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To my teachers Will Feller, Kiyoshi Ito, Mark Kac, Norman
Levinson and Gretchen Warren
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Henry P. McKean Jr.!

1.1. Norman Levinson

Thinking of Norman Levinson, I remem-
ber how much I learned from him as a very
young and inexperienced person, and how
much I found to admire, both in his math-
ematical work and in himself, as a man.

Looking back, his choice of mathematical
questions seems memorable enough: mostly
close to applications, rich in their details, sug-
gestive of general phenomena, as in the won-
derful papers on the forced vander Pol equa-
tion, etc. foreshadowing the current vogue of
attractors, chaos, and all that.

What I could better appreciate then was
his mastery of the kind of hard analysis such
questions require, the kind in which every
equality costs you two opposing inequalities.
When we got stuck, working together, he’d
always take an example, and he’d estimate
things with an understanding and a speed
that impressed me equally, and soon we’d
be back on solid ground. It was excitingly
easy, Norman doing all the hard work, as I
understood later. Gap and Density Theorems
(Chap. 8, vol. 2) and the extraordinary papers
on Riemann’s zeta function (Chap. 11, vol. 2)
is where you can see this expertise at its
best.

Other lessons I was not so ready to di-
gest though happy to benefit from. I mean

LCourant Institute, New York University,
New York, NY, USA, mckean@cims.nyu.edu.

his unobtrusive, remarkably effective admin-
istrative style, the way he seemed to run the
department with the back of his hand, and,
on the personal side, his patience and gentle
encouragement.

He was shy. Fagi said: “Norman, he’s ter-
rible. He never wants to go out. He’s afraid
he’ll meet somebody he doesn’t know.” T was
shy, too, but slowly we got to know each other
a little, coming from as different backgrounds
as you could imagine, and I thought myself
lucky when he told me bits about his early life.
He said: “We were very poor, but we didn’t
think of ourselves as poor.” I take the liberty
to transpose that and to say he was a rich
man in his particular way, spreading about
his riches quietly, with an open hand.

Henry McKean, New York, May 1997.
1.2. Will Feller

Will Feller was born in Zagreb, Yu-
goslavia on July 7, 1906, the ninth of 12
children of a well to-do family. They named
him Willy in the then popular German style.
This changed to William upon his coming
here (1939), but everybody called him plain
Will. His early studies called him from Zagreb
(1923-1925) to Gottingen (1925-1928) where
he got his degree in 1926, aged 20! Then
to Kiel as Privatdozent (1928-1933). Nazi
times: Will taught a class on the new ideas
in probability of Kolmogorov, etc., attended,
by chance, by a person of some importance
in the SS. One day, this person and some
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2 1. PERSONAL RECOLLECTIONS

Figure 1.1. Henry P. McKean Jr.

two or three of his men present themselves
at Will’s apartment. Will lets them in in fear
and trembling, whereupon the boss says how
much he loves Will’s lectures and if there
is somebody Will would like them to beat
up, just to say the word. A courtesy call T
suppose. Will declined this civility and after
a subsequent refusal to sign a Nazi oath,
packed his bags for Copenhagen where he
stayed a year (1933). Then to Stockholm
(1934-1939), Providence (1939-1944), Ithaca
(1945-1950), and Princeton (1950-) which is
where I first knew him (1953). He died, with
difficulty, in New York on January 14, 1970,
aged 63.

I think it is fair to say that Kolmogorov,
Paul Lévy, and Will made probability an
honest woman. They are the people chiefly
responsible for its rise from a not quite re-
spectable rule of thumb to the ubiquitous,
precise, intuitively appealing subject it is to-
day. I think that, of the three, Will had
the wider view. He understood Kolmogorov’s
mostly analytical way and also Paul Lévy’s
way with sample paths, and was a master
of both, as can best be seen in his splendid
book, An Introduction to Probability Theory
(John Wiley & Sons, 1950) and its subsequent
amplifications and revisions (1957/1968 and
1966,/1971). Here you can see him endlessly
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FiGure 1.2. Henry P. McKean Jr.

perfecting proofs and pictures. I point, for
example, to his simple way with suppos-
edly hard Tauberian theorems and to his so
appealing presentation of Sparre-Andersen’s
combinatorial way with random walks. This
is the book for beginners. It is so full of inter-
esting things, both mathematical and prac-
tical, looked at from an astonishing number
of aspects, and full of Will’s own self: his en-
thusiasm, his high standards, his indefatiga-
ble desire to make you understand “what’s
really going on”.

That was also his watch-word when he
lectured. He would get quite excited, his au-
dience in his hand, and come (almost) to the
point. Then the hour would be over, and he
would promise to tell us “what’s really going
on” next time. Only next time the subject
would be not quite the same, and so a whole
train of things was left hanging, somewhat in
the manner of Tristram Shandy. But it didn’t
matter. We loved it and couldn’t wait for the
next (aborted) revelation.

I was too young to appreciate my luck
in coming so accidentally into his orbit, but
soon realized that I had not only a teacher
but a friend whose generosity and sense of

the ridiculous in the gloomy moments of the
young could be counted on for sure. I remem-
ber a note he sent me at such a moment in
which he said: “You were made for success
and the Lord God himself is kicking Himself
that you do not understand his good inten-
tions”. (Will’s capitals). That’s how he was
with me and many others, too: good company,
a raiser of spirits, smart, kind.

I learned so much from him as a man, and
also in mathematics, from him and others of
my elders and betters: D. Ray, G. Hunt, and
K. Ito.

A bit about Will’s one-dimensional “dif-
fusions” which he was in the middle of when
we were together (1953/1957). It exempli-
fies his simultaneous desire for generality and
simplicity, taking what people thought to
be quite complicated and making it obvi-
ous, as all good mathematics should be. In
short, he reduced the general diffusion to the
simplest one (Brownian motion) by: (1) a
change of “scale” to make the motion ap-
pear unbiased, and (2) a change of “clock”
or “speed” to make the (local, Gaussian)
fluctuations the same at any place. This is
easy enough in simple cases with stringent
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technical conditions imposed. But what Will
realized is that, effectively, no technical condi-
tions are needed at all; in the “natural” lan-
guage, the technicalities evaporate and sim-
ple, perfectly general expressions for objects
of interest are found. Here is an example. Let

= 1e*(2)0? /02 + f(x)0/0z be the infin-
itesimal operator of a one-dimensional diffu-
sion x(t) : t > 0. Here, f specifies the “drift”
or “bias” and e specifies the “fluctuations”.
Introduce the new “scale”

/ " dyexp [_ / ’ (2f/62)]

and the “speed measure”

i) =255 e [+ [ (21764,

in terms of which & = (d/dm)(d/dzx). Take
a < x < b, start the diffusion at x(0) = x and
let T be the “exit time” min(t : 2(¢) = a or b).
Then in the new scale,

b—=x T—a
Plz(T)=a] = P Pz(T) =b] = p
b
and E(T) = [ G(z,y)dm(y)
with the (symmetric) Green’s function

G(z,y) = (z —a)(b—y)/(b—a) for z < y.
What could be simpler?

Back to Will himself. He was short; com-
pact, with a mop of wooly gray hair; irre-
pressible. In conversation quick, always ready
with an opinion (or two), addicted to ex-
aggeration. If you knew the code, you ap-
plied the “Feller factor” (discount by 90 %).
If you didn’t, it could be awkward, as with
the immigration official at Providence when
they came to the question: “Do you advo-
cate bigamy?” Will delivered a lengthy opin-
ion on the distinction between practice and
advocacy which, he said, must surely ob-
tain in this great free land about to be his
own. The official was not amused. So he
could seem opinionated, even rude if you
didn’t know him. But the real Will took
a wide view, meeting life with enthusiasm
and good cheer. I think of him often, hear-
ing his voice, remembering him so full of
fun.

FiGure 1.3. N. Levinson

Brooklyn,
April 15, 2005

1.3. Kiyoshi It6: recollections of Kyo6to
1957/1958

The following recollections formed a little
talk I spoke in Ky6to on the occasion of K.
It6’s 88th birthday. They bring the memory
of the happy times we had together and con-
gratulations on his Gauss Prize. The Gauss
Committee will not find it easy to keep to the
standard they have set.

Kyo6to 1957/1958 It’s a pleasure to think
back for a little while to the happy days my
family and I spent in Kyoto in 1957/1958.

I met Ito-senser in Princeton 1954 where
Kosaku Yosida also came for a shorter time.
Dan Ray was there also Hunt & Trotter, and
of course Feller who was the activator, the
regisseur of it all. Feller had just formulated
his ideas on diffusion and I was helping (feebly
to be sure) to bring them together into a little
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William Feller:
too much
faith in
statistics

FiGure 1.4. Will Feller

book. At the same time we were just hearing
about Dynkin’s ideas on stopping times so we
had a seminar to digest these things. It was
lucky for me, being so young and largely uned-
ucated, to find myself at a moment when the
understanding of diffusion was taking a big
jump. I think I never worked so hard (without
fatigue) or learned so much so fast (without
tears) as I did then, and from two such patient
kindly teachers as Feller and Ito.

Then Ito6 and I began to combine all
that with ideas of Paul Lévy, especially his
“measure du voisinage” or “local time” as
we called it in English, and we understood
quite quickly how this local time is a sort
of 1/2-dimensional measure on the zeros of
the Brownian path, how it could be used to
implement the elastic Brownian motion, and
so on. I say “we” understood. I should say
It6 understood, and since he was patient and
I was pretty quick though ignorant, pretty
soon I understood, too. But invariably, at that
happy moment when you say to yourself “I
see”, it was It6 who saw the whole. It was my

Ficure 1.5. K. Ito

Picture by Konrad Jacobs.
With friendly permission
from the Archives of the Math-
ematisches Forschungsinsti-
tut Oberwolfach

first real taste of how mathematics is done and
I cannot think of it now without excitement
and gratitude. So far Princeton.

I stayed on another year or two and then
to Japan (1957/1958) where we continued to
work on our book. Never ever write a book
before everything is proved and never ever let
the junior partner write it! It would have been
a better book had it been written half as many
times at twice the length. But never mind:
Regrets are not very interesting, what’s more
interesting is that year 1957/1958 in Kyo6to.

It was a long trip by a little Japanese
freighter from Los Angeles, up past the Aleu-
tians where it was cold and rough with a sick
child of 2 years, but after a couple of weeks
we arrived at Yokohama to be met by It6 and
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Ito-san no okusan and Junko, and after that
all was well, though naturally new and more
than a little foreign.

I might tell you that I already knew a
little about Japan as my great-grandfather in
Boston was an enthusiastic collector of Japan-
ese art. That was in the days of Fenellosa who
first made such things known in America and
who was a friend of that grandfather, so the
chance to see some of the treasures of that
marvelous art with my own eyes and to do
mathematics with It6 was a combination not
to be resisted. Now back to Kyoto.

It6 had rented us a spacious house right
on Takanogawa in the Shimogamo district,
just a short walk from the university. I still
see in my mind’s eye the lovely printed cloths
washing in the current of the river and the
moon coming up from behind the Hieisan, and
I hear in my mind’s ear the call of the noodle-
seller at night. Now the cloths and the noodle-
seller are gone but the river is sparkling clean,
which it was not then. I went to the university
every day walking, and back at night. I had a
vast office with a couch and many chairs and
tables and a huge glass-topped desk, and a
coal stove for the winter which smoked horri-
bly when the wind was wrong and the kind old
librarian (whose name I regret to have forgot-
ten) would try to make it work. I had a sink,
too, to wash my hands, and a big safe—was
it to keep my theorems in? I never figured
out. And after the morning, we had lunch
all seated about a long table, or else if the
weather was fine, we went to a little out door
restaurant a few steps away and had some
kind of domburi and a beer.

Once a week, we had a seminar with so
many quick and eager people, then very young
like me, now not so young like me: Nobuyuki
Ikeda was there and Hiroshi Tanaka, and
Shinzo Watanabe and Takesi Watanabe, Mi-
noru Motoo, Tunekiti Sirao, Tadashi Ueno,
Takeyuki Hida, Makiko Nisio. I must have for-
gotten some names. If so please forgive me. It6
said that we were “sowing the seeds of dif-
fusion in the mathematical fields of Japan”.
It was all very welcoming and exciting and I
loved it.

To come back for a moment to our joint
work and the way It6 taught me. I remem-
ber we were flying to some place (Fukuoka
I think) and trying to understand Feller’s
most general boundary conditions for Brow-
nian motion on a half-line. It6 sat beside me
drawing pictures of sample paths. These did
not please him until he got to the right one (it
didn’t take him very long) and as soon as he
showed it to me I understood perfectly, but
lacking his experience and deep feeling could
not have thought of it myself. Some things we
missed entirely like the deep facts about the
spatial dependence of stopped local time. We
had prototype formulas in front of us, all per-
fectly explicit, and never imagined what they
meant: That the stopped local time was itself
a diffusion in its spatial parameter. Oh well.

Leaving mathematics, I remember a con-
tinual attentive kindness from Itd6 and Ito-
san no okusan. I remember happy suppers at
their house when Ito, knowing next to noth-
ing about cooking, would explain what his
wife had placed before us by saying: “You
take it and you put it and then it’s very
good.” I remember also excursions near and
far: To Shugakuin, Hieisan, Kokedera, Nara,
and so on, with It6 always on the lookout
that we should be comfortable and at ease.
Once at the zoo, when the little Japanese chil-
dren were staring at my odd-looking Ameri-
can children, Ito said to them sharply: “You
are here to look at the animals!” and they did
that.

So now you can see what a load of obliga-
tion (of on or giri if you like) I must carry, but
that is not Itd’s way. It6’s father was a very
traditional, correct man who kept a record
of every kindness done to himself and to his
family over the years. When he died, It6 dis-
charged each recorded debt meticulously, as
his father would have wished him to do. Af-
ter that, he went his own way, marrying his
dear Shizue by inclination and for love, giv-
ing always freely: to myself, to many of you in
this room, and I must suppose to many many
others unknown to me.

Arigato gozaimashita, arigato gozaimasu.
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Ficure 1.6. M. Kac

Picture by Konrad Jacobs.
With friendly permission
from the Archives of the Math-
ematisches Forschungsinsti-
tut Oberwolfach

1.4. Mark Kac, August 16,
1914—October 25, 1984

Poland. Mark Kac was born “to the sound
of the guns of August on the 16th day of that
month, 1914,” in the town of Krzemieniec—
then in Russia, later in Poland, now in
the Soviet Ukraine (1985, 1, p. 6). In this
connection Kac liked to quote Hugo Stein-
haus, who, when asked if he had crossed the
border replied, “No, but the border crossed
me.”

In the early days of the century Krzemie-
niec was a predominantly Jewish town sur-
rounded by a Polish society generally hostile
to Jews. Kac’s mother’s family had been mer-
chants in the town for three centuries or more.
His father was a highly educated person of
Galician background, a teacher by profession,

holding degrees in philosophy from Leipzig,
and in history and philosophy from Moscow.

As a boy Kac was educated at home and
at the Lycée of Krzemieniec, a well-known
Polish school of the day. At home he stud-
ied geometry with his father and discovered a
new derivation of Cardano’s formula for the
solution of the cubic—a first bite of the math-
ematical bug that cost Kac pere five Polish
zlotys in prize money. At school, he obtained
a splendid general education in science, litera-
ture, and history. He was grateful to his early
teachers to the end of his life.

