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Abstract. Automated test generation techniques typically aim at max-
imising coverage of well-established structural criteria such as statement
or branch coverage. In practice, generating tests only for one specific
criterion may not be sufficient when testing object oriented classes, as
standard structural coverage criteria do not fully capture the properties
developers may desire of their unit test suites. For example, covering a
large number of statements could be easily achieved by just calling the
main method of a class; yet, a good unit test suite would consist of smaller
unit tests invoking individual methods, and checking return values and
states with test assertions. There are several different properties that test
suites should exhibit, and a search-based test generator could easily be
extended with additional fitness functions to capture these properties.
However, does search-based testing scale to combinations of multiple cri-
teria, and what is the effect on the size and coverage of the resulting test
suites? To answer these questions, we extended the EvoSuite unit test
generation tool to support combinations of multiple test criteria, defined
and implemented several different criteria, and applied combinations of
criteria to a sample of 650 open source Java classes. Our experiments
suggest that optimising for several criteria at the same time is feasible
without increasing computational costs: When combining nine different
criteria, we observed an average decrease of only 0.4 % for the constituent
coverage criteria, while the test suites may grow up to 70 %.

1 Introduction

To support developers in creating unit test suites for object-oriented classes,
automated tools can produce small and effective sets of unit tests. Test genera-
tion is typically guided by structural coverage criteria; for example, the search-
based unit test generation tool EvoSuite by default generates test suites opti-
mised for branch coverage [4], and these tests can achieve higher code coverage
than manually written ones [8]. However, although manual testers often check
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the coverage of their unit tests, they are usually not guided by it in creating
their test suites. In contrast, automated tools are only guided by code coverage,
and do not take into account how this coverage is achieved. As a result, auto-
matically generated unit tests are fundamentally different to manually written
ones, and may not satisfy the expectations of developers, regardless of coverage
benefit.

Fig. 1. This example shows how EvoSuite covers method set of the class
ArrayIntList: the method is called, but statement coverage is not achieved.

For example, consider the excerpt of class ArrayIntList from the Apache
Commons Primitives project in Fig. 1a. Applying EvoSuite results in a test
suite including the test case in Fig. 1b: The test calls set, but with parameters
that do not pass the input validation by checkRange, such that an exception is
thrown. Nevertheless, EvoSuite believes set is covered with this test, and adds
no further tests, thus not even satisfying statement coverage in the method. The
reason is that EvoSuite follows common practice in bytecode-based coverage
analysis, and only checks if branching statements evaluated to true and false [13].

Fig. 2. This example shows how EvoSuite covers method log, even though there is
no test that directly calls the method.

To cover method set fully, one would also need to aim at covering all instruc-
tions. However, when optimising test suites to cover branches and instructions,
automated techniques may find undesired ways to satisfy the target criteria. For
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example, consider the excerpt of class Complex from the Apache Commons Math
project shown in Fig. 2a: EvoSuite succeeds to cover method log, but because
log is called by pow, in the end often only tests calling pow (see Fig. 2(b) are
retained, which makes it hard to check the behaviour of log independently (e.g.,
with test assertions on the return value of log), or to debug problems caused
by faults in log. Thus, a good test suite has different properties, which cannot
easily be captured by any individual structural coverage criterion.

In this paper, we define different criteria and their fitness functions to guide
search-based test suite generation, and investigate the effects of combining these
during test generation. Such a combination of multiple optimisation criteria
raises concerns about the effects on the size of resulting test sets, as well as
on the effectiveness of the test generators used for this optimisation. To investi-
gate these concerns, we performed a set of experiments on a sample of 650 open
source classes. In detail, the contributions of this paper are as follows:

– Identification of additional criteria to guide unit test suite generation.
– Implementation of these criteria as fitness functions for a search-based test

suite optimisation.
– An empirical study of the effects of multiple-criterion optimisation on effec-

tiveness, convergence, and test suite size.

