
Márcio Barros
Yvan Labiche (Eds.)

 123

LN
CS

 9
27

5

7th International Symposium, SSBSE 2015
Bergamo, Italy, September 5–7, 2015
Proceedings

Search-Based
Software Engineering

Lecture Notes in Computer Science 9275

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Márcio Barros • Yvan Labiche (Eds.)

Search-Based
Software Engineering
7th International Symposium, SSBSE 2015
Bergamo, Italy, September 5–7, 2015
Proceedings

123

Editors
Márcio Barros
Federal University of Rio de Janeiro State
Rio de Janeiro
Brazil

Yvan Labiche
Carleton University
Ottawa, ON
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-22182-3 ISBN 978-3-319-22183-0 (eBook)
DOI 10.1007/978-3-319-22183-0

Library of Congress Control Number: 2015945149

LNCS Sublibrary: SL2 – Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Message from the SSBSE 2015 General Chair

It was my pleasure to welcome all SSBSE 2015 delegates to the beautiful city of
Bergamo in Italy. After Benevento (2009) and Riva del Garda (2012), this was the third
time Italy hosted SSBSE. Italian researchers have been active from the inception of this
event and the interest in search-based approaches to software engineering has seen a
steady growth in Italy as well as outside Italy in recent years. The city of Bergamo is
structured in two levels. The lower city (in Italian, “città bassa”) is more modern and
dynamic, while the famous upper city (“città alta”), built up on the hills, boasts a
stunning historic center with an extremely rich heritage of art and history. The two
cities are separated by the powerful Venetian Walls.

For the third time in its history, SSBSE was co-located with the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE), offering par-
ticipants a unique opportunity to be exposed to the most recent advancements in the
wide software engineering area and in the specific area of search-based software
engineering.

The organization of SSBSE 2015 was the result of a collective effort and as General
Chair of the symposium I am grateful to all the people who contributed. It was my
pleasure to have the possibility of working with them. The Program Chairs, Márcio
Barros and Yvan Labiche, were able to put together a great Research Track, including
new stimulating research directions and results that span all areas of software engi-
neering, from software design and construction, to verification and validation. Shin
Yoo and Leandro Minku attracted a high number of excellent submissions in the
Challenge Track, featuring three whole sessions in this edition of the symposium. My
gratitude goes to Federica Sarro, who managed the papers submitted to the Graduate
Student Track and to the Short Paper Track. The program includes two outstanding
keynote speakers, Prof. Kenneth A. De Jong from George Mason University and Dr.
William Langdon from University College London. The high quality of the program
stems from the reviewing activities carried out by the members of the Program
Committee and, last but not least, from the research work of all the authors. I wish to
thank them all.

I would also like to thank the Publicity Chair, Yuanyuan Zhang, the Web Chair,
Roberto Tiella, and the Local Chair, Angelo Gargantini. I am grateful to Springer for
publishing the proceedings of SSBSE 2015. The Steering Committee of SSBSE,
chaired by Mark Harman, provided invaluable guidance and suggestions; previous
General Chairs, Gordon Fraser and Jerffeson Teixeira de Souza, gave me extremely
useful tips. Coordination with the ESEC/FSE General Chair, Elisabetta Di Nitto, was
crucial in maximizing the synergies between the two events. Annalisa Armani and her
colleagues at Fondazione Bruno Kessler constantly assisted me in the financial and
logistic organization of the event.

Financial support from the sponsors, Fondazione Bruno Kessler, Huawei, and
CREST, was fundamental for keeping the registration fees low and ensuring at the

same time a rich and exciting social program, including a banquet in the upper city of
Bergamo. A special thank you goes to Huawei, for sponsoring two best paper awards in
the Research Track and one best paper award in the Graduate Student Track, and to
CREST, for sponsoring the Challenge Track award.

September 2015 Paolo Tonella

VI Message from the SSBSE 2015 General Chair

Message from the SSBSE 2015 Program Chairs

On behalf of the SSBSE 2015 Program Committee, it is our pleasure to present the
proceedings of the 7th International Symposium on Search-Based Software Engi-
neering, held in the beautiful city of Bergamo, Italy. SSBSE 2015 continued a strong
tradition of bringing together the international SBSE community in an annual event to
discuss and to celebrate progress in the field.

This year, SSBSE matched last year’s record number of submissions, totaling 51
submissions, all tracks included. Authors from 15 countries and all continents sub-
mitted their work to the symposium: Europe (Belgium, France, Germany, Italy, The
Netherlands, Norway, Sweden, Switzerland, the UK), Asia (China, India), America
(Brazil, Canada, the USA), Oceania (Australia), and Africa (Algeria). We would like to
thank them all, regardless of acceptance or rejection, for making the review process and
the conference very interesting for everyone. Specifically, we received 26 papers to the
research track, 13 papers to the challenge track, eight short papers, and four student
papers. At the end of the review process, where each submitted paper was reviewed by
at least three SBSE researchers, 12 papers were accepted to the research track, all
submitted papers were accepted to the challenge track, four short papers and two
student papers were accepted.

We would like to thank the members of the SSBSE 2015 Program Committee. Their
continuing support has been essential in further improving the quality of accepted
submissions and the resulting success of the conference. We also wish to especially
thank the General Chair, Paolo Tonella. Paolo and his team managed to keep the
organization of every single aspect under control, making the conference a special
event to all of us. In addition, we want to thank Federica Sarro for chairing the student
track and the short paper track and we would like to thank Shin Yoo and Leandro
Minku for chairing the challenge track, which attracted twice as many papers as in the
previous year.

In keeping with a successful tradition, SSBSE 2015 attendees had the opportunity to
learn from experts from both research fields of search and software engineering, in two
outstanding keynote talks. This year, we had the honor of hosting a keynote on
co-evolutionary algorithms from Prof. Kenneth De Jong, who has been influential in
the evolutionary computation research community. Furthermore, we had a keynote on
genetic programming for software improvement from Dr. William Langdon, who is
well-known for his extensive expertise and experience in designing and implementing
genetic programming systems.

We hope that with these proceedings, anybody who did not have the chance to be in
Bergamo will have the opportunity to feel the liveliness of the SBSE community.

September 2015 Márcio Barros
Yvan Labiche

Organization

General Chair

Paolo Tonella Fondazione Bruno Kessler, Italy

Program Chairs

Márcio Barros Federal University of Rio de Janeiro State, Brazil
Yvan Labiche Carleton University, Canada

SBSE Challenge Tracks Chairs

Shin Yoo University College London, UK
Leandro Minku University of Birmingham, UK

Short Papers and Graduate Student Tracks Chair

Federica Sarro University College London, UK

Organizing Committee

Angelo Gargantini University of Bergamo, Italy
Yuanyuan Zhang University College London, UK
Roberto Tiella Fondazione Bruno Kessler, Italy

Program Committee

Shaukat Ali Simula Research Laboratory, Norway
Leonardo Bottaci University of Hull, UK
John Clark University of York, UK
Thelma Colanzi State University of Maringá, Brazil
Massimiliano Di Penta University of Sannio, Italy
Arilo Claudio Dias-Neto Federal University of Amazonas, Brazil
Robert Feldt Blekinge Institute of Technology, Sweden
Gordon Fraser University of Sheffield, UK
Mathew Hall University of Sheffield, UK
Colin Johnson University of Kent, UK
Marouane Kessentini University of Michigan, USA
Fitsum Kifetew Fondazione Bruno Kessler, Italy
Dongsun Kim University of Luxembourg, Luxembourg
Claire Le Goues Carnegie Mellon University, USA

Raluca Lefticaru University of Bucharest, Romania
Zheng Li Beijing University of Chemical Technology, China
Phil McMinn University of Sheffield, UK
Tim Menzies North Carolina State University, USA
Leandro Minku University of Birmingham, UK
Justyna Petke University College London, UK
Pasqualina Potena University of Alcala, Spain
Simon Poulding Blekinge Institute of Technology, Sweden
Xiao Qu ABB Corporate Research
Marc Roper University of Strathclyde, UK
Guenther Ruhe University of Calgary, Canada
Christopher Simons University of the West of England, UK
Jerffeson Souza State University of Ceará, Brazil
Angelo Susi Fondazione Bruno Kessler, Italy
Jerry Swan University of Stirling, UK
Silvia Vergilio Federal University of Paraná, Brazil
David White University of Glasgow, UK
Xin Yao University of Birmingham, UK
Yuanyuan Zhang University College London, UK
Mel Ó Cinnéide University College Dublin, Ireland

Additional Reviewers

Andrea Arcuri Scienta, Norway, and University of Luxembourg
Wesley Assunção Universidade Federal do Paraná, Brazil
Muhammad Rezaul Karim University of Calgary, Canada
Dipesh Pradhan Simula Research Laboratory, Norway
Renata Rego Federal University of Amazonas, Brazil
Shuai Wang Simula Research Laboratory, Norway

Steering Committee

Mark Harman (Chair) University College London, UK
Andrea Arcuri Scienta, Norway, and University of Luxembourg
Márcio Barros Federal University of Rio de Janeiro State, Brazil
Massimiliano Di Penta University of Sannio, Italy
Gordon Fraser University of Sheffield, UK
Claire Le Goues Carnegie Mellon University, USA
Jerffeson Souza University of the State of Ceará, Brazil
David White University of Glasgow, UK
Yuanyuan Zhang University College London, UK

X Organization

Sponsors

Supporters

Organization XI

Contents

Invited Talks

Co-Evolutionary Algorithms: A Useful Computational Abstraction? 3
Kenneth De Jong

Genetic Improvement of Software for Multiple Objectives 12
William B. Langdon

Research Papers

Amortised Optimisation of Non-functional Properties in Production
Environments . 31

Shin Yoo

Search-Based Refactoring: Metrics Are Not Enough 47
Chris Simons, Jeremy Singer, and David R. White

Weaving Parallel Threads: Searching for Useful Parallelism
in Functional Programs . 62

José Manuel Calderón Trilla, Simon Poulding, and Colin Runciman

An Improved Beam-Search for the Test Case Generation for Formal
Verification Systems . 77

Mahmoud A. Bokhari, Thorsten Bormer, and Markus Wagner

Combining Multiple Coverage Criteria in Search-Based Unit Test
Generation . 93

José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser,
and Andrea Arcuri

Epistatic Genetic Algorithm for Test Case Prioritization 109
Fang Yuan, Yi Bian, Zheng Li, and Ruilian Zhao

Haiku - A Scala Combinator Toolkit for Semi-automated Composition
of Metaheuristics. 125

Zoltan A. Kocsis, Alexander E.I. Brownlee, Jerry Swan,
and Richard Senington

Parameter Control in Search-Based Generation of Unit Test Suites 141
David Paterson, Jonathan Turner, Thomas White, and Gordon Fraser

Hypervolume-Based Search for Test Case Prioritization 157
Dario Di Nucci, Annibale Panichella, Andy Zaidman,
and Andrea De Lucia

http://dx.doi.org/10.1007/978-3-319-22183-0_1
http://dx.doi.org/10.1007/978-3-319-22183-0_2
http://dx.doi.org/10.1007/978-3-319-22183-0_3
http://dx.doi.org/10.1007/978-3-319-22183-0_3
http://dx.doi.org/10.1007/978-3-319-22183-0_4
http://dx.doi.org/10.1007/978-3-319-22183-0_5
http://dx.doi.org/10.1007/978-3-319-22183-0_5
http://dx.doi.org/10.1007/978-3-319-22183-0_6
http://dx.doi.org/10.1007/978-3-319-22183-0_6
http://dx.doi.org/10.1007/978-3-319-22183-0_7
http://dx.doi.org/10.1007/978-3-319-22183-0_7
http://dx.doi.org/10.1007/978-3-319-22183-0_8
http://dx.doi.org/10.1007/978-3-319-22183-0_9
http://dx.doi.org/10.1007/978-3-319-22183-0_9
http://dx.doi.org/10.1007/978-3-319-22183-0_10
http://dx.doi.org/10.1007/978-3-319-22183-0_11

Optimizing Aspect-Oriented Product Line Architectures
with Search-Based Algorithms . 173

Thainá Mariani, Silvia Regina Vergilio, and Thelma Elita Colanzi

Adaptive Neighbourhood Search for the Component Deployment Problem . . . 188
Aldeida Aleti and Madalina Drugan

Transformed Search Based Software Engineering: A New Paradigm
of SBSE . 203

He Jiang, Zhilei Ren, Xiaochen Li, and Xiaochen Lai

SBSE Challenge Papers

Regression Test Case Prioritisation for Guava. 221
Yi Bian, Serkan Kirbas, Mark Harman, Yue Jia, and Zheng Li

Continuous Test Generation on Guava . 228
José Campos, Gordon Fraser, Andrea Arcuri, and Rui Abreu

Generating Readable Unit Tests for Guava . 235
Ermira Daka, José Campos, Jonathan Dorn, Gordon Fraser,
and Westley Weimer

Testing Django Configurations Using Combinatorial Interaction Testing 242
Justyna Petke

Synthesis of Equivalent Method Calls in Guava . 248
Andrea Mattavelli, Alberto Goffi, and Alessandra Gorla

Object-Oriented Genetic Improvement for Improved Energy Consumption
in Google Guava. 255

Nathan Burles, Edward Bowles, Alexander E.I. Brownlee,
Zoltan A. Kocsis, Jerry Swan, and Nadarajen Veerapen

Automated Transplantation of Call Graph and Layout Features into Kate 262
Alexandru Marginean, Earl T. Barr, Mark Harman, and Yue Jia

Grow and Serve: Growing Django Citation Services Using SBSE 269
Yue Jia, Mark Harman, William B. Langdon, and Alexandru Marginean

Specialising Guava’s Cache to Reduce Energy Consumption 276
Nathan Burles, Edward Bowles, Bobby R. Bruce, and Komsan Srivisut

Multi-objective Module Clustering for Kate . 282
Matheus Paixao, Mark Harman, and Yuanyuan Zhang

XIV Contents

http://dx.doi.org/10.1007/978-3-319-22183-0_12
http://dx.doi.org/10.1007/978-3-319-22183-0_12
http://dx.doi.org/10.1007/978-3-319-22183-0_13
http://dx.doi.org/10.1007/978-3-319-22183-0_14
http://dx.doi.org/10.1007/978-3-319-22183-0_14
http://dx.doi.org/10.1007/978-3-319-22183-0_15
http://dx.doi.org/10.1007/978-3-319-22183-0_16
http://dx.doi.org/10.1007/978-3-319-22183-0_17
http://dx.doi.org/10.1007/978-3-319-22183-0_18
http://dx.doi.org/10.1007/978-3-319-22183-0_19
http://dx.doi.org/10.1007/978-3-319-22183-0_20
http://dx.doi.org/10.1007/978-3-319-22183-0_20
http://dx.doi.org/10.1007/978-3-319-22183-0_21
http://dx.doi.org/10.1007/978-3-319-22183-0_22
http://dx.doi.org/10.1007/978-3-319-22183-0_23
http://dx.doi.org/10.1007/978-3-319-22183-0_24

SBSelector: Search Based Component Selection for Budget Hardware 289
Lingbo Li, Mark Harman, Fan Wu, and Yuanyuan Zhang

Search-Based Bug Report Prioritization for Kate Editor Bugs Repository 295
Duany Dreyton, Allysson Allex Araújo, Altino Dantas, Átila Freitas,
and Jerffeson Souza

Inferring Test Models from Kate’s Bug Reports
Using Multi-objective Search . 301

Yuanyuan Zhang, Mark Harman, Yue Jia, and Federica Sarro

Short Papers

Introducing Learning Mechanism for Class Responsibility
Assignment Problem . 311

Yongrui Xu, Peng Liang, and Muhammad Ali Babar

Transformed Vargha-Delaney Effect Size . 318
Geoffrey Neumann, Mark Harman, and Simon Poulding

Optimizing Software Product Line Architectures with OPLA-Tool 325
Édipo Luis Féderle, Thiago do Nascimento Ferreira,
Thelma Elita Colanzi, and Silvia Regina Vergilio

Exploring the Landscape of Non-Functional Program Properties
Using Spatial Analysis. 332

Matthew Patrick and Yue Jia

Graduate Student Papers

Interactive Software Release Planning with Preferences Base 341
Altino Dantas, Italo Yeltsin, Allysson Allex Araújo, and Jerffeson Souza

Software Defect Classification with a Variant of NSGA-II and Simple
Voting Strategies. 347

Emil Rubinić, Goran Mauša, and Tihana Galinac Grbac

Author Index . 355

Contents XV

http://dx.doi.org/10.1007/978-3-319-22183-0_25
http://dx.doi.org/10.1007/978-3-319-22183-0_26
http://dx.doi.org/10.1007/978-3-319-22183-0_27
http://dx.doi.org/10.1007/978-3-319-22183-0_27
http://dx.doi.org/10.1007/978-3-319-22183-0_28
http://dx.doi.org/10.1007/978-3-319-22183-0_28
http://dx.doi.org/10.1007/978-3-319-22183-0_29
http://dx.doi.org/10.1007/978-3-319-22183-0_30
http://dx.doi.org/10.1007/978-3-319-22183-0_31
http://dx.doi.org/10.1007/978-3-319-22183-0_31
http://dx.doi.org/10.1007/978-3-319-22183-0_32
http://dx.doi.org/10.1007/978-3-319-22183-0_33
http://dx.doi.org/10.1007/978-3-319-22183-0_33

Invited Talks

Co-Evolutionary Algorithms: A Useful
Computational Abstraction?

