4+etc. (c1, c2, etc. ≥ 0) and if
∫
a2dΔ < ∞ (d ≥ 0),

then either Δ is non-Hardy and Z• = Z or Δ is Hardy and Z• = Z•.

Proof. pd =
∑

n≤d cnγ
2n can be expressed as |qd|2, qd being a polynomial in iγ of degree

d with no roots in the closed half plane b ≥ 0. As d ↑ ∞,

lg
∣∣qd(i)∣∣2 =

1

π

∫
lg
∣∣qd∣∣2

1 + c2
↑ 1

π

∫
lg Δ−1

1 + c2

while
∥∥qd∥∥2Δ+ =

1

π

∫
pdΔ

1 + c2
↑ 1,

so either
∫
lg Δ/(1 + c2) = −∞, σ•(i) = ∞, and Z• = Z or Δ is Hardy (Δ = |h|2 with h

outer). Because |qd|2 = pd ≤ Δ−1, an application of Lebesgue’s dominated convergence test
shows that h−1 = limd↑∞ qd (b ≥ 0) in the second case.

Now in the second case, if f ∈ Z•
Δ is perpendicular to Z•Δ, if g ∈ Z•

Δ+ , and if

ĝ(β) ≡
∫

f∗ g − g(β)

c− β
Δ

as before, then
∣∣∣∣qd(ib)

∫
f∗Δ dc

c− ib

∣∣∣∣ =
∣∣∣∣
∫

f∗qdΔ dc

c− ib

∣∣∣∣ ≤ ‖f‖Δ
(∫ ∣∣qd∣∣2Δ dc

c2 + b2

)1/2

≤ ‖f‖Δ
(∫

dc

c2 + b2

)1/2

= ‖f‖Δ(π/b)1/2,

and so

∣∣ĝ(ib)∣∣ ≤
∣∣∣∣
∫

f∗gΔ dc

c− ib

∣∣∣∣+
∣∣g(ib)∣∣

∣∣∣∣
∫

f∗Δ dc

c− ib

∣∣∣∣

≤ ‖f‖Δ
(∫

c2 + 1

c2 + b2
|g|2Δ+dc

)1/2

+ inf
d>0

∣∣∣∣ g(ib)qd(ib)

∣∣∣∣
∣∣∣∣
∫

f∗qdΔ dc

c− ib

∣∣∣∣
= o(1) +

∣∣gh(ib)∣∣‖f‖Δ(π/b)1/2.
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Since the Poisson integral applies as an inequality to lg |(γ + i)−1gh| and as an equality to
lg |γ + i|,

∣∣gh(ib)∣∣2 ≤ e

[
1

π

∫
b

b2 + c2
lg |gh|2

]
≤ 1

π

∫
b
(
c2 + 1

)
b2 + c2

|g|2Δ+ = o(b),

and so limb↑∞ |ĝ(ib)| = 0. Repeating the proof as b ↓ −∞ justifies limb↓−∞ |ĝ(ib)|
= 0, and now ĝ = f = 0 follows as in Sect. 13.9.

A special case of the above is the fact that if h is the reciprocal of an entire function and
if the roots of h−1 fall in the sector −3π/4 ≤ θ ≤ −π/4, then Z• = Z•; obvious improvements
can be made, but Z• = Z• does not hold without some condition on the roots of h−1 as the
example of Sect. 13.11 proves. �

As a second application, it will be proved that

Z• = Z• in case Δ(a) = e
(− 2|a|p) (0 < p < 1);

similar but more complicated cases can be treated in the same fashion (see below).

Proof. It suffices to construct a weight Δo = (1 + c1a
2 + etc.)−1 with non-negative

coefficients, positive multiples of which bound Δ above and below. Define #(R) = [θRp+1/2]
with an adjustable θ > 0, the bracket denoting the integral part, and let

− lgΔo(a) =

∫
0

lg

(
1 +

a2

R2

)
d#(R) = 2a2

∫
0

#(R)dR(
a2 +R2

)
R

=
2a2

p

∫
0

[
θc+ 1/2

]
dc(

a2 + c2/p
)
c

(
c = Rp

)

= J1 + J2

with

J1 =
2a2

p

∫
0

[
θc+ 1/2

]
+ 1/2− (

θc+ 1/2
)

(
a2 + c2/p

)
c

dc

and

J2 =
2a2θ

p

∫
0

(
a2 + c2/p

)−1
dc.

In J2, substitute c = |a|pt and let θ−1 = (2/p)
∫
0
(1 + t2/p)−1, obtaining J2 = 2|a|p. Coming

to J1, note that the numerator under the integral sign is periodic and that its average over a
period is 0, so that J1 tends to a constant as |a| ↑ ∞. J1 is then bounded, so Δ is bounded
above and below by positive multiplies of Δo, and the proof is complete. �

Z• = Z• also holds in the more general case of a Hardy weight.

Δ = Δ(0)e

(
−
∫ |a|

0

ω(c)

c
dc

)

provided ω ∈↑ and ω(c) lg c tends to ∞ as c ↑ ∞.

Proof. Under the above condition it is possible, according to Y. Domar [4], to find a
reciprocal weight 1/Δo = 1+c1a

2+etc. with non-negative coefficients such that Δ is bounded
above by a positive multiple of Δo and below by a positive multiple of Δθ = Δo(θa) with a
constant depending upon θ > 1 alone. Because

Z•Δθ = Z•
Δθ ⊃ Z•

Δ,
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each f ∈ Z•
Δ can be approximated in ZΔθ by a polynomial p so as to have∫ ∣∣f(a/θ)− p(a/θ)

∣∣2Δ ≤ constant× θ‖f − p‖2Δθ

small, and to complete the proof it suffices to check that fθ(a) = f(a/θ) tends to f in ZΔ as
θ ↓ 1. But this is obvious from the fact that

∥∥fθ∥∥2Δ = θ

∫
|f |2Δ(θa) ∼ ‖f‖2Δ

(
θ ↓ 1

)

while fθ tends to f pointwise under a local bound.
By the same method it is easy to prove that if Δ has the above form with ω ∈↑ and∫

1 ω/c
2 = ∞ (non-Hardy case), then Z• = Z. �

Domar’s paper was brought to our notice through the kindness of Professor L. Carleson.

13.10.2. A Special Case (Δ = e−2|a| 12 ). Δ = exp(−2|a| 12 ) falls under the discussion of
Sect. 13.10.1, but it is entertaining to check Z• = Z• from scratch using the following special
proof.

Δ = |h|2 with

h = e
[
− (2γ)

1
2 e−iπ/4

]
=

∫ ∞

0

eiγt
e−1/2t

(
2πt3

) 1
2

dt,

and h is outer since

lg
∣∣h(i)∣∣ = −2

1
2 =

1

π

∫
lg |h|
1 + a2

(see [7, page 62]).
Given f ∈ Z•

Δ, a simple application of Phragmén-Lindelöf supplies us with the bound

f(γ) ≤ Be
[(√

2 + δ
)√

R
]

(δ > 0);

hence, |f(γ2)| ≤ Be[(
√
2 + δ)R], and according to Pólya’s theorem [2, 5.3.5],

f
(
γ2
)
=

∫
eγwg =

∫
e−γwg =

∫
cosh(γw)g dw,

i.e.,

f(γ) =

∫
cosh

(√
γw

)
g dw,

the integral being extended over |w| = 2
1
2 + δ and g being regular outside |w| = 2

1
2 and at

∞. Accordingly, if f ∈ Z• is perpendicular to Z•, then

0 =

∫
fadΔ da =

∫
g dw

∫
cosh

(√
aw

)
adΔ da

=

∫
g

[∫ ∞

0

cosh
(√

aw
)
ade−2a

1
2 +

∫ ∞

0

cos
(√

aw
)
(−a)de−2a

1
2

]

=

∫
gD2d

[ ∫ ∞

0

cosh
(√

aw
)
e−2a

1
2 +

∫ ∞

0

cos
(√

aw
)
e−2a

1
2

]

= 2

∫
gD2d+1

[∫ ∞

0

sinh(aw)e−2a +

∫ ∞

0

sin(aw)e−2a

]
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=

∫
gD2d+1

[
1

2− w
− 1

2 + w
+

1

2i+ w
− 1

2i− w

]

=

∫
gD2d+1 16w

16− w4
.

Because
∫
eγwg = f(γ2) is an even function,

∫
gwd = 0 (d odd) and since w/(16 − w4) is a

sum of powers wd (d ≡ 1(4)), it follows that

0 =

∫
gDd

[
1

2− w
− 1

2 + w
+

1

2i+ w
− 1

2i− w

]
(d ≥ 0),

and so

0 =

∫
g

[
1

2− w + t
− 1

2 + w − t
+

1

2i+ w − t
− 1

2i− w + t

]
dw

= g(t+ 2) + g(t− 2)− g(t− 2i)− g(t+ 2i)

for small |t|.
Draw four circles, each of radius 2

1
2 , having centers at 2, 2i, −2 and −2i, respectively.

The circles with centers at 2 and 2i are tangent at A, which is 1 + i. The circles with centers
at 2 and −2i are tangent at B, which is 1 − i. The point C is −3 + i and lies on the circle
with center at −2. Using this diagram depicting four discs on each of which just one of the
summands can be singular, it follows that g(t− 2) = −g(t+ 2) + g(t− 2i) + g(t+ 2i) can be

singular only at A and B since the second member is non-singular on the rest of |t− 2| ≤ 2
1
2 .

Now if g(t− 2) is singular at A, then g(t+2) is singular at C = A− 4 and that is impossible,
so g(t− 2) cannot be singular at A, nor, for similar reasons, at B. But then g is entire, and
by Cauchy’s theorem, f(γ2) =

∫
cosh(γw)g = 0, completing the proof.

Z− = Z+/− �= Z− ∩Z+ = Z• = Z0+ = Z• can be proved at little extra cost. Z− ∩Z+ =

Z• is obvious from Sect. 13.6, and so it suffices to prove that i = h/h∗ = e[2i sgn(a)|a| 12 ] is
not a ratio j2/j1 of inner functions (Sect. 13.3). But in the opposite case, if ∈ H2+ (f = j1h),
so that

0 =
1

2

∫
e−iatif da (t < 0)

= Re

[∫ ∞

0

e−iate2ia
1
2 f da

]
= Im

[ ∫ ∞

0

ebte(2b)
1
2 (i−1)f(ib)db

]
,

since ∣∣∣∣
∫ π/2

0

e−iReiθt e2iR
1
2 eiθ/2f

(
Reiθ

)
Reiθi dθ

∣∣∣∣

≤
∫ π/2

0

eR sin θte−2R
1
2 sin θ/2e−(2R)

1
2 cos(θ/2−π/4)Rdθ

tends to 0 as R ↑ ∞. Because f = f∗ (a = 0),

0 = Im
[
e(2b)

1
2 (i−1)f(ib)

]
= sin(2b)

1
2 e−(2b)

1
2 f(ib) (b ≥ 0),

and that is absurd.
An entertaining illustration of the delicacy of the projection Z+/− is thus obtained.

Z+/− �= Z• as was just proved, so naturally the condition that Z+/− = Z•, to wit, that Δ =
|f |−2 with f entire of minimal exponential type, does not hold. But as proved in Sect. 13.10.1,

e(−2|a| 12 ) is bounded above and below by positive multiples of such a weight.
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13.11. An Example (Δ Hardy, dimZ• = ∞, Z• = Z0+ �= Z•)

A weight Δ exists with the following properties :

(a)
∫
lgΔ/(1 + a2) > −∞, i.e., Δ is a Hardy weight,

(b)
∫
a2dΔ < ∞ (d ≥ 0), i.e., dimZ• = ∞,

(c) Z• �= Z• = Z0+.

Consider for the proof

δn = 1/ sinhπn, γ+n = n2 − iδn, γ−n = −n2 − iδn,

1/h(γ) =
∏

|n|>0

(
1− γ

γn

)
, Δ = |h|2,

f=
sinπ

√
γ sinhπ

√
γ

π2γ
=
∏
n≥1

(
1− γ2

n4

)
, and g=f/

(
1− γ2

)
=
∏
n≥2

(
1− γ2

n4

)
,

and break up the proof into a series of simple lemmas.

(a) 0 < B1 < |fh| < B2 if |γ ± n2| ≥ 1
2 (n ≥ 1), while 0 < B3 < |fh||(γ − γ±n)/

(γ ∓ n2)| < B4 if |γ ± n2| < 1
2 ; a similar appraisal holds with h∗ in place of h.

(b) g ∈ Z•
Δ.

(c) Δ is a Hardy weight and
∫
a2dΔ < ∞ (d ≥ 0).

(d) g �∈ Z•Δ.

Proof of (a). Obvious. �

Proof of (b). g is entire of minimal exponential type with g∗(−a) = g(a), so it is
enough to check that ‖g‖Δ < ∞. But (a) supplies us with the bound |fh| < B5, so |gh| <
B5/(1− a2), and since |gh| < B6 for small |a|, ‖g‖Δ < ∞. �

Proof of (c). h−1 is entire and free of roots in the closed half-plane b ≥ 0, and Δ(a+
ib) ∈↓ as a function of b > 0, so it suffices to check

∫
8

a2dΔ ≤
∞∑

n=3

∫ n2+n+ 1
4

n2−n+ 1
4

a2dΔ < ∞ (d ≥ 0).

But on |a− n2| < 1
2 ,

Δ < B2
4 |f |−2

(
a− n2

)2
(
a− n2

)2
+ δ2n

,

∣∣a− n2
∣∣

|f | = − π2a

sinhπ
√
a

∣∣∣∣ a− n2

sinπ
√
a

∣∣∣∣ < B7n
3e−πn,

and hence

a2dΔ < B8
n2d+6e−2πn

(
a− n2

)2
+ δ2n

on this range, while on the rest of n2 − n+ 1
4 ≤ a < n2 + n+ 1

4 ,

a2dΔ < (n+ 1)2dB2
2 |f |−2 < B9n

2d+6e−2πn,

so that∫ n2+n+ 1
4

n2−n+ 1
4

a2dΔ < B10

[
n2d+6e−2πn

∫
da

a2 + δ2n
+ n2d+7e−2πn

]
< B11n

2d+7e−πn,

which is the general term of a convergent sum. �
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Proof of (d). g ∈ Z•Δ implies the existence of polynomials pδ ∈ Z•Δ with
‖g − pδ‖Δ < δ. pδ can be supposed even since g is such; also, as δ ↓ 0, pδ tends to g on the
whole plane under a local bound (σ• < ∞), so that p0+(0) = g(0) = 1, and according to
Hurwitz’s theorem, the roots of pδ tend to the roots ±22, ±32, etc. of g. Rotate the roots of
pδ onto the line b = 0 and put its bottom coefficient = 1, defining a new polynomial qδ with
|qδ| ≤ |pδ/pδ(0)| (b = 0) and ‖qδ‖Δ ≤ ‖pδ‖Δ/|pδ(0)| bounded as δ ↓ 0; it is this boundedness
of ‖qδ‖Δ that leads to a contradiction. �

Evaluate
∫
q2δh

∗, integrating about the semicircle Reiθ(−π/2 ≤ θ ≤ π/2) and then down
along the segment joining iR to −iR with R half an odd integer. Bound the integral on the
arc with the aid of |fh∗| < B2 and let R ↑ ∞, obtaining

1

2π

∫
q2δh

∗(ib)db =
∞∑
n=1

q2δ
(
γ∗
n

)
(
1/h∗)′(γ∗

n

) ≡ Qδ.

Because h∗(ib) > 0 and |qδ(ib)| ≥ |pδ(ib)/pδ(0)|, an application of Fatou’s lemma combined
with |fh∗| > B1 > 0 justifies the under-estimate:

Q0+ ≥ 1

2π

∫
g2h∗(ib) > B13

∫
1

f(ib)/b4 > B14

∫
1

eπ(2b)
1
2 /b5 = ∞.

Qδ is now estimated again with the contradictory result that it is bounded as δ ↓ 0.∫
(qδh)

2 = 0, the integral being taken around the arc Reiθ(0 ≤ θ ≤ π/2), down the
segment joining iR to 0, and thence out along the segment joining 0 to R with R half an odd
integer. Bound the integral along the arc as before and let R ↑ ∞, obtaining∫ ∞

0

(
qδh

)2
(ib) = −i

∫ ∞

0

(
qδh

)2
(a) ≤ ∥∥qδ∥∥2Δ < B15,

the first integrand being positive.∫
(qδh)

2(γ − γn)/(γ − γ∗
n) is now evaluated along the same curve, giving

−
∫ ∞

0

(
qδh

)2
(ib)

ib− γn
ib− γ∗

n

− i

∫ ∞

0

(qδh)
2(a)

a− γn
a− γ∗

n

= 4πiδn
(
qδh

)2(
γ∗
n

)
;

this supplies the bound

4πδn
∣∣qδh(γ∗

n

)∣∣2 ≤
∫ ∞

0

(
qδh

)2
(ib) +

∫ ∞

0

∣∣qδh∣∣2(a) < 2B15 = B16,

and it follows that

Q0+ < B16

∞∑
n=1

eπn
∣∣∣∣ h−2

(
γ∗
n

)
(
1/h∗)′(γ∗

n

)
∣∣∣∣.

But, since

∣∣(γ − γ∗
n

)
h∗∣∣ < B4

∣∣γ − n2
∣∣

|f | near γ = γ∗
n,

∣∣(1/h∗)′(γ∗
n

)∣∣−1 ≤ 2B4e
−πn/

∣∣f(γ∗
n

)∣∣,
while ∣∣h(γ∗

n

)∣∣−2
< 4B−2

3

∣∣f(γ∗
n

)∣∣2,
and combining these bounds leads at once to the desired contradiction:

Q0+ < B17

∞∑
n=1

∣∣f(γ∗
n

)∣∣ < B18

∞∑
n=1

n−3 < ∞.
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Z• is sometimes closed under f → ′f = if ′, but this can fail; indeed in the above case,

Δ >
B2

3

|f |2
(
a− n2

)2
(
a− n2

)2
+ δ2n

> B19
n6δ2n(

a− n2
)2

+ δ2n

(∣∣a− n2
∣∣ < √

δn

)
,

while on the same range,

|′g| > B20e
πnn−7

so that ‖′g‖Δ = ∞ because

∫ n2+δ
1
2
n

n2−δ
1
2
n

n6δ2ne
2πn−14

(
a− n2

)2
+ δ2n

> B21n
−8

∫ +δ
1
2
n

−δ
1
2
n

1

a2 + δ2n
> B22n

−8eπn
(
n ↑ ∞)

is the general term of a divergent sum.

13.12. Hardy Weights with Arithmetical Gaps

Consider a weight Δ that bounds above a decreasing Hardy weight |h|2 (h
outer) on an arithmetical series of intervals:∣∣a− (2n− 1)c

∣∣ < d (0 < d < c, n = 0, ±1, etc.)

but is otherwise unspecified. Then
(a) Z• is a closed subspace of Z,
(b) Z• ⊃ Z0+, and hence in accordance with Section 13.5, Z• = Z0+.

As an application, it is easy to derive the lemma of Tutubalin-Frěıdlin [11]: that if Δ ≥
|a|−2m (m > 0) far out, then Z0+ = Z•; indeed, according to (b), f ∈ Z0+ is an entire
function of minimal exponential type, and since ∞ >

∫ |f |2/(1 + a2)m, a simple application
of Phragmén-Lindelöf implies that f is a polynomial (of degree < m). Actually, it is enough
to have Δ ≥ |a|−2m on an arithmetical series of intervals: as the reader can easily check using
(b) and the Duffin-Schaeffer theorem [2, 10.5.1].

Proof of (a). Similar to that of (b). �

Proof of (b). f ∈ Z0+ implies the existence of a sum fδ of trigonometrical functions
e(iat) with |t| < δ, real coefficients, and ‖f − fδ‖Δ < δ, and it follows that

B1 >
∥∥fδ∥∥2Δ ≥

∫ (2n−1)c+d

(2n−1)c−d

∣∣fδh∣∣2 ≥ 2d
∣∣fδh(an)∣∣2

for some |an − (2n − 1)c| < d with a constant B1 not depending upon δ. Bring in an entire
function g of exponential type ≤ ε with |g| < |h| far out on b = 0 and |g| ≥ 1

2 on the two 45◦

lines: to be explicit, let

g(γ) = e−
2
3

∞∏
n=n1

cos
(
γ/γn

)

with

1 < γ1 < γ2 < etc.

and

#(R) =
∑
γn<R

1 = 0 (R < 1)

=

[
3

∫ R

1

lg |h|−1

A
dA

]
(R ≥ 1),
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the bracket denoting the integral part and |h(1)| being supposed ≤ 1, choose n1 so that

∣∣g(γ)∣∣ ≤
∞∏

n=n1

eR/γn = e

[
R

∫
C

d#(B)

B

] (
C = γn1 , |γ| = R

)

≤ e

[
R

∫
C

#(B)

B2

]
< e

[
3R

∫
C

dB

B2

∫ B

1

lg |h|−1

A
dA

]

= e

[
3R

1

C

∫ C

1

lg |h|−1

A
dA+ 3R

∫ ∞

C

lg |h|−1

B2
dB

]

< eεR,

and use the obvious | cos a| < e(−a2/3) (|a| ≤ 1) to bound |g(a)| for large |a| as follows:

e
2
3 ≤ ∣∣g(a)∣∣ ∏

γn≥|a|
e−a2/3γ2

n = e

[
− a2

3

∫
|a|

d#(R)

R2

]

= e

[
a2

3

∫
|a|

#(R)−#
(|a|)

R3

]

< e

[
a2

2

∫
|a|

∫ R

|a|

− lg |h|−1

A
dA

dR

R3
+

a2

3

∫
|a|

dR

R3

]

= e

[
− a2

2

∫
|a|

lg |h|−1

R3
dR +

2

3

]

≤ a2

2

∫
|a|

|h|dR
R3

e
2
3

≤ |h|e 2
3 .

fδg is then entire of exponential type δ + ε and |fδg(an)| < B2 with a constant B2 not
depending upon δ. An application of the Duffin-Schaeffer theorem [2, 10.5.3] implies |fδg| <
B3 on the whole line b = 0 if δ + ε is small enough, B3 being likewise independent of δ.
Phragmén-Lindelöf now implies that |fδg| < B3e[(δ + ε)R], and since |g| ≥ 1

2 on the two 45◦

lines, |fδ| < 2B3e[(δ+ε)R] there. Phragmén-Lindelöf is now applied to each of the four sectors
between the 45◦ lines; this supplies us with the bound |fδ| < 2B3e[2(δ+ε)R], establishing the
compactness of fδ as δ ↓ 0, and it follows that each limit function f0+ is entire of exponential
type ≤ 2ε with ‖f − f0+‖Δ = 0. But this means that f is the restriction to b = 0 of an entire
function of exponential type ≤ 2ε, and since ε can be made as small as desired, f ∈ Z•

Δ, and
the proof is complete. �

13.13. Entire Functions of Positive Type

Given a Hardy weight Δ = |h|2 and a positive number �, let Z•� be the
class of entire functions f = f(γ) of exponential type ≤ �:

lim
R↑∞

R−1 max
0≤θ<2π

lg
∣∣f(Reiθ

)∣∣ ≤ �,

which, restricted to the line b = 0, belong to Z. Then

Z•� = Z |t|≤�+ =
⋂
�′>�

Z |t|≤�′
.
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Proof. We first prove the inclusion

Z•� ⊃ Z |t|≤�+.

If f ∈ Z |t|≤�+, then it is possible to find (real) sums of trigonometrical functions:

fn(γ) =
∑
k≤n

cnke
(
iγtnk

)

with |tnk | < � + 1/n and ‖f − fn‖Δ < 1/n. Given δ > 1/n, fne[iγ(�+ δ)]h belongs to H2+,
and much as in Sect. 13.6.2,∣∣fnh∣∣ < B1e

(�+δ)R (b ≥ 1),
∣∣fnh∗∣∣ < B2e

(�+δ)R (b ≤ −1),

and ∣∣fn∣∣ < B3

(|γ| ≤ 2
)

with constants B1, B2, B3 not depending upon n. An appraisal of h on θ = π/4, 3π/4 and of
h∗ on θ = 5π/4, 7π/4 leads to ∣∣fn∣∣ < B4e

(�+2δ)R

much as in Sect. 13.6.2, B4 being likewise independent of n, and since ‖f − fn‖Δ < 1/n, it
follows that as n ↑ ∞, fn tends on the whole plane to an entire function f∞ of exponential
type ≤ �, coinciding with f on b = 0. But then f ∈ Z•�, and the inclusion is proved.

As in Sect. 13.5, it suffices for the proof of the opposite inclusion:

Z•� ⊂ Z |t|≤�+

to consider even functions f ∈ Z•� with Hadamard factorization

f(γ) =

∞∏
n=1

(
1− γ2

γ2
n

)
.

Because

lg+
∣∣f(a)∣∣2 ≤ lg+

(∣∣f(a)∣∣2Δ) − lg− Δ ≤ ∣∣f(a)∣∣2Δ− lg− Δ,

f satisfies ∫
lg+

∣∣f(a)∣∣
1 + a2

< ∞;

it follows that

lim
R↑∞

R−1 lg
∣∣f(Reiθ

)∣∣ ≤ �| sin θ|

[8, page 27] and that the roots of f in the half-plane a > 0 have a density D ≤ �/π:

lim
n→∞n/

∣∣γn∣∣ = D

[8, Theorem VIII]. Also, it is permissible to assume that the roots of f are real: indeed, if

f1(γ) =

d∏
n=1

(
1− γ2

γ2
n

)
f2(γ) with f2(γ) =

∏
n>d

(
1− γ2∣∣γ2

n

∣∣
)

then |f1(a)| ≤ |f(a)| and the roots of f2(γ) have the same density D; this implies [2, 8.2.1]
that f2 is of type πD. Hence f1 is also of type πD and so f1 ∈ Z•�. But then (γ2−1)df2 ∈ Z•�,
so (γ2 − 1)nf2 ∈ Z•� (n ≤ d). All these functions have real zeros and hence we may assume
them in Z |t|≤�+. f1 is a sum of these, so f1 ∈ Z |t|≤�+, and since ‖f − f1‖Δ is small for large
d it follows that f ∈ Z |t|≤�+ also. From here on the roots of f are real: 0 < γ1 ≤ γ2 ≤ etc.
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Given �′ > �, let us grant the existence of an entire function g of exponential type ≤ �′

with ‖f − g‖Δ as small as desired and g ∈ L2(R1). As in Sect. 13.5, an application of the

Paley-Wiener theorem implies f ∈ Z |t|≤�′
, and f ∈ Z |t|≤�+ follows. Accordingly, it suffices to

produce such an entire function g.
Given a small positive number ε < 1, define

δ = (ε/8)2, D∗ = D − δ/2, D∗ = D + δ/2,

g1(γ) =
∏
γn≤d

(
1− γ2

γ2
n

)
, g2(γ) =

∏
n>D∗d

(
1− D∗2γ2

n2

)
,

g3(γ) =
∏
n>εd

(
1− ε2γ2

n2

)
,

and let us check the following lemmas leading to the properties of g = g1g2g3 needed for the
proof of f ∈ Z |t|≤�+ indicated above; in the lemmas, c1, c2, etc. denote positive constants
depending upon ε alone, and it is understood that if ε and/or d is unspecified, then ε has to
be small enough and d large enough, the smallest admissible d depending in general upon ε.
At a first reading, just note the statements of lemmas (a)–(g) and then turn to (h). �

(a) g is an entire function of exponential type π(D∗ + ε) ≤ �+ π(δ/2 + ε).

Proof of (a). Obvious. �

(b) |f − g| tends to 0 as d ↑ ∞ independently of ε(< 1) and of |a| ≤ A for each A > 0.

Proof of (b).

e
(− 2A2ε2/n2

) ≤ 1− a2ε2/n2 ≤ 1
(|a| ≤ A

)
for n > εd and d > 2A, so that as d ↑ ∞

e

(
− 2A2

∑
n>εd

ε2n−2

)
≤ g3(a) ≤ 1

is close to 1 independently of ε(< 1) and of |a| ≤ A. �

(c) |g| ≤ B|f | for |a| ≤ d/2, B being the universal constant involved in the appraisal (e)
of Sect. 13.5.

Proof of (c). Because the roots of f have density D,

n/D∗ < γn < n/D∗
(
n ≥ n0

)
with n0 depending only upon D∗ and D∗ and so only upon ε. Given d > n0 and 0 ≤ a ≤ d/2,
if δ is so small that D∗/D∗ < 2, then

∣∣f/g1∣∣ = ∏
γn>d

(
1− a2

γ2
n

)
>

∏
n>D∗d

(
1− D∗2a2

n2

)

so that
∣∣f/g1g2∣∣ > ∏

D∗d<n≤D∗a

(
1− D∗2a2

n2

)
,

and since, in this product,

D∗2a2/n2 <
(D + δ/2)2

4(D − δ/2)2
<

1

2
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for small δ, the bound 1− c > e(−2c) (0 < c ≤ 1
2 ) implies

∣∣f/g1g2∣∣ > e

[
− 2a2D∗2 ∑

D∗d<n≤D∗d

n−2

]

> e
[− 3a2

(
D∗ −D∗

)
/d
]
= e

(− 3a2δ/d
)
.

On the other hand, the appraisal (e) of Sect. 13.5 implies

g3 < Be
(− a2ε/d

)
(0 ≤ a ≤ d/2),

and since 3δ < ε for small ε, the desired bound follows. �

(d) |g| < c1 (d/2 < |a| ≤ D∗d/D∗).

Proof of (d). Given d > 2n0 with n0 as in the proof of (c), it is possible to find c2 and
c3 depending upon n0 = n0(ε) (and so upon ε) such that

∣∣g1∣∣ < c1a
c2

∏
n<D∗a

(
D∗2a2

n2
− 1

) ∏
D∗a<n<D∗d

(
1− D2

∗a
2

n2

)

for d/2 < a ≤ D∗d/D∗. Define c3 = c1/(πD
∗); then∣∣g1g2∣∣ < c3a

c2−1
∣∣ sinπD∗a

∣∣J1/J2J3,
J1 =

∏
D∗a<n<D∗d

=
n2 −D2∗a2

n2 −D∗2a2
, J2 =

∏
D∗a≤n≤D∗a

(
a2D∗2

n2
− 1

)
,

J3 =
∏

D∗d≤n≤D∗a

(
1− D∗2a2

n2

)
.

J1 is supposed non-void since the proof simplifies in the opposite case; also, it is supposed
below that the smallest integer n1 > D∗a does not exceed D∗a+ 1

2 , the discussion of J1 being

simpler and that of J2 just a little more complicated if n1 > D∗a+ 1
2 . Bring out the leading

factor of J1:

n2
1 −D2

∗a
2

n2
1 −D∗a2

<
n1 −D∗a
n1 −D∗a

≤ 1 + aδ

n1 −D∗a
<

eaδ

n1 −D∗a
;

the product of other factors of J1 does not exceed

∏
D∗a+ 1

2<n<D∗d

n−D∗a
n−D∗a

= e

[ ∑
D∗a+ 1

2<n<D∗d

lg

(
1 +

aδ

n−D∗a

)]

< e

[
2

∫ D∗d−D∗a

0

lg
(
1 + aδ/c

)
dc

]

< e

[
2aδ

∫ D∗/δ

0

lg(1 + 1/c)dc

]

since D∗d < 2D∗a, and using the bound lg(1 + 1/c) < 1/c, it follows that

J1 < e

[
2aδ

(∫ 1

0

lg(1 + 1/c)dc+ lgD∗/δ
)]

eaδ

n1 −D∗a
<

eaδ
1
2

n1 −D∗a
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for small δ. Stirling’s approximation is now applied to obtain an underestimate of J2 for small
δ, using D∗a− (n1 − 1) > 1

2 :

J2 >
∏

D∗a≤n≤D∗a

D∗a− n

n
>

Γ(aδ)(
D∗a

)aδ+1

> c4(aδ)
aδ− 1

2 e−aδ
(
D∗a

)−aδ−1

> c4
(
D∗a

)− 3
2 (δ/eD∗)aδ

= c4
(
D∗a

)− 3
2 e

[
− aδ

(
lg

D∗

δ
+ 1

)]

> c4
(
D∗a

)− 3
2 e−aδ

1
2

with a universal constant c4. Similarly

J3 ≥
∏

D∗d≤n≤D∗d

(
n− aD∗

n

)
≥ Γ

(
D∗(d− a)

)
Γ
(
D∗d− aD∗ + 1

)(
D∗d

)δd+1

≥ C5

[
D∗(d− a)

]D∗(d−a)− 1
2 e−D∗(d−a)

(
D∗d− aD∗)D∗d−aD∗+ 1

2 e−D∗d+aD∗(D∗d
)δd+1

≥ C5
e−δd(

D∗d− aD∗)D∗d

[
D∗(d− a)

D∗d− aD∗

]D∗d−aD∗− 1
2
(
d− a

d

)δd

≥ c5
e−δd

D∗D∗d2

(
1− a

d

)δd

≥ c5e
−2δaa−2

(
1− D∗

D∗

)δd

/
(
4D∗D∗

)

≥ c5a
−2e

[− 2δa− δd lg
(
D∗/δ

)]
/
(
4D∗D∗

) ≥ c5a
−2e

(
−
√
δa
)
/
(
4D∗D∗

)

with a universal constant c5. Combining the bounds for J1, J2, J3 and using 0 < n1−D∗a ≤ 1
2 ,

it follows that
∣∣g1g2∣∣ < c6a

c2+3

∣∣∣∣ sinπD
∗a

n1 −D∗a

∣∣∣∣e3aδ
1
2 < c7a

c2+3e3aδ
1
2 < c7e

4aδ
1
2

with c7 depending upon ε alone, d being increased if need be so as to achieve ac2+3 < e(aδ
1
2 ).

But now the familiar appraisal (e) of Sect. 13.5 implies

∣∣g3| < Be−4aδ
1
2 ,

and so

|g| = ∣∣g1g2g3∣∣ < Bc7 ≡ c1,

completing the proof of (d). �

(e) |g| < c8 (D∗d/D∗ < |a| ≤ d).

Proof of (e).

∣∣g1∣∣ < c9a
c10

∏
n<D∗a

(
D∗2a2

n2
− 1

)
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for D∗d/D∗ < a ≤ d with constants c9 and c10 depending upon n0 = n0(ε) alone, so∣∣g1g2∣∣ < c11a
c10
∣∣ sinπD∗a

∣∣/J4
with

J4 =
∏

D∗a≤n≤D∗d

∣∣∣∣1− D∗2a2

n2

∣∣∣∣ ≥
∏

D∗a≤n≤D∗d

∣∣∣∣1− D∗a
n

∣∣∣∣

≥
∣∣∣∣n2 −D∗a

n2

∣∣∣∣Γ
(
D∗d−D∗a

)
Γ(aδ)(

D∗d
)D∗d−D∗a+3

,

n2 being determined from − 1
2 < n2 − D∗a ≤ 1

2 . Both gamma functions contribute to this
underestimate if, as is supposed below, D∗a is not too close to D∗a or to D∗d; the appraisal
of J4 is similar in the opposite case. Stirling’s approximation is now applied to obtain

J4 > c12
∣∣n2 −D∗a

∣∣(D∗d
)−5

J5J6

with

J5 = e

[
−D∗d

(
d− a

d

)
lg

(
d

d− a

)]

and

J6 = e

[
−D∗d

(
aδ

D∗d

)
lg

(
D∗d
aδ

)]
.

Because d−a ≤ d(1−D∗/D∗) = dδ/D∗ and aδ ≤ dδ, both J5 and J6 are bigger than e(−aδ
1
2 )

for small δ, so

J4 > c13
∣∣n2 −D∗a

∣∣a−5e
(
− 3a

√
δ
)
,

and the proof is completed as in (d) above. �
(f) |g| < c14 (d < |a| ≤ 2d).

Proof of (f).

∣∣g1∣∣ < c15a
c16

∏
n<D∗d

(
D∗2a2

n2
− 1

)
e2nδ

for d < a ≤ 2d, the exponential accounting for the factors of

∏
D∗d≤n≤D∗d

(
D∗2a2

n2
− 1

)

that exceed 1; the rest of the proof is similar to but simpler than that of (e). �
(g) |g| < c17 (|a| > 2d), and g ∈ L2(R1).

Proof of (g).

∣∣g1∣∣ < c18a
c19

∏
n≤D∗d

(
D∗2a2

n2
− 1

)

for a > 2d, so ∣∣g1g2∣∣ < c20a
c19
∣∣ sinπD∗a

∣∣ ≤ c20a
c19 ,

and using the familiar appraisal (e) of Sect. 13.5 to bound g3, it develops that

|g| < Bc21a
c22e−εd(1+2(lg a/d)).
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But

d lg(a/d) >
d lg 2

lg(2d)
lg a (a > 2d),

and so

|g| < c23a
c22−2εd lg 2/ lg(2d)

is bounded (a > 2d) and belongs to L2(R1) if d is large enough. �

(h) ‖f − g‖Δ can be made as small as desired by appropriate choice of ε and d.

Proof of (h).

1

2
‖f − g‖2Δ ≤

∫ A

0

|f − g|2Δ+ (2B + 1)2
∫ d/2

A

|f |2Δ+

∫ ∞

d/2

(
c24 + |f |)2Δ

with an adjustable numberA, a universal constantB, and c24 (= the greatest of c1, c8, c14, c17)
depending upon ε alone, provided ε is small enough and d(> 2A) is large enough, the smallest
admissible d depending upon ε. A is now chosen so large that (2B+1)2

∫∞
A

|f |2Δ < 1/n and

then ε is chosen so small that c24 = c24(ε) < ∞ and d is made so big that neither
∫ A

0
|f−g|2Δ

nor
∫∞
d/2(c24 + |f |)2Δ exceeds 1/n, with the result that ‖f − g‖2Δ < 6/n. �

13.14. Another Condition for Z+/− = Z0+ (Δ Hardy)

Because Z |t|≤�+ is closed so is Z•�, but it is possible to go another step and prove that,

if

σ•�(γ) = sup
∣∣f(γ)∣∣ f ∈ Z•�

Δ+
, ‖f‖Δ+ ≤ 1,

then lg σ•� is a non-negative, continuous subharmonic function such that

lim
R↑∞

R−1 max
0≤θ<2n

lg σ•�(Reiθ
)
= �.

Proof. Only the last statement needs a proof. Given f ∈ Z•�
Δ+ , (γ + i)−1eiγ�fh ∈ H2+,

and so

lg

∣∣∣∣e
iγ�fh

γ + i

∣∣∣∣ ≤ 1

π

∫
b dc

(c− a)2 + b2
lg

|fh|
|a+ i| (γ = a+ ib, b > 0);

this leads at once to

lg
[
e−b�σ•�(γ)

] ≤ 1

π

∫
b dc

(c− a)2 + b2
lg σ•�

since h(γ)/(γ + i) is outer.
∫
lg σ•�/(1 + a2) < ∞ is now proved as in Sect. 13.4(e), and it

follows that

lim
R↑∞

R−1 lg σ•�(Reiθ
) ≤ �| sin θ|

for θ = π/4, 3π/4; the same holds by a similar argument for θ = 5π/4, 7π/4. An application
of Phragmén-Lindelöf as in Sect. 13.4(f) completes the proof that σ•� is of type ≤ �, and that
the equality must hold follows since e(−iγ�) ∈ Z•�

Δ+ .

As an application of the bound for σ•�, it will be proved that if Z |t|≤�+ ⊃ Z+/−, and
indeed if the projection of e(ias) upon Z− belongs to Z |t|≤�+ for single s > 0, then Z+/− =
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Z0+. Indeed, if the projection belongs to Z |t|≤�+ for a single s > 0, then it does so for a whole
(bounded) interval of s with a larger �, and selecting such an s from the Lebesgue set of

h =
1

2π

∫
0

e−iatĥ(a)da

and arguing as in Sect. 13.7 with σ•� in place of σ•, it is found that h−1 is an entire function
of exponential type ≤ �. But then i = h/h∗ is inner as in Sect. 13.7 so that Z+/− = Z−∩Z+;
also Z− ∩ Z+ = Z• since 1/Δ is locally summable (Sect. 13.6.3), and so Z+/− = Z• = Z0+

as stated. �
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14Brownian Local Times

Henry P. McKean Jr.1

Dedicated To Norman Levinson

14.1. Simple Brownian Motions

The purpose of this section is to review the elementary facts. The proofs are indicated.
Itô-McKean [3] and Lévy [5] can be consulted for additional information.

14.1.1. Standard Brownian Motion. Fix a standard one-dimensional Brownian mo-
tion BM with sample paths x : t → x(t) and probabilities Pa(B) depending upon the starting
point x(0) = a and the event B. The infinitesimal operator is G = 1

2D
2 acting upon C2(R1),

and the transition density is

p(t, x, y) = (2πt)−1/2e−(x−y)2/2t.

The Brownian traveller begins afresh at stopping times, the most important of which are the
passage times

mx = min(t : x(t) = x)

for x � 0, say. M = [m, P0] is additive: in fact, it is the one-sided stable process of exponent
1
2 , so-called, and you have the formula

E0

[
e−αmx

]
= e−(2α)1/2x

for α > 0 and x � 0, or what is the same,

P0

[
mx ∈ dt

]
=
(
2πt3

)−1/2
xe−x2/2tdt.

Proof. exp[αx(t) − α2t/2] is a martingale over BM, and for paths starting at x = 0, it
is bounded up to the stopping time m = mx for fixed x > 0. Therefore, you have

1 = E0

[
eαx(m)−α2m/2

]
= eαxE0

[
e−α2m/2

]
if you grant P0[m < ∞] = 1. The proof is finished by putting (2α)1/2 in place of α and
inverting the transform. �

1The Courant Institute of Mathematical Sciences, New York, NY 10012, USA, mckean@cims.nyu.edu.
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Figure 14.1.