Our experiments suggest that optimising for several criteria at the same time
is feasible without increasing computational costs, or sacrificing coverage of the
constituent criteria. The increase in size depends on the combined criteria; for
example, optimising for line and branch coverage instead of just line coverage
increases test suites by only 10 % in size., while optimising for nine different
criteria leads to an increase of 70 % in size. The effects of the combination of
criteria on the coverage of the constituent criteria are minor; for criteria with
fine-grained fitness functions the overall coverage may be reduced slightly (0.4 %
in our experiments), while criteria with coarse fitness functions (e.g. method
coverage) may benefit from the combination with other criteria.

2 Whole Test Suite Generation for Multiple Criteria

In principle, the combination of multiple criteria is independent of the underlying
test generation approach. For example, dynamic symbolic execution can generate
test suites for any coverage criteria as by-product of the path exploration [10].
However, our initial usage scenario lies in unit testing for object oriented classes,
an area where search-based approaches have been shown to perform well. In
search-based testing, the test generation problem is cast as a search problem,
such that efficient meta-heuristic search algorithms can be applied to create tests.

2.1 Whole Test Suite Generation

Whole test suite generation refers to the generation of test suites, which has been
shown to be more effective than iteratively generating individual test cases [5].
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When applying search-based testing for this task, a common technique is to use
a genetic algorithm, which starts with a population of random test suites, and
then evolves these using standard evolutionary operators [5]. The evolution is
guided by a fitness function that estimates how close a candidate solution is to
the optimal solution; i.e., 100 % coverage in coverage-oriented test generation.

A test suite is a collection of unit tests for a target Class Under Test (CUT).
The CUT comprises a set of methods, each of which consists of a list of state-
ments. Each statement can be a conditional statement (e.g., if), a method call or
a regular statement. A conditional statement results in two branches depending
on the evaluation of its predicate. A unit test is an executable function which
sets up a test scenario, calls some methods in the CUT, and checks that the
observed behaviour matches the expected one. For simplicity, a unit test can
be regarded as a sequence of calls to methods of the CUT. Executing a unit
test yields an execution trace, i.e., a sequence of executed statements which can
either end normally with a regular statement, or with an uncaught exception.

2.2 Fitness Functions

In search-based test suite generation, a fitness function measures how good a
test suite is with respect to the search optimisation objective, which is usually
defined according to a test coverage criterion. Importantly, a fitness function
usually also provides additional search guidance leading to satisfaction of the
goals. For example, just checking in the fitness function whether a coverage
target is achieved would not give any guidance to help covering it.

Method Coverage. Method Coverage is the most basic criterion for classes
and requires that all methods in the CUT are executed by a test suite at least
once, either via a direct call from a unit test or via indirect calls.

Top-Level Method Coverage. For regression test suites it is important that
each method is also invoked directly (cf. Fig. 2). Top-Level Method Coverage
requires that all methods are covered by a test suite such that a call to the
method appears as a statement in a test case.

No-Exception Top-Level Method Coverage. In practice, classes often con-
sist of many short methods with simple control flow. Often, a generated test suite
achieves high levels of coverage by calling these simple methods in an invalid
state or with invalid parameters (cf. Fig. 1). To avoid this, No-exception Top-
level Method Coverage requires that all methods are covered by a test suite
via direct invocations from the tests and considering only normal-terminating
executions (i.e., no exception).

The fitness functions for Method Coverage, Top-Level Method Coverage and
No-exception Top-level Method Coverage are discrete and thus have no possible
guidance. Fitness values are simply calculated by counting the methods that
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have been covered by a test suite. Let TotalMethods be the set of all public
methods in the CUT and CoveredMethods be the set of methods covered by the
test suite, then:

fcrit(Suite) = | TotalMethods | − | CoveredMethodscrit |

Line Coverage. A basic criterion in procedural code is statement coverage,
which requires all statements to be executed. Modern test generation tools for
Java or C# often use the bytecode representation for test generation, and byte-
code instructions may not directly map to source code statements. Therefore,
a more common alternative in coverage analysis tools, and the de-facto stan-
dard for most Java bytecode-based coverage tools, is to consider coverage of
lines of code. Each statement in a class has a defined line, which represents the
statement’s location in the source code of the class. The source code of a class
consists of non-comment lines, and lines that contain no code (e.g., whitespace
or comments). A unit test suite satisfies the Line Coverage criterion only if it
covers each non-comment source code line of the CUT with at least one of its
tests. Line Coverage is very easy to visualise, interpret, and to implement in an
analysis tool; all these reasons probably contribute to its popularity.