Kenneth De Jong(B)

George Mason University, Fairfax, VA, USA
kdejong@gmu.edu

Abstract. Interest in co-evolutionary algorithms was triggered in part
with Hillis 1991 paper describing his success in using one to evolve sort-
ing networks. Since then there have been heightened expectations for
using this nature-inspired technique to improve on the range and power
of evolutionary algorithms for solving difficult computation problems.
However, after more than two decades of exploring this promise, the
results have been somewhat mixed.

In this talk I summarize the progress made and the lessons learned
with a goal of understanding how they are best used and identify a vari-
ety of interesting open issues that need to be explored in order to make
further progress in this area.

1 Introduction

In 1991 at the Artificial Life II meeting in Santa Fe Danny Hillis summarized
his successful use of a co-evolutionary approach to evolve sorting networks, an
approach inspired by host-parasite models from nature [6]. That early success has
inspired several decades of interest in how our understanding of co-evolutionary
systems in nature might be used to improve the problem-solving capabilities
of existing evolutionary algorithms [1,7,13,14]. The results have been mixed in
spite of a significant amount of both theoretical and empirical research.

The argument put forth here is that, in order to make further progress,
we need first to sharpen our understanding of the biological phenomenon of
co-evolution in order to better understand how it might inspire improved evolu-
tionary algorithms, and second, we need to use that understanding to develop
a more comprehensive and systematic framework for designing and analyzing
co-evolutionary algorithms.

To that end, I first discuss biological notions of co-evolution, and then present
a co-evolutionary framework intended to sharpen our algorithmic focus. The
framework is then used to summarize our current understanding and identify
important open issues.

2 What IS Co-Evolution?

When biologists talk about co-evolution it is in the context of an ecology with
multiple species whose cross-species interactions in part determine the fitness of
c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 3–11, 2015.
DOI: 10.1007/978-3-319-22183-0 1

4 K. De Jong

individuals within a species. A classic example of a co-evolutionary prey-predator
relationship is that of frogs evolving longer and stickier tongues for catching flies,
and flies evolving better sensors and evasive tactics as their co-evolutionary
response. Similarly, nature abounds with examples of co-evolutionary host-
parasite relationships such as the bacteria in a host’s digestive tract that are
critical in breaking down ingested material into forms the host can make use of.

A key aspect is that the cross-species interactions are not one of cross-
breeding, but rather an interaction that takes place on a shared fitness land-
scape. This has an immediate implication for co-evolutionary algorithm design.
Our most common evolutionary algorithms (EAs) maintain a single population
of interbreeding individuals, i.e., a single species from a biological perspective. If
we are to remain faithful to the biological perspective, our co-evolutionary algo-
rithms should either introduce speciation into single-population EAs or maintain
multiple populations across which there is no interbreeding.

This is an important point because it is not uncommon for a discipline to
import a concept from another area and then use in ways that are different than
the original meaning, often resulting in misunderstandings and confusion. Here’s
an example of where that shows up in EC. Suppose I’m interested in evolving
a chess playing program. If I adopt the standard EC perspective, I evaluate
the fitness of an individual program via some procedure that is external to and
independent of the current population. For example, have it play against one or
more externally developed chess programs. But that leads to a classic chicken-
egg problem in that one needs to have good chess programs in order to evolve
good chess programs!

An alternative is to evaluate the fitness of an individual by playing other
individuals in the current population resulting in a dynamically changing fitness
landscape as the population of chess programs evolves over time. If we do this,
what shall we call this EA? Shall we refer to it as co-evolutionary? A biologist
would say no - this is much more in keeping with the biological notion of an
evolutionary system in which the fitness of individuals is determined in part by
the other members of the population. To be co-evolutionary one would have a
population of, say, American chess programs and another population of Russian
programs, each reproductively isolated but constantly assessing fitness by playing
against each other.

Does it matter what we call co-evolutionary? I think the answer is yes for
two reasons. First, since our inspirations come from natural systems, we can
inadvertently limit future inspiration by drifting too far from the underlying
biological concepts. More importantly, the two EA systems described above, one
with a single population and internal fitness competitions and one with multiple
populations and cross-population fitness competition have significantly different
evolutionary dynamics. So, by calling them both co-evolutionary algorithms we
make our understanding of co-evolutionary systems more complicated than it
needs to be.

My suggestion: let’s refer to the first case as EAs using some form of self-
adaptive fitness evaluation, following the terminology and perspective taken by

Co-Evolutionary Algorithms: A Useful Computational Abstraction? 5

other forms of self-adaptation (e.g., self-adaptive mutation rates). Let’s reserve
the term co-evolution to those EAs that have multiple populations (or species)
that share a coupled fitness landscape. That still leaves plenty of design decisions
to be made and many open questions regarding these co-evolutionary algorithms
(CoEAs). Here are some examples:

1. In what sense, if any, do CoEAs improve on our ability to solve optimization
problems?

2. Are there other kinds of problems that CoEAs are particularly well-suited
for?

3. How does one implement the notion of interlocking fitness landscapes in a
computationally efficient and effective manner?

4. What are the differences between CoEAs and other multi-population models
such as island models?

5. What aspects of our understanding and analysis of standard EAs can be
usefully applied to CoEAs?

6. What aspects of our understanding and analysis of biological co-evolution can
be usefully applied to CoEAs?

These are not new questions and in some cases there is a reasonable degree
of understanding [3,10]. The thesis presented here is that our understanding can
be sharpened and extended if we adopt a common framework.

3 A CoEA Framework

We begin by laying out the framework for a 2-population/species CoEA, since
most of the issues and ideas can be exposed with it, and since a large majority
of existing CoEAs are in fact of this type.

First, each population/species has its own EA controlling its evolutionary
trajectory. There is no a priori assumption that the two EAs share any common
properties. For example, one could be a fairly traditional ES-like EA with a small
population of real-valued vectors while the other could be a fairly traditional
GP-like EA with a fairly large population of Lisp expressions.

A second aspect of the CoEA framework is that there is no a priori assump-
tion as to how, if at all, the evolutionary clocks of the two EAs are synchronized.
One might have completely unsynchronized clocks, or one might have a synchro-
nized regime in which one EA is frozen while the other evolves for one or more
generations.

A third aspect of the CoEA framework is the requirement for specifying how
the fitness landscapes are to be coupled. This means specifying how individuals
in one population interact with individuals in the other population in order to
calculate their fitness.

Finally, one needs to specify what it means for a CoEA to produce a solution.
That is, what do we extract from the running of a CoEA that represents a
solution.

6 K. De Jong

I refer to this as a CoEA framework in that each of its elements must be
instantiated before it can be executed. The goal here is to use this framework to
summarize and extend what we know about the implications of specific design
choices and how that knowledge can be used to implement more effective CoEAs.

4 Understanding Co-Evolutionary Algorithms

The key difference between standard EAs and CoEAs is the dynamic interac-
tion between populations with coupled fitness landscapes. Understanding that
dynamic is a major step in the direction of understanding co-evolutionary sys-
tems. That observation suggests that viewing CoEAs as dynamical systems and
applying dynamical systems analysis tools and techniques is a potentially useful
line of research, and has in fact already provided a variety of useful insights
[9,16].

If we look at a CoEA from the perspective of one of the evolving pop-
ulations, we see that it faces the challenging task of responding to a time-
varying fitness landscape. This suggests that our existing understanding of how
to design/configure standard EAs for non-stationary landscapes might be poten-
tially useful in how we configure the individual EAs in CoEA systems (see, for
example, [8]).

A closely related issue is the manner in which, if at all, the evolutionary clocks
of the individual EAs are synchronized. We know from time-varying landscape
studies with standard EAs that rapidly changing fitness landscapes relative to
an EA’s evolutionary clock lead to poor results. This suggests that coordination
of the EA clocks in a CoEA is an important (and mostly unexplored) area of
research.

A computationally difficult as well semantically important isssue is the need
to instantiate the notion of a coupled fitness landscape. The intuition is clear:
one evaluates the fitness of an individual in population A via “interactions”
with one or more individuals from population B. However, “the devil is in the
details”. Since, in general, a complete set of paired interactions is computation-
ally infeasible, some sort of selection procedure must be used. If that procedure
results in the selection of more than one interaction pairing, an additional deci-
sion is required to specify how the results of multiple interactions are combined
to provide a single fitness value. This particular aspect of CoEA design has
received a good deal of analysis and about which we have a reasonable measure
of understanding (see, for example, [12,17]).

Finally, there is the surprisingly difficult issue of the sense in which CoEAs
provide solutions to problems [2,11]. For example, if we show that certain CoEAs
are dynamical systems that converge to a Nash equilibrium, and then apply the
CoEA to optimization problems, what should we expect? If we attempt to use a
CoEA to evolve a “world class” game playing program, what should we expect
when the internal fitness assessment driving the evolutionary processes is only
based on the current members of the populations? This is also an area that

Co-Evolutionary Algorithms: A Useful Computational Abstraction? 7

has received a good detail of attention, including being more precise about co-
evolutionary “solution concepts” [5] and introducing additional non-evolutionary
mechanisms such as “hall-of-fame” archival techniques [14].

Of course, just as is the case for standard EA design decisions, each of these
additional CoEA design choices affect the observed behavior and performance
of CoEAs in highly non-linear and complex ways. We explore this aspect in the
following sections.

4.1 CoEAs as Dynamical Systems

Our initial understanding of CoEAs as dynamical systems came from
Paul Wiegand’s PhD thesis [16]. His approach was to leverage off the existing work
in evolutionary game theory (EGT) as a means for understanding the dynamics
of CoEAs. As a first-order fit, EGT seemed well suited in the sense that the evo-
lutionary aspects of theoretical EGT models were nearly identical to our infinite
population models of simple EAs with fitness proportional selection and no repro-
ductive variation (i.e., just replicator dynamics). Under the mathematical assump-
tion of “complete mixing” (all possible interactions), the EGT literature contains a
rather impressive collection of theoretical results for two-population EGT models.
The question Wiegand explored was the extent to which these EGT results might
apply to CoEA systems involving finite populations with partial mixing and repro-
ductive variation.

The results were instructive but somewhat disappointing. Like infinite pop-
ulation EGT models, finite population CoEAs with fitness-proportional replica-
tion and no reproductive variation were experimentally seen to converge to Nash
equilibria. However, adding mutation and crossover to the mix produced dynam-
ical trajectories that were difficult to understand and predict, and converged to
non-Nash equilbria.

Wiegand explored these issues using simple multi-peaked fitness landscapes
in which the peaks corresponded to Nash equilibria, allowing for additional
insights regarding the use of these CoEAs for optimization. Again, the results
were instructive but disappointing. With no reproductive variation, a CoEA con-
verged to the Nash equilibrium point (local optimum) that exerted the strongest
influence on the initial populations. Adding reproductive variation resulted in
convergence to non-optimal points, and the traditional best-so-far curve analysis
suggested little to be excited about with respect to global function optimization
performance.

Elena Popovici added to our dynamical systems understanding of CoEAs
by introducing the notion of “best response curves” generated by selecting the
individual in population A with the best fitness to serve as the single point of
interaction for evaluating the fitness of members of population B [9]. If we keep
finite population A frozen for an indefinite number of evolutionary generations
of population B, we identify in population B the best response to the current
best individual in population A, and now repeat this process with the population
roles reversed. The result is a time series of best responses which, when plotted
provide considerable insight into the CoEA dynamics. In particular, Popovici

8 K. De Jong

was able to construct examples of simple synthetic landscapes on which CoEAs
converged, cycled endlessly or went chaotic.

4.2 CoEAs and Dynamic Fitness Landscapes

There is a considerable amount of empirical evidence that the standard set of
EAs used to solve static optimization problems perform poorly when the fit-
ness landscape changes during the evolutionary search process. This has been
addressed in a number of ways including making assumptions about the kind
of changes a landscape will undergo (e.g., slowly drifting, cyclic, etc.). With
CoEAs it is difficult to predict how a coupled landscape might change over time,
although there are some tantalizing connections with the insights obtained from
Popovici’s synthetic landscapes referred to in the previous section.

What we do have is a clear sense of the importance of maintaining population
diversity when dealing with dynamic landscapes. This is a relatively unexplored
approach to improving CoEA performance in that we typically use our standard
static-optimization-oriented EAs for evolving each of our CoEA populations.
What remains unexplored is whether the simple changes to standard EAs to
promote diversity produce a positive impact of CoEA performance.

The one notable exception is the use of spatially-structured EAs, the prop-
erties of which are fairly well understood (e.g., [15]), one of which is the ability
to maintain diversity for a much longer period of time. Their use in CoEAs has
proved initially to be quite beneficial [8,18], and deserves further exploration
and understanding.

4.3 CoEA Time Clocks

One of the least explored areas of the CoEA framework is the way in which the
evolutionary clocks of the individual populations are linked. There are at least
3 possibilities:

– The clocks are completely unlinked in the sense that asynchronous updates
to either population can happen at any time.

– The clocks are linked in the sense that one population is frozen in time while
the other population completes a generational cycle, and then the population
roles are reversed.

– The same freeze/thaw linking as the previous case but now allow multiple
evolutionary generations to occur while the other population is frozen.

Most of the CoEAs in use today are of type 2 and a few of type 3. At little
reflection here should suggest an obvious relationship to the previous section
and indicate some opportunities for further analysis. Case 1 is likely to result
in landscapes changing dynamically at a rate that results in poor performance
just as we see with standard EAs. Case 2 reduces that rate of change but is
still potentially quite high. If we allow too many generations to pass in Case 3,
we are likely to lose the diversity we need for dealing with dynamic landscapes.
That suggests there may be a sweet spot in Case 3 where increasing the number
of generations to a small number > 1 will result in performance improvements.

Co-Evolutionary Algorithms: A Useful Computational Abstraction? 9

4.4 Coupling CoEA Fitness Landscapes

The manner in which the coupling of the fitness landscapes of the CoEA popula-
tions via interactions between members during fitness assessment is a well-studied
aspect of CoEA design. Potter showed that for CoEAs involving co-operative
interactions, evaluating the fitness of the individuals in one population using a
single best representation from the other populations was algorithmically similar
to familiar line search techniques and suffered the same limitations in dealing with
function optimization problems involving coupled variables [12]. He showed that
adding a second interaction with a randomly chosen individual improved perfor-
mance without a significant increase in computational complexity.

Wiegand et al. were able to take this analysis a step further by showing that
only certain kinds of epistatic interactions caused difficulty [17]. In addition,
there were few observed additional benefits obtained by using more than two
interactions per fitness assessment. Similar to results in using standard EAs to
solve problems with noisy fitness landscapes, the additional fitness evaluations
used to obtain a better estimate of an individual’s fitness are generally more
productively spent on additional evolutionary search.

The issue of evolutionary time clocks discussed in the previous section also
has an impact here. Case 1 results in far too much instability in the coupling
process, and is another reason why it is hard to find positive examples of this
type.

4.5 CoEA Problem Solutions

From the very beginning there have been heated biological discussions about
whether evolution is best understood as an optimization process. What is clear
is that, inspired by evolutionary processes, we have developed powerful opti-
mization algorithms. This is not the case, however, for our co-evolutionary algo-
rithms. In general, they appear to be no more effective than our standard EAs
and in some cases worse. One possible explanation is that we need to spend
more time analyzing the design issues discussed in the previous section. Another
explanation is that co-evolution is fundamentally not an optimization process
and therefore not a particularly useful inspiration for developing optimization
algorithms.

Discussions of this issue take several forms. One is to focus on the kind of
fitness coupling involved: whether the interactions are competitive in nature (I
win, you lose) or co-operative in nature (we win/lose together). As it turns out,
problems that can be cast as co-operative interactions (e.g., a decomposition of
a difficult optimization problem into subcomponents) can be effectively solved
via CoEAs. By contrast, when CoEAs are applied to problems with competitive
interactions (e.g., game playing), they are much more likely to produce unin-
teresting dynamics such as loss of gradients or endless mediocrity rather than
continuous improvement via an arms race [18].

This has led to a discussion about problems other than standard optimiza-
tion that might be a better fit for CoEAs, particularly problems with competitive

10 K. De Jong

interactions [4,5]. These discussions have adopted the notion of a “solution con-
cept” as a way of describing the kinds of problems and solutions a CoEA might
be applied to. An example: not knowing what opponent I might face in the near
future, I would like to minimize the maximum negative impact he/she might
have on me.

5 Conclusions

While there are examples of significant improvements in our ability to solve diffi-
cult optimization problems by using CoEAs, other examples exhibit either neu-
tral or negative results. In part, this is a reflection of the need for a deeper under-
standing of the implications of the design decisions that one must make when
implementing a CoEA. Another important aspect of this is the possibility that
co-evolution is better understood as a sophisticated process of co-adaptation,
and that the real power of CoEAs is in solving problems of this nature.

