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Abstract. Plants are essential to the balance of nature and in people’s lives as
the fundamental provider for food, oxygen and energy. The study of plants is
also essential for environmental protection and helping farmers increase the
production of food. As a fundamental task in botanical study, plant leaf rec-
ognition has been a hot research topic in these years. In this paper, we propose a
new method based on contourlet transform and Support Vector Machine
(SVM) for leaf recognition. Contourlet Transform is a promising
multi-resolution analysis technique, which provides image with a flexible
anisotropy and directional expansion. By basing its constructive principle on a
non-subsampled pyramid structure and related directional filter banks, contourlet
transform decomposes input images into multi-scale factors which also enjoys
additional advantages such as shift invariance and computational efficiency.
Compared with one-dimensional transforms, such as the Fourier and wavelet
transforms, Contourlet Transform can capture the intrinsic geometrical structure.
In order to ameliorate the influence of unwanted artefacts such as illumination
and translation variations, in this paper, the contourlet transform was firstly
applied to extract feature with high discriminative power. Then the extracted
features are classified by SVM. The experimental results show that the proposed
method has high sensitivity of directionality and can better capture the rich
features of natural images such as edges, curves and contours.

Keywords: Leaf recognition � Contourlet Transform (CT) � Support vector
machine (SVM) � Contourlet Transform � Frames � Image denoising � Image
enhancement � Multidimensional filter banks � Nonsubsampled filter banks

© Springer International Publishing Switzerland 2015
D.-S. Huang et al. (Eds.): ICIC 2015, Part II, LNCS 9226, pp. 145–154, 2015.
DOI: 10.1007/978-3-319-22186-1_14



1 Introduction

Studying and exploiting the plant recognition has been one of the most important tasks
in plant protection. As we know, the crucial stage of plant taxonomy is a genuine
scientific and technical challenge, due not only to the huge number of plant species, but
also to their highly specialized and diverse taxonomic properties. For this reason, the
efficiency of manual plant recognition is too low and we should introduce pattern
recognition technology to carry out this work. One key distinguishing feature for the
identification of plant species is plant information obtained from leaf images [1–6].
Considering the different extracted features of leaf images, the recognition method can
be roughly divided into 3 kinds - based on texture features, subspace projection and
statistical features [7–10].

The method based on the structure feature need pre-processing and extracts the
texture feature of leaf images. Such methods require complex pretreatment process, and
the pretreatment results will influence the accuracy of recognition seriously. Although
the texture features can obtain certain recognition accuracy, they are sensitive to the
position and orientation changes during the collection process, which lacks stability
and robustness [11, 12].

The subspace projection method applies Principal Component Analysis (PCA),
Independent Component Analysis (ICA) or linear classification analysis in a certain
transform domain of the leaf images. Then choose a proper classifier to take this
recognition work by the projection coefficient as the feature. Compared with the
method based on the structure, subspace projection method has anti-noise-interference
ability without complex pretreatment process. But the changes of location and direction
maybe interfered the ability of recognition.

This paper is organized as follows. We throw the concept and principle of Con-
tourlet Transform and propose in Sect. 2 Contourlet Transform to decompose the leaf
image, and then introduce the low frequency sub-band feature extraction and high
frequency sub-band feature extraction. In Sect. 3, we provide a classifier - Support
Vector Machine (SVM) Classifier. The logic of SVM is expatiated in Sect. 3. And then
in Sect. 4, the experimental database and results are list. At last, we conclude this paper
in Sect. 5.

2 Contourlet Transform

The research results by neural physiologist show that acceptant fields in the visual
cortex are characterized as being localized, oriented, and bandpass for the visual system
of human. There are experiments suggested that it will be efficient for a computational
image representation, if it based on a local, directional, and multiresolution expansion.

As two-dimensional wavelets are constructed from tensor products of
one-dimensional wavelets, with the finer resolution, we can clearly find the limitation
of the wavelet that it needs to use many special dots to capture the contour, as show in
the left of Fig. 1. The new scheme (in the right of Fig. 1.) shows that the support
interval of baseband should behave as a long strip shape in order to make full use of the
geometrical transformation of the original function and achieve with the least

146 Z.-X. Li et al.



coefficients to approximate the singular curve. In fact, the elongated support interval of
baseband is a reflection of directionality, and this also called multi-scale geometric
analysis.