To cover each line of source code, we need to ensure that each basic code
block is reached. In traditional search-based testing, this reachability would be
expressed by a combination of approach-level and branch distance [14]. The
approach-level measures how far an individual execution and the target state-
ment are in terms of the control dependencies (i.e., distance between point of
diversion and target statement in control dependence graph). The branch dis-
tance estimates how far a predicate is from evaluating to a desired target out-
come. For example, given a predicate x == 5 and an execution with value 3,
the branch distance to the predicate evaluating to true would be |3 − 5| = 2,
whereas an execution with value 4 is closer to being true with a branch distance
of |4 − 5| = 1. Branch distances can be calculated by applying a set of standard
rules [12,14].

In contrast to test case generation, if we optimise a test suite to execute all
statements then the approach level is not necessary, as all statements will be
executed by the same test suite. Thus, we only need to consider the branch dis-
tance of all branches that are control dependencies of any of the statements in
the CUT. That is, for each conditional statement that is a control dependency
for some other statement in the code, we require that the branch of the state-
ment leading to the dependent code is executed. Thus, the Line Coverage fitness
value of a test suite can be calculated by executing all its tests, calculating for
each executed statement the minimum branch distances dmin(b,Suite) among all
observed executions to every branch b in the set of control dependent branches
BCD, i.e., the distances to all the branches which need to be executed in order
to reach such a statement. The Line Coverage fitness function is thus defined as:

fLC(Suite) = ν(| NCLs | − | CoveredLines |) +
∑

b∈BCD

ν(dmin(b,Suite))
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where NCLs is the set of all non-comment lines of code in the CUT, CoveredLines
is the total set of lines covered by the execution traces of every test in the suite,
and ν(x) is a normalising function in [0, 1] (e.g., ν(x) = x/(x + 1)) [2].

Branch Coverage. The concept of covering branches is also well understood in
practice and implemented in popular tools, even though the practical definition
of branch coverage may not always match the more theoretical definition of cov-
ering all edges of a program’s control flow. Branch coverage is often interpreted
as maximising the number of branches of conditional statements that are covered
by a test suite. Hence, a unit test suite is said to satisfy the Branch Coverage
criterion if and only if for every branch statement in the CUT, it contains at
least one unit test whose execution evaluates the branch predicate to true, and
at least one unit test whose execution evaluates the branch predicate to false.

The fitness function for the Branch Coverage criterion estimates how close
a test suite is to covering all branches of the CUT. The fitness value of a test
suite is measured by executing all its tests, keeping track of the branch distances
d(b,Suite) for each branch in the CUT. Then:

fBC(Suite) =
∑

b∈B

v(d(b,Suite))

Here, d(b,Suite) for branch b ∈ B (where B is the set of all branches in the
CUT) on the test suite is defined as follows:

d(b,Suite) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if the branch has been covered,
ν(dmin(b,Suite)) if the predicate has been

executed at least twice,
1 otherwise.

Note that a predicate must be executed at least twice, because we need to cover
the true and false evaluation of the predicate; if the predicate were only executed
once, then the search could theoretically oscillate between true and false.

Direct Branch Coverage. When a test case covers a branch in a public
method indirectly, i.e., without directly invoking the method that contains the
branch, it is more difficult to understand how the test relates to the branch it
covers (cf. Fig. 2). Anecdotal evidence, from previous work with EvoSuite, also
indicates that developers dislike tests that cover branches indirectly, because
they are harder to understand and to extend with assertions [8]. Direct Branch
Coverage requires each branch in a public method of the CUT to be covered by
a direct call from a unit test, but makes no restriction on branches in private
methods. The fitness function is the same as the Branch Coverage fitness func-
tion, but only methods directly invoked by the test cases are considered for the
fitness and coverage computation of branches in public methods.
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Output Coverage. Class ArrayIntList from Fig. 1 has a method size that
simply returns the value of a member variable capturing the size of the internal
array; class Complex from Fig. 2 has methods isNaN or isInfinite returning
boolean member values. Such methods are known as observers or inspectors, and
method, line, or branch coverage are all identical for such methods. Developers
in this case sometimes write unit tests to cover not only in the input values of
methods, but also in the output (return) values they produce; indeed output
diversity can help improve the fault detection capability [1].