References

1. Angeline, P.J., Pollack, J.B.: Competitive environments evolve better solutions for
complex tasks. In: Proceedings of the 5th International Conference on Genetic
Algorithms, pp. 264–270. Morgan Kaufmann Publishers Inc., San Francisco (1993)

2. Bader-Natal, A., Pollack, J.B.: A population-differential method of monitoring
success and failure in coevolution. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS,
vol. 3102, pp. 585–586. Springer, Heidelberg (2004)

3. Bucci, A., Pollack, J.B.: A mathematical framework for the study of coevolution.
In: Proceedings of the Seventh Workshop on Foundations of Genetic Algorithms,
Torremolinos, Spain, pp. 221–236, 2–4 September 2002

4. de Jong, E.D., Pollack, J.B.: Ideal evaluation from coevolution. Evol. Comput.
12(2), 159–192 (2004)

5. Ficici, S.G.: Solution Concepts in Coevolutionary Algorithms. Ph.D. thesis, Bran-
deis University, Waltham, MA, USA (2004). AAI3127125

6. Hillis, D.: SFI studies in the sciences of complexity co-evolving parasites improve
simulated evolution as an optimization procedure. Artificial Life II 10, 313–324
(1991)

7. Juille, H., Pollack, J.B.: Coevolving the ”ideal” trainer: application to the discov-
ery of cellular automata rules. In: University of Wisconsin, pp. 519–527. Morgan
Kaufmann (1998)

8. Pagie, L., Mitchell, M.: A comparison of evolutionary and coevolutionary search.
Int. J. Comput. Intell. Appl. 2(1), 53–69 (2002)

9. Popovici, E.: An analysis of two-population coevolutionary computation. Ph.D.
thesis, George Mason University, Fairfax, VA (2006)

10. Popovici, E., Bucci, A., Wiegand, R.P., de Jong, E.D.: Coevolutionary principles.
In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing,
pp. 987–1033. Oxford University Press, Oxford (2012)

11. Popovici, E., De Jong, K.A.: Relationships between internal and external metrics in
co-evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2005, Edinburgh, UK, pp. 2800–2807, 2–4 September 2005

Co-Evolutionary Algorithms: A Useful Computational Abstraction? 11

12. Potter, M.A., De Jong, K.A.: Cooperative coevolution: an architecture for evolving
coadapted subcomponents. Evol. Comput. 8(1), 1–29 (2000)

13. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to func-
tion optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994.
LNCS, vol. 866. Springer, Heidelberg (1994)

14. Rosin, C., Belew, R.: New methods for competitive coevolution. Evol. Comput.
5(1), 1–29 (1997)

15. Sarma, J.: An analysis of decentralized and spatially distributed genetic algorithms.
Ph.D. thesis, George Mason University, Fairfax VA, USA (1998)

16. Wiegand, R.P.: An analysis of cooperative coevolutionary algorithms. Ph.D. thesis,
George Mason University, Fairfax, VA (2004)

17. Wiegand, R.P., Liles, W., De Jong, K.: An empirical analysis of collaboration
methods in cooperative coevolutionary algorithms. In: Proceedings of Genetic and
Evolutionary Computation - GECCO 2001, pp. 1235–1242. Morgan Kaufmann
(2001)

18. Wiegand, R.P., Sarma, J.: Spatial embedding and loss of gradient in coopera-
tive coevolutionary algorithms. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J.,
Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel,
H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 912–921. Springer, Heidelberg (2004)

Genetic Improvement of Software
for Multiple Objectives

William B. Langdon(B)

CREST, Department of Computer Science, University College London,
Gower Street, London WC1E 6BT, UK

w.langdon@cs.ucl.ac.uk

http://crest.cs.ucl.ac.uk/

Abstract. Genetic programming (GP) can increase computer pro-
gram’s functional and non-functional performance. It can automatically
port or refactor legacy code written by domain experts. Working with
programmers it can grow and graft (GGGP) new functionality into legacy
systems and parallel Bioinformatics GPGPU code. We review Genetic
Improvement (GI) and SBSE research on evolving software.

1 Introduction

Although the idea of using evolutionary computation to improve existing soft-
ware has been in the air for a little while [1], the use of genetic programming (GP)
[2,3] to improve manually written code starts to take off in 2009 (see Fig. 2). First
with Wes Weimer et al.’s prize winning automatic bug fixing work [4–9] Sect. 3.1)
and also Orlov and Sipper’s [10] use of GP to improve manually written code
by using it to seed the GP’s population [11] (Sect. 2.3). The GISMO (http://
www.cs.ucl.ac.uk/staff/W.Langdon/gismo/) research project started four years
ago with the lofty aim of transforming the way we think about and produce
software. Now nearing its end, we can point to some successful applications
(Sects. 3.2 to 5.3) but perhaps the major impact has been the growth of “Genetic
Improvement” [12] and the increasing acceptance that search based optimisation
[13] can not only aid software engineers but also act upon their software directly.

We shall give an overview of Genetic Improvement (GI). This is based in
part on “Genetically Improved Software” [12] and work presented at the first
international event on GI (held in Madrid 12th July 2015 [14]). GI is the use of
optimisation techniques such as Genetic Algorithms and Genetic Programming
[2,3] to software itself. Although any optimisation technique might be used, so
far published work has concentrated upon using GP to improve human written
source code.

In the next section we start by briefly summarising research which evolved
complete software [15] and then move on to GI. Section 3 starts with auto-
matically fixing real bugs in real C/C++ programs (Sect. 3.1). This is followed
by reviews of the GISMO project’s work on gzip (Sect. 3.2), Bioinformatics

W.B. Langdon — http://www.cs.ucl.ac.uk/staff/W.Langdon/

c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 12–28, 2015.
DOI: 10.1007/978-3-319-22183-0 2

http://www.cs.ucl.ac.uk/staff/W.Langdon/gismo/
http://www.cs.ucl.ac.uk/staff/W.Langdon/gismo/
http://www.cs.ucl.ac.uk/staff/W.Langdon/

Genetic Improvement of Software for Multiple Objectives 13

Fitness

Improved system

Test
cases

Population of modifications

Select

Mutation and Crossover

BNF
Grammar

Population of modifications

Original
code

Modified
kernel

Fig. 1. Genetic Improvement of Program Source Code.

(Sect. 3.3) and parallel computing (Sects. 3.4 to 3.6). Section 4 describes evolving
a human competitive version of MiniSAT from multiple existing programs. Whilst
Sect. 5 describes three examples of GP and programmers working together includ-
ing obtaining a 10 000 fold speedup. The last sections (Sects. 6 and 7) conclude
with the project’s main lessons.

2 Evolving Useful Programs from Primordial Ooze

2.1 Hashes, Caches and Garbage Collection

Three early examples of real software being evolved using genetic programming
are: hashing, caching and garbage collection. Each has the advantages of being
small, potentially of high value and difficult to do either by hand or by theo-
retically universal principles. These include examples where GP generate code
exceeded the state-of-the art human written code. Whilst this is not to say a
human could not do better. Indeed they may take inspiration, or even code, from
the evolved solution. It is that to do so, requires a programmer skilled in the art,
for each new circumstance. Whereas, at least in principle, the GP can be re-run
for each new use case and so automatically generate an implementation specific
to that user.

Starting with Hussain and Malliaris [16] several teams have evolved good
hashing algorithms [17–19].

Paterson showed GP can create problem specific caching code [20]. O’Neill
and Ryan [21] used their Grammatical Evolution approach also to create cache
code. Whilst Branke et al. [22] looked at a slightly different problem: deciding
which documents to retain to avoid fetching them again across the Internet.

Many computer languages provide a dynamic memory manager, which frees
the programmer of the tedium of deciding exactly which memory is in use and
provides some form of garbage collection whereby memory that is no longer in use

14 W.B. Langdon

 0

 20

 40

 60

 80

 100

 120

 140

 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

P
ap

er
s

Year

Fig. 2. Recent growth in number of entries in the genetic programming bibliography
applying GP to generate or improve software (May 2015).

can be freed for re-use. Even with modern huge memories, memory management
can impose a significant overhead. Risco-Martin et al. [23] showed the GP can
generate an optimised garbage collector for the C language [24].

2.2 Mashups, Hyper-Heuristics and Multiplicity Computing

The idea behind web services is that useful services should be easily constructed
from services across the Internet. Such hacked together systems are known
as web mashups. A classic example is a travel service which invokes web servers
from a number of airlines and hotel booking and car hire services, and is thus
able to provide a composite package without enormous coding effort in itself.
Since web services must operate within a defined framework ideally with rigid
interfaces, they would seem to be ideal building blocks with which genetic pro-
gramming might construct high level programs. Starting with Rodriguez-Mier,
several authors have reported progress with genetic programming evolving com-
posite web services [25–27].

There are many difficult optimisation problems which in practise are effi-
ciently solved using heuristic search techniques, such as genetic algorithms. How-
ever typically the GA needs to be tweaked to get the best for each problem. This
has lead to the generation of hyper-heuristics [28], in which the GA or other basic
solver is tweaked automatically. Typically genetic programming is used. Indeed
some solvers have been evolved by GP combining a number of basic techniques as
well as tuning parameters or even re-coding GA components, such as mutation
operators [29].

Genetic Improvement of Software for Multiple Objectives 15

A nice software engineering example of heuristics is compiler code generation.
Typically compilers are expected not only to create correct machine code but also
that it should be in some sense be “good”. Typically this means the code should
be fast or small. Mahajan and Ali [30] used GP to give better code generation
heuristics in Harvard’s MachineSUIF compiler.

Multiplicity computing [31] seeks to over turn the current software mono-
culture where one particular operating system, web browser, software company,
etc., achieves total dominance of the software market. Not only are such monop-
olies dangerous from a commercial point of view but they have allowed wide-
spread problems of malicious software (especially computer viruses) to prosper.
Excluding specialist areas, such as mutation testing [32,33], so far there has been
only a little work in the evolution of massive numbers of software variants [34].
Only software automation (perhaps by using genetic programming) appears
a credible approach to N-version programming (with N much more than 3).
N-version programming has also been proposed as a way of improving predictive
performance by voting between three or more classifiers [35,36] or using other
non-linear combinations to yield a higher performing multi-classifier [37,38].

Other applications of GP include: creating optimisation benchmarks which
demonstrate the relative strengths and weaknesses of optimisers [39] and first
steps towards the use of GP on mobile telephones [40], connections to software
product lines [41], security [42,43] and adaptability [44].

2.3 Genetic Programming and Non-Function Requirements

Andrea Arcuri was in at the start of inspirational work on GP showing it can cre-
ate real code from scratch. Although the programs remain small, David White,
he and John Clark [45] also evolved programs to accomplish real tasks such as
creating pseudo random numbers for ultra tiny computers where they showed a
trade off between “randomness” and energy consumption.

The Virginia University group (see next section) also showed GP evolving
Pareto optimal trade offs between speed and fidelity for a graphics hardware
display program [46]. Evolution seems to be particularly suitable for exploring
such trade-offs [47,48] but (except for the work described later in this chapter)
there has been little research in this area.

Orlov and Sipper [10] describe a very nice system, Finch, for evolving Java
byte code. Effectively the GP population instead of starting randomly [49] is
seeded [11] with byte code created by compiling the initial program. The Finch
crossover operator acts on Java byte code to ensure the offspring program are
also valid java byte code.

Archanjo and Von Zuben [50] present a GP system for evolving small business
systems. They present an example of a database system for supporting a library
of books.

Ryan [51] and Katz and Peled [52] provide interesting alternative visions. In
genetic improvement the performance, particularly the quality of the mutated
program’s output, is assessed by running the program. Instead they suggest each
mutation be provably correct and thus the new program is functionally the same

16 W.B. Langdon

as the original but in some way it is improved, e.g. by running in parallel. Katz
and Peled [52] suggests combining GP with model checking to ensure correctness.

Cody-Kenny et al. [53] showed on a dozen Java examples (mostly different
implementations of various types of sort from rosettacode.org) that GP was able
to reduce the number of Java byte code instructions executed.

Schulte et al. [54] describes a system which can further optimise the low level
Intel X86 code generated by optimising compilers. They show evolution can
reduce energy consumption of non-trivial programs. (Their largest application
contains 141 012 lines of code.) Mrazek et al. [55] showed it was possible to evolve
an important function (the median) in a variety of machine codes.

3 Improvement of Substantial Human Written Code

3.1 Automatic Bug Fixing

As described in the previous two sections, recently genetic programming has
been applied to the production of programs itself, however so far relatively small
programs have been evolved. Nonetheless GP has had some great successes when
applied to existing programs. Perhaps the best known work is that on automatic
bug fixing [56]. Particularly the Humie award winning1 work of Westley Weimer
(Virginia University) and Stephanie Forrest (New Mexico) [5]. This has received
multiple awards and best paper prizes [4,6]. GP has been used repeatedly to
automatically fix most (but not all) real bugs in real programs [57]. Weimer
and Le Goues have now shown GP bug fixing to be effective on over a million
lines of C++ code. Once GP had been used to do the impossible others tried
[58–60] and it was improved [61] and also people felt brave enough to try other
techniques, e.g. [62–64]. Indeed their colleague, Eric Schulte, has shown GP can
operate below the source code level, e.g. [43]. In [8] he showed bugs can be fixed
via mutating the assembler code generated by the compiler or even machine
code [65]. After Weimer and co-workers showed that automatic bugfixing was not
impossible, people studied the problem more openly. It turns out, for certain real
bugs, with modern software engineering support tools, such as bug localisation
(e.g. [66]), the problem may not even be hard [67].

Formal theoretical analysis [68] of evolving sizable software is still thin on
the ground. Much of the work presented here is based on GP re-arranging lines
of human written code. In a study of 420 million lines of open source software
Gabel and Su [69] showed that excluding white space, comments and details
of variable names, any human written line of code has probably been written
before. In other words, given a sufficiently large feedstock of human written code,
current programs could have been written by re-using and re-ordering existing
source code. In many cases in this and the following sections, this is exactly what
GP is doing. Schulte et al. [9] provides a solid empirical study which refutes the
common assumption that software is fragile. (See also Fig. 3). While a single

1 Human-competitive results presented at the annual GECCO conference http://www.
genetic-programming.org/combined.php.

http://www.genetic-programming.org/combined.php
http://www.genetic-programming.org/combined.php

Genetic Improvement of Software for Multiple Objectives 17

-36
-30

-24
-18

-12
-6

 0
 6

-102
-104

-106
-108

0
102

104

106

108

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 Better
Worse

Slower

Faster

Change in Quality

Change in Instructions

Fig. 3. Histogram of impact on speed and solution quality made by single mutations
to Bowtie2 (Sect. 3.3). Many changes have no impact on quality, plotted along x = 0.
Indeed a large number do not change its speed either (note spike at the origin). There
are a few mutations which give better quality solutions. It is from these GP evolves a
seventy fold speed up.

random change may totally break a program, mutation and crossover operations
can be devised which yield populations of offspring programs in which some may
be very bad but the population can also contains many reasonable programs and
even a few slightly improved ones. Over time the Darwinian processes of fitness
selection and inheritance [70] can amplify the good parts of the population,
yielding greatly improved programs.

3.2 Auto Porting Functionality

The Unix compression utility gzip was written in C in the days of Digital Equip-
ment Corp.’s mini-computers. It is largely unchanged. However there is one pro-
cedure (of about two pages of code) in it, which is so computationally intensive
that it has been re-written in assembler for the Intel 86X architecture (i.e. Linux).
The original C version is retained and is distributed as part of Software-artifact
Infrastructure Repository http://sir.unl.edu [72]. We showed genetic program-
ming could evolve a parallel implementation for an architecture not even dreamt
of when the original program was written [71].

Whereas Le Goues and others use the original program’s AST (abstract syn-
tax tree) to ensure that many of the mutated programs produced by GP com-
pile, we have used a BNF grammar (see Fig. 1). For CUDA gzip we created our
grammar from generic code written by nVidia. The original function in gzip was
instrumented to record its inputs and its outputs each time it was called (see
Fig. 4). Essentially GP was told to create parallel code from the BNF grammar
which when given a small number of example inputs (based on the instrumented
code, Fig. 4) returned the same answers. The resulting parallel code is function-
ally the same as the old gzip code.

http://sir.unl.edu

18 W.B. Langdon

Instrumented gzip
(PC)

Evolved moduleModule to be replaced

Record data flows

graphics card
CUDA kernel on

Fig. 4. Auto porting a program module to new hardware. The original code is instru-
mented to record the inputs (upper blue arrows) to the target function (red) and the
result (lower blue arrows) it calculates. These become the test suite and fitness function
when evolving the replacement code [71] (Color figure online).

3.3 Bowtie2GP Improving 50 000 lines of C++

Finding the best match between strings is the life blood of Bioinformatics.
Wikipedia lists more than 140 programs which do some form of Bioinformat-
ics string matching. Modern NextGen sequencing machines generate billions of
(albeit very noisy) DNA base-pair sequences.

The authors of all this software are in a bind. For their code to be useful they
have to chose a tradeoff between speed, machine resources, quality of solution
and functionality, which will: (1) be important to Bioinformatics and (2) not be
immediately dominated by other programs. They have to choose a target point
when they start, as once basic design choices (e.g. target data sources and type
and size of computer) have been made, few research teams have the resources to
discard what they have written and start again. Potentially genetic programming
offers them a way of exploring this space of tradeoffs [47,48]. (Fig. 5 shows a two
dimensional trade off between speed and quality.) GP can potentially produce
many programs across a Pareto optimal front and so might say “here is a trade-off
which you had not considered”. This could be very useful even if the development
team insist on coding a solution.

We have made a start by showing GP can transform human written DNA
sequence matching code, moving it from one tradeoff point to another. In our
example, the new program is specialised to a particular data source and sequence
problem for which it is on average more than 70 times faster. Indeed on this
particular problem, we were fortunate that not only is the variant faster but
indeed it gives a slight quality improvement on average [75].