In 1931 when he was 17, he entered the
John Casimir University of Lwow, where he
obtained the degrees M. Phil. in 1935 and
Ph.D. in 1937.

This was a period of awakening in Polish
science. Marian Smoluchowski had spurred a
new interest in physics, and mathematics was
developing rapidly: in Warsaw, under Waclaw
Sierpinski, and in Lwéw, under Hugo Stein-
haus. In his autobiography (1985, 1, p. 29),
Kac called this renaissance “wonderful.” Most
wonderful for him was the chance to study
with Steinhaus, a mathematician of perfect
taste, wide culture, and wit; his adored
teacher who became his true friend and intro-
duced him to the then undigested subject of
probability. Kac would devote most of his sci-
entific life to this field and to its cousin, statis-
tical mechanics, beginning with a series of pa-
pers prepared jointly with Steinhaus on statis-
tical independence (1936, 1-4; and 1937, 1-2).

Kac’s student days saw Hitler’s rise and
consolidation of power, and he began to think
of quitting Poland. In 1938 the opportunity
presented itself in the form of a Polish fellow-
ship to Johns Hopkins in Baltimore. Kac was
24. He left behind his whole family, most of
whom perished in Krzemieniec in the mass
executions of 1942-1943. Years later he re-
turned, not to Krzemieniec but to nearby
Kiev. I remember him rapt, sniffing about him
and saying he had not smelled such autumn
air since he was a boy. On this trip he met
with a surviving female cousin who asked him,
at parting, “Would you like to know how it
was in Krzemieniec?” then added, “No. It is
better if you don’t know”.
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These cruel memories and their attendant
regrets surely stood behind Kac’s devotion to
the plight of Soviet refusniks and others in
like distress. His own life adds poignancy to
his selection of the following quote from his
father’s hero, Solomon Maimon: “In search of
truth I left my people, my country and my
family. It is not therefore to be assumed that I
shall forsake the truth for any lesser motives”

(1], p. 9).
America. Kac came to Baltimore in 1938 and
wrote of his reaction to his new-found land:

“I find it difficult...to convey
the feeling of decompression,
of freedom, of being caught
in the sweep of unimagined
and unimaginable grandeur.
It was life on a different scale
with more of everything—more
air to breathe, more things to
see, more people to know. The
friendliness and warmth from all
sides, the ease and naturalness
of social contacts. The contrast
to Poland. . . defied description.”

After spending 1938-1939 in Baltimore,
Kac moved to Ithaca, where he would re-
main until 1961. Cornell was at that time
a fine place for probability: Kai-Lai Chung,
Feller, Hunt, and occasionally the peripatetic
Paul Erdos formed, with Kac, a talented and
productive group. His mathematics bloomed
there. He also courted and married Katherine
Mayberry, shortly finding himself the father
of a family. So began, as he said, the healing
of the past.

From 1943 to 1947 Kac was associated
off and on with the Radiation Lab at MIT,
where he met and began to collaborate with
George Uhlenbeck. This was an important
event for him. It reawakened his interest in
statistical mechanics and was a decisive fac-
tor in his moving to be with Uhlenbeck at The
Rockefeller University in 1962. There Detlev
Bronk, with his inimitable enthusiasm, was
trying to build up a small, top-flight school.
While this ideal was not fully realized either
then or afterwards, it afforded Kac the oppor-
tunity to immerse himself in the statistical

mechanics of phase transitions in the com-
pany of Ted Berlin and Uhlenbeck, among
others. Retiring in 1981, Kac moved to the
University of Southern California, where he
stayed until his death on October 25, 1984,
at the age of seventy.

I am sure I speak for all of Kac’s friends
when I remember him for his wit, his personal
kindness, and his scientific style. One summer
when I was quite young and at loose ends, I
went to MIT to study mathematics, not re-
ally knowing what that was. I had the luck
to have as my instructor one M. Kac and was
enchanted not only by the content of the lec-
tures but by the person of the lecturer. I had
never seen mathematics like that nor anybody
who could impart such (to me) difficult ma-
terial with so much charm.

As T understood more fully later, his atti-
tude toward the subject was in itself special.
Kac was fond of Poincaré’s distinction be-
tween God-given and man-made problems. He
was particularly skillful at pruning away su-
perfluous details from problems he considered
to be of the first kind, leaving the question in
its simplest interesting form. He mistrusted as
insufficiently digested anything that required
fancy technical machinery—to the extent that
he would sometimes insist on clumsy but ele-
mentary methods. I used to kid him that he
had made a career of noting with mock sur-
prise that e* = 1 + 2 + 22/2 + etc. when
the whole thing could have been done with-
out expanding anything. But he did wonders
with these sometimes awkward tools. Indeed,
he loved computation (Desperationmatemtik
included) and was a prodigious, if secret, cal-
culator all his life.

I cannot close this section without a Kac
story to illustrate his wit and kindness. Such
stories are innumerable, but I reproduce here
a favorite Kac himself recorded in his autobi-
ography:

“The candidate [at an oral
examination] was not terribly
good—in mathematics at least.
After he had failed a couple
of questions, I asked him a
really simple one...to describe
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the behavior of the function
1/z in the complex plane.
‘The function is analytic, sir,
except at z = 0, where it has a
singularity,” he answered, and
it was perfectly correct. ‘What
is the singularity called?’ 1
continued. The student stopped
in his tracks. ‘look at me,” I
said. ‘What am I?” His face lit
up. ‘A simple Pole, sir,” which
was the correct answer.”

[1] Enigmas of Chance. (Autobiography).

New York: Harper and Row.

1.5. Gretchen Warren

I add to these recollections another, from
my boyhood. The first time I met Gretchen
Warren I must have been 10 or 12. It was
her custom then to spend the summer at
the house of my cousin Eleo (much older
than me), looking out over the New England
sea going all the way to Portugal, which I
imagined I could perceive faintly, far away.
Two more different women can hardly be
imagined: Eleo the complete sports-woman,
devoted to swimming, tennis, 100-mile walks,
horses, gossip, handsome men and women.
Grechen intellectual, learned in literature,
philosophy and myth, especially the old
things of East and West: the Icelandia Sagas,
Chanson de Roland, Homer, Villon, the
Bhagavad-Gita, Plotinus, the Bible, in no
particular order; loving music and also Nat-
ural History; a friend of Santayana, Henry
George, and A.K. Coomaraswami; a mixture
you might say, of Emerson and Agassiz. How

these two became (and stayed) friends I do
not know, but they did.

Gretchen was of another generation,
maybe 60 then or more, but she spoke to me
as an equal in a way I have never forgotten.
She took my childish love of Natural History
with perfect seriousness, sharing her books
and her marvelous collection of shells: the
violet snail, thinner than paper, making a
raft of foam to carry her eggs, far out in the
uttermost parts of the ocean; Cuban land
snails with their wonderful variegated colors;
things I still keep, making me think of her.
She introduced me to other things she loved
like Homer and Plotinus, not then but later
on. She encouraged me to think that I might
do something of my own, in science perhaps,
or writing. And nothing heavy here, only
that serious attention to a little child which
was her great charm and kind gift to me. She
was a beautiful woman. You may have seen
her at the Fine Arts in Boston in Sargent’s
painting: Mrs. Warren and her Daughters.
We met less often as time went by. I saw her
last in Boston, Beacon Hill, in 1949 or so.
Then she died, leaving these memories.

1.6. Acknowledgements

It is my pleasant duty to thank F. Al-
berto Griinbaum, Pierre van Moerbeke, and
Victor H. Moll for putting all this together.
It has been a long job, not without my
grateful acknowledgement which I offer here.
Thanks also to David Williams and Hermann
Flaschka for kind words and true understand-
ing of what I have tried imperfectly to do.



David Williams®

I was very privileged to have had as research
supervisors, David Kendall and Harry Reuter.
I learnt a great deal from them and from Eu-
gene Dynkin, André Meyer, and of course,
Paul Lévy. But it has been to Henry McKean
that I have most often turned for inspiration.

There is a simple reason for this. If any-
one else writes a book on Stochastic Inte-
grals, Fourier Series and Integrals, or Ellip-
tic Curves, they might produce a fine book
on the topic. But Henry (either alone, or
with Harry Dym, or with Victor H. Moll)
writes Mathematics, not mere exposition of
a topic. One is left awestruck by the rich in-
terconnectedness of the subject as evidenced
by a dazzling array of examples and (usually
very challenging) exercises. What a great an-
tidote to the too prevalent ‘elegant abstrac-
tion’ culture in which (for example) Num-
ber Theory is OK provided one keeps away
from those common-or-garden numbers, and
in which even the Generalized Riemann Hy-
pothesis, astoundingly deep though it is, is
perhaps rather closer to the ground than one
should be flying.

A few years ago, I had to have a brain
tumour removed in something of an emer-
gency. It was explained to me that the opera-
tion might seriously impede my ability to un-
derstand Mathematics. (I had great surgeons,

IWales Institute of Mathematical and Com-
putational Sciences (WIMCS), Swansea Univer-
sity, Singleton Park, Swansea SA2 8PP, UK,
dw@reynoldston.com.

and I don’t think it has!) How glad I was that
I had McKean and Moll [14] with me for what
might have been my last few hours of Mathe-
matics! Yes, there are a few slips in the book,
but these are fussed over only by those who
could never write anything a tenth as inspira-
tional.

I started my research career on
Markov-chain theory, and soon became
haunted by the then recent paper by William
Feller and McKean [4]. This showed that
there exists a chain with all states instanta-
neous, counter to what Lévy had thought,
though it was he who then gave the beautiful
probabilistic construction of the F-M chain.
From the viewpoint of the time, the F-M
chain was even more amazing because all its
off-diagonal jump rates are zero. I became
rather obsessed by the Q-matrix problem of
characterizing what could be the off-diagonal
jump rates of a totally instantaneous chain.

When I realized that I could then make
no progress with this problem, I decided
to switch fields and to read the great Ito-
McKean book on diffusion processes. Again
I had to work very hard to do the exercises. 1
felt that Ito and McKean had calculated ev-
erything there is to calculate about Brownian
motion. (This was in the days before Marc
Yor and coworkers had found, and solved, lots
more explicit problems.)

When it came to the famous Section 2.8
of It6-McKean on local time, I despaired of
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having a full understanding. I therefore tried
hard to decompose the problem into simpler
ones. Henry included a nice exposition of my
efforts as part of his paper [13].

What I had never expected was that
thinking hard about Brownian local time
would lead me to solve that Q-matrix prob-
lem. (I also made heavy use of ideas of
Kendall, Reuter, Jacques Neveu and Levy.)
Things really are interconnected!

For many years, I had been intrigued
by McKean’s paper [9] on a winding prob-
lem driven by white noise. In this, he looks
at windings around the origin of the two-
dimensional process with Brownian motion
as one component and its integral up to cur-
rent time as the other. The winding process
is not at all easy to analyze. However, in
this case, the joint process is Gaussian, and
this allows one to describe a key distribution
by an integral equation. In a typical tour de
force of transform theory, McKean obtained
the explicit solution as an unfamiliar distri-
bution, and derived striking probabilistic con-
sequences. This was the first paper on what
came to be known as Markovian Wiener-Hopf
theory.

I became interested in more general
Wiener-Hopf winding problems in which one
component of the two-dimensional process is
a Markov process, and the other a fluctuating
additive functional of that process. One of
the simplest problems required calculation
of a jump distribution from 0 of an induced
Brownian motion on a half-line of the type
studied by Feller and, more fully, by Ito and
McKean [5]. When Henry visited Swansea,
I told him that I conjectured that the jump
distribution in the W-H context must be to-
tally monotone. A day later (I recall Michael
Atiyah’s saying to me that Henry thinks at a
million miles per hour!), Henry told me that
he had proved both this conjecture and, by
using Krein theory as in Dym and McKean,
that all totally monotone jump laws arise
this way. See London, McKean, Rogers and
Williams [6].

My most recent paper (http://arxiv.
org/abs/1011.6513), which I hope to be an

amusing divertissement, is on the simplest
non-linear version of Markovian W-H prob-
lems. Its W-H aspects can all be traced back
to McKean on windings.

The paper’s non-linear aspects can be
traced back to McKean’s paper on travel-
ling waves and the KPP equation [12] which
prompted massive developments on branching
diffusions, measure-valued processes, and the
like. How often he has sparked off new fields
of investigation! He was way ahead of the field
even in financial mathematics [10].

McKean has also been interested in wind-
ing problems of non-W-H type: in particu-
lar, topological problems on windings of the
Brownian path. See, in particular, the pa-
pers [7, 15] by McKean with Lyons and with
Sullivan, a formidable trio indeed, and doing
Mathematics, not mere Probability.

His expertise in Gaussian processes
was also used to great effect in his paper
[8] on Leévy’s Brownian motions in multi-
dimensional (and even Hilbert-space) time.
There is profound work here on splitting
fields, etc., and there are really surprising
results. See also papers [2, 3] with Dym.

In 1980, I organized a conference at
Durham in which the then-brand-new Malli-
avin calculus played a large part. I decided to
write an introduction to the proceedings, and
found McKean’s paper [11] on the geometry
of differential space invaluable for this. The
fundamental Malliavin process is Henry’s
Brownian motion on an infinite-dimensional
sphere of radius the square-root of infinity.
(Surreal?!)

Though perhaps primarily interested in
seeing principles put to good use in the con-
crete, he is a master of the abstract too. His
paper [1] with Blumenthal and Getoor, proves
that two Markov processes with identical hit-
ting distributions are time-changes of each
other. No result in Markov-process theory is
deeper than this.

The above is just a hint as to how Henry’s
work has enriched the life of one probabilist.
I have concentrated on books and papers
which, as it were, have become part of me:


http://arxiv.org/abs/1011.6513
http://arxiv.org/abs/1011.6513
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ones on which I do not need to refresh my
memory. Other, better, probabilists could say
much more.

I know that Henry’s work is regarded with
the same admiration and gratitude by people
working in differential equations and in other
fields.

If there is an explicit solution to be found,
then Henry is the man to find it. But his al-
most unique skill at calculation is always com-
bined with deep new insights into the under-
lying principles.

My sincere thanks, and my very best
wishes, Henry!
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Hermann Flaschka®

Henry McKean’s first contribution to inte-
grable systems appeared in 1975 [15]. Over
a period of more than 30 years since, in
some 50 papers, he has explored integrable
systems from uniquely original points of
view. His selecta could have included the
pioneering work, with Airault and Moser, on
the time-dynamics of poles of meromorphic
solutions of KdV [2]; or the series on invariant
measures for wave equations, integrable or
otherwise; or one of the seminal papers with
Trubowitz [12, 13] that created a theory of
infinite-genus hyperelliptic curves (= Rie-
mann surfaces) and infinite-dimensional
Jacobian varieties, which they applied to
KdV under periodic boundary conditions,
or subsequent extensions of that theory
motivated by the desire to understand all the
iconic integrable partial differential equation
on the circle.