14.1.2. Absorbing Brownian Motion. The absorbing Brownian motion BM∞ is the
diffusion on the half-line x � 0 with infinitesimal operator G∞ = 1

2D
2 acting upon functions

f of class C2[0,∞) with f(0) = 0. It can be presented in terms of the standard Brownian
motion x starting at x > 0 as

x∞(t) =

{
x(t) if t < m0

∞ if t � m0.

The jump to ∞ is spoken of as “killing.” The absorbing transition density is

p∞(t, x, y) = (2πt)−1/2
[
e−(x−y)2/2t − e−(x+y)2/2t

]
,

as you can verify either from the known law of m0 or from Fig. 14.1 taking advantage of the
fact that the standard Brownian traveller begins afresh at time m0 and cannot come from
x > 0 to −y < 0 without hitting the origin. By the second way,

Px

[
x∞(t) > y

]
= Px

[
x(t) > y, t < m0

]
= Px

[
x(t) > y

]− Px

[
x(t) < −y

]
,

and the formula follows upon differentiating by y. The formula for p∞ leads at once to the
joint law of x(t) and the maximum function t−(t) = maxs�t x(s), namely, for −∞ < x < y
and y > 0,

P0

[
x(t) < x, t−(t) < y

]
= P0

[
x(t) < x, my > t

]
= Py

[
x(t) > y − x, m0 > t

]
,

so

P0

[
x(t) ∈ dx, t−(t) ∈ dy

]
=
(
2/πt3

)1/2
(2y − x)e−(2y−x)2/2tdx dy.
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14.1.3. Reflecting Brownian Motion. The reflecting Brownian motion BM+

attached to the infinitesimal operator G+ = 1
2D

2 acting upon functions f of class C2[0,∞)
with f+(0) = 0 can be similarly presented as

x+(t) =
∣∣x(t)∣∣ for 0 � t < ∞.

Because −x is likewise a standard Brownian motion, the motion x+ so presented begins afresh
at its stopping times, and the identification of x+ with BM+ is easily made by computing its
transition density

p+(t, x, y) = (2πt)−1/2
[
e−(x−y)2/2t + e−(x+y)2/2t

]
from the self-evident formula

Px

[
x+(t) > y

]
= Px

[
x(t) > y

]
+ Px

[
x(t) < −y

]
.

14.1.4. Elastic Brownian Motion. The elastic Brownian motion BMγ is the diffusion
on the half-line with infinitesimal operatorG = 1

2D
2 acting upon functions f of class C2[0,∞)

with γf(0) = f+(0). The elastic transition density is

pγ(t, x, y) = p∞(t, x, y) +

∫ t

0

(
2πs3

)−1/2
(x+ y)e−(x+y)2/2spγ(t− s, 0, 0)ds,

in which

pγ(t, 0, 0) = 2

∫ ∞

0

e−γx
(
2πt3

)−1/2
xe−x2/2tdx.

BM∞ is the old absorbing Brownian motion, while BM0 is the reflecting Brownian motion
BM+, and for intermediate 0 < γ < ∞, you have something between the two, with a little
killing [

∫∞
0

pγdy < 1] but only while the particle is at the origin [Gγ = 1
2D

2 for x > 0].
The precise mechanism of this killing will be described in Sect. 14.2.8 by presenting the elastic
Brownian motion in terms of the standard Brownian motion and its local time.

14.2. Brownian Local Time

14.2.1. P. Lévy’s Presentation of BM+. Lévy [5, p. 234] presented BM+ in terms of
the standard Brownian motion x starting at x � 0 by means of the recipe

x−(t) =

{
x(t) if t < m0

t−(t)− x(t) if t � m0,

in which t−(t) is the maximum of x(s) for m0 � s � t; see Fig. 14.2. The proof that x− is
indeed a reflecting Brownian motion consists in checking first that the motion x−, so presented,
begins afresh at its stopping times, and second that x− has transition density p− = p+. A close
examination of the picture will convince you of the former, and the latter is easily deduced
from the joint law of x and t− of Sect. 14.1.2. The computation is simplified if x = 0, which
suffices for the proof; see Itô-McKean [3, pp. 40–42] for the details.

14.2.2. Mesure du voisinage. The presentation x− of Sect. 14.2.1 is now used as fol-
lows: From the picture, it is plain that t− is a continuous increasing function of t > 0 which
is flat off the roots Z− = (t : x−(t) = 0) of x−. What is not so plain is that t− is measurable
over x−, as follows from the remarkable formula of Lévy [5, pp. 239–241]:

t−(t) = lim
ε↓0

(2ε)−1 measure
(
s � t : x−(s) < ε

)
.
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Figure 14.2.

Because x− is a representation of BM+, it follows that the original presentation x+ admits
a similar functional t+, flat off the roots Z+ = (t : x+(t) = 0) and expressible by a similar
formula:

t+(t) = lim
ε↓0

(2ε)−1 measure
(
s � t : x+(s) < ε

)
.

The latter is the mesure du voisinage of Lévy [5, p. 228], alias the reflecting Brownian local
time. The above is taken for granted now: suffice it to say that the (pathwise) existence of
the mesure du voisinage t+ is proved in Sect. 14.3 and that the identification of the mesure
du voisinage of x− as t− = maxs�t x(s) is easily proved by checking that

t−(t) = lim
ε↓0

(2ε)−1measure
(
s � t : x−(s) < ε

)

in mean-square; see Itô-McKean [3, pp. 63–64] for the details. The numerous properties and
uses of the local time t+ occupy the rest of this section.

14.2.3. Inverse Local Time. The inverse function of the reflecting Brownian local
time,

t−1(t) = max
(
s : t+(s) = t

)
,

considered for paths starting at x+(0) = 0, is identical in law to the inverse function of t−,
alias the standard Brownian passage times m. As such, it is a copy of the one-sided stable
process of exponent 1

2 , and you easily deduce the results of P. Lévy [5, pp. 224–225]:

t+(t) = lim
ε↓0

(
πε

2

)1/2

× (
the number of intervals of [0, t]− Z+ of length � ε

)
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and

t+(t) = lim
ε↓0

(
π

2ε

)1/2

× (
the measure of intervals of [0, t]− Z+ of length < ε

)
.

Proof. The first formula stems from the fact that the number of cited intervals is the
same as the number of jumps of t−1 of magnitude � ε, up to time t+(t) (give or take one), as
you can see from a picture. The proof is finished by an application of the strong law of large
numbers: for fixed t � 0, the number n(ε) of jumps of t−1(s) : s � t of magnitude exceeding
ε is a homogeneous Poisson process relative to the parameter (2/πε)1/2, so

lim
ε↓0

(
πε

2

)1/2

n(ε)

is its rate, namely t, and plainly this holds for all t � 0, simultaneously, permitting you to
substitute t+(t) in place of t. The proof of the second formula is just as easy; see Itô-McKean
[3, pp. 31–33, 42–43] for more details. �

14.2.4. Downcrossings. Another entertaining way of computing the local time is em-
bodied in the formula of Itô-McKean [3, p. 48]:

t+(t) = lim
ε↓0

ε

2
× the number of times x+(s) : s � t

crosses down from x = ε to x = 0.

Proof. The idea of the proof is that, for fixed ε > 0, the quantity measure (s � t :
x+(s) < ε) is (approximately) the sum of independent copies of measure
(s � m : x+(s) < ε), in which m is the time it takes x+ to reach ε and come back to
0, one such copy to each downcrossing. This suggests that you should have

2εt+(t) =
[
1 + o(1)

] × the number of downcrossings

× E0

[
measure(s � m : x+(s) < ε)

]
,

or approximately so, and the proof is finished by evaluating

E0

[
measure(s � m : x+(s) < ε)

]
= E0

[
m+

ε

]
+ Eε

[
measure(s � m0 : x(s) < ε)

]
= 2ε2.

The first expectation is computed by stopping the martingale x2 − t at time m+
ε = min(t :

|x(t)| = ε), while the second comes from the evaluation∫ ∞

0

p∞(t, x, y)dt = 2y

for x > y; for more details, see Itô-McKean [3, pp. 48–50]. �

14.2.5. Hausdorff Measure. The fact that t+ is flat off Z+ and is a copy of the Brow-
nian maximum function leads at once to the fact that Z+ is of Hausdorff dimension � 1

2 .

Proof. Fix a number δ < 1
2 and cover Z+ ∩ [0, 1] by nonoverlapping intervals I of such

small lengths that t+ increases by t+(I) < |I|δ on each of them. Then

0 < t+(1) �
∑

t+(I) �
∑

|I|δ,
whence the outer δ-dimensional measure of Z+ ∩ [0, 1] is positive. �
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The fact that the dimension of Z+ is precisely 1
2 now follows from the formula of Itô-

McKean [3, pp. 50–51]:

t+(t) = lim
n↑∞

(
π

2

)1/2 ∑
k·2−n�t

(
kzn

+ − kzn
−)1/2,

in which kzn
−[kzn+] is the smallest (biggest) root of x+ = 0 in the interval (k − 1)2−n � t �

k2−n, with the understanding that kzn
− = kzn

+ = 0 if no such root exists.

Proof. Bring in the field Zn of x+(k2−n), kzn
−, and kzn

+ for k � 1, and notice that
Zn increases to the full field of x+ as n ↑ ∞. The formula is proved (for t = 1, say) by a
self-evident application of the martingale theorem to the conditional expectation

E0

[
t+(1) | Zn

]
=

(
π

2

)1/2 ∑
k�2n

(
kzn

+ − kzn
−)1/2.

The actual computation of the latter is made as follows. Pick 0 � t1 < t∗1 < t∗2 < t2 < ∞ and
look at

E0

[
t+
(
t2
)− t+

(
t1
) | x+(s) : s � t1, z− = t∗1, z+ = t∗2, x+(s) : s � t2

]
,

in which z−[z+] is the smallest [biggest] root of x+(s) = 0 in t1 � s � t2. Because t
+(t2)−t+(t1)

does not depend upon what happens before the stopping time z− or after the fixed time t2,
the expectation simplifies to

E0

[
t+
(
t2 − t∗1

) | z+ = t∗2 − t∗1, x+
(
t2 − t∗1

)
= x

]
with a self-evident abuse of notation. Besides, t+(t2−t∗1) depends in a reversible way upon the
tied reflecting motion x+(s) : s � t2 − t∗1 with law P0[B | x+(t2 − t∗1) = x], so the expectation
is reduced to

Ex

[
t+
(
t2 − t∗1

) | m0 = t2 − t∗2, x+
(
t2 − t∗1

)
= 0

]

= E0

[
t+
(
t∗2 − t∗1

) | x+(t∗2 − t∗1
)
= 0

]
by a second application of the passage time trick. Now you have simply to compute. You have

P0

[
x+(t) ∈ dx, t+(t) ∈ dy

]
=

(
2

πt3

)1/2

(x+ y)e−(x+y)2/2tdx dy

from Sect. 14.1.2 via the presentation x− = t− − x, and the evaluation

E0

[
t+(t) | x+(t) = 0

]
= (πt/2)1/2

follows. �
14.2.6. Germ Field. As you may easily believe by now, the germ field, defined by

intersecting over T > 0 the field of x+(t) : t � T , is precisely the field of t+. The proof can
be found in Itô-McKean [3, p. 79]. The moral is that t+ accounts for the whole of the fine
structure of x+ in the vicinity of x = 0.

14.2.7. Reflecting Brownian Motion. Skorokhod [10] noticed a very amusing variant
of the presentation x− = t− − x. You may say that the reflecting Brownian motion x− is the
sum of a standard Brownian motion (−x) plus the effect of a singular force (t−), acting while
the traveller is at x = 0 so as to keep him in the half-line x � 0. To put the matter a little
differently, the pair x+ and t+ is the only solution of x+ = x + t+ subject to (1) x+ is non-
negative and continuous, (2) t+ is increasing and flat off Z+ = (t : x+(t) = 0), (3) both x+

and t+ depend upon the standard Brownian motion x in a non-anticipating way. McKean [7,
pp. 71–77] can be consulted for additional information.
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Proof. Pick solutions x+1 , t
+
1 and x+2 , t

+
2 . Then x+1 − x+2 = t+1 − t+2 , and if ever x+1 > x+2 ,

then x+1 > 0, t+1 is flat nearby, t+2 increases, and the difference x+1 − x+2 goes down. But this
means that x+1 � x+2 , and a self-evident reprise finishes the proof. �

Remark 14.2.1. M. Motoo [private communication] informs me that you do not obtain
the reflecting Brownian motion x+ = x+ t+ by making δ ↓ 0 in the diffusion with infinitesimal
operator

G =
1

2
D2 + (k/2δ)× (the indicator function of 0 � x < δ)D,

though you would expect to do so for k = 1: in fact, you get a motion of the form

x∗ = x+
[(
ek − 1

)
/
(
ek + 1

)]
t∗

not confined to the half-line. The moral is that the multiplier (ek − 1)(ek + 1)−1 < 1 is not
large enough to prevent the traveller from entering x < 0.

14.2.8. Elastic Brownian Motion. The presentation of the elastic Brownian motion
BMγ advertised in Sect. 14.1.4 will now be explained. You take the reflecting Brownian path
x+ and kill it at time m∞, subject to the conditional law

P
[
m∞ > t | x+] = e−γt+(t),

and you prove that the killed motion xγ is a presentation of the elastic Brownian motion
associated with γf(0) + f+(0) = 0.

Amplification 14.2.2. m∞ is called an exponential local holding time because it is
distributed like t−1(e), in which e is an exponential holding time with rate γ, independent
of x+.

Proof. The first task is to verify that xγ , so presented, begins afresh at stopping times,
which is easy; see Itô-McKean [3, pp. 45–46] for details. Then you compute the transition
probabilities

Px

[
xγ(t) � y

]
= Px

[
x+(t) � y, t < m∞

]
= Ex

[
x+(t) � y, e−γt+(t)

]

= Px

[
x(t) < y, t < m0

]
+

∫ t

0

Px

[
m0 ∈ ds

]

= P0

[
x+(t− s) � y, e−γt+(t−s)

]
.

Now the identification follows from the formula of Sect. 14.1.4 and the joint law of x+ and t+,
employed at the end of Sect. 14.2.5; for additional information on this subject, see Itô-McKean
[2], in which the local time is used in a similar style to make the general Brownian motion on
the half-line attached to the infinitesimal operator G = 1

2D
2 acting upon functions f of class

C2[0,∞) with

p1f(0) + p2f
+(0) + p3Gf(0) =

∫ ∞

0

[
f(x)− f(0)

]
dp4(x)

for fixed non-negative p1, p2, p3, and increasing p4(x), subject to
∫ 1

0 x dp4(x) < ∞,∫∞
1 dp4(x) < ∞, and p1, p2, p3, p4 not all trivial. �
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14.3. Existence of Standard Brownian Local Times

The purpose of this section is to prove that for the standard Brownian motion x,

measure
(
s � t : a � x(s) < b

)
= 2

∫ b

a

t(t, x)dx,

simultaneously for all t � 0 and −∞ < a < b < ∞, with a density function t, alias the
standard Brownian local time, which is continuous in the pair (t, x) ∈ [0,∞)× R1. The fact
is due to Trotter [11]; it was also stated by Lévy [5, p. 239]. The existence of the reflecting
Brownian local time

t+(t) = lim
ε↓0

(2ε)−1 measure
(
s � t : x+(s) < ε

)
= 2t(t, 0)

of Sect. 14.2.3 is a self-evident consequence. Deeper properties of t are studied in Sect. 14.4
from which a different existence proof could be extracted, but it seems that the method
employed below is simpler if you want the present theorem, only. The proof is based upon
the formula of H. Tanaka [private communication]:

[
x(t)− x

]+ − [
x(0)− x

]+
=

∫ t

0

ex∞
[
x(s)

]
dx+(s) + t(t, x),

in which y+ stands for the larger of y and 0 and eab(x) is the indicator of the interval
a � x < b. The reader is assumed to be familiar with such Brownian integrals and with Itô’s
lemma which states that

f
[
x(t)

] − f
[
x(0)

]
=

∫ t

0

f ′[x(s)]dx(s) + 1

2

∫ t

0

f ′′[x(s)]ds
for functions f of class C2(R1); see, for example, McKean [7]. Tanaka’s formula is suggested
by applying Itô’s lemma to the function f(y) = [y − x]+. This is not a proof because f ′′ is
not even a bonafide function, but it suggests that you should declare

t(t, x) =
[
x(t)− x

]+ − [
x(0)− x

]+ −
∫ t

0

ex∞
[
x(s)

]
dx(s)

and try to prove that t, so presented, actually is the local time for x. The proof is indicated
below; for more details, see McKean [7, pp. 68–71].

Proof. A preliminary difficulty to be overcome is that the Brownian integrals are defined
for each x ∈ R1, separately, and you want to look at them for all (t, x) ∈ [0,∞) × R1,
simultaneously. Now for any nonanticipating Brownian functional e,

E

[(∫
e dx

)4
]
� 36E

[(∫
e2 dt

)2
]
,

whence the local bound

E0

∣∣∣∣
∫ t1

0

ea∞(x)dx −
∫ t2

0

eb∞(x)dx

∣∣∣∣
4

� a constant multiple of
(
t2 − t1

)2
+ (b− a)2,

and with this in hand, the familiar lemma of Čentsov-Kolmogorov supplies you with a version
e(t, x) of the Brownian integral which is almost surely continuous in the pair (t, x) ∈ [0,∞)×
R1. To identify

t(t, x) =
[
x(t)− x

]+ − [
x(0)− x

]+ − e(t, x)
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as the local time of x, fix t � 0 and −∞ < a < b < ∞. Then

∫ b

a

[
x(t)− x

]+
dx −

∫ b

a

[
x(0)− x

]+
dx

=

∫ b

a

dx

∫ x(t)

x(0)

ex∞(y)dy =

∫ x(t)

x(0)

dy

∫ y

−∞
eab(x)dx,

as you will easily see from a picture. A small extension of Itô’s lemma plus a little fooling
about with Riemann sums permits you to re-express this as

∫ t

0

[ ∫ x

0

eab(x)dx

]
dx+

1

2

∫ t

0

eab(x)ds

=

∫ b

a

dx

∫ t

0

ex∞(x)dx +
1

2

∫ t

0

eab(x)ds

=

∫ b

a

e(t, x)dx +
1

2
measure

(
s � t : a � x(s) < b

)
.

But now what sits at the beginning and at the end is continuous in (t, a, b) ∈ [0,∞) × R2,
so the formula holds without exception, for all t � 0 and a � b, simultaneously. The proof is
finished. �

Amplification 14.3.1. A little extra computation produces a modulus of continuity for
t due to Ray [8, p. 615]:

∣∣t(t, y)− t(t, x)
∣∣ � ∥∥t(t, ·)∥∥∞|2δ lg δ|1/2

for δ = |x − y| ↓ 0 and fixed t > 0; see McKean [7, p. 70]. The modulus is actually sharp, as
may be confirmed by means of the deeper results of Ray [8] explained in Sect. 14.4.5.

14.4. Deeper Properties of Brownian Local Time

The standard Brownian local time t = t(t, x) has an even more recondite property than
any described above. I allude to the remarkable fact that if the stopping time m is either a
passage time or an independent exponential holding time, then t(m, x) is a diffusion relative
to the spatial parameter x ∈ R1, closely related to the two- and four-dimensional Bessel
motions. This development is associated with the names of Knight [4], Ray [8], Silverstein
[9], and Williams [12, 13, 14]. I will follow the methods of Williams, as I find them most
appealing, but all of these papers will replay close study. Here, I will explain less and assume
more; in particular, I count upon familiarity with the time substitution recipe of Itô-McKean
[3]; see also Breiman [1, pp. 370–375] for a nicer account.

14.4.1. D. Williams: Markovian Properties of Brownian Local Time. Define
f(t) = measure(s � t : x(s) � 0) for a standard Brownian motion x starting at x � 0. Itô-
McKean [3, pp. 81–82] prove that x∗(t) = x[f−1(t)] is still another presentation of the reflecting
Brownian motion BM+. By substituting the “clock” f−1 into x, you are throwing out the left-
hand (shaded) excursions in Fig. 14.3 and pushing down the survivors to close up the gaps so
produced. The local time of x∗ at x = 0 is

t∗(t) = lim
ε↓0

(2ε)−1 measure
(
s � t : x∗(s) < ε

)
= t0

(
f−1

)
,
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t

Figure 14.3.

t0 being the local time for x at x = 0, and for γ > 0 you have, what is not so easy to see, the
formula of Williams [7]:

E0

[
e−γf−1(t) | x∗] = e−γt−(2γ)1/2t∗(t).

This is not needed below, but it is simple enough (if you know how) and will give you the
flavor of what is to follow.

Proof. To begin with, f−1(t) = t−1
0 [t∗(t)], and as you can see from the picture, t−1

0 is
identical in law to t∗−1 plus an independent copy thereof, namely, an independent copy m
of standard Brownian passage times. But now f−1(t) is presented as the sum of t and an
independent copy of m with parameter x = t∗(t), so

E0

[
e−γf−1(t) | x∗] = E0

[
e−γte−γmx | x∗] = e−γt−(2γ)1/2t∗(t).

The proof is finished. �

Bonus 1. By taking expectations on both sides, you can easily deduce the arcsine law
of Lévy [5, p. 323]:

P0

[
f(t) � T

]
=

2

π
sin−1(t/T )1/2

for t � T .

A deeper formula of Williams [12] is

E0

[
e−γtb(f

−1(t)) | x∗] = exp

[
− γt∗(t)

1− γb

]
,

for b < 0, in which tb is standard Brownian local time at x = b.



14.4. DEEPER PROPERTIES OF BROWNIAN LOCAL TIME 305

Proof. f−1(t) is identical in law to t plus an independent copy of m with parameter
t∗(t), as above. Because tb(f

−1) is flat on the right-hand excursions of x, you can identify it
with tb[t

−1
0 (t∗)], in which t∗ is fixed while t0 and tb are based upon an independent standard

Brownian motion. A careful look at Fig. 14.3 will confirm this: the chief point is that x∗ is
independent of the left-hand excursions of x, while it is these, only, that account for tb. The
formula now follows from the evaluation

E0

[
e−γtb(t

−1
0 (t))

]
= exp

[ −γt

1− γb

]

of Itô-McKean [3, Problem 2.8.4]. �

An immediate consequence is the theorem of Ray [8] and Knight [4] that the process
[t(m1, 1 − x) : 0 � x � 1, P0] is a copy of [ 12 r

2
2(x) : 0 � x � 1], in which r2 is the two-

dimensional Bessel process, i.e., the radial part of a two-dimensional Brownian motion; see
Itô-McKean [3, Problems 2.8.5 and 2.8.6] for another proof.

Proof. Williams’ second formula is obviously still correct if you replace t by a stopping
time of x∗ such as m∗

1 = min(t : x∗(t) = 1) = f(m1), so you have

E0

[
e−γtb(m1) | x∗] = exp

[
− γt0

(
m1

)
1− γb

]
.

The fact that t(m1, ·) is Markovian is now self-evident, t(m1, x) : 0 � x � 1 being measurable
over x∗, and now it is a simple exercise to identify the latter as 1

2 r
2
2; for example, it is easy to

pick off the infinitesimal operator G = tD2 +D. �

14.4.2. Aside on Cameron-Martin’s Formula. An amusing side product of the pre-
sentation t(m1, 1− x) = 1

2 r
2
2(x) is the formula of Cameron-Martin

E0

[
e−γ

∫
1
0
x2(t)dt

]
=
(
cosh(2γ)1/2

)−1/2
.

Proof. r22 is the sum of two independent copies of x2, so

(
E0

[
e−γ

∫
1
0
x2(t)dt

])2
= E0

[
e−γ

∫
1
0
x22(x)dx

]
= E0

[
e−γ

∫
1
0
2t(m1,x)dx

]
= E0

[
e−γf(m1)

]
= E0

[
e−γm∗

1
]
,

in which m∗
1 is the passage time of the reflecting Brownian motion x∗ to 1, alias the passage

time m of a standard Brownian motion x to ±1. The evaluation now follows from the fact
that exp[(2γ)1/2x− γt] is a martingale over x and from the independence of x(m) and m:

1 = E0

[
e(2γ)

1/2x(m)−γm
]
= cosh(2γ)1/2E0

[
e−γm

]
. �
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Figure 14.4.

14.4.3. D. Williams Continued. The present article looks at [t(m1, x) : 0 � x � 1, P0]
in more detail and then at [t(m1, x) : x � 0, P0], following Williams [13] in part. Bring in the
last leaving time l = max(t < m1 : x(t) = 0) and the maximum a of x(t) for t � l, as in
Fig. 14.4, and let m be the root t < l of x(t) = a; see Itô-McKean [3, Problem 2.2.2] for a
proof that there is no other such root. The number 0 < a < 1 is uniformly distributed, and
conditional upon its value a = a, the excursions x(t) : 0 � t � m and x(l − t) : 0 � t � l − m
look like independent copies of x(t) : t � ma, as you can easily believe but less easily prove.2

Therefore, by Sect. 14.4.1, t(m, x) : 0 � x � 1 and t(l, x) − t(m, x) : 0 � x � 1 look like
independent copies of 1

2 r
2
2[(a− x)+], while their sum looks like 1

2 r
2
4[(a− x)+], in which r4 is a

four-dimensional Bessel process, i.e., the radial part of a four-dimensional Brownian motion.
A similar presentation of t(m1, x) − t(l, x) : 0 � x � 1 can be obtained, but it is not so

cheap. The reversed excursion 1− x(m1 − t) : 0 � t � m1 − l looks like a standard Brownian
motion conditioned so as not to come back to x = 0, and stopped at its passage time to x = 1;
as such, it is identical in law to the three-dimensional Bessel process r3 similarly stopped; see
McKean [6] for a full proof. An indication is provided by the evaluation

lim
T↑∞

Px

[
x(t) ∈ dy | m0 > T

]

= Px

[
x(t) ∈ dy, m0 > t

]
lim
T↑∞

Py

[
m0 > T − t

]
Px

[
m0 > T

]

= Px

[
x(t) ∈ dy, m0 > t

]
(y/x),

2D. Williams [May 8, 1972] writes: “I still cannot find a sane proof of [this.]—To get a sane proof, I
formulated a Splitting Time Theorem that good Markov processes start afresh at ‘splitting times’ (but with
new laws). You of all people should recognize the terminology! M. Jacobsen (visiting here from Copenhagen)
has a nice Galmarino-type definition of splitting times, but we cannot get near the theorem. All the l’s and
m’s in your paper are splitting times so the result would be useful.”
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which suggests that the infinitesimal operator of the Brownian motion, so conditioned, is, or
ought to be,

G3 =
1

2
x−1D2x =

1

2
D2 + x−1D,

and that is precisely the generator of r3. By symmetry, the excursion x(t) : l � t � m1 may
now be presented as r3(t) : 0 � t � m3, in which m3 is the passage time min(t : r3(t) = 1),
so to finish the story of t(m1, x) : 0 � x � 1, you have only to find the proper presentation of
the Bessel local time

t3(x) = lim
ε↓0

(2ε)−1 measure
(
t � m3 : x � r3(t) < x+ ε

)
,

alias t(m1, x)− t(l, x), for 0 � x � 1. The result of Ray [8] and Knight [4] is that this process
is a copy of 1

2x
2r22[x

−1(1 − x)] : 0 � x � 1. Here you may recognize xr2[x
−1(1 − x)] as a

representation of the two-dimensional Bessel process starting at r2 = 0 and conditioned so
as to come back to r2 = 0 at time 1, as you infer from the fact that xx[x−1(1 − x)] is a
representation of the standard Brownian motion, so conditioned.

Proof of t3(x) =
1
2x

2r22[x
−1(1− x)]. The recipe of time substitutions of Itô-

McKean [3, pp. 167–170] shows that in the scale y = −1/r3, the three-dimensional
Bessel process looks like a standard Brownian motion n run with the clock f−1 in-

verse to f(t) =
∫ l

0
n−4(s)ds. The passage time m3 is now presented as f(m−1) with

m−1 = min(t : n(t) = −1), so that if e is the indicator function of −1/x � y < −1/(x+ ε),
then you have

t3(x) = lim
ε↓0

(2ε)−1measure
(
t � m3 : x � r3(t) < x+ ε

)

= lim
ε↓0

(2ε)−1measure

(
t � f(m−1) :

−1

x
� n

[
f−1(t)

]
<

−1

x+ ε

)

= lim
ε↓0

(2ε)−1

∫ f(m−1)

0

e
[
n
(
f−1

)]
dt

= lim
ε↓0

(2ε)−1

∫ m−1

0

e
[
n(t)

]
df(t)

= lim
ε↓0

(2ε)−1

∫ m−1

0

e
[
n(t)

]
n−4(t)dt

= lim
ε↓0

(2ε)−1

∫ −1/(x+ε)

−1/x

t
(
m−1, y

)
y−42 dy

= x2t
(
m−1,−1/x

)
,

in which t is local time for n. But, by Sect. 14.4.1, this means that t3 may be presented in the
advertised form:

x2 × 1

2
r22

[
− 1−

(
− 1

x

)]
=

1

2
x2r22

[
x−1(1− x)

]
.

The proof is finished. �
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Figure 14.5.

The same line of reasoning may be applied to t(m1, x) for x � 0. The minimum b of x(t)
for t � l is distributed according to the law P0[b < x] = (1− x)−1 for x � 0, and conditional
upon b = b, the excursion 1− x(m1 − t) : 0 � t � m1 −m looks like r3 stopped at its passage
time to 1− b, m being the root of x = b; see Fig. 14.5. Therefore, t(m1, x)− t(m, x) : x � 0 can
be presented as

(1− x)2t
[
m−(1−b)−1 , −(1− x)−1

]
,

alias

1

2
(1− x)2r22

[
(1 − x)−1 − (1− b)−1

]
.

Besides, it is only the excursion x(l − t) : 0 � t � l − m that contributes, and the excursion
x(t) : 0 � t � m is an independent copy thereof, so the total local time t(m1, x) : x � 0 can be
presented as

1

2
(1− x)2r24

[
(1 − x)−1 − (1− b)−1

]
,

a fact which is also due to Ray [8] and Knight [4].

14.4.4. A Time Reversal. To prepare for the next article, it is convenient to prove
at this place that if e is an exponential holding time with rate 1

2 and if x is an independent
standard Brownian motion starting at x = 0, then conditional upon the place a = x(e) > 0,
the reversed process x−1(t) = x(e − t) 0 � t � e is identical in law to the motion a + x(t) − t
stopped at its last leaving time from x = 0.
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Proof. The main step is to compute

P0

[
x−1

(
t1
) ∈ dx1, . . . , x

−1
(
tn
) ∈ dxn, tn < e | x(e) = a

]

=

∫∞
tn

P [e ∈ dt]P0

[
x
(
t− t1

) ∈ dx1, . . . , x
(
t− tn

) ∈ dxn, x(t) ∈ da
]

P0

[
x(e) ∈ da

]

= ea
∫ ∞

tn

e−t/2dtP0

[
x
(
t− t1

) ∈ dx1, . . . , x
(
t− tn

) ∈ dxn | x(t) = a
] e−a2/2t

(2πt)1/2

= ea
∫ ∞

tn

e−t/2dtPa

[
x
(
t1
) ∈ dx1, . . . , x

(
tn
) ∈ dxn | x(t) = 0

] e−a2/2t

(2πt)1/2

= ea
∫ ∞

tn

e−t/2dtPa

[
x
(
t1
) ∈ dx1, . . . , x

(
tn
) ∈ dxn

] e−xn2/2(t−tn)

(
2π
(
t− tn

))1/2
= Pa

[
x
(
t1
) ∈ dx1, . . . , x(tn) ∈ dxn

]× ea−xn−tn/2,

for xn > 0. The factor exp(a− xn − tn/2) is now brought underneath the expectation sign in
the form exp(−[x(tn) − x(0)] − tn/2), in which you recognize the Cameron-Martin factor for
the Brownian motion with drift −1. The rest of the proof is easy. �

14.4.5. D. Williams Continued. The purpose of this article is to prove, after the
manner of Williams [14], the results of Ray [8] concerning the standard Brownian local times
t(e, x) : 0 � x � ∞ for e an exponential holding time with rate 1

2 which is independent of
x, everything being considered conditional upon the place a = x(e) > 0. The local time is
unchanged if you go over to the reversed process x−1(t) = x(e− t) : 0 � t � e of Sect. 14.4.4, so
you may as well look at the local time of n = a+x(t)− t up to its last leaving time from x = 0.
The situation is depicted in Fig. 14.6, in which b = maxt�0 n(t), m is the root of n(t) = b, and
l is the last leaving time of n from 0 < a < b. The recipe of time substitutions is now used
much as in Sect. 14.4.3: In the scale x = 1

2e
2y, n looks like a new standard Brownian motion

x run with the clock f−1 inverse to f(t) =
∫
0
[4x2(s)]−1 ds, and you deduce that the original

t

f

t

m

baO

Figure 14.6.
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Brownian local times t(e, x) can be presented as

1

2
e−2xr22

(
e2x/2

)
if 0 � x � a

and as
1

8
e2xr24

[
2
(
e−2x − e−2b

)]
if a � x � b.

The details are left to you as an exercise.

Remark 14.4.1. The fact that Ray’s modulus for t, described in Sect. 14.3, is exact is an
immediate consequence of these presentations.
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15Brownian Motions on a Half Line

K. Itô and H. P. McKean, Jr.1

Dedicated to W. Feller

‘Numbering (in italics). (1) means formula 1 in the present section; (2.1) means formula
(1) of Section 15.2, etc.’

15.1. The Classical Brownian Motions

Consider the space of all (continuous) sample paths w : [0,+∞) → R1 with coordinates
x(t, w) = x(t) (t � 0), the field A of events

B = w−1
t1t2···tn(A) =

(
w :

(
x
(
t1
)
, x
(
t2
)
, . . . , x

(
tn
)) ∈ A

)
0 < t1 < t2 < · · · < tn, A ∈ B

(
Rn

)
, n � 1, 2

(1)

and the Gauss kernel

g(t, a, b) = e−(b−a)2/2t/(2πt)1/2, (t, a, b) ∈ (0,+∞)×R2.(2)

Because of

g(t, a, b) > 0,(3a) ∫
g(t, a, b)db = 1,(3b)

g(t, a, b) =

∫
g(t− s, a, c)g(s, c, b)dc (t > s),(3c)

the function

Pa(B) =

∫
A

g
(
t1, a, b1

)
g
(
t2 − t1, b1, b2

) · · · g(tn − tn−1, bn−1, bn) · db1db2 · · · dbn(4)

of B = w−1
t1t2···tn(A) ∈ A is well-defined, nonnegative, additive, and of total mass +1 for each

a ∈ R1, and, as N. Wiener [20] discovered, the estimate∫
|a−b|>ε

g(t, a, b) db < constant× ε−1t1/2e−ε2/2t, t ↓ 0(5)

permits us to extend it to a nonnegative Borel measure Pa(B) of total mass +1 on the Borel
extension B of A (see P. Lévy [13] for an alternative proof).

1Fulbright grantee 1957–1958 during which time the major part of this material was obtained; the support
of the Office of Naval Research, U.S. Govt. during the summer of 1961 is gratefully acknowledged also.

2B(Rn) is the usual topological Borel field of the n-dimensional euclidean space Rn.
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Granting this, it is apparent that Pa(x(0) ∈ db) is the unit mass at b = a. Pa(B) is now
interpreted as the chance of the event B for paths starting at the point a and the sample path
w : t → x(t) with these probabilities imposed is called standard Brownian motion starting at
a.

Given t � 0, if B ∈ B and if w+
t denotes the shifted path w+

t : s → x(t + s, w), then (4)
implies

Pa

(
w+

t ∈ B | x(s) : s � t
)
= Pb(B), b = x(t),(6)

i.e., the law of the future x(s) : s > t conditional on the past x(s) : s � t depends upon the
present b = x(t) alone (in short, the Brownian traveller starts afresh at each constant time
t � 0).

Because the Gauss kernel g(t, a, b) is the fundamental solution of the heat flow problem

∂u

∂t
=

1

2

∂2u

∂a2
, (t, a) ∈ (0,+∞)×R1,(7)

the operator G = D2/2 acting on3 C2(R1) is said to generate the standard Brownian motion,
and it is natural to seek other differential operatorsG• giving rise via the fundamental solution
of ∂u/∂t = G•u and the rule (4) to similar (stochastic) motions.

Consider, for example, the operator4

G+ = G | C2[0,+∞) ∩ (
u : u+(0) = 0

)
:(8)

the fundamental solution of ∂u/∂t = G+u is

g+(t, a, b) = e−(b−a)2/2t/(2πt)1/2 + e−(b+a)2/2t/(2πt)1/2, t > 0 � a, b,(9)

which satisfies (3a), (3b), and (3c), and the corresponding (reflecting Brownian) motion is
identical in law to

x+ = |x|,(10)

where x is a standard Brownian motion.
Consider next the operator

G− = G | C2[0,+∞) ∩ (
u : u(0) = 0

)
:(11)

the fundamental solution of ∂u/∂t = G−u is

g−(t, a, b) = e−(b−a)2/2t/(2πt)1/2 − e−(b+a)2/2t/(2πt)1/2, t > 0 � a, b,(12)

which satisfies (3) with ∫
g−(t, a, b)db < 1(1.3bbis)

in place of (3b), and the corresponding (absorbing Brownian) motion is identical in law to

x−(t) = x+(t) if t < m0,

= ∞ if t � m0,
(13)

where x+ is the reflecting Brownian motion described above, m0 is its passage time m0 =
min(t : x+(t) = 0), and ∞ is an extra state adjoined to R1.

Given 0 < γ < +∞, the operator

Gγ = G | C2[0,+∞) ∩ (
u : γu(0) = u+(0)

)
(14)

3Cd(R1) is the space of bounded continuous functions f : R1 → R1 with d bounded continuous derivatives.
4C2[0,+∞) is the space of functions u ∈ C[0,+∞) with D2u ∈ C(0,+∞) and (D2u)(0) ≡ (D2u)(0+)

existing. u+(0) = limε↓0 ε−1[u(ε)− u(0)].
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is also possible: the fundamental solution of ∂u/∂t = Gγu is

gγ(t, a, b) = gγ(t, b, a)

= g−(t, a, b) +
∫ t

0

a(
2πs3

)1/2 e−a2/2sgγ(t− s, 0, b)ds, t > 0 < a, b,
(15a)

gγ(t, 0, 0) = 2

∫ +∞

0

e−γc c(
2πt3

)1/2 e−c2/2tdc, t > 0,(15b)

which satisfies (3) with (1.3bbis) in place of (3b), and the corresponding (elastic Brownian)
motion is identical in law to

xγ(t) = x+(t) if t < m∞,

= ∞ if t � m∞,
(16a)

m∞ = t−1(e/γ),(16b)

where e is an exponential holding time independent of the reflecting Brownian motion x+ with
law P·(e > t) = e−t and t−1 is the inverse function of the reflecting Brownian local time:

t+(t) = lim
ε↓0

(2ε)−1 measure
(
s : x+(s) < ε, s � t

)
(17)

(see Sects. 15.3, 15.4, 15.14 for additional information about local times).

15.2. Feller’s Brownian Motions

W. Feller [3] discovered that the classical Brownian generators G± and Gγ (0 < γ < +∞)
of Sect. 15.1 are the simplest members of a wide class of restrictionsG• of G | C2[0,+∞) which
generate what could be called Brownian motions on [0,+∞). Feller found that the domain
D(G•) ⊂ C2[0,+∞) of such a generator could be described in terms of three nonnegative
numbers p1, p2, p3, and a nonnegative mass distribution p4(dl) (l > 0) subject to5

p1 + p2 + p3 +

∫
0+

(l ∧ 1)p4(dl) = 1(1)

as follows:

D
(
G•) = C2[0,+∞) ∩

(
u : p1u(0)− p2u

+(0)

+ p3(Gu)(0) =

∫
0+

[
u(l)− u(0)

]
p4(dl)

)
.

(2)

M. Kac [10] cited the problem of describing the sample paths of the elastic Brownian motion
(p3 = p4 = 0 < p1p2), and it was W. Feller’s (private) suggestion that these should be the
reflecting Brownian sample paths, killed at the instant some increasing function t+(Z+∩ [0, t])
of the visiting set Z+ ≡ (t : x+(t) = 0) hits a certain level, that was the starting point of this
paper.

P. Lévy’s profound studies [13] had clarified the fine structure of the standard and re-
flecting Brownian motions and their local times, the papers of E. B. Dynkin [2] and G. Hunt
[7] on Markov times provided an indispensable tool, H. Trotter [17] proved a deep result
about local times, and W. Feller [4] had presented a (partial) description of the sample paths
of the Brownian motion associated with G• in the special case p4(0,+∞) < +∞ (the case
p4(0,+∞) = +∞ was not discovered in Feller’s original proof of (2), but this error was
corrected by W. Feller [5] and A. D. Ventcel’ [18]).

5a ∧ b is the smaller of a and b.
∫
0+ means

∫
0<l<+∞.
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It was left to use these ideas (and some new ones) to build up the sample paths of Feller’s
Brownian motions from the reflecting Brownian motion and its local time and (independent)
exponential holding times and differential processes; that is the aim of the present paper.