3.4 BarraCUDA

BarraCUDA [76] like Bowtie2GP looks up DNA sequences. However BarraCUDA
uses the computational power of nVidia graphics accelerators (GPUs) to process

Genetic Improvement of Software for Multiple Objectives 19

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.5 1 1.5 2 2.5

S
pe

ed
 u

p
on

 G
P

U

Error per pixel

Fig. 5. Example of automatically generated Pareto tradeoff front [48]. Genetic pro-
gramming used to improve 2D Stereo Camera code [73] for modern nVidia GPU [74].
Left (above 0) many programs are faster than the original code written by nVidia’s
image processing expert (human) and give exactly the same answers. Many other auto-
matically generated programs are also faster but give different answers. Some (cf. dotted
blue line) are faster than the best zero error program (Color figure online).

hundreds of thousands of short DNA sequences in parallel. Despite having been
written by experts both on Bioinformatics and on GPUs, GP when targeted by
a Human on a particular kernel was able to speed up that kernel by more than
100 times. Of course this kernel is only part of the whole program and overall
speed up is more modest. Nevertheless on real examples the GI code [77] can be
up to three times faster than the previous (100 % human) version Indeed with
a top end K80 Tesla BarraCUDA can now be more than ten times faster than
BWA on a 12 core CPU [78].

The GI version of BarraCUDA has been in use via SourceForge (http://
sourceforge.net/projects/seqbarracuda/?source=typ redirect) since 20 March
2015. In the first two months it was downloaded 230 times.

3.5 Genetically Improved GPU Based Stereo Vision

Originally the StereoCamera [73] system was specifically written by nVidia’s
image processing expert to show off their hardware. However in [74] we show
GP is able to improve the code for hardware which had not even been designed
when it was originally written. Indeed GP gave up to a seven fold speed up in
the graphics kernel.

3.6 Genetically Improved GPU Based 3D Brain Imaging

GI can automatically tune an important CUDA kernel in the NiftyReg [79]
medical imaging package for six very different graphics cards (see [80, Fig. 1]).

http://sourceforge.net/projects/seqbarracuda/?source=typ_redirect
http://sourceforge.net/projects/seqbarracuda/?source=typ_redirect

20 W.B. Langdon

4 Plastic Surgery: Better MiniSAT from multiple Authors

Genetic Improvement has also been used to create an improved version of C++
code from multiple versions of a program written by different domain experts.
The Boolean satisfiability community has advanced rapidly since the turn of
the century. This is partly due to the “MiniSAT hack track”, which encourages
people to make small changes to the MiniSAT code. Some of these variants were
evolved together to give a new MiniSAT tailored to solve interaction testing
problems [81]. It received a human competitive award (HUMIE) in 2014.

5 Creating and Incorporating New Functionality

5.1 Babel Pidgin: Adding Double Language Translation Feature

Jia et al. [82] describes another prize winning GI system. GP including human
hints was able to evolved new functionality externally and then search based
techniques [83] were used to graft the new code into an existing program (pidgin)
of more than 200 000 lines of C++.

5.2 Grow and Serve GP Citations

The GP grew code and grafted it into a Django web server to provide a citation
service based in Google Scholar. As an experiment, the GP bibliography used
this GP produced service. In the first 24 hours it was used 369 times from 29
countries [84].

5.3 104× Speedup on Folding RNA Molecules

GP was told approximately where to evolve new code within an existing parallel
program pknots [85]. It converted the original CUDA kernel, which processes
one Dynamic Programming matrix at a time, into one which processes multiple
matrices. Although only trained on five matrices, the evolved kernel can work
on up to 200 000 matrices, delivering speed ups of up ten thousand fold [86].

6 GISMO Key Findings

The idea of using existing code as its own specification is very valuable (see also
Fig. 4). Many existing specifications are informal and often incomplete. Whilst
the existing code may contain errors, the fact that it is in use shows it to be
near what is wanted and so can be used as a basis for new work. Also by using
existing test suites or automatic test case generation tools, the output of the
existing code under test can be used as its own test oracle and indeed the test
oracle for the new code. The number of tests available for validating the new code
is now only limited by machine (rather than human) resource limits. However
many of the GISMO examples given above show a very small number of tests,

Genetic Improvement of Software for Multiple Objectives 21

perhaps just a handful (provided they are frequently changed), may be sufficient
to guide the GI. With a much larger pool of tests or other validation techniques
being available post evolution. Indeed when working at the source code level,
GI generated software can potentially be validated by any of today’s techniques,
including manual inspection as well as intensive regression testing.

While human written code may be optimised for a particular objective, GI
can optimise it for multiple objectives (Fig. 5). This may be particularly impor-
tant if, whilst maintaining functionality of the existing code, GI can suggest
unsuspected tradeoffs between speed, memory usage, energy consumption, net-
work loading, etc. and quality.

Although code evolved from scratch tends to be small, grow and graft
(GGGP) (Sect. 5) is a potential way around the problem. GGGP still evolves
small new components but also uses GP to graft them into much bigger human
written codes, thus creating large hybrid software.

The work on miniSAT (Sect. 4) shows GP can potentially scavenge not just
code from the program it is improving but code from multiple programs by
multiple authors. This GP plastic surgery [87] created in a few hours an award
winning version of miniSAT tailored to solving an important software engineering
problem. The automatically customised code was better at problems of this type
than generic versions of miniSAT which has been optimised by leading SAT
experts for years.

In software engineering there has always been a strong pressure to keep soft-
ware as uniform as possible. To try and keep all the users running just a few
versions. With the popularity of software product lines and possibility of multi-
plicity computing, we see an opposing trend. A desire to reduce the impact of
malicious programmers by avoiding the current software monoculture and for
more bespoke and adaptable systems. Already there is a little GI work in both
avenues.

7 GISMO Impact

While the GI version of BarraCUDA (http://sourceforge.net/projects/seq
barracuda/?source=typ redirect) has been in use since March 2015, perhaps
the biggest impact of the project has been to show automatic or even human
assisted evolution of software can be feasible. Before 2009 automatic bug fixing
was regarded as fantasy but following [4] this changed. The biggest impact of
the project will be encouraging people to do what was previously considered
impossible.

Sources and Datasets. The grammar based genetic programming systems
and associated benchmarks are available via the GISMO (http://www.cs.ucl.
ac.uk/staff/W.Langdon/gismo/#code) project web pages. Other authors have
also made their systems available (e.g. Le Goues’ genprog (http://genprog.cs.
virginia.edu/)) or may be asked directly.

http://sourceforge.net/projects/seqbarracuda/?source=typ_redirect
http://sourceforge.net/projects/seqbarracuda/?source=typ_redirect
http://www.cs.ucl.ac.uk/staff/W.Langdon/gismo/#code
http://www.cs.ucl.ac.uk/staff/W.Langdon/gismo/#code
http://genprog.cs.virginia.edu/
http://genprog.cs.virginia.edu/

22 W.B. Langdon

Acknowledgements. I am grateful for the assistance of Andrea Arcuri, Robert Feldt,
Marc Schoenauer, Wes Weimer and Darrell Whitley. Tesla donated by nVidia (http://
www.nvidia.com).

References

1. Ryan, C., Ivan, L.: Automatic parallelization of arbitrary programs.
In: Langdon, W.B., Fogarty, T.C., Nordin, P., Poli, R. (eds.) EuroGP
1999. LNCS, vol. 1598, pp. 244–254. Springer, Heidelberg (1999).
http://www.cs.bham.ac.uk/∼ wbl/biblio/gp-html/ryan 1999 apap.html

2. Koza, J.R.: Genetic Programming: On the Programming of Computers by Natural
Selection. MIT press (1992). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/
koza book.html

3. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic program-
ming (2008). Published via http://lulu.com and freely available at http://www.
gp-field-guide.org.uk (With contributions by J.R. Koza). http://www.cs.bham.ac.
uk/∼wbl/biblio/gp-html/poli08 fieldguide.html

4. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches
using genetic programming. In: Fickas, S., (ed.) ICSE 2009, Vancouver, pp. 364–
374 (2009). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Weimer 2009 ICES.
html

5. Forrest, S., Nguyen, T., Weimer, W., Le Goues, C.: A genetic programming app-
roach to automated software repair. In: Raidl, G., et al. (eds.) GECCO 2009, pp.
947–954, ACM, Montreal (2009) (Best paper). http://www.cs.bham.ac.uk/∼wbl/
biblio/gp-html/DBLP conf gecco ForrestNWG09.html

6. Weimer, W., Forrest, S., Le Goues, C., Nguyen, T.: Automatic program
repair with evolutionary computation. Commun. ACM 53(5), 109–116 (2010).
http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Weimer 2010 ACM.html

7. Fast, E., Le Goues, C., Forrest, S., Weimer, W.: Designing better fitness func-
tions for automated program repair. In: Branke, J., et al. (eds.) GECCO 2010,
pp. 965–972. ACM (2010). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Fast
2010 GECCO.html

8. Schulte, E., Forrest, S., Weimer, W.: Automated program repair through
the evolution of assembly code. In: ASE 2010, pp. 313–316. ACM, Antwerp
(2010). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/schulte10 autom progr
repair evolut assem code.html

9. Schulte, E., Fry, Z.P., Fast, E., Weimer, W., Forrest, S.: Software muta-
tional robustness. Genet. Program Evolvable Mach. 15(3), 281–312 (2014).
http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/schulte10 autom progr repair
evolut assem code.html

10. Orlov, M., Sipper, M.: Flight of the FINCH through the Java wilderness.
IEEE Trans. EC 15(2), 166–182 (2011). http://www.cs.bham.ac.uk/∼wbl/
biblio/gp-html/Orlov 2011 ieeeTEC.html

11. Langdon, W.B., Nordin, J.P.: Seeding genetic programming populations. In:
Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C.
(eds.) EuroGP 2000. LNCS, vol. 1802, pp. 304–315. Springer, Heidelberg (2000).
http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/langdon 2000 seed.html

12. Langdon, W.B.: Genetically improved software. In: Gandomi, A.H., et al. (eds.)
Handbook of Genetic Programming Applications. Springer (forthcoming). http://
www.cs.bham.ac.uk/∼wbl/biblio/gp-html/langdon 2015 hbgpa.html

http://www.nvidia.com
http://www.nvidia.com
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ryan_1999_apap.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_book.html
http://lulu.com
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2009_ICES.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2009_ICES.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_conf_gecco_ForrestNWG09.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_conf_gecco_ForrestNWG09.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2010_ACM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Fast_2010_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Fast_2010_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/schulte10__autom_progr_repair_evolut_assem_code.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/schulte10__autom_progr_repair_evolut_assem_code.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/schulte10__autom_progr_repair_evolut_assem_code.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/schulte10__autom_progr_repair_evolut_assem_code.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Orlov_2011_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Orlov_2011_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2000_seed.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_hbgpa.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_hbgpa.html

Genetic Improvement of Software for Multiple Objectives 23

13. Harman, M., Jones, B.F.: Search based software engineering. Inf. Softw. Technol.
43(14), 833–839 (2001)

14. Langdon, W.B., Petke, J., White, D.R.: Genetic improvement 2015 chairs’ welcome.
In: GECCO 2015 Companion. ACM, Madrid (2015). http://www.cs.bham.ac.uk/
∼wbl/biblio/gp-html/langdon 2015 gi.html

15. Arcuri, A., Yao, X.: Co-evolutionary automatic programming for software
development. Inf. Sci. 259, 412–432 (2014). http://www.cs.bham.ac.uk/∼wbl/
biblio/gp-html/Arcuri2010.html

16. Hussain, D., Malliaris, S.: Evolutionary techniques applied to hashing: An effi-
cient data retrieval method. In: Whitley, D., et al. (eds.) GECCO-2000, p. 760.
Morgan Kaufmann, Las Vegas, Nevada, USA (2000). http://www.cs.bham.ac.uk/
∼wbl/biblio/gp-html/Hussain 2000 GECCO.html

17. Berarducci, P., Jordan, D., Martin, D., Seitzer, J.: GEVOSH: using grammatical
evolution to generate hashing functions. In: Poli, R., et al. (eds.) GECCO 2004
Workshop Proceedings, Seattle, Washington, USA (2004). http://www.cs.bham.
ac.uk/∼wbl/biblio/gp-html/berarducci 2004 ugw pber.html

18. Estebanez, C., Saez, Y., Recio, G., Isasi, P.: Automatic design of noncryptographic
hash functions using genetic programming. Computational Intelligence (forthcom-
ing). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Estebanez 2014 CI.html

19. Karasek, J., Burget, R., Morsky, O.: Towards an automatic design of non-
cryptographic hash function. In: TSP 2011, pp. 19–23, Budapest (2011). http://
www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Karasek 2011 TSP.html

20. Paterson, N., Livesey, M.: Evolving caching algorithms in C by genetic program-
ming. In: Koza, J.R., et al. (eds.): Genetic Programming, pp. 262–267. Morgan
Kaufmann, Stanford University, CA, USA (1997). http://www.cs.bham.ac.uk/
∼wbl/biblio/gp-html/Paterson 1997 ecacGP.html

21. O’Neill, M., Ryan, C.: Automatic generation of caching algorithms. In: Miettinen,
K., et al. (eds.) Evolutionary Algorithms in Engineering and Computer Science, pp.
127-134, John Wiley and Sons, Jyväskylä, Finland (1999). http://www.cs.bham.
ac.uk/∼wbl/biblio/gp-html/oneill 1999 AGCA.html

22. Branke, J., Funes, P., Thiele, F.: Evolutionary design of en-route caching strate-
gies. Appl. Soft Comput. 7(3), 890–898 (2006). http://www.cs.bham.ac.uk/∼wbl/
biblio/gp-html/Branke 2006 ASC.html

23. Risco-Martin, J.L., Atienza, D., Colmenar, J.M., Garnica, O.: A parallel
evolutionary algorithm to optimize dynamic memory managers in embedded
systems. Parallel Comput. 36(10–11), 572–590 (2010). http://www.cs.bham.ac.
uk/∼wbl/biblio/gp-html/RiscoMartin2010572.html

24. Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisation.
In: GECCO 2015. ACM, Madrid (2015). http://www.cs.bham.ac.uk/∼wbl/biblio/
gp-html/Wu 2015 GECCO.html

25. Rodriguez-Mier, P., Mucientes, M., Lama, M., Couto, M.I.: Composition of
web services through genetic programming. Evol. Intell. 3(3–4), 171–186 (2010).
http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Rodriguez-Mier 2010 EI.html

26. Fredericks, E.M., Cheng, B.H.C.: Exploring automated software composition with
genetic programming. In: Blum, C., et al. (eds.) GECCO 2013 Companion, pp.
1733–1734. ACM, Amsterdam, The Netherlands (2013). http://www.cs.bham.ac.
uk/∼wbl/biblio/gp-html/Fredericks 2013 GECCOcomp.html

27. Xiao, L., Chang, C.K., Yang, H.-I., Lu, K.-S., Jiang, H.-Y.: Automated web
service composition using genetic programming. In: COMPSACW 2012, pp.
7–12, Izmir (2012). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Xiao 2012
COMPSACW.html

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Arcuri2010.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Arcuri2010.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Hussain_2000_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Hussain_2000_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/berarducci_2004_ugw_pber.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/berarducci_2004_ugw_pber.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Estebanez_2014_CI.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Karasek_2011_TSP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Karasek_2011_TSP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Paterson_1997_ecacGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Paterson_1997_ecacGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/oneill_1999_AGCA.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/oneill_1999_AGCA.html
http://www.cs.bh am.ac.uk/~wbl/biblio/gp-html/Branke_2006_ASC.html
http://www.cs.bh am.ac.uk/~wbl/biblio/gp-html/Branke_2006_ASC.html
http://www.cs.bham.ac.uk/protect unhbox voidb@x penalty @M {}wbl/biblio/gp-html/RiscoMartin2010572.html
http://www.cs.bham.ac.uk/protect unhbox voidb@x penalty @M {}wbl/biblio/gp-html/RiscoMartin2010572.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Wu_2015_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Wu_2015_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Rodriguez-Mier_2010_EI.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Fredericks_2013_GECCOcomp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Fredericks_2013_GECCOcomp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Xiao_2012_COMPSACW.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Xiao_2012_COMPSACW.html

24 W.B. Langdon

28. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.:
Hyper-heuristics: a survey of the state of the art. JORS 64(12), 1695–1724 (2013).
http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Burke2013.html

29. Pappa, G.L., Ochoa, G., Hyde, M.R., Freitas, A.A., Woodward, J., Swan,
J.: Contrasting meta-learning and hyper-heuristic research: the role of evo-
lutionary algorithms. Genet. Program Evolvable Mach. 15(1), 3–35 (2014).
http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Pappa 2013 GPEM.html

30. Mahajan, A., Ali, M.S.: Superblock scheduling using genetic programming for
embedded systems. In: ICCI 2008. IEEE, pp. 261–266 (2008). http://www.cs.
bham.ac.uk/∼wbl/biblio/gp-html/Mahajan 2008 ieeeICCI.html

31. Cadar, C., Pietzuch, P., Wolf, A.L.: Multiplicity computing: a vision of software
engineering for next-generation computing platform applications. In Sullivan, K.,
ed.: FoSER 2010 FSE/SDP workshop, pp. 81-86. ACM, Santa Fe, New Mexico,
USA (2010). http://dx.doi.org/10.1145/1882362.1882380

32. DeMillo, R.A., Offutt, A.J.: Constraint-based automatic test data generation.
IEEE Trans. Software Eng. 17(9), 900–910 (1991). http://dx.doi.org/10.1109/
32.92910