There is another project, of great scope,
in which “Geometry of KdV (1)” [7], in
this volume, is the first step. Read in iso-
lation, without appreciation of the develop-
ments in papers [8] and [10] at least, this pa-
per is incomplete. It sets out the vocabulary
for the striking results to follow. I thought
that Henry’s invention of unimodular spec-
tral classes and additive classes would serve
as exemplar of his imagination and techni-
cal virtuosity (and fearlessness, one might
add). Moreover, there are many questions to

1Departmen‘c of Mathematics, University of Ari-
zona, Tucson, AZ, USA, flaschka@math.arizona.edu.

be thought about; some are natural, though
probably hard, but the most difficult task is
to think of workable examples that will reveal
something new.

The papers [7, 8, 10] are themselves build-
ing blocks of a sweeping conjecture. Henry
proposes to interpret the spectral theory of
differential operators® Q = —D? + ¢(z) as a
reflection of infinite-dimensional algebraic ge-
ometry in the space of all such operators. The
space is stratified into classes labeled by spec-
tral data of some sort, and parametrized by
an additive group; the classes are Jacobian va-
rieties of objects resembling, somehow, qua-
dratic algebraic curves with perhaps a con-
tinuum of branch cuts or singular points; and
the coefficients ¢(z) and properly normalized
eigenfunctions e(x, \) on each class are repre-
sented by an object resembling, somehow, a
Riemann theta function, and these represen-
tations, quoting from [10], “may be viewed
as uniformizing, class by class, the eigenvalue
problem Qe = Xe. It seems that such a ge-
ometrical attitude would be new to spectral
theory”.

Substantial evidence suggests that yes,
“something must be going on”. Supporting
examples draw on quantum scattering,
analytic functions, algebraic curves, and the
geometry of infinite-dimensional manifolds,
all intertwined and placed into a framework
of the infinite-dimensional dynamical systems

2D stands for the operator d/dz, and dot and
prime will indicate time and space derivatives.

15

(© Springer International Publishing Switzerland 2015

F.A. Griinbaum et al. (eds.), Henry P. McKean Jr
Mathematicians, DOI 10.1007/978-3-319-22237-0_3

. Selecta, Contemporary



16 3. HENRY P. MCKEAN JR. AND INTEGRABLE SYSTEMS

sometimes called “integrable”. This name
is often used more as a suggestion than a
definition, and equally often merely indicates
the origin of a piece of mathematics that has
little to say about dynamical systems. The
historical context, however, is still relevant
to the story.

The modern theory of integrable systems
was born in 1965, when Gardner, Greene,
Kruskal, and Miura [4] invented a nonlinear
version of the Fourier transform, based on
the inverse scattering method from quantum
mechanics, in order to solve the KdV equa-
tion. This is the partial differential equation
G = —¢" + 6qq’; it governs a certain as-
ymptotic regime of the nonlinear motion of
waves on water, or in a plasma, or in an
atomic lattice. A few years later, Zakharov
and Faddeev [16] interpreted the inverse scat-
tering solution of KAV as a transformation of
an infinite-dimensional Hamiltonian system
to action-angle coordinates, thereby translat-
ing a successful, but unmotivated and mys-
terious, technique into the more familiar lan-
guage of classical mechanics. As the supply
of integrable Hamiltonian ordinary and par-
tial differential equations grew, so did the
scope of their applications, in mathematics
and physics, and the breadth of techniques
brought to bear on the analysis of their dy-
namics. In the early years, it was not terribly
misleading to refer to this corner of math-
ematical physics as “the inverse scattering
method”, or “soliton theory”, or “KdV the-
ory”. However, much as Fourier series, in-
vented for the purpose of solving the heat
equation, evolved into the all-encompassing
paradigm called harmonic analysis, so has the
invention of the inverse scattering method for
the solution of KdV transformed mathemat-
ics through the creation of a new paradigm;
one that has no official name, but “integrable
systems” is as good a label as any, since, like
“harmonic”, it reminds one of the origin of
the ideas that have emerged from the first
examples.

I would have liked to spend time on theta
functions and their incarnation in scatter-
ing theory [3] and in the quantum harmonic
oscillator [14], since algebraic geometry is an

integral part of the broad picture, but my de-
scription of the background and implications
of [7] is of substantial length already. In any
case, | could not improve on Henry’s expo-
sition, in [9], of the evidence for a theory of
Riemann surfaces of countably and uncount-
ably infinite genus.

I start with a summary of that part of
KdV and the inverse scattering method that
is needed for an appreciation of Henry’s ideas,
and only that part. Maybe it is of use to a
non-expert. KdV (1)—(3) enter in Section 3,
where I explain the content of [7]. Section (4)
deals with a remarkable result, from [8], about
the class of operators known as “finite-gap”
operators. It says that if the orbit of a certain
group of transformations acting on the space
of all —D? + ¢ is finite dimensional, then ¢ is
an Abelian function.

3.1. KdV Manifolds in the Scattering
Class

The inverse scattering method was cre-
ated to solve KdV with localized initial condi-
tions, and this is also the starting point here;
the coeflicient ¢ is taken to be in the space

7 of rapidly decreasing smooth functions.
The spectrum of —D? 4 ¢ then consists of
a continuous part, 0 < A < oo, and possi-
bly a finite number of negative eigenvalues.
These are of great importance in applications
of KdV, but complicate the analysis. There-
fore it is assumed throughout that there is no
discrete spectrum.® The collection S of such Q
is called the scattering class. The KdV equa-
tion defines a flow on S.

The first order of business is to introduce
an equivalence relation that stratifies S into
infinite-dimensional tori* invariant under the

3This assumption leads to incorrect conclusions in
the Hamiltonian approach to KdV, but that difficulty
is ignored.

41t would be (usually) possible to give precise
characterizations, in terms of analyticity, growth,
smoothness, etc., of the function classes introduced
below. Statements about geometry, for instance, that
something is “stratified” or a “manifold” or a “torus”,
are more problematical; the intuition is very impor-
tant, but there is often no proof or even precise for-
mulation. I do not try to separate fact from useful
fiction.
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KdV flow. These are called KdV manifolds.
They are labeled by a kind of integral trans-
form Z(k) of q(z) constructed from the gen-
eralized eigenfunctions of (). The functions Z
are known as action variables in Hamiltonian
mechanics.

KdV is in fact only one of an infinite fam-
ily of commuting vector fields on S that are
tangent to the KdV manifolds and span the
tangent spaces. The next step will be to un-
derstand their flows; they can be interpreted
as action of a huge additive group of oper-
ators, the so-called group 2 of additions. It
generates the KdV manifold from a reference
potential. The coordinates on the tori intro-
duced by 2 are (related to) the angle variables
of Hamiltonian mechanics.

Finally, one needs an algorithm to pass
from the torus coordinates Z and A € 2
back to ¢. This is implemented by an op-
erator determinant indexed by the torus la-
bel Z. Schematically, ¢(z) = det(A(z);2),
where A(x) is a 1-parameter subgroup of 2.

This picture is a rewording of the inverse
scattering solution of KdV, formulated with
an eye towards generalizations to ¢ that are
not of scattering class. The geometric inter-
pretation is enriched by incorporation of ideas
from the theory of algebraic curves. That
comes later.

3.1.1. Model: A Geometric Picture
of Linear KdV. The KdV manifolds are
infinite-dimensional, except for the opera-
tor Qo := —D? which is a fixed point—
the only one in S—of KdV. One can lin-
earize KdV, and in fact the whole (yet to
be explained) construction at Qo; the tangent
space Tq,S is naturally identified with C°,
and the linearized KdV manifolds are infinite-
dimensional tori indexed by the modulus of
the Fourier transform. This familiar setting
affords a convenient starting point. It is meant
to introduce the idea of stratification by tori,
their labeling, and coordinates on them.

Consider the KdV equation linearized at
q=0,

(LKdV)
4= Moq:= —D3q, q(z,0) given, = € R.

It is diagonalized by the Fourier transform,
which we define by

k) = [ atwye >+ da,
The Fourier transformed LKdV equation,
q(k, t) = 8ik*q(k, 1),

(3.1.1)

(3.1.2)

is solved by inversion. Evidently, |§(k,t)|* is
independent of time ¢, signifying that the en-
ergy in the k-th Fourier mode is conserved by
LKdV. More generally, every equation of the
form

G = DQU—D?)q, with transform

(3.1.3) ¢ = 2ikQ(4k?)q,

preserves modal energy; here (2 denotes a real
function of slow growth. The PDEs

¢=D(-D*)™q, m=1,2,3,...,

belong to this class. They are the lineariza-
tions, about ¢ = 0, of the equations in the
so-called KdV hierarchy, which will be intro-
duced shortly.

Equations (3.1.3) define commuting vec-
tor fields Yo on C7°. They are tangent to
the subsets of C7° characterized by com-
mon modal energies. Following [3], the sets
of ¢ with Fourier transforms § = |gole®”
whose modulus |jo| is fixed and phase (k)
is a slowly increasing odd function are called
LKAV manifolds and denoted by J(|do|). An
LKdV manifold is shaped like an infinite-
dimensional torus. It is a product of contin-
uum many circles, one for each k; the radii
are labeled by |go(k)|, and the circumferences
are coordinatized by exp(itp(k)).

Even though LKAV appears initially to
be the central object, the goal, were we to
continue in the linear approximation, would
really be to understand the totality of vector
fields Ygq, their interaction with the LKdV
manifolds, and the stratification of C7° into
tori. We now begin this program in the non-
linear setting.

The review of scattering theory contains
nothing that is not known to experts. It is in
the nature of an appendix, but placed where
it should logically appear.
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3.1.2. Scattering Theory: A Nonlin-
ear Fourier Transform. The KdV equa-
tion is a nonlinear modification of LKdV:

(KdV)
G¢=—q"+6qq¢ = (Mo +2(¢D + Dq)) q := Mq.

It, too, can be diagonalized, in a basis formed
by eigenfunctions ®, not quite of M but of
the pseudodifferential operator £ := D™ M
and its adjoint. There is a ®-transform of
q, denoted by R(k), whose time dependence
is governed by the same decoupled system,
(3.1.2), as the linearized equation. However,
because M depends on ¢, the expansion basis
{®} will also depend on ¢, and to invert this
®-transform one must reconstruct both ¢ and
{®} from R.

The KdV miracles happen because M
is a very special object. In differential Ga-
lois theory, it is known as the 2nd symmet-
ric power of the Schrédinger operator @ :=
—D? + g(z). The name signifies that prod-
ucts ® = f2, fg,g% of two solutions f,g of
Qy = k*y satisfy the generalized eigenvalue
equation

(3.1.4) M® = 4k’

Therefore, to understand the Fourier-like ex-
pansions in the squared eigenfunctions ®, one
must first study the solutions of Qy = k3y.

This reasoning “explains” why the
Schrédinger operator @ is so fundamental in
KdV theory.®

3.1.2.1. Scattering Matriz. Since —D?*+q
is approximately —D? for large |z|, there are
two solutions f+ of Qy = k?y normalized as
shown in the table.

T — 00 T — —00
f+(z, k) | Ty(k)exp(ikx) exp(ikx)
+R_ (k) exp(—ikz)
f=(z, k) exp(—tkx) T_ (k) exp(—tikx)
+ Ry (k) exp(ikz)

5The squared eigenfunction approach to inte-
grable PDEs and the interpretation of inverse scatter-
ing as nonlinear Fourier transform were introduced in
the early days of soliton theory in the seminal paper
by Ablowitz et al. [1].

Incoming plane waves exp(tikz) are scat-
tered by a “potential” ¢(x). A portion car-
rying energy |Tw(k)|? is transmitted, and
|Ri(k)|? worth is reflected. The scattering
matrix

[T
S(k) = [Ri(k)

is unitary. The condition |R+|?> + |Tx|?> =
1 signifies conservation of energy at each
wavenumber k. One finds that 1T, = T_;
the common value is the transmission coeffi-
cient T. We will rarely need R_, and write R
for Ry. It is the (right) reflection coefficient.

The reflection coefficient R(k) deter-
mines q(x). This crucial fact will be taken
for granted. The inversion formula is stated
below in the section on the quantum harmonic
oscillator.

3.1.2.2. Tools from Complex Function
Theory. Analyticity properties of fi and T
in the upper half plane Imk > 0 play an
essential role. Key pieces of the evidence
for Henry’s conjecture, presented in [8], are
essentially theorems about analytic functions.
To give a flavor of the tools required, I list
some essential facts that are used in many
proofs.

Analyticity of fi(x,k) for Imk > 0, for
each fixed z, is a simple side product of the
Neumann series argument that proves exis-
tence of these functions. The Wronskian of
fx is —2ik/T(k), so T is also analytic. The
reflection coeflicient R is rapidly decreasing
as |k| — oo on the real axis.

More careful analysis shows that the func-
tions

(3.1.6) kv eyx(x, k)=

(3.1.5) R-W]

T_(k)

1 .
k Fikx
T(k) f:t (l‘, )e
are outer functions in the Hardy space (1 +
H?*T)NH®*, and that T'(k) is determined for
Imk > 0 by its values along the real axis by
the Poisson formula

(3.1.7)

1 [ T,
InT(k)=— ——————dk', Imk > 0.
n (k) 27ri/_oo Wk e

The reflected functions e (z,k) =

e+ (x, —k) belong to (1 + H?>~) N H>®~. The
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pairs e} and et are patched across the real
axis according to

(3.1.8) e} + ReeT? ey = Te.

The Fourier transform of this relation
amounts to an integral equation from which ¢
can be determined. This is inverse scattering.

3.1.2.3. Squared FEigenfunction Expan-
sion. The so-called squared eigenfunctions
Oy := f2 and ®¢ := f,f_, are solutions
of the pseudodifferential eigenvalue problem
obtained by integrating (3.1.4),

D7IM® := £ = 4k>®, where
(3.1.9) £=-D?+4¢g—-2D71¢.

Their derivatives satisfy the adjoint equation,
LA, = 4k*D/, .

The product ®¢ is Green’s function Gy,
for x = y, up to factor. The other two squared
eigenfunctions ®1 are of decisive importance
for (at least) two reasons.

They are derivatives, with respect to g(x),
of the reflection coefficient R(k). When one
leaves the scattering class, and normalization
at |2| = oo is no longer possible, the gradients
of other spectral quantities are often natural
substitutes (cf. the quantum harmonic oscilla-
tor, below). They always satisfy MU = 4 \0’.

The sets &1 and &% form the bi-
orthogonal bases used to diagonalize KdV.
The representation of ¢ itself is simple and
elegant:

(3.1.10a) (k) = /q¢’_ dx = 4k*R(k)

(3.1.10b)  q(z) = 2’/@@ dk.

m ) T2

This takes a familiar form when ¢ is “small”.
To first order, ®4 (x, k) ~ e*2%*% The small
scatterer g reflects but a small portion of the
incoming wave, whence T ~ 1. The orthog-
onality relations between ® and ®' become
the standard ones for exponentials, and the
relations (3.1.10) reduce to

R(k) ~ —iq(k)/2k.

The reflection coefficient is hereby revealed
to be a nonlinearization of the Fourier trans-
form. A number of later formulas are prof-
itably understood as perturbations of familiar
Fourier facts.

The orthogonality of ®,®’ can also be
seen as consequence of a geometric property:
the @' are tangent, and the ® are normal, to
the nonlinear analogs of the LKAV manifolds;
these will now be introduced.

3.1.3. The KdVv Manifold. In
Sect.3.1.1 we defined an LKdV manifold as
a set of ¢ with prescribed modal energies
|G(k)|?. A KAV manifold® consists of the set
of ¢ with the reflected and transmitted energy
in each mode, |R(k)|? and |T'(k)|?, prescribed
(they add to 1).

