
Search-Based Refactoring:
Metrics Are Not Enough

Chris Simons1(B), Jeremy Singer2, and David R. White2

1 Department of Computer Science and Creative Technologies,
University of West England, Bristol BS16 1QY, UK

chris.simons@uwe.ac.uk
2 School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK

{jeremy.singer,david.r.white}@glasgow.ac.uk

Abstract. Search-based Software Engineering (SBSE) techniques have
been applied extensively to refactor software, often based on metrics that
describe the object-oriented structure of an application. Recent work
shows that in some cases applying popular SBSE tools to open-source
software does not necessarily lead to an improved version of the software
as assessed by some subjective criteria. Through a survey of professionals,
we investigate the relationship between popular SBSE refactoring metrics
and the subjective opinions of software engineers. We find little or no
correlation between the two. Through qualitative analysis, we find that a
simple static view of software is insufficient to assess software quality, and
that software quality is dependent on factors that are not amenable to
measurement via metrics. We recommend that future SBSE refactoring
research should incorporate information about the dynamic behaviour of
software, and conclude that a human-in-the-loop approach may be the
only way to refactor software in a manner helpful to an engineer.

Keywords: Search-based software engineering · Metrics · Optimisa-
tion · Software quality

1 Motivation

Search-Based Software Engineering (SBSE) has been extensively applied to
refactor object-oriented software based on metrics that quantify structural prop-
erties of an object-oriented design, such as measures of cohesion, coupling, the
number of classes and the nature of the object hierarchy (e.g. [20,22,27,31]).

Recent work shows that applying SBSE refactoring using metrics to the open-
source Apache Ant project [8] does not result in an improved design as assessed
by an expert. Other work reveals that when refactoring is conducted using a
number of cohesion metrics, there can be disagreement between the metrics [32].

This raises the question of whether metrics are a good guide to software
quality, at least in the context of refactoring. If metrics indicate that a refactored
design is improved, but an engineer does not perceive any improvement, how is
the engineer judging the quality differently? That is, metrics are essentially a
c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 47–61, 2015.
DOI: 10.1007/978-3-319-22183-0 4



48 C. Simons et al.

proxy for something described as software quality, but what exactly is it that
we are trying to find a proxy for? And if we can answer that question, is the
correlation between the metrics we are using and the quality that we trying to
optimise well-established?

In this paper, we try to answer these questions, by placing the ultimate judge-
ment of software quality in the hands of expert industrial software engineers, by
measuring the correlation between metrics used in SBSE and human judgement,
and by examining the articulated justifications for those judgements.

2 Hypothesis

We formulate our hypotheses such that the null hypothesis makes no assumption
of an effect:

– H0: There is no correlation between software metric values and software engi-
neer evaluation of quality for a given software design.

– H1: There is a correlation between software metric values and software engi-
neer evaluation of quality for a given software design.

3 Survey Design

The goal of our survey is to ask software engineers for their evaluation of a
set of software designs in order to compare their impressions of design quality
with scores derived from metrics. We chose to conduct a survey of software
engineers by means of an online questionnaire. The selection of appropriate
software designs, design qualities, metrics and engineers for the questionnaire
requires careful consideration. Thus drawing upon best survey practice (e.g.
[13,14,17,29]), each of these components is described as follows.

3.1 Selection of Software Designs

We included two problem domains to strengthen the generality of our findings.
Examples needed to be large enough to be meaningful to an engineer whilst
not imposing excessive cognitive load and hence fatigue. We sought industrial
benchmark designs, but none were readily available, and therefore two standard
examples were selected: the Automated Teller Machine [12] and a nautical cruise
booking system [5]. To reduce cognitive load, we used the Unified Modelling
Language (UML) [33], widely heralded as “the lingua franca” of object-oriented
modelling [35]. We explored the idea of using refactoring tools (e.g. CodeImp
[31]) to generate designs, but no available tool met our requirements. Thus we
invited five experienced software engineers to produce class designs for the two
problems. Minor adjustments were made to the ten designs to ensure both a
consistent level of abstraction and a range of metric scores.