2.1 Feature Extraction

The Contourlet Transform is implemented by a double filter bank named pyramidal
directional filter bank (PDFB). PDFB can be seen as a cascade of two steps. Firstly the
original image is multi-scaled decomposed into low frequency and high frequency
subbands by Laplacian Pyramid (LP) transform. Then the Directional Filter Banks
(DFB) decompose bandpass signal of each level in Pyramid into tree structure of L
layer, and the band will be divided into two directions in each layer. The singular points
distributed in the same direction will be synthesized as one coefficient. It achieved the
image sparse representation more effectively that Contourlet Transform combined LP
and DFB into the double filter group structure. The Contourlet Transform can be
implemented iteratively applying PDFB on the coarse scale of image, as shown in
Fig. 2 [20, 21].

Fig. 1. Wavelet versus new scheme

Fig. 2. Contourlet filter bank
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2.2 The Low Frequency Sub-Band Feature Extraction

The low-frequency subband is the embodiment of coarse texture feature of image. In
this paper, the uniformity of texture is reflected by Angular Second Moment (ASM),
Contrast (CON), Correlation (COR) and Entropy (ENT) of the gray level co-occurrence
matrix. We extracted these four features of gray level co-occurrence matrix after
Contourlet Transform decomposed. Specifically the low frequency image coefficient
matrix will be the gray level co-occurrence matrix transformed after the image is
decomposed. We calculated Angular Second Moment (ASM), Contrast (CON), Cor-
relation (COR) and Entropy (ENT) in ½0�; 45�; 90�; 135�� respectively. In order to
reduce the dimension of feature vector and the computational complexity, we get a
feature vector in 8 dimensions f1 ¼ ½a1; a2; a3; a4; a5; a6; a7; a8� through calculating the
mean and variance of each parameter in four directions. The calculating formulae of the
specific parameters are as following [22, 23].

Angular Second Moment (ASM):

ASM ¼
X
i

X
j

Pði; jÞ2 ð1Þ

Contrast (CON):

CON ¼
X
i

X
j

ði; jÞ2Pði; jÞ ð2Þ

Correlation (COR):

COR ¼ ½
X
i

X
j

i�j�Pði; jÞ � lxly�=rxry ð3Þ

Entropy (ENT):

ENT ¼ �
X
i

X
j

Pði; jÞlb½Pði; jÞ� ð4Þ

where P(i, j) is the elements whose coordinate is (i, j) that is in gray level co-occurrence
matrix of coefficients of low frequency after the Contourlet transformation. μx and σx
are the mean value and mean variance of fPxðiÞji ¼ 1; 2; . . .;Ng. μy and σy are the
mean value and mean variance of fPyðiÞji ¼ 1; 2; . . .;Ng.

For further reflecting the extent of image texture, we composed the eigenvector
f2 ¼ ½l;r� by extracting the mean and variance of low frequency coefficient matrix
after contourlet transformation.

The mean μ and variance σ can be calculated by:

l ¼ 1
M�N

XM
i¼1

XN
j¼1

Pði; jÞ ð5Þ
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r ¼ 1
M�N

XM
i¼1

XN
j¼1

ðPði; jÞ � lÞ2 ð6Þ

In (5) and (6), P(i, j) is the decomposition coefficient whose coordinate is (i, j) in
M × N low frequency subband coefficient matrix after the contourlet transformation.

2.3 High Frequency Sub-Band Feature Extraction

The high-frequency directional subband of Contourlet Transform contains the image
edges and fine texture feature. In this paper, the image is decomposed into 4 layers.
From the first layer to the third layer are intermediate frequency band and the fourth
layer is high frequency band.

The intermediate frequency band contains part texture information of image. The
mean and variance can reflect not only the unevenness of gray image, but also the depth
degree of the texture. Considering these factors, the mean and variance of intermediate
frequency coefficient matrix are extracted as texture features of intermediate frequency
sub-band. The three intermediate frequency sub-bands contain 3, 4 and 8 direction
respectively, and we can compose a 30-dimensional feature vector f3 ¼
½l1; l2; . . .; l15;r1;r2; . . .;r15� by the mean and variance of sub-band coefficients in
these 15 directions.