To account for output uniqueness and diversity, the following function maps
method return types to abstract values that serve as output coverage goals:

output(Type) =

⎧
⎪⎪⎨

⎪⎪⎩

{true, false} if Type ≡ Boolean
{−, 0,+} if Type ≡ Number
{alphabetical, digit, ∗} if Type ≡ Char
{null, �= null} otherwise

A unit test suite satisfies the Output Coverage criterion only if for each public
method M in the CUT and for each Vabst ∈ output(type(M)), there is at least
one unit test whose execution contains a call to method M for which the concrete
return value is characterised by the abstract value Vabst.

The fitness function for the Output Coverage criterion is then defined as:

fOC(Suite) =
∑

g∈G

ν(do(g,Suite))

where G is the total set of output goals for the CUT and do(g,Suite) is an output
distance function that takes as input a goal g = 〈M,Vabst〉:

do(g,Suite) =

⎧
⎨

⎩

0 if g is covered by at least one test,
ν(dnum(g,Suite)) if type(M) ≡ Number and g is not covered,
1 otherwise.

In the case of methods declaring numeric return types, the search algorithm is
guided with normalised numeric distances (dnum). For example, if a call to a
method m with integer return type is observed in an execution trace and its
return value is 5 (positive integer), the goal 〈m,+〉 has been covered, and the
distances 5 and 6 are computed for goals 〈m, 0〉 and 〈m,−〉, respectively.

Weak Mutation. Test generation tools typically include values generated to
satisfy constraints or conditions, rather than values developers may prefer; in
particular, anecdotal evidence suggests developers like boundary cases. Test gen-
eration can be forced to produce such values using weak mutation testing, which
applies small code modifications to the CUT, and then checks if there exists a
test that can distinguish between the original and the mutant. In weak mutation,
a mutant is considered to be covered (“killed”) if the execution of a test on the
mutant leads to a different state than the execution on the CUT. A unit test
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suite hence satisfies the Weak Mutation criterion if and only if for each mutant
for the CUT at least one its tests reaches state infection.

The fitness function for the Weak Mutation criterion guides the search using
infection distances with respect to a set of mutation operators [7]. We assume a
minimal infection distance function dmin(μ,Suite) exists and define:

dw(μ,Suite) =
{

1 if mutant μwas not reached,
ν(dmin(μ,Suite)) if mutant μwas reached.

This results in the following fitness function for weak mutation testing:

fWM(Suite) =
∑

µ∈MC

dw(μ,Suite)

where MC is the set of all mutants generated for the CUT.

Exception Coverage. One of the most interesting aspects of test suites not
captured by standard coverage criteria is the occurrence of actual faults. If excep-
tions are directly thrown in the CUTs with a throw statement, those will be
retained in the final test suites if for example we optimise for line coverage.
However, this might not be the case if exceptions are unintended (e.g., a null-
pointer exception when calling a method on a null instance) or if thrown in the
body of external methods called by the CUT. Unfortunately, it is not possible
to know ahead of time the total number of feasible undeclared exceptions (e.g.,
null-pointer exceptions), in particular as the CUT could use custom exceptions
that extend the ones in the Java API.