15.3. Outline

Brownian motions on [0,+∞) are defined from a probabilistic point of view in Sect. 15.5,
and a special case is disposed of in Sect. 15.6. Green operators

G•
α : f −→ E•

·

(∫
0

e−αtf
(
x•
)
dt

)

and the generator G• (= α −G•−1
α ) are introduced in Sect. 15.7 and computed in Sect. 15.8

using a method of E. B. Dynkin [2]. G• turns out to be the restriction of G | C2[0,+∞) to a
domain D(G•) as described in (2.2); it is the simplest complete invariant of the motion, i.e.,
the associated sample paths can be built up from

(a) a reflecting Brownian motion x+,
(b) a differential process p with increasing sample paths based on p2 and p4,
(c) a stochastic clock f−1 based on x+, p, and p3,
(d) a killing time based on x+, p, f−1, and p1

(see Sects. 15.9, 15.10, 15.11, 15.12, 15.13, 15.14, and 15.15).
Consider, for the sake of conversation, the case:

p4(0,+∞) = +∞ if p2 = 0,(1)

introduce the reflecting Brownian motion x+ as described in Sect. 15.1 (u+(0) = 0), and let
t+ be P. Lévy’s mesure du voisinage (local time)

t+(t) = lim
ε↓0

(2ε)−1 measure
(
s : x+(s) < ε, s � t

)
(2)

as described in Sect. 15.4.
Given p1 = p3 = 0, if p(dt × dl) is a Poisson measure as described in Sect. 15.11 with

mean dt× p4(dl) independent of x
+, if p is the (increasing) differential process

p(t) = p2t+

∫
0+

lp
(
[0, t]× dl

)
, t � 0,(3)

and if p−1 is its inverse function, then the desired motion is identical in law to6

x• = pp−1t+ − t+ + x+,(4)

which could be described as a reflecting Brownian motion jumping out from l = 0 like the
germ of the differential process p run with the clock p−1t+ (see Sect. 15.12 for pictures).

p−1t+ can be interpreted as a local time for the new sample path x• (see Sect. 15.14), and,
with its help, the description of the sample paths can be completed as follows: in case p1 = 0,
the desired motion is identical in law to

x•
(
f−1

)
, x• = pp−1t+ − t+ + x+,(5a)

where the stochastic clock f−1 is the inverse function of

f = t+ p3p
−1
(
t+(t)

)
,(5b)

while, in case p1 > 0, it is identical in law to x•(f−1) killed (i.e., sent off to an extra state ∞)
at a time m•∞ (< +∞) with conditional distribution

P·
(
m•

∞ > t | x•(f−1
))

= e−p1p
−1t+f−1

.(6)

6pp−1t+ means p(p−1(t+)).
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Here are two simple cases to be treated in Sect. 15.10.
Given p1 = p4 = 0 < p2p3 (i.e., u+(0) = (p3/p2)(G

•u)(0)), the desired motion is identical
in law to

x• = x+
(
f−1

)
,(7a)

f = t+
(
p3/p2

)
t+.(7b)

f−1 counts standard time while x•(t) > 0 but runs slow on the barrier, and hence, compared to
the reflecting Brownian motion, x• lingers at l = 0 a little longer than it should ; as a matter
of fact,

measure
(
s : x•(s) = 0, s � t

)
= p3t

+
(
f−1(t)

)
> 0(8)

if t > min(s : x•(s) = 0).
Given p3 = p4 = 0 < p1p2 (i.e., (p1/p2)u(0) = u+(0)), the desired (elastic Brownian)

motion is identical in law to a reflecting Brownian motion, killed at time m•∞ with conditional
distribution

P·
(
m•

∞ > t | x+) = e−(p1/p2)t
+(t),(9)

i.e., killed on the barrier l = 0 at a rate (p1/p2)t
+(dt) : dt proportional to the local time.

Brownian motions with similar barriers at both ends of [−1,+1] or with a two-sided bar-
rier on the line or the unit circle are studied in Sects. 15.16 and 15.17, Sect. 15.18 treats a wider
class of Brownian motions on [0,+∞), substantiating a conjecture of N. Ikeda, Sect. 15.19 de-
scribes the sample paths in case a diffusion operator Gu = u+(dl)/e(dl) is used in place of
the reflecting Brownian generator G+, and Sect. 15.20 indicates how to adapt the method to
birth and death processes.

15.4. Standard Brownian Motion: Stopping Times and Local Times

Before coming to Brownian motions on a half line, it is convenient to collect in one place
some facts about the standard Brownian motion on the line (see K. Itô and H. P. McKean,
Jr. [9] for the proofs and additional information).

Consider a standard Brownian motion with sample paths w : t → x(t), universal field
B, and probabilities Pa(B) as described in Sect. 15.1, define7 Bt = B[x(s) : s � t], and, if
m = m(w) is a stopping time, i.e., if

0 � m � +∞,(1a)

(m < t) ∈ Bt, t � 0, 8(1b)

then introduce the associated field

Bm+ = B ∩ (
B : (m < t) ∩B ∈ Bt, t � 0

)
.(2)

Bm+ =
⋂

s>t Bs in case m ≡ t; in general, (m < t) ∈ Bm+ (t � 0), and, with the aid of

Ba+ ⊂ Bb+, a � b,(3a)

Ba+ =
⋂
ε>0

Bb+, b = a+ ε,(3b)

it is not hard to check that Bm+ measures the past x(t) : t � m+, i.e.,

Bm+ ⊃
⋂
ε>0

B
[
x
(
t ∧ (m+ ε)

)
: t � 0

]
.(4)

7B[q(t) : a � t < b] means the smallest Borel subfield of B measuring the motion indicated inside the

brackets.
8(m < t) is short for (w : m < t).
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E. B. Dynkin [2] and G. Hunt [7] discovered that the Brownian traveller starts afresh at
a stopping time; this means that for each stopping time m, each a ∈ R1, and each B ∈ B,

Pa

(
w+

m ∈ B | Bm+

)
= Pb(B), b = x(m)(5)

where w+
m denotes the shifted path w+

m : t → x(t +m), x(+∞) ≡ ∞9, and P∞(x(t) ≡ ∞, t �
0) = 1. Because m ≡ t is a stopping time, (5) includes the simple Markovian evolution noted
in (1.6); an alternative statement is that conditional on m < +∞ and on the present state
b = x(m), the future x(t+m) : t � 0 is a standard Brownian motion, independent of m and of
the past x(t) : t � m+.

Given l > 0, the passage time ml = min(t : x(t) = l) is a stopping time, and the motion
[ml : l � 0, P0] is a differential process, homogeneous in the parameter l; it is, in fact, the

one-sided stable process with exponent 1
2 , rate

√
2, and law

P0

(
ml ∈ dt

)
=

l(
2πt3

)1/2 e−l2/2tdt(6)

as P. Lévy [12] discovered.
m, itself, is a sum of positive jumps (see Sect. 15.11 for information on this point), and

its inverse function t−(t) = maxs�t x(s) is continuous and flat outside a (Cantor-like) set of

times of Hausdorff-Besicovitch dimension number 1
2 ; the joint law

P0

[
x(t) ∈ da, t−(t) ∈ db

]
= 2

2b− a(
2πt3

)1/2 e−(2b−a)2/2tda db, b � 0, a � b(7)

is cited for future use.
Consider, next, the reflecting Brownian motion x+ = |x|.
Given a reflecting Brownian stopping time m, i.e., a time 0 � m � +∞ with (m < t) ∈

B[x+(s) : s � t] (t � 0), m is likewise a standard Brownian stopping time, and it follows that,
conditional on m < +∞ and b = x+(m), the shifted path x+(l + m) : t � 0 is a reflecting
Brownian motion, independent of m and of the past x+(t) : t � m; in brief, the reflecting
Brownian motion starts afresh at its stopping times (Fig. 15.1).

P. Lévy [13] observed that if x is a standard Brownian motion starting at 0, then x− = t−−x
(t− = maxs�t x(s)) is identical in law to the reflecting Brownian motion x+ starting at 0.

Figure 15.2 is a mere caricature of the path, the actual visiting set (t : x = 0) being a closed
Cantor-like set of Lebesgue measure 0.

P. Lévy also indicated a proof of

P0

[
lim
ε↓0

(2ε)−1 measure
(
s : x−(s) < ε, s � t

)
= t−(t), t � 0

]
= 1,(8)

which implies that t− is a function of x− alone, and deduced the existence of the reflecting
Brownian local time (mesure du voisinage):

t+(t) = lim
ε↓0

(2ε)−1 measure
(
s : x+(s) < ε, s � t

)
(9)

(see H. Trotter [17] for a complete proof). t+ grows on the visiting set Z+ = (t : x+(t) = 0);
it is identical in law to t−, and its inverse function t−1 is identical in law to the standard
Brownian passage times; especially, the joint law

P0

[
x+(t) ∈ da, t+(t) ∈ db

]
= 2

b+ a(
2πt3

)1/2 e−(b+a)2/2tda db, a, b � 0,(10)

is deduced from the joint law of x and t− above.

9∞ is an extra state 	∈ R1.



15.4. STANDARD BROWNIAN MOTION: STOPPING TIMES AND LOCAL TIMES 319

Figure 15.1

Figure 15.2
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Skorohod [15, 16] has made the point that if x is a standard Brownian motion, if 0 � x•

is continuous, if 0 � t• is continuous, increasing, and flat outside Z• = (t : x• = 0), and if
x• = t• − x, then x• = x− and t• = t−.

15.5. Brownian Motions on [0,+∞)

Given probabilities P •
a (B) (a ∈ [0,+∞)∪∞) defined on the natural universal field B• of

the path space comprising all sample paths

w• : t −→ x•(t) ≡ x•(t+) ∈ [0,+∞) ∪∞,(1a)

x•(t) ≡ ∞, t � m•
∞ ≡ inf

(
t : x• = ∞)

(1b)

and subject to

P •
a (B) is a Borel function of a,(2a)

P •
a

[
x•(0) ∈ db

]
is the unit mass at b = a (a �= 0),(2b)

let us speak of the associated motion as

(a) simple Markov if it starts afresh at constant times:

P •
·
(
w•+

s ∈ B | B•
s

)
= P •

a (B), s � 0, B ∈ B•, a = x•(s),(3a)

where w•+
s is the shifted path t → x•(t+ s) and B•

s is the field of x•(t) : t � s,

(b) strict Markov if it starts afresh at its stopping times:

P •
·
(
w•+

m• ∈ B | B•
m•+

)
= P •

a (B), B ∈ B•, a = x•
(
m•),(3b)

for each stopping time

0 � m• � +∞,(4a) (
m• < t

) ∈ B•
t (t � 0),(4b)

where x•(+∞) ≡ ∞ and B•
m•+ is the field of events

B ∈ B•,(5a)

B ∩ (
m• < t

) ∈ B•
t (t � 0),(5b)

(c) a Brownian motion if, in addition to (b), the stopped path

x•(t) : t < m0+ = lim
ε↓0

inf
(
t : x• < ε

)
, x•(0) = l > 0,(6a)

is identical in law to the stopped standard Brownian motion

x(t) : t < m0 = min(t : x = 0), x(0) = l.(6b)

E•· denotes the integral (expectation) based upon P •· , and E•· (e,B) =
E•

· (B, e) denotes the integral of e = e(w•) extended over B; the subscript · as in (3a)
and (3b) stands for an unspecified point of [0,+∞) ∪ ∞ with the understanding that if
several dots appear in a single formula, then it is the same point that is meant each time.
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15.6. Special Case: p+(0) < 1

Given a Brownian motion as described above and a sample path x• starting at x•(0) =
l > 0, the crossing time

m• = m•
ε = inf

(
t : x•(t) < ε

)
, 0 < ε < l,(1)

is a stopping time, P •
l [x

•(m•
ε) = ε] = 1, m•

0+ = limδ↓0 m•
δ = m•

ε + m•
0+(w

•+
m•), and, since the

stopped path x•(t) : t < m•
0+ is standard Brownian,

E•
l

[
e−αm•

0+ , x•
(
m•

0+

) ∈ B
]

= E•
l

(
e−αm•

εE•
l

[
exp

(− αm•
0+

(
w•+

m•
))
, x•

(
m•

0+

(
w•+

m•
)
, w•+

m•
) ∈ B | B•

m•+
])

= E•
l

(
e−αm•

ε
)
E•

ε

[
e−αm•

0+ , x•
(
m•

0+

) ∈ B
]

−→ E•
l

(
e−αm•

0+
)
P •
ε

[
x•
(
m•

0+

) ∈ B
]

(ε ↓ 0)

= e−(2α)1/2lP •
l

[
x•
(
m•

0+

) ∈ B
]
, 10

(2)

i.e., x•(m•
0+) is independent of m•

0+, and its law p+(B) = P •
l [x

•(m•
0+) ∈ B] does not depend

on l > 0.
Consider the law p(dl) ≡ P •

0 [x
•(0) ∈ dl], and, in case p(0) = 1, let e be the exit time

inf(t : x•(t) �= 0).
Because

p+(0) = P •
l

[
x•
(
m•

0+

)
= 0, x•

(
0, w•+

m•
0+

)
= 0

]
= p+(0)p(0), l > 0,(3a)

and

p(0) = P •
0

[
x•(0) = 0, x•

(
0, w•+

0

)
= 0

]
= p(0)2,(3b)

the possibilities are

p(0) = p+(0) = 0,(4a)

p(0) = 1 > p+(0),(4b)

p(0) = p+(0) = 1.(4c)

(4a) is the simplest case. Figure 15.3 shows the motion [x•, P •
0 ]: the jumps l1, l2, etc. are

independent with common law p+(dl), the initial position l0 is independent of l1, l2, etc. with
law p(dl), and the excursions leading back to l = 0+ are standard Brownian.

(4b) is more interesting. e is an exponential holding time independent of x•(e) with law
e−t/p3 (0 � p3 � +∞); indeed, if s � 0, then (e > s) ∈ B•

s+ =
⋂

t>s B
•
t , whence

P •
0 (e > t+ s) = P •

0

(
e > s, e

(
w•+

s

)
> t

)
= P •

0 (e > s)P •
0 (e > t)(5)

and

P •
0

[
e > s, x•(e) ∈ dl

]
= P •

0

[
e > s, x•

(
e
(
w•+

s

)
+ s

) ∈ dl
]

= P •
0 (e > s)P •

0

[
x•(e) ∈ dl

]
,

(6)

completing the proof.
p3 has to be positive; in the opposite case,

P •
0 (e = 0) = p(0) = P •

0

(
lim
ε↓0

m•
ε = 0

)
= 1,

10m•
0+ is identical in law to the standard Brownian passage time m0 = min(t : x(t) = 0), and hence

E•
l (exp(−αm•

0+)) = exp(−(2α)1/2 l) (see (6)).
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Figure 15.3

where now m•
ε is the sum of the crossing time m• = inf(t : x•(t) > ε) and m•

0+(w
•+
m•), and

hence

1 = p(0) = P •
0

(
lim
ε↓0

x•
(
m•

ε

)
= 0

)

= lim
δ↓0

lim
ε↓0

P •
0

(
x•
(
m•

ε

)
< δ

)

= lim
δ↓0

p+[0, δ)

= p+(0),

(7)

contradicting p+(0) < 1.
p−(dl) ≡ P •

0 [x
•(e) ∈ dl, e < +∞] attributes no mass to l = 0 as is clear from

P •
0 (e > 0) = lim

t↓0
e−t/p3 = 1(8a)

and

p−(0) = P •
0

[
x•(e) = 0, e < +∞, e

(
w•+

e

)
= 0

]
� P •

0 (e = 0).(8b)

Figure 15.4 is now evident; the jumps l−1 , l
−
2 , etc., l

+
1 , l

+
2 , etc., and the holding times

e1, e2, etc. are independent with common laws P (l−1 ∈ dl) = p−(dl), P (l+1 ∈ dl) = p+(dl),

P (e1 > t) = e−t/p3 , and the excursions leading back to l = 0+ are standard Brownian.
(4c) occupies us in Sects. 15.7 to 15.15; a further class of ramified simple Markov motions

is studied in Sect. 15.18.

15.7. Green Operators and Generators: p+(0) = 1

Consider the case p+(0) = 1 (4c), and introduce the Green operators

G•
α : f ∈ C[0,+∞) −→ E•

·

(∫ m•
∞

0

e−αtf
(
x•
)
dt

)
, α > 0.(1)
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Figure 15.4

Because m• ≡ m•
0+ = limε↓0 inf(t : x•(t) < ε) is a stopping time and P •· (x•(m•) = 0) ≡ 1,

(
G•

αf
)
(l) = E•

l

(∫ m•
0+

0

e−αtf
(
x•
)
dt

)

+ E•
l

(
e−αm•

0+E•
l

(∫ m•
∞(w•+

m• )

0

e−αtf
[
x•
(
t+m•)]dt | B•

m•+

))

=
(
G−

α f
)
(l) + E•

l

(
e−αm•

0+
)
E0

(∫ m•
∞

0

e−αtf
(
x•
)
dt

)

=
(
G−

α f
)
(l) + e−(2α)1/2l

(
G•

αf
)
(0),

(2)

where G−
α is the Green operator for the (absorbing) Brownian motion with instant killing at

l = 0:
(
G−

α f
)
(a) = Ea

(∫ m0

0

e−αtf(x)dt

)

=

∫ +∞

0

e−(2α)1/2|b−a| − e−(2α)1/2|b+a|

(2α)1/2
f db, a � 0;

(3)

especially, G•
α maps C[0,+∞) into C2[0,+∞).
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Given α, β > 0 and f ∈ C[0,+∞),

(α− β)G•
αG

•
βf = (α − β)E•

·

(∫ m•
∞

0

e−αt
(
G•

βf
)(
x•
)
dt

)

= (α − β)E•
·

(∫ m•
∞

0

e−αtdtE•
x•(t)

(∫ m•
∞

0

e−βsf
(
x•
)
ds

))

= (α − β)E•
·

(∫ m•
∞

0

e−(α−β)tdt

∫ m•
∞

t

e−βsf
(
x•
)
ds

)

= E•
·

(∫ m•
∞

0

e−βsf
(
x•
)
ds(α− β)

∫ s

0

e−(α−β)tdt

)

= G•
βf −G•

αf,

(4)

i.e.,

G•
α −G•

β + (α− β)G•
αG

•
β = 0, α, β > 0,(5)

proving that the range G•
αC[0,+∞) ≡ D(G•) and the null-space G•−1

α (0) are both indepen-
dent of α > 0; in fact, G−1

β (0) =
⋂

α>0 G
•−1
α (0) = 0 because if f belongs to it, then

0 = lim
α↑+∞

α
(
G•

αf
)
(l) = lim

α↑+∞
E•

l

(
α

∫ m•
∞

0

e−αtf
(
x•
)
dt

)
= f(l), l � 0,(6)

thanks to P •
l (x

•(0+) = l) ≡ 1 (l � 0).
G•

α is now seen to be invertible, and another application of (5) implies that

G• ≡ α−G•−1
α : D

(
G•) −→ C[0,+∞)(7)

is likewise independent of α > 0.
G• is the generator cited in the section title; it is a contraction of G = D2/2 acting on

C2[0,+∞) because

D
(
G•) = G•

1C[0,+∞) ⊂ C2[0,+∞)(8a)

and

(α−G•)G•
α = 1, α > 0.(8b)

Given two Brownian motions with the same generator, their Green operators and hence
their transition probabilities and laws in function space are the same, i.e., G• is a complete
invariant of the Brownian motion.

15.8. Generator and Green Operators Computed: p+(0) = 1

D(G•) can be described in terms of three nonnegative numbers p1, p2, p3 and a nonneg-
ative mass distribution p4(dl) (l > 0) subject to

p1 + p2 + p3 +

∫
0+

(l ∧ 1)p4(dl) = 1(1a)

and

p4(0,+∞) = +∞ in case p2 = p3 = 0,(1b)
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namely, D(G•) is the class of functions u ∈ C2[0,+∞) subject to11

p1u(0) + p3(Gu)(0) = p2u
+(0) +

∫
0+

[
u(l)− u(0)

]
p4(dl),(2a)

as will now be proved.
(1b) is automatic from the rest because if p2 = p3 = 0 and p4(0,+∞) < +∞, then an

application of (2a) to u = αG•
αf ∈ D(G•) implies, on letting α ↑ +∞, that

[
p1 + p4(0,+∞)

]
f(0) =

∫
0+

fp4(dl) for each f ∈ C[0,+∞),

which is absurd in view of (1a). Besides, it is enough to prove that

D
(
G•) ⊂ C2[0,+∞)

∩
(
u : p1u(0) + p3(Gu)(0) = p2u

+(0) +

∫
0+

[
u(l)− u(0)

]
p4(dl)

)
(2b)

for some choice of p1, p2, p3, p4 subject to (1a), because, if u is a member of the second line,
then so is the bounded solution u• = G•

1(1 − G)u − u of Gu• = u•, and, expressing u• as

c1e
21/2l + c2e

−21/2l, it is found that c1 = c2 = u• ≡ 0, i.e., u = G•
1(1−G)u ∈ D(G•).

Consider, for the proof of (2b), the exit time

e = inf
(
t : x•(t) �= 0

)
(3)

and its law

P •
0 (e > t) = e−t/k (0 � k � +∞),(4)

and bear in mind that x•(e) is independent of e:

P •
0

[
e > t, x•(e) ∈ dl

]
= e−t/kp(dl).(5)

If k = +∞ (e ≡ +∞), then (G•u)(0) = 0 for each u ∈ D(G•), and (2b) holds with
p1 = p2 = p4 = 0 and p3 = 1.

If 0 < k < +∞, then

p(0) = P •
0

[
x•(e) = 0, e

(
w•+

e

)
= 0

]
� P •

0 (e = 0) = 0,(6)

and choosing u = G•
αf ∈ D(G•), it appears that

u(0) = f(0)E•
0

(∫ e

0

e−αtdt

)
+ E•

0

[
e−αtu

(
x•(e)

)
, e < m•

∞
]

=
αu(0)− (

G•u
)
(0)

α+ k
+

k

α+ k

∫
0+

up(dl), 12
(7a)

or, what is the same,

u(0) + k−1
(
G•u

)
(0) =

∫
0+

up(dl),(7b)

i.e., (2b) holds with p1 : p2 : p3 : p4 = 1 : 0 : k−1 : p.
But, if k = 0 (e ≡ 0), the proof is less simple; the method used below is due to E. B.

Dynkin [2].
(G•u)(0) < −1 for some u ∈ D(G•) (if not, then (G•u)(0) ≡ 0, f(0) = (1−G•)G•

1f(0) =
(G•

1f)(0) for each f ∈ C[0,+∞), and P •
0 (e = +∞) = 1), so, choosing ε > 0 so small that

11G = D2/2.
12(α− G•)G•

α = 1.
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(G•u)(l) < −1 (l � ε) and introducing the crossing time m•
ε = inf(t : x•(t) > ε), it is clear

from

u(0) = E•
0

(∫ m•
∞

0

e−αtf
(
x•
)
dt

)
, f =

(
α−G•)u,

= E•
0

(∫ m•
ε∧m•

∞

0

e−αt
(
α−G•)u(x•)dt

)

+ E•
0

[
e−αm•

εu
(
x•
(
m•

ε

))
, m•

ε < m•
∞
]

(8)

that

E•
0

(
m•

ε ∧m•
∞
)
� lim

ε↓0
E•

0

(∫ m•
ε∧m•

∞

0

e−αt
(
α−G•)u(x•)dt

)
< +∞.(9)

(G•u)(0) < −1 has no special advantage for the derivation of (8) which holds for each
u ∈ D(G•) and ε > 0; thus, keeping ε > 0 so small that E•

0 (m
•
ε ∧ m•∞) < +∞ and letting

α ↓ 0 in (8) implies

u(0) = −E•
0

(∫ m•
ε∧m•

∞

0

(
G•u

)(
x•
)
dt

)

+ E•
0

[
u
(
x•
(
m•

ε

))
, m•

ε < +∞]
, u ∈ D

(
G•),

(10)

and letting ε↓0 in (10) establishes E. B. Dynkin’s formula for the generator :

(
G•u

)
(0) = lim

ε↓0

∫
[ε,+∞)∪∞

[
u(l)− u(0)

]
pε(dl), u ∈ D

(
G•), u(∞) ≡ 0,(11a)

pε(dl) = E•
0

(
m•

ε ∧m•
∞
)−1

P •
0

[
x•
(
m•

ε ∧m•
∞
) ∈ dl

]
,(11b)

or, what is better for the present purpose,

lim
ε↓0

[
pε(∞)

D
u(0) +

(G•u)(0)
D

−
∫
[ε,+∞)

u•(l)(l ∧ 1)
pε(dl)

D

]
= 0,(12a)

D = pε(∞) + 1 +

∫
0+

(l ∧ 1)pε(dl),(12b)

u•(l) =
u(l)− u(0)

l ∧ 1
if l > 0,

= u+(0) if l = 0.

(12c)

Because D(G•) ⊂ C2[0,+∞), u• ∈ C[0,+∞), and selecting ε = ε1 > ε2 > etc. ↓ 0 so as
to have

lim
ε↓0

pε(∞)/D = p1,(13a)

lim
ε↓0

1/D = p3,(13b)

lim
ε↓0

(l ∧ 1)pε(dl)/D = p∗(dl), 13(13c)

13∫
0 f(l ∧ 1)D−1pε(dl) converges as ε ↓ 0 to

∫
fp∗(dl) extended over [0,+∞] for each f ∈ C[0,+∞].
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existing, it is clear from (12) that

p1u(0) + p3
(
G•u

)
(0) = p2u

+(0) +

∫
(0,+∞]

[
u(l)− u(0)

]
p4(dl),(14a)

p2 = p∗(0), p4(dl) = p∗(dl)/(l ∧ 1) (l > 0),(14b)

p1 + p2 + p3 +

∫
(0,+∞]

(l ∧ 1)p4(dl) = 1(14c)

for each u ∈ D(G•) having a limit u(+∞) at l = +∞.
But p4(+∞) = 0 because, if f = e−n/l, then u = G•

1f ∈ D(G•), u(+∞) = 1, and at the
same time u(0), u+(0), G•u(0), and

∫
l<+∞[u(l) − u(0)]p4(dl) are all small for large n, and

this permits us to derive (14a) anew for each u ∈ D(G•), completing the proof of (2b).
Given u ∈ D(G•) and inserting (7.2) into (2a), a little algebra justifies

(
G•

αf
)
(0) =

p22
∫
0+

e−(2α)1/2lf(l)dl+ p3f(0) +
∫
0+

(
G−

α f
)
(l)p4(dl)

p1 + (2α)1/2p2 + αp3 +
∫
0+

[
1− e−(2α)1/2l

]
p4(dl)

,(15)

which finishes the computation of the Green operators.

15.9. Special Case: p2 = 0 < p3 and p4 < +∞
Consider the special case

p2 = 0 < p3,(1a)

p4 = p4(0,∞) < +∞,(1b)

and introduce a motion x• based on a reflecting Brownian motion with sample paths t → x+(t)
and probabilities Pa(B) (a � 0) as follows.

Given a sample path x+ starting at a point of [0,+∞), let x• = x+ up to the passage
time m0 = min(t : x+(t) = 0); then make x• wait at 0 for an exponential holding time e1 with
conditional law

P·
(
e1 > t | x+) = e−((p1+p4)/p2)t;(1)

at the end of that time let it jump to a point l1 ∈ (0,+∞) ∪∞ with conditional law

P·
(
l1 ∈ dl | e1, x+

)
= p4(dl)/

(
p1 + p4

)
if l > 0,

= p1/
(
p1 + p4

)
if l = 0,

(2)

and, if +∞ > l1 > 0, let it start afresh, while, if l1 = ∞, let x• = ∞ at all later times (see
Fig. 15.5).

Because x• starts afresh at the passage time m0,

(
G•

αf
)
(l) = El

(∫ m•
∞

0

e−αtf
(
x•
)
dt

) (
m•

∞ = min
(
t : x•(t) = ∞))

= El

(∫ m0

0

e−αtf
(
x+
)
dt

)
+ El

(
e−αm0

)
E0

(∫ m•
∞

0

e−αtf
(
x•
)
dt

)

=
(
G−

α f
)
(l) + e−(2α)1/2l

(
G•

αf
)
(0)

(3)
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Figure 15.5

as in (7.2), whence

(
G•

αf
)
(0) = f(0)E0

(∫ e1

0

e−αtdt

)

+ E0

(
e−αe1

)
E0

[(
G•

αf
)(
l1
)
, e1 < m•

∞
]

=
p3f(0)

p1 + αp3 + p4

+
1

p1 + αp3 + p4

[ ∫
0+

(
G−

α f
)
(l)p4(dl)

+

∫
0+

e−(2α)1/2lp4(dl)
(
G•

αf
)
(0)

]
,

(4)

and, solving for (G•
αf)(0), one finds

(
G•

αf
)
(0) =

p3f(0) +
∫
0+

(
G−

α f
)
(l)p4(dl)

p1 + αp3 +
∫
0+

[
1− e−(2α)1/2l

]
p4(dl)

.(5)

Granting that the dot motion starts afresh at constant times (the reader will fill this gap),
a comparison of (5) and (8.15) permits its identification as the Brownian motion associated
with the operator G• with domain

D
(
G•) = C2[0,+∞) ∩

(
u : p1u(0) + p3(Gu)(0) =

∫
0+

[
u(l)− u(0)

]
p4(dl)

)
;(6)

the proof that x• is a Brownian motion can be based on the fact, used several times below,
that if a motion is simple Markov and if its Green operators map C[0,+∞) into itself, then
it is also strict Markov (see, for example K. Itô and H. P. McKean, Jr. [9]).

15.10. Special Case: p2 > 0 = p4

Given a reflecting Brownian motion with sample paths t → x+(t), probabilities Pa(B),
and local time

t+(t) = lim
ε↓0

(2ε)−1 measure
(
s : x+(s) < ε, s � t

)
,(1)
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it is possible to build up all the Brownian motions attached to the generators

G• = G | C2[0,+∞] ∩ (
u : p1u(0)− p2u

+(0) + p3(Gu)(0) = 0
)
, p2 > 0(2)

with the aid of an extra exponential holding time e with conditional law

P·
(
e > t | x+) = e−t.(3)

Beginning with the elastic Brownian case (p1 > 0 = p3), the desired motion is

x•(t) = x+(t) if t < m•
∞,

= ∞ if t � m•
∞,

(4a)

m•
∞ = t−1

((
p2/p1

)
e
)
= min

(
t : t+(t) =

(
p2/p1

)
e
)

(4b)

as stated in Sects. 15.1 and 15.3.
With the aid of the conditional law

P·
(
m•

∞ > t | x+) = P·
(
e >

(
p1/p2

)
t+(t) | x+) = e−(p1/p2)t

+(t)(5)

and the addition rule

t+
(
t2
)
= t+

(
t1
)
+ t+

(
t2 − t1, w

+
t1

)
, t2 � t1,(6)

it is clear that, if db ⊂ [0,+∞) and if m•
∞ > t1 � t2, then

P·
[
x•
(
t2
) ∈ db | x+(s) : s � t1, m•

∞ ∧ t1, m•
∞ > t1

]

=
P·
[
x+
(
t2
) ∈ db, m•

∞ > t2 | x+(s) : s � t1
]

P·
(
m•∞ > t1

)

= E·
[
x+
(
t2
) ∈ db, e−(p1/p2)t

+(t2) | x+(s) : s � t1
]
e+(p1/p2)t

+(t1)

= E·
[
x+
(
t2
) ∈ db, e−(p1/p2)t

+(t2−t1,w
+
t1

) | x+(s) : s � t1
]

= Ea

[
x+
(
t2 − t1

) ∈ db, e−(p1/p2)t
+(t2−t1)

]
, a = x+

(
t1
)
,

= Pa

[
x•
(
t2 − t1

) ∈ db
]
, a = x•

(
t1
)
,

(7a)

while, if m•
∞ � t1, then x•(t1) = ∞, and

P·
[
x•
(
t2
) ∈ db | x+(s) : s � t1, m•

∞ ∧ t1, m•
∞ � t1

]
= 0 = P∞

[
x•
(
t2 − t1

) ∈ db
]
.14

(7b)

Since x•(s) : s � t1 is a Borel function of x+(s) : s � t1, m
•
∞ ∧ t1, and of the indicator of

(m•
∞ < t1), it follows that

P·
[
x•
(
t2
) ∈ db | x•(s) : s � t1

]
= Pa

[
x•
(
t2 − t1

) ∈ db
]
, a = x•

(
t1
)
,(8)

establishing the simple Markovian nature of the dot motion.
Consider for the next step, its Green operators

G•
αf = E·

(∫ m•
∞

0

e−αtf
(
x•
)
dt

)
,

14P∞[x• ≡ ∞] = 1 as usual.
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and use the conditional law of m•∞ to check

G•
αf = E·

(∫ +∞

0

e−(p1/p2)t
+(s) p1

p2
t+(ds)

∫ s

0

e−αtf
(
x+
)
dt

)

= E·

(∫ +∞

0

e−αtf
(
x+
)
dt

∫ +∞

t

e−(p1/p2)t
+

t+(ds)

)

= E·

(∫ +∞

0

e−αte−(p1/p2)t
+

f
(
x+
)
dt

)
.

(9)

Because m0 = min(t : x+(t) = 0) is a stopping time and t+(t) = 0 (t � m0),

(
G•

αf
)
(l) = El

(∫ m0

0

e−αtf
(
x+
)
dt

)

+ El

(
e−αm0

∫ +∞

0

e−αt exp
{− (

p1/p2
)
t+
(
t, w+

m0

)}
f
[
x+
(
t+m0

)]
dt

)

=
(
G−

α f
)
(l) + El

(
e−αm0

)
E0

(∫ +∞

0

e−αte−(p1/p2)t
+

f
(
x+
)
dt

)

=
(
G−

α f
)
(l) + e−(2α)1/2l

(
G•

αf
)
(0), l � 0,

(10)

and now the identification of the dot motion as the elastic Brownian motion will be complete
as soon as it is verified that

(
G•

αf
)
(0) =

p22
∫ +∞
0 e−(2α)1/2lf(l)dl

p1 + (2α)1/2p2
;(11)

in fact, this will prove that the dot motion is simple Markov with the correct (elastic Brownian)
Green operators, and the proof can be completed as at the end of Section 9.

But (11) is trivial; in fact, using the joint law (4.10),

(
G•

αf
)
(0) = E0

(∫ +∞

0

e−αte−(p1/p2)t
+

f
(
x+
)
dt

)

=

∫ +∞

0

e−αtdt

∫ +∞

0

db

∫ +∞

0

da2
b+ a(
2πt3

)1/2 e−(b+a)2/2te−(p1/p2)bf(a)

= 2

∫ +∞

0

db

∫ +∞

0

da e−(2α)1/2(b+a)e−(p1/p2)bf(a)

=
p22

∫
0+ e−(2α)1/2lf(l)dl

p1 + (2α)1/2p2

(12)

as stated.
Consider next, the case p3 > 0 = p1, and let us prove the desired motion to be15

x• = x+
(
f−1

)
, f = t+

(
p3/p2

)
t+.(13)

Beginning, as before, with the proof that the dot motion is simple Markov, if t2 � t1 and
if m = f−1(t1), then

(a) (m < t) = (t1 < f(t)) ∈ B[x+(s) : s � t], i.e., m is a stopping time;
(b) f(m + s) = f(m) + f(s, w+

m) = t1 + (t2 − t1) if s = f−1(t2 − t1, w
+
m) and so f−1(t2) =

m+ s = m + f−1(t2 − t1, w
+
m);

15f−1 is the inverse function of f.
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(c) x•(t2) = x+[f−1(t2 − t1, w
+
m) +m];

(d) x•(s) : s � t1 is a Borel function of the stopped path t → x+(t ∧m) and of f−1(s) :
s � t1;

(e) f−1(s) is the solution r of f(r) = s (� t1 = f(m)) and, as such, it is likewise a
Borel function of the stopped path;

and now, using the strict Markovian nature of x+, the law of x•(t2) conditional on Bm+ ⊃
B[x•(s) : s � t1] is found to be

P·
(
x+
[
f−1

(
t2 − t1, w

+
m

)
+m

] ∈ db | Bm+

)

= Pa

(
x+
[
f−1

(
t2 − t1

)] ∈ db
)
, a = x+(m),

= Pa

(
x•
(
t2 − t1

) ∈ db
)
, a = x•

(
t1
)
,

(14a)

whence, taking the expectation of both sides conditional on B[x•(s) : s � t1],

P·
(
x•
(
t2
) ∈ db | x•(s) : s � t1

)
= Pa

(
x•
(
t2 − t1

) ∈ db
)
, a = x•

(
t1
)
,(14b)

i.e., x• = x+(f−1) starts afresh at time t1, as was to be proved.
Coming to the Green operators

G•
αf = E·

(∫ +∞

0

e−αtf
(
x•
)
dt

)
,

since m0 = min(t : x+(t) = 0) is a stopping time and f−1 ≡ t (t � m0),

(
G•

αf
)
(l) = El

(∫ m0

0

e−αtf
(
x+
)
dt

)

+ El

(
e−αm0

∫ +∞

0

e−αtf
[
x+
(
f−1

(
t, w+

m0

)
+m0

)]
dt

)

=
(
G−

α f
)
(l) + e−(2α)1/2l

(
G•

αf
)
(0)

(15)

as in the elastic Brownian case, and to complete the identification of x• it is sufficient to check
that

(
G•

αf
)
(0) = E0

(∫ +∞

0

e−αtf
[
x+
(
f−1

)]
dt

)

= E0

(∫ +∞

0

e−αff
(
x+
)
f(dt)

)

= E0

(∫ +∞

0

e−α[t+(p3/p2)t
+]f

(
x+
)
dt

)

+ f(0)E0

(∫ +∞

0

e−α[t+(p3/p2)t
+] p3
p2

t+(dt)

)
16

=
p22

∫
0+

e−(2α)1/2lf(l)dl

(2α)1/2p2 + αp3

(16)

16t+(dt) = 0 off Z+ = (t : x+(t) = 0).
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+
f(0)

α

[
1− E0

(∫ +∞

0

e−α[t+(p3/p2)t
+]dt

)]
17, 18

=
p22

∫
0+ e−(2α)1/2lf(l)dl + p3f(0)

(2α)1/2p2 + αp3

as it should be.
Consider now the case 0 < p1p2p3; this time the motion is

x•(t) = x+(f−1) if t < m•
∞,

= ∞ if t � m•
∞,

(17a)

m•
∞ = f

[
t−1

((
p2/p1

)
e
)]

=
[
t+
(
f−1

)]−1((
p2/p1

)
e
)
,(17b)

as will still be proved.
x+(f−1) is a Brownian motion, its local time

t•(t) = measure
(
s : x+

(
f−1

)
= 0, s � t

)
= measure

(
s : f−1(s) ∈ Z+, s � t

)
= measure f

(
Z+

) ∩ [0, t]

=

∫
Z+∩[0,f−1(t)]

f(ds)

=
(
p3/p2

)
t+
[
f−1(t)

]
19

(18)

satisfies the addition rule (6), and substituting them in place of x+ and t+ in the derivation
of the simple Markovian nature of the elastic Brownian motion, it is found that the present
motion is likewise simple Markov.

G•
αf = G−

α f + e−(2α)1/2l(G•
αf)(0) is derived as before, that the dot motion is Brownian

follows, and now, using the evaluation (12) with p1 + αp3 in place of p1 in conjunction with
the conditional law

P·
(
m•

∞ > t | x+(f−1
))

= P·
(
e >

(
p1/p2

)
t+
(
f−1

) | x+(f−1
))

= e−(p1/p2)t
+(f−1) = e−(p1/p3)t

•(t),
(19)

it develops that

(
G•

αf
)
(0) = E0

(∫ m•
∞

0

e−αtf
[
x+
(
f−1

)]
dt

)

= E0

(∫ +∞

0

e−αte−(p1/p2)t
+(f−1)f

[
x+
(
f−1

)]
dt

)

= E0

(∫ +∞

0

e−αte−((p1+αp3)/p2)t
+

f
(
x+
)
dt

)

+ f(0)E0

(∫ +∞

0

e−αte−((p1+αp3)/p2)t
+ p3
p2

t+(dt)

)

=
p22

∫
0+ e−(2α)1/2lf(l)dl+ p3f(0)

p1 + (2α)1/2p2 + αp3
,

(20)

completing the proof.

17Use (12) with αp3 in place of p1.
18Do a partial integration under the expectation sign.
19measure(Z+) = 0. t+(dt) = 0 outside Z+.
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A second description of the present motion is available: it is the elastic Brownian motion
x• described in (4) run with the new stochastic clock f−1 which is the inverse function of

f = t+
(
p3/p2

)× the elastic Brownian local time t•,(21a)

t•(t) = lim
ε↓0

(2ε)−1 measure
(
s : x•(s) < ε, s � t

)

= t+
(
t ∧m•

∞
)
, m•

∞ = min
(
t : x• = ∞)

.
(21b)

15.11. Increasing Differential Processes

Before describing the sample paths in the case p4 = p4(0,+∞) = +∞, it will be helpful
to list some properties of differential processes with increasing sample paths.