Search-Based Refactoring: Metrics Are Not Enough 49

3.2 Selection of Design Qualities

There exist a variety of software design quality definitions, including those
from the International Standards Organisation and International Electrotechnical
Commission (ISO/IEC 25010:2011) [21]. We drew inspiration from studies relat-
ing design qualities to corresponding properties and metrics (e.g. [24]). Bansiya
and Davis [7] propose a Quality Model for Object-Oriented Design (QMOOD)
that is popular in the literature and offers a hierarchical model of qualities,
properties and metrics together with mappings between them. QMOOD defines
six qualities: reusability, flexibility, understandability, functionality, extendibility
and effectiveness (see [7], Table 1). While such quality attributes are good candi-
dates for use in our survey, we considered that evaluating six qualities would place
an unreasonable cognitive load on respondents, and so we focused on the most
problem-domain independent qualities i.e. the first three. The Bansiya and Davis
definitions of reusability, flexibility and understandability are given in Table 1.

3.3 Selection of Metrics

In order to select suitable metrics for the experiment, we conducted a simple
review of the SBSE literature. We drew upon previous metrics reviews [24,38]
and guidelines for conducting systematic literature surveys [25,26].

We addressed the question: what is the distribution of software metrics among
the SBSE refactoring literature? We chose to rely upon the SBSE Repository [39]
and through a simple search query of “software metrics”, extracted 57 papers.
We narrowed this list, by examining their titles, abstracts, introductions and
conclusions. Examples of excluded sources included papers on software defect
prediction and effort estimation. This process yielded 23 papers.

Our analysis reveals 118 different metrics used in the 23 sources. The metrics
relate mostly to structural integrity such as cohesion and coupling, but measures
of design size, complexity and elegance are also present. Of the 118 metrics,
only three individual metrics — Lack of Cohesion of Methods (LCOM) and its
variants, Module Quality (MQ) and Evaluation Metric (EVM) — are reported in

Table 1. Bansiya, Davis [7] definitions of reusability, flexibility, understandability

Quality attribute Definition

Reusability Reflects the presence of object-oriented design characteristics
that allow a design to be reapplied to a new problem without
significant effort

Flexibility Characteristics that allow the incorporation of changes in a
design. The ability of a design to be adapted to provide
functionally related capabilities

Understandability The properties of a design that enable it to be easily learned and
comprehended. This directly relates to the complexity of the
design structure



50 C. Simons et al.

Table 2. Metrics and papers reporting use

Metrics Papers reporting use

MQ Azar, 2009 [6], Glavas, 2011 [15], Glavas, 2011b [16], Harman,
2004 [18], Harman, 2005 [19]

EVM Barros, 2013 [8], Harman, 2005 [19]

LCOM and variants Azar, 2009 [6], Barros, 2013 [8], Ó Cinnéide, 2012 [32], Koc,
2012 [28]

QMOOD suite Jensen, 2010 [22], O’Keeffe, 2007 [34]

more than one paper; the use of only one suite of metrics (QMOOD) is reported
twice. These results are illustrated in Table 2.

In selecting the metrics to be evaluated, we considered that those found in
multiple were a reflection of wider use in the field. We first considered LCOM,
MQ and EVM. However, LCOM relies on knowledge of implementation depen-
dencies e.g. what methods use which attributes in a class, while MQ and EVM are
metrics for dependency-based module clustering. All typically require program-
ming language source code for calculation. Alternatively, the QMOOD metrics
suite is used in two studies, and the metrics may be mapped to design quality
attributes [7], which is consistent with our chosen hypothesis.

Inspection of the 11 QMOOD metrics reveals that their straightforward com-
putation makes them amenable to evaluation on both human-produced design
models and programming language source code. Closer analysis reveals that 3
of the metrics i.e. Design Size in Classes (DSC), Direct Class Coupling (DCC)
and Number of Methods (NOM) are readily applicable to the human-generated
design models. Metrics relating to inheritance (Number Of Hierarchies, NOH,
Average Number of Ancestors, ANA) are excluded as only six of the final designs
show inheritance, with only one class hierarchy each.

Thus DSC, DCC and NOM have been selected from the QMOOD suite for
use in the experiment. Two other metrics were selected: Numbers among classes
(NAC) [37], and Numbers of Attributes and Methods (NOAM). NAC was chosen
as it had been used previously by Barros and Farzat [8] to relate design improve-
ments to understandability. The NOAM metric was introduced to cater for any
influence of the number of attributes in a design, which was otherwise lacking.
Both NAC and NOAM are readily calculated for human-generated designs.