As coverage criterion, we consider all possible exceptions in each method
of the CUT. However, in contrast to the other criteria, it cannot be defined
with a percentage (e.g., we cannot say a test suite covers 42 % of the possible
exceptions). We rather use the sum of all unique exceptions found per CUT
method as metric to maximise. The fitness function for Exception Coverage is
thus also discrete, and is calculated in terms of the number of exceptions NE ,
explicit and implicit, that have been raised in the execution of all the tests in
the suite:

fEC(Suite) =
1

1 + NE

2.3 Combining Fitness Functions

All criteria considered in this paper are non-conflicting: we can always add new
tests to an existing suite to increase the coverage of a criterion without decreas-
ing the coverage of the others. However, with limited time it may be necessary
to balance the criteria, e.g., by prioritising weaker ones to avoid over-fitting for
just some of the criteria involved. Thus, multi-objective optimisation algorithms
based on Pareto dominance are less suitable than a linear combination of the
different objectives, and we can define a combined fitness function for a set of
n non-conflicting individual fitness functions f1 . . . fn as: fcomp =

∑n
i=1 wi × fi,
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where w1 . . . wn are weights assigned to each individual function which allow for
prioritisation of the fitness functions involved in the composition. Given enough
time, a combined fitness search is expected to have the same result for each
involved non-conflicting fitness function as if they were optimised for individu-
ally.

For some of the above-defined fitness functions, a natural partial order exists.
For instance, Method Coverage subsumes Top-level Method Coverage. The intu-
ition is that we first want to cover all methods, independently of whether they
are invoked directly from a test case statement or not. In turn, Top-level Method
Coverage subsumes No-Exception Top-level Method Coverage, that is, covering
all methods with direct calls from test cases is more general than covering all
methods with direct calls from test cases which do not raise any exception. How-
ever, there is no natural order between other functions like for instance Output
Coverage and Weak Mutation. In this paper, we arbitrarily assign wi = 1 for all
i and leave the question of what are optimal wi values for future work.

3 Experimental Evaluation

In order to better understand the effects of combining multiple coverage criteria,
we empirically aim to answer the following research questions:

RQ1. What are the effects of adding a second coverage criterion on test
suite size and coverage?
RQ2. How does combining of multiple coverage influence the test suite size?
RQ3. Does combining multiple coverage criteria lead to worse performance
of the constituent criteria?
RQ4. How does coverage vary with increasing search budget?

3.1 Experimental Setup

Unit Test Generation Tool. We have implemented the discussed criteria in the
EvoSuite [4] tool for automatic unit test suite generation. EvoSuite uses a
genetic algorithm where each individual is a test suite [5]. Once a test suite has
been generated, EvoSuite applies minimisation in order to optimise the size
of the resulting test suite both in terms of total number of lines of code and in
number of unit tests. For each coverage goal defined by the selected criterion,
a test that covers this goal is selected from the test suite. Then, on a copy of
that test, all statements that do not contribute to satisfaction of the goal are
successively removed. When minimising for multiple criteria, the order in which
each criterion is evaluated may influence the resulting minimised test suite. In
particular, if criterion C1 subsumes criterion C2, then minimising for criterion
C2 first and then for C1 may lead to tests being added during minimisation
for C2, but made redundant later, by tests added during minimisation for C1.
EvoSuite counters this problem with a second minimisation pass where a final
minimised test suite with no redundant tests is produced.
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Subject Selection. We used the SF110 corpus [6] of Java classes for our exper-
imental evaluation. SF110 consists of more than 20,000 classes in 110 projects;
running experiments on all classes would require an infeasibly large amount of
resources. Hence, we decided to select a stratified random sample of 650 classes.
That is, we constructed the sample iteratively such that in each iteration we
first selected a project at random, and then from that project we selected a class
and added it to the sample. As a result, the sample contains classes from all 110
projects, totalling 63,191 lines of code.

Experiment Procedure. For each selected class, we ran EvoSuite with ten dif-
ferent configurations: (1) All fitness functions combined; (2) Only Line Coverage
(baseline); 3-10) For each fitness function f defined in Sect. 2.2 (except Line Cov-
erage) a fitness function combining f and Line Coverage. Combining the other
criteria with Line Coverage instead of using each of them in isolation allows a
more objective evaluation, since not all the fitness functions for these other cri-
teria can provide guidance to the search on their own. Each configuration was
run using two time values for the search: 2 and 10 min. To take the randomness
of the genetic algorithm into account, we repeated the two minutes experiments
40 times, and the 10 min experiments five times.