Given a stochastic process with universal field B, probabilities P , and sample paths
t → p(t) with

p(0) = 0,(1a)

p(s) � p(t), s � t,(1b)

p(t+) = p(t) < +∞, t � 0,(1c)

which is differential in the sense that shifted path p+(t) ≡ p(t + s) − p(s) is independent of
its past p(t) : t � s and identical in law to p, P. Lévy [11]20 proved that

E
(
e−αp(t)

)
= exp

{
− t

[
p2α+

∫
0+

(
1− e−αl

)
p(dl)

]}
, α > 0,(2a)

p2 � 0, p(dl) � 0,

∫
0+

(l ∧ 1)p(dl) < +∞(2b)

and expressed p as

p(t) = p2t+

∫
0+

lp
(
[0, t]× dl

)
, t � 0,(3)

in which p(dt × dl) = the number of jumps of p of magnitude ∈ dl occurring in time dt is
differential in the pair (t, l) ∈ [0,+∞)× (0,+∞) and Poisson distributed with mean dt p(dl),
i.e., if Q1, Q2, etc. are disjoint figures of [0,+∞) × (0,+∞), then p(Q1), p(Q2), etc., are
independent, and

P
(
p(Q) = n

)
=
(|Q|n/n!)e−|Q|, n � 0, |Q| =

∫
Q

dt p(dl);(4)

in short, p(t) is the (direct) integral
∫
0+ lp([0, t] × dl) of the differential Poisson processes

p([0, t]× dl) with rates p(dl) plus a linear part p2t.
Given nonnegative p2 and p(dl) with

∫
0+

(l ∧ 1)p(dl) < +∞ as in (2b), it is possible to

make a Poisson measure p(dt × dl) with mean dt p(dl) as described above; the associated
p(t) = p2t+

∫
0+ lp([0, t]× dl) is a differential process having (2a) as its Lévy formula.

G. Hunt [7] discovered that if m is a stopping time, i.e., if

(m < t) ∈ B
[
p(s) : s � t

]×B•, t � 0,(5)

for some field B• independent of p, then p starts afresh at time t = m, i.e., the shifted path
p+(t) ≡ p(t+m)− p(m) is independent of the past p(t) : t � m and identical in law to p itself.

20See also K. Itô [8].
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Given a � 0, if Pa is the law that P induces on the space of sample paths q = p+ a, then

P·
(
q
(
t2
) ∈ db | q(s) : s � t1

)
= Pa

(
q
(
t2 − t1

) ∈ db
)
, t2 � t1, a = q

(
t1
)
,

(6)

the associated Green operators f → E(
∫ +∞
0

e−αtf(q)dt) map C[0,+∞) into itself, and the
associated generator Q is

(Qf)(a) = p2f
+(a) +

∫
0+

[
f(b+ a)− f(a)

]
p(db), f ∈ C1[0,+∞).(7)

Given t � 0, p([0, t] × [ε,+∞)) is Poisson distributed and differential in ε with mean
tp[ε,+∞); as such, it is identical in law to a standard Poisson process q with unit jumps and
unit rate run with the clock tp[ε,+∞), and, using the strong law of large numbers, it follows
that

lim
ε↓0

p
(
[0, t]× [ε,+∞)

)
p[ε,+∞)

= lim
ε↓0

q
(
tp[ε,+∞)

)
p[ε,+∞)

= t,(8)

which will be helpful to us in Sect. 15.14.
Consider the special case p(0,+∞) < +∞ pictured in Figure 15.6: the exponential holding

times e1, e2, etc. between jumps are independent with common law P (e1 > t) = e−p(0,+∞)t,
the jumps l1, l2, etc. are likewise independent with common law P (l1 ∈ dl) = p(0,+∞)−1p(dl),
and the slope of the slanting lines is 1/p2.

Consider, as a second example, the standard Brownian passage times ma = min(t : x = a)
(a � 0) under the law P = P0. Because the Brownian traveller starts afresh at its passage
times, the shifted path mb+a −ma = mb+a(w

+
ma

) is independent of mb : b � a and identical in

law to m·, i.e., m· is differential (it is the one-sided stable process with exponent 1
2 and rate√

2 as noted in Sect. 15.4);

p2 = 0,(9a)

p(dl) = dl/
(
2πl3

)1/2
(9b)

can be read off

E0

(
e−αma

)
= e−(2α)1/2a = exp

{
− a

∫
0+

(
1− e−αl

) dl

(2πl3)1/2

}
.(10)

Figure 15.6
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ma is left-continuous, so in the direct integral [0, a) must be used in place of [0, a]:

ma =

∫
0+

lp
(
[0, a)× dl

)
.

15.12. Sample Paths: p1 = p3 = 0 < p4 (p2 > 0/p4 = +∞)

Given a reflecting Brownian motion with local time t+, a nonnegative number p2, and
a nonnegative mass distribution p4(dl) (l > 0) with p4 = p4(0,+∞) = +∞ in case p2 =
0, introduce the Poisson measure p(dt × dl) with mean dt p4(dl), make up the associated
differential process

p(t) = p2t+

∫
0+

lp
(
[0, t]× dl

)
,(1)

and consider the sample path21

x•(t) = pp−1t+(t)− t+(t) + x+(t), t � 0,(2a)

p−1(l) = inf
(
t : p(t) > l

)
(2b)

and its alternative description
x•(t) = pp−1t−(t) + x−(t), t � 0,(3)

in terms of the standard Brownian motion x− = −t+ + x+ and its minimum function t−(t) =
t+(t) = −(mins�t x

−(s)∧0); it is to be proved that x• is the Brownian motion associated with

p2u
+(0) +

∫
0+

[
u(l)− u(0)

]
p4(dl) = 0,(4)

but before doing that let us look at some pictures of the sample path.
Consider the case p4 < +∞: the jumps l1, l2, etc. of p are finite in number per unit time

and can be labelled in their correct temporal order. p and p−1 are seen in Fig. 15.6, pp−1 in
Fig. 15.7 of the present section, and the path x• = pp−1t+ − t+ + x+ in Fig. 15.8, in which t−1

Figure 15.7

21pp−1t+(t) is short for p(p−1(t+(t))).
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Figure 15.8

is left-continuous as usual and e1, e2, etc. are the exponential holding times between jumps
of p.

Coming to the case p4 = +∞, p(t) experiences an infinite number of jumps during each
time interval [t1, t2) (t1 < t2), but

p
([
t1, t2

)× [ε,+∞)
)
< ∞ (

t2 < +∞, ε > 0
)
,

and so it is legitimate to label the jumps as follows:

(a) arrange in separate rows the jumps occurring in (0, 1], (1, 2], etc.;
(b) in each row, arrange the jumps in order of magnitude beginning with the largest

one;
(c) if several jumps of the same magnitude occur in a single row, arrange them in correct

temporal order;
(d) number the rows jumps row by row as indicated below:

l1 � l3 � l6 � l10,

l2 � l5 � l9,

l4 � l8,

l7 etc.

Figure 15.8 gives an approximate idea of the sample path in the case p2 = 0. Figure 15.9
(p2 = 0, x(0) = 0) is based on the alternative description 3: the standard Brownian path x−

has been slanted off to the left for the purposes of the picture, and the rule is to translate the
excursions of x− between the endpoints of the flat stretches of p−1 until the left legs of the
hatched curvilinear triangles abut on the time axis and then to fill up the gaps with x• = 0.
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Figure 15.9

The picture is not so simple in case p2 > 0: then Q = (l : pp−1(l) = l) has positive measure,
and, on Q− = (t : t−1(t) ∈ Q), x• = pp−1t− − x− reduces to the reflecting Brownian motion
t− − x− = x+.

15.13. Simple Markovian Character: p1 = p3 = 0 (p2 > 0/p4 = +∞)

Consider the sample path

x• = pp−1t+ − t+ + x+ = pp−1t− + x−(1)

described in Sect. 15.12.
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Given t2 � t1 � 0, if m = p−1t−(t1), if p+(t) = p(t+m)−p(m), and if t−+ = −mins�t[x
−(s+

t1)− x−(t1)], then, as the reader will check,

p−1t−
(
t2
)− p−1t−

(
t1
)

= inf
(
s : p(s) > t−

(
t2
)− p−1t−

(
t1
))

= inf
(
s : p(s+m) > t−

(
t2
))

= inf
(
s : p+(s) + p(m) >

[
t−+
(
t2 − t1

)− x−
(
t1
)] ∨ t−

(
t1
))

22

= inf
(
s : p+(s) >

[
t−+
(
t2 − t1

)− x•
(
t1
)] ∨ [

t−
(
t1
)− p(m)

])
= inf

(
s : p+(s) >

[
t−+
(
t2 − t1

)− x•
(
t1
)] ∨ 0

)
,

(2)

where the last step is justified as follows: a = t−(t1) − p(m) � 0 since either p2 > 0 or
p4(0,+∞) = +∞, p−1(0) = 0, and it follows that either b = t−+(t2 − t1) − x•(t1) < 0 and
inf(s : p+(s) > a ∨ b) = inf(s : p+ > 0) = 0 or else b � 0 and a ∨ b = b.

Coming to the sample path itself, an application of (2) implies

x•
(
t2
)
= pp−1t−

(
t2
)
+ x−

(
t2
)

= p
(
p−1
+

([
t−+
(
t2 − t1

)− x•
(
t1
)] ∨ 0

)
+m

)
+ x−

(
t2
)

= p+p
−1
+

([
t−+
(
t2 − t1

)− x•
(
t1
)] ∨ 0

)
+ pp−1t−

(
t1
)
+ x−

(
t2
)

= p+p
−1
+

([
t−+
(
t2 − t1

)− x•
(
t1
)] ∨ 0

)
+
[
x−
(
t2
)− x−

(
t1
)]

+ x•
(
t1
)

= p+p
−1
+

◦
t
(
t2 − t1

)
+

◦
x
(
t2 − t1

)
(3)

with

t −→ ◦
x(t) =

[
x−
(
t+ t1

)− x−
(
t1
)]

+ x•
(
t1
)

(4a)

Consider this conditional on x•(t1) = a � 0.

Because of the differential character of the standard Brownian motion x−,
◦
x is likewise a

standard Brownian motion starting at
◦
x(0) = x•(t1) = a, independent of x−(s) : s � t1 and of

p (and hence independent of x•(s) : s � t, and of p+ also) with minimum function

−
(
min
s�t

◦
x(s) ∧ 0

)
= −

(
min
s�t

[
x−
(
s+ t1

)− x−
(
t1
)]

+ x•
(
t1
) ∧ 0

)

=

[
−min

s�t

[
x−
(
s+ t1

)− x−
(
t1
)]− x•

(
t1
)] ∨ 0

=
[
t−+(t)− x•

(
t1
)] ∨ 0

=
◦
t(t).

(4b)

Given t � 0, the indicator of the event

(m > t) =
(
p−1t−

(
t1
)
> t

)
=
(
t−
(
t1
)
> p(t)

)
(5)

is a Borel function of p(s) : s � t and x−(s) : s � t1, and since x− and p are independent, m is
a stopping time for p, i.e., p+ is identical in law to p and independent of x− and of p(s) : s � m

and hence independent of x•(s) : s � t1 and of
◦
x.

22a ∨ b is the larger of a and b.
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But now it is clear that, conditional on x•(t1) = a, x•(t2) is independent of the past
x•(s) : s � t1 with law

Pa

[
x•(t) ∈ db

]
, a = x•

(
t1
)
, t = t2 − t1(6)

as was to be proved.

15.14. Local Times: p1 = p3 = 0 (p2 > 0/p4 = +∞)

Because the reflecting Brownian local time t+ was central to the construction of the
Brownian motions in the case p4 = 0 treated in Sect. 15.10, one expects that a similar local
time t• based upon the path x• = pp−1t+ − t+ + x+ should figure in the general case; the
purpose of this section is to prove its existence (Fig. 15.10).

Given p2 > 0, the contention is that the local time

t•(t) = lim
ε↓0

(
2εp2

)−1
measure

(
s : x•(s) < ε, s � t

)
, t � 0(1a)

exists and can be expressed as

t•(t) = p−1
2 t+

(
Q+ ∩ [0, t]

)
= p−1

2

∣∣Q ∩ [
0, t+(t)

]∣∣
= p−1t+(t),

(1b)

in which

Q =
(
t : pp−1(t) = t

)
,(2a)

Q+ =
(
t : t+(t) ∈ Q

)
.(2b)

Consider, for the proof, the intervals [l−1 , l
+
1 ), [l−2 , l

+
2 ), etc. of the complement of Q,

and note that the complement of Q+ is the union of the intervals [t−1(l−1 ), t
−1(l+1 )),

[t−1(l−2 ), t
−1(l+2 )), etc., whence

23 ∂Q+ is countable.

Figure 15.10

23∂Q+ denotes the boundary of Q+.
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Because t+ is continuous and x• = x+ on Q+,

lim
ε↓0

(2ε)−1 measure
(
s : x•(s) < ε, s ∈ Q+ ∩ [0, t]

)

= lim
ε↓0

(2ε)−1measure
(
s : x+(s) < ε, s ∈ Q+ ∩ [0, t]

)

= t+
(
Q+ ∩ [0, t]

)
.

(3)

Consider, next,

Q−
ε =

(
t : t �∈ Q+, x• < ε

)

=
⋃
n�1

[
t−1

(
l−n
)
, t−1

(
l+n
)) ∩ (

t : l+n − t+ < ε
)

=
⋃
n�1

[
t−1

(
l−n
)
, t−1

(
l+n
)) ∩ [

t−1
(
l+n − ε

)
,+∞)

=
⋃
n�1

[
t−1

(
l−n ∨ (

l+n − ε
))
, t−1

(
l+n
))
.

(4)

Because t−1 is left-continuous,
⋂

ε>0 Q
−
ε = ∅, and seeing as ∂Q−

ε is countable and t+ is
continuous, it develops, much as in (3), that

lim
ε↓0

(2ε)−1 measure
(
s : x•(s) < ε, s ∈ [0, t]−Q+

)

= lim
ε↓0

(2ε)−1 measure
(
s : x+(s) < ε, s ∈ Q−

δ ∩ [0, t]
)

= t+
(
Q−

δ ∩ [0, t]
)

↓ 0 (δ ↓ 0),

(5)

which justifies the definition (1a) and the first line of (1b); the second line of (1b) is immediate
from the definition of Q+; as to the third line,

pp−1 = t, t ∈ Q,

= l+n , t ∈ [
l−n , l

+
n

)
(n � 1),

= p2p
−1 +

∫
0+

lp
([
0, p−1

]× dl
)
,

(6)

and, picking out the continuous part on both sides, it is clear that

p−1(dt) = p−1
2 dt on Q,

= 0 off Q,
(7)

completing the proof.

p−1t+ can still be interpreted as a local time in case p2 = 0 (p4 = +∞):

p−1t+(t) = lim
ε↓0

∑
ln>ε measure

(
s : x•(s) < ε, s ∈ [

t−1
(
l−n
)
, t−1

(
l+n
)) ∩ [0, t]

)
ε2p4[ε,+∞)

.(8)

Consider, for the proof, the scaled visiting times :

dn = ε−2 measure
(
s : x•(s) < ε, s ∈ [

t−1
(
l−n
)
, t−1

(
l+n
)))

.(9)
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Conditional on p (i.e., conditional on l±1 , l
±
2 , etc.), the visiting times dn are independent

because x+ starts from scratch at the place x+(m) = 0 at time m = t−1(l−n ) (n � 1); in
addition, if ln > ε, then dn is identical in law to measure (s : x(s) > 0, s < m1), where x is
a standard Brownian motion starting at 0 and m1 is its passage time to 1, as will now be
verified.

Given σ > 0, the scaling

x(t) −→ σx
(
t/σ2

)
(10)

preserves the Wiener measure for standard Brownian paths starting at 0 and sends

x+(t) −→ σx+
(
t/σ2

)
,(11a)

t+(t) −→ σt+
(
t/σ2

)
,(11b)

t−1(t) −→ σ2t−1
(
t/σ

)
,(11c)

x−(t) −→ σx−
(
t/σ2

)
,(12a)

t−(t) −→ σt−
(
t/σ2

)
,(12b)

ml −→ σ2ml/σ,(12c)

where x− is the standard Brownian motion t+−x+, t− = t+ = maxs�t x
−(s), and ml = min(t :

x− = l), and, using a ≡ b to indicate that a and b are identical in law, it follows from the
rules (11) and (12) that in case ln > ε,

dn ≡ ε−2measure
(
s : ln − t+(s) + x+(s) < ε, s < t−1

(
ln
))
, x+(0) = 0,

≡ ε−2measure
(
s : 1− t+

(
s/σ2

)
+ x+

(
s/σ2

)
<ε/σ, s/σ2< t−1(1)

)
, σ= ln,

≡ ε−2l2n measure
(
s : 1− t+

(
s
)
+ x+(s) < ε/ln, s < t−1(1)

)

≡ ε−2l2n measure
(
s : x−(s) > 1− ε/ln, s < m1

)

≡ ε−2l2n measure
(
s : x−(s) > 1− ε/ln, m1−ε/ln � s < m1

)

≡ ε−2l2n measure
(
s : x(s) > 0, s < mε/ln

)
, x(0) = 0,

≡ measure
(
s : x(s) > 0, s < m1

)
,

(13)

where the scaling (10) was used in step 2 (σ = ln) and in step 7 (σ = ε/ln).
Coming back to (8), the strong law of large numbers combined with the rule

lim
ε↓0

p4[ε,+∞)−1p
(
[0, t]× [ε,+∞)

)
= t (t � 0)(14)

(see Sect. 15.11) and the simple evaluation

E0

(
d1
)
=

∫ +∞

0

dtP1

[
x(t) < 1, m0 > t

]

=

∫ +∞

0

dt

∫ 1

0

e−(a−1)2/2t − e−(a+1)2/2tda

(2πt)1/2

=

∫ 1

0

2ada = 1,

(15)
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justifies

lim
ε↓0

∑
ln>ε measure

(
s : x•(s) < ε, s ∈ [

t−1
(
l−n
)
, t−1

(
l+n
)) ∩ [0, t]

)
ε2p4[ε,+∞)

= lim
ε↓0

∑
ln>ε

t−1(l+n )�t

dn/p4[ε,+∞)

= E0

(
d1
)
lim
ε↓0

#
(
ln : ln > ε, t−1

(
l+n
)
� t

)
p4[ε,+∞)

24

= lim
ε↓0

#
(
ln : ln > ε, l+n < t+(t)

)
p4[ε,+∞)

= lim
ε↓0

p
([
0, p−1t+(t)

] × [ε,+∞)
)

p4[ε,+∞)

= p−1t+(t),

(16)

where the use of l+n < t+(t) in place of t−1(l+n ) � t in step 3 is justified because both
describe the same class of jumps plus or minus a single jump and p4[ε,+∞) ↑ +∞ as ε ↓ 0;
a picture helps to see that l+n < t+ and p−1(l+n ) < p−1(t+) are identical as needed in step
4.

p−1t+ cannot be computed from the sample path if p2 = 0 and p4 < +∞, as is clear from
Fig. 15.11 in which

p−1t+(t) = e1 + · · ·+ en,

t−1
(
l1 + · · ·+ ln−1

)
� t < t−1

(
l1 + · · ·+ ln

)
,

(17)

and x• is independent of the holding times e1, e2, etc. But it still has some features of a
local time: it is the sum of n independent holding times e with common conditional law
P.(e1 > t | x•) = e−p4t, where n is the number of times that the sample path approaches 0
before time t (see Fig. 15.12).

Figure 15.11

24#(ln : etc.) denotes the number of jumps ln with the properties described inside.
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Figure 15.12

15.15. Sample Paths and Green Operators:
p1u(0) + p3(Gu)(0)=p2u

+(0) +
∫
0+

[u(l)− u(0)]p4(dl) (p2 > 0/p4 = +∞)

Consider the motion x• = pp−1t+ − t+ + x+ and its local time t• = p−1t+, and let us
use them to build up the sample paths in the general case (p2 > 0/p4 = +∞) imitating the
prescription of Sect. 15.10:

y•(t) = x•
[
f−1(t)

]
if t < m•

∞,

= ∞ if t � m•
∞,

(1a)

f(t) = t+ p2t
•(t),(1b)

P.

(
m•

∞ > t | x•) = e−p1t
•[f−1(t)].(1c)

Given l � 0,

(
G•

αf
)
(l) = El

(∫ m•
∞

0

e−αtf
(
y•
)
dt

)

= El

(∫ +∞

0

e−αte−p1t
•(f−1)f

[
x•
(
f−1

)]
dt

)

= El

[ ∫ +∞

0

e−αfe−p1t
•
f
(
x•
)
f(dt)

]

= El

[ ∫ m0

0

e−αtf
(
x+
)
dt

]

+ El

(
e−αm0

)
E0

[ ∫ +∞

0

e−αte−p1t
•
f
(
x•
)
f(dt)

]
25

=
(
G−

α f
)
(l) + e−(2α)1/2l

(
G•

αf
)
(0),

(2)

especially, the Green operators map C[0,+∞) into itself in the special case p1 = p2 = 0
(y• = x•), and since x• starts afresh at constant times, it follows that it must be a Brownian
motion. y• is likewise a Brownian motion as is clear on arguing as in Sect. 15.10 with x• and

25x• = x+ and t• = 0 up to time m0 = min(t : x+ = 0), and x• starts afresh at that moment.
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t• in place of x+ and t+, and now, for the identification of its generator as the contraction of
G = D2/2 to

D
(
G•) = C2[0,+∞)

∩
(
u : p1u(0) + p3(Gu)(0) = p2u

+(0) +

∫
0+

[
u(l)− u(0)

]
p4(dl)

)
,

(3)

it suffices to make the evaluation

e =
(
G•

αf
)
(0) = E0

[ ∫ +∞

0

e−αfe−p1t
•
f
(
x•
)
f(dt)

]

=
p22

∫
0+

e−(2α)1/2lf(l)dl + p3f(0) +
∫
0+

(
G−

α f
)
(l)p4(dl)

p1 + (2α)1/2p2 + αp3 +
∫
0+

[
1− e−(2α)1/2l

]
p4(dl)

(4)

e is decomposed into simpler integrals in several steps (see the explanation below):

e = E0

[∫ +∞

0

e−αte−(p1+αp3)t
•
f
(
x•
)
dt

]

+ p3f(0)E0

[ ∫ +∞

0

e−αte−(p1+αp3)t
•
t•(dt)

]

=
∑
n�1

E0

[∫
[t−1(l−n ), t−1(l+n ))

e−αte−(p1+αp3)p
−1t+f

(
l+n − t+ + x+

)
dt

]

+ E0

[∫ +∞

0

e−αte−(p1+αp3)p
−1t+f

(
x+
)
dt

]

−
∑
n�1

E0

[∫
[t−1(l−n ),t−1(l+n ))

e−αte−(p1+αp3)p
−1t+f(x+)dt

]

+ p3f(0)E0

[ ∫ +∞

0

e−αte−(p1+αp3)p
−1t+p−1t+(dt)

]

=
∑
n�1

E0

[
e−αt−1(l−n )e−(p1+αp3)p

−1(l+n ) ·E0

(∫ t−1(ln)

0

e−αtf
[
ln−t++x+

]
dt | ln

)]

+ E0

[∫ +∞

0

e−αte−(p1+αp3)p
−1t+f

(
x+
)
dt

]

−
∑
n�1

E0

[
e−αt−1(l−n )e−(p1+αp3)p

−1(l+n )E0

(∫ t−1(ln)

0

e−αtf
(
x+
)
dt | ln

)]

+
p3f(0)

p1 + αp3

[
1− αE0

(∫ +∞

0

e−αte−(p1+αp3)p
−1t+dt

)]
26

≡ e1 + e2 − e3 + e4,

(5)

where t•(dt) = 0 outside Z• ≡ (t : x• = 0) was used in step 1, [0,+∞) was split into
Q+ +

⋃
n�1[t

−1(l−n ), t
−1(l+n )) in step 2, and pp−1t+ was evaluated as t+ or l+n according as

t ∈ Q+ or t−1(l−n ) � t < t−1(l+n ), and, in step 3, it was noted that, conditional on p, the

26p3/(p1 + αp3) = 0 if p3 = 0.
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standard Brownian traveller starts afresh at time m = t−1(l−n ) at the place l = 0; the addition
rule

t−1
(
l+n
)
= t−1

(
l−n
)
+ t−1

(
ln, w

+

t−1(l−n )

)
was also used in step 3, and a partial (time) integration was performed under the expectation
sign in the expression for e4.

To compute e1, substitute the standard Brownian motion x− = t+ − x+ and its passage
times ml = t−1(l) into the conditional expectation and integrate them out, next integrate out
t−1(l−n ) conditional on p, express the integral in terms of the Poisson measure p(dt× dl), and
use the differential character of the latter to integrate it out also:

e1 =
∑
n�1

E0

[
e−αt−1(l−n )e−(p1+αp3)p

−1(l+n )E0

(∫ mln

0

e−αtf
(
ln − x−

)
dt | ln

)]

=
∑
n�1

E0

[
e−αt−1(l−n )e−(p1+αp3)p

−1(l+n )
(
G−

α f
)(
ln
)]

=
∑
n�1

E0

[
e−(2α)1/2l−n e−(p1+αp3)p

−1(l+n )
(
G−

α f
)(
ln
)]

= E0

[ ∫
[0,+∞)×(0,+∞)

p(dt× dl)e−(2α)1/2p(t−)e−(p1+αp3)t
(
G−

α f
)
(l)

]

= lim
ε↓0

E0

[ ∫
[ε,+∞)×(0,+∞)

p(dt× dl)e−(2α)1/2p(t−ε)e−(p1+αp3)t
(
G−

α f
)
(l)

]

=

∫
[0,+∞)×(0,+∞)

dt p4(dl) exp

{
− t

[
p2(2α)

1/2+

∫
0+

(
1− e−(2α)1/2l

)
p4(dl)

]}

× e−(p1+αp3)t
(
G−

α f
)
(l)

=

∫
0+

(
G−

α f
)
(l)p4(dl)

p1 + (2α)1/2p2 + αp3 +
∫
0+

(
1− e−(2α)1/2l

)
p4(dl)

.(6)

To compute e2, use the joint law 2(b+a)
(2πt3)1/2

e−(b+a)2/2tda db of x+ and t+:

e2 = E0

[ ∫ +∞

0

e−αtdt

∫ +∞

0

db

∫ +∞

0

da 2
b+ a(

2πt3
)1/2 e−(b+a)2/2t

× e−(p1+αp3)p
−1(b)f(a)

]

= E0

[ ∫ +∞

0

e−(2α)1/2be−(p1+αp3)p
−1(b)db

]
2

∫
0+

e−(2α)1/2af(a) da

= E0

[ ∫ +∞

0

e−(2α)1/2pe−(p1+αp3)tp(dt)

]
2

∫
0+

e−(2α)1/2lf(l) dl

=
p1 + αp3
(2α)1/2

E0

[ ∫ +∞

0

e−(p1+αp3)t
(
1− e−(2α)1/2p

)
dt

]
2

∫
0+

e−(2α)1/2lf(l) dl
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=
(2α)1/2p2 +

∫
0+

(
1− e−(2α)1/2l

)
p4(dl)

p1 + (2α)1/2p2 + αp3 +
∫
0+

(
1− e−(2α)1/2l

)
p4(dl)

× 2

(2α)1/2

∫
0+

e−(2α)1/2lf(l) dl.

(7)

To compute e3, use the same manipulations as for e1 together with the lemma27

E0

(∫ t−1(l)

0

e−αtf
(
x+
)
dt

)
=
(
G+

α f
)
(0)

[
1− e−(2α)1/2l

]
,(8)

obtaining

e3 =
∑
n�1

E0

[
e−(2α)1/2l−n e−(p1+αp3)p

−1(l+n )
(
1− e−(2α)1/2ln

)](
G+

αf
)
(0)

= E0

[ ∫
[0,+∞)×(0,+∞)

p(dt× dl)e−(2α)1/2p(t−)e−(p1+αp3)t
(
1− e−(2α)1/2l

)]

× (
G+

α f
)
(0)

=

∫
0+

(
1− e−(2α)1/2l

)
p4(dl)

p1 + (2α)1/2p2 + αp3 +
∫
0+

(
1− e−(2α)1/2l

)
p4(dl)

× 2

(2α)1/2

∫
0+

e−(2α)1/2lf(l) dl.

(9)

To compute e4, use (6) with f = 1:

e4 =
p3f(0)

p1 + αp3

[
1− (2α)1/2p2 +

∫
0+

(
1− e−(2α)1/2l

)
p4(dl)

p1 + (2α)1/2p2 + αp3 +
∫
0+

(
1− e−(2α)1/2l

)
p4(dl)

]

=
p3f(0)

p1 + (2α)1/2p2 + αp3 +
∫
0+

(
1− e−(2α)1/2l

)
p4(dl)

.

(10)

Combining (5), (6), (7), (9), and (10) verifies (4), and that finishes the proof.

15.16. Bounded Interval: [−1,+1]

A Brownian motion on [−1,+1] is defined as in Sect. 15.5 except that∣∣x•∣∣ � 1, t < m•
∞;(1)

the stopped path

x•(t) : t < ε• = lim
ε↓0

inf
(
t :

∣∣x•∣∣ > 1− ε
)
,

−1 < x•(0) = l < +1
(2a)

is now identical in law to the stopped standard Brownian path

x(t) : t < ε = min
(
t : |x| = 1

)
, x(0) = l.(2b)

Except in the case P •
· [|x•(ε•)| = 1] < 1 which can be treated as in Sect. 15.6, C[−1,+1] is

mapped into itself under the Green operators, G•
· can be defined as before, and D(G•) can

27G+
α is the reflecting Brownian Green operator.
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be described in terms of six nonnegative numbers p±1, p±2, p±3 and two nonnegative mass
distributions p±4(dl) subject to

p−1 + p−2 + p−3 +

∫ +1

−1

(1 + l)p−4(dl) = 1, p−4(−1) = 0,(3a)

p+1 + p+2 + p+3 +

∫ +1

−1

(1− l)p+4(dl) = 1, p+4(+1) = 0,(3b)

p−4(−1,+1] = +∞ in case p−2 = p−3 = 0,(4a)

p+4(−1,+1] = +∞ in case p+2 = p+3 = 0(4b)

as follows. D(G•) is the class of functions u ∈ C2[−1,+1] subject to

p−1u(−1)− p−2u
+(−1) + p−3(Gu)(−1)

=

∫ +1

−1

[
u(l)− u(−1)

]
p−4(dl),

(5a)

p+1u(+1) + p+2u
−(+1) + p+3(Gu)(+1)

=

∫ +1

−1

[
u(l)− u(+1)

]
p+4(dl);

28
(5b)

and G• is the contraction of G = D2/2 to D(G•);(
G•

αf
)
(l) =

(
G−

α f
)
(l) + e−(l)

(
G•

αf
)
(−1) + e+(l)

(
G•

αf
)
(+1), |l| � 1,(6)

in which

(
G−

α f
)
(a) = Ea

(∫ ε

0

e−αtf(x) dt

)
= 2

∫ +1

−1

G(a, b)f(b) db, 29(7a)

G(a, b) = G(b, a) =
sinh(2α)1/2(1 + a) sinh(2α)1/2(1− b)

(2α)1/2
, a � b,(7b)

is the Green operator for the Brownian motion with instant killing at ±1 and

e−(l) =
sinh(2α)1/2(1− l)

sinh 2(2α)1/2
= El

(
e−αm−1 , m−1 < m+1

)
,(8a)

e+(l) =
sinh(2α)1/2(1 + l)

sinh 2(2α)1/2
= El

(
e−αm+1, m+1 < m−1

)
;(8b)

and, substituting (6) into (5) and solving for (G•
αf)(±1), one obtains[(

G•
αf

)
(−1)(

G•
αf

)
(+1)

]
=

[
e11 e12
e21 e22

]−1

·
[
p−2

(
G−

α f
)+

(−1) + p−3f(−1) +
∫ +1

−1

(
G−

α f
)
(l)p−4(dl)

−p+2

(
G−

α f
)−

(+1) + p+3f(+1) +
∫ +1

−1

(
G−

α f
)
(l)p+4(dl)

]
,

(9)

28u−(+1) = limε↓0 ε−1[u(1) − u(1− ε)].
29P., E., x, m are the standard Brownian probabilities, expectations, sample paths, and passage times.



348 15. BROWNIAN MOTIONS ON A HALF LINE

where the exponent −1 indicates the inverse matrix, and

e11 = p−1 − e+−(−1)p−2 + αp−3 +

∫ +1

−1

(
1− e−

)
p−4(dl),(10a)

e12 = −p−2 e
+
+(−1)−

∫ +1

−1

e+p−4(dl),(10b)

e21 = p+2 e
−
−(+1)−

∫ +1

−1

e−p+4(dl),(10c)

e22 = p+1 + e−+(+1)p+2 + αp+3 +

∫ +1

−1

(
1− e+

)
p+4(dl),(10d)

all of which is due to W. Feller [3, 4]; the proofs can be carried out as in Sect. 15.8.
Coming to the sample paths, let us confine our attention to the case p−4(−1,

+1] = p+4[−1,+1) = +∞, leaving the opposite case to the reader.
Given a standard Brownian motion with sample paths t → x(t) and probabilities Pa(B),

if f is the map: R1 → [−1,+1] defined by folding the line at ±1, ±3, ±5, etc. as in Fig. 15.13,
then x+ = f(x) is the (reflecting) Brownian motion on [−1,+1] associated with (5) in the
special case p±1 = p±3 = p±4 = 0 (u+(−1) = u−(+1) = 0); the dot sample path will be made
up using x+ and its local times

t−(t) = lim
ε↓0

(2ε)−1 measure
(
s : x+(s) < −1 + ε, s � t

)
,(11a)

t+(t) = lim
ε↓0

(2ε)−1 measure
(
s : x+(s) > 1− ε, s � t

)
,(11b)

a pair of independent Poisson measures p±(dt×dl) with means dt p±4(dl), and the associated
differential processes

p−(t) = p−2t+

∫
l>−1

(1 + l)p−
(
[0, t]× dl

)
,(12a)

p+(t) = p+2t+

∫
l<+1

(1− l)p+
(
[0, t]× dl

)
.(12b)

Figure 15.14 depicts the sample paths associated with (5) if p±1 = p±3 = 0: x• and
x+ agree up to time m±1 = min(t : |x+| = 1); if m−1 < m+1, as in the picture, then x•

changes over into p−p−1
− t− − t− + x+ until it hits +1, at which instant it changes over into

−p+p
−1
+ t+ + t+ + x+ until it hits −1 for the second time, etc.

If p−1 = p+1 = 0 and p−3 + p+3 > 0, then the desired motion is as in Fig. 15.14 but run
with the new clock f−1 which is the inverse function of

f = t+ p−3t
•− + p+3t

•+,(13a)

t•± = p−1
± t±,(13b)

Figure 15.13
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Figure 15.14

while, if p−1 + p+1 > 0, then one has just to kill the above motion x•(f−1) at time m•
∞ with

conditional law

P·
(
m•

∞ > t | x•) = e−[p−1t
•−(f−1)+p+1t

•+(f−1)];(14)

the proofs are left to the industrious reader.

15.17. Two-Sided Barriers

A Brownian motion on R1 with a two-sided barrier at l = 0 is defined as in Sect. 15.5
except that

x• ∈ R1, t < m•
∞,(1)

and the stopped path

x•(t) : t < ε• = lim
ε↓0

inf
(
t :

∣∣x•∣∣ < ε
)
, x•(0) = l ∈ R1 − 0(2a)

is identical in law to the stopped standard Brownian motion

x(t) : t < ε = min(t : x = 0), x(0) = l.(2b)

Except in the case P •· [x•(ε•) = 0] < 1, which is ignored as before, C(R1) is mapped into
itself under the Green operators, G• is the contraction of G = D2/2 to30

D
(
G•) = C•2(R1

) ∩
(
u : p1u(0) + p−2u

−(0)− p+2u
+(0)

+ p3(Gu)(0±) =

∫
|l|>0

[
u(l)− u(0)

]
p4(dl)

)(3)

for some nonnegative numbers p1, p±2, p3 and some nonnegative mass distribution p4(dl)
subject to

p1 + p−2 + p+2 + p3 +

∫ (|l| ∧ 1
)
p4(dl) = 1, p4(0) = 0,(4a)

p4
(
R1

)
= +∞ in case p±2 = p3 = 0,(4b)

30C•2(R1) = C2(−∞, 0] ∩C2[0,+∞) ∩ (u : u′′(0−) = u′′(0+)).
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and the Green operators are(
G•

αf
)
(l) =

(
G−

α f
)
(l) + e−(2α)1/2|l|(G•

αf
)
(0),(5)

where

(
G−

α f
)
(a) =

∫
ab>0

e−(2α)1/2|b−a| − e−(2α)1/2|b+a|

(2α)1/2
f(b) db(6)

is the Green operator for the Brownian motion with instant killing at l=0 and

(
G•

αf
)
(0) =

−p−2

(
G−

α f
)−

(0)+p+2

(
G−

α f
)+

(0)+p3f(0)+
∫
|l|>0

(
G−

α f
)
(l)p4(dl)

p1 + (2α)1/2
(
p−2 + p+2

)
+ αp3 +

∫
|l|>0

·(1− e−(2α)1/2|l|)p4(dl) ,(7a)

±(G−
α f

)±
(0) = 2

∫
±l>0

e−(2α)1/2|l|f(l) dl.(7b)

Coming to the sample paths, P. Lévy [13] proved that if t → x(t) is a standard Brownian
path starting at 0 and if Z1, Z2, etc. are the (open) intervals of the complement of Z = (t : x =
0), then the signs e1, e2, etc. of the excursions x(t) : t ∈ Z1, etc., are independent Bernouilli
trials with common law P0(e1 = ±1) = 1

2 (standard coin-tossing game), independent of Z and
of the (unsigned) scaled excursions

x1(t) =
∣∣Z1

∣∣−1/2∣∣x(t∣∣Z1

∣∣+ inf Z1

)∣∣, 0 � t � 1,

etc.
(8)

which are independent, identical in law, and likewise independent of Z (see Fig. 15.15).
Given p−2+p+2 > 0, it is not difficult to see that if e1, e2, etc. is now a skew coin-tossing

game independent of the scaled excursions and of Z (i.e., independent of |x|) with law

P0

(
e1 = −1

)
: P0

(
e1 = +1

)
= p−2 : p+2,(9)

Figure 15.15
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then the skew Brownian motion

x•(t) = en
∣∣x(t)∣∣ if t ∈ Zn, n � 1,

= 0 if t ∈ Z,
(10)

starts afresh at each constant time t � 0; in addition, its Green operators decompose as in (5),
and evaluating (G•

αf)(0) as
31

(
G•

αf
)
(0) =

∑
n�1

E0

(∫
Zn

e−αtf
(
en|x|

)
dt

)

=
∑
n�1

(
p−2

p−2 + p+2
E0

[ ∫
Zn

e−αtf
(− |x|) dt

]

+
p+2

p−2 + p+2
E0

[ ∫
Zn

e−αtf
(
+ |x|) dt

])

=
p−2

p−2 + p+2
E0

[ ∫ +∞

0

e−αtf
(− |x|) dt

]

+
p+2

p−2 + p+2
E0

[∫ +∞

0

e−αtf
(
+ |x|) dt

]

=
2p−2

∫ 0−
e−(2α)1/2lf(l) dl + 2p+2

∫
0+ e−(2α)1/2lf(l) dl

(2α)1/2
(
p−2 + p+2

)

=
−p−2

(
G−

α f
)−

(0) + p+2

(
G−

α f
)+

(0)

(2α)1/2
(
p−2 + p+2

) ,

(11)

one identifies (10) as the Brownian motion associated with (3) in the special case p1 = p3 =
p4 = 0 (p−2u

−(0) = p+2u
+(0)).

Coming to the case p1 = p±2 = p3 = 0 (p4(R
1 − 0) = +∞), if p(dt × dl) is a Poisson

measure with mean dt p4(dl) independent of the standard Brownian motion x, if [l−1 , l
+
1 ),

[l−2 , l
+
2 ), etc. are the flat stretches of the inverse function p−1 of p(t) =

∫ |l|p([0, t]× dl), and
if t+ is the local time at 0 of the (independent) reflecting Brownian motion x+ = |x|, then the
desired motion is

x•(t) = x(t) if t < m0 = min(t : x = 0),

= ±[pp−1t+ − t+ + x+
]

if t ∈ Q+,

= 0 if m0 � t ∈ Q+,

(12)

where Q+ =
⋃

n�1[t
−1(l−n ), t

−1(l−n )), and the ambiguous sign in the second line is positive

during the interval [t−1(l−n ), t−1(l+n )) if ln = l+n − l−n is a jump of p(dt × dl ∩ (0,+∞]) and
negative otherwise (see Fig. 15.16).

31|Z| = 0.
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Figure 15.16

Granting that (12) is simple Markov (the proof is left to the reader), it is enough for its
identification to evaluate32

(
G•

αf
)
(0) =

∑
n�1

E0

(∫ t−1(l+n )

t−1(l−n )

e−αtf
[± (

l+n − t+ = x+
)]

dt

)

=
∑
n�1

E0

[
e−(2α)1/2l−n

(
G−

α f
)(± ln

)]

= E0

[ ∫ +∞

0

∫
R1−0

p(dt× dl)e−(2α)1/2p(t−)
(
G−

α f
)
(l)

]

=

∫
|l|>0

(
G−

α f
)
(l)p4(dl)×

[ ∫
|l|>0

(
1− e−(2α)1/2l

)
p4(dl)

]−1

(13)

with the aid of the tricks developed in Sect. 15.15.
Coming to the case p1 = p3 = 0, it suffices to combine the special cases p1 = p3 = p4 = 0

and p1 = p±2 = p3 = 0 as follows.
Given p(dt × dl), x, and t+ as above, if x•2 is the skew Brownian motion based upon p±2

and x, if x•4 is the motion of (12) based upon p•(t) =
∫ |l|p([0, t]×dl) and x, if [l−1 , l

+
1 ), [l

−
2 , l

+
2 ),

etc. are the flat stretches of the inverse function of p = p2t + p• (p2 = p−2 + p+2), and if
Q+ =

⋃
n�1[t

−1(l−n ), t
−1(l+n )), then the desired motion is

x•(t) = x(t) if t < m0,

= x•4
(
t•
)

if t ∈ Q+, t• =
∣∣Q+ ∩ [0, t)

∣∣,
= x•2(t) if t ∈ [

m0,+∞)−Q+.