33. Langdon, W.B., Harman, M., Jia, Y.: Efficient multi-objective higher order
mutation testing with genetic programming. JSS 83(12), 2416–2430 (2010).
http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/langdon 2010 jss.html

34. Feldt, R.: Generating diverse software versions with genetic program-
ming: an experimental study. IEE Proceedings 145(6), 228–236 (1998).
http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/feldt 1998 gdsvGPes.html

35. Imamura, K., Foster, J.A.: Fault-tolerant computing with N-version genetic pro-
gramming. In Spector, L., et al. (eds.) GECCO-2001, p. 178, Morgan Kaufmann,
San Francisco, California, USA (2001). http://www.cs.bham.ac.uk/∼wbl/biblio/
gp-html/imamura 2001 gecco.html

36. Imamura, K., Soule, T., Heckendorn, R.B., Foster, J.A.: Behavioral
diversity and a probabilistically optimal GP ensemble. Genet. Program
Evolvable Mach. 4(3), 235–253 (2003). http://www.cs.bham.ac.uk/∼wbl/biblio/
gp-html/imamura 2003 GPEM.html

37. Langdon, W.B., Buxton, B.F.: Genetic programming for combining classifiers.
In Spector, L., et al. (eds.) GECCO-2001, pp. 66–73. Morgan Kaufmann,
San Francisco, California, USA (2001). http://www.cs.bham.ac.uk/∼wbl/biblio/
gp-html/langdon 2001 gROC.html

38. Buxton, B.F., Langdon, W.B., Barrett, S.J.: Data fusion by intelligent classifier
combination. Meas. Contr. 34(8), 229–234 (2001). http://www.cs.bham.ac.
uk/∼wbl/biblio/gp-html/imamura 2003 GPEM.html

39. Langdon, W.B., Poli, R.: Evolving problems to learn about particle swarm
and other optimisers. In: Corne, D., et al. (eds.) CEC-2005, pp. 81–88. IEEE
Press, Edinburgh, UK (2005). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/
langdon 2005 CECb.html

40. Cotillon, A., Valencia, P., Jurdak, R.: Android genetic programming frame-
work. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.)
EuroGP 2012. LNCS, vol. 7244, pp. 13–24. Springer, Heidelberg (2012).
http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/cotillon 2012 EuroGP.html

41. Lopez-Herrejon, R.E., Linsbauer, L.: Genetic improvement for software product
lines: an overview and a roadmap. In: GECCO 2015 Companion. ACM, Madrid
(2015). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Lopez-Herrejon 2015 gi.
html

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Burke2013.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Pappa_2013_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Mahajan_2008_ieeeICCI.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Mahajan_2008_ieeeICCI.html
http://dx.doi.org/10.1145/1882362.1882380
http://dx.doi.org/10.1109/32.92910
http://dx.doi.org/10.1109/32.92910
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_jss.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/feldt_1998_gdsvGPes.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/imamura_2001_gecco.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/imamura_2001_gecco.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/imamura_2003_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/imamura_2003_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2001_gROC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2001_gROC.html
http://www.cs.bham.ac.uk/protect unhbox voidb@x penalty @M {}wbl/biblio/gp-html/imamura_2003_GPEM.html
http://www.cs.bham.ac.uk/protect unhbox voidb@x penalty @M {}wbl/biblio/gp-html/imamura_2003_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2005_CECb.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2005_CECb.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/cotillon_2012_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Lopez-Herrejon_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Lopez-Herrejon_2015_gi.html

Genetic Improvement of Software for Multiple Objectives 25

42. Landsborough, J., Harding, S., Fugate, S.: Removing the kitchen sink from soft-
ware. In GECCO 2015 Companion. ACM, Madrid (2015). http://www.cs.bham.
ac.uk/∼wbl/biblio/gp-html/Landsborough 2015 gi.html

43. Schulte, E., Weimer, W., Forrest, S.: Repairing COTS router firmware without
access to source code or test suites: A case study in evolutionary software repair.
In: GECCO 2015 Companion. ACM, Madrid (2015). http://www.cs.bham.ac.uk/
∼wbl/biblio/gp-html/Schulte 2015 gi.html

44. Yeboah-Antwi, K., Baudry, B.: Embedding adaptivity in software systems using
the ECSELR framework. In: GECCO 2015 Companion. ACM, Madrid (2015).
http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Yeboah-Antwi 2015 gi.html

45. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs.
IEEE Trans. EC 15(4), 515–538 (2011). http://www.cs.bham.ac.uk/∼wbl/
biblio/gp-html/White 2011 ieeeTEC.html

46. Sitthi-amorn, P., Modly, N., Weimer, W., Lawrence, J.: Genetic pro-
gramming for shader simplification. ACM Trans. Graphics, 30(6), article:
152 (2011). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/DBLP journals tog
Sitthi-amornMWL11.html

47. Feldt, R.: Genetic programming as an explorative tool in early software develop-
ment phases. In: Ryan, C., Buckley, J. (eds.) Proceedings of the 1st International
Workshop on Soft Computing Applied to Software Engineering, pp. 11–20. Limer-
ick University Press, University of Limerick, Ireland (1999). http://www.cs.bham.
ac.uk/∼wbl/biblio/gp-html/feldt 1999 GPxtxsdp.html

48. Harman, M., Langdon, W.B., Jia, Y., White, D.R., Arcuri, A., Clark, J.A.: The
GISMOE challenge: constructing the Pareto program surface using genetic pro-
gramming to find better programs. In: ASE 2012, pp. 1–14. ACM, Essen, Germany
(2012). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Harman 2012 ASE.html

49. Lukschandl, E., Holmlund, M., Moden, E.: Automatic evolution of Java bytecode:
first experience with the Java virtual machine. In: Poli, R., et al. (eds.) Late Break-
ing Papers at EuroGP 1998, Paris, France, CSRP-98-10, pp. 14–16, The Univer-
sity of Birmingham, UK (1998). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/
lukschandl 1998 1java.html

50. Archanjo, G.A., Von Zuben, F.J.: Genetic programming for automating the
development of data management algorithms in information technology sys-
tems. Advances in Software Engineering (2012). http://www.cs.bham.ac.uk/∼wbl/
biblio/gp-html/Archanjo 2012 ASE.html

51. Ryan, C.: Automatic Re-Engineering of Software using Genetic Programming.
Kluwer Academic Publishers (1999). http://www.cs.bham.ac.uk/∼wbl/biblio/
gp-html/ryan book.html

52. Katz, G., Peled, D.: Synthesizing, correcting and improving code, using
model checking-based genetic programming. In: Bertacco, V., Legay, A. (eds.)
HVC 2013. LNCS, vol. 8244, pp. 246–261. Springer, Heidelberg (2013).
http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/conf hvc KatzP13.html

53. Cody-Kenny, B., Lopez, E.G., Barrett, S.: locoGP: improving performance by
genetic programming java source code. In: GECCO 2015 Companion. ACM,
Madrid (2015). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Cody-Kenny
2015 gi.html

54. Schulte, E., Dorn, J., Harding, S., Forrest, S., Weimer, W.: Post-compiler soft-
ware optimization for reducing energy. In: ASPLOS 2014, pp. 639–652. ACM, Salt
LakeCity, Utah, USA (2014). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/
schulte2014optimization.html

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Landsborough_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Landsborough_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Yeboah-Antwi_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/White_2011_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/White_2011_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/feldt_1999_GPxtxsdp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/feldt_1999_GPxtxsdp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2012_ASE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/lukschandl_1998_1java.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/lukschandl_1998_1java.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Archanjo_2012_ASE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Archanjo_2012_ASE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ryan_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ryan_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/conf_hvc_KatzP13.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Cody-Kenny_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Cody-Kenny_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/schulte2014optimization.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/schulte2014optimization.html

26 W.B. Langdon

55. Mrazek, V., Vasicek, Z., Sekanina, L.: Evolutionary approximation of software for
embedded systems: median function. In: GECCO 2015 Companion. ACM, Madrid
(2015). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Mrazek 2015 gi.html

56. Arcuri, A., Yao, X.: A novel co-evolutionary approach to automatic software bug
fixing. In: Wang, J., (ed.) WCCI 2008. IEEE, pp. 162–168 (2008). http://www.cs.
bham.ac.uk/∼wbl/biblio/gp-html/Arcuri 2008 cec.html

57. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of
automated program repair: Fixing 55 out of 105 bugs for 8 each. In: Glinz, M.,
(ed.) ICSE 2012, pp. 3–13 Zurich (2012). http://www.cs.bham.ac.uk/∼wbl/biblio/
gp-html/LeGoues 2012 ICSE.html

58. Wilkerson, J.L., Tauritz, D.: Coevolutionary automated software correction. In:
Branke, J., et al. (eds.) GECCO 2010, pp. 1391-1392. ACM, Portland, Ore-
gon, USA (2010). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Wilkerson
2010 gecco.html

59. Bradbury, J.S., Jalbert, K.: Automatic repair of concurrency bugs. In: Di Penta,
M., et al. (eds.) SSBSE 2010, Benevento, Italy (2010) (Fast abstract). http://www.
cs.bham.ac.uk/∼wbl/biblio/gp-html/BradburyJ10.html

60. Ackling, T., Alexander, B., Grunert, I.: Evolving patches for software repair. In:
Krasnogor, N., et al. (eds.) GECCO 2011, pp. 1427-1434. ACM, Dublin, Ireland
(2011). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Ackling 2011 GECCO.
html

61. Kessentini, M., Kessentini, W., Sahraoui, H., Boukadoum, M., Ouni, A.:
Design defects detection and correction by example. In: ICPC 2011, pp. 81–
90. IEEE, Kingston, Canada (2011). http://www.cs.bham.ac.uk/∼wbl/biblio/
gp-html/Kessentini 2011 ICPC.html

62. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: SemFix: program repair
via semantic analysis. In: Cheng, B.H.C., Pohl, K., (eds.) ICSE 2013, pp. 772–
781. IEEE, San Francisco, USA (2013). http://www.cs.bham.ac.uk/∼wbl/biblio/
gp-html/Nguyen 2013 ICSE.html

63. Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation learned from
human-written patches. In: ICSE 2013, pp. 802–811, San Francisco, USA (2013).
http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Kim 2013 ICSE.html

64. Tan, S.H., Roychoudhury, A.: relifix: Automated Repair of Software Regressions.
In: Canfora, G., et al. (eds.) ICSE 2015, pp. 471–482. IEEE, Florence Italy (2015)

65. Schulte, E., DiLorenzo, J., Weimer, W., Forrest, S.: Automated repair of binary
and assembly programs for cooperating embedded devices. In: ASPLOS 2013, pp.
317–328. ACM, Houston, Texas, USA (2013). http://www.cs.bham.ac.uk/∼wbl/
biblio/gp-html/Schulte 2013 ARB 2451116 2451151.html

66. Yoo, S.: Evolving human competitive spectra-based fault localisation techniques.
In: Fraser, G., Teixeira de Souza, J. (eds.) SSBSE 2012. LNCS, vol. 7515,
pp. 244–258. Springer, Heidelberg (2012). http://www.cs.bham.ac.uk/∼wbl/
biblio/gp-html/Yoo 2012 SSBSE.html

67. Weimer, W.: advances in automated program repair and a call to arms.
In: Ruhe, G., Zhang, Y. (eds.) SSBSE 2013. LNCS, vol. 8084,
pp. 1–3. Springer, Heidelberg (2013). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-
html/Weimer 2013 SSBSE.html

68. Cody-Kenny, B., Barrett, S.: The emergence of useful bias in self-focusing genetic
programming for software optimisation. In: Ruhe, G., Zhang, Y. (eds.) SSBSE 2013.
LNCS, vol. 8084, pp. 306–311. Springer, Heidelberg (2013). Graduate Student Track
http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Cody-Kenny 2013 SSBSE.html

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Mrazek_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Arcuri_2008_cec.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Arcuri_2008_cec.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/LeGoues_2012_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/LeGoues_2012_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Wilkerson_2010_gecco.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Wilkerson_2010_gecco.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/BradburyJ10.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/BradburyJ10.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Ackling_2011_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Ackling_2011_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kessentini_2011_ICPC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kessentini_2011_ICPC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Nguyen_2013_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Nguyen_2013_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kim_2013_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2013_ARB_2451116_2451151.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2013_ARB_2451116_2451151.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Yoo_2012_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Yoo_2012_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2013_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2013_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Cody-Kenny_2013_SSBSE.html

Genetic Improvement of Software for Multiple Objectives 27

69. Gabel, M., Su, Z.: A study of the uniqueness of source code. In: FSE 2010, pp. 147–
156. ACM (2010). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Gabel 2010
FSE.html

70. Darwin, C.: The Origin of Species. Penguin classics, 1985 edn. John Murray (1859)
71. Langdon, W.B., Harman, M.: Evolving a CUDA kernel from an nVidia tem-

plate. In: Sobrevilla, P., (ed.) WCCI 2010, pp. 2376-2383. IEEE, Barcelona (2010).
http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/langdon 2010 cigpu.html

72. Hutchins, M., Foster, H., Goradia, T., Ostrand, T.: Experiments on the effective-
ness of dataflow- and control-flow-based test adequacy criteria. In: ICSE 1994, pp.
191–200 (1994). urlhttp://dx.doi.org/10.1109/ICSE.1994.296778

73. Stam, J.: Stereo imaging with CUDA. Technical report, nVidia (2008)
74. Langdon, W.B., Harman, M.: Genetically improved CUDA C++ software.

In: Nicolau, M., Krawiec, K., Heywood, M.I., Castelli, M., Garćıa-Sánchez,
P., Merelo, J.J., Rivas Santos, V.M., Sim, K. (eds.) EuroGP 2014. LNCS, vol. 8599,
pp. 87–99. Springer, Heidelberg (2014). http://www.cs.bham.ac.uk/∼wbl/biblio/
gp-html/langdon 2014 EuroGP.html

75. Langdon, W.B., Harman, M.: Optimising existing software with genetic pro-
gramming. IEEE Trans. EC 19(1), 118–135 (2015). http://www.cs.bham.ac.uk/
∼wbl/biblio/gp-html/Langdon 2013 ieeeTEC.html

76. Klus, P., Lam, S., Lyberg, D., Cheung, M.S., Pullan, G., McFarlane,
I., Yeo, G.S.H., Lam, B.Y.H.: BarraCUDA - a fast short read sequence
aligner using graphics processing units. BMC Research Notes 5(1), 27
(2012).http://dx.doi.org/10.1186/1756-0500-5-27

77. Langdon, W.B., Lam, B.Y.H., Petke, J., Harman, M.: Improving CUDA DNA
analysis software with genetic programming. In: GECCO 2015. ACM, Madrid
(2015). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Langdon 2015 GECCO.
html

78. Langdon, W.B., Lam, B.Y.H.: Genetically improved barraCUDA. Research Note
RN/15/03, Department of Computer Science, University College London (2015).
http://arxiv.org/abs/arXiv:1505.07855

79. Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes,
D.J., Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics
processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010).
http://dx.doi.org/10.1016/j.cmpb.2009.09.002

80. Langdon, W.B., Modat, M., Petke, J., Harman, M.: Improving 3D medical
image registration CUDA software with genetic programming. In: Igel, C.,
et al. (eds.) GECCO 2014, pp. 951-958. ACM, Vancouver, BC, Canada (2014).
http://arxiv.org/abs/arXiv:1505.07855

81. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improve-
ment and code transplants to specialise a C++ program to a problem class.
In: Nicolau, M., Krawiec, K., Heywood, M.I., Castelli, M., Garćıa-Sánchez,
P., Merelo, J.J., Rivas Santos, V.M., Sim, K. (eds.) EuroGP 2014. LNCS, vol. 8599,
pp. 137–149. Springer, Heidelberg (2014). http://www.cs.bham.ac.uk/∼wbl/
biblio/gp-html/Petke 2014 EuroGP.html

82. Harman, M., Jia, Y., Langdon, W.B.: Babel Pidgin: SBSE can grow and graft
entirely new functionality into a real world system. In: Le Goues, C., Yoo, S.
(eds.) SSBSE 2014. LNCS, vol. 8636, pp. 247–252. Springer, Heidelberg (2014).
http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/Harman 2014 Babel.html

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Gabel_2010_FSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Gabel_2010_FSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2014_EuroGP.html
http://www.cs.bham.ac.uk/protect unhbox voidb@x penalty @M {}wbl/biblio/gp-html/Langdon_2013_ieeeTEC.html
http://www.cs.bham.ac.uk/protect unhbox voidb@x penalty @M {}wbl/biblio/gp-html/Langdon_2013_ieeeTEC.html
http://dx.doi.org/10.1186/1756-0500-5-27
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2015_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2015_GECCO.html
http://arxiv.org/abs/http://arxiv.org/abs/1505.07855
http://dx.doi.org/10.1016/j.cmpb.2009.09.002
http://arxiv.org/abs/http://arxiv.org/abs/1505.07855
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2014_Babel.html

28 W.B. Langdon

83. Harman, M.: Software engineering meets evolutionary computation. Comput.
44(10), 31–39 (2011). Cover feature http://www.cs.bham.ac.uk/∼wbl/biblio/gp-
html/Harman 2011 ieeeC.html

84. Jia, Y., Harman, M., Langdon, W.B., Marginean, A.: Grow and serve: Growing
Django citation services using SBSE. In: Yoo, S., Minku, L. (eds.) SSBSE 2015.
Challenge Track, Bergamo, Italy (2015). http://www.cs.bham.ac.uk/∼wbl/biblio/
gp-html/jia 2015 gsgp.html

85. Reeder, J., Steffen, P., Giegerich, R.: pknotsRG: RNA pseudoknot folding including
near-optimal structures and sliding windows. Nucleic Acids Res. 35(Suppl. 2),
W320–W324 (2007). http://dx.doi.org/10.1093/nar/gkm258

86. Langdon, W.B., Harman, M.: Grow and graft a better CUDA pknotsRG for RNA
pseudoknot free energy calculation. In: GECCO 2015 Companion. ACM, Madrid
(2015). http://www.cs.bham.ac.uk/∼wbl/biblio/gp-html/langdon 2015 gi pknots.
html

87. Barr, E.T., Brun, Y., Devanbu, P., Harman, M., Sarro, F.: The plastic surgery
hypothesis. In: Orso, A., et al. (eds.) FSE 2014. ACM, Hong Kong (2014). http://
earlbarr.com/publications/psh.pdf

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2011_ieeeC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2011_ieeeC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/jia_2015_gsgp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/jia_2015_gsgp.html
http://dx.doi.org/10.1093/nar/gkm258
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_gi_pknots.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_gi_pknots.html
http://earlbarr.com/publications/psh.pdf
http://earlbarr.com/publications/psh.pdf

Research Papers

Amortised Optimisation of Non-functional
Properties in Production Environments

Shin Yoo(B)

Korea Advanced Institute of Science and Technology,
291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea

shin.yoo@cs.kaist.ac.kr

Abstract. Search Based Software Engineering has high potential for
optimising non-functional properties such as execution time or power
consumption. However, many non-functional properties are dependent
not only on the software system under consideration but also the environ-
ment that surrounds the system. This necessitates a support for online,
in situ optimisation. This paper introduces the novel concept of amor-
tised optimisation which allows such online optimisation. The paper also
presents two case studies: one that seeks to optimise JIT compilation,
and another to optimise a hardware dependent algorithm. The results
show that, by using the open source libraries we provide, developers can
improve the speed of their Python script by up to 8.6 % with virtually no
extra effort, and adapt a hardware dependent algorithm automatically
for unseen CPUs.