Experiment Analysis. We used coverage as the main measurement of effective-
ness, for all the test criteria under study. Furthermore, we also analysed the
size of the resulting test suites; as the number of unit tests could be misleading,
we analysed the size of a test suite in terms of its total number of statements.
Statistical analysis follows the guidelines discussed in [3]: We use the Wilcoxon-
Mann-Whitney statistical symmetry test to assess the performance of differ-
ent experiments. Furthermore, we use the Vargha-Delaney Âab to evaluate if a
particular configuration a used on experiments performed better than another
configuration b. E.g, a Âab value of 0.5 means equal performance between con-
figurations; when Âab is less than 0.5, the first configuration (a) is worse; and
when Âab is more than 0.5, the second configuration (b) is worse.

3.2 Results and Discussion

RQ1: What are the effects of adding a second coverage criterion on test suite
size and coverage? Table 1 shows the results of the experiments when using a
two minute timeout for the search. Considering line coverage as baseline, adding
a further coverage criterion does not increase test suite size by a large amount.
For example, adding branch coverage only increases average test suite size from
22.25 statements to 24.92 (a relative 24.92−22.25

22.25 = 12% increase). The largest
increase is for the Exception Coverage testing criterion, which adds a further
28.00 − 22.25 = 5.75 statements on average to the test suites.

Regarding coverage of the criteria, already a basic criterion like line cover-
age can achieve reasonable results. For example, targeting also branch cover-
age explicitly only increases it by 3 % (from 73 % to 77 %). For other criteria,
improvements are higher. For example, we obtain a 88 − 71 = 17% coverage
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Table 1. Coverage results for each configuration, average of all runs for all CUTs. Size
is measured in number of statements in the final minimised test suites.

Criteria Lines Branches D. Branches Methods Top Methods M. No Exc. Exceptions Mutation Output Size

ALL 0.78 0.75 0.75 0.87 0.90 0.88 1.35 0.75 0.64 38.01
Lines 0.78 0.73 0.22 0.81 0.74 0.71 0.45 0.69 0.27 22.25
L. & Branches 0.78 0.77 0.24 0.81 0.74 0.72 0.47 0.70 0.27 24.92
L. & D. Branches 0.78 0.76 0.76 0.87 0.85 0.82 0.48 0.70 0.27 26.73
L. & Methods 0.79 0.73 0.22 0.87 0.80 0.77 0.46 0.70 0.27 22.33
L. & Top Methods 0.78 0.73 0.22 0.87 0.89 0.86 0.48 0.70 0.27 24.89
L. & M. No Exc. 0.78 0.73 0.23 0.87 0.89 0.88 0.40 0.69 0.27 25.26
L. & Exceptions 0.78 0.72 0.22 0.81 0.78 0.70 1.93 0.70 0.27 28.00
L. & Mutation 0.79 0.75 0.23 0.81 0.75 0.72 0.50 0.76 0.27 27.45
L. & Output 0.77 0.71 0.21 0.80 0.77 0.75 0.36 0.69 0.64 23.98

improvement of No-exception Top-level Method Coverage, although with the
need of 25.26 − 22.25 = 3.01 more statements. Of particular interest is the case
of Output coverage, where a 64−27 = 37% increase is achieved with only slightly
larger test suites (less than two statements). The Direct Branch Coverage cri-
terion shows the largest increase (76 − 22 = 54%), which confirms that in the
traditional approach code is often covered through indirect calls; this increase
comes at the cost of 26.73 − 22.25 = 4.48 statements on average.

RQ1: In our experiments, adding a second criterion increased test
suites size by 14%, and coverage by 20% over line coverage test

suites.

RQ2: How does combining of multiple coverage influence the test suite size?
When combining all criteria together, test suite sizes increase substantially, from
22.25 to 38.01 statements. However, we argue that the resulting test suites could
still be manageable for developers: Their size is still less than twice the size of
the average baseline test suite. Interestingly, this increase of 15.76 (38.01−22.25)
is also less than the sum of the increases observed for each criterion in isolation
(25.56). This shows that the criteria are related and lead to coincidental coverage,
where tests covering one particular goal may lead to coverage of other goals.