3.4 Correlation Analysis

We use correlation analysis to compare the chosen metrics to the opinions of
engineers. Whether our conclusions apply to the derivation of high-level prop-
erties from metrics in suites such as QMOOD depends greatly on how those
suites use metric values. For example, in a weighted-sum method there may be
a trade-off between two metrics in defining a high-level quality, and thus corre-
lation analysis may be insufficient to validate such an approach. However, the



Search-Based Refactoring: Metrics Are Not Enough 51

weightings involved may be somewhat arbitrary — how can you compare an
increase in design size against a reduction in cohesion? The range of metric val-
ues is also problem-specific, therefore it is likely that one metric will dominate
another, and a simple correlation analysis will be sufficient in such cases. To fully
evaluate QMOOD and similar approaches, it would be necessary to evaluate all
of the metrics employed in any given suite, which is impractical in a survey of
this type, and thus we must focus on the evaluation of individual metrics.

3.5 Target Population

In selecting the target population of software engineers, we concluded that indus-
trial practitioners would provide the best audience given the aim of the survey.
We considered that academics should not be targeted as their design experience
might be confined to educational software design. The sampling frame of the
target population was achieved by inviting members of the Association of C and
C++ Users (ACCU) [1] and the British Computer Society (BCS) [10] — two
organisations prominent in promoting professionalism and best practice in soft-
ware design and development. We investigated the possibility of using Amazon
Mechanical Turk (AMT) [4], but this required US residency.

4 Questionnaire Design

We wished to present a design of meaningful size and complexity without cog-
nitively overloading the engineer. We chose two case studies and five solutions
to each; the designs are online [36], together with their calculated metrics val-
ues (DSC, DCC, NOM, NAC and NOAM). Designs were presented at random
to the participants, one model per participant. To capture their judgement of
design qualities, we used a Likert Scale with seven levels: “strongly disagree”,
“disagree”, “somewhat disagree”, “neutral”, “somewhat agree”, “agree” and
“strongly agree”. We asked participants to provide rationale for their judge-
ments, and analysed responses using thematic coding. We requested a partici-
pant’s number of years of design and development experience, as well as their
opinion of their own design expertise and confidence on the same Likert Scale.

Informed consent was obtained from participants prior to conducting the
questionnaire and participant withdrawal was possible at any point. Any per-
sonal data recorded, e.g. email addresses, was entirely at the discretion of the
participant. All survey information was strictly confidential and published survey
information is reported either as aggregate data or is anonymised.

Full details of our questionnaire design are available [36]. Pretesting (see [13],
Chap. 10) was conducted. Five experienced software engineers undertook the draft
questionnaire and their response experiences evaluated with respect to:

– Assimilation: respondents reported being able to satisfactorily attend to and
remember relevant questions and instructions.

– Comprehension: respondents also reported being able to understand the ques-
tions and definitions of the three design qualities.



52 C. Simons et al.

– Recall: some respondents found difficulty in recalling a design when completing
their evaluation. As a result, “back” buttons were made more explicit.

– Reporting: respondents reported that Likert scales and the free text response
answers were clear and offered adequate opportunity for responses.

We used SurveyGizmo as our survey platform, as it supports sufficient logic
to enable the randomisation of problem description and model assignments we
required. As an incentive for participation, we also offered participants the oppor-
tunity to be entered into a prize draw.

5 The Survey Process

Our survey was open from 18 January to 28 February 2015, a total of 42 days.
Invitations to participate were dispatched to approximately 900 ACCU [1] mem-
bers and 200 members of the Bristol (UK) branch of the BCS [11]. An invitation
to participate in the survey was also posted on a discussion forum via the BCS
Members’ Group on LinkedIn [30] to which approximately 11,000 BCS practi-
tioners have access, although the number of regular contributors is much lower.

Some lively comments were posted to the LinkedIn forum. Despite piloting
the questionnaire, a number of participants posted feedback stating that it was
not realistic to form an impression of design qualities using a UML class model
in isolation from other aspects of software development e.g. dynamic models of
behaviour, requirements, test plan etc. (although this is exactly what search-
based refactoring is doing). One forum contributor remarked to the authors of
the survey: “it seems your idea of what quality is and how to judge it is not the
same as many of us in the industry,” foreshadowing our survey results.

6 Results

A total of 50 responses was received, although we discarded one of these (see
Sect. 8). We were pleased to receive 50 responses and we are grateful to those
engineers who gave up the time to carefully examine the case studies.