The energy distribution is sparser at the highest level sub-band. Because energy
distribution at different scales and directions can effectively distinguish the texture, the
energy of the coefficient matrix is extracted as high frequency characteristics. The high
frequency image contains 16 directions after Contourlet Transform and we can extract
the energy of sub-band coefficients in these 16 directions to form a 16-dimensional
feature vector f4 ¼ ½b1; b2; . . .; b16�.

The energy can be calculated as following:

E ¼
XM
i¼1

XN
j¼1

Pði; jÞ2 ð7Þ

In (7), P(i, j) is the decomposition coefficient whose coordinate is (i, j) in M × N
high frequency sub-band coefficient matrix after the contourlet transformation.

In addition, the mean and variance of the high-frequency sub-band coefficient
matrix can reflect the depth degree of the texture and it is also an important
high-frequency image texture features. We extract the mean and variance of high
frequency image sub-band decomposed to form a 32-dimensional feature vector
f5 ¼ ½l1; l2; . . .; l16;r1;r2; . . .;r16�.

As we have pointed out above, we extracted 5 feature vectors from different fre-
quency band. These feature vectors can fully represent the uniformity, depths of color
and energy distribution and other characteristics of image texture. However, if we
group the entire feature vector into vector set as the input of identification system, the
speed of recognition is bound to be affected due to the dimension of the vector is too
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large. It is a pretty important part that how to determine the optimal texture feature
representation in Contourlet Transform, which means choosing as little feature vectors
as possible to characterize the texture on the condition of ensuring the recognition
accuracy. In this paper, we put the extracted feature vectors as input of the identifi-
cation system, and finally determine the optimal feature vector after repeated
recognition.

3 Support Vector Machine (SVM) Classifier

As mentioned above, the recognition process is as Fig. 3 showed. We choose Support
Vector Machine (SVM) as classifier. Support vector machine is a machine learning
method based on development of statistical learning theory [24]. It has very strong
generalization ability and less depends on the quantity and quality of samples. It has the
best generalization ability for the classification of unknown samples through con-
structing the optimal hyperplane. It promotes the problem to be processed in linear
form that Support Vector Machine (SVM) maps the data from input space to a
high-dimensional feature space by support vector (SV) kernel. As SVM usually tries to
minimize a bound on the structural risk but not the empirical risk, it always can get a
global minimum value.

Empirical Risk Minimization (ERM) is a formal term for a simple concept: find the
function f ðxÞ that minimizes the average risk on the training set. Empirical risk is
defined as bellow:

Rempðf Þ ¼ 1
N

XN
i¼1

Cðf ðxiÞ; yiÞ ð8Þ

where Cðf ; yÞ is a suitable cost function, e.g., Cðf ; yÞ ¼ ðf ðxÞ � yÞ2.
Minimizing the empirical risk is not a bad thing to do, provided that sufficient

training data is available, since the law of large numbers ensures that the empirical risk
will asymptotically converge to the expected risk for n ! 1. However, for small
samples, one cannot guarantee that ERM will also minimize the expected risk. This is
the all too familiar issue of generalization.

The Vapnik-Chervonenkis dimension (VC dimension) is a measure of the com-
plexity (or capacity) of a class of functions f(α). The VC dimension measures the
largest number of examples that can be explained by the family f(α). The basic
argument is that high capacity and generalization properties are at odds. If the family f
(α) has enough capacity to explain every possible dataset, we should not expect these
functions to generalize very well. On the other hand, if functions f(α) have small
capacity but they are able to explain our particular dataset, we have stronger reasons to

Fig. 3. Recognition Process

150 Z.-X. Li et al.



believe that they will also work well on unseen data. The VC dimension is the size of
the largest dataset that can be shattered by the set of functions f(α). One may expect that
models with a large number of parameters would have high VC dimension, whereas
models with few parameters would have low VC dimensions. The VC dimension is a
more “sophisticated” measure of model complexity than dimensionality or number of
free parameters.