(14)

32|[0,+∞)−Q+| = 0 because p(t) has no linear part p2t.
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The reader will check that this sample path starts afresh at each constant time t � 0 and will
complete its identification with the aid of

(
G•

αf
)
(0) = E0

[∫ +∞

0

e−αtf
(
x•
)
dt

]

=
∑
n�1

E0

[ ∫ t−1(l+n )

t−1(l−n )

e−αtf
[
x•4(t)

]
dt

]

+ E0

[ ∫ +∞

0

e−αtf
(
x•2
)
dt

]
−
∑
n�1

E0

[ ∫ t−1(l+n )

t−1(l−n )

e−αtf
(
x•2
)
dt

]

=
∑
n�1

E0

[
e−αt−1(l−n )

(
G−

α f
)(± ln

)]

+ E0

[ ∫ +∞

0

e−αtf
(
x•2
)
dt

](
1−

∑
n�1

E0

[
e−αt−1(l−n ) − e−αt−1(l+n )

])

= E0

[∫ +∞

0

∫
R1−0

p(dt× dl)e−(2α)1/2p(t−)
(
G−

α f
)
(l)

]

+ E0

[ ∫ +∞

0

e−αtf
(
x•2
)
dt

]

×
(
1− E0

[∫ +∞

0

∫
R1−0

p(dt× dl)e−(2α)1/2p(t−)e−(2α)1/2|l|
])

=
−p−2

(
G−

α f
)−

(0) + p+2

(
G−

α f
)+

(0) +
∫ (

G−
α f

)
(l)p4(dl)

(2α)1/2p2 +
∫ (

1− e−(2α)1/2|l|)p4(dl) .

(15)

If p3 > 0 = p1, it is clear that the desired motion is the sample path x• of (14) run with
the stochastic clock f−1 inverse to f = t + p3p

−1t+ (see Sect. 15.14 for the interpretation of
p−1t+ as a local time), while, if p1 > 0 also, the motion x•(f−1) has to be annihilated at time
m•∞ with conditional law

P·
(
m•

∞ > t | x•(f−)) = e−p1p
−1t+f−1(t).(16)

The reader is invited to furnish the proofs.
Brownian motions with the same kind of two-sided barrier can be defined on the unit

circle S1 = [0, 1) as W. Feller [3, 5] pointed out.
Given a standard Brownian motion on R1, its projection onto33 S1 = R1/Z1 is the so-

called standard circular Brownian motion; its generator is the contraction of G = D2/2 to
C2(S1).

Consider now the general circular Brownian motion with a two-sided barrier at l = 0
(i.e., the obvious circular analogue of a Brownian motion with two-sided barrier on R1), and,
as before, single out the case

P •
·
[
x•
(
ε•
)
= 0

]
= 1, ε• = lim

ε↓0
inf

(
t :

∣∣x•∣∣ < ε
)
.(17)

33Z1 is the integers.
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G• is the contraction of G = D2/2 to34

D
(
G•) = C•2(S1

) ∩
(
u : p1u(0) + p−2u

−(0)− p+2u
+(0)

+ p3(Gu)(0±) =

∫ [
u(l)− u(0)

]
p4(dl)

)(18)

for some nonnegative numbers p1, p±2, p3 and some nonnegative mass distribution p4(dl)
subject to

p1 + p−2 + p+2 + p3 +

∫ 1

0

l(1− l)p4(dl) = 1, p4(0) = p4(1) = 0,(19a)

p4
(
S1
)
= +∞ in case p±2 = p3 = 0,(19b)

and an application of (18) to(
G•

αf
)
(l) =

(
G−

α f
)
(l)

+
sinh(2α)1/2l + sinh(2α)1/2(1− l)

sinh(2α)1/2
(
G•

αf
)
(0), 0 � l < 1,

(20a)

(
G−

α f
)
(a) = 2

∫ 1

0

G(a, b)f(b) db, 0 � a < 1,(20b)

G(a, b) = G(b, a) =
sinh(2α)1/2a sinh(2α)1/2(1− b)

(2α)1/2 sinh(2α)1/2
, 0 � a � b < 1,(20c)

establishes the formula

(
G•

αf
)
(0) =

[
2p−2

∫ 1

0

sinh(2α)1/2(1− l)

sinh(2α)1/2
f(l)dl

+ 2p+2

∫ 1

0

sinh(2α)1/2l

sinh(2α)1/2
f(l)dl+ p3f(0) +

∫ 1

0

(
G−

α f
)
(l)p4(dl)

]/

[
p1 + (2α)1/2

cosh(2α)1/2 − 1

sinh(2α)1/2
(
p−2 + p+2

)

+ αp3 +

∫ 1

0

(
1− sinh(2α)1/2l + sinh(2α)1/2(1− l)

sinh(2α)1/2

)
p4(dl)

]
.

(21)

Given a standard circular Brownian motion x with local time

t(t) = lim
ε↓0

(2ε)−1 measure
(
s :

∣∣x(s)∣∣ < ε, s � t
)

(22)

and a (circular) differential process p based on p±2 and p4, it is possible to build up the
circular Brownian sample paths as in the linear case, but a second method suggests itself: the
method of images.

Consider for this purpose a Brownian motion on R1 with two-sided barriers at the integers
having as its generator the contraction of G = D2/2 to the class of functions u ∈ C(R1) ∩
C2(R1 − Z1) such that

(Gu)(n−) = (Gu)(n+),(23a)

p1u(n) + p−2u
−(n)− p+2u

+(n) + p3(Gu)(n±) =

∫ 1

0

[
u(l+ n)− u(n)

]
p4(dl)(23b)

34C•2(S1) = C(S1) ∩ C2(S1 − 0) ∩ (u : u′′(0−) = u′′(0+)).
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at each integer n = 0,±1,±2, etc. (the reader is invited to build up the sample paths for
himself). Because the barriers are periodic, the projection of this motion onto S1 = R1/Z1 is
(simple) Markov, and its identification as the desired circular Brownian motion is immediate.

15.18. Simple Brownian Motions

Given a simple Brownian motion on [0,+∞), described as in Sect. 15.5 except that it
need not start afresh at nonconstant stopping times,(

G•
αf

)
(l) =

(
G−

α f
)
(l) + e−(2α)1/2l

(
G•

αf
)
(0+), l > 0,(1)

as will now be proved with a view to the classification of all such Brownian motions.
Given α > 0, a nonnegative Borel function f , and t2 � t1 � 0,

E•
·
[
e−αt2

(
G•

αf
)(
x•
(
t2
)) | B•

t1

]
= e−αt2E•

l

[(
G•

αf
)(
x•(t)

)]
, l = x•

(
t1
)
, t = t2 − t1,

= e−αt2

∫ +∞

0

e−αsdsE•
l

(
E•

x•(t)
[
f
(
x•(s)

)])

= e−αt2

∫ +∞

0

e−αsdsE•
l

[
f
(
x•(t+ s)

)]

= e−αt1

∫ +∞

t

e−αsdsE•
l

[
f
(
x•(s)

)]

� e−αt1
(
G•

αf
)(
x•
(
t1
))
,

(2)

i.e., e−αt(G•
αf)(x

•) is a (nonnegative) supermartingale; as such, it possesses one-sided limits
as35 t = k2−n ↓ s (s � 0), and it follows that if l > ε > 0 and if m• is the crossing time
inf(t : x• < ε), then

(
G•

αf
)
(l) = E•

l

[ ∫ m•

0

e−αtf
(
x•
)
dt

]

+ lim
n↑+∞

∑
k�0

E•
l

[
(k − 1)2−n � m• < k2−n,

e−αk2−n

∫ m•
∞(w+

k2
−n)

0

e−αtf
(
x•
(
t+ k2−n

))
dt

]

= E•
l

[ ∫ m•

0

e−αtf
(
x•
)
dt

]

+ lim
n↑+∞

∑
k�0

E•
l

[
(k − 1)2−n � m• < k2−n,

e−αk2−n(
G•

αf
)(
x•
(
k2−n

))]

= El

[∫ m

0

e−αtf(x) dt

]
+ El

[
e−αm lim

k2−n↓m

(
G•

αf
)(
x
(
k2−n

))]
,

(3)

where x is a standard Brownian motion, E· its expectation, and m its passage time min(t :
x = ε).

But, in the standard Brownian case, limk2−n↓m(G•
αf)(x(k2

−n)) is measurable over Bm+

and also independent ofBm+ (i.e, it is measurable overB[x(t+m) : t � 0] which is independent

35See J. L. Doob [1].
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of Bm+ conditional on the constant x(m) = ε); as such, it is constant, and inserting this
information back into (3) and letting ε ↓ 0 establishes

(
G•

αf
)
(l) =

(
G−

α f
)
(l) + e−(2α)1/2l × constant,(4)

which implies the existence of (G•
αf)(0+) and leads at once to (1).

Given a bounded function f on [0,+∞), continuous apart from a possible jump at l = 0,

define a new function f̂ on (−1) ∪ [0,+∞) as

f̂(l) = f(0) if l = −1,

= f(0+) if l = 0,

= f(l) if l > 1,

(5)

and introduce the new Green operators

Ĝαf̂ =
(
G•

αf
)̂

(6)

mapping C((−1) ∪ [0,+∞)) into itself.

Ĝα is the Green operator of a strict Markov motion on (−1)∪ [0,+∞) with sample paths
t → x̂(t) = x̂(t+) ∈ (−1)∪ [0,+∞)∪∞, and x• is identical in law to the projection of x̂ under
the identification −1 → 0, as the reader can check for himself or deduce from the general
embedding of D. Ray [14].

One now computes the domain D(Ĝ) of the generator Ĝ of this covering motion and
finds that it is the class of functions

u ∈ C
(
(−1) ∩ [0,+∞)

) ∪ C2[0,+∞)

subject to

−p+2u
+(0) + p+3(Gu)(0) =

∫
(−1)∪(0,+∞)∪∞

[
u(l)− u(0)

]
p+4(dl),

p+4(0) = 0 � p+2, p+3, p+4(dl),

p+2 + p+3 + p+4(−1) +

∫
0+

(l ∧ 1)p+4(dl) + p+4(∞) = 1,

(7a)

p−3(Ĝu)(−1) =

∫
[0,+∞)∪∞

[
u(l)− u(−1)

]
p−4(dl),

p−4(−1) = 0 � p−3, p−4(dl),

p−3 + p−4[0,+∞) + p−4(∞) = 1,

(7b)

where u(∞) ≡ 0.
If p−3 = 0, the motion starting at −1 begins with a jump l ∈ [0,+∞) ∪ ∞ with law

p−4(dl) as in Fig. 15.17, u(−1) =
∫
[0,+∞) u(l)p−4(dl), and (7a) goes over into

p•1u(0)− p•2u
+(0) + p•3(Gu)(0) =

∫
0+

[
u(l)− u(0)

]
p•4(dl),(8a)

p•1 = p+4(∞) + p+4(−1)p−4(∞),

p•2 = p+2, p•3 = p+3,

p•4(dl) = p+4(dl) + p+4(−1)p−4(dl), l > 0,

(8b)

i.e., the covering motion does not land at −1 which is a superfluous state, and x̂ = x• is a
strict Brownian motion on [0,+∞) as in Sects. 15.5 to 15.16.
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Figure 15.17

Figure 15.18

If p−3 > 0, then Ĝ is the contraction of G = D2/2 to D(Ĝ) with the added specification

(Ĝu)(−1) =

∫
[0,+∞)

[
u(l)− u(−1)

]p−4(dl)

p−3
, u(∞) ≡ 0,(9)

at −1, and the particle starting at −1 waits there for an exponential holding time ε with
law e−p−4t/p−3 (p−4 = p−4([0,+∞) ∪ ∞)), and then jumps to l ∈ [0,+∞) ∪ ∞ with law
p−4(dl)/p−4 as in Fig. 15.18.

If, in addition to p−3 > 0, one has p2 = 0 and p4(0,+∞) < +∞, then the motion starting
at 0 is of the same kind, and it is clear that the projection of this motion down to [0,+∞)
(−1 → 0) cannot even be simple Markov unless p−3 = p+3 and p−4(dl) = p+4(dl) (l �= 0) up
to a common multiplicative constant, in which case the projection is the Brownian motion
associated with

p1u(0) + p+3(Gu)(0) =

∫
0+

[
u(l)− u(0)

]
p+4(dl),(9a)

p1 = p+4(∞)(9b)

studied in Sect. 15.9.
If p−3 > 0 and either p+2 > 0 or p+4(0,+∞) = +∞, the particle starting at −1 waits for

an exponential holding time ε1 and then jumps as in Fig. 15.19 to l1 ∈ [0,+∞)∪∞ and starts
afresh; if 0 � l1 < +∞, the particle performs the Brownian motion on [0,+∞) associated
with

p1u(0)− p+2u
+(0) + p+3(Gu)(0) =

∫
0+

[
u(l)− u(0)

]
p+4(dl),(10a)

p1 = p+4(−1 ∪∞)(10b)

up to the killing time of that motion, at which instant it jumps to l2 = ∞ or −1 with
probabilities p+4(∞) : p+4(−1), and, if l2 = −1, it starts afresh as in Fig. 15.19, while if
l2 = ∞, then the motion rests at that place at all later times.
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Figure 15.19

Now the projection x• of this motion onto [0,+∞) (−1 → 0) is simple Markov if the
Brownian motion attached to (10) does not spend positive (Lebesgue) time at l = 0; other-
wise the knowledge that x•(s) = 0 is not sufficient to discriminate between the two possible
coverings, and the law of x•(t) : t � s is moot. But if e is the indicator of l = 0, and if

x•
(
f−1

) (
t < m•

∞
)
, ∞ (

t � m•
∞
)

(11)
f = t+ p3p

−1t+,(12a)

x• = pp−1t+ − t+ + x+(12b)

is the motion attached to (10), then, in the notation of Sect. 15.14,

measure
(
s : x•

(
f−1

)
= 0, s � t

)

=

∫ t

0

e
[
x•
(
f−1

)]
ds =

∫ f−1(t)

0

e
(
x•
)
f(ds)

= p+3

∫
Z+∩Q+∩[0,f−1(t))

p−1t+(dt)

= p+3p
−1t+

[
Q+ ∩ [

0, f−1(t)
)]
, t � m•

∞,

(13)

and this cannot be positive unless p+3 > 0 and 0 < t+(Q+) = |Q|, i.e., unless p+2 > 0 also;
in short, the projection is simple Markov unless p+2p+3 > 0, and now the classification is
complete.

N. Ikeda had conjectured part of our classification (private communication); the case of
a two-sided barrier on R1 is similar except that three covering points lie over 0.

15.19. Feller’s Differential Operators

Given a nonnegative mass distribution e on the open half line (0,+∞) with 0 < e(a, b]
(a < b), let D(G) be the class of functions u ∈ C[0,+∞) such that

u+(b)− u+(a) =

∫
(a,b]

f de, a < b,(1)
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for some f ∈ C[0,+∞), and introduce the differential operator

G : h −→ (Gu)(a) = lim
b↓a

u+(b)− u+(a)

e(a, b]
= f.(2)

W. Feller [5] proved that if e(0, 1] < +∞, and if p1, p2, p3, p4(dl) are nonnegative with
p4(0) = 0 and p1 + p2 + p3 +

∫
0+(l ∧ 1)p4(dl) = 1, then the contraction G• of G to

D
(
G•) = D(G) ∩

(
u : p1u(0)− p2u

+(0)

+ p3(Gu)(0) =

∫
0+

[
u(l)− u(0)

]
p4(dl)

)(3)

is the generator of a strict Markov motion (diffusion) on [0,+∞).
Given a reflecting Brownian motion x+ on [0,+∞), the local time

t+(t, l) =
(
measure

(
s : x+(s) ∈ dl, s < t

))
/2 dl(4)

is continuous in the pair (t, l) ∈ [0,+∞)2 (see H. Trotter [17]), and the motion associated
with G• in the special case p1 = p3 = p4 = 0 (u+(0) = 0) is identical in law to x• = x+(f−1)
where f =

∫
0+

t+(t, l)e(dl) (see V. A. Volkonskĭı [19] and K. Itô and H. P. McKean, Jr. [9]).

Because t+(dt, l) = 0 outside Z = (t : x+ = l),
∫ t

0

f
(
x•
)
ds =

∫ f−1(t)

0

f
(
x+
) ∫

0+

t+(ds, l)e(dl)

=

∫
0+

(∫ f−1(t)

0

t+(ds, l)

)
f(l)e(dl)

=

∫
0+

t+
[
f−1(t), l

]
f(l)e(dl);

(5)

hence the local time

t•(t) = lim
ε↓0

e(0, ε]−1measure
(
s : x•(s) < ε, s � t

)
= t+

(
f−1, 0

)
(6)

exists, and now it is clear that the discussion of the Brownian case can be adapted with little
change.

15.20. Birth and Death Processes

Quite a general birth and death process on the nonnegative integers can be changed via
a scale substitution into a motion on a discrete series Q : 0 = l0 < l1 < l2 < · · · < 1 having
as its generator

G•u =
(
u+ − u−)/e,(1)

u+
(
ln
)
= u−(ln+1

)
=
(
ln+1 − ln

)−1[
u
(
ln+1

)− u
(
ln
)]
,(2a)

e = e
(
ln
)
> 0,(2b)

e
(
l0
)
+ e

(
l1
)
+ · · · < +∞,(2c)

subject to

u+(0) = 0,(3a)

p1u(1) + p3
(
G•u

)
(1) = −p2u

−(1) +
∫
Q

[
u(l)− u(1)

]
p4(dl),

p1 + p2 + p3 +

∫
Q

(1− l)p4(dl) = 1

(3b)
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(see W. Feller [6]). In the special case p1 = p3 = p4 = 0 the corresponding motion is just the
reflecting Brownian motion on [0, 1] run with the inverse function of f =

∫
Q t+(t, l)e(dl), t+

being the reflecting Brownian local time. Once this motion has been obtained, the general
path can be built up using local times and differential processes as before.
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16The Spectrum of Hill’s Equation

H. P. McKean1 and P. van Moerbeke2

16.1. Hill’s Equation: Periodic Spectrum

Let 3 q ∈ C∞
1 be fixed and let Q be Hill’s operator Q = −d2/dx2 + q(x). The following

information may be found in Magnus and Winkler [26], see also Strutt [32]. Q, acting on the
class of functions f ∈ L2(−∞,∞) with ‖f ′′‖2 < ∞, is self-adjoint with spectrum comprising
an infinite number of intervals[

λ0, λ1

] ∪ [
λ2, λ3

] ∪ [
λ4, λ5

] ∪ [
λ6, λ7

] ∪ · · · ,
each of positive width but possibly contiguous:

−∞ = λ−1 < λ0 < λ1 � λ2 < λ3 � λ4 < λ5 � λ6 < λ7 � · · · ↑ +∞.

The nature of the solutions of Qy = λy is determined by the placement of λ relative to the
spectrum: in the intervals of instability (λ2i−1, λ2i) (i = 0, 1, 2, . . .) no solution is bounded; in
the complementary intervals of stability (λ2i, λ2i+1) (i = 0, 1, 2, . . .) every solution is bounded
but none is of period 1 or 2; the remaining points λ0 < λ1 � λ2 < λ3 � λ4 < · · · comprise
the periodic spectrum. The principal series λ0 < λ3 � λ4 < λ7 � λ8 < · · · is the spectrum
of Q acting on the class of functions f ∈ L2

1 with ‖f ′′‖2 < ∞, while the complementary
series λ1 � λ2 < λ5 � λ6 < · · · fills out the spectrum of Q in its action on the class of
functions f ∈ L2

2 with ‖f ′′‖2 < ∞. Thus, λ0 is always a simple eigenvalue with eigenfunction
of period 1, while for i = 1, 2, 3, . . . , λ2i−1 or λ2i is a simple or a double eigenvalue according
as λ2i−1 < λ2i or λ2i−1 = λ2i, with eigenfunction of period 1 or 2 according as i = 1, 3, 5, . . . or
i = 2, 4, 6, . . . . The eigenfunctions f2i−1 and f2i for λ2i−1 and λ2i, respectively, have precisely
i roots in a period 0 � x < 1. The same classification of spectral points may be described by
means of the discriminant4

Δ(λ) = y1(1, λ) + y′2(1, λ),

in which y1(x, λ)[y2(x, λ)] is the solution of Qy = λy with y(0) = 1, y′(0) = 0[y(0) = 0, y′(0) =
1]: in fact, |Δ(λ)| > 2 in the intervals of instability, |Δ(λ)| < 2 in the intervals of stability,
Δ(λ) = +2 on the principal series λ0 < λ3 � λ4 < λ7 � λ8 < · · · , and Δ(λ) = −2 on
the complementary series λ1 � λ2 < λ5 � λ6 < · · · , the multiplicity of the root being the

1Courant Institute of Mathematical Sciences, New York University, Mercer Street 251, New York, NY
10012, USA.

2Mathematics Department, Université de Louvain, B-1348 Louvain-la-Neuve, Belgium.
3C∞

p is the class of real infinitely differentiable functions of period p. L2
p, is defined similarly.

4′ = ∂/∂x.
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Figure 16.1.

same as the spectral multiplicity (= 1 or 2). A typical discriminant is seen in Fig. 16.1. Δ(λ)
is an integral function of order 1/2; as such, it is determined by the principal or by the
complementary series and by the known estimates

y1(x, λ) =
[
1 + o(1)

] × cosh
√−λx,

√−λy2(x, λ) =
[
1 + o(1)

] × sinh
√−λx

for λ ↓ −∞. The classical estimate λ2i−1 ∼ λ2i ∼ i2π2 (i ↑ ∞) is immediate. Δ′(λ) is also an
integral function of order 1/2 with simple roots only, comprising trivial roots at the double
eigenvalues λ2i−1 = λ2i and one non-trivial root properly inside each interval of instability
(λ2i−1, λ2i) of positive width.

Simple Spectrum. The simple periodic eigenvalues are now required to be finite in number:

λo
0 < λo

1 < λo
2 < λo

3 < λo
4 < · · · < λo

2n−1 < λo
2n;

apart from λo
0 = λ0, they come in pairs λ2m−1 < λ2m (m = m1 < · · · < mn), mi being the

number of roots per period of the eigenfunctions fo
2i−1 and fo

2i attached to λo
2i−1 and λo

2i. The
non-trivial roots of Δ′(λ) = 0 are now denoted by λ′

i (i = 1, . . . , n); they interlace the simple
spectrum, so:

λo
1 < λ′

1 < λo
2 < λo

3 < λ′
2 < λo

4 < · · · < λo
2n−1 < λ′

n < λo
2n.

Hochstadt [17] discussed the remarkable fact that the simple periodic spectrum λo
0 < · · · <

λo
2n determines both the double periodic spectrum and the nontrivial roots λ′

1 < · · · <
λ′
n of Δ′(λ) = 0.

Proof. The integral function 4 − Δ2(λ) is expressed as a product and its roots λ0 <
λ1 � λ2 < λ3 � λ4 < · · · , separated into simple and double spectra5:

4−Δ2(λ) = c1

2n∏
i=0

(
1− λ

λo
i

) ∏
double

spectrum

(
1− λ

λ2i

)2

.

A similar product is available for Δ′(λ):

Δ′(λ) = c2

n∏
i=1

(
1− λ

λ′
i

) ∏
double

spectrum

(
1− λ

λ2i

)
,

5To simplify life, it is supposed that λ = 0 is not a root.
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whence

Δ′(λ)√
4−Δ2(λ)

= c3

∏n
i=1

(
λ− λ′

i

)
√∏2n

i=0

(
λ− λo

i

) .

Now let Δ = 2 cosψ. Then the periodic spectrum is determined by ψ = an integral multiple
of π and from

Δ′ = −2 sinψ × ψ′ = ±
√
4−Δ2ψ′,

it appears that, with ψ(λ0) = 0 and a suitable determination of the signature of the radical,

�(λ) =
√
−(λ− λo

0

)(
λ− λo

1

) · · · (λ− λo
2n

)
,

ψ(λ) = c4

∫ λ

λ0

n∏
i=1

(
μ− λ′

i

) dμ

�(μ)
.

The constant c4 is easily evaluated: ψ(λ) ∼ 2c4
√−λ far out, so that 2c4

√−λ2i ∼ iπ and
λ2i ∼ i2π2 yields 2c4 =

√−1. The proof is finished by observing that the roots λ′
i (i = 1, . . . , n)

are already determined by the simple spectrum. The point is that dψ(λ) is purely imaginary
for λo

2j−1 < λ < λo
2j so that the increment

√−1ε = ψ(λo
2j)−ψ(λo

2j−1) must vanish in view of

±1 = cosψ
(
λo
2j

)
= cos

(±mjπ +
√−1ε

)
= ± cosh ε.

Thus,

∫ λo
2j

λo
2j−1

n∏
i=1

(
μ− λ′

i

) dμ

�(μ)
= 0 (j = 1, . . . , n),

or what is the same,

n∑
i=1

∫ λo
2j

λo
2j−1

μn−i dμ

�(μ)
(−1)iθ′i = −

∫ λo
2j

λo
2j−1

μn dμ

�(μ)
,

in which θ′1, . . . , θ
′
n are the elementary symmetric polynomials in λ′

1, . . . , λ
′
n. The latter may

be determined from the former, and the former can be evaluated since the determinant

det

∫ λo
2j

λo
2j−1

μn−1dμ

�(μ)

=

∫ λo
2

λo
1

· · ·
∫ λo

2n

λo
2n−1

∏
i>j

(
μi − μj

) dμ1 · · · dμn

�
(
μ1

) · · · �(μn

)

cannot vanish. The result is restated as

Hochstadt’s Formula. Δ(λ) = 2 cosψ with

ψ(λ) =

√−1

2

∫ λ

λ0

n∏
i=1

(
μ− λ′

i

) dμ

�(μ)
;

especially, ψ(λ) = ±mπ if and only if λ = λ2m−1 or λ = λ2m. �
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16.2. Hill’s Equation: Auxiliary Spectrum

Besides the periodic spectrum, it is helpful to consider also the spectrum of Q acting on
the class of functions f ∈ L2[0, 1] with ‖f ′′‖2 < ∞ and f(0) = f(1) = 0. This spectrum
comprises the roots μ1 < μ2 < μ3 < · · · of y2(1, μ) = 0, separated into trivial roots at the
double eigenvalues λ2i−1 = λ2i and non-trivial roots μo

i ∈ [λo
2i−1, λ

o
2i] (i = 1, . . . , n); the latter

comprise the auxiliary spectrum:

λo
1 � μo

1 � λo
2 < λo

3 � μo
2 � λo

4 < · · · < λo
2n−1 � μo

n � λo
2n.

The map q(x) → q(−x) does not change the periodic or the auxiliary spectrum, so q cannot
be completely determined by them, but it is nearly so, as will be seen in a moment. Δ(λ) =
y1(1, λ) + y′2(1, λ) is determined by the periodic spectrum, and if the auxiliary spectrum is
also specified, then y2(1, λ) is determined, too. Now let λ = μ be a root of y2(1, λ) = 0. Then
the Wronskian of y1(x, μ) and y2(x, μ) at x = 1 reduces to y1(1, μ)y

′
2(1, μ) = 1, so

Δ(μ) =
[
y′2(1, μ)

]−1
+ y′2(1, μ)

may be solved for

y′2(1, μ) =
Δ(μ)

2
±
√

Δ2(μ)

4
− 1,

up to the ambiguous signature ±, and the norming constant6∫ 1

0

y22(x, μ) dx = y′2(1, μ)y
•
2(1, μ)

is determined thereby, up to the same ambiguity. Borg [1] proved7 that the roots of y2(1, μ) = 0
together with the norming constants determine the potential q. Now a bona fide ambiguity
in the norming constant presents itself only if |Δ(μ)| > 2, i.e., only for those points of the
auxiliary spectrum with λo

2i−1 < μo
i < λo

2i. Let these be m � n in number. Then there
are at most 2m potentials q with simple spectrum λo

0 < · · · < λo
2n and auxiliary spectrum

μo
1 < · · · < μo

n, in fact, there are precisely 2m such, as will now be confirmed by the method
of Gelfand and Levitan [12].

Proof. It is required to verify that if λo
2i−1 < μo

i < λo
2i, then there is a bona fide potential

q of period 1 having the same periodic and auxiliary spectra as q and the same auxiliary
norming constants, except for the i-th in which the signature is reversed. The computation is
standard.8 Let μ = μo

i . The new potential is

q(x)− 2

(
lg

[
1±

√
Δ2(μ)− 4

y•2(1, μ)

∫ x

0

y22(x, μ) dx

])′′
,

the factor ±√
Δ2 − 4×(y•2)−1 being the change in the reciprocal of the norming constant. The

verification that this potential has the same periodic and auxiliary spectra and the proper
norming constants is omitted as being more lengthy than instructive: the fact is that Δ(λ)
and y2(1, λ) are unchanged while y′2(1, λ) is augmented by

∓
√
Δ2(μ)− 4× y2(1, μ)

y•2(1, μ)× (λ− μ)
,

6′ = ∂/∂x; • = ∂/∂μ.
7See Levinson [25] for a simpler proof.
8Faddeev [7, 100].
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which produces the same norming constants for μj (j �= i) and flips the ambiguous signature
for μi. Observe that the new potential is really different if Δ2(μ) �= 4 because the norming
constant changed.

The fact that the auxiliary spectrum can occupy any position μo
1 < · · · < μo

n in the cell

C :
[
λo
1, λ

o
2

]× · · · × [
λo
2n−1, λ

o
2n

]
may be proved by a similar computation in which μo

j (j �= i) remain in place and μ = μo
i is

moved to a new location in the interval λo
2i−1 � μ � λo

2i. The infinitesimal motion μ → μ+dμ
is regulated by

∂q(x)

∂μ
= 2

[
y22(x, μ)y

′
1(1, μ)

y′2(1, μ)−
[
y′2(1, μ)

]−1 − y1(x, μ)y2(x, μ)

]′′
.

The final potential may be computed. The verification that the periodic and auxiliary spectra
are unchanged, except for μo

i which moves at speed 1, is much the same, only messier.
To sum up from a more geometrical point of view: the class M of potentials q with fixed

simple spectrum λo
0 < · · · < λo

2n is a 2n-sheeted covering of the cell C in which the auxiliary
spectrum lies. The covering group G is isomorphic to Z2×· · ·×Z2 (n-fold), the i-th generator
being the involution

σi : q(x) → q(x) − 2 lg

[
1±

√
Δ2

(
μi

)− 4

∫ x

0 y22
(
x, μo

i

)
dx

y•2
(
1, μo

i

)
]′′

,

where the ambiguous signature is in accord with the signature in the expression for y′2(1, μo
i )

in terms of Δ(μo
i ). �

Amplification 16.2.1. M can be equipped with either the lifted topology from C or with
the inherited topology from C∞

1 ; happily, these are the same. The chief point is that ‖q(n)‖∞
is bounded on M for n = 0, 1, 2, . . ., as will appear in Lemma 16.3.8, so that practically any
topology you care to place on M is equivalent to the topology inherited from C∞

1 .

Amplification 16.2.2. It is observed that the covering map σ: q(x) → q(−x) reverses all

the signatures in the norming constants
∫ 1

0
y22(x, μ

o
i ) dx (i = 1, . . . , n) since the eigenfunction

y2(x, μ
o
i ) is changed into −y2(1− x, μo

i )/y
′
2(1, μ

o
i ) and∫ 1

0 y22
(
1− x, μo

i

)
dx[

y′2
(
1, μo

i

)]2 =
y•2
(
1, μo

i

)
y′2
(
1, μo

i

) =
y•2
2

(
Δ∓

√
Δ2 − 4

)
,

i.e., σ = σ1, . . . , σn; see §16.5 for more information about σ.

16.3. Hamiltonians

A new theme now enters.

Theorem 16.3.1. As t ↓ 0, the trace

ϑ(t) =

∞∑
i=0

e−λit

of e−tQ acting on functions of period 2 can be expanded into half-integral powers of t, so9:

ϑ(t) ∼ 1√
πt

∞∑
m=0

(−t)m

(2m− 3) · · · 3 · 1Hm−1.

9(2m − 3) · · · 3 · 1 is interpreted as unity if m = 0 or 1. The rationale for these constants will appear in
Theorem 16.3.4.
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H−1 ≡ 1, while for m � 0, the so-called Hamiltonian Hm is a nonlinear functional of q of
the form

Hn =

∫ 1

0

In
[
q(x), q′(x), q′′(x), . . .

]
dx.

In is a universal isobaric polynomial of precise degree n + 1, without constant term, the
adjective “isobaric” signifying that q is considered to be of degree 1 and that ′ =differentiation
is considered to raise the degree by 1/2.

Amplification 16.3.2. The result stems from Dikii [4, 5], Gelfand [11], and, more di-
rectly, from Buslaev and Faddeev [2]; see also Gardner et al. [10]. The derivation stems from
Kac [19]; see also Kac and van Moerbeke [20]. It employs a more detailed expansion embodied
in

Theorem 16.3.3. The pole of the elementary solution e(t, x, y) of ∂e/∂t = −Qe on the
circle of perimeter 2 can be expanded for t ↓ 0, so:

e(t, x, x) =
1√
4πt

∞∑
m=0

(−t)m

(2m− 3) · · · 3 · 1Im−1

with Im as before, uniformly for 0 � x < 2.

Proof of Theorem 16.3.3. The key to the proof is the formula of Kac [19]:

e(t, x, y) = Exy

[
exp

(
−
∫ t

0

q dt′
)]

eo(t, x, y)

with q = q[x(t′)], expressing e in terms of the elementary solution eo for q = 0 and the
associated Brownian motion x, considered modulo 2, “tied”, i.e. conditioned so as to begin at
x(0) = x and end at x(t) = y. Exy denotes the tied (conditional) mean value. By the Jacobi

transformation of the theta function, eo(t, x, x) = (4πt)−1/2+ an exponentially small error,
so

e(t, x, x) ∼ Exx

[
exp

(
−
∫ t

0

q dt′
)]

× 1√
4πt

,

and you may replace x(t′): 0 � t′ � t by x+
√
tx(t′/t): 0 � t′ � t with a new (mod 2) Brownian

motion tied at x(0) = 0 and x(1) = 0, the two motions being identical in law. Thus,

e(t, x, x) ∼ 1√
4πt

E00

[
exp

(
− t

∫ 1

0

q
(
x+

√
t x(t′)

)
dt′

)]
.

Now replace the exponential by its power series and expand q(x +
√
t x) into a MacLaurin

series about x. This produces a formal sum

√
4πte(t, x, x) ∼

∞∑
m=0

(−t)m
∫ 1

0

dt′m . . .

∫ t′3

0

dt′2

∫ t′2

0

dt′1

×
∞∑

�1=0

· · ·
∞∑

�m=0

t(�1+···+�m)/2

�1! . . . �m!
q(�1)(x) . . . q(�m)(x)

× E00

[(
x
(
t′1
))�1

. . .
(
x
(
t′m
))�m]

,

in which only terms with even �1 + · · · + �m survive the mean value, x → −x being an
automorphism of the tied Brownian motion. The expansion is of the proposed form. �
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Proof of Theorem 16.3.1. Integrate the expansion of the pole over 0 � x < 2, using
the eigenfunction expansion

e(t, x, x) =

∞∑
i=0

e−λitf2
i (x)

and employing the periodicity to replace
∫ 2

0
dx by 2

∫ 1

0
dx. �

Now that the existence of the Hamiltonians is established, their evaluation is achieved in
a different way.

Theorem 16.3.4 (10). Define11 Xmq = (∂Hm/∂q)′. Then

Xmq =

(
qD +Dq − 1

2
D3

)
∂Hm−1

∂q
(m = 1, 2, 3, . . .).

Lemma 16.3.5 (12). The function e = e(t, x, x) satisfies
(• = ∂

∂t

)

−2e•′ =
(
qD +Dq − 1

2
D3

)
e.

Proof. From e• = e11 − qe = e22 − qe, it follows that

e•′ = e•1 + e•2 = e111 − q′e− qe1 + e222 − q′e− qe2,

so (
qD +Dq − 1

2
D3

)
e = 2qe′ + q′e − 1

2

(
e111 + 3e112 + 3e122 + e222

)
.

Besides,

e111 − q′e− qe1 = e221 − qe1, e222 − q′e− qe2 = e112 − qe2,

and upon substitution the previous expression is reduced to

2qe′ + q′e− 1

2

(
e111 + 3e111 − 3q′e+ 3e222 − 3q′e+ e222

)
= 2qe′ + q′e− 2e111 + 3q′e− 2e222 = −2e•′.

�
Lemma 16.3.6. ∂ϑ/∂q = −te(t, x, x).

Proof. Pick q• ∈ C∞
1 . Then from

ϑ =

∫ 2

0

e(t, x, x) dx =

∫ 2

0

Exx

[
exp

(
−
∫ t

0

q dt′
)]

eo(t, x, x)dx,

it is clear that

ϑ• ≡
∫ 2

0

∂ϑ

∂q
q• dx = −

∫ 2

0

Exx

[ ∫ t

0

q• exp
(
−
∫ t

0

q

)]
eo(t, x, x) dx

= −
∫ 1

0

dt′
∫ 2

0

dx

[ ∫ 2

0

e(t′, x, y)q•(y)e(t− t′, y, x) dy
]

= −
∫ t

0

dt′
∫ 2

0

[∫ 2

0

e(t− t′, y, x)e(t′, x, y) dx
]
q•(y)dy

10The fact is due to A. Lenard; see Gardner et al. [10].
11∂/∂q is the functional gradient; ′ = D = d/dx.
12The lemma is due to Menikoff [27].
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= −
∫ t

0

dt′
∫ 2

0

e(t, y, y)q•(y)dy

= −t

∫ 2

0

e(t, y, y)q•(y) dy.

The proof is finished. �
Proof of Theorem 16.3.4. The result follows easily from Theorem 16.3.3 and Lem-

mas 16.3.5 and 16.3.6. A moment’s reflection upon the proof of Theorem 16.3.3 will confirm
that the expansion of ϑ may be differentiated with regard to q to obtain

∂ϑ

∂q
= −te(t, x, x) ∼ 1√

πt

∞∑
m=0

(−t)m

(2m− 3) · · · 3 · 1
∂Hm−1

∂q
.

Now differentiate with regard to x and t. A little manipulation produces

1√
π

∞∑
m=0

(−1)mtm−5/2(2m− 3)

(2m− 3) · · · 3 · 1 Xm−1q = −2e•′

=

(
qD +Dq − 1

2
D3

)
e

=
1√
π

∞∑
m=0

(−1)mtm−3/2

(2m− 3) · · · 3 · 1
(
qD +Dq − 1

2
D3

)
∂Hm−1

∂q
.

The stated formula is immediate from that. �
The quantities H , ∂H/∂q, and Xq = (∂H/∂q)′ can now be computed. The results for

m � 5 are tabulated in table 16.1 below; plainly, the formulas get rapidly out of hand.

Corollary 16.3.7.
∫ 1

0
∂Hm/∂q dx = (2m− 1)Hm−1 (m = 0, 1, 2, . . .).

Proof. −tϑ = −t
∫ 2

0
e(t, x, x) dx =

∫ 2

0
∂ϑ/∂q dx; now replace the trace by the develop-

ment of Theorem 16.3.1. �
A couple of technical lemmas are now prepared for use in §12. Let Fn be the Sobolev

space of formal sums

f(x) =

∞∑
k=−∞

f̂(k)e2πikx

with

|f |2n =

∞∑
k=−∞

(
1 + k2

)n∣∣f̂(k)∣∣2 < ∞

for n = . . . ,−1, 0, 1, 2, . . . .

Lemma 16.3.8 (13). |q|2n � 2n+1Hn+1 + cn(H0, . . . , Hn) with a universal function cn for
any n �= 1, while for n = 1, the factor 2n+1 = 4 should be replaced by 8. Especially, Hn+1 is
bounded below for fixed H0 = h0, . . ., Hn = hn.