Let J(r) denote such a set. It consists of
all ¢ whose reflection coefficient has the form
R(k) = r(k)e™®) with fixed r and odd func-
tion ¢ of slow growth. Since | R| determines 7',
one may also write J(7').

In complete analogy with the linear case
(3.1.3), there is a distinguished family of vec-
tor fields tangent to J(r). Take the evolution
equation (a priori nonlocal)

(3.1.11) ¢ =Yaqq := DQ(L)q.

Substitution of (3.1.10b) for ¢ and application
of (3.1.9) lead to

(3.1.12) R(k,t) = 2ikQ(4k>)R(k, t).

Thus, |R(k)|? is independent of time and the
flows (3.1.11) preserve the KdV manifolds.
Furthermore, they are simultaneously diago-
nalized, and so commute.

The vector fields
(3.1.13)

i =Xpuq = DL™g = (~1)" D>

+ nonlinear terms,m =0,1,2,3,...

)

are known as the KdV hierarchy (m = 0 is
translation of the potential, ¢ = ¢’, and m = 1
is KdV). The iterated antiderivatives in DL™
magically cancel, and the X,,, are polynomial
in ¢ and its derivatives.

The nonlocal equation defined by the re-
solvent of £, namely Q(£) = —2(L+4k3) 1, is
an infinitesimal addition. It will soon assume
a place of prominence.

6The “KdV” indicates no more than invariance
under the flows of a family of commuting vector fields
that includes KdV; often, KdV per se has nothing to
do with the matters of interest.
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3.1.4. KdV as Integrable Hamilton-
ian System. At this point, we know’ that
the scattering class S is stratified by infinite-
dimensional tori that are orbits of a huge
group denoted by 2 above. This is the group
of translations of angles in the phase func-
tions, generated by the vector fields Y. The
torus-angle picture is familiar in classical
Hamiltonian mechanics, and it will be very
convenient to express KdV geometry with a
Hamiltonian vocabulary. The list of defini-
tions and facts is relegated to an appendix.

3.1.4.1. Complete Integrability of KdV.
Hamiltonian systems are a skew analog of gra-
dient systems. In Euclidean space, they have
the form

% = Pgrad H(x).
For KdV, the so-called Poisson operator P is
the derivative D = L. Its non-invertibility
causes complications, but these are ignored.

The Poisson bracket and Hamiltonian
vector field have the form

(F.G}(q) = / (grad F) (grad G’ |

(3.1.14) ¢ =Xpq= (grad H(q))".

The Hamiltonian for KdV is £ [(¢/)* + 2¢%
the quadratic term by itself is the Hamilton-
ian for LKdV.

The KdV manifolds are interpreted as
follows. They are common level sets J(r) =
Nker{q | |R(k)| = r(k)} of the family of func-
tions ¢ — |R(k)|, indexed by k. These func-
tions Poisson commute; for every pair k, £ one
has

(3.1.15) {IR(F)[,|R(0)|} = 0.
Remarkably, this geometric property is
merely a rewording of bi-orthogonality of the

squared eigenfunctions. The gradients of the
right and left reflection coefficients are

1
grad Rj: = ﬂ (by,
and, up to factors,
(3.1.16)
{R_(k),R+(0)}

_ /<I>+(x, k)P (x,0) dz = 5(k — 0).

7Once more: this is the guiding picture; what we
really know may be a lot or a little.

Equation (3.1.15) for the moduli is then de-
rived by appeal to unitarity of the scattering
matrix (3.1.5).

The KdV manifolds J(| R|) are continuum
tori labeled by |R| and parametrized by arg R;
a little rewriting turns these coordinates into
canonical variables of action-angle type,®

(3.1.17)

Z (k) = —%111|T(l<:)|2 and 0(k) = arg RE:;
3.1.4.2. Tangent Spaces to J(r). The

functions T'(ix), x > 0, are in involution since
the Poisson representation (3.1.7) determines
T in the upper half plane from R on the
real axis. The gradient of T'(ix) is Green’s
function G, on the diagonal and generates
the Hamiltonian vector field

(3.1.18)
§ = Xuq = (rad T(ir))' = G (~K]Q).

The X, span the tangent spaces to the KdV
manifold.

The transform of X, to R(k,t), which
is needed later, can be computed in action-
angle variables from the Poisson representa-
tion (3.1.7) of T'(ik):

R(k,t) = — i

(3.1.19) SR(k, ).

k2 + Kk
According to (3.1.12), the vector field (3.1.18)
can also be represented in terms of the resol-
vent of £, namely, ¢ = —2D(L + 4x%)~1q.
3.1.4.3. KdV Hierarchy. The role of the
KdV hierarchy of local equations, (3.1.13), de-
serves special emphasis. Green’s function sat-
isfles MGy = 4\G.,,; the coefficients of the
asymptotic expansion of G/, (k?|Q) in inverse
powers of k£ can be determined recursively,
and are nothing but the KdV vector fields X,,,:

(3.1.20)
1,1

1 1 1
Glon(K?1Q) ~ 54 ﬁ+§(6qq'—qm)k—5+X3ﬁ

Thus, Eq. (3.1.18) contain the KdV hierarchy,
albeit in a very implicit manner.

8For small ¢, they reduce to Zo(k) = ﬁkj(k)?
and 0o (k) = arg g(k), k> 0.
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3.2. Geometry of KdV: Additive
and Unimodular Classes

We now leave the scattering class S and
only ask that ¢ be a smooth function and that
the spectrum of @ be positive. The class of
such operators is denoted by Q.

The steps to be accomplished are:

(a) to find an equivalence relation on
£) whose equivalence classes in the
scattering case are the tori J(r);

to generate an equivalence class
from one of its members by a pro-
cedure that generalizes translation
of R by all possible phase functions;
to find a family of commuting vector
fields that span the tangent spaces
of the equivalence classes and, in the
scattering case, contains the KdV
hierarchy.

Paper (1) in the Geometry of KdV series
proposes solutions of these three problems.
The equivalence classes are the unimodular
spectral classes of the title. The analogs of
the phase functions are generated by addi-
tions. The tangent vectors are infinitesimal
additions, which generalize the vector fields
(3.1.18) with Hamiltonians T'(ikg).

Paper (2) verifies that the scattering
class, the class of operators with periodic
potential (the Hill operators), and a certain
finite-dimensional subclass thereof, all fit the
framework. It will become clear that this is a
highly nontrivial result.

Paper (3) integrates a large subset of the
vector fields from (c), by the “simple” expe-
dient of exhibiting an explicit solution as in-
finite determinant.

Some of these results, particularly
(c), were motivated by earlier work [14] of
McKean and Trubowitz® on the quantum me-
chanical harmonic oscillator, Qg := —D? + ¢
with ¢o = 22 — 1. This operator is the
complete opposite of the scattering type
(and Hill’s operator); it has pure discrete
spectrum A, = 2n,n > 0, and the KdV
vector field —¢"” 4+ 6¢qq’ cannot be integrated

(b)

()

9As far as I know, this is still the only paper to
analyze an operator from outside the traditional KdV
world.

because the 3 growth of the nonlinearity is
not balanced by the linear terms. The analog
of the KAV manifold is parametrized by the
exponential map of Hamiltonian vector fields,
X, = (grad\,)’, that are no longer local

in q,
o0
(to,t1,t2,...) : Qo = eXP(Z tnXn) - Qo,
0

In the generality of class Q, a continuum
version of this map will be required; loosely
speaking, it is a superposition of vector fields
X\ of infinitesimal additions, smeared by a
measure [,
(3.2.1)

t()‘) : Qrcfcrcncc — eXp (fooo t()\)X)\ d,u()‘))

'Qrcfcrcncc~

For the oscillator, p is concentrated on the
nonnegative integers.

3.2.1. The Harmonic Oscillator and
Paired Additions. The goal is to describe
the spectral manifold'® Q of Qy, meaning the
set of operators of the form Q = —D? + ¢
whose eigenvalues are also A, = 2n, for ¢ in
the space #* — 1 4 C}°. It is the analog of
the KdV manifold in the scattering class (but
recall that KdV has no meaning in Q).

The spectral manifold Q will be imag-
ined as submanifold of an ambient space of
“all” operators @ that have eigenvalues \,, =
An(Q) “near” those of the harmonic oscillator.
We picture Q as one of a stack of level sets Q¢
of operators with all A\, (Q) = ¢, prescribed.
The geometry of &4 and @/, is replayed sim-
ply and cleanly. The normal and tangent di-
rections of Q are spanned, respectively, by'!
grad\, = e2 and (e2). Bi-orthogonality
translates into {A\,, A,} = 0. The Hamilton-
ian vector fields X,, = (grad \,,)’ commute,
and it is possible to solve the equations

dq

(3.2.2) T

= (), 0<m<n,

10T his time it really is a manifold.
e, is the normalized eigenfunction corresponding
to Ap.
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simultaneously. Miraculously, there is an ex-
plicit formula:

(3.2.3)

Q(x;t07t17"'7tﬂ)

2

22
/ 6262, 0< k7€<n]>

(superscript zero denotes initial values). One
can even take n — oo as long as t = {t,, }°
decreases rapidly. The sequences t form a co-
ordinate grid on the spectral manifold Q, or
equivalently, on the group 2 of additions men-
tioned at the beginning of Section 2.

3.2.1.1. Additions in General. Additions
are substitutes for the local flows, like KdV,
that may no longer exist in the generality of
the class 9. They are special instances of a
classical transformation of 2nd-order ODEs,
the Darboux transformation,'? which takes a
zero-free solution y1 of Q1y = —y" +q1y = py
as input and creates a new operator according
to
(3.2.4)

¢ =q —2(Iny)”, and Q2 =-D*+ .

The map'® P : y — y; "W (y,y1) sends solu-
tions of Q2y = Ay to solutions of Q1y = Ay,
for A\ # p; for A = u, the new solutions are

x
yr (o + &2/ Y1)

Thus, everything about the new operator is
known. Moreover, Darboux transformations
commute and preserve the Poisson bracket.
The determinant (3.2.3) is constructed
from repeated additions that start at the ini-
tial condition g and use the data A, and €2, .
However, because €2, has zeros when m > 0,
so that the new potential (3.2.4) has poles,
the additions must be done in pairs. If y; is
not zero-free, do the first Darboux transfor-
mation as above, simply ignore the singular
nature of the resulting ¢, and perform a sec-
ond transformation with the solution (3.2.5).

(3.2.5)

1276,
13W is the Wronskian.

The result of this paired addition will be the
1 x 1 version of (3.2.3),

(3.2.6)

d? o0
new ¢ := q _2@ <1n[1—|—a/ y%]) .

It is rather surprising that the new potential
is smooth (when a > 0). The determinant
in (3.2.3) is built by iterating paired addi-
tions. This procedure is not peculiar to the
harmonic oscillator; if an operator @ has sim-
ple eigenvalues A\g < A1 < Ao < ---, then
the solution of (3.2.2) is given by the same
formula.

3.2.1.2. The Group of Additions Acts
Freely and Transitively. It is shown in [14]
that the map t — exp(>_ tmXim)qo is 1:1
onto Q, by a method reminiscent of inverse
scattering. For the normalized eigenfunctions
of —D? 4 g(;t), define

€n(13 = :I:ooat)
ed(r = +o0,t =0)°

ci(t) ==
These asymptotic data satisfy

c
T T

c

n _n 1

— tn
Ci C_ = .

(3.2.7)

When a ¢ € Q is given, and is to be writ-
ten as exp(>_ tmXp)qo, look at the ratios
(3.2.7) built from its eigenfunctions to deter-
mine what t must be, and then verify (diffi-
cult) that the formula (3.2.3) in fact repro-
duces the given q.

3.2.1.3. The Dyson Determinant in In-
verse Scattering. The beautiful representa-
tion (3.2.3) of the solution of the system
(3.2.2) is universal.

In [10], Henry shows that the commuting
Hamiltonian flows ¢ = (grad T'(i))’ from the
scattering class retain meaning in £, and that
their solutions have the form (3.2.3), but with
a regularized continuum limit of the Z>o x
Z>o determinant.

In the Hill class, there is a similar expres-
sion,

dQ

q(z) = —2— InO(A(x); Z).

(3.2.8) i



3.2. GEOMETRY OF KDV: ADDITIVE AND UNIMODULAR CLASSES 23

The function © has two arguments. The sec-
ond one labels the KdV manifolds; Z de-
notes a Riemann surface of (generically) in-
finite genus. The first one is a one-parameter
subgroup of 2, which is the group of trans-
lations on the Jacobian variety of Z. A sum-
mary and references may be found in [11].

In the scattering class, the function © is
the Fredholm determinant'? of an integral op-
erator,

(3.2.9)
O(6; Z) = det [1 + 2i /eik(‘”'y)R(k:) dk, 0 <z,y|.
T

The notation indicates that the dependence
of © on R should be thought of as split into an
angle part (the additions) and an action part
(the unimodular invariant), as in (3.1.17).
The inversion formula that recovers the po-
tential from the scattering data again has the
form (3.2.8), with A(z) = arg (exp(ikz)R(k)).

3.2.2. The Unimodular Class.

3.2.2.1. Unimodular: Definition. We now
turn to the definition of KdV manifolds for
operators in the class 9. By the spectral the-
orem, all self-adjoint @ give rise to an expan-
sion in eigenfunctions, generalized or square
integrable. The measure that appears in the
inversion formula will be the replacement for
the scattering matrix.

Fix an operator® Qo = —D?+ qq, and let
Ey(x,\) be the fundamental system satisfying
[Eo, E{] = 2 x 2 identity at x = 0. In the
resolution of the identity'®

o =) = 5 [ Bl VdFo( ol ),

the matrix dFo()) is the spectral weight. If Qg
and @ are unitarily equivalent, their spectral
weights are related by

(3.2.10)  dF1(\) = G(\) dFo(\)G(M)E.

Conversely, this relation between spectral
weights implies unitary equivalence.

Now define the unimodular class U(Qo)
to be the set of all Q = —D? + ¢ for which

MIntroduced into inverse scattering by Dyson.
15Note that Qo is not —D?2.
16The dagger { denotes transpose.

G(A) € SL(2), or equivalently, for which
det dF = det dFy.

The unimodular classes are Henry’s sub-
stitute for the KdV manifolds. Some motiva-
tion is suggested in the next article.

For this proposal to be sensible, a uni-
modular class must coincide with a KAV man-
ifold in the scattering case; i.e. if Qg has trans-
mission coefficient Tg, then

J(To) = U(Qo)
should be true. Now, for @ of scattering class

the spectral weight can be computed in terms
of the scattering matrix; in particular,

(3.2.11) det dF /d)\ = |T|?.

For two operators Qo, @1, relation (3.2.10)
implies |T1]? = (det G)?|To|?; if Q1 € J(Qo),
then T7 = Ty and so det G = 1. Hence a KdV
manifold is contained in a unimodular class.
The converse is much harder and is addressed
in Sect. 3.2.4.

3.2.2.2. Unimodular: Interpretation. The
condition det G = 1 is not as different from
the parametrization of KdV manifolds by
transmission coefficients as it appears on first
glance. All operators of scattering class are
unitarily equivalent, with identical continu-
ous spectrum {\ > 0}. For every pair there
is a scattering matrix S(A; Qo, @1) that en-
codes the relation between their plane wave
solutions (A = k?). When Qo = —D?, this is
our standard scattering matrix (3.1.5).

