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Abstract. Efficiency and effectiveness are two important metrics for the eval-
uation of evolutionary algorithms (EAs). Firstly, there exist a number of effi-
ciency metrics in EA, such as population size, number of termination generation,
space complexity, and time complexity and so on. But the relationship of these
metrics is left untouched. And evaluating or comparing EAs with one of these
metrics or using them separately is unfair. Therefore it is necessary to consider
their relationship and give proper metrics combination. We conclude that
the product of population size and number of generation should be less than the
value of search space size, and the product of time complexity and space
complexity should also be less than a constant. Secondly, we study the relationship
between efficiency and effectiveness. Based on these two metrics, we conclude that
not only EAs can be compared, but also problems hardness can be measured. The
results reveal important insights of EAs and problems hardness.

Keywords: Evolutionary algorithms * Performance - Efficiency - Effectiveness -
Problems hardness - Population size - Stop generation

1 Introduction

Evolutionary algorithms (EAs) [1] are problem independent and have been reported to
perform relatively well on problems such as: search, optimization, and artificial
intelligence.

The analysis of problem hardness (difficulty) has been studied for decades [2].
Measuring hardness of an instance for a particular algorithm is typically done by
comparing the optimization precision reached after a certain number of iterations
compared to other algorithms, and/or by comparing the number of iterations taken to
reach the best solution [3]. There have been numerous efforts identifying challenges
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such as isolation, deception, multi-modality, the size of basins of attraction [4], as
well as landscape metrics [5], autocorrelation structures and distributions of local
minima [6].

In optimization algorithms, performance measurement is an important topic and
effectiveness and efficiency are two aspects of the performance of algorithms. Firstly,
effectiveness refers to the quality of the obtained solution and most of its indicators are
directly related to the optimized objective(s) [7], and there is also effective metric about
the solution (population) diversity [8]. Secondly, efficiency is usually characterized by
its runtime behavior, i.e., the order of its computation time and its memory require-
ments [9] and its indicators are mainly about the algorithm. Efficiency can be increased
drastically with the use of domain knowledge which can be embedded in algorithms,
while effectiveness highly depends on the properties of the problem [10]. To our
knowledge, the issues that relationship between efficiency and effectiveness, the rela-
tionship among metrics of efficiency are still not analyzed deeply. And this is the
purpose of this paper.

2 Efficiency Metrics of Evolutionary Algorithms

2.1 Population Size and Termination Generation Number

To calculate the efficiency, for the population size, only the number of individuals who
get evaluation from environment is considered, but not from surrogate, in other words,
who get real evaluation but not virtual evaluation. As shown in Fig. 1, there are two
kinds of individuals’ fitness evaluation: directly from environment and from the sur-
rogate. Generally surrogate is developed for cheaper fitness functions, but at the cost of
accuracy of fitness estimation [11].
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Fig. 1. Individuals evaluation structure in EAs.

The product of population size and the number of generation is the number of
individuals whose information is used by the algorithm. In other words, the product is
the number of individuals who get their evaluation from environment or whose eval-
uation is the real one but not the estimated one by surrogate. With the same obtained
best solution X/*“!, the less the product is, the less resources the algorithm costs, and the
higher the efficiency is.

Label the number of those individuals who have the real evaluation till the current
evolutionary generation ¢ as N;,,(f), which can be simply explained as the product of
the population size |P| and ¢, and there should be:
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Nia(t) = |P| x 1 (1)

Nina(t) should not be more than [S]. It can be taken as granted that EAs are better
than the traversal methods on searching optima, and the latter will have to visit all the
individuals in search space. Therefore, for the termination generation T of each algo-
rithm, there should be:

S| > Nina(T) (2)
The relationship among |P|, T, Nj,4(T) and || is illustrated in Fig. 2, in which, the

outer curve of the shadow area is |P| x T=|S|, which is also the upper bound of N;,,(T).
The lower bounds for T and |P| are labeled as Ty and |P|y respectively.

|PIxT=|S]

Fig. 2. Relationship of population size and generation number

According to (3), it is easy to know that the points A, B and C, in Fig. 2, are the
examples of Ny,,(T), while point D is not. The product value of |P| x T corresponding
to points decreases with the order of D, A, B and C.

In fact, N;,4(T) as a metrics of efficiency has been used many times [12, 13], but the
relationship between |P| and T was not given.

2.2 Space Complexity and Time Complexity

The definitions of N;,,(T) does not include enough elements. For example, although
N;.a(T) consider the time-complexity with T and space-complexity with |P|, they are
only the basic complexity.