13See Lax [24].
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Table 16.1.

m Im ∂Hm/∂q Xmq

−1 1 0 0

0 q 1 0

1
1

2
q2 q q′

2
1

2
q3 +

1

4
(q′)2

3

2
q2 − 1

2
q′′ 3qq′ − 1

2
q′′′

3
5

8
q4 +

5

4
q(q′)2

5

2
q3 − 5

4
(q′)2 − 5

2
qq′′

15

2
q2q′ − 5q′q′′

+
1

8
(q′′)2 +

1

4
q′′′′ −5

2
qq′′′ +

1

4
q′′′′′

4
7

8
q5 +

35

8
q2(q′)2

35

8
q4 − 35

4
q(q′)2

35

2
q3q′ − 35

4
(q′)3

+
7

8
q(q′′)2 −35

4
q2q′′ +

21

8
(q′′)2 −35qq′q′′ − 35

4
q2q′′′

+
1

16
(q′′′)2 +

7

2
q′q′′′ +

7

4
qq′′′′ +

35

4
q′′q′′′ +

21

4
q′q′′′′

−1

8
q′′′′′′ +

7

4
qq′′′′′ − 1

8
q′′′′′′′

5
21

16
q6 +

105

8
q3(q′)2

63

8
q5 − 315

8
q2(q′)2

1

16
q′′′′′′′′′ − 9

8
qq′′′′′′′

63

16
q2(q′′)2 −105

4
q′′q3 +

189

8
q(q′′)2 −9

2
q′q′′′′′′ +

63

8
q2q′′′′′

−35

32
(q′)4 +

63

4
(q′)2q′′ −21

2
q′′q′′′′′ +

189

4
qq′q′′′′

+
9

16
q(q′′′)2 +

63

2
qq′q′′′ +

63

8
q2q′′′′ +

315

4
qq′′q′′′ − 63

4
q′′′q′′′′

−5

8
(q′′)3 −105

8
(q′)2q′′ − 69

16
(q′′′)2 −105

4
q3q′′′′ +

483

8
(q′)2q′′′

+
1

32
(q′′′′)2 −57

8
q′′q′′′′ − 27

8
q′q′′′′′ +

651

8
q′(q′′)2 − 315

2
q2q′q′′

−9

8
qq′′′′′′ −315

2
q(q′)3

+
1

16
q′′′′′′′′ +

315

8
q′q4
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Proof. The statement is obvious for n = 0, since |q|20 = 2H1, while for n = 1, ‖q‖2∞ �
2‖q‖22 + 2‖q′‖22 implies

H2 =
1

4

∫ 1

0

(q′)2 dx+
1

2

∫ 1

0

q3 dx

� 1

4
‖q′‖22 −H1

√
4H1 + 2‖q′‖22

� 1

4
‖q′‖22 − 2H

3/2
1 −

√
2H1‖q′‖2,

so that

‖q′‖2 � 2
√
2H1 +

√
4H2 + 8H

3/2
1 + 8H2

1

and

|q|21 � 8H2 + c1
(
H0, H1

)
.

The proof for n � 2 proceeds by induction. LetH0, . . . , Hn be fixed so that |q|n−1 is controlled,
that is to say ‖q(i)‖∞ (i � n−2) and ‖q(n−1)‖2 are controlled. Now Hn+1 is a sum of integrals
of monomials in q, q′, . . . , q(2n+1) of isobaric degree

(i = the number of appearances of q)

+
1

2
× (j = the number of differentiations)

= n+ 2,

in which you may take i � 2 as such integrals vanish if i = 1, and by partial integration,
you may arrange to have the largest and next largest number of differentiations applied to a
single appearance of q differ by 1 or less. Call them j1 and j2[j2 � j1 � j2 + 1]. Then j1 � n
since j1 > n entails too high a degree:

i+
1

2
j � 2 +

1

2
(n+ 1) +

1

2
n = n+

5

2
> n+ 2.

Now if j1 = n, you must have j2 = n and i = 2 as i � 3 leads to degree exceeding 3 + n
2 +

1
2 (n− 1) = n+ 5

2 . You could also have j1 = n− 1 or j1 � n− 2. Contributions of the second

kind are controlled by ‖q(i)‖∞ (i � n−2), while a contribution of the first kind cannot involve
q(n−1) to degree � 3[3 + 3

2 (n − 1) = 3
2n + 3

2 > n + 2, since n � 2] and so is controlled by

‖q(i)‖∞ (i � n − 2) and ‖q(n−1)‖2. Therefore, Hn+1 = constant× ‖q(n)‖22+ terms controlled
by H0, . . . , Hn, and the proof may be finished by verifying that the constant multiplier of
‖q(n)‖22 is 2−n−1. The proof is by induction: ignoring terms with less than a maximal number
of differentiations, if In = 2−n[q(n−1)]2, then ∂Hn/∂q = 2−n+1(−1)n−1q(2n−2), and

Xn+1q =

(
qD +Dq − 1

2
D3

)
∂Hn

∂q
= (−1)n2−nq(2n+1),

so that ∂Hn+1/∂q = (−1)n2−nq(2n) and In+1 = 2−n−1[q(n)]2. �
Lemma 16.3.9 (14). Fix H0, . . . , Hn. Then Hn+1 attains its minimum in the class C∞

1/m ⊂
C∞

1 for any m = 1, 2, 3, . . ., and at the minimum c1X1+· · ·+cnXn+Xn+1 : q → 0 with suitable
coefficients ci (i = 1, . . . , n).

14See Lax [24].
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Proof for m = 1. |q|n stays bounded as Hn+1 decreases to its infimum in the class
C∞

1 for fixed H0, . . . , Hn, and it is plain from the proof of Lemma 16.3.5 that the infimum is
attained by some potential q ∈ Fn. Now the condition of minimization is of the form15

n∑
i=0

(−1)iDi ∂In+1

∂xi

[
q, . . . , q(n)

]
+

n∑
j=0

cj

j∑
i=0

(−1)iDi ∂Ij
∂xi

[
q, . . . , q(j−1)

]
= 0,

and apart from the leading term (−1)n2−nq(2n), the sum involves i < n differentiations of
functions ∂In+1/∂xi of class F1 or better.16 Therefore, q(2n) ∈ F−n+2, i.e., q ∈ Fn+2. The
procedure is now repeated with the result that q ∈ Fn+4, Fn+6, . . ., i.e., q ∈ C∞

1 . The condition
of minimization can now be written

n∑
j=0

cj
∂Hj

∂q
+

∂Hn+1

∂q
= 0.

The proof is finished by differentiation with regard to x. �

16.4. Vector Fields and Flows

The quantities Xq = (∂H/∂q)′ of §16.3 are now regarded as vector fields on the class C∞
1

of infinitely differentiable functions of period 1: if F is any smooth functional on C∞
1 , then

XF (q) =

∫ 1

0

∂F

∂q
Xq dx.

Technical Condition. Let X = c1X1 + · · ·+ cnXn. Then q• = Xq is assumed to have a nice
solution in C∞

1 ; later, this will appear as a simple corollary of classical function theory in
the hyperelliptic case; see, especially, Amplification 16.10.11 and §14, below. Notice that for
H = c1H1+ · · ·+cnHn, q

• = (∂H/∂q)′ has the form of a Hamiltonian flow, ′ = differentiation
being skew-symmetrical.17

Theorem 16.4.1 (18). The periodic spectrum, and so also the Hamiltonian series, is
preserved by the Hamiltonian flows q• = Xq.

Proof. Under such a flow,

ϑ• =

∫ 2

0

∂ϑ

∂q
Xq dx = −t

∫ 2

0

e(t, x, x)Xq dx.

Now the periodic spectrum is surely preserved by the motion of translation q• = X1q = q′, so

0 =

∫ 2

0

e(t, x, x)X1q dx.

The rest of the proof consists in checking that

d

dt

∫ 2

0

e(t, x, x)Xmq dx = −1

2

∫ 2

0

e(t, x, x)Xm+1q dx

15xi stands for q(i). Di is construed as a map of Fj into Fj−i.
16In+1 is arranged as in the proof of Lemma 16.3.8.
17The Hamiltonian aspect of such flows was first noticed by Gardner et al. [9]; see also Faddeev and Zaharov

[33].
18The fact is well-known; see, for example, Gardner et al. [10].
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for m = 1, 2, 3, . . . . That is easy: by Lemma 16.3.5 and the skew-symmetry of the operator
qD +Dq − 1

2D
3,

d

dt

∫ 2

0

eXmq dx =

∫ 2

0

e•
(
∂Hm

∂q

)′
dx

= −
∫ 2

0

e•′
∂Hm

∂q
dx

=
1

2

∫ 2

0

∂Hm

∂q

(
qD +Dq − 1

2
D3

)
e dx

= −1

2

∫ 2

0

(
qD +Dq − 1

2
D3

)
∂Hm

∂q
dx

= −1

2

∫ 2

0

eXm+1q dx,

as required. �
Theorem 16.4.2. The vector fields X commute with one another.

Proof. This is a standard fact of Hamiltonian mechanics: commuting flows preserve one
another’s Hamiltonians and vice versa. Fix a smooth functional F of q. Then

XiF =

∫ 1

0

∂F

∂q
Xiq dx =

∫ 1

0

∂F

∂q

(
∂Hi

∂q

)′
dx

and19

XjXiF =

∫ 1

0

∫ 1

0

∂Hi

∂q(x)

∂2F

∂q(x)∂q(y)

∂Hj

∂q(y)
dx dy

+

∫ 1

0

∂F

∂q(x)

[
d

dx

∫ 1

0

∂2Hi

∂q(x)∂q(y)

(
∂Hj

∂q(y)

)′
dy

]
dx.

The first integral is symmetrical in i and j, so what you need is such symmetry in the second
integral, also. But the invariance of Hi under q

• = Xjq entails

0 = H•
i =

∫ 1

0

∂Hi

∂q
Xjq =

∫ 1

0

∂Hi

∂q

(
∂Hj

∂q

)′
,

and you have only to differentiate once more by q and integrate by parts to obtain the
necessary identity:

0 =

∫ 1

0

∂2Hi

∂q(x)∂q(y)

(
∂Hj

∂q(y)

)′
dy −

∫ 1

0

(
∂Hi

∂q(y)

)′
∂2Hj

∂q(x)∂q(y)
dy.

�
The fact that the periodic spectrum is preserved by the flow q• = Xq implies the existence

of a family of unitary operators U in L2
2 such that UQU † = Qo, Qo being Hill’s operator for

the initial potential. Lax [22] introduced into the subject the formal infinitesimal operator
K = U•U †. The cautionary adjective “formal” refers to the fact that the differentiability of
U is unclear. The next theorem presents a formula for K; it will be part of the proof that

19∂2F/∂q2 is the symmetrical kernel defined by

F (q + εp) = F (q) + ε
∂F

∂q
· p +

ε2

2
p · ∂

2F

∂q2
p+ O

(
ε3

)
,

in which · stands for the inner product of L2
1.
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a differentiable family U really does exist. The computation is based upon the self-evident
identity

KQ−QK = (−1)×multiplication by Xq,

which any such infinitesimal unitary must satisfy.

Theorem 16.4.3 (20). The infinitesimal unitary operator for X = Xn is

Kn =
n∑

k=1

(
1

2
Xk−1q − ∂Hk−1

∂q
D

)
(2Q)n−k;

especially, Kn is a differential operator of degree 2n− 1. A short table of these operators will
be found in Table 16.1 below.

Proof. The commutator of K = Kn and Q is as it should be: by Theorem 16.3.4,

KQ−QK =

n∑
k=1

[(
1

2

(
∂Hk−1

∂q

)′
− ∂Hk−1

∂q
D

)
Q

−Q

(
1

2

(
∂Hk−1

∂q

)′
− ∂Hk−1

∂q
D

)]
(2Q)n−k

=

n∑
k=1

[
1

2

(
∂Hk−1

∂q

)′′′
− 2

(
∂Hk−1

∂q

)′
D2 − ∂Hk−1

∂q
q′
]
(2Q)n−k

=

n∑
k=1

[(
Xk−1q

)
2Q− Xkq

]
(2Q)n−k

=
(
X0q

)
(2Q)n − (

Xnq
)
(2Q)o

= −Xnq.

Now solve f•
i = Kfi for i = 0, 1, 2, . . ., starting from the unit eigenfunctions fo

i of Qo. Then

d

dt

∫
fifj =

∫
fiKfj +

∫
fjKfi = 0,

so that the fi form a unit perpendicular family, and

d

dt

∫
fiQfj =

∫
fi(−KQ+QK + Xq)fj = 0,

from which it appears, first, that Qfj belongs to the span of fi[
∑∞

i=0 |(fi, Qfj)|2 = ‖Qfj‖2 =
λ2
j ] and, second, that Qfj = λjfj (j = 0, 1, 2, . . .) with the same eigenvalues as for Qo,

Qfj−λjfj being perpendicular to every fi. A moment’s reflection confirms that the spectrum
of Q does not change at all, that the fi span L2

2, and that the desired unitary family is
determined by U : fo

i → fi (i = 0, 1, 2, . . .). �
Amplification 16.4.4. The operatorsKn commute in view of Theorem 16.4.2; especially

K = c1K1 + · · ·+ cnKn is the infinitesimal unitary operator for X = c1X1 + · · ·+ cnXn.

Amplification 16.4.5. The action of K on the eigenspaces of Q is of special importance.
For a simple eigenvalue λ with eigenfunction f, q• = Xq entails Qf• + q•f = λf• with
f• = Kf , i.e., (Q− λ)Kf = Xq × f . The special case Xq = 0 leads to the simplest result, as
in Table 16.2.

20Lax [24] computed Kn in another way.
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Table 16.2.

m Km

1 −D

2 2D3 − 3qD − 3

2
q′

3 −4D5 + 10qD3 + 15q′D2

+
25

2
q′′D − 15

2
q2D

−15

2
qq′ +

15

4
q′′′

Theorem 16.4.6. If Xq = 0, then K annihilates the simple eigenfunctions of Q, while in
a double eigenspace with unit perpendicular basis f±, it acts as

Kf− = kf+

Kf+ = −kf−
with a real number k depending upon the eigenvalue.

Proof. If λ is a simple eigenvalue, then (Q−λ)Kf = 0 implies that Kf is proportional
to f , and the constant of proportionality must vanish, K being skew, i.e., Kf = 0. Now let
f± be a unit perpendicular basis of a double eigenspace. Then (Q−λ)Kf− = 0, as before, so
that Kf− = c1f− + c2f+, and from the skewness of K,

c1 = c1

∫
f2
− =

∫
f−Kf− = 0.

Thus, Kf− = c2f+; similarly, Kf+ = c3f−, and

c2 = c2

∫
f2
+ =

∫
f+Kf− = −

∫
f−Kf+ = −c2

∫
f2
− = −c3.

The proof is finished. �
The infinitesimal operators K play a central role below; see, especially, §16.6.

16.5. The Manifold of Potentials

Let M be the manifold of potentials q ∈ C∞
1 with fixed simple spectrum λo

0 < · · · < λo
2n.

Theorem 16.5.1 (21). M is an n-dimensional torus identifiable as the quotient of Rn by
a lattice L via the map

t ∈ Rn → etXqo

for fixed qo ∈ M and tX = t1X1 + · · · + tnXn; especially the commutative fields X1, . . . ,Xn

span the tangent space of M at every point.

21Lax [24] proved this fact in a somewhat different way.
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Step 1. is to recall from §16.2 that M is a 2n-sheeted covering of the cell C = [λo
1, λ

o
2]× · · ·×

[λo
2n−1, λ

o
2n] in which the auxiliary spectrum μo

1 < · · · < μo
n sits, with 2m covering points over

every point of C such that λo
2i−1 < μo

i < λo
2i for precisely m values of 1 � i � n; in particular,

M is compact.

Step 2. For fixed qo ∈ M , the map t → etXqo is 1 : 1 in the vicinity of t = 0.

Proof. If not, then etXqo = qo + tXqo +O(t2) = qo for arbitrarily small t, i.e., cXqo = 0
for some non-trivial direction c ∈ Rn, and the corresponding infinitesimal unitary operator
K = c1K1 + · · · + cnKn annihilates the simple eigenfunctions of Q by Theorem 16.4.6. But
the simple eigenfunctions are 2n+ 1 in number, while K is a differential operator of degree
2n− 1, and Kf = 0 cannot have so many independent solutions. �

Step 3. If qo is in general position, i.e., if m = n, then for small δ > 0,

B =
[
etXqo : |t| < δ

]
covers simply a full neighborhood of qo, and M has the structure of a smooth n-dimensional
manifold in the vicinity; moreover, the commuting fields X1, . . . ,Xn constitute a basis for the
tangent space at that point.

Proof. By step 1, the general position of qo means that the map

t ∈ Rn → q = etXqo ∈ M → (
μo
1, . . . , μ

o
n

) ∈ C

is locally 1:1. The proof is finished by computing the Jacobian determinant

det
∂μo

i

∂tj
�= 0

to confirm that t ∈ Rn is a local coordinate in the vicinity of qo. The fact is already implicit in
§16.2, but the present proof is simpler and useful for the sequel besides. The proof is broken
into three simple lemmas.

Lemma 16.5.2.

∂μo
i

∂tj
= Xjμ

o
i =

j∑
k=1

∂Hk−1

∂q
(0)

(
2μo

i

)j−k
X1μ

o
i (i = 1, . . . , n).

Proof.
22 Let μ = μo

i and let f be the corresponding eigenfunction with
∫ 1

0 f2 dx = 1.
Then for any variation q• = Xq, you have Qf• + q•f = μ•f + μf• and

μ• =

∫
f
(
Qf• + q•f − μf•) =

∫
f2q•,

i.e., ∂μ/∂q = f2. Therefore, it suffices to check that∫
f2Xjq = 2μ

∫
f2Xj−1q +

∂Hj−1

∂q
(0)

∫
f2X1q.

To begin with,∫
f2X1q =

∫
f2q′ = −2

∫
ff ′q = −2

∫
f ′(f ′′ + f) = −(f ′)2|10,

22The computation is similar to the proof of Lemma 16.3.5.
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so

∂Hj−1

∂q
(0)

∫
f2X1q = −(f ′)2

∂Hj−1

∂q

∣∣∣∣
1

0

= −2

∫
f ′f ′′ ∂Hj−1

∂q
−
∫
(f ′)2

(
∂Hj−1

∂q

)′

=

∫
f2

(
q
∂Hj−1

∂q

)′
− μ

∫
f2Xj−1q −

∫
(f ′)2Xj−1q.

Thus

2μ

∫
f2Xj−1q +

∂Hj−1

∂q
(0)

∫
f2X1q

=

∫
f(−f ′′ + qf)Xj−1q +

∫
f2

(
q
∂Hj−1

∂q

)′
−
∫
(f ′)2Xj−1q

=

∫
f2q

(
∂Hj−1

∂q

)′
+

∫
f2

(
q
∂Hj−1

∂q

)′
− 1

2

∫
(f2)′′

(
∂Hj−1

∂q

)′

=

∫
f2

(
qD +Dq − 1

2
D3

)
∂Hj−1

∂q

=

∫
f2Xjq,

by Theorem 16.3.4. The proof is finished. �

Lemma 16.5.3. detXjμ
o
i = 2n(n−1)/2X1μ

o
1 · · ·X1μ

o
n ×∏

i>j(μ
o
i − μo

j).

Proof. The formula is self-evident. �
Lemma 16.5.4. X1μ

o
i = 0 if and only if μo

i = λo
2i−1 or λo

2i.

Proof. For μ = μo
i and f = the associated eigenfunction, X1μ = −(f ′)2(1) + (f ′)2(0),

as in the proof of Lemma 16.5.2. Thus, X1μ = 0 only if f ′(0) = ±f ′(1), and that happens
only if f is of period 1 or 2, as is readily verified by means of the discriminant and the
identification of f as a multiple of y2(x, μ): namely, you would have 1 = y′2(0, μ) = ±y′2(1, μ)
and y1(1, μ) = [y′2(1, μ)]−1 = ±1, also, so that Δ(μ) = ±2. �

Amplification 16.5.5. The content of Lemma 16.5.4 may be clarified as follows: fo
2i−1

of fo
2i has i roots per period 0 � x < 1. Therefore by translation through one full period,

μo
i (x) must hit each of λo

2i−1 and λo
2i precisely i times; see Amplification 16.6.4 for a picture

and more details.

Step 4. is to extend step 3 to points qo ∈ M in special position (m < n). The idea is that
etX will move qo into general position for some choice of t ∈ Rn and that etX and e−tX are
smooth and inverse to each other, so that etX is a diffeomorphism of M . The proof is easy: if
q = etXqo is in special position for every t ∈ Rn, then some point from the auxiliary spectrum
of q sits at one end of its ambient interval of instability for every t from so small a ball |t| < δ
that step 2 applies. Then you would have a 1:1 continuous map of that n-dimensional ball
into a lower-dimensional part of 2n copies of C. That is impossible.

Step 5. M is now seen to be a compact n-dimensional manifold without boundary on which
the commuting vector fields X1, . . . ,Xn act nontrivially at every point and so span the tangent
space. The connected piece of M in which a fixed point qo sits may now be identified as a
torus Rn/L, L being the lattice of points t ∈ Rn such that etXqo = qo. M is therefore a sum
of � = 1, 2, 3, . . . such tori and it remains to prove only that M is connected, i.e., � = 1. This
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Figure 16.2.

Figure 16.3.

is geometrically clear from the fact that if μi = λo
2i−1 (i = 1, . . . , n), then M contains just

one covering point, and from the computations of §16.2 which make it plain that any point
of M may be joined to this special point by a smooth curve. A sketch of M for n = 2 is seen
in Figs. 16.2 and 16.3.

The next item is an immediate corollary of Theorem 16.5.1.

Corollary 16.5.6. The vector field Xn+1 also acts upon M , so there exists a relation X =
c1X1+· · ·+cnXn+Xn+1 = 0 at each point of M . The coefficients are unique because X1, . . . ,Xn

are independent; moreover, they do not depend upon q because exp(t1X1 + · · · + tnXn) is
transitive on M and commutes with X. Xq = 0 represents a nonlinear ordinary differential
equation for q of degree 2n+ 1.23

Corollary 16.5.7. The operator Q has 2n + 1 < ∞ simple eigenvalues if and only if
Xq = 0 for some choice of c1, . . . , cn and n is minimal in this regard.

Proof. Xq = 0 implies that K annihilates the simple eigenfunctions of Q, so their
number cannot exceed degK = 2n+ 1. The rest will be plain. �

Example 16.5.8. For n = 0, this proves the result of Borg [1]: Q has just one simple
eigenvalue if and only if q is constant, namely q = λ0. Then M comprises just this single
point.

Example 16.5.9. The result for n = 1 was discovered by Hochstadt [16] in a different
way. Then 0 = c1X1q + X2q = c1q

′ + 3qq′ − 1
2q

′′′, and the only solutions of class C∞
1 are

translates of q(x) = −c1/3 + 2p(x +
√−1ω′/2), in which p is the Weierstrassian elliptic

function with primitive periods ω = the reciprocal of an integer m = 1, 2, 3, . . . and
√−1ω′;

see Example 16.6.3 in which it is proved that ω′ is real and that the invariants of p are

23Flaschka [8] proved Xq = 0 in a non-geometrical way; see also Goldberg [14]. The case n = 1 was
discovered by Hochstadt [16].
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e1 = −λo
0, e2 = −λo

1, e3 = −λo
2. The general shape of q for n = 2, 3, . . . is still obscure,

though a large body of numerical information has been obtained by J. M. Hyman of CIMS;
for example, he finds that for n = 2, the number of peaks and valleys is usually 4 and, on
occasion 5.

Involution. A useful choice of origin in M is to make μo
i = λo

2i−1 (i = 1, . . . , n). The
involution σ : q(x) → q(−x) is a covering map of M over C inducing a map of Rn modulo
periods; the matter will be discussed from this point of view.

Proposition 16.5.10. By proper choice of the origin of M , σ fixes half-periods and
nothing else.

Proof. σXi = −Xiσ (i = 1, 2, . . . , n), so

etX = σe−tXσ.

Let qo be the origin of M as described above. Then q = e−tXqo ∈ M is even if and only if

e−tXqo = q = σq = σe−tXσqo = etXqo,

which is to say e2tX = I, i.e., 2t is a period. The proof is finished. �
Proposition 16.5.11. The half-periods of M are precisely the places at which M is 2n-

fold ramified over C, i.e., the places at which μo
i = λo

2i−1 or λo
2i (i = 1, . . . , n). They are 2n

in number.

Proof. If t ∈ Rn is a half-period, then q(x) = q(−x) and each eigenfunction of Q with
f(0) = f(1) = 0 is even or odd about x = 1/2 and so of period 1 or 2, alternately. This
proves μo

i = λo
2i−1 or λo

2i (i = 1, . . . , n). The converse is just as easy: if the eigenfunctions are

as above, then Q =
∑∞

i=1 μifi ⊗ fi commutes with σ : f → f(−•), and that happens only if
q(x) = q(−x). �
Usage. The origin qo is now fixed as proposed above [μo

i = λo
2i−1 (i = 1, . . . , n)], and q is

regarded as a function of t ∈ Rn : q(t) = etXqo evaluated at x = 0. The actual potential
q(x) attached to a point of M = Rn/L is then obtained as q(t1 + x, t2, . . . , tn), X1 being the
infinitesimal operator of translation.

16.6. Eigenfunctions

The purpose of the present article is to use the infinitesimal unitary operator K = c1K1+
· · ·+ cnKn +Kn+1 associated with X = c1X1 + · · ·+ cnXn + Xn+1, as in §16.4, to study the
periodic eigenfunctions of Q under the condition of Corollary 16.5.6: Xq = 0. The results
will be used to compute the coefficients c1, . . . , cn in terms of λo

0 < · · · < λo
2n in §16.7 and

to determine the period lattice L in §16.8. K is a differential operator of degree 2n + 1
annihilating the simple eigenfunctions of Q and acting as

Kf− = 2nkf+

Kf+ = −2nkf−

on a double eigenspace with unit perpendicular basis f±.24 The simple eigenfunctions are
2n+1 in number, so they comprise the whole null space of K. Now for any eigenvalue λ with

24See Theorem 16.4.6; the notation is a little changed from §16.4 by the insertion of the factor 2n.
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eigenfunction f ,25

Kf =

n+1∑
i=1

ci

i∑
j=1

(
1

2
Xj−1q − ∂Hj−1

∂q
D

)
(2λ)i−jf

= 2n
(
1

2
m′ −mD

)
f

with

m(x) = m(x, λ) = 2−n
n+1∑
i=1

ci

i∑
j=1

∂Hj−1

∂q
(2λ)i−j .

The properties of the function m will now be explained in a series of simple propositions.

Proposition 16.6.1. m(x, λ) = (λ−μo
1) . . . (λ−μo

n), the auxiliary spectrum μo
1 < · · · < μo

n

being computed for the original potential q translated by the amount 0 � x < 1 so that each
μo
i (i = 1, . . . , n) is regarded as a function of 0 � x < 1.26

Proof. m(x, λ) is a polynomial in λ of degree n with top coefficient 2−ncn+1×∂H0/∂q×
2n = 1, and by the formula of Lemma 16.5.2, translated in the amount x, 0 = 2−nXμo

i =
m(x, μo

i )X1μ
o
i for i = 1, . . . , n. This identifies the roots of m(x, λ). The proof is finished. �

Proposition 16.6.2. If λ is a simple eigenvalue of Q, then the associated eigenfunction
f is a constant multiple of

√
m(x, λ) with an appropriate determination of the radical.

Proof. For such λ, m(x, λ) is of one signature in 0 � x < 1 since λo
2i−1 � μo

i � λo
2i

(i = 1, . . . , n). Now Kf = 0 implies 1
2m

′f = mf ′, or what is the same, m′f2 = m(f2)′.
Therefore, m and f2 are proportional, and it must only be proved that m does not vanish
identically in 0 � x < 1. But if it did, you would have

0 = m′ =
n+1∑
i=1

ci

i∑
j=1

Xj−1q(2λ)
i−j =

(
c′1X1 + · · ·+ c′nXn

)
q,

contradicting the independence of the vector fields Xi (i � n) on M . The signature of the
radical may now be determined so that f is proportional to

√
m. �

Example 16.6.3. Recall from Example 16.5.9 that q = −c1/3 + 2p(x +
√−1ω′/2) for

n = 1. The simple eigenfunctions fo
i (i = 0, 1, 2) are easily computed from

m(x, λ) =
1

2

(
c1 + 2λ+ q

)
= p+ λ+

c1
3
;

fo
i is proportional to

√
m(x, λo

i ) and vanishes once in a period for i = 1, 2, so λo
1 + c1/3

and λo
2 + c1/3 can only be the Weierstrassian invariants −e2 and −e3; moreover, −c1 =

σ1 = λo
0 + λo

1 + λo
2, as will be proved in §16.7, so λo

0 + c1/3 = −e1[e1 + e2 + e3 = 0],
and the simple eigenfunctions are proportional to the 3 Jacobian elliptic functions

√
p− ei

(i = 1, 2, 3). Because e1, e2, e3 are real, the complex primitive period is pure imaginary; in
fact, the primitive periods are

ω =

∫ λo
2

λo
1

dμ

�(μ)
=

1

m1
,

√−1ω′ =
∫ ∞

λo
2

dμ

�(μ)
=

∫ e3

−∞

dp√(
p− e1

)(
p− e2

)(
p− e3

) .

25See Theorem 16.4.3; cn+1 = 1.
26This device was introduced into the subject by Hochstadt [16].
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Figure 16.4.

Amplification 16.6.4. From Propositions 16.6.1 and 16.6.2, you obtain an overview of
the motion of the auxiliary spectrum μo

1 < · · · < μo
n under translation by 0 � x < 1. Let fo

i

(i = 0, . . . , 2n) be the simple eigenfunctions of Q. Then for i = 1, 2, . . . , n, fo
2i−1 is proportional

to μo
i − λo

2i−1, while fo
2i is proportional to λo

2i − μo
i , and both of these eigenfunctions have

precisely mi roots per period. Thus, μ
o
i meets λo

2i−1 and λo
2i each mi times as x runs from 0

to 1 and the values of x at which such meetings take place are interlaced. Figure 16.4 depicts
the case n = 3, m1 = 1, m2 = 2, m3 = 3, q = the origin of M ; naturally, the picture is merely
schematic.

Proposition 16.6.5. 1
4 (m

′)2 − 1
2mm′′ +m2(q − λ) = �2(λ) = −(λ− λo

2) . . . (λ− λo
2n).

Proof. The left-hand side is a polynomial in λ of degree 2n+1 with top coefficient −1,
so it suffices to identify the roots as λo

0, . . . , λ
o
2n. This is done by observing that for λ = λo

i

(i = 0, . . . , 2n), m(x, λ) is proportional to the square of the corresponding eigenfunction f ,
whereupon the left-hand side is seen to vanish:

1

4
(2ff ′)2 − 1

2
f2
(
2(f ′)2 + 2ff ′′)+ f4(q − λ) = −f3

(
f ′′ + (λ− q)f

)
= 0.

�

Proposition 16.6.6.

y1(x, λ) =

√
m(x, λ)

m(0, λ)
× cos

[√−1�(λ)

∫ x

0

m−1(y, λ)dy

]

− 1

2
m′(0, λ)

sin

[√−1�(λ)
∫ x

0
m−1(y, λ)dy

]
√−1�(λ)

,

y2(x, λ) =
√
m(0, λ)m(x, λ)

sin
[√−1�(λ)

∫ x

0
m−1(y, λ)dy

]
√−1�(λ)

with a proper determination of the radicals, provided λ is outside the intervals of instability
[λo

2i−1, λ
o
2i] (i = 1, . . . , n).

Proof. The proviso on λ keeps m from vanishing in 0 � x < 1. Qy = λy for y = y1 or y2
is easily verified with the help of Proposition 16.6.5, and you check y1(0) = 1, and y′1(0) = 0,
y2(0) = 0, and y′2(0) = 1 by inspection. �
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Proposition 16.6.7. Δ(λ) = y1(1, λ) + y′2(1, λ) = 2 cos[
√−1�(λ)

∫ 1

0 m−1(x, λ)dx] off
the intervals of instability [λo

2i−1, λ
o
2i] (i = 1, . . . , n); especially, λ is a double eigenvalue

λ2i−1 = λ2i if and only if

√−1�(λ)

∫ 1

0

dx(
λ− μo

1

)
. . .

(
λ− μo

n

) = ±iπ.

Proof. The formula for Δ(λ) is immediate from Proposition 16.6.6, and the rest follows
from the fact that λ is a double eigenvalue λ2i−1 = λ2i if and only if y2(x, λ) = 0 has precisely

i roots in a period 0 � x < 1, i.e., if and only if
√−1�(λ)

∫ 1

0
m−1dx = ±iπ. �

Amplification 16.6.8. A comparison of Proposition 16.6.7 with Hochstadt’s formula of
§16.1 yields the remarkable identity

1

2

∫ λ

λ0

n∏
i=1

(
μ− λ′

i

) dμ

�(μ)
= �(λ)

∫ 1

0

dx(
λ− μo

1

) · · · (λ− μo
n

) ;
see Corollary 16.10.9 for additional information.

Proposition 16.6.9. If λ is a double eigenvalue of Q, then the functions

f−(x)
f+(x)

=
√
m(x, λ)

sin
cos

[√−1�(λ)

∫ x

0

m−1(y, λ) dy

]

constitute a (non-unit) perpendicular basis for the eigenspace.

Proof. f− may be chosen as the function y2 of Proposition 16.6.6. Then f+ is propor-
tional to

Kf− = 2n
(
1

2
m′ −mD

)
f− = constant×√

m× the cosine.

�
Amplification 16.6.10. The multipliers needed to make the double eigenfunctions f±

of Proposition 16.6.9 have unit length are the same for both: 2nk||f+||2 =
∫
f+Kf− =

2nk||f−||2, so the common multiplier is the reciprocal of
∫ 2

0 m(x, λ) dx = 2
∫ 1

0 m(x, λ)dx; the

same multiplier serves for the simple eigenfunctions of Proposition 16.6.2. The evaluation27∫ 1

0

m(x, λ) dx =
(
λ− λ′

1

) · · · (λ− λ′
n

)

is carried out in Corollary 16.10.7. The upshot is that the simple and double eigenfunctions
of Q can be expressed as

√
2f(x) =

√(
λ− μo

1

)
. . .

(
λ− μo

n

)
(
λ− λ′

1

)
. . .

(
λ− λ′

n

)
and

f (x)
f+(x)

=

√(
λ− μo

1

) · · · (λ− μo
n

)
(
λ− λ′

1

) · · · (λ− λ′
n

)

× sin
cos

[√−1�(λ)

∫ x

0

dx(
λ− μo

1

) · · · (λ− μo
n

)
]
,

respectively.

27λ′
1 < · · · < λ′

n are the nontrivial roots of Δ′(λ) = 0 introduced in §16.1.
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Proposition 16.6.11. In a double eigenspace, k2 = −�2(λ); especially,

K2 = 22n�2(Q) = −22n
(
Q− λo

0

) · · · (Q− λo
2n

)
.

Proof. The evaluation of k2 falls out from Proposition 16.6.5: in a double eigenspace,

−k2 =

(
1

2
m′ −mD

)2

=
1

4
(m′)2 − 1

2
mm′′ −m′mD +mm′D +m2D2

=
1

4
(m′)2 − 1

2
mm′′ +m2(q − λ) = �2(λ).

�
Proposition 16.6.12. The following function classes have the same span:

1◦. the n+ 1 elementary symmetric polynomials in μo
1, . . . , μ

o
n;

2◦. any n+ 1 of the squares of the simple eigenfunctions fo
0 , . . . , f

o
2n;

3◦. the gradients ∂H0

∂q , . . . , ∂Hn

∂q .

The dimension of the common span is precisely n+ 1.

Proof. The polynomial m(x, λ) of degree n+1 may be reconstituted from its values at
any n+1 of the points λo

0, . . . , λ
o
2n. The identification of span 1◦ and span 2◦ is now plain from

Propositions 16.6.1 and 16.6.2, while the identification with span 3◦ is an easy consequence
of the formula

2nm(x, λ) =

n+1∑
i=1

ci

i∑
j=1

∂Hj−1

∂q
(2λ)i−j .

The only point at issue is the value of the dimension, but if that were � n, there would exist
a dependence among ∂H0/∂q, . . . , ∂Hn/∂q entailing a dependence among X1, . . . ,Xn on M .
That is impossible. �

Amplification 16.6.13. A number of interesting formulas may be derived from the same
ideas; for example, m(x, λ) can be interpolated from its values at λo

i (i = 0, . . . , n), with the
help of Amplification 16.6.8:

m(x, λ) =
n∑

i=0

∏
j 	=i

0�j�n

λ− λo
j

λo
i − λo

j

2
n∏

k=1

(
λo
i − λ′

k

)[
fo
i (x)

]2
.

Now match coefficients of λn and λn−1 to produce

1 =

n∑
i=0

ε′i
(
fo
i

)2
and − (

μo
1 + · · ·+ μo

n

)
=

n∑
i=0

[
λo
i −

(
λo
0 + · · ·+ λo

n

)]
ε′i
(
fo
i

)2

with suitable coefficients ε′i (i = 0, . . . , n). The second sum is identified as 1
2 (q + cn) by the

formula for m in terms of ∂H0/∂q, . . . , ∂Hn/∂q. These two formulas may be combined with
the evaluation −cn = σ1 = λo

0 + · · ·+ λo
2n of §16.7 to prove28

q = σ1 − 2
(
μo
1 + · · ·+ μo

n

)
= −(λo

0 + · · ·+ λo
n

)

+
(
λo
n+1 + · · ·+ λo

2n

)
+ 2

n∑
i=0

λo
i ε

′
i

(
fo
i

)2
.

28Flaschka also proved a formula of this kind [private communication from J. Moser].
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There are similar formulas involving (fo
i )

4 (i = 0, . . . , 2n): m2(x, λ) is interpolated from its
values at λo

i (i = 0, . . . , 2n) and the coefficients of λ2n and λ2n−1 are matched to obtain

1 =

2n∑
i=0

ε′′i
(
fo
i

)4
and − 2

(
μo
1 + · · ·+ μo

n

)
=

2n∑
i=0

(
xo
i − σ1

)
ε′′i
(
fo
i

)4

with new coefficients ε′′i (i = 0, . . . , 2n). These are combined to obtain

q =

2n∑
i=0

λo
i ε

′′
i

(
fo
i

)4
.

The general formulas

∞∑
j=0

∂Hj

∂q
εj =

√∏n
i=0

(
1− 2ελo

i

)
√∏n

i=0

(
1− 2ελo

n+1

)
n∑

i=1

ε′i
1− 2ελo

i

(
fo
i

)2

( ∞∑
j=0

∂Hj

∂q
εj
)2

=

2n∑
i=0

ε′′i
1− 2ελo

i

(
fo
i

)4

may be deduced from Corollary 16.12.7.

Amplification 16.6.14. Lax [22] remarked that if H = c1H1+ · · ·+cnHn+Hn+1, then
29

∂2H/∂q2D annihilates the squares of the simple eigenfunctions fo
i (i = 0, . . . , 2n). The proof

is simple: ∂H/∂q = −c0 is constant on the torus M , so

∂2H

∂q2
Xiq =

∂2H

∂q2
D
∂Hi

∂q
= 0 (i = 0, . . . , n)

and (fo
i )

2 (i = 0, . . . , 2n) belongs to the span of ∂Hi/∂q (i = 0, . . . , n). This fact suggests
the existence of some relation between ∂2H/∂q2D and the infinitesimal unitary operator
K : fo

i → 0 (i = 0, . . . , 2n), but this unknown.

16.7. Symmetric Polynomials

A number of important symmetric polynomials now make their first appearance.

Theorem 16.7.1. The coefficients c1, . . . , cn of the differential equation Xq = 0 are (uni-
versal) symmetric polynomials in the simple periodic eigenvalues λo

0, . . . , λ
o
2n; see below for

detailed formulas. An additional n+ 1 symmetric polynomials appear as integrals of Xq = 0.

Proof. The proof depends upon the identity of Proposition 16.6.5:

�2(λ) =
1

4
(m′)2 − 1

2
mm′′ +m2(q − λ)

= 2−2n
n+1∑
k=1

n+1∑
�=1

k∑
i=1

�∑
j=1

ckc�

×
[
1

4
Xi−1qXj−1q − 1

4

(
Xi−1 − q

)′ ∂Hj−1

∂q

− 1

4

∂Hi−1

∂q

(
Xj−1q

)′
+ (q − λ)

∂Hi−1

∂q

∂Hj−1

∂q

]
× (2λ)k+�−i−j .

To proceed further some lemmas are needed; they stem from Lax [22].

29∂2H/∂q2 is the symmetric operator f → ∫ 1
0 [∂2H/∂q(x)∂q(y)]f(y)dy.
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Table 16.3.

Jij j = 1 2 3 4

i = 1 q
1

2
q2

1

3
q3 − 1

4
(q′)2

5

8
q4 − 5

4
q(q′)2

−1

8
(q′′)2 +

1

4
q′q′′′

2
3

2
q2 − 1

2
q′′ q3 +

1

4
(q′)2

9

8
q4 − 3

4
q2q′′

−1

2
qq′′ +

1

8
(q′′)2

3
5

2
q3 − 5

4
(q′)2

15

8
q4 − 5

2
q2q′′

9

4
q5 − 15

4
q3q′′′

−5

2
qq′′ +

1

8
(q′′)2 +

3

8
q2q′′′′

+
1

4
q′′′′ −1

4
q′q′′′′ −3

4
qq′q′′′ + q(q′′)2

+
1

4
qq′′′′ +

3

4
(q′)2q′′

−1

8
q′′q′′′′

+
1

16
(q′′′)2

Lemma 16.7.2. Xiq ∂Hj−1/∂q is the derivative with regard to x of a universal polynomial
Jij in q, q′, q′′, etc., without constant term. Jij is uniquely determined thereby. A short table
of these quantities appears in table 16.3.

Proof.