RQ2: In our experiments, combining all nine criteria increased test
suites size by 70%.

RQ3: Does combining multiple coverage criteria lead to worse performance of
the constituent criteria? When combining different criteria together, the test
generation becomes more complicated. Given the same amount of time, it could
even happen that for some criteria we would get lower coverage compared to
just targeting those criteria in isolation. For example, the class Auswahlfeld
in the SF110 project nutzenportfolio consists of 29 methods, each consisting
of only a single line. There are only 15 mutants, and when optimising for line
coverage and weak mutation all mutations are easily covered within two minutes.
However, when using all criteria, then the number of additional test goals based



104 J.M. Rojas et al.

Table 2. For each criterion, we compare the “All” configuration for that criterion with
the configuration for that criterion and line coverage. Averaged effect sizes are reported
with p-values of the statistical tests of symmetry around 0.5.

Criterion All Just Line & Criterion Avg. Â12 p-value

Line 0.78 0.78 0.47 ≤ 0.001
Branch 0.75 0.77 0.47 ≤ 0.001
Direct Branch 0.75 0.76 0.47 ≤ 0.001
Exception 1.35 1.93 0.43 ≤ 0.001
Method 0.87 0.87 0.50 0.015
Top Method 0.90 0.89 0.50 0.025
Method No Exc. 0.88 0.88 0.51 ≤ 0.001
Mutation 0.75 0.76 0.46 ≤ 0.001
Output 0.64 0.64 0.51 ≤ 0.001

on the many methods (many of which return primitive types) means that on
average after two minutes of test generation only seven mutations are covered.

On the other hand, it is conceivable that coverage criteria can “help each
other”, in the sense that they might smooth the search landscape. For example,
the NewPassEventAction class from the jhandballmoves project in SF110 has
two complex methods with nested branches, and the if statements have complex
expressions with up to four conditions. When optimising method calls without
exceptions, after two minutes the constructor is the only method covered without
exceptions, as the search problem is a needle-in-the-haystack type search prob-
lem. However, if optimising for all criteria, then branch coverage helps reaching
test cases where both methods are called without exceptions.

Table 2 shows the comparison of the “All” configuration on each criterion
with the configuration that optimises line coverage and each particular criterion.
For each class, we calculated the Vargha-Delaney Â12 effect size [3]. For each
configuration comparison, we calculated the average Â12 and ran a Wilcoxon-
Mann-Whitney symmetry test on 0.5, to see if a configuration leads to better or
worse results on a statistically higher number of classes.

There is strong statistical difference in all the comparisons except Method
Coverage and Top-Level Method Coverage, which seem to consist of methods
that are either trivially covered by all criteria, or never covered. For No-exception
Top-level Method Coverage and Output Coverage there is a small increase in
coverage; this is likely because these criteria provide little guidance and benefit
from the combination with criteria with better guidance. For Exception Coverage
targeting all criteria decreases the average number of exceptions substantially
from 1.35 to 1.93, which may be caused by the search focusing more on valid
executions related to branches and mutants, whereas without that the search
becomes more random. For all other criteria there is a decrease in coverage,
although very small (≤ 2%).
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RQ3: Combining multiple criteria leads to a 0.4% coverage decrease
on average; criteria with coarse fitness functions can benefit more
from the combination than criteria with finer grained guidance.

RQ4: How does coverage vary with increasing search budget? Fig. 3 compares the
performance of the “All” configuration with the ones of Line Coverage combined
with each further criterion. Performance is measured with different coverage cri-
teria in each subplot based on the type of comparison. For example, Branch Cov-
erage is used as performance metric when “All” is compared with “Line &Branch”
configuration, whereas Method Coverage is used as performance metric when

Fig. 3. Time analysis, per minute, for each criterion for the “All” configuration com-
pared with just optimising Line Coverage together with each of those criteria, one at
a time.
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“All” is compared with “Line & Method”. Performance is reported through time,
from one minute to ten. The vertical y axes are scaled between the minimum and
maximum value each metric obtained.