1 Introduction

Non-functional properties have increasingly been the focus of Search Based Soft-
ware Engineering (SBSE) work [2]. The inherent dynamic nature of SBSE, i.e.
measuring the fitness from actual executions of the subject of optimisation, makes
it a powerful tool to deal with non-functional properties. Testing of temporal
behaviours have received a considerable amount of interest [4,8,16,18]; other
properties like Quality of Service [6,14] and security [5,9,10] are emerging fields
of research.

Most existing literature on non-functional properties concerns what can be
called offline optimisation: we define an optimisation problem to improve a spe-
cific non-functional property, and consequently obtain one or more solutions by
using meta-heuristic optimisation algorithms, which are then deployed. This app-
roach overlooks an important and challenging element of non-functional proper-
ties: environmental dependency. Non-functional behaviours of software systems
are hard to predict precisely because they are heavily affected by the various envi-
ronmental factors ranging from operational profiles of input data to the hardware
that runs the system. By performing the optimisation offline, we detach the sub-
jects from their environments and tailor our solution to the specific environment
in which we optimise.

c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 31–46, 2015.
DOI: 10.1007/978-3-319-22183-0 3

32 S. Yoo

This offline approach raises two issues about the quality of the resulting
solutions. First, it is difficult to avoid sampling bias. Recreating the production
environment precisely can be difficult, because certain factors are either highly
variable (e.g. hardware components), or hard to emulate (e.g. realistic user load
for web applications). Consequently, offline optimisation can introduce bias that
favours the often limited optimisation environment. Second, even when the offline
optimisation is satisfactory, the production environment may change in such a
way that degrades the behaviour of the deployed system (e.g. upgraded hardware
with different performance profiles). This necessitates that the system is taken
offline and re-optimised, which may be difficult in industrial settings.

One way to overcome these problems is to provide built-in adaptivity in the
deployed software, so that the optimisation can take place in the production
environment after deployment. Since we will be optimising in the real environ-
ment, there cannot be any sampling bias. Because the adaptivity is built-in, there
is no need to take the system offline to optimise for the changed environment;
the system will continue to adapt to changes. Naturally, the focus is on how to
perform the optimisation without damaging the performance of the system in
the production environment.

We introduce a novel concept called amortised optimisation. Executions of
any metaheuristic optimisation can be amortised across multiple fitness evalua-
tions. Normally, optimisation algorithms perform fitness evaluations either one
by one (if it is a local search) or as a group (a population-based algorithm). With
amortised optimisation, it is the fitness evaluation that drives the optimisation
algorithm. Whenever the System Under Metaheuristic Optimisation (SUMO) is
executed, we measure one fitness value out of it, and drive the optimisation for-
ward by a single step. One iteration of the optimisation – either the evaluation of
neighbours and the move to a better neighbour (a local search), or the evaluation
of an entire population and the move to the next generation (a population-based
algorithm) – will consist of multiple executions of SUMO.

The paper investigates this novel approach to optimisation of non-functional
properties through two case studies. The first concerns adapting to different
software: we apply the amortised optimisation to improve Just-In-Time (JIT)
compilation parameters in a state-of-the-art Python runtime, pypy [3], and mea-
sure the impact on speed using benchmarks. For the pypy runtime, this can be
seen as adapting to Python scripts it has not executed before. The second study
focuses on hardware differences: we apply amortised optimisation to improve
blocked matrix multiplication [7], whose performance depends on the combi-
nation of block size parameter and the size of the L1 cache in the CPU that
executes the blocked algorithm. From the point of the algorithm, this can be
seen as adapting to a CPU that it has not been executed on before. Both studies
are supported by open source implementations of amortised optimisation tech-
niques. The results show that amortised optimisation can improve non-functional
properties of SUMO without knowing the details of the production environment
in advance.

Amortised Optimisation of Non-functional Properties 33

The contributions of this paper are as follows:

– Amortised Optimisation: we introduce the concept of amortised optimisa-
tion, which takes place over multiple executions of SUMO in order to reduce
the optimisation overhead with each execution. We make open source libraries
for Java and pypy JIT optimisation available.

– Empirical Evaluation: we present two exploratory case studies of the appli-
cation of amortised optimisation, focusing on software and hardware differences
respectively. The first study seeks to optimise JIT compilation parameters of a
Python runtime,without knowingwhich scriptswill be executed in advance.The
second study aims to optimise the block size in blocked matrix multiplication,
without knowing which CPU the algorithm will be executed on in advance.

The rest of the paper is organised as follows. Section 2 introduces the concept
of amortised optimisation. Section 3 presents the case study on JIT compilation
parameters, while Sect. 4 presents the case study on blocked matrix multiplica-
tion. Section 5 discusses the related work, and Sect. 6 concludes.

2 Amortised Optimisation

Many of non-functional properties of software depend on the exact context and
environment it is being used in. Consequently, the best way to adapt to different
contexts and environments is to optimise these properties in situ. However, meta-
heuristic optimisation often relies on a non-trivial number of fitness evaluations,
which, in the context of Search-Based Software Engineering, may contain other
software, model, or even hardware in the loop [12]. The inhibitive cost effectively
prevents software to be optimised in the production environment.

Single Iteration

Metaheuristic Algorithm Fitness Evaluation (Execution of SUMO)

Single Iteration Single Iteration
...

Existing Optimisation

...

Production Environment

...

Steps of Algorithm Budget Expires Use Best Known Result
Amortised Optimisation

Fig. 1. Amortised optimisation interleaves executions of SUMO, from which the fitness
is measured, with partial executions of metaheuristic algorithms. Each normal use of
SUMO doubles as a single fitness evaluation, driving the optimisation by small steps.
When the initial budget for optimisation expires, SUMO simply continues to run with
the best known result.

34 S. Yoo

We posit that the cost of in situ optimisation can be amortised. Figure 1
presents the conceptual overview of the amortised optimisation approach. With
existing optimisation techniques (depicted at the top), algorithms perform mul-
tiple iterations, each of which, in turn, executes the SUMO to measure the
fitness. This process is performed in the offline environment, and the result is
deployed. With amortised optimisation (depicted at the bottom), a single iter-
ation of a metaheuristic algorithm is broken down into several smaller steps to
be executed as part of each execution of SUMO. Essentially, we seek to pause
and resume the metaheuristic algorithms with persistence support. By keeping
each step smaller, we minimise the computational overhead to the normal oper-
ation of SUMO. Gradually, SUMO will find better solutions: when the budget
for optimisation runs out, SUMO can continue to use the best known result.

Any metaheuristic algorithm can be amortised in the proposed way, because
there is little dependency between the algorithm itself and the execution of
SUMO for fitness evaluation. A more limiting factor would be the nature of the
optimisation problem: since we are to explore the search space with the actual
uses of SUMO, we cannot afford to functionally sabotage any execution. For
example, a suboptimal candidate solution may be allowed to slow the software
a little bit, or use more memory than usual. However, it cannot affect the func-
tionality of SUMO so that it produces incorrect output. Consequently, amortised
optimisation is more easily applicable to tuning performance-related parameters
than to perform Genetic Improvement that may crash the SUMO [13]. For the
latter, parallel execution of two instances of SUMO may provide a solution: such
parallel execution has been previously studied to recover from regression faults
while the system is running online [11].

2.1 State-Based Steps: A Hill Climbing Example

Let us present a high-level model of amortised hill climbing algorithm, which
is shown in Fig. 2 in a state-based model format. Vertices represent the state
the algorithm can be in; edges represent potential control flows between algo-
rithm states. Edge labels are written in the format of X/Y, where X denotes a
transition trigger and Y denotes the set of actions performed during the tran-
sition. Variable eval keeps track of the number of remaining fitness evalua-
tions available to the algorithm. N is a set of neighbouring solutions: Next(N)
iterates over neighbours, while HasNext(N) checks whether the iteration is over.
IsLocalOptima() checks whether the current candidate solution is a local opti-
mum. Finally, return(x) returns x as a candidate solution for the SUMO to
use. Note that we assume a feedback loop from the SUMO back to x, which
provides the fitness value: this is not depicted in Fig. 2.

Whenever the SUMO is executed, it asks for a candidate solution x from
the amortised optimisation. The amortised hill climbing algorithm first retrieves
its current status from the persistence layer, then executes transitions until it
makes a return(x) call. For example, when the SUMO with the amortised hill
climbing algorithm is executed for the first time, it will start in the initial node
(“Random Solution”): since eval > 0 at the beginning, a transition is triggered,

Amortised Optimisation of Non-functional Properties 35

Fig. 2. State-based model of amortised hill climbing algorithm: return(x) decreases
the remaining number of fitness evaluations, eval, by 1.

and the algorithm returns the randomly generated x. Finally, it records the
current state (“Generate”) to the persistence layer and pauses. The next time
the SUMO is executed, the algorithm resumes itself from the stored status, and
the next transition (to “Evaluate Neighbours”) is immediately triggered, while
generating neighbours of the current x. This time, the algorithm only pauses
when the second transition is triggered and the call return(x) is made (which
returns the first solution in N).

3 Case Study: Optimising the JIT Parameters for Pypy

3.1 JIT Parameter Optimisation

Pypy is a Python runtime implementation with a strong focus on Just In Time
(JIT) compilation [3]. The JIT compilation mechanism used by pypy is the
meta-tracing JIT. Tracing JIT starts by profiling the code to identify frequently
executed, or hot, loops. In the next stage, the runtime records the history of
all operations executed during a single iteration of a hot loop. These are then
translated into the native machine code. What is unique with pypy is that the
tracing JIT is not applied to the user script, but rather to the interpreter that
runs the user script (hence the name, meta-tracing).

How aggressively pypy tries to JIT compile the user script depends on a set of
parameters that control the behaviour of the tracing JIT. While JIT compilation
in general can make Python, which is interpreted, significantly faster with pypy,
it is not always the case that JIT compiling more of the user script results in
shorter execution time. The more aggressive pypy tries to JIT compile, the higher
the cost of tracing becomes. If the gain in JIT compilation does not exceed the
cost, compiling more of the user script can actually slow pypy down. This trade
off is unique to each user script and the environment pypy runs in. Therefore,

36 S. Yoo

finding the desirable set of JIT parameters for pypy can be an ideal application
for the in situ, amortised optimisation.

Among the parameters that control the behaviour of the pypy JIT, the case
study in this paper focuses on the following three:

– Function threshold: This parameter determines the number of times a func-
tion has to be executed before it is traced from the beginning. Default value
in pypy is 1619.

– Loop threshold: This parameter determines the number of times a loop has
to be executed before it is identified as a hot loop. Default value in pypy is
1039.

– Trace eagerness: To ensure correctness, pypy inserts guards in the translated
code. When guards fail (an unpredicted branching direction can be a potential
cause), tracing JIT falls back to interpreting the loop. If guard failure happens
above certain threshold, tracing JIT attempts to translate the sub-path from
the point of guard failure to the end of the loop (this is called a bridge). This
parameter determines the number of times a guard has to fail before pypy
compiles the bridge. Default value in pypy is 200.

These parameters have been chosen after consulting the developers of pypy.
We have also been advised to set the loop threshold to be smaller than the
function threshold. Consequently, the implementation of amortised optimisation
of JIT for pypy replaces the loop threshold parameter with a threshold ratio
parameter, whose value is within (0, 1). The actual loop threshold parameter is
set to [function threshold] · [threshold ratio]. For function threshold, we use the
range of [10, 4900]; for trace eagerness, we use the range of [1, 1000].

3.2 Experimental Setup

Benchmarks. We chose 8 benchmark scripts from the standard benchmark
suite with which the speed of pypy is evaluated [17]. Table 1 describes the user
script studied in this paper.

Each benchmark script contains a main test function that performs the oper-
ation described in Table 1. The scripts have been slightly modified to repeat their
main test functions 50 times with each execution: this is to overcome the inher-
ent randomness in measuring execution times. The execution time is measured
using the system clock, starting from the invocation of the test function, and
ending when it returns. It does not include any time used by the amortised opti-
misation itself. The rationale is twofold: the overhead for a single execution of
the user script is very light, and when the amortised optimisation finishes (i.e.
runs out of the allocated fitness evaluations), it becomes virtually zero.

Implementation. The amortised optimisation for JIT parameters is imple-
mented into a Python package called piacin1. Since the JIT parameters only
1 Piacin is made available as open source software at https://bitbucket.org/ntrolls/

piacin.

https://bitbucket.org/ntrolls/piacin
https://bitbucket.org/ntrolls/piacin

Amortised Optimisation of Non-functional Properties 37

Table 1. Benchmark user scripts used for the JIT optimisation case study

Script Description

bm call method.py Repeated method calls in Python

bm django.py Use django to generate 100 by 100 tables

bm nbody.py Predict n-body planetary movementsa

bm nqueens.py Solve the 8 queens problem

bm regex compile.py Forced recompliations of regular expressions

bm regex v8.py Regular expression matching benchmark adopted from V8b

bm spambayes.py Apply a Bayesian spam filterc to a stored mailbox

bm spitfire.py Generate HTML tables using spitfired library
aAdopted from http://shootout.alioth.debian.org/u64q/benchmark.php?test=
nbody&lang=python&id=4.
bGoogle’s Javascript Runtime: https://code.google.com/p/v8/.
chttp://spambayes.sourceforge.net
dA template compiler library: https://code.google.com/p/spitfire/

need to be set once during the execution of a single user script, piacin similarly
only needs to be called twice: when the user script starts (to configure pypy
with the current parameters), and when it finishes (to record the fitness value
associate with the current parameters). The first hook is implemented by imple-
menting piacin as a Python package, and placing the JIT configuration code as
part of the package initialisation. The second hook is implemented by using the
atexit hook provided by Python by default. The benefits of this package-based
design is that the user only needs to include piacin package (i.e. to have import
piacin at the beginning of the user script) to benefit from it.

The amortised optimisation algorithm in piacin is steepest ascent hill climb-
ing. Neighbourhood solutions are generated by adding and subtracting prede-
fined step values to each of the parameters: 20 for function threshold, 10 for
trace eagerness, and 0.05 for threshold ratio. When the newly generated can-
didate solution has any parameter outside the predefined range, the parameter
value is wrapped around the range.

We use the default parameters of pypy as the starting point of the hill climb-
ing. Since these parameters are the result of careful benchmarking, it would be
wasteful to discard them without consideration. However, when the hill climbing
reaches local optima, we fall back to the random restart mechanism.

Control vs. Treatment Group. The control group consists of 20 un-optimised
runs of user benchmark scripts. Each control group run contains 20 un-optimised
pypy executions of the corresponding scripts. The treatment group consists of
20 optimised runs of user benchmark scripts. Each treatment group run contains
100 optimised pypy executions of the corresponding scripts: 80 executions at the
beginning are used for optimisation, the best solution from which is used by
the remaining 20 executions. Both groups have been executed with pypy version

http://shootout.alioth.debian.org/u64q/benchmark.php?test=nbody&lang=python&id=4
http://shootout.alioth.debian.org/u64q/benchmark.php?test=nbody&lang=python&id=4
https://code.google.com/p/v8/
http://spambayes.sourceforge.net
https://code.google.com/p/spitfire/

38 S. Yoo

2.4.0 on Mac OS X 10.10.2, using Intel Xeon 3.3 Hz CPU with 6 cores and 16 GB
of RAM. All the user scripts are single threaded and were executed one by one.