Years

F
re

qu
en

cy

0 10 20 30 40

0
2

4
6

8
10

Fig. 1. Histogram of the programming experience of our respondents



Search-Based Refactoring: Metrics Are Not Enough 53

The distribution of engineers’ experience is given in Fig. 1, which illustrates
that our respondents were on the whole very experienced. We asked them to
rate their expertise in the area of software design, and their confidence in their
own judgement — the results are shown in Fig. 2. We are very confident of the
experience and expertise of our respondents.

We divide our results between responses to the quantitative questions, where
we asked respondents to rate the qualities of software on a Likert scale, and the
qualitative answers, where asked them to justify their quantitative responses.

10%

50%

76%

16%

14%

34%

Expert

Confidence

100 50 0 50 100
Percentage

Response Strongly Disagree Disagree Somewhat Disagree Neutral Somewhat Agree Agree Strongly Agree

Fig. 2. Respondents’ self-assessed significant expertise in software design and confi-
dence in their ratings of the models

6.1 Quantitative Results

In order to test our hypothesis, we perform correlation analysis on the relation-
ship between the responses of those surveyed and the selected metrics. Engineers
were asked three questions: whether they agreed that the design was Under-
standable, Reusable, and Flexible. These questions required a Likert response
on a seven-step scale from “strongly disagree” to “strongly agree”. We plotted
responses against the corresponding value of each software metric for that design.

Figure 3 gives correlation plots for each quality. A score of one corresponds
to “strongly disagree”. Table 3 gives the Spearman’s Rank Coefficient for each
correlation. We observe from these results that there is almost no correlation
between the perception of software engineers and the metrics. We then performed
a two-sided significance test against the Spearman’s Rank coefficients, and the
p-values are given in Table 4. No correlations were significant at the 0.05 level.

Thus, we are unable to refute our null hypothesis H0. This is quite a signifi-
cant result: if we assume that our experimental results are valid (see Sect. 8 for
threats to validity) and that they generalise to other object designs, then the
metrics we are examining are not helpful in improving these software qualities.



54 C. Simons et al.

DSC

DCC

NOM

NAC

NOAM

DSC

DCC

NOM

NAC

NOAM

DSC

DCC

NOM

NAC

1
2

3
4

5
6

7

6 8 12 16

1
2

3
4

5
6

7

5 10 15 20 25 30

1
2

3
4

5
6

7

15 20 25 30 35 40

1
2

3
4

5
6

7

1.0 1.5 2.0 2.5

1
2

3
4

5
6

7

30 50 70 90

1
2

3
4

5
6

7

6 8 12 16

1
2

3
4

5
6

7

5 10 15 20 25 30

1
2

3
4

5
6

7

15 20 25 30 35 40

1
2

3
4

5
6

7

1.0 1.5 2.0 2.5

1
2

3
4

5
6

7

30 50 70 90

1
2

3
4

5
6

6 8 12 16

1
2

3
4

5
6

5 10 15 20 25 30

1
2

3
4

5
6

15 20 25 30 35 40

1
2

3
4

5
6

1.0 1.5 2.0 2.5

1
2

3
4

5
6

30 50 70 90

F
lexible

NOAM

Fig. 3. Correlation between expert opinion of three software qualities and five software
metrics



Search-Based Refactoring: Metrics Are Not Enough 55

Table 3. Spearman’s Rank coefficients for the correlation between our metrics and
human judgement (to 3 s.f.)

Quality DSC DCC NOM NAC NOAM

Understandable −0.128 −0.271 −0.203 −0.0400 0.103

Reusable −0.0280 −0.158 −0.195 −0.200 0.0572

Flexible 0.0386 −0.0806 −0.0677 −0.0613 0.202

Table 4. P-values for a two-sided test of the Spearman’s Rank correlation coefficients
in Table 3 (to 3 s.f.)

Quality DSC DCC NOM NAC NOAM

Understandable 0.375 0.0571 0.156 0.783 0.478

Reusable 0.847 0.272 0.174 0.163 0.693

Flexible 0.790 0.578 0.640 0.672 0.160

6.2 Qualitative Results

We were intrigued as to why there was no correlation between the quality metrics
and the judgement of software engineers. In particular, we wished to understand
the thought processes of software engineers: what makes one design better than
another? We asked the engineers to justify their judgements in prose.