Space-complexity of the algorithms is related with population size, but it can’t be
simply represented with it. There are many memory-based algorithms, that use the
same population size as other algorithms, but their space complexity is more than
others.

Similarly, time-complexity of the algorithm is related with the termination gener-
ation number, but it can’t be simply represented with it. There are many data-mining
embedded algorithms that spend more time to extract rules to guide the algorithms to
explorer/exploit promising search space. In addition to the search process, establishing
a high quality model in EAs might require longer time [14]. In a competing heuristics
situation [15], time-complexity is also heavy, because the solutions are repeated gen-
erated and evaluated until it dominates the worst one in current population.
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In order to compare the space-complexity, the memory cost per individual is
considered. Label the memory cost of an algorithm during the evolutionary process as
M¢, and define the memory cost per individual as:

Mc

=5 ()

mc

Similarly, in order to compare the time-complexity, the time cost of an algorithm
per individual is considered. Label the time cost during the evolutionary process as T,
and define the time cost per individual as:

Tc

=5 4)

Ic

It has been mentioned many times in literature that under certain efficiency con-
dition, time complexity is inversely proportion the space complexity. Sometimes, in
order to save time, an algorithm will have to run with high space complexity, or in
order to save memory to run in long time. Therefore, the relationship of m¢ and #¢ is
shown in Fig. 3.

%%

tc

Fig. 3. Relationship between mc and z¢

For a certain problem, algorithm with high m¢ will be with the low 7. Therefore,
the product of power of mc and power of #¢ also has a upper bound. With this idea, a
complexity metric can be defined as:

_ s
‘Sl + wPlMC X TC

(5)

pPc

where wp; = e\_ln|SU—|_Zn(MC><TC)j7

there is pc € (0, 1).

and it is for the balance of magnitudes. Therefore,

2.3 Efficiency of Evolutionary Algorithms

The algorithm should not visit every individual. It is assumed that the increasing of M
and Tc will result in the decreasing of |P| x T. Therefore, mc and tc are inversely
proportion to N;,,(T) with the same algorithm and the same problem. Therefore, there is:
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ONina(T) <0 ONina(T)

OMc are . 0 (6)

Based on the relationship of |P| and 7, one of the metrics of the efficiency of

algorithm can be defined as:

Nind(T)
N

|P| x T
S|

pyi=1—owp =1—-owp (7)

where wp; = elPSI=1m(PIXT)] " which is for the balance of magnitudes. It is easy to

know py; € [0, 1]. The bigger py; is, the better the efficiency is.
Based on the analysis of M, T¢ and N;,(7T), the following basic logistics can be
given:

Mc 1= Tc |, Tc 1= Mc |, Mc 1= Npa(T) |, (8)
Te 1= Niwa(T) |, Niwa(T) 1= Pyi 1, Mc 1= Pc |, Te 1= Pc |

Based on the above logistics, the efficiency metric can be defined as:

Pel = W1PN1 + W2pC 9)

where w1 + wy = 1.

This efficiency metric includes parameters of population size, number of termina-
tion generation, time-complexity and memory-complexity. All the values of these
parameters can be calculated prior to the running of the algorithm. Compared with
effectiveness, this is the advantage of efficiency metrics.

3 Relationship of Efficiency and Effectiveness
of Evolutionary Algorithms

3.1 Effectiveness in EAs

It is sure that, for two algorithms, the one, which obtains a solution nearer from the real
optimum than that of another algorithm, has higher effectiveness. Therefore, a mea-
surement of the effectiveness of the algorithm based on distance of obtained solution
from the real optimum can be given. Generally, it is difficult to know the real optimum,
but a solution better than or equal to the best obtained one can be given. Label this
solution as X} the precision as . Label dj = |X[e — X}irual| " then dj, can be
regarded as the metric for the improvement of population. According to Deb’s nec-
essary properties for metrics [8], the effectiveness p., of the performance should
satisfy:

apeZ
" ddy,

Pe2 €0,1] <0 (10)
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This means that with the decreasing of the distance, the effectiveness increases. The
progress rate [16] is one of the metrics that satisfy this property, but it is complex to
calculate.

For simplicity, the expression is as following:

0 0
€2 = real virtual = ( 1 1)
y . b
b |[Xpead — Xyirtal|| 46 dy + 0

3.2 Relationship Between Efficiency and Effectiveness

Usually, the longer time an EA run (with a sufficient population size), the higher the
solution quality will be [14]. However, in real-world scenarios, the computational
resources are often limited, which leads to a tradeoff between efficiency and the
effectiveness. This means that although efficiency p.; and effectiveness p., are two
elements of the performance p, they are not independent. If an algorithm is assigned
with big value for cp or T, it will be expected to have higher effectiveness, while large
value of cp or T also means low efficiency, in another word, an algorithm with low p,,
should have high p,,.