∫
Xiq ∂Hj−1/∂q = 0, so the first part is plain. Now let q(m) be the highest deriv-

ative of q involved in the difference I of two determinations of Jij . Then with the temporary

notation q(i) = xi (i = 0, . . . ,m+ 1),

DI = x1
∂I

∂x0
+ x2

∂I

∂x1
+ · · ·+ xm+1

∂I

∂xm
= 0,

so that ∂I/∂xm = · · · = ∂I/∂x0 = 0, and I ≡ 0 by the absence of a constant term. The proof
is finished. �

Lemma 16.7.3.
1

4
Xi−1 − qXj−1q − 1

4

(
Xi−1q

)′ ∂Hj−1

∂q
− 1

4

∂Hi−1

∂q

(
Xj−1q

)′
+ q

∂Hi−1

∂q

∂Hj−1

∂q

=
1

2

(
Jij + Jji

)
for i, j � 1.
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Proof. Both sides are universal polynomials in q, q′, q′′, etc. without constant term, so
it suffices to check the derivative:

1

4

(
Xi−1q

)′
Xj−1q +

1

4
Xi−1q

(
Xj−1q

)′

− 1

4

(
∂Hi−1

∂q

)′′′
∂Hj−1

∂q
− 1

4

(
Xi−1q

)′
Xj−1q

− 1

4

∂Hi−1

∂q

(
∂Hj−1

∂q

)′′′
− 1

4
Xi−1q

(
Xj−1q

)′

+ q′
∂Hi−1

∂q

∂Hj−1

∂q
+ q

(
∂Hi−1

∂q

)′
∂Hj−1

∂q
+ q

Hi−1

∂q

(
∂Hj−1

∂q

)′

=
1

2

(
qD +Dq − 1

2
D3

)
∂Hi−1

∂q

∂Hj−1

∂q

+
1

2

∂Hi−1

∂q

(
qD +Dq − 1

2
D3

)
∂Hj−1

∂q

=
1

2
Xiq

∂Hj−1

∂q
+

1

2

∂Hi−1

∂q
Xjq =

1

2
J ′
ij +

1

2
J ′
ji.

�

Lemma 16.7.4. Ji−1,j + Jj−1,i =
∂Hi−1

∂q
∂Hj−1

∂q for i, j � 1, provided J01 is redefined to be

1/2.

Proof. The proviso makes the formula hold for i = j = 1. Otherwise, either i or j
exceeds 2, and both sides are universal polynomials in q, q′, q′′, etc. without constant term,
and the derivatives match. Now multiply

0 = Xq = c1X1q + · · ·+ cnXnq + Xn+1q

by ∂Hj−1/∂q and integrate to obtain

c1J1j + · · ·+ cnJnj + Jn+1j = −c1−j (j = 1, . . . , n+ 1),

in which c0, . . . , c−n are constants of integration depending possibly upon the individual
point q ∈ M . It will be proved that c0, . . . , c−n, and likewise c1, . . . , cn, are universal (non-
elementary) symmetric polynomials in λo

0, . . . , λ
o
2n; especially, they are the same at every point

of M . To do that, it is necessary to rewrite the formula for −�2(λ) displayed at the beginning
of the proof in terms of the polynomials Jij and the elementary symmetric polynomials σi

(i � 2n+ 1) in λo
0, . . . , λ

o
2n, so:

2m�2(λ) = −22n
(
λ2n+1 − σ1λ

2n + · · · − σ2n+1

)

=
∑

1�i�k�n+1

1�j���n+1

ckc�

[
1

2

(
Jij + Jji

)− λ
(
Ji−1j + Jj−1i

)]
(2λ)k+�−i−j

=
∑

1�i�k�n+1

1�j���n+1

ckc�
[
Jij − 2λJi−1j

]
(2λ)k+�−i−j
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=
∑

1�k,��n+1

ckc�

�∑
j=1

Jkj(2λ)
�−j −

∑
1�k,��n+1

ckc�J01(2λ)
k+�−1

=
∑

1�j���n+1

c1−jc�(2λ)
�−j − 1

2

∑
1�k,��n+1

ckc�(2λ)
k+�−1,

by the self-evident telescoping in line 3 and the fact that Joj = 0 for j > 1. Now match like
powers of λ to obtain

2m(−1)mσm = 2
∑

1�j���n+1
�−j=2n+1−m

c1−jc� +
∑

1�k,��n+1
k+�=2n+2−m

ckc�

=
∑

k+�=2n+2−m
k,��n+1

ckc�

for m = 0, 1, . . . , 2n+1, and solve for cn, . . . , c−n in terms of σ1, . . . , σ2n, as in the table 16.4
below. The proof is finished. �

Amplification 16.7.5. A neater way of expressing cn+1 = 1, cn, . . . , c−n is to introduce
the polynomial

c(ε) =

2n+1∑
i=0

cn+1−iε
i,

and to remark that

c2(ε) =

2n∏
i=0

(
1− 2ελo

i

)
modulo ε2n+2,

so that

c(ε) =

√√√√ 2n∏
i=0

(
1− 2ελo

i

)
modulo ε2n+2.

The present formula for c(ε), combined with Proposition 16.6.1, leads at once to
∞∑
j=0

∂Hj

∂q
εj =

∏n
i=1

(
1− 2εμo

i

)
√∏2n

i=0

(
1− 2ελo

i

) modulo εn+1;

in Corollary 16.12.7, it will be seen that the proviso, modulo εn+1, is unnecessary.

Corollary 16.7.6. cn+1 = 1, cn, . . . , c−n is an algebraic basis for the class of symmetric
polynomials in λo

0, . . . , λ
o
2n; in particular, these quantities determine the simple spectrum.

Proof. See Table 16.4. �
Corollary 16.7.7. Let q be a smooth solution of Xq = 0 of period 1, not satisfying any

relation c′1X1q + · · ·+ c′nXnq = 0, and let it admit the n+ 1 integrals

n+1∑
i=1

ciJij = −c1−j (j = 1, . . . , n+ 1).

Then q appears as a point of M , i.e., M represents a complete list of such potentials.

Proof. See Corollaries 16.5.7 and 16.7.6 above. �
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Table 16.4.

i cn+1−i

0 1

1 −σ1

2 2σ2 − 1

2
σ2
1

3 −4σ3 + 2σ1σ2 − 1

2
σ3
1

4 8σ4 − 4σ1σ3 − 5

2
σ2
1σ2 − 2σ2

2 −
5

8
σ4
1

16.8. More About Symmetric Polynomials

The symmetric polynomials cn+1, cn, . . . , c−n of Theorem 16.7.1 can be interpreted in
another way. The differential equation c1X1q + · · · + cnXnq + Xn+1q = 0 is integrated once
with regard to x, bringing in a constant of integration c0:

c0 + c1
∂H1

∂q
+ · · ·+ cn

∂Hn

∂q
+

∂Hn+1

∂q
= 0;

the latter is a function of the simple spectrum, only, as appears from Corollary 16.3.7:

c0 + c1H0 + · · ·+ cn(2n− 1)Hn−1 + (2n+ 1)Hn = 0.

Next, apply qD +Dq − 1
2D

3 to the identity c0 + c1∂H1/∂q + · · · = 0, integrate with regard
to x to obtain

c−1 + c0
∂H1

∂q
+ · · ·+ cn

∂Hn+1

∂q
+

∂Hn+2

∂q
= 0,

and use Corollary 16.3.7 once more to check that the new constant of integration c−1 is
likewise a function of the simple spectrum:

c−1 + c0H0 + · · ·+ cn(2n+ 1)Hn + (2n+ 3)Hn+1 = 0.

Now you may do this as many times as you like. The result is

n+1∑
−∞

ci
∂Hi+j

∂q
= 0 (j = 0, 1, 2, . . .),

with the understanding that Hn = 0 for n < 0, or what is the same in the language of formal
power series,

0 =

∞∑
j=0

n+1∑
i=−∞

ciε
n+1−i ∂Hi+j

∂q
εi+j

=

n+1∑
i=−∞

ciε
n+1−i

∞∑
j=i

∂Hj

∂q
εj ,
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and with a little manipulation, this may be brought to the form

n+1∑
−∞

ciε
n+1−i

∞∑
j=0

∂Hj

∂q
εj = εn ×

n+1∑
i=1

i∑
j=1

ci
∂Hj−1

∂q
ε1+i−j

= (2ε)nm

(
x,

1

2ε

)

=

n∏
i=1

(
1− 2εμo

i

)
.

But by Corollary 16.12.7, this is the same as to say

∞∑
i=0

cn+1−iε
i =

√√√√ 2n∏
i=0

(
1− 2ελo

i

)
,

proving that the present c0, . . . , c−n are the same as before; see also Amplification 16.7.5.

16.9. An Algebraic Variety

The relations of §16.7
n+1∑
i=1

ciJij + c1−j = 0 (j = 1, . . . , n+ 1)

are polynomials in x0 = q, x1 = q′, . . . , x2n = q(2n), and so define an algebraic variety V of
dimension 2n+ 1− n− 1 = n in R2n+1. Moreover, the n-dimensional torus M sits inside V ,
as is plain from the observation that the map

q ∈ M → [
q(0), q′(0), . . . , q(2n)(0)

] ∈ V

is 1:1 since the image specifies the solution of Xq = 0 uniquely.

Example 16.9.1 (30). For n = 1, the variety is defined in R3 by the relations

1◦. 0 = c0 + c1x0 +
3
2x

2
0 − 1

2x2,

2◦. 0 = c−1 + c1
1
2x

2
0 + x3

0 − 1
2x0x2 +

1
4x

2
1,

from which you may eliminate x2, so:

c1
1

2
x2
0 +

1

2
x3
0 + c0x0 − c−1 =

1

4
x2
1.

This defines a complex torus in C2 of which the real part is a circle. Therefore, V = M .

Example 16.9.2 (31). For n = 2, the situation is already quite complicated. The variety
is defined in R5 by the relations

1◦. 0 = c0 + c1x0 + c2(
3
2x

2
0 − 1

2x2) +
5
2x

3
0 − 5

4x
2
1 − 5

2x0x2 +
1
4x4

2◦. 0 = c− + c1
1
2x

2
0 + c2(x

3
0 − 1

2x0x2 +
1
4x

2
1) +

15
8 x4

0 − 5
2x0x2 +

1
8x

2
2

− 1
4x1x3 +

1
4x0x4

3◦. 0 = c−2 + c1(
1
3x

3
0 − 1

4x
2
1) + c2(

9
8x

4
0 − 3

4x
2
0x2 +

1
8x

2
2)

+ 9
4x

5
0 − 15

4 x3
0x3 +

3
8x

2
0x4 − 3

4x0x1x3

+x0x
2
2 +

3
4x

2
1x2 − 1

8x2x4 +
1
16x

2
3.

Conjecture 16.9.3. M = V ; compare Lax [24].

30See Table 16.3 above.
31See Table 16.3 above.
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Figure 16.5.

16.10. Periods of M

To compute the periods of the real torus M = Rn/L, it is necessary to make more ex-
plicit the relation between the auxiliary spectrum (μo

1, . . . , μ
o
n) ∈ C and the global coordinate

(t1, . . . , tn) ∈ Rn. Let μo
i = μi (i = 1, . . . , n) for ease of notation. Recall from Proposi-

tions 16.6.1 and 16.6.5 that m(x, λ) = (λ− μ1) . . . (λ− μn) satisfies the identity

�2(λ) = −(λ− λo
0

)
. . .

(
λ− λo

2n

)
=

1

4
(m′)2 − 1

2
mm′′ +m2(q − λ)

and let λ = μi for some i = 1, . . . , n. Then m(x, μi) = 0, so that m′(x, μi) = 2
√
�2(μi) =

2�(μi) with a suitable determination of the radical, and by differentiating m(x, μi) at x = 0,
you get the supplementary formula32

X1μi(0) = −m′(0, μi

)
m•(0, μi

) =
2�
(
μi

)
m•(0, μi

) (i = 1, . . . , n).

Warning. The signature of the radical �(μo
i ) is ambiguous. The correct attitude is to construe

the formula on the Riemann surface S of the irrationality �(λ) =
√−(λ− λo

0) . . . (λ − λo
2n)

with change of sheet each time μi hits λo
2i−1 or λo

2i so as to keep λo
2i−1 � μi � λo

2i. S is a
sphere with n handles forming a 2-sheeted covering of the Riemann sphere R of λ, simply
ramified over ∞, λo

0, . . . , λ
o
2n. Figure 16.5 depicts the case n = 2; see §16.13.

Now fix ω ∈ Rn, let ∂q/∂t = ωXq with ωX = ω1X1 + · · · + ωnXn, and compute dμi =
ωXμi dt (i = 1 . . . , n) with the aid of Lemma 16.5.2:

dμi

dt
=

n∑
j=1

ωjXjμi =
n∑

j=1

ωj

j∑
k=1

∂Hk−1(0)

∂q

(
2μi

)j−k × 2�
(
μi

)
m•(0, μi

) ,
or what is the same for fixed 1 ≤ k ≤ n,

n∑
i=1

μ�−1
i

dμi

�
(
μi

) =

n∑
j=1

Λ�jωj dt

32′ = ∂/∂x; • = ∂/∂μ.
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with

Λ�j =

j∑
k=1

∂Hk−1

∂q
(0)2j−k+1

n∑
i=1

μj−k+�−1
i

m•(0, μi

)

=

j∑
k=1

∂Hk−1

∂q
(0)2j−k+1 1

2π
√−1

∮
λj−k+�−1

m(0, λ)
dλ,

the integral being taken about a big circle.

Proposition 16.10.1. Λ can be expressed by means of the first n elementary symmet-
ric polynomials σ1, . . . , σn in the simple eigenvalues of Q; see Table 16.5 below for explicit
formulas.

Proof. The adjusted entry

2�−2Λ�j =

j∑
k=1

∂Hk−1

∂q
(0)

1

2π
√−1

∮
(2λ)�+j−k−1 dλ

m(0, λ)
≡ 2n−1c∗�+j−n−1

depends upon � + j alone as the sum suggests because
∮
λ�+j−k−1m−1 dλ vanishes for k > j

as that makes the power � degm− 2; moreover, Λ�j = 0 for �+ j � n for the same reason, so
c∗i = 0 for i < 0. The summation over k is now extended up to k = n+ 1, and the definition
of c∗�+j−n−1 so obtained is adopted for all � + j. The nontrivial quantities c∗0, . . . , c

∗
n−1 may

now be computed in terms of σ1, . . . , σn from Table 16.4, using the identity

2n−1
n+1∑
j=1

cjc
∗
�+j−n−1 =

1

2π
√−1

∮
(2λ)�−1 2

nm(0, λ)

m(0, λ)
dλ

= 0 (� = 1, . . . , n),

which follows from the next to last display of §16.8, the evaluation

2n−1c∗0 =
1

2π
√−1

∮
(2λ)n−1

m(0, λ)
dλ = 2n−1,

and the recursion

−c∗� = cn−�+1c
∗
0 + cn−�+2c

∗
1 + · · ·+ cnc

∗
�−1,

with the results seen in Table 16.5. The proof is finished. �

Table 16.5.

� c∗�

0 1

1 σ1

2
3

2
σ2
1 − 2σ2

3
5

2
σ3
1 − 6σ1σ2 + 4σ3
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Amplification 16.10.2. Λ may now be displayed as:⎡
⎢⎢⎢⎢⎢⎣

0 . . . 0 0 2nc∗0
0 . . . 0 2n−1c∗0 2n−1c∗1
0 . . . 2n−2c∗0 2n−2c∗1 2n−2c∗2
...

2c∗0 . . . 2c∗n−3 2c∗n−2 2c∗n−1

⎤
⎥⎥⎥⎥⎥⎦
;

in particular, det Λ = 2n(n+1)/2 �= 0.

Amplification 16.10.3. A more elegant description of c∗0, . . . , c
∗
n−1 is by means of the

polynomial

c∗(ε) =
n−1∑
i=0

c∗i ε
i,

to wit, c∗(ε) = c−1(ε) modulo εn, with c(ε) as in Amplification 16.7.5. The formula33 Λ−1
ij =

ci+j2
j−1−n (1 � i, j � n) is another way of saying the same thing.

The computation of the periods is easy now. Fix i = 1, . . . , n and pick a primitive period
ω so that, under the flow ∂q/∂t = ωXq starting from the origin, μj (j �= i) returns to λo

2j−1

at time t = 1/2 without change of sheet, while μi starts at λo
2i−1 and ends at λo

2i at time

t = 1/2, also without change of sheet.34 Then∫ λo
2i

λo
2i−1

μ�−1 dμ

�(μ)
=

n∑
j=1

Λ�jωj × 1

2
.

This proves

Theorem 16.10.4. A complete set of primitive periods of M is given by the formula

2Λ−1

∫ λo
2�

λo
2i−1

(
1, μ, . . . , μn−1

)† dμ

�(μ)

as i runs from 1 to n.

The differential equations relating t ∈ Rn and (μ1, . . . , μn) ∈ C are restated as

Theorem 16.10.5. For the flow ∂q/∂t = Xjq,
n∑

i=1

(
1, μi, . . . , μ

n−1
i

)† dμi

�
(
μi

) = (the jth column of Λ)× dt.

Corollary 16.10.6. The volume element of M inherited from Rn may be expressed as

dnt = 2−n(n+1)/2
∏
i>j

(
μi − μj

)∣∣�(μ1

)
. . . �

(
μn

)∣∣−1
dnμ.

The volume of M is then

2−n(n−1)/2 det

∫ λo
2i

λo
2i−1

μj−1dμ

�(μ)
;

an extra factor of 2n comes in front because M is a 2n-sheeted covering of C.

Corollary 16.10.7 (35).
∫ 1

0 m(x, λ) dx =
∏n

i=1(λ− λ′
i).

33ci+j = 0 if i+ j > n+ 1.
34The desired effect can be achieved by moving along a suitable curve in M lifted up from C, and the latter

can bc deformed into rectilinear motion in some direction ω.
35λ′

1 < · · · < λ′
n are the nontrivial roots of Δ′(λ) = 0 introduced in §16.1.
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Proof. The left-hand side is constant on M because

2n
∫ 1

0

mdx =

∫ 1

0

n+1∑
i=1

i∑
j=1

ci
∂Hj−1

∂q
(2λ)i−j dx

=

n+1∑
i=1

i∑
j=1

ci(2j − 3)Hj−2(2λ)
i−j ,

by Corollary 16.3.7, and the final expression is a function of the simple spectrum only. There-

fore, the period average
∫ 1

0 mdx can be replaced by the average of (λ− μ1) . . . (λ− μn) over
M with regard to the volume element dnt, and the latter can be computed with the aid of
Corollary 16.10.6, the upshot being that you have only to verify the vanishing of∫

C

n∏
i=1

(
λ− μi

)∏i>j

(
μi − μj

)
�
(
μ1

)
. . . �

(
μn

) dnμ = det

∫ λo
2i

λo
2i−1

(λ− μ)μj−1 dμ

�(μ)

for λ = λ′
1, . . . , λ

′
n. The latter are determined so as to make∫ λo

2i

λo
2i−1

n∏
�=1

(
μ− λ′

�

) dμ

�(μ)
= 0 (i = 1, . . . , n).

Now the monomials (λ′
j − μ)μk−1 (k = 1, . . . , n) can be regarded as a basis for polynomials

of degree � n vanishing at μ = λ′
j . Thus, for fixed 1 � j � n,

n∏
�=1

(
μ− λ′

�

)
= −(λ′

j − μ
)
μn−1 +

n−1∑
k=1

εk
(
λ′
j − μ

)
μk−1

with coefficients εk (k = 1, . . . , n− 1) depending upon j, and
∫ λo

2i

λo
2i−1

(
λ′
j − μ

)
μn−1 dμ

�(μ)
=

n−1∑
k=1

εk

∫ λo
2i

λo
2i−1

(
λ′
j − μ

)
μk−1 dμ

�(μ)
,

which is to say that for λ = λ′
j the bottom row of the determinant belongs to the span of the

preceding rows. The determinant vanishes for this reason. �
Amplification 16.10.8. The evaluation

2n
(
λ− λ′

1

)
. . .

(
λ− λ′

n

)
=

n+1∑
i=1

i∑
j=1

ci(2j − 3)Hj−2(2λ)
i−j

is equivalent to
∞∑
j=0

(2j − 1)Hj−1ε
j =

∏n
i=1

(
1− 2ελ′

i

)
√∏2n

i=0

(
1− 2ελo

i

) , modulo εn+1,

in agreement with the more detailed identity of Corollary 16.12.8.

Corollary 16.10.9. The double spectrum is determined from the simple spectrum by the
rule

√−1�
(
λ− μ1

)∫
C

[(
λ− μ1

)
. . .

(
λ− μn

)]−1
d volume

volume of C

=
√−1�

(
λ
)det ∫ λo

2i

λo
2i−1

(λ− μ)−1μj−1 dμ
�(μ)

det
∫ λo

2i

λo
2i−1

μj−1 dμ
�(μ)

= ±mπ
(
m �= m1, . . . ,mn

)
.
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Proof. The proof is the same as that of Corollary 16.10.7: you have only to rewrite

Proposition 16.6.7. The point is that
√−1�(λ)

∫ 1

0
m−1(x, λ) dx = cos−1[1/2Δ(λ)] is constant

on M so that the averaging of m−1(x, λ) can be done on the whole of M and not just over
the period 0 � x < 1. �

Example 16.10.10. For n = 2 and m1 = 1, the ratio in Corollary 16.10.9 reduces to

√−1�(λ)

∫ λo
2

λo
1

(λ− μ)−1 dμ

�(μ)

which is to be compared to the expression
√−1

2

∫ λ

λo
0

(
μ− λ′

1

) dμ

�(μ)

figuring in Hochstadt’s formula from §6.1. The fact that they are the same may be proved
directly by the addition theorem for the Weierstrassian elliptic function p. Take σ1 = 0 so
that −λo

0 = e1, −λo
1 = e2, −λo

2 = e3 are the Weierstrassian invariants, as per Example 16.6.3,
and substitute λ = −p(x). Then, with the notation ω2 = 1/2+

√−1ω′/2 and ω3 =
√−1ω′/2,

you have to verify that

�(λ)

∫ λo
2

λo
1

1

λ− μ

dμ

�(μ)
= p′(x)

∫ ω3

ω2

dy

p(y)− p(x)

is the same as
1

2

∫ λ

λo
0

(μ− λ′
1)

dμ

�(μ)
=

∫ x

1/2

p(y)dy + λ′
1

(
x− 1

2

)
.

But this follows (with tears) from a variant of the addition formula, namely

1

2

p′(x) − p′(y)
p(x) − p(y)

+

∫ x+y

1/2

p− 1

2

∫ x

1/2

p− 1

2

∫ y

1/2

p+

∫ ω3

ω2

p = 0,

upon integrating from y = ω2 to y = ω3 and recognizing

λ′
1 =

∫ λo
2

λo
1

μdμ

�(μ)
as 2

∫ ω3

ω2

p.

Presumably, the general identity

1

2

∫ λ

λ0

n∏
i=1

(
μ− λ′

i

) dμ

�(μ)
= �(λ)

∫
C

[(
λ− μ1

)
. . .

(
λ− μn

)]−1
d volume

volume of C

is a consequence of the addition theorem of the hyperelliptic abelian integral.

Amplification 16.10.11. The formula of Theorem 16.10.4 reduces the solution of q• =
ωXq to a simple problem in ordinary differential equations; see §6.14 for explicit formulas for
q as a function of t ∈ Rn; the latter may be regarded as substantiating the technical condition
of §6.4.

Theorem 16.10.12. The series λo
0 < · · · < λo

2n is the simple spectrum of a potential of
class C∞

1 if and only if

n∑
i=1

mi

∫ λo
2i

λo
2i−1

μj−1 dμ

�(μ)
=

0 (j < n)
±1 (j = n)

for some integral 0 < m1 < · · · < mn.
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Amplification 16.10.13. m1 < m2 < · · · < mn are unique or nonexistent because

det

∫ λo
2i

λo
2i−1

μj−1 dμ

�(μ)
= 2n(n−1)/2 × volume of M �= 0.

Note that the potential is of primitive period 1/m if and only if m is the greatest common
divisor of mi (i = 1, . . . , n); compare Borg [1] who proved that q is of period 1/2 if and only
if λ2i−1 = λ2i for odd i = 1, 3, 5, . . . .

Proof of the Necessity. Translate the function qo sitting at the origin of M through
a full period 0 � x < 1. Then both μi = λo

2i−1 and μi = λo
2i have mi roots per period, with

change of sheet and accompanying change of signature in the radical �(μi) at each root; see
Amplification 16.6.4 and the accompanying Fig. 16.4. Now integrate the differential equations
of Theorem 16.10.5 over 0 � x < 1 with t2 = · · · = tn = 0 fixed to obtain

n∑
i=1

2mi

∫ λo
2i

λo
2i−1

μj−1 dμ

�(μ)
= Λj1 (j = 1, . . . , n)

and recall that Λj1 = 0 for j < n while Λn1 = 2. �
Proof of the Sufficiency. Let λo

0, . . . , λ
o
2n meet the stated condition and form the

torus M = Rn/L with the periods of Theorem 16.10.4. Recall Amplification 16.6.13, fix
μi(0) = λ2i−1 (i = 1, . . . , n), and solve

n∑
j=1

μi−1
j

dμj

�
(
μj

) =
0 (i < n)
2 dx (i = n)

for μi(x) (i = 1, . . . , n) up to x = 1. Then the function

q(x) = λo
0 + · · ·+ λo

2n − 2
[
μ1(x) + · · ·+ μn(x)

]
is smooth and of period 1 by the condition. To see this, you have only to solve for36

μ′
i =

2�
(
μi

)
m•(μi

) (i = 1, . . . , n)

and to study the ensuing periodic motion in the cell C. It remains to prove that the Hill’s
operator Q = −d2/dx2 + q(x) has λo

0, . . . , λ
o
2n as its simple spectrum, and nothing more. The

chief step is to prove the identity

�2(λ) =
1

4
(m′)2 − 1

2
mm′′ +m2(q − λ).

The periodic spectrum is then read off as follows: the identity implies that fo
i =

√
m(x, λo

i )
is a simple (non-unit) eigenfunction of Q with eigenvalue λo

i for i = 0, . . . , 2n. Besides, the
functions y1 and y2 are given by the formulas of Proposition 16.6.6 off the intervals [λo

2i−1, λ
o
2i],

and now the formula of Proposition 16.6.7 for the discriminant shows that the rest of the
periodic spectrum of Q is double. The proposed identity is equivalent to

1

2

(
m′

m

)′
+

1

4

(
m′

m

)2

= q − λ− �2

m2
.

Now37

1

2

m′

m
= −1

2

n∑
i=1

μ′
i

λ− μi
= −

n∑
i−1

1

λ− μi

�
(
μi

)
m•(μi

) ,

36m(λ) = (λ− μ1) . . . (λ − μn) as in §16.6; • = ∂/∂μ.
37′ = ∂/∂x; • = ∂/∂μ.
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and

1

2

(
m′

m

)′
= −

n∑
i=1

1(
λ− μi

)2 2�2
(
μi

)
m•2(μi

)

+

n∑
i=1

�
(
μi

)
λ− μi

∑
j 	=i

∏
k 	=i,j

1

μi − μk

[
2�
(
μi

)
m•(μi

) − 2�
(
μj

)
m•(μj

)
]

1(
μi − μj

)2

−
n∑

i=1

1

λ− μi

1

m•(μi

) × 1

2

1

�
(
μi

) × �•2
(
μi

)× 2�
(
μi

)
m•(μi

)

= −2

n∑
i=1

1(
λ− μi

)2 �2
(
μi

)
m•2(μi

)

+ 2
∑
j 	=i

1

λ− μi

�2
(
μi

)
m•2(μi

) 1

μi − μj

− 2
∑
j 	=i

1

λ− μi

�
(
μj

)
m•(μi

) �
(
μj

)
m•(μj

) 1

μi − μj

−
n∑

i=1

1

λ− μi

�2
(
μi

)
m•2(μi

)

= −2

n∑
i=1

1(
λ− μi

)2 �2
(
μi

)
m•2(μi

) +

n∑
i=1

1

λ− μi
�2
(
μi

)m••(μi

)
m•3(μi

)

−
∑
j 	=i

1

λ− μi

1

λ− μj

�(μi)

m•(μi

) �
(
μi

)
m•(μj

) −
n∑

i=1

1

λ− μi

�•2
(
μi

)
m•2(μi

) ,
so

1

2

(
m′

m

)′
+

1

4

(
m′

m

)2

= −
n∑

i=1

1(
λ− μi

)2 �2
(
μi

)
m•2(μi

) +

n∑
i=1

1

λ− μi

[
�2
(
μi

)
m••(μi

)
m•3(μi

) − �•2
(
μi

)
m•2(μi

)
]
,

and this is to be compared to q − λ − �2/m2. Both are rational functions of λ vanishing at
∞, and it is an elementary exercise to check that they have the same principal parts at their
common poles λ = μi (i = 1, . . . , n). Therefore, they are the same. The proof is finished. �

Corollary 16.10.14 (38). The potential q is of period 1/m if and only if m divides mi

(i = 1, . . . , n), i.e., if and only if λ2i−1 = λ2i for i incongruent to 0 modulo m.

16.11. The Korteweg-de Vries Flow

An amusing consequence of Theorem 16.10.4 is that the Korteweg-de Vries flow q• =
X2q = 3qq′ − 1

2q
′′′ is periodic on M with period T if and only if

n∑
i=1

2m′
i

∫ λo
2i

λo
2i−1

μj−1 dμ

�(μ)
= T × Λj2 (j = 1, . . . , n)

38Borg [1] proved this for n = ∞ and m = 2.
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for some integral m′
1, . . . ,m

′
n; the latter are unique if they exist. From the formula Λij =

2n+1−ic∗i+j−n−1 of §16.10, it appears that the condition is equivalent to

n∑
i=1

m′
i

∫ λo
2i

λo
2i−1

μj−1 dμ

�(μ)
= 0 if 1 � j � n− 2

= 2T if j = n− 1

= σ1T if j = n.

This is automatic for n = 1; in fact, c1X1q + X2q = 0 so that ∂q/∂t = X2q is equivalent to
translation at speed −c1. For n = 2, the matter is less simple but still manageable.The period
relations of Theorem 16.10.12 are

m1

∫ λo
2

λo
1

dμ

�(μ)
+m2

∫ λo
4

λo
3

dμ

�(μ)
= 0,

m1

∫ λo
2

λo
1

μ
dμ

�(μ)
+m2

∫ λo
4

λo
3

μ
dμ

�(μ)
= 1

and for the periodicity under the X2 flow, it is required that

m′
1

∫ λo
2

λo
1

dμ

�(μ)
+m′

2

∫ λo
4

λo
3

dμ

�(μ)
= 2T

m′
1

∫ λo
2

λo
1

μ
dμ

�(μ)
+m′

2

∫ λo
4

λo
3

μ
dμ

�(μ)
= σ1T.

These relations are inverted by∫ λo
2

λo
1

dμ

�(μ)
= m2 × 8 volume C(1◦)

∫ λo
4

λo
3

dμ

�(μ)
= −m1 × 8 volume C(2◦)

2

∫ λo
4

λo
3

μ
dμ

�(μ)
− σ1

∫ λo
4

λo
3

dμ

�(μ)
=

m′
1

T
× 8 volume C(3◦)

2

∫ λo
2

λo
1

μ
dμ

�(μ)
− σ1

∫ λo
2

λo
1

dμ

�(μ)
= −m′

2

T
× 8 volume C(4◦)

in which

8 volume C =

∫ λo
2

λo
1

dμ

�(μ)

∫ λo
4

λo
3

μ
dμ

�(μ)
−
∫ λo

2

λo
1

μ
dμ

�(μ)

∫ λo
4

λo
3

dμ

�(μ)
.

Corollary 16.11.1. T can only be an integral multiple of 4 vol C.

Proof. Multiply (3◦) by m2, (4
◦) by m1, and add to obtain

2 =
(
m2m

′
1 −m1m

′
2

)× T−1 × volume C.

�
Corollary 16.11.2. Write

a1 =

∫ λo
2

λo
1

�−1 dμ, a2 =

∫ λo
4

λo
3

�−1 dμ,

b1 =

∫ λo
2

λo
1

μ�−1 dμ, b2 =

∫ λo
4

λo
3

μ�−1 dμ.
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Then the X2 flow is periodic on M if and only if

2b2 −
(
λo
0 + · · ·+ λo

4

)
a2

2b1 −
(
λo
0 + · · ·+ λo

4

)
a1

is a rational number.

Proof. The periodicity of the X2 flow is equivalent to 3◦/4◦ = −m′
1/m

′
2 = a rational

number. The rest of the proof is plain. �
For n � 3, the matter becomes quite complicated and should be investigated further as

to the possible periods, etc.

16.12. Trace Formulas

The trace formulas referred to express power sums in λo
0 < · · · < λo

2n and μ1 < · · · < μn

as polynomials in q(0), q′(0), q′′(0), . . . . They stem from Gelfand [11] and Dikii [4, 5]; see
also Gelfand and Levitan [13], Buslaev and Faddeev [2], and Faddeev and Zaharov [33]. Let
μ1 < μ2 < · · · denote the full series of roots of y2(1, μ) = 0. The first few trace formulas are

λ0 +

∞∑
i=1

(
λ2i−1 + λ2i − 2μi

)
= q(0)

λ2
0 +

∞∑
i=1

(
λ2
2i−1 + λ2

2i − 2μ2
i

)
= q2(0)− 1

2
q′′(0)

λ3
0 +

∞∑
i=1

(
λ3
2i−1 + λ3

2i − 2μ3
i

)
= q3(0)− 15

16
q′(0)2 − 3

2
q(0)q′′(0) +

3

16
q′′′′(0).

Amplification 16.12.1. The sums are finite if n < ∞, as will be assumed to simplify
the technical aspect of the derivation, though the formulas have a general validity. Notice
that

∑
(λp

2i−1 + λp
2i − 2λp

i ) < ∞ for every p = 1, 2, 3, . . . if and only if λ2i − λ2i−1 is rapidly
decreasing as i ↑ ∞. Hochstadt [16] proved that this condition is met if q ∈ C∞

1 . Hochstadt
[16] found and exploited a less explicit version of the first trace formula; see also Flaschka [8].

The trace formulas are closely allied to the “zeta” function

Z(s) = λ−s
0 +

∞∑
i=1

(
λ−s
2i−1 + λ−s

2i − 2μ−s
i

)
;

the latter is an integral function with values

Z(−p) = λp
0 +

∞∑
i=1

(
λp
2i−1 + λp

2i − 2μp
i

)
(p = 0, 1, 2, 3, . . .).

The proof parallels the discussion of the classical zeta function; see Dikii [4, 5] and Flaschka
[8]. The trace formula for p = 1 was already proved in Amplification 16.6.13 on the basis of
Proposition 16.6.1; the formulas for p = 2, . . . , n can be derived in the same way.

Amplification 16.12.2. The trace formulas lead to a whole series of amusing little facts.
The point is that q(0), q2(0) − 2q′′(0), etc. reach their maxima [minima] on M when μi =
λ2i[λ2i−1] (i = 1, 2, . . .); for example, the absolute maximum of q(0) is λ0+

∑∞
i=1(λ2i−λ2i−1).

Theorem 16.12.3. The power sums λp
0 +

∑∞
i=1(λ

p
2i−1 + λp

2i − 2μp
i ) ≡ Lp may be read off

from the formal power series identity
∞∑
p=1

(2ε)p

p
Lp = 2 log

[ ∞∑
j=0

∂Hj(0)

∂q
εj

]
.
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Proof. Let e∞(t, x, y) be the elementary solution of ∂e/∂t = −Qe in 0 � x � 1 with
e = 0 at x = 0 and x = 1. Then

ϑ∞(t) ≡
∞∑
i=1

e−μit =

∫ 1

0

e∞(t, x, x) dx,

and ∂ϑ∞/∂q = −te∞(t, x, x) as in §16.3, so that for any Hamiltonian flow q• = Xq,
∞∑
i=1

e−μntμ•
n =

∫ 1

0

e∞(t, x, x)Xq dx.

Now as t ↓ 0, it is easy to see from the method of images that

e∞(t, x, x) =
1√
4πt

− e−x2/t

√
4πt

− e−(1−x)2/t

√
4πt

+ o(1)

uniformly in 0 � x � 1. This proves �
Lemma 16.12.4.

∞∑
i=1

μ•
i = − lim

t↓0

[∫ 1

0

e−x2/t

√
4πt

Xq dx+

∫ 1

0

e−(1−x)2/t

√
4πt

Xq dx

]

= −1

2
Xq(0).

Lemma 16.12.5. For any p = 1, 2, 3, . . ., Lp ≡ λp
0+

∑∞
i=1(λ

p
2i−1+λp

2i−2μp
i ) is a universal

polynomial in q(0), q′(0), q′′(0), . . ., without constant term.

Proof. The proof is based upon the identity (see §16.3 for the definition of ϑ)

e−λ0t +

∞∑
i=1

(
e−λ2i−1t + e−λ2it − 2e−μit

)
= ϑ− 2ϑ∞

= 2

∫ 1

0

e(t, x, x) dx − 2

∫ 1

0

e∞(t, x, x) dx,

e being the elementary solution of ∂e/∂t = −Qe for period 2, as in §16.3. A more elaborate
use of the method of images shows that if e−[e+] is the elementary solution of ∂e/∂t = −Qe
on the whole line with q extended from x > 0[x < 1] into x � 0[x � 1] so as to be symmetrical
about x = 0[x = 1], then

e∞(t, x, x) = e(t, x, x)− e−(t, x, x) − e+(t, x, 2− x) + o(1),

with an error o(1) which is exponentially small for t ↓ 0, uniformly in 0 � x � 1, so that

ϑ− 2ϑ∞ ∼ 2

∫ 1

0

e−(t, x,−x) dx + 2

∫ 1

0

e+(t, x, 2 − x) dx,

with a similar error. The right-hand side may now be developed in the style of Theorem 16.3.3
using

q−(x) = q(0) + q′(0)|x| + 1

2
q′′(0)x2 +

1

6
q′′′(0)|x|3 + · · ·

in estimating e− and

q+(x) = q(0)− q′(0)|x− 1|+ 1

2
q′′(0)(x − 1)2 − 1

6
q′′′(0)|x− 1|3 + · · ·

in estimating e+. This leads to an expansion of ϑ− 2ϑ∞ in whole integral powers of t, valid
for t ↓ 0, with coefficients (−1)pLp/p! of the stated kind. The point is that any monomial in

q(0), q′(0), q′′(0), . . . attached to a half-integral power of t in the expansion of
∫ 1

0 e−(t, x, x) dx,
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involves an odd number of differentiations and is balanced by a like monomial of opposite

signature in the expansion of
∫ 1

0
e+(t, x, 2 − x) dx, so that only whole integral powers of t

survive. The rest of the proof will be plain. �

Proof of Theorem 16.12.3. By Lemma 16.5.2 and the present Lemma 16.12.4,

−1

2
Xjq =

∞∑
i=1

Xjμi =

j∑
k=1

∂Hk−1

∂q

∞∑
i=1

(
2μi

)i−k
X1μi,

first for x = 0 and then, by translation, for any 0 � x � 1, thinking of μi (i � 1) as functions
of 0 � x � 1 in the manner of Proposition 16.6.1. The same attitude is adopted towards

Lp = λp
0 +

∞∑
i=1

(
λp
2i−1 + λp

2i − 2μp
i

)
,

which is now differentiated with regard to x to obtain

L′
p = −2

∞∑
i=1

pμp−1
i X1μi.

The latter is put back into the formula for − 1
2Xjq to confirm

Xjq =

j∑
k=1

∂Hk−1

∂q

2j−k

j − k + 1
L′
j−k+1,

from which is derived the formal power series( ∞∑
j=0

∂Hj

∂q
εj

)′
=

∞∑
j=0

Xjqε
j

=
1

2

∞∑
j=0

∂Hj

∂q
εj

∞∑
p=1

(2ε)p

p
L′
p.

The formula of Theorem 16.12.3 follows by integration. Here, you could have an additive
constant of integration, but it is not so: the coefficient of εp on either side is a universal
polynomial in q, q′, q′′, . . . without constant term and these match as soon as their derivatives
do so. The proof is finished. �

Amplification 16.12.6. The recipe of Theorem 16.12.3 produces

L1 =
∂H1

∂q
,

L2 =
∂H2

∂q
− 1

2

(
∂H1

∂q

)2

,

L3 =
3

4

∂H3

∂q
− 3

4

∂H2

∂q

∂H1

∂q
+

1

4

(
∂H1

∂q

)3

recapitulating the first three trace formulas. The next one is

L4 =
1

2

∂H4

∂q
− 1

4

(
∂H2

∂q

)2

− 1

2

∂H1

∂q

∂H3

∂q

+
1

2

(
∂H1

∂q

)2
∂H2

∂q
− 1

8

(
∂H1

∂q

)4

.
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Corollary 16.12.7. The formula of Theorem 16.12.3 can be expressed as
∞∑
j=0

∂Hj

∂q
εj =

∏n
i=1

(
1− 2εμo

i

)
√∏2n

i=0

(
1− 2ελo

i

) .

Corollary 16.12.8.
∞∑
j=0

(2j − 1)Hj−1ε
j =

∏n
i=1

(
1− 2ελ′

i

)
√∏2n

i=0

(
1− 2ελo

i

) .

Proof. The proof of Corollary 16.12.7 consists in recognizing the left-hand side of the
formula of Theorem 16.12.3 as

∞∑
p=1

(2ε)p

p

[(
λo
0

)p
+

n∑
i=1

((
λo
2i−1

)p
+
(
λo
2i

)p − 2
(
μo
i

)p)]

= −2 log

∏n
i=1

(
1− 2εμo

i

)
√∏2n

i=0

(
1− 2ελ′

i

) .

Then Corollary 16.12.8 follows from Corollaries 16.10.7 and 16.3.7 by integration over a period
0 � x < 1. �

Amplification 16.12.9. The formula of Corollary 16.12.8 makes explicit how the simple
spectrum determines the Hamiltonian series, and vice versa by determination of branch points.

Corollary 16.12.10. The development of Theorem 16.3.1 can be put into the alternative
shape

ϑ =
∞∑
i=0

e−λit

∼
√−1

π

(∫ λo
1

λo
0

+

∫ λo
3

λo
2

+ · · ·+
∫ λo

2n−1

λo
2n−2

+

∫ ∞

λo
2n

)
e−λt

n∏
i=1

(
λ− λ′

1

) dλ

�(λ)
.