We then coded their responses as per grounded theory ([14] Chap. 4, [29]
Chap. 11), an inductive process where text responses are categorised in order to
derive trends from textual responses. This process is somewhat subjective; two
of the authors coded the data independently and then resolved their differences
through comparison and discussion. We divide the coding results between the
three questions, and the results are given in Tables 5, 6 and 7. The frequency
column indicates the number of responses that fell into a given category; a single
response may fall into multiple categories. We make the following observations:

Table 5. Classifications for rationale behind judgement of “Understandable”

Coding Frequency

Needs something more (dynamics, context, reqts, rationale etc.) 22

Incorrect or unclear responsibility assignment 13

Clear traceability to problem domain 10

Clear breakdown of purpose 6

Clear element naming 5

Missing abstractions 4

No response or no explanation 3

Poor layout 1



56 C. Simons et al.

Table 6. Classifications for rationale behind judgement of “Flexible”

Coding Frequency

Parts of the design should be easy to modify 12

Problem specific 11

Needs something more (dynamics, context, reqts etc.) 8

Incorrect or missing abstractions 8

Class coupling 5

Incorrect/unclear responsibility assignment 2

Separation of concerns 2

Hard to test 1

Simplistic 1

No response/no clear explanation 8

Table 7. Classifications for rationale behind judgement of “Reusable”

Coding Frequency

Problem specific 24

Parts of the design are reusable, others not 18

Class coupling 5

Needs something more (dynamics, context, reqts etc.) 5

Incorrect abstractions 3

Lack of object-oriented design 2

Separation of concerns 2

OO languages 1

Simplistic 1

No response 1

A Class Diagram is Not Enough. The responses reflect the conversation on
the professional network LinkedIn (see Sect. 5). It is clear that our respondents
are unable to assess the design of a system based solely on the class diagram; for
example, one respondent commented on their ability to understand the system:

“[A class diagram] offers no information about the interactions, pro-
cedures or validations and therefore is a really superficial view of the
software design”

We agree with this comment, and we are unaware of any object-oriented
SBSE refactoring that takes as input a description of the dynamic behaviour of
a system design. How can we expect to imitate the judgement of a software engi-
neer if we do not take into account the same information? The most commonly
request was for information about system behaviour.



Search-Based Refactoring: Metrics Are Not Enough 57

The Problem Domain Matters. Another trend was the relationship between
the design and the problem domain: from fundamental decisions such as the
names given to objects and associations, to the high-level mapping between
requirements and the model, it is clear that judging the model in isolation from
the problem domain is not meaningful to an engineer. Many comments referred
to the problem domain, or the way in which the problem had been analysed.

Qualities Have Meaning only in a Given Context. When considering a
given quality, there is a need for context. Many comments were along the lines
of “Reusable for what purpose?” or “Reusability depends on context. . . ”. It is
not enough to look at the high-level structure alone:

“Reusability is about more than just a class diagram and function def-
inition. It’s about how the software is actually written and this can be
good or bad”.

“Re-use only has meaning if it itself is defined/scoped, tested and man-
aged as part of the project”.

We may also consider parts of a model as representing distinct contexts:
respondents pointed out that the qualities may vary across different parts of the
model. It is perhaps naive to expect to holistically optimise a system.

Good Design is Intuitive. There was a clear difficulty amongst some respon-
dents in articulating their thought processes, as if it involved some aesthetic
judgement: for example, some replies included: “My guts says no”, “Seems to fit
together well”, “intuitive”. Such responses appear to resonate with the design
patterns notion of Quality Without a Name [2], generally taken to mean that
good quality is something that can be recognised, but difficult to describe in
words: i.e. “you know it when you see it”.

Our Standard Metrics Play a (Minor) Part. The aspects of the model that
could be judged by our respondents do indeed overlap with the intentions of our
chosen metrics. For example, engineers consider the object hierarchy, separation
of concerns, cohesion, and division of responsibilities as important elements in
judging design quality. However, these properties are given minor consideration
in their responses compared to the central concerns mentioned above.

7 Related Work

Although examples of related empirical investigations are not abundant in the
literature, Katmarksi and Koschke [23] conducted an empirical study to investi-
gate whether complexity metrics agree with programmer opinion. They selected
examples of Java source code for programmer complexity evaluation, and applied



58 C. Simons et al.

a variety of control-flow and data-flow complexity metrics. Among 200 partici-
pants, they report some matching of programmer ranking with complexity met-
rics, although participants were presented with small Java methods (12–51 lines
of code) and object-oriented design aspects were ignored. Moreover, the 200 par-
ticipants were drawn from a sample of students and academics, and Katmarksi
and Koschke suggest that “professional programmers might report differently”.