Assuming that for a certain algorithm, p,; could be inversely proportion to p,,.
Intuitively, for a certain algorithm, when the efficiency is improved, the effectiveness
will be decreased, and vice versa. This means that for a certain algorithm, the
improvement of efficiency will bring the low effectiveness and the improvement of
effectiveness will bring the low efficiency. Therefore, there should be a tradeoff
between p,; and p,».

But for different algorithm variants, the performance will be different. Some of the
variants can increase the efficiency and some of them can increase the effectiveness and
some of them can increase both of the effectiveness and efficiency. The last kind of
algorithm is the one that is preferred.

The relationship that p,; is inversely proportional top,, can be seen from the aspect
of space precision J. Denote the dimension or number of variants as d, which means
that X = {xm|i =1, 2,...,d}, and D; as the scope of i-th dimension. Label the upper and

low bound of every dimension as up; and Ip;, and dp = H;l:l (up; — Ip;), then there is:

d d

Upi —Lp; dp

si= [ = 125 =% (12)
i1 i1

where dp is a constant value and ¢ > 0. Therefore, according to (8) and (12), there is:

apel 817@2
7 =28

<0 (13)

Therefore, from the viewpoint of decision variable o, p,; is approximately inversely
proportional top,,, and they can be seen as conflict objectives. For a certain algorithm,
the relationship of p.; and p,; is illustrated in Fig. 4, in which, the intersection point
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Fig. 4. Relationship between pel and pe2 for a certain algorithm

“A” of p,; and p,;, is the tradeoff. And for the point of “B”, p, is increased while p,, is
decreased. Similarly, for the point of “C”, p,, is increased while p,, is decreased.

The relationship that p,; is inversely proportional to p,, also can be seen from the
aspect of complexity metric pc. It is easy to know that:

dpc dpc
e g, e 14
(9MC< ’8TC< ( )
And there is
p, Op. pe Ope
Pel _, el p2>0,p2>0 (15)

OMc 7 OTc " OMc 0T¢

Based on the above analysis, the logistics relationship among the parameters and
the algorithm’s performance is given in Fig. 5.

Fig. 5. Logistic relationships among the parameters and algorithm performance

Algorithm variants are always proposed in order to improve the performance. For
example, in Fig. 6, it can be taken as granted that the original performance tradeoff is at
the point ®. Then the tradeoff is improved to points “A”, “B” and “C”, during which
“A” is the best tradeoff, which has both high p,, and p.,.

3.3 Definition of Performance

Based on the above analysis, a more sophisticated performance indicator is proposed
as:
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Fig. 6. Relationships among algorithms’ efficiency and effectiveness

p= (peh pe2) (16)

Based on this indicator, the definition of dominance relationship on performance
can be given.

Definition 1 (Dominance Relationship on Performance). For two performance
vector py = (pe11, Pe21) and py = (pe12, Pe22). The preference orders on the set of
performance vector can be defined.

® p, > p,(p, dominates p,), if p; is not worse than p, in any element, and is better in
at least one of the elements;

® p; = pa(p1 weakly dominates p»), if p; is not worse than p, in any elements;

* p; = pa(pyequalsp,), if p1 = pa;

* p,|lp2(p1 and p, are incomparable to each other), if neither p; weakly dominates p,
nor p, weakly dominates p;.

The relationship <, = are defined accordingly, i.e., p, > p, is equivalent to p, < p,, etc.

4 Application of Performance Measurement

Performance p is determined by an algorithm A and the optimization problem pl. This
from the definition of p,; is the variables of ¢, and 7, and both ¢, and T are related with
the algorithm A. Similarly, from the definition of p,», it can be seen that the variables of
0 and d, are also related with p/ and A. Therefore, for distinguishing performance,
p(pl, A) can be used to explicitly illustrate that the performance is for the concrete
problem pl and concrete algorithm A.

4.1 Algorithm Comparison

For the same problem pl with the same space size |S|, all EAs can be compared with
performance p. the algorithms domination definition is given as following.

Definition 2 (Algorithms Domination Relationship on Certain Problem). For two
EAs A, and A,, suppose their performance is p;(pl, A;) and p,(plo, A—,) respectively.
The performance orders can be defined as:
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e A >p As(A; dominates Ay), if py is not worse than p, in any element, and is better
in at least one of the elements;

o A; =, As(A; weakly dominates As), if p; is not worse than p, in any elements;

o A =, A (Alequals Ay), if py = po,

o A H piA2(A1 and A, are incomparable to each other), if neither p; weakly dominates
p> nor p, weakly dominates p;.