The scattering matrix relating operators
in the same KdV manifold is unimodular:
det S(X;Qo, Q1) = 1. This property has a
very pretty and suggestive translation into
an eigenvalue perturbation picture.

Let dB3 and &9 be the spectral projec-
tions of Q1 = —D? + q; and Qg = —D?. The
increment (Tr is the operator trace)

dE(N) = Tr(dB) — dFY)
should be the difference between the number
of eigenvalues of Qp, 1 in an infinitesimal
interval about w. This trace does not exist,
but one can convert the formula into some-
thing meaningful. The spectral shift function
&(A; Qo, Q1), introduced by Krein, quantifies
the displacement of “virtual eigenvalues” of
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Qo to “virtual eigenvalues” of Q1. The scat-
tering matrix S(\;Qo, Q1) instead looks at
the “rotation” of the eigenfunctions at fized
eigenvalue A\. A general theorem of Birman
and Krein relates the two:

(3.2.12) det S(X; Qo, Q1) = e 2™€(NiQ0.Qu),

The determinant of the standard scatter-
ing matrix (3.1.5) is T'(k)/T(k), and is the
same throughout a KdV manifold J. Then
according to (3.2.12), the spectral shift from
—D? remains the same as well. Put differ-
ently, the operators in J have identical “vir-
tual” eigenvalues, and the pairwise scattering
matrices are unimodular.

The condition detG = 1 similarly re-
stricts the deformation of a basis at fixed A,
but I do not know a more transparent in-
terpretation. It would be very pleasant if it
were equivalent, for an interesting class of op-
erators, to the rigidity of virtual eigenvalues,
whatever that might mean.

3.2.3. Additive Class. The KdV man-
ifolds in the scattering case were interpreted
as tori of an integrable Hamiltonian system,
labeled by det S(k). Instead of tori there
are now unimodular strata inside a unitary
equivalence class, labeled by det G. The KdV
manifolds were swept out by the group of
translations acting on the angular coordinate,
arg R(k). We need a replacement for the an-
gles. It was suggested earlier that the unimod-
ular manifolds are generated by the action of
a big additive group 2. These are the addi-
tions, which now need to be described in a
little more detail, first for the scattering class,
followed by the generalization.

3.2.3.1. Additions in  Scattering. Let
Ao = —k3 < 0. Let p denote the pair (Ao, +)
or (Ag,—), and let e(z,p) be fy or f_ in
accordance with that choice. Define addition
of p as before,

(3.2.13) AP : Q QP :=Q —2(lne(z,p))".
Repeated additions change @@ by a Wronskian
determinant,
2
APL.. APRQ = Q—2d— InW(e(z,p1),...,e(x,pn))-
dz?

From this it is clear that additions commute
and that AP AP = identity.

Additions change R by a factor of modu-
lus 1,

(3.2.14)

+p . K F ik
A*P : R(k) — ik
they preserve J(|R|) and translate the coordi-
nate arg R by an odd function.

An infinitesimal addition is the derivative
of AP with respect to p. Set p=(\,+) and
p’ =(A+ A\, +) and work out A" A=PQ. The
p’ factor has an fy, the —p has an f_, and
together they give fif_, which is Green’s
function:

(3.2.15)
AP ATPQ = Q — 2G,(A|Q)AN+ -+ - .

It is now clear why infinitesimal additions
are so important: they are precisely the
Hamiltonian vector fields (gradT(ix))’,
which were denoted by X, in (3.1.18) (up
to irrelevant factor). They span the tangent
spaces to the KdV tori (redundantly), and
generate the big additive group 2 that acts
on the tori. Integration of an infinitesimal
addition vector field does not produce a
global addition (3.2.14). To get one of those,
one must piece together segments of integral
curves of many X, along the lines of

otV d) o

R(k)v A= _HQ;

3.2.3.2. Additions in General. No major
adjustments are needed to define additions for
general ) because there are natural substi-
tutes for fi. Take Ay < 0, to the left of the
spectrum of ). There exist solutions hy of
Qy = —\%y characterized by'”

hy € L*(Ry) and hy ¢ L*(R5)

and a normalization at x=0. In the scat-
tering class, h4 are proportional to fi. The
vector fields of infinitesimal addition, Xy := —
2G! (N @), are everywhere defined, since ev-
ery @ has a Green function; they include KdV
when it makes sense, because the KdV vector
field appears in the asymptotic expansion of
—2G" (M\|Q); they preserve the unimodular
class (this is not as obvious as in the scatter-
ing case, cf. (3.2.14)); and finally, remarkably,

TR, = [0, 00) etc.
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the flows of X, exist for all time, as mentioned
in Sect. 3.2.1.3. More on this below.

3.2.4. Unimodular Class = Addi-
tive Class. Additions will be an acceptable
substitute for the nonexistent angles only if
every unimodular class U(Q) is the closure'®
of an orbit of 2. Such a set is called the addi-
tive class of @ [7], written A(Q).

Conjecture: U(Qp) = unimodular class =
additive class = A(Qo).

The conjecture is verified for three examples

in [8]. T will indicate briefly how one goes

about proving it in one case, just to show how

intricate and difficult such an argument turns

out to be.

Fix a Qo of scattering class. Additions
preserve J(|Ro|) and generate all arg R. Hence
A(Qo) = J(|Rol). It is to be shown that the
unimodular class is not larger. Suppose then
that Q = —D?+q € U(Qo); we know nothing
about it, other than det G = 1, so for instance
the potential ¢ could be unbounded. It is to
be shown that in fact ¢ € C}°, which implies
that @ belongs to J(|Rol).

Since ¢ may not decay, one cannot nor-
malize eigenfunctions at infinity, and works
with h4 instead. There is a still a kind of scat-
tering matrix connecting the z < 0 behavior
with the x > 0 behavior:

(3216) E+ =ryho +righy
h_ =roth_ +7Tashy.

To prove that @ is of scattering class, one
must use the r;; to define functions R and T
that possess the numerous decay and analyt-
icity properties required of realistic scattering
data, use them to get an operator Q by the
Dyson determinant formula (3.2.9), and then
verify that the Q so constructed is the same
as the starting Q).

If @ were of scattering type, the fi
(which we don’t really have) and the hy
(which we do have) would be proportional,
say fi+ = chy for an unknown normalizing
function c(k); further, there would be four re-
lations between r;; and the scattering coeffi-
cients Ry, T and the factor ¢(k). Two of them

18There is not yet a precise definition of “closure”.

say that scattering data, if they exist, must
satisty

(3.2.17) 791 = R_¢/c and 2ikrey = |c[.

They are to be solved for R_ and c.

The unimodularity condition must of
course be used somewhere, and it enters
right at the start. The spectral weight has an
expression in terms of h4, and from it one
computes that

dF
1 — |ri2f* = det n

According to (3.2.11) and unimodularity,

dF dF°

— =det —— = [T".

o ety =T

But because T° comes from a scattering class
potential, one knows that its modulus be-

longs to 1+ C}° (qua function of k), and thus

det

Ir12]? € Cfo. If 712 passes all the other tests
required of scattering data, its rapid decay
translates into rapid decay of ¢ (as it would
in Fourier theory).

The rest is exploitation of analyticity
properties of hi(0,)) and the induced ana-
lyticity properties of 7;; in the upper k = VA
plane. Here is a sample.

The normalizing coefficient ¢(k),Imk >
0, can be reconstructed from its modulus
le| = +/2ikrag. Then the Hilbert transform
produces the phase /¢, so that R_ can be de-
termined from the first equation in (3.2.17).
Next, one defines |T|? = 1 — |R_|? and recov-
ers T by the Poisson formula (3.1.7). This has
produced candidates R and 7', and one now
goes on to check a list of properties of realistic
scattering data, and so on.

3.2.5. Integration of Smeared Addi-
tion Flows. The vector fields of infinitesimal
addition were claimed to be superior to the
more famous KdV hierarchy, because the lat-
ter might fail to exist, while the former was
of controllable size. This assertion is proved
to be true in [10]. Henry considers not only
¢ = —2G,.(AQ), the infinitesimal addition,
but more generally ¢ = —2H,_(A|Q), where
H,, is the kernel of a fairly general func-
tion H(Q) of @, and he is able to write global
solutions as regularized determinants.
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These determinants are honest versions
of the symbolic superposition of paired addi-
tions in (3.2.1). We first reinterpret the matrix
(3.2.3) as a Fredholm determinant. Take!?
f = coep + c1e1 + caea + -+, and map it by
the row-wise action on the coefficients

Z/ €reyCy.

Cr V> Ck —l—
The effect on f is

fo+Z

where P, f is prOJeCthD 1) f

If now H(Q) is defined on the spectrum of
Q@ by H()\;) =ty then (3.2.3) may be written
in the compact form

Der @ erPof,

"

g =a0 —2 (Indet[ + (7@ — 1)P,))

The formula extends to more general H
satisfying certain (natural) technical condi-
tions. The regularized determinant

I+ (@ —1)P,
H|Q) = .
OUIQ) = det T —Crar — 1) B,

is shown to exist and be smooth in x. The
vector field?°

has integral curves

Q»—>Q—2d

Ordinary 1nﬁn1tesnnal addition at parame-
ter X is —2G..(N'|Q); this corresponds to
HMN) =1/(A=XN).

I ©(H[Q).

3.3. Finite-Gap Operators

The KdV manifolds J(|R|), alias additive
classes, for operators of scattering type are
all infinite dimensional.?! When is an addi-
tive class a finite-dimensional manifold? How
do you translate this geometric property in
the space of all operators into analytic proper-
ties of individual operators? Remarkably, this
question has a complete answer.

19The superscript zero is dropped for convenience.
20H1-y is the kernel of the integral operator H(Q).
21yt for Q= —-D2.

The operators are of the type known as
finite gap or algebro-geometric; the names re-
fer, respectively, to a characteristic property
of the spectrum of ) and to the techniques
by which the explicit form of the potentials
is obtained. The connected components of
the finite-dimensional additive classes will be
products R* x (S1)97%, the case in “general
position” being a pure torus (S1)9.

Much is known about finite-gap opera-
tors. According to McKean-van Moerbeke [15]
(this volume) and Its-Matveev [5], these two
conditions are equivalent:

(a) The equation M® = —®" + 4¢P’ +
2¢'® = 4)\®’ has a solution that is
a polynomial of degree g in A, with
z-dependent coefficients;
the spectrum of ) consists of g in-
tervals, with some perhaps shrunk
to a point, and one infinite inter-
val extending to +4o00; the spectral
weight dF is singular at the points,
and det(dF/d)\) = 1 on the intervals;

and, as shown in [8], both are
equivalent to
the additive class A(Q) is a smooth,
finite-dimensional =~ manifold  of
dimension g.

(b)

(c)

The potential ¢ will then be quasiperi-
odic in z. It is obtained from a multiply
periodic function of g complex variables,
say P(z1,...,%4), by evaluation along a
line z; = cjo + dj. This P is an Abel-Jacobi
function,?? meaning that its periods are loop
integrals of holomorphic differentials on a
Riemann surface.

It is remarkable that such complete
information can be deduced from the finite-
dimensionality of an additive class, with
no assumptions about any operator in the
class.?> Matters were quite different in the
scattering setting. It was shown that the
additive (= unimodular) class of a given
operator consists of operators with similar
decay properties and spectral invariants,

22In the terminology of Siegel, Topics in Complex
Function Theory, v. 2.

230ther than the standing hypothesis of semi-
boundedness and smoothness of q.
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not that an additive class possessing such-
and-such geometric properties was forced
to contain only @ of such-and-such type.
Additive classes of Hill operators are likewise
characterized with reference to a given
operator, but in constrast to the scattering
case, where the KdV manifolds are still
rather amorphous objects, the Hill additive
classes have a very clearcut structure. They
are generically smooth and compact infinite-
dimensional tori admitting a certain kind of
complexification; one may conjecture that
this geometry forces the potentials to be
(evaluations of) Abel-Jacobi functions asso-
ciated with infinite genus curves.?? I believe
this question has not been investigated.

3.3.1. Jacobi Inversion. Hill oper-
ators are a chapter in the theory of the
multivalued function /[J(A — Am), the
product being finite or infinite. The most
direct introduction to this circle of ideas
starts with condition (a).

So suppose we seek a polynomial solu-
tion ®(z,\) = N + A, ()N + -+ of
M® = 4)\®’. The coefficients can be deter-
mined recursively, down to the constant term,
which does not vanish automatically. It will
be zero if ¢ satisfies an ordinary differential
equation of order 2¢g + 1. Repeated integra-
tions reduce its order until only g unknowns
remain, which are then found by inversion of
integrals of algebraic functions.

The steps are implemented by a standard
trick. The equation M® — 4\®’ = 0 is multi-
plied by ® to produce a perfect xz-derivative
(of the left side in (3.3.1) just below). The
integration constant is a polynomial in A, in-
dependent of z, that may be prescribed arbi-
trarily. So we have

(3.3.1)
29
" — %(@’)2 —2(g+ NP =1(N)? = -2 1;[(,\—>\j).
The g roots of ®(z,A) = [T§(A — p;(z))

are now introduced as new variables. Substi-
tute the product into (3.3.1) and successively

24Gee [11] and references therein.

set A = p;(x). The resulting equations,

(3.3.2)
1
S @) TT ) = g (e))? = s ()7,
1‘)#]

are then solved for ;. Because of the ambi-
guity of sign of the square root, there must
be a signature to indicate the sheet on which
;i is found. Write p; = (pj, /Ap;)? —1).
Now (3.3.2) can be organized into a system of
Abelian integrals

9 P
(3.3.3) Z/ wip=Ce, k=0,...,9—1,
j=1"¥"

where wy, = S';(—Sd)s and (i = 22dk,g—1. The po-
tential ¢ can be found from the so-called trace
formula,

2g g
(3.34)  ql@) =) Am—2> pi(2),
j=1

m=0

which follows from comparison of the A29
coefficients in (3.3.1), provided we are able
to express the symmetric function ) p; of
the upper limits in terms of the right side.
Riemann’s theory of his theta function was
created to solve precisely this Jacobi inversion
problem. A. Its and V. B. Matveev exploited
the classical theory to derive a representation
for ¢:

(3.3.5)

d

Some elaboration will come later; for now, it
is enough to know that 6 is an entire function
on CY9, and that VW € CY are parameters
depending on the roots of (A\)? and the initial
values.

q(x) = const

3.3.2. The Unimodular and Addi-
tive Finite-Gap Classes. The theta func-
tion vanishes on a (¢ — 1)-dimensional set.
If the A, and the initial conditions p;(0)
are chosen carelessly, then ¢ will have poles.
The correct disposition of these parameters is
identified by use of the spectral theory of the
operator Q with smooth potential ¢q. Here are
the essentials.
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The spectrum of @ is determined by the
Am. It consists of g possibly degenerate finite
intervals called bands,?® [A2j, Ag;j+1], which
are separated by g “gaps” [Agj41,A2jt2], for
7 = 0,1,...,9 — 1, and to the right an
infinite band [Aag,00). The bands that are
shrunk to a point form the discrete spectrum.
Gaps are assumed to be nondegenerate. They
are the branch cuts of the algebraic func-
tion \/A(N)2 — 1.