Ó Cinnéide et al. [32] conducted a rigorous investigation into refactoring
metrics — rather than refactoring source code, their goal was to assess the soft-
ware metrics that guide the automated refactoring through repeated refactoring
experiments. They investigated five cohesion metrics using eight real-world Java
systems, involving 300,000 lines of code and over 3,000 refactorings. The authors
report that the cohesion metrics disagreed with each other in 55 % of cases. It is
also interesting to note the disagreement among metrics alongside the disagree-
ment in software engineers’ impressions of software qualities in this experiment.

Recent studies by Bavota et al. [9] investigate possible relationships between
metrics, code smells and developer refactoring activities. They mined the evolu-
tion history of three Java open source projects to investigate whether refactoring
activities occur on code components for which certain indicators such as quality
metrics or the presence of smells as detected by tools suggest there might be
need for refactoring operations. Their results indicate that, more often than not,
quality metrics do not show a clear relationship with refactoring. In other words,
refactoring operations are generally focused on code components for which qual-
ity metrics do not suggest there might be need for refactoring operations. Such
findings do seem to resonate with the lack of correlation between quality metrics
and software engineer impressions of software qualities found in this experiment.

8 Threats to Validity

The biggest weakness of the survey is that the class models are small educa-
tional examples. This was constrained by two factors: the screen space used to
display designs, and the cognitive overhead on respondents to understand the
requirements and design sufficiently to answer our questions. As a consequence,
we excluded metrics that are only meaningful when considering larger models
(for example, those measuring the inheritance hierarchy). We spent much time
selecting and refining our case studies, after considering various approaches and
problems, and decided upon those that we considered to be as large as the afore-
mentioned restrictions would allow.

The qualities are often discussed informally within software engineering with-
out attention to their precise meaning. To reduce the risk of ambiguity, we
included definitions within the survey. Respondents were free to move between
the survey pages, meaning they could return to the definitions as necessary, and
indeed some respondents quoted our definitions within their rationale.

With any survey, there is a danger of bias in terms of the respondent popu-
lation. We tried to avoid this by targeting a specific set of organisations directly
relevant to the study, i.e. software engineers, through a set of professional insti-
tutions. One final lesson we learnt from the process is that we did not pilot the



Search-Based Refactoring: Metrics Are Not Enough 59

survey sufficiently. For example, it transpired that the survey did not work on
all mobile devices, which may have skewed our sample.

9 Conclusions

9.1 Refactoring Metrics Are Not Correlated with Human
Judgement

In Sect. 6.1, we were unable to refute the null hypothesis that there is no cor-
relation between these standard SBSE refactoring metrics and software quality.
Thus we are unable to support the conjecture that SBSE refactoring tools rely-
ing solely on these metrics will consistently propose useful refactored models to
engineers. Whilst we dealt with only a subset of available metrics and two exam-
ple problems, our qualitative results suggest that this statement will generalise
to other metrics and problem domains, simply because metrics do not take into
account the information required to make a sound judgement.

9.2 Wider Lessons Regarding Refactoring

We conclude from our qualitative analysis that metrics based on an object-
oriented design are insufficient to optimise software quality. Furthermore, no
simple metrics will be able to entirely capture the essential aspects of a software
design used by human engineers when making judgements of software qualities.

Software is inextricably connected to a problem domain, and attempting to
treat the design of a system in isolation disregards this connection. We note the
recent advances in Machine Learning and automatic programming to address
such concerns e.g. [3], and do not discount that such developments could one
day solve the problem of machine judgement of software quality. However, with-
out such advances we recommend that, although not novel, human-in-the-loop
systems are the only viable method for automated refactoring tools that produce
meaningful solutions.

Future work could include repeating the exercise but including some form of
design concerning the dynamic behaviour of each system. The lack of a dynamic
view (for example, a statechart) was the most common complaint amongst
respondents, and it would be interesting to see how this affects their ability
to discern the qualities of the software design, as well as the impact it may have
on the articulation of their rationale. However, we suspect that such an experi-
ment may be subject to very low response rates, and we recommend a smaller
focus-group approach involving observed exercises and interviews.