Given enough time, the performance between each compared configuration
should converge to the same value. In other words, given enough time, one could
expect that the performance of “All” in each metric would become maximised
and equal to just generating data for that criterion alone. Figure 3 shows that
for the majority of criteria the performance of the “All” configuration remains
slightly below the more focused search, and for Exception Coverage the more
focused search even improves over time. For Output Coverage both configura-
tions seem to converge around ten minutes and for Method Coverage the “All”
configuration even takes a small lead. Overall, these results suggest that 10 min
might not be a long enough time interval to see convergence for all criteria;
possibly there might also be side-effects between the combination of criteria in
the “All” configuration that generate fitness plateaus in the search landscape.
Another possible conjecture is that, because the search in EvoSuite minimises
size as a secondary objective, over time the amount of exploration in the search
space will be reduced, making it more difficult to hit additional targets that are
not closely related to what is already covered. This could in principle be over-
come by keeping an archive of already covered goals and matching tests, and
letting the fitness function focus on uncovered goals.

RQ4: The influence of combining criteria is not limited to early
phases of the search but persists over longer time, and the

combination does not catch up with focused search within ten minutes.

Threats to Validity. To counter internal validity, we have carefully tested our
framework, and we repeated each experiment several times and followed rigorous
statistical procedures in the analysis. To cope with possible threats to external
validity, the SF110 corpus was employed as case study, which is a collection of 100
Java projects randomly selected from SourceForge and the top 10 most popular
projects [6]. We used only EvoSuite for experiments and did not compare
with other tools; however, at least in terms of the generated tests EvoSuite is
similar to other unit test generation tools. Threats to construct validity might
result from our focus on coverage; for example, this does not take into account
how difficult it will be to manually evaluate the test cases for writing assert
statements (i.e., checking the correctness of the outputs).

4 Related Work

Coverage criteria are well established to estimate the quality of test sets [18],
and combinations of criteria have been considered in the context of regression
testing [15]. For example, using multiple criteria can improve the fault detection
ability after minimisation [11], and Yoo and Harman [16,17] combined coverage
criteria with non-functional aspects such as execution time during minimisation.
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Non-functional aspects have also been considered during test generation; for
example, Harman et al. [9] generated tests optimised for branch coverage and
memory consumption. In contrast to this approach, we combine different non-
conflicting functional criteria, and thus do not require specialised multi-objective
optimisation algorithms. In fact, some of the criteria previously implemented in
EvoSuite were already combinations of constituent criteria included in this
paper. For example, the default branch coverage configuration [5] in EvoSuite
combines method and branch coverage. Mutation coverage [7] combines branch
coverage with the infection distances used in this paper.

5 Conclusions

Although structural coverage criteria are well established in order to evaluate
existing test cases, they may be less suitable in order to guide test generation. As
with any optimisation problem, an imprecise formulation of the optimisation goal
will lead to unexpected results: For example, although it is generally desirable
that a reasonable test suite covers all statements of a Class Under Test (CUT),
the reverse may not hold—not every test suite that executes all statements is
reasonable. Indeed the desirable properties of a test suite are multi-faceted.

In this paper, we have tried to identify standard criteria used in practice as
well as functional aspects that are not captured by standard structural coverage
criteria, but are still common practice in object oriented unit testing. We have
implemented a search-based approach to generate test suites optimised for com-
binations of these criteria. Experiments with a sample of open source Java classes
have shown that such a combination does neither mean that the test suite sizes
become unreasonable, nor that the test generation performance suffers. In fact
some aspects can even benefit from the combination, for example when search
guidance in the case of search-based test generation is only coarse. An important
question that remains to be answered in future work is which selection of criteria
matches the expectations of practitioners; for this, we plan to perform controlled
experiments with real programmers.

Besides the criteria used in our experiments, the same approach could also be
applied in order to enhance test generation with other structural criteria, such as
dataflow criteria. On the other hand, there are also non-functional properties of
unit test suites that test generation will have to consider in future research, such
as the readability of the generated unit tests. However, unlike combinations of
functional criteria the inclusion of non-functional aspects may require dedicated
multi-objective optimisation algorithms, as functional and non-functional goals
may be conflicting (e.g., coverage vs. size).
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