The unimodular class U(Q) is character-
ized by the band structure and the nature of
the spectral weight dF(\). The latter is com-
puted (by general spectral theory) to be sin-
gular on degenerate bands, absolutely contin-
uous with det(dF/d\) = 1 on the other bands,
and zero elsewhere.

The p; provide coordinates on U(Q).
There is exactly one per gap. As function
of x, each moves in a circle around the branch
cut, turning around when it hits the bordering
band; if that band happens to be degenerate,
then p;(x) moves towards it in infinite time.

Thus, the general ¢(z) is built from
bounded oscillations of different frequencies,
and localized waves that asymptote to a
constant at |x| = oco. As manifold, this set
of @ is diffeomorphic to a disjoint union of
cylinders over tori, RF x (S§1)9=F.

3.3.3. Finite-Dimensional Additive
Classes. Now suppose there is an additive
class A, of operators with yet unknown prop-
erties, that is a finite-dimensional manifold.

Henry proves this striking result: the class
A is a manifold of operators as just described,
and therefore the potentials are expressed in
terms of Abelian functions by the Its-Matveev
formula.

I want at least to indicate how such a
proof gets under way. What is the immediate
consequence of finiteness?

One has to get hold of dF somehow. It is
obtained as boundary value of a matrix M (\),
the Weyl matriz, built from the solutions A
introduced earlier:

dF(A=a) = liﬁ)l Im M (a + i€) da.

25The term comes from solid state physics.

The (1,1) entry of M is the most important.
It is myy = 2h_hy at © = 0, so Goo(NQ)
up to factor, and dFy; is essentially a jump in
Green’s function.

Since A has dimension g, any g+ 1 infini-
tesimal additions are linearly dependent; if Xy,
is addition with A}, then X := Y9 ¢, X, = 0.
Next, Xmq1(A) is computed, and its vanishing
leads to identities on the Weyl matrix that
imply

VAF(A) = /r(A) x dFq1,

where r is a rational function of the

form  [}f%-]7'.  (The fact that
k

Xy = —-G,(N|Q) is reflected in the

factor 1/(A — A},).)

The proof continues with careful exploita-
tion of the properties of /r(X), which follow
from known facts about the behavior of h4.
Sign changes under the radical introduce the
band-gap structure. One then makes contact
with Sect. 3.3.1 by deriving a representation
I (A — pj)

o)

with one p; per gap. These are the p;(x)
from earlier, evaluated at * = 0. They can
be moved to arbitrary positions in the gaps
by the flows of vector fields of infinitesimal
addition; by this procedure one can reach
the whole set of quasiperiodic potentials con-
tained in the trace formula (3.3.4).

2h+h_ =mi1 =

3.3.4. Hill Operators. The extension
of the finite-gap picture to operators with
arbitrary smooth periodic potential requires
substantial new ideas. There are now infin-
itely many bands and gaps, infinitely many
p;, and a theta function in infinitely many
complex variables, see [11] for more informa-
tion.

The conjecture U(Qo) = A(Qo) is verified
in [8]. The unimodular class is characterized
by absolutely continuous spectrum on a set
of intervals (of certain asymptotic spacing and
length), on which det dF = 1. Asin Sect. 3.2.4,
suppose @ € U(Qo). At first, nothing—aside
from smoothness and semicoundedness—is as-
sumed about . Combining function theory
and spectral theory in a masterful way, Henry
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succeeds in proving that @ is a Hill opera-
tor, which means: it has a period 1 potential
whose divisor {p;} is distributed one per gap.

3.3.5. Other Operators. Modifica-
tions and combinations of inverse scattering
and the band-gap spectral theory have been
worked out for potentials with rapid decay
to nonzero constants at |x| = oo and for
rapidly decaying perturbations of finite-gap
potentials, but not, I believe, for local
perturbations of general Hill operators. The
characterization of unimodular and additive
classes for potentials of the first two types
would be of interest; perhaps the requisite
techniques can be extracted from [8]. In [7],
Henry makes brief mention of preliminary
results about operators with almost periodic
potentials. One may expect that progress,
for instance a logdet representation of the
potentials, characterization of unimodular
classes, equality of unimodular and additive,
etc., will require entirely new ideas.

Afterword

Early in my years at Arizona, a group of en-
thusiastic aspiring probabilists organized an
ambitious reading seminar, meeting, I recall,
twice a week without fail. During one partic-
ularly intense semester, we worked through
every line of Henry’s recently published Sto-
chastic Integrals. My colleagues continued to
careers in probability and statistics, whereas I
was introduced to, and seduced by, integrable
systems. After my U-turn away from stochas-
tic matters, I published a note about Hill’s
equation. Just in time to insert an “added
in proof” amendment, I discovered the pa-
per “The Spectrum of Hill’s Equation”, and
was astonished to find that Henry had made
the U-turn with me (better, I made it with
him). Thereupon, during another intense se-
mester, I worked through every line of that
paper. Over decades since then, I have contin-
ued to learn from Henry, sometimes in person,
more often by poring over his writings. I am
glad to have been given a reason to study the
KdV papers, which I really did not appreciate
25 years ago. Today, I am closer to the goal. It
is always exciting to come to understand his

ideas, even if imperfectly and slowly. Thank
you, Henry, for making mathematics so much
fun.

Appendix: Hamiltonian Mechanics

The prototypical Hamiltonian system in
Euclidean space has the form

(A-1) %x = Pgrad H(x), x€RY,

where P is a constant, skew-symmetric lin-
ear operator called Poisson operator and H
is a given function called the Hamiltonian
of (A-1). For simplicity, we assume P to be
invertible, which forces N to be even, say
N = 2n.

The vector field defined by the right side
of (A-1) is written Xp. The commutator of
Hamiltonian vector fields is again Hamilton-
ian, [Xg,X¢g] = Xp, where F, called Poisson
bracket of G and H, is given by the dot prod-
uct

F={G,H} :=gradG- Pgrad H.

When {G, H} = 0, one says that G, H are in
involution or Poisson commute. Equivalently,
[Xg,Xg] = 0, which also implies that G is
constant along integral curves of Xy, and vice
versa.

Suppose Ci,...,C, are (independent)
functions in involution; there can be no more
because their gradients span an isotropic
subspace of P. The commuting vector fields
X¢; leave the n-dimensional level manifolds?®
J(c) := N;{C; = ¢;} invariant. If these are
compact they must be tori. After a choice
of origin, the flows of X¢, define a transfor-
mation group (t1,...,t,) — x(t1,...,t,) on
each torus.

On an open set filled by n-dimensional
tori J(c) one can introduce special coordi-
nates, the action-angle coordinates, also called
action-angle variables, Z;,0;. The actions Z;
are functions of the ¢; and label the tori,
and the angles go around the cycles of the
torus. These coordinates are canonical, mean-
ing that all Poisson brackets vanish except for
{Z;,6,} =1.

26

c=(c1,...,cn} is given.
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If a function H depends only on the ac-
tions Z;, the Hamiltonian system takes the
canonical form

(A-2) 0H 0H

b= g My,

7oz 09;
and since 9j is a constant, call it w;, the solu-
tion is

Z;(t) = Z;(0), 05(t) = w; - t + 05(0).

Thus, in action-angle coordinates, the integral
curves of the vector field X7 are exhibited as
straight lines on the covering spaces of the
tori.
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Henry P. McKean Jr.!

4.1. Options

McK [49, ‘A free boundary problem for
the heat equation arising from a problem in
mathematical economics’] is my one and only
excursion into “mathematical finance”. It is
an appendix to P. Samuelson [90, ‘Rational
theory of warrant pricing’] in which the cor-
rect recipe for pricing an American put op-
tion is worked out. My contribution was to
reduce the recipe to a free boundary prob-
lem for a (backward) diffusion equation re-
lated to the “geometrical Brownian motion”
x(t) = explob(t) 4+ §t] and to compute, con-
cretely, as much as I could. I believe this the
worst written paper I ever did (though the
version printed here has been cleaned up) and
refer you to P. Myneni [83, ‘The pricing of
an american option’] for a much better ac-
count. Anyhow, what we did was a novelty
then (1965), so I include it here. The work of
Black-Scholes [4, ‘The pricing of options and
corporate liabilities’] and Merton [82, ‘The-
ory of rational option pricing’] is similar, but
with them the derivation of the mathemat-
ical problem is done, more transparently, in
terms of the individual Brownian path (Ito’s
Lemma) and the principle of “no free lunch”,
and would seem to lie deeper from a financial
point of view. This is an important difference.

LCourant Institute, New York University,
New York, NY, USA, mckean@cims.nyu.edu.

4.2. Geometry and the Laplacian

The main paper here, McK-Singer [76,
‘Curvature and the eigenvalues of the Lapla-
cian] has to do with the spectrum of the
Laplacian on a manifold. Kac’s celebrated pa-
per [32, ‘Can you hear the shape of a drum?’]
got me started. There, he had made a beauti-
ful proof of H. Weyl’s estimate for the eigen-
values 0 > A1 > Ao > A3 etc.? of the ordinary
Laplacian acting on functions that vanish at
the boundary of a nice domain D C R? of
volume V:

Ay (277 (g) !)m x (

or what is the same,

2/d
%) for n 1 oo,

Z = trace e'® = Z exp(tA,)
1

~ (47t)~ 2 x V for t | 0.

This he made obvious: The Brownian motion,
started inside D and killed at the boundary
0D, does not know that death is around the
corner, so its transition density p(t, z,y), ex-
pressive of e*2/2_ imitates the density for the

2The numbers w = /=X are the “fundamental
tones” of a drum-head spanning 0D, whence Kac’s
title.
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free Brownian density on the diagonal, i.e. in-
side D, p(t,z,z) ~ (2rt)~%? for t | 0. But
then Z = [p(2t,z,z)dx ~ (47t)~ 2 x V.
That’s it! Kac went further in dimension 2,
conjecturing that for smooth 0D,

area D length 0D
4mt 4drt

1
+ 5(1 — the number of holes) + o(1).

This is true. Singer and I proved it to-
gether with a general extension to manifolds
of higher dimension, both closed and with
boundary, and to other elliptic operators.
Kac is asking: Does the spectrum of A deter-
mine the region, up to a rigid motion, say?
His hunch was no, and that’s correct. Very
different iso-spectral regions were found by
Gordon, Webb and Wolpert [23, ‘Isospectral
plane domains and surfaces via Riemannian
manifold’]; see also Buser, Conway, Doyle
and Semmler [7, ‘Some planar isospectral
domains’] for a whole gallery of such, and
Sarnak [91, ‘Determinants of Laplacians,
heights and finiteness’] who proves that
isospectral classes of (compact) manifolds are
compact. Now the (1 — h) in Kac’s formula
can be traced back to the Gauss-Bonnet
formula for the manifold (with crease) made
by doubling D: indeed, you can “hear” the
Euler number of any closed manifold, as de
Bruijn and Arnold had already proved but
not published. It appears in the form of an
integral over the manifold of a complicated
expression in the curvature, hopefully re-
ducible to Chern’s integrand, but we could
not see into the necessary cancellations.
Patodi [85, ‘Curvature and the eigenforms of
the Laplace operator’] did so; see Gilkey [21,
‘Curvature and eigenvalues of the Laplacian
for elliptic operators’] for a much simplified
version and more; see also Sakharov [104]
where the method is applied to the physical
problem of polarization.

McK [53, ‘Selberg’s trace formula as
applied to a compact Riemann surface’] is
mostly expository. It explains the application
of the marvelous trace formula of Selberg [94,
‘Harmonic analysis and discontinuous groups
in weakly symmetric Riemannian spaces

with applications to Dirichlet series’] to a
compact Riemann surface X of genus g > 2,
equipped with its natural Laplacian. For
genus 1, X is the quotient of the plane by
a lattice Z + wZ with w = a + /—1b in the
upper half-plane, and Poisson’s summation
formula shows that you can hear the area b
and also a? 4 b2, so that the fundamental cell
is known up to a reflection a — —a and X,
itself, is known up to a triviality. Selberg’s
formula reveals that knowing spec A is the
same as to know, in each (free) deformation
class of closed paths of X, the length of the
shortest one. Remarkable! Then I could prove
with help of Fricke-Klein that any isospectral
class is finite, improving upon a remark
of Gelfand [20, ‘Automorphic functions
and the Theory of Representations’]. Later
M. F. Vigneras [99, ‘Variétés riemanniennes
isospectrales et non isométriques’] produced
conformally inequivalent isospectral surfaces,
showing that my result can’t be improved.
There is a blunder on pp. 236-237 which
purports to prove that the top eigenvalue is
< —1/4. This is not so, as many more knowl-
edgeable people told me: already for g = 2,
it can be as close to 0 as you like; see [93,
‘Geometric bounds on the low eigenvalues of
a compact manifold’].

McK [52, ‘An upper bound of the
spectrum of A on a manifold of negative
curvature’] is, in fact, an afterthought to [53,
‘Selberg’s trace formula...’]. There, I had
noticed that for smooth, compact f on the
half-line y > 0,

[rof = () -1 (5)

from which it is easy to see that, if f is a
smooth compact function on the hyperbolic
upper half-plane, then

L e ] [rean s

with the hyperbolic Laplacian A =
y2(0%/0x% + 8%/0y?), i.e. spec A < —1/4.
Now the top of spec A regulates how fast
the Brownian motion runs off to oo, as does
the curvature, so I wondered how general
this type of thing might be. McKean [52,
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‘An upper bound of the spectrum ...’] is
a home-made proof that if M is a smooth,
simply-connected Riemannian manifold with
all its sectional curvatures less than a fixed
number —k < 0, then spec A < +(n—1)%k. R.
Bishop kindly sent me the much nicer proof
which I reproduce here. My ignorance of
differential geometry being all but complete, I
did not know that on such a manifold with its
geodesic polar coordinates, the determinant
g of the fundamental form satisfies

agln\/ﬁz (n—1) (Kcoshm* 1)
r

with k% = —k.

sinhkr r

Notice that the right side is ~ (n — 1)k if
the origin is far away. Take f smooth and
compact and place the origin far from where
f lives. Then

%) af 2 oo
fo () oo [ v
2
i(/ f2¥dr> much as before

e ([ )

Now proceed, canceling one [ f2,/g, inte-
grating out the angles, and so on.