The relationship <, =X are defined accordingly, i.e., A; >, A is equivalent to
Ay =pl Ay, etc.

Suppose that all the problems compose of a set PL = {pl;, pl,, ...}. Based on this
set, the theoretic case for the algorithms comparison can be defined as A; >p; A, and
so on. For the same problem with the same precision J, if three EAs: a;, a, and a3
obtain the same optima and the efficiency are corresponding to the points C, B and A
respectively in Fig. 1, then there is p,(Ay, pl) = p,(Az, pl) > p3(As, pl) and
Ay >pl Ay > pl As.

4.2 Problem Hardness Measurement

For different problems pl;, pl, with the same space size |S|, if the same algorithm
performs differently on them with p,(pl;,A—) and p,(plr,A-), then the definition
about problem hardness can be given in the following definition.

Definition 3 (Hardness Domination Relationship of Problems on Certain Algo-
rithm). For a concrete EAs A, label the performance for two problems pl; and pl, as
p,(pli,A—) and p,(ply,A) respectively. The preference orders can be defined as:

o ply <4 ph(pl, dominates pl,), if p; is not worse than p, in any element, and is
better in at least one of the elements;

o ply <4 ph(pl, weakly dominates pl,), if p; is not worse than p, in any elements;

 pli =a ph(pli equals ph), if p; = pa;

o pl||,pl2(ply and pl, are incomparable to each other), if neither p; weakly domi-
nates p, nor p, weakly dominates p;.

The relationship <, = are defined accordingly, i.e., pl; >4 pl, is equivalent to
pl <4 pli, etc.

Suppose that all the algorithms compose of a set Al = {A}, A,, ...}. The theoretic
case for the problems comparison can be defined as pl; >4; pl, and so on.

Generally speaking, there are two kinds of measurements for the problems diffi-
culty: prior estimation and post calculation. One can see that the above definition is
based on the post calculation.

4.3 Comparison Design

Efficiency and effectiveness are metrics for the comparison of algorithms (and its
parameters’ value) and problems. These two metrics are related with at least three
elements: algorithm, value of parameters of the algorithm and the optimized problem.
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Based on the comparison of these three elements, experiments can be carried out to
validate the relationship between efficiency and effectiveness. The comparison of these
elements is shown in Table 1, in which, the last column gives the suitability to compare
for the corresponding case. And in this table, 0 means the same case, 1 means the
difference case.

Table 1. Comparison of elements

Number | Algorithms | Values of | Optimized | Comparison
parameters | problems

1 0 0 0 None

2 0 0 1 Hardness

3 0 1 0 Performance

4 0 1 1 Suitability

5 1 0 0 Performance/None

6 1 1 0 Performance

7 1 0 1 None

8 1 1 1 None

e For the case of No. 1, the three elements, algorithms, values of parameters and
optimized problems, are all with the same situations; therefore, it is unnecessary to
compare the performance. But generally, it is always to be utilized to calculate the
mean and variance of algorithms’ performance.

e For the case of No. 2, two elements, algorithms and its parameters’ values are same
and only the optimized problems are different. Therefore, by the performance of the
algorithm, the hardness of the optimized problem can be compared.

e Similar to the case of No. 2, No. 3 can be used to compare the influence of
parameters’ values on the performance of algorithms. And the case of No. 4 can be
used to compare the performance for different problems with different parameters’
values.

e For the case of No. 5, when the compared algorithms have the same parameters, it
can be used to compare the performance for different algorithms with the same
parameters’ value and for the same optimized problems. But generally speaking,
since parameters are part of an algorithm, different algorithm may have parameters
with different meaning resulting in their incomparability. Therefore, the value in the
last column is performance/none. Similarly, for the case of No. 6, the performance
can be compared.

e For the case of No. 7 and 8, both the algorithms and optimized problems are
different; therefore, both of these two elements are incomparable.

Based on the analysis in Table 1, the experiments to compare performance can be
as the cases of No. 3, 5 and 6, and the experiments to compare hardness can be as the
case of No. 2.
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5 Conclusion

As two important metrics for the evaluation of evolutionary algorithms (EAs), effi-
ciency and effectiveness are studied in this paper. For efficiency metrics, population
size, number of termination generation, space complexity, and time complexity and
their relationship were studied. We conclude that the product of population size and
number of generation should less than the search space size, and the product of time
complexity and space complexity should also less than a constant. Secondly, we study
the relationship between efficiency and effectiveness. Based on these two metrics, we
conclude that not only EAs can be compared, but also problems hardness can be
measured. The results reveal important insights of EAs and problems hardness.
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