3.3 Results

Figures 3 and 4 show the boxplots of 20 runs of both control and treatment
groups. The x-axis shows the sequence of repeated executions of user scripts in
each run; the y-axis shows the execution time in seconds. Visual observation
reveals that, for some user scripts, the execution time after the amortised opti-
misation can be indeed shorter than before: optimisation for bm regex v8.py
shows a very clear trajectory with improving fitness (i.e. decreasing execu-
tion time), while bm nbody.py, bm nqueens.py, bm regex compile.py, and
bm spambayes.py settle down with shorter execution times after exploring the
search space during the optimisation.

With some user scripts, such as bm nbody.py and bm nqueens.py, the very
first execution of the user script during amortised optimisation already shows
shorter execution time. This appears to be counter-intuitive, as the parameters
are the same as the default ones when the amortised optimisation runs begin.

Default

bm
_c

al
l_

m
et

ho
d.

py

Amortised Optimisation

bm
_d

ja
ng

o.
py

bm
_n

bo
dy

.p
y

bm
_n

qu
ee

ns
.p

y

0 5 10 15 20

0.
64

0.
70

0.
76

0.
64

0.
70

0.
76

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

2.
3

2.
6

2.
9

2.
3

2.
6

2.
9

1.
16

1.
22

1.
16

1.
22

2.
6

3.
0

3.
4

2.
6

3.
0

3.
4

Fig. 3. Boxplots of execution times of user scripts with and without amortised opti-
misation applied to pypy. Plots on the left shows the execution times of benchmark
scripts from 20 separate runs, each of which repeats the script 20 times. Plots on the
right shows 20 runs, each of which repeats the script 100 times. The first 80 executions
are used for the amortised optimisation; the remaining 20 executions show the results
of the optimised JIT parameters.

Amortised Optimisation of Non-functional Properties 39

0 5 10 15 20

6
10

14

6
10

14

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

6.
5

7.
5

6.
5

7.
5

5
10

15

5
10

15

20
.0

21
.0

20
.0

21
.0

Default Amortised Optimisation
bm

_r
eg

ex
_c

om
pi

le
.p

y
bm

_r
eg

ex
_v

8.
py

bm
_s

pa
m

ba
ye

s.
py

bm
_s

pi
tfi

re
.p

y

Fig. 4. Boxplots of execution times of user scripts with and without amortised opti-
misation applied to pypy. Plots on the left shows the execution times of benchmark
scripts from 20 separate runs, each of which repeats the script 20 times. Plots on the
right shows 20 runs, each of which repeats the script 100 times. The first 80 executions
are used for the amortised optimisation; the remaining 20 executions show the results
of the optimised JIT parameters.

This is explained by the fact that, when piacin is applied, pypy does execute a
little bit more Python code (that belongs to piacin) before the benchmark test
function is invoked. Since the tracing JIT in pypy is applied to the interpreter of
Python rather than the user script, this extra Python code will inevitably make
certain parts of Python interpreter within pypy hotter than when the user script
is executed without piacin.

Table 2 contains both the descriptive statistics and the results of the hypoth-
esis testing. Execution times of both the default and optimised runs passed the
Shapiro-Wilk normality test; consequently, we use mean and standard deviation
as descriptive statistics and t-test to test the alternative hypothesis that the
execution times from the optimised runs are shorter than those from the default
(α = 0.05). The results of the hypothesis tests confirm the visual observation,
as five user scripts show shorter execution time that are statistically significant.
In case of bm regex v8.py, the optimised runs are faster by 8.6 %.

40 S. Yoo

Table 2. Descriptive statistics of the execution time (in seconds) and the p-values
of the hypothesis testing from the pypy case study. The user script bm regex v8.py

becomes 8.6 % faster after the amortised optimisation.

Subject Default Optimised p-value

Mean Std. Dev. Mean Std. Dev.

bm call method.py 0.6631 0.0150 0.6630 0.0130 0.4478

bm django.py 2.4018 0.0397 2.4161 0.0753 0.9996

bm nbody.py 1.1948 0.0071 1.1871 0.0136 <1e-4

bm nqueens.py 2.7367 0.0237 2.5595 0.0743 <1e-4

bm regex v8.py 7.5045 0.0347 6.8580 0.1583 <1e-4

bm regex compile.py 7.4155 0.0471 6.8786 1.5073 <1e-4

bm spambayes.py 5.0654 0.1654 4.9346 0.3851 <1e-4

bm spitfire.py 19.9485 0.0861 20.1045 0.1228 1.0000

4 Case Study: Optimising Algorithms to Hardware

The second case study concerns the optimisation of performance critical parame-
ter against different hardware components. The subject algorithm is the Blocked
Matrix Multiplication (BMM).

Algorithm 1. BMM
Input: Size of matrices, n, n-by-n
matrices
A and B
Output: matrix C, which equals to
A · B
(1) n blocks ← � n

BS
�

(2) for bi = 0 to bi < n blocks
(3) i ← bi ∗ BS
(4) for bj = 0 to bj <

n blocks
(5) j ← bj ∗ BS
(6) for bk = 0 to bk <

n blocks
(7) k ← bk ∗ BS
(8) block(n, A, B,

C, i, j, k)

Algorithm 2. BLOCK
Input: Matrix size, n, matrices A,
B, and C,
indices i, j, and k
Output: Updates matrix C
(1) M ← (i + BS > n?n − i :

BS)
(2) N ← (j + BS > n?n − j :

BS)
(3) K ← (k + BS > n?n − k :

BS)
(4) for i = 0 to i < M
(5) for j = 0 to j < N
(6) cij ← C[j + i ∗ n +j

+i ∗ n]
(7) for k = 0 to k <

K
(8) cij+ = A[i · n +

k + i · n + k]·
(9) B[j + k · n + j +

k · n]
(10) C[j+i·n+ j+ i·n] =

cij

Amortised Optimisation of Non-functional Properties 41

4.1 Blocked Matrix Multiplication (BMM)

Algorithms 1 and 2 collectively present the Blocked Matrix Multiplication for
square matrices. Algorithm 1 breaks down the matrices into smaller blocks of
size BS (Block Size), and invokes Algorithm 2 for each of them. The introduction
of additional loops may appear harmful to performance. However, having nested
loops around a smaller region of memory allows BMM to exploit better CPU
pipelining and higher cache hit rate, resulting in faster overall computation.

The key to the increased performance is the size of the block. However,
choosing the ideal size depends on details of the hardware environment, such
as the size of the L1 cache. Hard-coding a fixed block size into BMM may
produce desirable performance on one machine, but if the code is deployed to
and executed on another machine with a different CPU, there is no guarantee
that the same performance will be retained. This provides a compelling use case
for amortised optimisation.

4.2 Experimental Setup

Implementation. We use a Java implementation of the BMM algorithm
for matrices of double type. The amortised optimisation framework, called
NIA3CIN (Non-Invasive Amortised and Automated Adaptivity Code Injection),
is based on the hill climbing algorithm and is also implemented in Java2. To be
as unintrusive as possible, NIA3CIN uses a publish-subscribe style event bus to
establish communication between the SUMO and the optimisation. Parameters
to be optimised (in the case study, the block size), as well as the measure of the
fitness (in the case study, the number of floating point multiplications performed
per millisecond), need to be marked with annotation. Before the parameter is
to be used, the SUMO needs to call NIA3CIN so that the parameter variable
is updated with the current solution; after the parameter has been used, the
SUMO needs to call NIA3CIN so that the fitness is fed back to the optimisation.

The range of block size was set to [1, 512]. NIA3CIN generates neighbouring
solutions by adding and subtracting 1 to the current block size. When moving
through consecutive block sizes, certain sizes will be evaluated twice: first as
the current solution, and second as a neighbour. Since the non-functional fitness
measure is expected to be noisy, the redundant behaviour was left in NIA3CIN
deliberately, providing opportunities to evaluate the same solution more than
once (and, therefore, getting clearer measures of fitness).

Environment. Table 3 shows three different CPUs for which the BMM algo-
rithm was optimised in this study. Intel Xeon is a 6 code desktop CPU with
32 KB instruction and data cache; the Core-i7 used for this study is a mobile
(laptop) version, which has the same cache provision as the Xeon CPU. Finally,
to investigate how well the amortised optimisation can adapt to an environment

2 NIA3CIN is made available as open source software at https://bitbucket.org/ntrolls/
niacin.

https://bitbucket.org/ntrolls/niacin
https://bitbucket.org/ntrolls/niacin

42 S. Yoo

Table 3. Information about CPUs for which BMM was optimised

CPU Clock frequency L1 instruction cache L1 data cache

Intel Xeon W3680a 3.33 GHz 32 KB 32 KB

Intel Core-i7 3820QMa 2.7 GHz 32 KB 32 KB

ARM1176 (BCM2835 SoC)b 250 MHz 16 KB 16 KB
aThese Intel CPUs share data and instruction caches between two processor threads.
bRaspberry Pi Model B, first edition.

with very limited resources, we use the ARM1176 core on a Broadcom BCM2835
System-on-Chip, which is found in Raspberry Pi version 1 model B. Both Intel
CPUs ran OS X 10.10.2 and Java SE Runtime (build 1.8.0 25-b17) with the
HotSpot 64-Bit Server VM (build 25.25-b02); Raspberry Pi ran Linux 3.18.8
and Java SE Runtime (build 1.8.0-b132, mixed mode) with the HotSpot Client
VM (build 25.0-b70, mixed mode).

Data Collection. For this study, to have a control group without the amortised
optimisation would mean to execute the BMM algorithm with a fixed arbitrary
block size, which would contribute little to investigating how the optimisation
can help. Instead, we fixed the starting block size to 2 and repeated matrix multi-
plications for 100 times on different CPUs: 80 multiplications have been used by
the amortised optimisation to search for the best block size, while the remaining
20 multiplications used the known best block size. This process was repeated for
20 times per CPU to cater for the inherent randomness in the algorithm. On
Intel CPUs, we used matrices of size 1,000 by 1,000; on the Raspberry Pi, we
used matrices of size 500 by 500. The fitness value is measured by the number
of floating point operations per millisecond, using the system clock.

4.3 Results

Figure 5 shows the results of the amortised optimisation of the BMM algorithm
for different CPUs. The boxplots on the left show how the fitness value (the
number of floating point operations per millisecond) across the 20 different runs
(x-axis represents the number of times the BMM is executed). The boxplots on
the right show which block size was tried: although the hill climbing algorithm
relies on the random restart at different points in different runs, these boxplots
still reveal interesting trends in the optimisation of the block size. The vertical
lines depict the point at which the optimisation stops and the BMM starts using
the best known solution.

Both Xeon and Core-i7 benefit from larger block size, up to around 30, which
can be observed from the relatively smooth shapes formed of individual boxplots
and the straight, consistent increase in the block size in executions 1 to 30. Block
sizes from ARM1176 show a much wider exploration of the search space, which
did not necessarily result in increased fitness value. For all three CPUs, both

Amortised Optimisation of Non-functional Properties 43

In
te

l X
eo

n
Block Size

C
or

e−
i7

1e
+

05
3e

+
05

5e
+

05

0 10 20 30 40 50 60 70 80 90

0
10

0
30

0
50

0

0 10 20 30 40 50 60 70 80 90

0
10

0
30

0
50

0
0

10
0

30
0

50
0

2e
+

05
6e

+
05

20
00

60
00

10
00

0

A
R

M
11

76

Fig. 5. Changes in the fitness (i.e. number of floating point operations per millisecond)
and the block size from 20 runs of BMM for different CPUs. BMM on both Xeon
and Core-i7 benefits from increasing block sizes up to around 30. BMM on ARM1176
performs better with much a smaller block size.

the fitness values and the block sizes show relatively small dispersion, suggesting
that the optimisations did converge.

Table 4 shows the descriptive statistics of the BMM algorithm, before (i.e. of
the first executions of each of the 20 runs) and after the amortised optimisation
(i.e. of the last 20 executions of each of the 20 runs). Both the fitness values and
the block sizes passed Shapiro-Wilk normality test. For all CPUs, the amortised
optimisation can significantly increase the performance of the BMM. An inter-
esting observation is the comparison of Xeon and Core-i7. Despite the higher
clock frequency, Xeon performs fewer floating point operations per millisecond.
While seemingly counter-intuitive, this shows that NIA3CIN exploits the capa-
bilities of each CPU appropriately. The Xeon W3680 is an older model than the
Core-i7 3820QM, and the Core-i7 has been shown to outperform the Xeon in a
single core benchmark [1].

Note that this optimisation has been performed automatically and while the
BMM was operating correctly, using 80 executions. More importantly, if the

44 S. Yoo

Table 4. Descriptive statistics of the BMM algorithm

CPU Block size = 2 Optimised

Mean fitness Std. Dev. Mean fitness Std. Dev. Mean block size Std. Dev.

Xeon 305189.00 1118.35 634510.13 17254.99 32.25 10.52

Core-i7 377196.74 6360.66 863878.91 34566.63 44.05 26.85

ARM1176 6531.64 124.07 10486.23 574.29 12.90 8.97

algorithm is deployed onto a different CPU, the optimisation can start again
simply by assigning more budget for fitness evaluations. This can be a significant
reduction in effort compared to manual trial and error approach.

5 Related Work

Existing SBSE work that seek to improve non-functional properties almost exclu-
sively uses offline optimisation. Langdon and Harman improved a non-functional
property of a non-trivial C++ program using Genetic Programming (GP) [13].
The GP modified several lines in the source code of the original program, making
it 70 times faster on average while being as good as the original semantically.
The GP-based improvement is much more profound than changing the value of
a variable, as it actually patches the source code. However, it also required a sig-
nificant amount of computation time for off-line optimisation. GP has also been
applied to specialise the MiniSAT solver for specific problem instances [15]. Wu et
al. optimised the behaviour of the dynamic memory allocation in C programs by
revealing and optimising hidden parameters [19]. While the aspect of parameter
optimisation bears similarity to this paper, Wu et al. also optimised the SUMO
in an offline environment. As far as we know, this is the first work that injects
the optimisation into the SUMO so that the non-functional properties can be
optimised in situ.

6 Conclusion

This paper introduces the concept of amortised optimisation and presented
two case studies: optimisation of JIT compilation parameters of pypy Python
runtime, and optimisation of the block size of Blocked Matrix Multiplication
(BMM) algorithm. In both cases, the optimisation gradually takes place while
the Software Under Metaheuristic Optimisation (SUMO) operates normally.
Both implementations are available as ready-to-use open source libraries. Using
these libraries, developers can inject online adaptivity into their software sys-
tem, allowing users to gain performance simply by using the software repeatedly.
The JIT optimisation can result in up to 8.6 % improvement in speed; the BMM
optimisation can adapt to new hardware platform by finding an effective block
size automatically.

Amortised Optimisation of Non-functional Properties 45

Acknowledgement. We would like to thank Carl Friedrich Bolz and Laurence Tratt
for the informative discussion about the technical details of pypy.

References

1. CPUBoss: a benchmark comparison between Xeon W3680 and Core-i7 3820QM.
http://cpuboss.com/cpus/Intel-Xeon-W3680-vs-Intel-Core-i7-3820QM

2. Afzal, W., Torkar, R., Feldt, R.: A systematic review of search-based testing for
non-functional system properties. Inf. Softw. Technol. 51(6), 957–976 (2009)

3. Bolz, C.F., Cuni, A., Fijalkowski, M., Rigo, A.: Tracing the meta-level: Pypy’s
tracing JIT compiler. In: Proceedings of the 4th Workshop on the Implementa-
tion, Compilation, Optimization of Object-Oriented Languages and Programming
Systems, ICOOOLPS 2009, pp. 18–25. ACM, New York (2009)

4. Briand, L.C., Labiche, Y., Shousha, M.: Stress testing real-time systems with
genetic algorithms. In: Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2005, pp. 1021–1028 (2005)

5. Budynek, J., Bonabeau, E., Shargel, B.: Evolving computer intrusion scripts for
vulnerability assessment and log analysis. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference, GECCO 2005, pp. 1905–1912 (2005)

6. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An approach for QoS-aware
service composition based on genetic algorithms. In: Proceedings of the 2005 Con-
ference on Genetic and Evolutionary Computation (GECCO 2005), pp. 1069–1075.
ACM, Washington, D.C., 25–29 June 2005

7. Eves, H.: Elementary Matrix Theory. Dover Publication, New York (1980)
8. Groß, H.G.: An evaluation of dynamic, optimisation-based worst-case execution

time analysis. In: ITPC 2003: Proceedings of the International Conference on Infor-
mation Technology: Prospects and Challenges in the 21st Century, Kathmandu,
pp. 8–14 (2003)

9. Grosso, C.D., Antoniol, G., Penta, M.D., Galinier, P., Merlo, E.: Improving network
applications security: a new heuristic to generate stress testing data. In: Proceed-
ings of the 2005 Conference on Genetic and Evolutionary Computation (GECCO
2005), pp. 1037–1043. ACM, Washington, D.C., 25–29 June 2005

10. Grosso, C.D., Antoniol, G., Merlo, E., Galinier, P.: Detecting buffer overflow via
automatic test input data generation. Comput. Oper. Res. 35(10), 3125–3143
(2008)

11. Hosek, P., Cadar, C.: Safe software updates via multi-version execution. In: Pro-
ceedings of the 2013 International Conference on Software Engineering, ICSE 2013,
pp. 612–621. IEEE Press, Piscataway (2013)

12. Kruse, P.M., Wegener, J., Wappler, S.: A highly configurable test system for evo-
lutionary black-box testing of embedded systems. In: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2009, pp. 1545–1552 (2009)

13. Langdon, W., Harman, M.: Optimizing existing software with genetic program-
ming. Trans. Evol. Comput. 19(1), 118–135 (2015)

14. Penta, M.D., Canfora, G., Esposito, G., Mazza, V., Bruno, M.: Search-based test-
ing of service level agreements. In: Proceedings of the Genetic and Evolutionary
Computation, GECCO 2007, pp. 1090–1097 (2007)

http://cpuboss.com/cpus/Intel-Xeon-W3680-vs-Intel-Core-i7-3820QM

46 S. Yoo

15. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement
and code transplants to specialise a C++ program to a problem class. In: Nicolau,
M., Krawiec, K., Heywood, M.I., Castelli, M., Garćıa-Sánchez, P., Merelo, J.J.,
Rivas Santos, V.M., Sim, K. (eds.) EuroGP 2014. LNCS, vol. 8599, pp. 137–149.
Springer, Heidelberg (2014)

16. Pohlheim, H., Wegener, J.: Testing the temporal behavior of real-time software
modules using extended evolutionary algorithms. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 1795–1802, July 1999

17. Torres, M.: Pypy Speed Centre. http://speed.pypy.org/
18. Wegener, J., Grochtmann, M.: Verifying timing constraints of real-time systems

by means of evolutionary testing. Real-Time Syst. 15(3), 275–298 (1998)
19. Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisation.