4.3. Geometry and ODEs

McK-Scovel [75, ‘Geometry of some
simple non-linear differential operators’]
concerns an entirely different sort of geome-
try. Ambrosetti-Prodi [1, ‘On the inversion
of some differentiable mappings...’] and
Berger-Church [3, ‘Complete integrability
and perturbation of a mnonlinear Dirich-
let problem’] had proved that if D is a
nice region in R%, if —A is the standard
Laplacian acting on functions vanishing
at 0D with eigenvalues 0 < A1 < A
etc., and if K : R — R is convex with
—00 < K'(—=00) < A\ < K'(+00) < Ag, then
the map f — Af+ K(f) is a “fold”, meaning
that, in suitable coordinates x = (z1, z2, ... ),
it looks like z — (2%, 22,...). What Clint

Scovel and I did was to work out the ge-
ometry of the simplest problem of this type
when K’ crosses the whole spectrum of —A,
namely d = 1, D = (0,1), and K(f) = f?/2,
i.e. the map f — —f" + f2/2, subject to
f(0) = f(1) = 0. The energy levels are now
n272 . n > 1 and K’ crosses them all. The
“singular set” = the locus where the gradient
F = —D? + f has a null-function is com-
prised of disjoint sheets M, : n = 1,2, 3, etc.,
determined by the vanishing of the successive
eigenvalues A, (f) of F, sitting each below
its predecessors. M7 is convex, the rest have
each 1 more principal direction of negative
curvature than the one before. M; maps to
a convex surface and what lies above this
image is at once the 1:1 image of what lies
above M7, and the full range of the map. As
the image g = — f” + f2/2 rises, its preimages
f proliferate: for example, if f lies below M,
then there are 2n of these or more; in fact, if
g is constant and if the lowest f is still above
M, 41, then the count is exact. It would be
amusing to find a sharp approximate count
for g + ¢ and ¢ 1 oo. This is not known to
me, but you will find the details for ¢ = 0
worked out in [75, ‘Geometry of some simple
..."]. Tt is remarkable that such counts can
be made at all. The trick is the fact that
—f1 + f2/2 and —f + f2/2 coincide only if
f = 3(fi + f2) lies on a singular sheet and
e= %( f1 — fo2) is proportional to the singular
direction at f. For more information, see
McK [61, ‘Curvature of an oo-dimensional
manifold related to Hill’s equation’] where
the sectional curvatures of the image of
M, are computed pretty explicitly, and
also McK [63, ‘Geometry of KAV (2): three
examples’] which purports to describe the
singularities (fold, cusp, and so on) of the
singular sheets, but is spoiled by a mistake:
on p. 101, the evaluation Z,4; = 1 (line 25)
is wrong, as B. Ruf notified me.

McK [69, ‘A quick proof of Riemann’s
mapping theorem’] is just what it says. The
idea is simple: if you can map the half-line to
your favorite polygon, then you will be (al-
most) home. I learned from M. Hausner and
P. Lax that this had been done as early as
1874 by Schlafli [92]. The present proof (just
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a page and a half) wins in respect to brevity
if not priority. The proof is cute and seems to
have dropped out of common knowledge.

McK [66, ‘How real is resonance?’] sug-
gests that the conventional wisdom, that reso-
nance obstructs the smoothness of the change
of coordinates x — y which converts z°® =
A(x) into y* = (dA(0) = B)y in the vicin-
ity of a resting point x = 0, is (sometimes)
only a prejudice. The map takes a patch of
R? onto a patch of an (auxiliary) copy of
R?, but all you really need is a map into
some, possibly non-linear space that simpli-
fies the flow. Insisting that it be R? could in-
vite resonance to come in. The example pre-
sented is a caricature of Burger’s equation
v /ot = 0?v/0x? 4 2v0v/dz. Tt reads

2* + AT’ + ATe " ~ A%z 4 L(AT + AT)2?

in which z = (z1,...,z4) is considered to
be periodic (z9 = x4 and so on), AT/A™ is
the forward/backward difference, and A? =
A~AT. The Cole-Hopf-type map z,, — yn =
exp(z1 + ...+ x,) is not periodic if the mean
m = d~Y(x1+...+x4) does not vanish but be-
comes so when regarded as a map to the pro-
jective cone (PRY)*. It converts the flow into
y®* = A2y, considered projectively. Then the
inverse map A~/¢n washes out any ambigu-
ous projective multiplier, so everything is fine
and even as smooth as you could want. What
is startling is that no conventional change of
coordinates can be smooth, even for d = 2.
There, the mean m = £ (21 +2) is a constant
of motion (also for d > 3) and y; is of the form

y1(z)=A(m)+B(m)| tanh 1 (z1 — )| 1/ coshm,

which is not even of class C! at the diagonal.
Here, and more generally, the moral is this:
if you want to solve non-linear problems,
do not insist upon linear methods. Let the
problem tell you what to do.

4.4. Gaussian Processes

About 1950/1, T read (with tears)
Wiener’s Cybernetics [101] about prediction,
feed-back, etc. for shift invariant Gaussian
processes r(t) : —oo < t < oo. It was way
over my head. By 1958 when I came to MIT,

I was better educated and understood what
he had done.

Here are the basic facts: either the re-
mote past determines the whole path r(t) or
else the spectral measure has a density A
with [InA’(1 + 4?)"'dy > —oo, in which
case A’ factors as |h|? with a Hardy function
h € H?*, and if k is the inverse Fourier trans-
form of h, then r(t) = ffoo k(t—t")db(t') with
a standard Brownian motion b; in particular,
the field of £(¢') : ¢ < t is contained in the cor-
responding Brownian field, and may be made
to match it by taking h to be outer, as can
always be done. Then the best prediction of
the future observation r(7') knowing the past
r(t) : t <0 is simply

0

E[r(T)| the past ] = / k(T — D)db(t').

— 0o

I wanted to understand more about the past,

the future, the projection of the future on the

past (splitting), the germ = m span[r(t) :
T>0

[t| < T], etc. and found myself deep into

Hardy functions and entire functions of ex-
ponential type. Pretty much at sea, I went to
Norman Levinson, knowing that he had done
an engineer’s version of Wiener’s recipe and
was expert in complex function theory. Look
at his proof in [39], that more than 1/3 of
the roots of Riemann’s zeta function lie on
the line 1/2, if you want to see what “ex-
pert” means. As I had hoped, he took a fancy
to my stuff, and we worked it out in quite
a lot of detail in [40, ‘Weighted trigonomet-
rical approximation ...’] below. Harry Dym
and I made further progress in two papers
[12, ‘Applications of the de Branges spaces of
integral functions to prediction of stationary
Gaussian processes’] and [13] with the added
help of M.G. Krein’s weighted strings, which
proved to be just the right tools; see, also,
our joint book [14, ‘Gaussian processes’] for
the complete story (in overwhelming detail).
The non-stationary case is much much more
complicated, but see P. Lévy [42, ‘Random
functions: general theory ...’] for lots of in-
formation about it.
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I do want to comment on the curious
nature of this whole subject. It’s a lot of
fun if you like Fourier and complex function-
theory but very unsatisfactory from a statisti-
cal standpoint. Here’s the simplest example of
what I'm thinking of. The remote past is triv-
ial if (and only if) H = [In A/(1+~2%)"dy >
—o00; otherwise, the whole path r is deter-
mined by it. Now H = —oo if A’ vanishes
far out or decays fast. Then r(¢) is (real) an-
alytic in —oo < t < 400 and the fact is obvi-
ous. But what if A’ vanishes for |y| < 1, say,
or has too hard a root at v = 0. H diverges
once more, so the prediction of, e.g. ¢(1) from
(t) : t < T is perfect for any T < 0, but
why? I mean statistically speaking. It is only
that the path lacks a small band of frequen-
cies, and how could that matter? Besides, you
know how to predict if H > —oo, but nobody
really knows how to do it in the contrary case.
Worse still, I have to say that the path-wise
behavior of ¢ is practically unknown, but see
S.0. Rice [88, 89, ‘Mathematical analysis of
random noise’] and also Kac and Slepian [33,
‘Large excursions of a Gaussian process’].

Back-up to [40] for a bit: Norman and I
had asked what kind of Markovian property
¢ might have, i.e. how much information is
needed to make past and future conditionally
independent. This is the “splitting” alluded
to before. For example, we found that ¢ splits
over its germ = the intersection over 7' > 0 of
the field of r(¢) : |¢t| < T if (and only if) A’ =
|E|~% with an entire function E of minimal
exponential type. McK [29] studied splitting
for P. Lévy’s Brownian motion with a several-
dimensional time. This is the Gaussian “field”
with mean 0 and correlation

E[zc(a)zc(b)]=%(|a|+|bl—Ia—bl) for a,b € RY.

Fix a smooth closed surface dividing R¢ into
an inside and an outside and consider the
past/future to be all information from the in-
side/outside. Then, if d is odd, past and future
split, conditional upon the knowledge of ¢ and
its partial derivatives of degree < [d/2] + 1
taken on the surface. Contrariwise, if d is
even, no amount of surface or interior infor-
mation short of the whole will do, i.e. ¢ has

no Markovian property at all. This is a kind
of Huygens’ principle, conjectured by Lévy,
himself; compare G.M. Golchan [22] and, for
Gaussian fields more generally, L. Pitt [86].

4.5. Mostly Brownian Motion

This was my first love in mathematics
ever since I began to learn probability from
M. Kac (MIT, summer 1950) and to read P.
Lévy [41], from which I first understood the
central place of the individual Brownian path.
In 1954/6, It6 and I were mostly occupied
with Feller’s new picture of 1-dimensional dif-
fusion that he was perfecting just then, and
with Dynkin’s strict Markov property, which
everybody sort of knew in special cases, but
was now comprehensively stated and skillfully
used by him.

4.6. Local Times

But it was P. Lévy’s “mesure du voisi-
nage”, translated as “local time” by us, that
really caught our eye. This refers to the stan-
dard 1-dimensional Brownian motion r(t) :
t > 0, starting at r(0) = 0, say, and is de-
fined as follows:

1
t(t,z) = 1}%?01 o, lmeasure (t' <t:az<yt)
<x+h);

see Lévy [41], p. 228. It is the density of the
Brownian occupation times:

measure (t' <t:a <) <b)
b
= 2/ t(t, x)dx for any a < b,

with apologies for the nuisance factor 2.
H. Trotter [97] proved its continuity in ¢
and z; see McK [47] for my refinement using
Tanaka’s (unpublished) formula

t(t,x) = (x(t) — )" — (£(0) —2)*
- /dzc(t’) taken for ¢’ <t
with r(¢') > x.

The local time has marvelous properties,
many due to Lévy himself, some to It6 and
me, deeper ones due to D.B. Ray [87] and F.B.
Knight [34] and to D. Williams, the virtuoso
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of the Brownian path, in [102] and [103].
These deeper results reveal that the local time
is Markovian in respect to z(!) quite unfore-
seen by Ito and myself, though we had a spe-
cial case in front of us and didn’t have the wit
to see what we were looking at. McK [57] is
a comprehensive review of the whole subject.

4.7. Boundary Conditions

It was one of Feller’'s most intuitive re-
marks that the infinitesimal operator & of a
diffusion is really instructions to the particle:
what to do next. You see at once that bound-
ary conditions are nothing special: They only
spell out the instructions at a barrier or at oo;
in short, they are at an aspect of & like any
other! Then it was a nice problem to find (and
to interpret) the boundary conditions for, say,
Brownian motion on the half-line [0, 0o), sub-
ject to the strict Markov property. Feller [18]
had found them all. Inside [0,00),® is (of
course) £D? acting on C?(0,00), but then it
must be restricted, as in

PLA(O) = p2f(0) + s/ (04)
-/ (@) - FO)dpa()

with non-negative p1, p2, ps, dp4, subject to

o0

p1+p2+p3 +/ (x A 1)dps(z) = 1.

0+

This was easy to understand in simple cases:
f(0) = 0 means killing, f7(0) = 0 means re-
flection, f”(0+) = 0 means the particle sticks,
and the general condition with (ps = 0) is
a mixture. As to the paths, Feller suggested
that the local time at z = 0 should enter in
the case p1 f(0) — pafT(0) = 0 with pipz >0
(the elastic barrier, so called), namely that
the Brownian particle should reflect off x = 0
until its local time builds up to the value of an
independent exponential holding time, where-
upon the particle is killed, and we checked
that, Itdo and I. The role of py was also easy
to understand if p4[0,00) < +4o0: Then it
is proportional to the distribution of jumps
from = = 0 back into the interior = > 0. But

what if p4[0,00) = 4+00? That was mysteri-
ous. Luckily, It6 saw at once that it must de-
scribe “jumps” of a new kind, produced by
the increasing “differential” process with in-
finitesimal operator

;o / T+ b — F@)dpa(h),

and as we were flying one day, to Fukuoka
I think, It6 kept drawing pictures, one after
another, trying to see how these jumps could
be interlaced with the Brownian path. After
a while he got it; after a longer while I got it,
too, and the rest was plain sailing, described
in It6-McK [29] below.

4.8. Clocks
Another incisive idea of Feller’'s was
to write the infinitesimal operator of

a 1l-dimensional diffusion in the form
& = (d/dm)(d/ds). The “scale” s describes
exit probabilities: if ¢(¢) : ¢ > 0 is the path
and T, is the passage time min(¢ : p(t) = z),
then

P$(Tb<Ta):M for any a <z <b.

s(b) — s(a)
It is the road map so to say. The “speed mea-
sure” m tells how fast you go:

b
Ea:(Ta A Tb) = / G({E7 y>dm(y>

with the (symmetric) Green’s function
G(z,y) = (s(x) — s(a)) x (s(b) — s()) over
s(b) — s(a). Now, in that scale s, r has the
same road map as the Brownian motion, and
if you reduce to this case (s = z) and suppose
that m has a smooth, positive density 2/02,
then & appears as %UQCgC—Qz, i.e. the “drift” is
removed. Think next, for the utmost simplic-
ity, that o2 is a constant ¢ > 0. Then = = cn
with a standard Brownian motion n or, what
is the same by Brownian scaling, () = n(c?t)
with a new Brownian motion n, suggesting
that the general ¢ is just Brownian motion
run with a new “clock”. With the help of
Hale Trotter, It6 and I found the right recipe:
t(t) = n[T~1(t)], in which T~! is the clock
inverse to T'(t) = [t(t,x)dm(z) or, what is
the same, T(t) = 2]3 o 2n())dt’ if m is
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smooth. Volkonskii [100] had proved it, too,
and at about the same time. H. Tanaka and I,
in [96] extended the recipe to diffusions in R¢
with the same road map as the d-dimensional
Brownian motion. A further extension was
made by Blumenthal, Getoor, and myself: any
two diffusions with the same road map differ
by a change of clock [5]. McK [70] is a review
of this stuff for a financial audience; see also
[44], in which fluctuating clocks of the form

T(t) = measure (t' <t :n(t') > 0)
0
L.
are used to reproduce a special class of
Feller’s Brownian motions on the half-line.

t(t, z)dm(x)

4.9. Potentials and Capacity

The now standard connection of Brow-
nian motion to harmonic functions, (electro-
static) potentials, and capacity, clarified by
J. Doob [11] and G. Hunt [26, 27] was cur-
rent news in 1956. The paper It6-McK [28]
is expository, aiming to explain these ideas in
the simplest format, viz. the standard random
walk in d > 3 dimensions. Then what was
intriguing to It6 and me was the connection
between the equilibrium charge distribution
e for compact K C R?® and the last leaving-
time from K of the Brownian motion on its
way to co. We understood it in part. I made
a little progress in [50], but the real picture is
due to K.L. Chung [9]: The total charge of e
is the capacity C(K), so e/C is a probability
distribution, and any well brought up prob-
abilist must ask: What is it the distribution
of? Chung’s beautiful answer is this: The 3-
dimensional Brownian motion runs off to oo,
so if it visits K at all, it has a last leaving-time
f = max(t : r(t) € K), and with the standard
Green’s function G = 1/4nr, G(z,y)de(y) is
the distribution of the last leaving place for
paths starting at z, to wit, Py [x(f) € dy,f > 0].