Proof. For λ > 0,

(−1)m√
π(2m− 3) · · · 3 · 1

∫ ∞

0

e−λttm−1/2 dt =
(−1)m(2m− 1)

(2λ)m
√
λ

,

so ∫ ∞

0

e−λt 1√
πt

∞∑
m=0

(−t)m

(2m− 3) · · · 3 · 1Hm−1 dt

=

∞∑
m=0

(−1)n(2m− 1)Hm−1

(2λ)m
√
λ

=

√−1
∏n

i=1

(
λ+ λ′

i

)
√∏2n

i=0

(
λ+ λo

i

) ,

by Corollary 16.12.8 above. This Laplace transform is now inverted by means of the formula

1√
πt

∞∑
m=0

(−t)m

(2m− 3) · · · 3 · 1Hm−1 =
1

2π
√−1

∫
eλt

∏n
i=1

(
λ+ λ′

i

)
√∏2n

i=0

(
λ− λo

i

) dλ,

the integral being extended over a vertical line in the complex plane to the right of −λo
0.

Now deform that line into the curve of Fig. 16.6, cutting the plane along the line segments
[−∞,−λo

2n] and [−λo
2i+1,−λo

2i] (i = 0, . . . , n − 1). A check on the signature of the radical
shows that the intervening intervals [−λo

2i,−λo
2i−1] (i = 1, . . . , n) contribute nothing, while

the cuts produce the desired formula. �
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Figure 16.6.

16.13. Gelfand Trace Formulas

Additional trace formulas in the style of Gelfand [11], Gelfand and Levitan [13], and
Dikii [4, 5] may be obtained from the development

∞∑
i=1

e−μit ∼ 1√
4πt

∞∑
m=0

(−t)m

(2m− 3) · · · 3 · 1Hm−1 − 1

2

∞∑
p=0

(−t)p

p!
Lp,

implicit in the proof of Theorem 16.12.3. The trick is to replace39

1√
4πt

by

1

2
+

∞∑
l=1

e−�2π2t

for t ↓ 0, as you may do up to an exponentially small error by the Jacobi identity for the

theta function. Then you bring
∑

e−�2π2t ×∑
(−t)mHm−1/(2m− 3) · · · 3 · 1 to the left and

equate like powers of t, with the result that

2

∞∑
�=1

[
μp
� −

∑
i+j=p

p!
(
�2π2

)i
Hj−i

i!(2j − 3) · · · 3 · 1
]
=

p!Hp−1

(2p− 3) · · · 3 · 1 − Lp.

A comparison with the trace formulas of §16.12 now yields similar information about the
periodic spectrum:

λp
0 +

∞∑
�=1

[
λp
2�−1 + λp

2� − 2
∑

i+j=p

p!
(
�2π2

)i
Hj−1

i!(2j − 3) · · · 3 · 1

]
=

p!Hp−1

(2p− 3) · · · 3 · 1 .

The first two formulas are especially attractive:

λ0 +

∞∑
�=1

[
λ2�−1 + λ2� − 2

∫ 1

0

(
q + �2π2

)
dx

]
= H0,

λ2
0 +

∞∑
�=1

[
λ2
2�−1 + λ2

2� − 2

∫ 1

0

(
q + �2π2

)2
dx

]
= 2H1;

the third is more complicated:

λ3
0 +

∞∑
�=1

[
λ3
2�−1 + λ3

2� − 2

∫ 1

0

(
q + �2π2

)3
dx−

∫ 1

0

(q′)2 dx
]
= 2H2.

An immediate consequence is a development of λ2�−1 or λ2� as � ↑ ∞ in the form40

(�π)2 + k0 + k1(�π)
−2 + k2(�π)

−4 + k3(�π)
−6 + · · ·

39This replacement embodies the Hamiltonian expansion for q ≡ 0.
40Compare Dikii [5].
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with

k0 = H0, k1 = H1 − 1

2
H2

0 , 3k2 = 2H2 − 6H0H1 + 2H3
0 , . . .

by substitution of the expansion into

λp
2� =

∑
i+j=p

p!
(
�2π2

)i
Hj−1

i!(2j − 3) · · · 3 · 1 + o(1) (� ↑ ∞);

naturally, the same development is valid for μ� (� ↑ ∞).

16.14. The Jacobian Variety

Take new coordinates x = (x1, . . . , xn) on M defined by
n∑

j=1

μi−1
j

dμj

�
(
μj

) = dxi (i = 1, 2, . . . , n),

with μo
i = μi (i = 1, . . ., n) for ease of writing. This is nothing but x = Λt; compare Theo-

rem 16.10.5. Theorem 16.10.4 now states that a complete set of primitive periods ω of M
relative to the new coordinate is given by

ω =

∮
dx =

∮ (
1, μ, . . . , μn−1

)† dμ

�(μ)

in which the integral is taken about a loop enclosing [λo
2j−1, λ

o
2j ] for each j = 1, . . . , n in turn.

Recall from §16.8 the Riemann surface S of the irrationality �(μ) =
√−(μ− λo

0) . . . (μ− λo
2n)

with points p = (μ, �(μ)). This is a sphere with n handles constituting a 2-sheeted covering
of the Riemann sphere R where μ sits, ramified over the 2n + 2 places ∞, λo

0, . . . , λ
o
2n. The

periods of S comprise the n real periods ω of M plus n additional pure imaginary periods

√−1ω′ =
∮

dx =

∮ (
1, μ, . . . , μn−1

)† dμ

�(μ)

in which the integral is taken about a loop enclosing [λo
2j−2, λ

o
2j−1] for each j = 1, . . . , n in

turn, and the map41

(
p1, . . . , pn

) → x =

n∑
j=1

∫ pj

oj

(
1, μ, . . . , μn−1

)† dμ

�(μ)
,

considered modulo the lattice L = L +
√−1L′ of periods ω and

√−1ω′, is an application
of the n-fold symmetric product Sn of the Riemann surface onto the associated complex
“Jacobi variety” M = Cn/L of which M = Rn/L is the real part so to say.42 The map
(p1, . . . , pn) → M is 1:1 unless pi = (μ, �(μ)) and pj = (μ,−�(μ)) for some i �= j and �(μ) �= 0.
The complex variety plays no further role until §16.15.

41oj (j = 1, . . . , n) are fixed points of S, so chosen as to make μ(oj ) = λo
2j−1, i.e., so that (o1, . . . , on)

corresponds to the origin of M .
42See Siegel [31] for this and other information from classical function theory employed below. The set up

of the map Sn → M is not quite the conventional one, and it is necessary to check that it is insensitive to
permutations of p1, . . . , pn, for example, you must have

∫ p1
o1

+
∫ p2
o2

=
∫ p1
o2

+
∫ p2
o1

modulo periods, and that is

so because
∫ p1
o1

− ∫ p1
o2

+
∫ p2
o2

− ∫ p2
o1

= 2
∫ o2
o1

and
∫ o2
o1

is a half-period, by choice of origin.
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Now take q with simple spectrum λo
0, . . ., λ

o
2n and auxiliary spectrum μ, . . ., μn. Over each

μ lie two points p = (μ,±�(μ)), or only one (ramified) point if �(μ) = 0, and in the case of
ambiguity when �(μ) �= 0, the signature of the radical is specified by X1μ = 2�(μ)/m•(0, μ);
in short, q specifies a particular “divisor” p1, . . ., pn. This recipe can be inverted: X1 is infini-
tesimal translation, so you have only to solve X1μi = 2�(μi)/m

•(0, μi) for i = 1, . . ., n and to
invoke the trace formula q(0) = σ1 − 2(μ1+ . . .+μn) of §16.12, updated by translation in the
amount x, to produce the whole of q(x) for 0 ≤ x < 1.

You may ask: What is the point? The object is to integrate the complicated flows ∂q/∂t =
Xq, but the corresponding motion of divisors is complicated, too, as per Lemma 16.5.2. But
look: The map from the divisor to x is also 1:1 since μi �= μj for i �= j, and Theorem 16.10.5
says that x responds to the flow ∂q/∂t = Xjq as in x(t) = x(0) + t× (the jth column of Λ); in
short, the composite map q → divisor → x converts the general flow ∂q/∂t = Xq into explicit
straight-line motion at constant speed. The only question is now: How to go from x ∈ M back
to q? What is needed is Riemann’s theta function.

The first trace formula of §16.12 now comes into its own: The formula states that

q(0) = σ1 − 2
(
μ1 + · · ·+ μn

)
,

exhibiting q(0) as a symmetric function of p1, . . . , pn, i.e., as a function on Sn, and it is a
fact of classical function theory that any such “Abelian” function may be viewed as a locally
rational function on M and may be expressed by means of quotients of theta functions,43 but
more of that below. For the moment, let us cite only the startling fact that q(0), regarded
as an n-fold periodic function on the real torus M = Rn/L, extends to a 2n-fold periodic
function on its complexification M = Cn/L; this is the proper generalization of the discovery
of Hochstadt [16] that q is a Weierstrassian elliptic function in the special case n = 1; see
Example 16.5.9.

To explain the connection with theta functions, it is necessary to introduce some nota-
tion. Let P be the n × n matrix whose columns are the real periods ω =

∮
dx taken about

the intervals of instabi1ity [λo
2i−1, λ

o
2i] (i = 1, . . . , n) and let

√−1P ′ be the n × n matrix

whose columns are the imaginary periods
√−1ω′ =

∮
d taken about the intervals of stability

[λo
2i−2, λ

o
2i−1] (i = 1, . . . , n). Then L = L +

√−1L′ is the integral span of the columns of P

and P ′, and by the classical period relations,44 Q = P ′P † is symmetric [Q† = Q], positive
[kQk > 0 if k �= 0], and maps the dual45 L† of L onto L′. The theta function is now declared
to be

ϑ(x) =
∑

e2πik·x−πkQk†
,

the sum being extended over the points k of the dual lattice L†, and it is easy to check that

ϑ(x+ ω) = ϑ(x);

ϑ(x + ω′) = e−2πik·x+πkQk†
ϑ(x)

for ω ∈ L, ω′ ∈ √−1L′, and k = Q−1ω′ ∈ L†.
Now it is a fact of classical function theory46 that if f(p) is a function of rational character

on S with roots a1, . . . , am and poles b1, . . . , bm, equal in number of necessity, and if paths of

43See Siegel [31, 4.11], Farkas and Rauch [29], and for the older literature Göpel [15], Rosenhain [30] and
Krazer and Wirtinger [21].

44Siegel [31, 2.3].
45k ∈ L† if and only k · ω is a whole number for every ω ∈ L.
46Siegel [31, 4.11].
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integration from ai to bi (i = 1, . . . ,m) are chosen so as to make
m∑
i=1

∫ bi

ai

dx = 0,

this possibility being present also of necessity, then the product f(p1) . . . f(pn) can be ex-
pressed as a constant multiple of

m∏
i=1

ϑ
(
x− ai

)
ϑ
(
x− bi

)
in which

x =

m∑
j=1

∫ pj

oj

dx

as usual, and

ai =

∫ ai

o

dx, bi =

∫ bi

o

dx (i = 1, . . . ,m),

o being the pole of μ(p). This result is now applied to the function f(p) = 1 − μ(p)/λ for
λ �= 0: on S, it has simple roots at p± = (λ,±�(λ)), or else a double root if �(λ) = 0, and a
double pole at o, so f(p1). . .f(pn) = λ−nm(0, λ) can be expressed as

ϑ(x − x(p+))ϑ(x− x(p−))
ϑ2(x)

,

in which x(p) =
∫ p

0 dx and no constant multiplier is present since p± tends to o as λ tends to
∞. But also

1

2π
√−1

∮
λ−nmdλ = −(μ1 + . . .+ μu),

the integral being taken about a big circle, so

q(0) = σ1 − 2× 1

2π
√−1

∮
ϑ(x− x(p+))ϑ(x − x(p−))

ϑ2(x)
dλ

into which the straight-line motion of x described above may be substituted to express the
general flow ∂q/∂t = Xq; in particular, the Technical Condition of §16.4 is now justified.

Example 16.14.1. The formula is classical if n = 147: Then

q(x) = σ1/3 + 2p
(
x+

√−1ω′/2
)
,

p being the Weierstrassian elliptic function with primitive periods 1/m1 and
√−1ω′, and the

formula is equivalent to any one of the classical identities48

p = e1 +

[
ϑ′
1(0)ϑ2

ϑ1ϑ2(0)

]2
= e2 +

[
ϑ′
1(0)ϑ3

ϑ1ϑ3(0)

]2
= e3 +

[
ϑ′
1(0)ϑ4

ϑ1ϑ4(0)

]2
.

47See Amplification 16.5.5.
48ϑi (i = 1, 2, 3, 4) are the customary functions of Jacobi.
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Note added in proof, November 2008. The present §16.14 replaces the original un-
satisfactory §16.14 of McKean-van Moerbeke; it employs only the methods developed there.
Its-Matveev [Hill’s operator with a finite number of lacunae. Funkt. Anal. Pril. 9 (1975) 69–
70] had found a much better way to express q(0) in terms of x unknown to us then, based
upon a formula of H. F. Baker [Abel’s Theorem and the Allied Theory, including the Theory
of the Theta Functions, Cambridge U. Press, Cambridge, 1897], namely

q(0) = −2X2
1[log ϑ(x)] +

2n∑
0

λo
i − 2

n∑
1

λ′
i,

into which the straight-line motion of x may be substituted as above. That’s how it should
be done.

16.15. Elliptic Functions

Think of q as a point of the real torus M sitting inside the complex torus M and look at
the map σ1/2: q(x) → −q(

√−1x); the latter is a root of the involution σ : q(x) → q(−x), as
the notation suggests.

Lemma 16.15.1. Xmσ1/2q = (
√−1)2m+3σ1/2Xmq (m = 1, 2, 3, . . .).

Proof. Xmq is an isobaric polynomial in q, q′, q′′ etc., of degree m + 1/2, counting q
as of degree 1 and differentiation as augmenting the degree by 1/2, as in §16.3, and for any
monomial Xq of Xmq involving i factors q and j differentiations, you have

Xσ1/2q(x) = (−1)i
(√−1

)j
Xq
(√−1x

)
= −(√−1

)2i+j
σ1/2Xq(x)

with 2i+ j = 2m+ 1. �
Lemma 16.15.2. q∗ = σ1/2q is a solution of c∗1X1 + · · ·+ c∗nXn + Xn+1 : q → 0, in which

c∗1, . . . , c
∗
n are the symmetric polynomials of §16.7 formed with λ∗

0 = −λo
2n, . . . , λ

∗
2n = −λo

0

in place of λo
0, . . . , λ

o
2n, and n is minimal in this regard, i.e., q∗ cannot satisfy any equation

c∗∗1 X1 + · · ·+ Xm+1 : q → 0 with m < n.

Proof. Use Lemma 16.15.1. �
Lemma 16.15.3. q∗(x) is real in the vicinity of x = 0 if and only if it corresponds to a

half-period ω/2 of M .

Proof. q(x) is real analytic in 0 � x < 1, so q∗(x) is real in the vicinity of x = 0 if and
only if q(x) = q(σx) first locally and then in a whole period 0 � x < 1. Thus, q is a fixed
point of σ, and the latter are known to be the half-periods of M ; see Proposition 16.5.10. �

Now fix the half-period ω/2 and49 think of q∗(x) = −σ1+2μ1(
√−1x)+ · · ·+2μn(

√−1x)
as a function on the line

√−1x+ ω/2 on the complex torus M.

Lemma 16.15.4. q∗(x) stays real and smooth for −∞ < x < ∞ only for those 2n−1

half-periods with μn = λo
2n−1.

49As before, μi = μo
i (i = 1, . . . , n) for ease of writing.
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Proof. Under the motion q̇ =
√−1X1q, the power sums of μ1, . . . , μn remain real in the

vicinity of x = 0 by Lemma 16.15.3 and the trace formulas of §16.12. Therefore μ1, . . . , μn

remain real, and from

μ•
i =

√−1X1μi =
2
√−1�

(
μi

)
∏

j 	=i

(
μi − μj

) (i = 1, . . . , n),

it appears that the irrationalities �(μi) (i = 1, . . . , n) are pure imaginary, which is to say that
each μi, starting from λo

2i−1 or λ
o
2i, moves within the adjacent interval of stability [λo

2i−2, λ
o
2i−1]

or50 [λo
2i, λ

o
2i+1]. Now there are several possibilities. If μn(0) = λo

2n, then μn moves steadily

to the right with x and blows up at a finite parameter x = x∞ because μ•
n ∼ 2μ

3/2
n far out,

μ1, . . . , μn−1 being bounded. Therefore, to keep q∗ smooth, you must take μn = λo
2n−1. At the

opposite extreme, if μi(0) = λo
2i−1 (i = 1, . . . , n), then μi moves inside [λo

2i−2, λ
o
2i−1], turning

around in a smooth manner whenever it comes to λo
2i−2 or returns to λo

2i−1. The remaining
possibility is that μi = λo

2i and μi+1 = λo
2i+1 for one or more values of i < n. Let i = 1

for example. Then μ1 moves to the right and μ2 to the left, colliding at a finite parameter
x = x12 with μ•

1 = +∞ and μ•
2 = −∞ at the collision. This looks bad, but actually μ•

1 + μ•
2

remains well behaved through the collision, so that μ1 + μ2 is smooth, μ1 traveling up to λo
3

and back to λo
2 and μ2 down to λo

2 and back to λo
3 with smooth turns at these places. Thus,

each half-period with μn = λo
2n−1 produces a smooth q∗, and only these will serve. �

The proof of the next theorem is now self-evident.

Theorem 16.15.5. In order that λ∗
0 = −λo

2n, . . . , λ
∗
2n = −λo

0 be the simple spectrum of a
potential q∗ ∈ C∞ of period T , it is necessary and sufficient that

n−1∑
j=0

m∗
n−j

∫ λo
2j+1

λo
2j

μi−1 dμ

�(μ)
=

0 (i < n)√−1T (i = n)

for some necessarily unique integers 0 < m∗
1 < · · · < m∗

n; in such a case, q∗(x) can be taken
as −q(

√−1x + ω/2) with any of the permissible half-periods for which μn = λo
2n−1, and the

pure imaginary translates of the latter comprise a complete list of such q∗.

Amplification 16.15.6. Let q(x) have a complex period T as a function of x. Then
n∑

j=1

m′
j

∫ λo
2j

λ2j−1

μn−i dμ

�(μ)
+m′′

j

∫ λo
2j−2

λo
2j−2

μn−i dμ

�(μ)
=

0 (i < n)
T (i = n)

with suitable integers m′
j , m

′′
j (j = 1, . . . , n), and it is clear that the real and imaginary

parts of T are periods, separately. Therefore, such potentials are elliptic functions with a
pure imaginary primitive period, the same for every point of M ; these are the potentials of
Theorem 16.15.5.

Example 16.15.7. The condition is automatically satisfied form = 1, the sole permissible
half-period being 1/2 m1 + (

√−1/2)ω′. It may be remarked that in the problem of the
simple pendulum, the map cn(t) → −cn(

√−1t) is well known,51 reflecting a reversal of the
gravitational field; see Copson [3, p.417].

50λo
2n·1 = ∞.

51cn is the customary Jacobi function.
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The 2n conditions placed upon λo
0 < · · · < λo

2n by double periodicity in x indicate that,
for fixed m∗

1, . . . ,m
∗
n, and T , the spectrum admits only one degree of freedom, to wit, the

freedom of translation λo
i → λo

i + k (i = 0, . . . , 2n); in particular, if you also fix λ0 = 0, say,
it seems likely that the simple spectrum is unique for each n � 0. The remark of Lax [22],
that the Hill’s operator52 Q = −d2/dx2 + (2kK)2 · n(n + 1) sin2(2Kx, k) has 2n + 1 simple
eigenvalues, should enable one to determine these spectra effectively.

16.16. Geometry of Simple Spectra

The purpose of this article is to explain the geometry of the space Λn of simple spectra
λo
0 < · · · < λo

2n. It turns out that such a spectrum has only n + 1 degrees of freedom and
that H0, . . . , Hn is a local coordinate on Λn. From this viewpoint, the problem is to find nice
moduli for the tori M ; the geometrical problem of how C∞

1 is fibered by these tori (or by
their ∞-dimensional counterparts for n = ∞) is still obscure.

Theorem 16.16.1. Λn is an open (n + 1)-dimensional manifold in R2n+1, and
(H0, . . . , Hn) is a local coordinate upon it.

Proof. Let f be a simple eigenfunction of Q of unit length with eigenvalue λ = λo
i (i =

0, . . . , 2n) and let q• be an infinitely small variation of q ∈ C∞
1 . Then Qf•+ q•f = λf•+λ•f

and (f, f•) = 0, so ∫
q•f2 =

(
f,Qf•)+

∫
q•f2 = λ•

∫
f2 = λ•,

i.e., ∂λ/∂q = f2 as noted before. The fact that dimΛn = n + 1 now follows from Proposi-
tion 16.6.12: exactly n+ 1 of the functions ∂λo

i /∂q = (fo
i )

2 (i = 0, . . . , 2n) are independent.
As to the local coordinate, Proposition 16.6.2 implies that

2−n
∑

1�j�i�n+1

ci
∂Hj−1

∂q

(
2λo

k

)i−j
= 2

n∏
�=1

(
λo
k − λ′

�

)∂λo
k

∂q
,

or what is the same,

2−n
∑

1�j�i�n+1

ci
(
2λo

k

)i−j
dHj−1 = 2

n∏
�=1

(
λo
k − λ′

�

)
dλo

k,

and for any choice of n+ 1 values of j, k = 0, . . . , 2n,

det
jk

∑
i�j

ci
(
2λo

k

)i−j
= 2n(n+1)/2

∏
k>j

(
λo
k − λo

j

) �= 0,

so that (λo
0, . . . , λ

o
2n) → (H0, . . . , Hn+1) is a local diffeomorphism. �

Example 16.16.2. The tangent space of M may be computed directly from the period
relations of Theorem 16.10.12. For example, if n = 1, then there is only the one period relation∫ λo

2

λo
1

dμ

�(μ)
=

∫ 1

0

1√(
λo
1 − λo

0

)
+
(
λo
2 − λo

1

)
x

dx√
x(1 − x)

=
1

m1
,

and the tangent space to Λ1 ⊂ R3 at the point (λo
0, λ

o
1, λ

o
2) is determined by

0 =

∫ 1

0

−dλo
0 + (1− x)dλo

1 + xdλo
2√(

λo
1 − λo

0

)
+
(
λo
2 − λo

1

)
x

dx√
x(1− x)

.

52K is the complete elliptic integral
∫ k/2
0 (l − k2 sin2 θ)−1/2 dθ.
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Figure 16.7.

For n = 0, the potential is constant and the map of λo
0 → H0 = λo

0 is onto the whole line
which is now designated by D0. For n = 1, the situation is already more complicated. To

begin with H1 = 1
2

∫ 1

0
q2 � 1

2 (
∫ 1

0
q)2 = 1

2H
2
0 , and the equality is excluded, so the map of

(λo
0, λ

o
1, λ

o
2) → (H0, H1) cannot cover more than the figure

D1 =
(
h1 > 2h2

0

) ⊂ R2.

Theorem 16.16.3. Λ1 is an unramified ∞-sheeted covering of D1, the sheets being dis-
tinguished by the value

∫ λo
2

λo
1

dμ√(
μ− λo

0

)(
μ− λo

1

)(
λo
2 − μ

) =
1

m

of the primitive real period of q; especially, each sheet maps 1:1 onto D1.

Proof. Fix m = 1, 2, 3, . . . and note that the period relation determines λo
0 as a smooth

function of λo
1 and λo

2. Let H0 = h0 be fixed and move H1. Then the differential equations of
the proof of Theorem 16.16.1 reduce to

dH1 = 4
(
λo
i − λ′

1

)
dλo

1 (i = 0, 1, 2),

and for H•
1 = −1, it appears from Fig. 16.7 that [λo

1, λ
o
2] collapses λ

o
0λ

o
1λ

o
2 into a single point

at a finite parameter T . At that moment, H0 = λo
0, the period relation reduces to

π√
λo
1 − λo

0

=
1

m
,

or what is the same,

λo
1 = λo

0 +m2π2,

and H1 is at its minimum 1
2h

2
0. Now reverse the flow by taking H•

1 = +1. Then the motion
of Fig. 16.7 is reversed and continues forever while H1 ↑ ∞. This proves that the m-th sheet
of Λ1 maps onto D1 as soon as you notice that any value of H0 can be achieved by adding
a constant to q. To see that the map is 1:1, it suffices to prove that there is exactly one
trajectory of 4(λo

i − λ′
1)dλ

o
i = dt (i = 0, 1, 2) with

1

m
=

∫ λo
2

λo
1

dμ√(
μ− λo

0

)(
μ− λo

1

)(
λo
2 − μ

) ,

λ′
1 = m

∫ λo
2

λo
1

μdμ√(
μ− λo

0

)(
μ− λo

1

)(
λo
2 − μ

)

issuing from each point (λo
0, λ

o
1, λ

o
2) with λo

1 = λo
2 = λo

0 + m2π2. Now the problem is two-
dimensional, λo

0 being eliminated by the period relation; it is also invariant under translation
λo
i → λo

i + k (i = 0, 1, 2), and trajectories cannot cross while λo
1 < λo

2. The statement is
obvious from that, but it will be preferable to make a different proof. To do that, modify
the time scale in the region λo

1 < λo
2 by the factor 4

√
(λo

2 − λ′
1)(λ

′
1 − λo

1). The differential



16.16. GEOMETRY OF SIMPLE SPECTRA 411

equations become

dλo
1 = −

√
λo
2λ

′
1

λ′
1λ

o
1

dt,

dλo
2 = +

√
λ′
1λ

o
1

λo
2λ

o
1

dt,

and it is claimed that this system is smooth up to and including λo
1 = λo

2; in fact, if λo
1 < λo

2,
then

λ′
1 = m

∫ 1

0

λo
1 +

(
λo
2 − λo

1

)
x√

λo
1 − λo

0 +
(
λo
2 − λo

1

)
x

dx√
x(1− x)

,

so that

λo
2 − λ′

1

λ′
1 − λo

1

=

∫ 1

0
1−x√

λo
1−λo

0+
(
λo
2−λo

1

)
x

dx√
x(1−x)

∫ 1

0
x√

λo
1−λo

0+
(
λo
2−λo

1

)
x

dx√
x(1−x)

which makes everything plain. The proof is finished. �

Amplification 16.16.4. The sheets of Λ1 are depicted in Fig. 16.8: for a general point
λo
0 < λo

1 < λo
2 thereof, H1 − 1/2H2

0 is the time it takes to drive the initial spectrum λo
0 =

Figure 16.8.
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Figure 16.9.

Figure 16.10.

H0, λ
o
1 = λo

2 = H0 +m2π2 to that position by means of 4(λo
i − λ′

1)dλ
o
i = dt (i = 0, 1, 2). An

incidental bonus is the realization that Λ0 can be viewed as the common boundary of all the
sheets of Λ1.

Theorem 16.16.5. Fix (λo
0, . . . , λ

o
2n) ∈ Λn. Then the associated double eigenvalues can

be smoothly opened up, one at a time, into bona fide pairs of simple eigenvalues, keeping
Hi = hi (i � n) fixed. Moreover, the opening can be done in only one way, i.e., the opened
spectra form a smooth curve in Λn+1 issuing from the original spectrum in Λn, and Hn+1 is
an adequate coordinate upon it; see Fig. 16.9 for the case n = 1, m1 = 1, m2 = 2.

Proof. The idea is already contained in the proof of Theorem 16.16.3. The opening
depicted in Fig. 16.10 is typical. To achieve it, you use the differential equations

2n+1
n∏

k=1

(
λi − λ′

n

)
λ•
i = H•

n+1 = +1 (i = 0, . . . , 2n)

under which motion Hi = hi (i � n) stay fixed. The claim is that this system has a unique
solution in Λn issuing from the first spectrum of Fig. 16.10. To begin with, by the substitution
μn = λ2n−1 + (λ2n − λ2n−1)x,

n∏
k=1

(
λ− λ′

k

)
=

∫ ∏n
k=1

(
λ− μk

)
d volume

volume of C

=

∫ λ2

λ1

· · ·
∫ λ2n−2

λ2n−3

∏n−1
k=1

(
λ− μk

)∏
i<j<n

(
μj − μi

)
dn−1μ

�
(
μ1

)
. . . �

(
μn−1

)

×
∫ 1

0

[
λ−λ2n−1+

(
λ2n−λ2n−1

)
x
]∏

i<n

(
μn−μi

)
√(

μn−λ0

)
. . .

(
μn−λ2n−2

) dx√
x(1 − x)
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×
(∫ λ2

λ1

· · ·
∫ λ2n−2

λ2n−3

∏
i<j<n

(
μj − μi

)
dn−1μ

�
(
μ1

)
. . . �

(
μn−1

)

×
∫ 1

0

∏
i<n

(
μn − μi

)
√(

μn − λ0

) · · · (μn − λ2n−2

) dx√
x(1 − x)

⎞
⎠

−1

Therefore, in the vicinity of λ0 < · · · < λ2n−2 < λ2n−1 = λ2n and for λ < λ2n−1 or λ2n,∏n
k=1(λ − λ′

k) can be expressed as the product of λ2n − λ2n−1 and a smooth nonvanishing
function of λ0, . . . , λ2n, and after modification of the time scale by the factor λ2n − λ2n−1,
the differential equations take the form

λ•
i = fi

(
λ0, . . . , λ2n

)
(i = 0, . . . , 2n)

with smooth functions fi such that, for λ2n−1 = λ2n, fi = 0 (i � 2n − 2), but f2n−1 < 0
and f2n > 0. This gets the solution off the ground Λn−1 and moving out into Λn with Hn+1

measuring the elapsed time. �
Recall Lemma 16.3.9 and for fixed hi (i = 0, 1, . . . , n), let ho

k(1/m) denote the minimum
of Hk in the subclass of C∞

1/m with Hi = hi (i < k), assuming this class to be non-void.

Obviously, a Hamiltonian series Hi = hi (i � n) arising from Λn must fall inside the region
Dn ⊂ Rn+1 where h1 > ho

1(1), . . . , hn > ho
n(1). For n = 2, more can be said, but first a couple

of lemmas.

Lemma 16.16.6 (53). ho
2(1) < ho

2(1/2) < ho
2(1/3) < · · · ↑ ∞.

Proof. To study ho
2(1/m), let q = p(mx) with p ∈ C∞

1 . Then

H0 =

∫ 1

0

q dx =

∫ 1

0

p dx,

H1 =
1

2

∫ 1

0

q2 dx =
1

2

∫ 1

0

p2 dx,

H2 =

∫ 1

0

[
1

2
q3 +

1

4

(
q′
)2]

dx =

∫ 1

0

[
1

2
p3 +

m2

4

(
p′
)2]

dx,

and you have to minimize the latter for fixed H0 = h0 and H1 = h1 > 1
2h

2
0 = ho

1(1). Clearly,

ho
2(1/m) is steadily increasing with m. Now ‖p‖2∞ � 4h1 + 2‖p′‖22, so that

H2 � m2

4
‖p′‖22 −

1

2
h1

√
4h1 + 2‖p′‖22

and from 2h1 − h2
0 = c > 0, you have

c =

∫ 1

0

∣∣∣∣
∫ 1

0

p(x+ y) dy − p(x)

∣∣∣∣
2

dx � ‖p′‖22,
whence

ho
2(1/m) � am2 − b

for m ↑ ∞. �
Lemma 16.16.7. Let H0 = h0 and H1 = h1 > ho

1(1) be fixed and let λo
0 < λo

1 < λo
2 be the

corresponding simple spectrum on the m-th sheet of Λ1. Then H2 = ho
2(1/m), and conversely:

the Hamiltonian series H0, H1, H2, . . . begins with H0 = h0, H1 = h1 and H2 = ho
2(1/m) only

if n = 1, m1 = m, and you have the simple spectrum λo
0 < λo

1 < λo
2.

53For n = 1, this kind of thing does not happen: ho
1(1/m) is independent of m = 1, 2, 3, . . . .
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Figure 16.11.

Proof. The stated simple spectrum comes from a potential with primitive period 1/m,
and if H2 exceeded ho

2(1/m), you could minimize it by means of Lemma 16.3.9 to obtain a
nonconstant potential [h1 > 1

2h
2
0] with the same primitive period. But the simple spectrum

of the latter lies on the same sheet of Λ1 and is determined by h0 and h1 by Theorem 16.16.3;
see also Amplification 16.16.4. The rest of the proof runs along the same lines. �

The moral of Lemmas 16.16.6 and 16.16.7 is that Λ maps into

D′
2 = D2 ∩

(
H2 �= ho

2(1/m) : m = 2, 3, 4, . . .
)
.

Let Λ′
2 denote the part of Λ2 in which m2 = m1 + 1.

Theorem 16.16.8. Λ′
2 is diffeomorphic to D′

2; the geometrical details are summarized in
Fig. 16.11.

Proof. Λ2 is already known to be locally diffeomorphic to D′
2. It suffices to show that

a smooth curve in D′
2 connecting points (h0, h1, h2) and (h0, h1, h

′
2) with 2h1 > h2

o and
ho
2(1) < h2 < ho

2(1/2) < h′
2 < ho

2(1/3), say, comes from a smooth curve in Λ′
2 connecting

a simple spectrum λ0 < λ1 < λ2 < λ3 < λ4 with m1 = 1 and m2 = 2 to a spectrum of
type λ0 < λ1 = λ2 < λ3 < λ4 < λ5 < λ6 with m1 = 2 and m2 = 3 which crosses the sheet
no. 2 of Λ1 corresponding to H2 = ho

2(1/2). The proof is made by driving H2 up from ho
2(1),

keeping H0 and H1 fixed. This gives rise to an unlimited curve as in Fig. 16.11, commencing
on sheet 1 of Λ1, ultimately crossing every sheet of Λ1. To put the matter a little differently,
a simple spectrum λo

0 < λo
1 < λo

2 < λo
3 < λo

4 with m1 = m and m2 = m+ 1 can be driven by
the differential equations

8

2∏
k=1

(
λo
i − λ′

k

)(
λo
i

)•
= H•

2 = ±1 (i = 0, . . . , 4)

to a point λo
0 < λo

1 < λo
2[< λo

3 = λo
4] on the m-th sheet of Λ1 by choice of H•

2 = −1, and
to a point λo

0[< λo
1 = λo

2] < λo
3 < λo

4 on the (m + 1)st sheet of Λ1 by choice of H•
2 = +1.

The special case H•
2 = −1, m = 1 is typical and will suffice; see Fig. 16.12. The differential

equations determine a motion of λ0 < λ1 < λ2 < λ3 < λ4 during which H0 and H1 stay fixed
and the period relations ∫ λ2

λ1

dμ

�(μ)
+ 2

∫ λ4

λ3

dμ

�(μ)
= 0,

∫ λ2

λ1

dμ

�(μ)
+ 2

∫ λ4

λ3

dμ

�(μ)
= 1
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Figure 16.12.

are maintained, leaving one degree of freedom, as it should. Now the only way to prevent the
outcome λ0 < λ1 < λ2 < λ3 = λ4 is to have either (a) λ0 escape to −∞, or (b) λ1 collide
with λ0, or else (c) λ2 collide with λ3, at or simultaneously with the collision of λ3 and λ4.
Consider the motion up to time T = the smallest of the escape time of λ0 and the collision
times of λ0 and λ1, λ2 and λ3, or λ3 and λ4, and verify

λ•
3 − λ•

2

λ3 − λ2
� 1

8

1(
λ2 − λ′

2

)(
λ2 − λ′

1

)(
λ3 − λ′

1

) =
−λ•

2

λ3 − λ′
1

.

Now let λ0 ↓ −∞, i.e., let (a) hold. Then λ′
1 ∼ λ0 because of

λ0 + λ1 + λ2 + λ3 + λ4 − 2λ′
1 − 2λ′

2 = H0 = λ0 + λ1 − 2λ′
1 +O(1)

and

λ•
1 − λ•

0 =
1

8

1(
λ0 − λ′

1

)(
λ0 − λ′

2

) − 1

8

1(
λ1 − λ′

1

)(
λ1 − λ′

2

) < 0,

so that

log
(
λ3 − λ2

)
� −

∫
0

λ•
2

λ3 − λ′
1

dt+O(1)

is bounded from below and λ2 cannot collide with λ3. This permits (a) to be eliminated:
taking λ1 < 0 < λ2 for simplicity, the second period relation∫ λ2

λ1

μdμ

�(μ)
+ 2

∫ λ4

λ3

μdμ

�(μ)
= 1

cannot be maintained in the face of∣∣∣∣∣
∫ λ4

λ3

μdμ

�(μ)

∣∣∣∣∣ �
λ4√(

λ3 − λ0

)(
λ3 − λ1

)(
λ3 − λ2

)
∫ λ4

λ3

dμ√(
μ− λ3

)(
μ4 − λ

)

= O
(∣∣λ0

∣∣−1)
,

and54 ∣∣∣∣∣
∫ λ2

λ1

μdμ

�(μ)

∣∣∣∣∣�−
∫ o

λ1

μdμ√(
μ− λ0

)(
μ− λ1

)(
λ2 − μ

)(
λ3 − μ

)(
λ4 − μ

)−O
(∣∣λ0

∣∣−1)

� 1√
λ1 − λ0

× ∣∣λ0

∣∣−1/2
.

The upshot is that λ0 = O(1), and from

λ0 + · · ·+ λ4 − 2λ′
1 − 2λ′

2 = H0,

λ2
0 + · · ·+ λ2

4 − 2
(
λ′
1

)2 − 2
(
λ′
2

)2
= H1,

54λ•
1 − λ•

0 < 0 implies λ1 ∼ λ0.
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you see that the limiting values λ′
1(T−) and λ′

2(T−) exist. Now (b) λ1 − λ0 = o(1) cannot
take place without (c) λ3 − λ2 = o(1) as that would unbalance the first period relation:

±∞ ∼
∫ λ2

λ1

dμ

�(μ)
= −2

∫ λ4

λ3

dμ

�(μ)
= O(1).

But in the face of (c),

∫ T

0

λ•
2

λ3 − λ′
1

dt � log
λ3(0)− λ2(0)

λ3(T−)− λ2(T−)
= ∞

implies λ3 − λ′
1 = o(1), too, with the result that

λ•
1 − λ•

0

λ1λ0
=

1

8

λ0 + λ1 − λ′
1 − λ′

2(
λ0 − λ′

1

)(
λ0 − λ′

2

)(
λ1 − λ′

1

)(
λ1 − λ′

2

) = O(1).

This eliminates (b). Now in the presence of (c), the first period relation implies λ4−λ3 = o(1):
if not, the ratio of

±
∫ λ2

λ1

dμ

�(μ)
∼ 1√(

λ2 − λ0

)(
λ2 − λ1

)(
λ4 − λ2

) log λ2 − λ1

λ3 − λ2
,

and

±2

∫ λ4

λ3

dμ

�(μ)
∼ 2√(

λ3 − λ0

)(
λ3 − λ1

)(
λ4 − λ3

) log λ4 − λ3

λ3 − λ2
,

would tend to 1/2 and not to 1, violating the first period relation. This leaves you in the case
−∞ < λ0 < λ1 < λ′

1 = λ2 = λ3 = λ′
2 = λ4 at time t = T−, and that is ruled out by observing

that

2H1 −H2
0 =

(
λ2
0 + λ2

1 − λ2
2

)− (
λ0 + λ1 − λ2

)2
= −2

(
λ2 − λ0

)(
λ2 − λ1

)
< 0,

violates H2
0 � 2H1. The proper period relation for sheet 1 of Λ1:

∫ λ2

λ1

dμ√(
μ− λ0

)(
μ− λ1

)(
λ2 − μ

) = 1

is automatically met by the collapsed spectrum λ0 < λ1 < λ2 < λ3 = λ4 since the old period
relations collapse to

∫ λ2

λ1

1

λ3 − μ

dμ√(
μ− λ0

)(
μ− λ1

)(
λ2 − μ

) =
2π√(

λ3 − λ0

)(
λ3 − λ1

)(
λ3 − λ2

) = 0

and ∫ λ2

λ1

1

λ3 − μ

μdμ√(
μ− λ0

)(
μ− λ1

)(
λ2 − μ

)

− 2πλ3√(
λ3 − λ0

)(
λ3 − λ1

)(
λ3 − λ2

) = ±1.

The proof is finished by use of Lemma 16.16.7 to fill in the geometrical details of Fig. 16.12. �
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Amplification 16.16.9. It will be plain from the above that with more effort along
similar lines, the disposition of the sheets of Λ2 over D′

2 could be completely clarified; in
particular, it seems likely that the sheets can be labelled by means of the numbers m1, m2

figuring in the period relations, or, equivalently, by means of suitable critical values of H3,
though the matter may be more complicated than that. For n = 1, the period relation on the
m-th sheet of Λ1:

m

∫ λ2

λ1

dμ

�(μ)
= 1

states that q is of period 1/m, and you have H2 = ho
2(1/m). Similarly, for n = 2, the value

of H3 is determined locally by Hi = hi (i � 2), and it would be a source of satisfaction to
identify that value as the minimum ofH3 over some simple subclass of C∞

1 ∩(H0 = h0)∩(H1 =
h1) ∩ (H2 = h2) determined by m1, m2. Clearly, all the same difficulties arise for n � 3.

Amplification 16.16.10. The full Hamiltonian series H0H1H2 . . . is always a global
coordinate on Λn; see Corollary 16.12.8.
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