Omitting information that could deanonymise a respondent, the data gath-
ered and used to produce the figures in this paper are online [36].

Acknowledgements. We would like to thank our colleagues at UWE for their help in
the design of the survey; Mel Ó Cinnéide and Iman Hemati Moghadam for generously
sharing code; Per Runeson for his insightful advice; the professional organisations the
ACCU and BCS for permitting mailshots to their members; and we are very especially
grateful to all those who took the time to respond to the survey.



60 C. Simons et al.

References

1. ACCU: Association of C and C++ Users. http://www.accu.org/. Accessed: 3 June
2015

2. Alexander, C.: The Timeless Way of Building, vol. 1. Oxford University Press,
Oxford (1979)

3. Amal, B., Kessentini, M., Bechikh, S., Dea, J., Said, L.B.: On the use of machine
learning and search-based software engineering for Ill-defined fitness function:
a case study on software refactoring. In: Le Goues, C., Yoo, S. (eds.) SSBSE 2014.
LNCS, vol. 8636, pp. 31–45. Springer, Heidelberg (2014)

4. AMT: Amazon Mechanical Turk. http://www.mturk.com/mturk/welcome/.
Accessed: 3 June 2015

5. Apperly, H., Hofman, R., Latchem, S., Maybank, B., McGibbon, B., Piper, D.,
Simons, C.: Service- and Component-based Development. Addison-Wesley (2003)

6. Azar, D., Harmanani, H., Korkmaz, R.: A hybrid heuristic approach to opti-
mize rule-based software quality estimation models. Inf. Softw. Technol. 51(9),
1365–1376 (2009)

7. Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality
assessment. IEEE Trans. Softw. Eng. 28(1), 4–17 (2002)

8. de Oliveira Barros, M., de Almeida Farzat, F.: What can a big program teach us
about optimization? In: Ruhe, G., Zhang, Y. (eds.) SSBSE 2013. LNCS, vol. 8084,
pp. 275–281. Springer, Heidelberg (2013)

9. Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R., Palomba, F.: An experimental
investigation on the innate relationship between quality and refactoring. J. Syst.
Softw. 107, 1–14 (2015)

10. BCS: British Computer Society. http://www.bcs.org/. Accessed: 3 June 2015
11. BCS-BRISTOL: British Computer Society Bristol Branch. http://www.bristol.bcs.

org.uk/. Accessed: 3 June 2015
12. Bjork, R.: ATM Simulation. http://www.math-cs.gordon.edu/courses/cs211/

ATMExample/. Accessed: 3 June 2015
13. Blair, J., Czaja, R., Blair, E.: Designing Surveys: A Guide to Decisions and Pro-

cedures. Sage Publications, London (2014)
14. Gibbs, G.: Analysing Qualitative Data. Sage Publications, London (2007)
15. Glavas, G., Fertalj, K.: Metaheuristic approach to class responsibility assignment

problem. In: Proceedings of the ITI 33rd International Conference on Information
Technology Interfaces (ITI). IEEE (2011)

16. Glavaš, G., Fertalj, K.: Solving the class responsibility assignment problem using
metaheuristic approach. J. Comput. Inf. Technol. 19(4), 275–283 (2011)

17. Groves, R., Fowler, F., Couper, M., Lepkowski, J., Singer, E., Tourangeau, R.:
Survey Methodology. Wiley, New York (2004)

18. Harman, M., Clark, J.: Metrics are fitness functions too. In: Proceedings of the
10th International Symposium on Software Metrics. IEEE (2004)

19. Harman, M., Swift, S., Mahdavi, K.: An empirical study of the robustness of two
module clustering fitness functions. In: GECCO 2005. ACM (2005)

20. Harman, M., Tratt, L.: Pareto optimal search based refactoring at the design level.
In: GECCO 2007. ACM (2007)

21. ISO/IEC: Standard 25010:2011. http://www.iso.org/iso/catalogue detail.htm?
csnumber=35733. Accessed: 3 June 2015

22. Jensen, A., Cheng, B.: On the use of genetic programming for automated refactor-
ing and the introduction of design patterns. In: GECCO 2010. ACM (2010)

http://www.accu.org/
http://www.mturk.com/mturk/welcome/
http://www.bcs.org/
http://www.bristol.bcs.org.uk/
http://www.bristol.bcs.org.uk/
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733