Because the VC dimension provides bounds on the expected risk as a function of
the empirical risk and the number of available examples. It can be shown that the
following bound holds with probability 1� g.

Rðf Þ�Rempðf Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðlnð2Nh Þ þ 1Þ � lnðg4Þ

N

s
ð9Þ

where ℎ is the VC dimension of f ðaÞ, N is the number of training examples, and N > ℎ.
Structural Risk Minimization (SRM) is another formal term for an intuitive con-

cept: the optimal model is found by striking a balance between the empirical risk and
the VC dimension. SVM achieves SRM by minimizing the following Lagrangian
formulation:

LPðx; b; aÞ ¼ 1
2
jjxjj2 �

XN
i¼1

ai½yiðxTxi þ bÞ � 1� ð10Þ

where αi is positive Lagrange multipliers [25, 26].
As the ratio N/ℎ gets larger, the VC confidence becomes smaller and the actual risk

becomes closer to the empirical risk. This and other results are part of the field known
as Statistical Learning Theory or Vapnik-Chervonenkis Theory, from which Support
Vector Machines originated.

4 Experimental Results

To evaluate the effectiveness of the proposed method, we carried out a series experi-
ments on two large and comprehensive texture databases: the Sweden leaves database
[27] and the ICL database1 which is established by the Intelligent Computing
Laboratory.

All images in the ICL database are taken by cameras or scanners on a white
background paper under vary illumination conditions after the leaves are picked from
plants. Two sides of every kind of leaf are respectively taken to images. Images are
tended to be in an agreed size and colorful which are taken through this process. To
guarantee the background smooth and clear, only one leaf is constructed an image.
The ICL database includes 200 species of plants. Each species includes 30 samples of
leaf images (15 per side). Hence there are totally 6000 images. Figure 4 shows some

1 http://www.intelengine.cn/dataset/index.html
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samples from the ICL database in which the top images are the front side of plant
leaves and the bottom images are the opposite side.

The Sweden leaves database contains 15 the monolithic leaves pictures of different
Swiss tree and each type has 75 image files. The original image data of Swiss plant
leaves contains petiole. This does not have robust feature that the shape of the leaves
should have, because the direction and length of petiole deeply depend on the process
of the leaf collection when intercept the plant leaf image samples. While leafstalk will
provide certain difference information, we can remove some kind of noise to build
another data set.

In order to implement the proposed method, we choose 5 sets of data and set the
relevant parameters empirically.

4.1 Experimental Results on the ICL Database and the Sweden Leaves
Database

The experimental results of the ICL Database are as follows: (Table 1).

The experimental results of the Sweden Leaves Database are as follows: (Table 2)

5 Conclusions

In this paper, we studied a hybrid approach based on Contourlet Transform and
Support Vector Machine (SVM) Classifiers for plant recognition. By decomposing
input images into multi-scale factors which have attractive properties such as shift
invariance and computational efficiency, we can extract discriminative features which
are not sensitive to the variations of illumination and translation and capture the
intrinsic geometry structure of images. By combining the crafted feature with large

Table 1. The classification rates (%) on ICL database

Method Recognition rate (%) Equal error rates (EER)
Set 1 Set 2 Set 3 Set 4 Set 5

LBP 62.5774 62.4313 58.9223 61.5548 56.7119 0.3845
Curvelet 60.9754 62.7850 65.4688 69.5751 69.6489 0.3323
Contourlet 69.4189 72.2176 77.1574 75.9221 72.7874 0.2754

Table 2. The classification rates (%) on Sweden leaves database

Method Recognition rate (%) Equal error rates (EER)
Set 1 Set 2 Set 3 Set 4 Set 5

LBP 79.0605 72.3183 74.7692 72.4716 72.9713 0.2932
Curvelet 84.2346 82.9483 79.1720 85.5022 76.3445 0.2254
Contourlet 86.3874 85.8156 89.6552 89.9520 83.8635 0.1723
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margin classifiers (more specifically, SVM), the proposed recognition method has
higher experimental performance and can better capture the rich features of natural
images such as edges, curves and contours. In the future work, we plan to improve the
efficiency of the proposed method, and implement it as recognition software which is
suitable for real-word applications.
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