4.10. Differential Space

This was Norbert Wiener’s name for the
space of Brownian paths. McK [54] takes off
from the observation that if © = (21,...,2,)

is uniformly distributed on the (n — 1)-
dimensional sphere of radius \/m, then for
fixed m,

m

m bi —x?/2
e
lim P i <y < b)) = dx,
Lim P[( (a5 < @ < bi)] l_|:|1 /a v

i=1

a fact often attributed to Poincaré, but due,
in fact, to Mehler [81] who knew a lot of what
is said in [54]. Anyhow, if you think this way
and reflect that the Brownian path may be
synthesized out of an infinite stock of inde-
pendent Gaussian variables, then you will see
that Wiener measure is (or ought to be) the
round measure on the admittedly fabulous
sphere S°°(1/0), and a lot of things fall into
place. For example, there is a nice rotation
group acting on the sphere and a perfectly
respectable commuting Laplacian A = a sum
of uncoupled Hermite operators; also pleas-
ing spherical harmonics in the guise of prod-
ucts Hermite polynomials, spanning Wiener’s
“polynomial chaos”. There is even a Brownian
motion (of Brownian motion!) with infinites-
imal operator & = %A, this being the oo-
dimensional Ornstein-Uhlenbeck process at
the bottom of P. Malliavin’s calculus in the
Brownian path space [46]. Here’s an instruc-
tive picture in this style: If f : A — B is
a smooth map between manifolds, then the
pushforward (to B via f) of a smooth mea-
sure on A is also smooth. Now the sphere
S5°°(4/00) is eminently smooth — how should
it be otherwise as Feller would say — and its
round measure is as smooth as they come.
Map the Brownian motion n to the diffu-
sion r with smooth & = %02D2 + mD via
Itd’s equation dr = o(r)dn + m(x)dt. Then
r must be smoothly distributed, e.g. it must
have a smooth transition density. This looks
naive but is not: Malliavin has confirmed it
all by his “integration by parts” in the Brow-
nian path space. The expository McK [55]
belongs to the same circle of ideas. It is an
account of Wiener’s “polynomial chaos” and
what he hoped it could do. I have to say that
his attempt was a gallant failure, but it’s still
interesting.
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4.11. Fisher’s Equation

McK [56] refers to the equation du/0t =
$0%u/022 + u* — u of Kolmogorov, Petrovskii
and Piscounov [35]. Actually, it was intro-
duced by the great English statistician R.A.
Fisher [19], but no matter. Its solution can be
neatly expressed as the expectation

u(t, z) = Ex[f(11(2)) - f (e (1))]

in which f = u(0+,-) and the t’s are the po-
sitions of the #(t) particles produced, up to
time t > 0, by a branching Brownian mo-
tion, rooted at = at time ¢ = 0. I wanted
to use this picture to reproduce the result of
KP?: that if f is the indicator of the half-
line x > 0, then the solution u, tracked at
speed /2 (with small corrections), tends to
the traveling wave w of that speed, this being
the only stable wave, rising from 0 to 1, that
the equation supports. The paper is spoiled
by two mistakes, but it is still a favorite of
mine since such a use of Brownian motion was
new then. I comment on it here with apologies
and some account of how it all came out OK.
The trouble starts with the ineffective proof
of 3'). That’s easy, but in §7 comes a seri-
ous mistake. At +o0o, the wave w looks like
1-— we‘ﬁx7 not 1 — e~ V2% a5 1 said, so what
I wrote is simply wrong. Happily, the idea
was salvaged by S.P. Lally and T. Selke [36].
They prove that w(z) = Elexp(—Ze™V2%)] in
which 0 < Z < oo is the limit of

#
D _[Vat — (1)),

n=1

To return to KP?, the tracking of u for f =
the indicator of x > 0 is done by centering
at the median m where u(t,z) = 1/2, and
it’s easy to see that m ~ V/2t. The refine-
ment m = 2t — (3 — 273/2)Int + O(1) of
Bramson [6] is really hard work.

4.12. Oscillators

Kac [31] had studied the motion of a
damped spring driven by white noise. In
McK [48], T took the simplest case and looked
at the winding of (z, r*) about the origin of the

phase plane. I was entertained to find coming
in the Kontorovich-Lebedev transform:

oot = [ @K @

P f@)= /Ooofwmm(x)

2
ﬁvsh(m)dv-

see Bateman and Erdélyi [2]. Unfortunately,
I was not as clever with them as I thought.
P.G. Gait’s letter to me pointed out that the
derivation of 6 in §3 is obscure to put it kindly,
and he was not the only one to be put off.
E. Wong and Per Ch. Hemmer sent still for-
mal but neat proofs. Finally, I fixed it up in
a pretty laborious way, but it seems this was
never published.

4.13. Winding of Plane Brownian
Motion

This refers to the winding of BM(2)
about a couple of punctures, 0 and 1, say. It
is easy to see that this is a big mess from the
viewpoint of homotopy, i.e. the path gets in-
extricably tangled up as time passes. This is
because the (lifted) Brownian motion on the
universal cover of the twice-punctured plane
is transient, the cover being the (hyperbolic)
half-plane. But what about the viewpoint of
homology, i.e. is the joint motion (r,ng,n1)
of position and winding numbers recurrent or
does it wander off to co. This is the Brown-
ian motion on the “class surface” of the punc-
tured plane, which looks like a parking garage
of infinitely many floors connected by (equiv-
alent) helical staircases located at 27mv/—1Z.
I thought I had a proof of the its recur-
rence, but that was wrong, as Dennis Sullivan
noticed: a certain Poincaré sum did not di-
verge as I had believed. T.J. Lyons and McK-
ean [45], corrects this mistake: the two wind-
ing numbers we found to behave like ny — ny
& ny — ny with three independent Cauchy
processes Ny, N1, Ny, run by a common clock
related to Brownian motion on the Riemann
sphere. Sullivan and McKean [95], is a simpli-
fied, more geometrical proof of the transience
on the class surface per se.
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4.14. Nonlinear Markov Processes

McK [51] is about a simple idea: to permit
a diffusion to be “guided by its present distri-
bution, i.e. to permit drift and any Gauss-
ian fluctuations to be so influenced. Then
the corresponding (forward) equation for p is
non-linear, as in dn/0t = §%(Inn)/dz* which
comes up in connection with a “central limit
theorem” for Carleman’s model of a gas; see
McK [58]. I have said more about this in [60]
and [59].

4.15. Invariant Distributions
for Diffusion

McKean [74] deals with the following
question: If a several-dimension diffusion has
an invariant distribution, what then is it the
distribution of? A complete picture is ob-
tained only in dimension 1. There is an enter-
taining interplay between three related pro-
cesses: The original diffusion 1T, 1# = T with
its drift reversed, and r* = (at each time) the
inverse of the map = — 17 (¢, z), aka r’ with
its driving Brownian motion reversed. The
(statistical) stabilization of r' is related to
the path-wise existence of p+(oo) which is dis-
tributed by the invariant density, and this, in
turn, is related to the focusing of x'. It is strik-
ing that in dimension 1, this focusing takes
place exponentially fast, spectral gap or no.
McK [71] is an oco-dimensional example: Burg-
ers equation dv/0t +vdv/0x = $0%v/da” + f
with a “white” force f. The proof of the ex-
istence of the invariant distribution, based on
ideas of Doblin (“loops”) and Feller, is simpler
than the others which had been put forward.

4.16. KdV and All That

One morning, spring 1973, Pierre van
Moerbeke came and told me that KdV:
/ot = 3vdv/dx — 10v®/d2® on the
circle 0 < x < 1 had a traveling wave
2p(x — ct) — ¢/3, p being Weierstrass’s
function. I’d never heard of KdV before, but
here was an attractive problem (dispersion
completing with shocks), and as T was a fan of
both elliptic functions and special non-linear
PDEs, I took notice. Hochstadt [24, 25] and
Lax [37, 38] helped us to figure out, soon

enough how to solve when the number of
“gaps” is finite [79] printed below, with
revisions of the part on theta functions. Un-
known to us, S.P. Novikov [84] had already
done this. Anyhow, it was obvious then how
to do it generally, for an infinite number of
gaps, though there was still a lot of technical
work to do; see McK-Trubowitz [77] and also
[78]. This work was my real introduction
to Hamiltonian mechanics with many com-
muting constants of motion (integrability),
to theta functions, and to curves of infinite
genus.

The machinery for solving KdV is de-
scribed in my review of the remarkable book
of Feldman, Knorrer and Trubowitz [17] also
printed below, so I won’t say more about it
here. Ercolani-McK [16] is a companion to
McK-van Moerbeke [79] and Dyson [15] had
expressed the solution of KdV in C7°(R) as a
Fredholm determinant:

2
v(t,x) = —2% Indet[I + w(t,xz + &+ n)

1§,m > 0]
in which

1 oo 1k 41K
w(t,x) = %/ e Vg0 (k)Y IR )

and sg1 is the (right-hand) reflection coeffi-
cient of v(0+,-), this w being a solution of
Ow/ot = 403w/dx®, or as you may say, of
KdV with the non-linearity crossed out. Here,
© = det[l + w( + 1) : &n > 0] has to
be some kind of theta function (compare Its-
Matveev [30]), and we wanted to known how
much of the geometry of Hill’s curves carries
over. Venakides [98] had already found that if

v € C°(R) is periodized as in Zv(x + np)

z
with period p, then the associated Riemann
theta function tends to Dyson’s determinant
as p T co. Ercolani and T did that in a more
laborious way, obtaining, as by-product, nice
analogues of everything: curve, divisor, DFK,
Jac, the works. The part I like best is the de-
scription (§ 6) of the (complex) theta divisor
for Dyson’s determinant, reproducing, almost
word for word, the known structure of that
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divisor for classical hyperelliptic curves. I be-
lieve there is a moral here, to wit: complex
algebraic-geometrical objects are very robust
and may be recognized, if you come without
prejudice, in many objects that seem at first
glance to be of purely analytic type: for ex-
ample, if you think this way, then objects like
JoS (X = p)~tdo(p) will put you in mind of
Jacobi’s ellipsoidal coordinates.

McK [62] introduces a new theme, “ad-
dition”, based upon Jacobi’s presentation of
divisors on a hyperelliptic curve of genus g <
0o, adapted here to Hill’s curves with g = oo
compare McK [80] for background. Take Hill’s
operator H = —D? + v and X below spec-
trum. Then He = \e has two positive “multi-
plicative” solutions, e_ with f_ooo e? < ooand
ey with 7 €2 < oo. “Addition” is the map
v — v—2[lne(-,p)]” in which e = ey, and the
point p on the multiplier curve records the
value of A\ and the signature of the radical,
this being used to specify which function, e
or e_, is employed. The reason for the name
(addition) is that, in the case g < oo, the pole
divisor p; +. ..+, of e is changed by addition
to a new divisor pj +...+p; according to the
rule

p1—|——|—pg—>—p—|—p1—|——|—pg
=p)+...+py+oo,

in which the = means equivalence in the Ja-
cobi variety, i.e. the two divisors are, resp.
the roots and poles of a function of ratio-
nal character. In the present paper, addition
is extended to any reasonable v on the line
for which spec(H) does not extend to —oo
(so that you can get below it). In this gen-
erality, the several additions commute, infin-
itesimal additions produce the whole KdV
hierarchy, and (most important) addition is
not only isospectral but respects a foliation
which T called “unimodular isospectrality”. I
explain. H has a spectral resolution involving
a 2 x 2 spectral weight dF'(\) : A € R, and
two such operators Hy & Hs are isospectral if
and only if dF} = G~ 1dF,G with 2 x 2 func-
tion G : R — GL(2, R). What is striking now
is that, under addition dFF — G~'dFG with
G € SL(2,R), whence the term unimodular.

Then for any H with spec(H) bounded away
from —oo, you have (1) its KdV-invariant
manifold (this can be made sense of in gen-
eral), (2) the class of operators produced from
one operator of that class by repeated addi-
tions (plus a closing up), and (3) its unimodu-
lar spectral class, each included in the one be-
fore, and examples indicate that these should
always be the same. See [63, 65].

McK [64, ‘Curvatura integra, handle
number, and genus of transcendental curves’]
is my attempt to extend the idea of genus to
transcendental curves. It was inspired by the
example of Hill’s curves (see KdV & all that)
but seemed best standing alone.

McK [72] printed here deals with the
equation of Camassa-Holm [8]:

ov dv  Op

CH: 5 + Vo + e 0 with “pressure”

p=(1-D)7 07 4 20

which is, to me, the nicest of the shallow-
water equations. Unlike KdV which is only
a leading edge approximation, CH is reminis-
cent of Euler in its form. Besides, it has soli-
tons that can travel in both directions, right
and left; the wave can break; it has extra
(non-commuting) constants of motion remi-
niscent of (but not all that much like) cir-
culations in a real fluid; and with the right
machinery, it’s easy to work with, easier that
KdV I'd say.

McK-Constantin [10] did it on the circle,
mostly for g < co. There is only one surprise
after KdV. You go to the curve and over to its
Jacobian variety where you find straight-line
motion (good) at non-constant speed (bad).
A double cover of the curve cures that—why
I have never understood. The present paper
solves CH on the line provided m = v — v”
is summable. The “curve” is purely singular
and the solution is found in terms of three in-
terconnected theta-like functions ¥_, 4., and
¥ plain, expressed by Fredholm determinants,
mediated by the Lagrangian scale Z, descrip-
tive of the displacement of the fluid particle.
I remind you: 9Z(t, x)/0t = v(t, T) with Z(0+
x) = . This is the first (and very valuable)
appearance of Z in “KdV & all that”. Now 9.
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cannot vanish and v(¢,z) = 9/0t[In(d— /94)]
makes sense for all time! The “breaking” is
seen only in v’ which comes with a 9 down-
stairs, and that function can and will vanish
for some ¢t > 0 if (and only if) m = v — v”
takes a positive value to the left of some neg-
ative value: positive/negative stuff likes to
move right/left, and trouble comes when they
collide. I had made a laborious proof of that
[67], corrected in [68]. The present machinery
produced an easy proof, reported here as well.
McK [73] deals mostly with CH on the circle
with m > 0. Then the Liouville correspon-
dence

11 1m/(z) 5 m?2x) .
VX) = am(z)  4m2(z) 16 m3(x) with
x=[ vm

converts the spectral problem —f” + 1f =
Amf for CH into the spectral problem for
KdV: —F" + VF = M\F with F(X) =
v/m(x)f(x). V. Fock suggested that this must
imply a correspondence between the CH and
KdV hierarchies, and we worked at this on
a pleasant afternoon in Providence, but it
wouldn’t come out. We forgot the Lagrangian
scale. Of course, such correspondences must
be fairly common: CH with m > 0 goes
right as does KdV; once that is acknowledged,
there’s no big surprise: everything reduces to
straight-line motion at constant speed on a
torus, and that always looks the same. The
trick is to express the correspondence in an
intelligible way. Still a word about the La-
grangian scale Z: The extra constants of mo-
tion alluded to above, are m(z)(z')? with
m = v — v” as before, one such to each value
of . They do not commute either with them-
selves or with the C'H hierarchy. I wonder
what they are doing here and whether such
objects appear commonly, perhaps in classi-
cal mechanics already. Anyhow, that’s what
I've done about CH, but I have still to cite
the beautiful paper of L.-C. Li [43]. There,
the solution is expressed in way reminiscent
of the Toda lattice. It’s not as explicit as my
way but much more elegant.
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