Search-Based Refactoring: Metrics Are Not Enough 61

23. Katzmarski, B., Koschke, R.: Program complexity metrics and programmer opin-
ions. In: Proceedings of the 20th International Conference on Program Compre-
hension (ICPC). IEEE (2012)

24. Khan, Y., Khararah, O.: A systematic review on the relationships between
MOOD/QMOOD metrics and external software quality attributes. Technical
report, Department of Information and Computer Science, King Fahd University
of Petroleum and Minerals, Dhahran, Saudi Arabia (2014)

25. Kitchenham, B.: Guidelines for performing systematic literature reviews in soft-
ware engineering. Technical report, EBSE-2007-01, School of Computer Science
and Mathematics, Keele University, Keele, Staffs, ST5 5BG, United Kingdom
(2007)

26. Kitchenham, B., Mendes, E., Travassos, G.: A systematic review of cross-vs. within-
company cost estimation studies. In: Proceedings of the 10th International Con-
ference on Evaluation and Assessment in Software Engineering. British Computer
Society (2006)

27. Koc, E., Ersoy, N., Andac, A., Camlidere, Z., Cereci, I., Kilic, H.: An empirical
study about search-based refactoring using alternative multiple and population-
based search techniques. In: Gelenbe, E., Lent, R., Sakellari, G. (eds.) Computer
and Information Sciences II, pp. 59–66. Springer, London (2012)

28. Koc, E., Ersoy, N., Camlidere, Z.S., Kilic, H.: A web-service for automated software
refactoring using artificial bee colony optimization. In: Tan, Y., Shi, Y., Ji, Z. (eds.)
ICSI 2012, Part I. LNCS, vol. 7331, pp. 318–325. Springer, Heidelberg (2012)

29. Lazar, J., Feng, J., Hochheiser, H.: Research Methods in Human-Computing Inter-
action. Wiley, New York (2010)

30. LinkedIn: LinkedIn Professional Network. https://uk.linkedin.com/. Accessed: 3
June 2015

31. Moghadam, I., Ó Cinnéide, M.: Code-Imp: a tool for automated search-based refac-
toring. In: Proceedings of the 4th Workshop on Refactoring Tools (WRT 2011).
ACM Press (2011)

32. Ó Cinnéide, M., Tratt, L., Harman, M., Counsell, S., Moghadam, I.: Experimental
assessment of software metrics using automated refactoring. In: Proceedings of
the ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement. ACM (2012)

33. Object Management Group: Unified Modelling Language. http://www.uml.org/.
Accessed: 3 June 2015

34. O’Keeffe, M., Ó Cinnéide, M.: Automated design improvement by example. In:
Frontiers in Artificial Intelligence and Applications, vol. 161, p. 315 (2007)

35. Petre, M.: UML in practice. In: Proceedings of the International Conference on
Software Engineering (ICSE). IEEE (2013)

36. Simons, C., Singer, J., White, D.R.: Survey Materials and Data. http://www.cems.
uwe.ac.uk/∼clsimons/MetricsAreNotEnough/. Accessed: 3 June 2015

37. Simons, C., Parmee, I.: Elegant object-oriented software design via interactive,
evolutionary computation. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev.
42(6), 1797–1805 (2012)

38. Sjoberg, D., Anda, B., Mockus, A.: Questioning software maintenance metrics: a
comparative case study. In: Proceedings of the ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Measurement. ACM Press (2012)

39. Zhang, Y.: SBSE repository. http://crestweb.cs.ucl.ac.uk/resources/sbse
repository/. Accessed: 3 June 2015

https://uk.linkedin.com/
http://www.uml.org/
http://www.cems.uwe.ac.uk/~clsimons/MetricsAreNotEnough/
http://www.cems.uwe.ac.uk/~clsimons/MetricsAreNotEnough/
http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/
http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

	Search-Based Refactoring: Metrics Are Not Enough
	1 Motivation
	2 Hypothesis
	3 Survey Design
	3.1 Selection of Software Designs
	3.2 Selection of Design Qualities
	3.3 Selection of Metrics
	3.4 Correlation Analysis
	3.5 Target Population

	4 Questionnaire Design
	5 The Survey Process
	6 Results
	6.1 Quantitative Results
	6.2 Qualitative Results

	7 Related Work
	8 Threats to Validity
	9 Conclusions
	9.1 Refactoring Metrics Are Not Correlated with Human Judgement
	9.2 Wider Lessons Regarding Refactoring

	References