In: Genetic and Evolutionary Computation Conference (2015, to appear)

http://speed.pypy.org/

Search-Based Refactoring:
Metrics Are Not Enough

Chris Simons1(B), Jeremy Singer2, and David R. White2

1 Department of Computer Science and Creative Technologies,
University of West England, Bristol BS16 1QY, UK

chris.simons@uwe.ac.uk
2 School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK

{jeremy.singer,david.r.white}@glasgow.ac.uk

Abstract. Search-based Software Engineering (SBSE) techniques have
been applied extensively to refactor software, often based on metrics that
describe the object-oriented structure of an application. Recent work
shows that in some cases applying popular SBSE tools to open-source
software does not necessarily lead to an improved version of the software
as assessed by some subjective criteria. Through a survey of professionals,
we investigate the relationship between popular SBSE refactoring metrics
and the subjective opinions of software engineers. We find little or no
correlation between the two. Through qualitative analysis, we find that a
simple static view of software is insufficient to assess software quality, and
that software quality is dependent on factors that are not amenable to
measurement via metrics. We recommend that future SBSE refactoring
research should incorporate information about the dynamic behaviour of
software, and conclude that a human-in-the-loop approach may be the
only way to refactor software in a manner helpful to an engineer.

Keywords: Search-based software engineering · Metrics · Optimisa-
tion · Software quality

1 Motivation

Search-Based Software Engineering (SBSE) has been extensively applied to
refactor object-oriented software based on metrics that quantify structural prop-
erties of an object-oriented design, such as measures of cohesion, coupling, the
number of classes and the nature of the object hierarchy (e.g. [20,22,27,31]).

Recent work shows that applying SBSE refactoring using metrics to the open-
source Apache Ant project [8] does not result in an improved design as assessed
by an expert. Other work reveals that when refactoring is conducted using a
number of cohesion metrics, there can be disagreement between the metrics [32].

This raises the question of whether metrics are a good guide to software
quality, at least in the context of refactoring. If metrics indicate that a refactored
design is improved, but an engineer does not perceive any improvement, how is
the engineer judging the quality differently? That is, metrics are essentially a
c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 47–61, 2015.
DOI: 10.1007/978-3-319-22183-0 4

48 C. Simons et al.

proxy for something described as software quality, but what exactly is it that
we are trying to find a proxy for? And if we can answer that question, is the
correlation between the metrics we are using and the quality that we trying to
optimise well-established?

In this paper, we try to answer these questions, by placing the ultimate judge-
ment of software quality in the hands of expert industrial software engineers, by
measuring the correlation between metrics used in SBSE and human judgement,
and by examining the articulated justifications for those judgements.

2 Hypothesis

We formulate our hypotheses such that the null hypothesis makes no assumption
of an effect:

– H0: There is no correlation between software metric values and software engi-
neer evaluation of quality for a given software design.

– H1: There is a correlation between software metric values and software engi-
neer evaluation of quality for a given software design.

3 Survey Design

The goal of our survey is to ask software engineers for their evaluation of a
set of software designs in order to compare their impressions of design quality
with scores derived from metrics. We chose to conduct a survey of software
engineers by means of an online questionnaire. The selection of appropriate
software designs, design qualities, metrics and engineers for the questionnaire
requires careful consideration. Thus drawing upon best survey practice (e.g.
[13,14,17,29]), each of these components is described as follows.

3.1 Selection of Software Designs

We included two problem domains to strengthen the generality of our findings.
Examples needed to be large enough to be meaningful to an engineer whilst
not imposing excessive cognitive load and hence fatigue. We sought industrial
benchmark designs, but none were readily available, and therefore two standard
examples were selected: the Automated Teller Machine [12] and a nautical cruise
booking system [5]. To reduce cognitive load, we used the Unified Modelling
Language (UML) [33], widely heralded as “the lingua franca” of object-oriented
modelling [35]. We explored the idea of using refactoring tools (e.g. CodeImp
[31]) to generate designs, but no available tool met our requirements. Thus we
invited five experienced software engineers to produce class designs for the two
problems. Minor adjustments were made to the ten designs to ensure both a
consistent level of abstraction and a range of metric scores.

Search-Based Refactoring: Metrics Are Not Enough 49

3.2 Selection of Design Qualities

There exist a variety of software design quality definitions, including those
from the International Standards Organisation and International Electrotechnical
Commission (ISO/IEC 25010:2011) [21]. We drew inspiration from studies relat-
ing design qualities to corresponding properties and metrics (e.g. [24]). Bansiya
and Davis [7] propose a Quality Model for Object-Oriented Design (QMOOD)
that is popular in the literature and offers a hierarchical model of qualities,
properties and metrics together with mappings between them. QMOOD defines
six qualities: reusability, flexibility, understandability, functionality, extendibility
and effectiveness (see [7], Table 1). While such quality attributes are good candi-
dates for use in our survey, we considered that evaluating six qualities would place
an unreasonable cognitive load on respondents, and so we focused on the most
problem-domain independent qualities i.e. the first three. The Bansiya and Davis
definitions of reusability, flexibility and understandability are given in Table 1.

3.3 Selection of Metrics

In order to select suitable metrics for the experiment, we conducted a simple
review of the SBSE literature. We drew upon previous metrics reviews [24,38]
and guidelines for conducting systematic literature surveys [25,26].

We addressed the question: what is the distribution of software metrics among
the SBSE refactoring literature? We chose to rely upon the SBSE Repository [39]
and through a simple search query of “software metrics”, extracted 57 papers.
We narrowed this list, by examining their titles, abstracts, introductions and
conclusions. Examples of excluded sources included papers on software defect
prediction and effort estimation. This process yielded 23 papers.

Our analysis reveals 118 different metrics used in the 23 sources. The metrics
relate mostly to structural integrity such as cohesion and coupling, but measures
of design size, complexity and elegance are also present. Of the 118 metrics,
only three individual metrics — Lack of Cohesion of Methods (LCOM) and its
variants, Module Quality (MQ) and Evaluation Metric (EVM) — are reported in

Table 1. Bansiya, Davis [7] definitions of reusability, flexibility, understandability

Quality attribute Definition

Reusability Reflects the presence of object-oriented design characteristics
that allow a design to be reapplied to a new problem without
significant effort

Flexibility Characteristics that allow the incorporation of changes in a
design. The ability of a design to be adapted to provide
functionally related capabilities

Understandability The properties of a design that enable it to be easily learned and
comprehended. This directly relates to the complexity of the
design structure

50 C. Simons et al.

Table 2. Metrics and papers reporting use

Metrics Papers reporting use

MQ Azar, 2009 [6], Glavas, 2011 [15], Glavas, 2011b [16], Harman,
2004 [18], Harman, 2005 [19]

EVM Barros, 2013 [8], Harman, 2005 [19]

LCOM and variants Azar, 2009 [6], Barros, 2013 [8], Ó Cinnéide, 2012 [32], Koc,
2012 [28]

QMOOD suite Jensen, 2010 [22], O’Keeffe, 2007 [34]

more than one paper; the use of only one suite of metrics (QMOOD) is reported
twice. These results are illustrated in Table 2.

In selecting the metrics to be evaluated, we considered that those found in
multiple were a reflection of wider use in the field. We first considered LCOM,
MQ and EVM. However, LCOM relies on knowledge of implementation depen-
dencies e.g. what methods use which attributes in a class, while MQ and EVM are
metrics for dependency-based module clustering. All typically require program-
ming language source code for calculation. Alternatively, the QMOOD metrics
suite is used in two studies, and the metrics may be mapped to design quality
attributes [7], which is consistent with our chosen hypothesis.

Inspection of the 11 QMOOD metrics reveals that their straightforward com-
putation makes them amenable to evaluation on both human-produced design
models and programming language source code. Closer analysis reveals that 3
of the metrics i.e. Design Size in Classes (DSC), Direct Class Coupling (DCC)
and Number of Methods (NOM) are readily applicable to the human-generated
design models. Metrics relating to inheritance (Number Of Hierarchies, NOH,
Average Number of Ancestors, ANA) are excluded as only six of the final designs
show inheritance, with only one class hierarchy each.

Thus DSC, DCC and NOM have been selected from the QMOOD suite for
use in the experiment. Two other metrics were selected: Numbers among classes
(NAC) [37], and Numbers of Attributes and Methods (NOAM). NAC was chosen
as it had been used previously by Barros and Farzat [8] to relate design improve-
ments to understandability. The NOAM metric was introduced to cater for any
influence of the number of attributes in a design, which was otherwise lacking.
Both NAC and NOAM are readily calculated for human-generated designs.

3.4 Correlation Analysis

We use correlation analysis to compare the chosen metrics to the opinions of
engineers. Whether our conclusions apply to the derivation of high-level prop-
erties from metrics in suites such as QMOOD depends greatly on how those
suites use metric values. For example, in a weighted-sum method there may be
a trade-off between two metrics in defining a high-level quality, and thus corre-
lation analysis may be insufficient to validate such an approach. However, the

Search-Based Refactoring: Metrics Are Not Enough 51

weightings involved may be somewhat arbitrary — how can you compare an
increase in design size against a reduction in cohesion? The range of metric val-
ues is also problem-specific, therefore it is likely that one metric will dominate
another, and a simple correlation analysis will be sufficient in such cases. To fully
evaluate QMOOD and similar approaches, it would be necessary to evaluate all
of the metrics employed in any given suite, which is impractical in a survey of
this type, and thus we must focus on the evaluation of individual metrics.

3.5 Target Population

In selecting the target population of software engineers, we concluded that indus-
trial practitioners would provide the best audience given the aim of the survey.
We considered that academics should not be targeted as their design experience
might be confined to educational software design. The sampling frame of the
target population was achieved by inviting members of the Association of C and
C++ Users (ACCU) [1] and the British Computer Society (BCS) [10] — two
organisations prominent in promoting professionalism and best practice in soft-
ware design and development. We investigated the possibility of using Amazon
Mechanical Turk (AMT) [4], but this required US residency.

4 Questionnaire Design

We wished to present a design of meaningful size and complexity without cog-
nitively overloading the engineer. We chose two case studies and five solutions
to each; the designs are online [36], together with their calculated metrics val-
ues (DSC, DCC, NOM, NAC and NOAM). Designs were presented at random
to the participants, one model per participant. To capture their judgement of
design qualities, we used a Likert Scale with seven levels: “strongly disagree”,
“disagree”, “somewhat disagree”, “neutral”, “somewhat agree”, “agree” and
“strongly agree”. We asked participants to provide rationale for their judge-
ments, and analysed responses using thematic coding. We requested a partici-
pant’s number of years of design and development experience, as well as their
opinion of their own design expertise and confidence on the same Likert Scale.

Informed consent was obtained from participants prior to conducting the
questionnaire and participant withdrawal was possible at any point. Any per-
sonal data recorded, e.g. email addresses, was entirely at the discretion of the
participant. All survey information was strictly confidential and published survey
information is reported either as aggregate data or is anonymised.

Full details of our questionnaire design are available [36]. Pretesting (see [13],
Chap. 10) was conducted. Five experienced software engineers undertook the draft
questionnaire and their response experiences evaluated with respect to:

– Assimilation: respondents reported being able to satisfactorily attend to and
remember relevant questions and instructions.

– Comprehension: respondents also reported being able to understand the ques-
tions and definitions of the three design qualities.

52 C. Simons et al.

– Recall: some respondents found difficulty in recalling a design when completing
their evaluation. As a result, “back” buttons were made more explicit.

– Reporting: respondents reported that Likert scales and the free text response
answers were clear and offered adequate opportunity for responses.

We used SurveyGizmo as our survey platform, as it supports sufficient logic
to enable the randomisation of problem description and model assignments we
required. As an incentive for participation, we also offered participants the oppor-
tunity to be entered into a prize draw.

5 The Survey Process

Our survey was open from 18 January to 28 February 2015, a total of 42 days.
Invitations to participate were dispatched to approximately 900 ACCU [1] mem-
bers and 200 members of the Bristol (UK) branch of the BCS [11]. An invitation
to participate in the survey was also posted on a discussion forum via the BCS
Members’ Group on LinkedIn [30] to which approximately 11,000 BCS practi-
tioners have access, although the number of regular contributors is much lower.

Some lively comments were posted to the LinkedIn forum. Despite piloting
the questionnaire, a number of participants posted feedback stating that it was
not realistic to form an impression of design qualities using a UML class model
in isolation from other aspects of software development e.g. dynamic models of
behaviour, requirements, test plan etc. (although this is exactly what search-
based refactoring is doing). One forum contributor remarked to the authors of
the survey: “it seems your idea of what quality is and how to judge it is not the
same as many of us in the industry,” foreshadowing our survey results.

6 Results

A total of 50 responses was received, although we discarded one of these (see
Sect. 8). We were pleased to receive 50 responses and we are grateful to those
engineers who gave up the time to carefully examine the case studies.

Years

F
re

qu
en

cy

0 10 20 30 40

0
2

4
6

8
10

Fig. 1. Histogram of the programming experience of our respondents

Search-Based Refactoring: Metrics Are Not Enough 53

The distribution of engineers’ experience is given in Fig. 1, which illustrates
that our respondents were on the whole very experienced. We asked them to
rate their expertise in the area of software design, and their confidence in their
own judgement — the results are shown in Fig. 2. We are very confident of the
experience and expertise of our respondents.

We divide our results between responses to the quantitative questions, where
we asked respondents to rate the qualities of software on a Likert scale, and the
qualitative answers, where asked them to justify their quantitative responses.

10%

50%

76%

16%

14%

34%

Expert

Confidence

100 50 0 50 100
Percentage

Response Strongly Disagree Disagree Somewhat Disagree Neutral Somewhat Agree Agree Strongly Agree

Fig. 2. Respondents’ self-assessed significant expertise in software design and confi-
dence in their ratings of the models

6.1 Quantitative Results

In order to test our hypothesis, we perform correlation analysis on the relation-
ship between the responses of those surveyed and the selected metrics. Engineers
were asked three questions: whether they agreed that the design was Under-
standable, Reusable, and Flexible. These questions required a Likert response
on a seven-step scale from “strongly disagree” to “strongly agree”. We plotted
responses against the corresponding value of each software metric for that design.

Figure 3 gives correlation plots for each quality. A score of one corresponds
to “strongly disagree”. Table 3 gives the Spearman’s Rank Coefficient for each
correlation. We observe from these results that there is almost no correlation
between the perception of software engineers and the metrics. We then performed
a two-sided significance test against the Spearman’s Rank coefficients, and the
p-values are given in Table 4. No correlations were significant at the 0.05 level.

Thus, we are unable to refute our null hypothesis H0. This is quite a signifi-
cant result: if we assume that our experimental results are valid (see Sect. 8 for
threats to validity) and that they generalise to other object designs, then the
metrics we are examining are not helpful in improving these software qualities.

54 C. Simons et al.

DSC

DCC

NOM

NAC

NOAM

DSC

DCC

NOM

NAC

NOAM

DSC

DCC

NOM

NAC

1
2

3
4

5
6

7

6 8 12 16

1
2

3
4

5
6

7

5 10 15 20 25 30

1
2

3
4

5
6

7

15 20 25 30 35 40

1
2

3
4

5
6

7

1.0 1.5 2.0 2.5

1
2

3
4

5
6

7

30 50 70 90

1
2

3
4

5
6

7

6 8 12 16

1
2

3
4

5
6

7

5 10 15 20 25 30

1
2

3
4

5
6

7

15 20 25 30 35 40

1
2

3
4

5
6

7

1.0 1.5 2.0 2.5

1
2

3
4

5
6

7

30 50 70 90

1
2

3
4

5
6

6 8 12 16

1
2

3
4

5
6

5 10 15 20 25 30

1
2

3
4

5
6

15 20 25 30 35 40

1
2

3
4

5
6

1.0 1.5 2.0 2.5

1
2

3
4

5
6

30 50 70 90

F
lexible

NOAM

Fig. 3. Correlation between expert opinion of three software qualities and five software
metrics

Search-Based Refactoring: Metrics Are Not Enough 55

Table 3. Spearman’s Rank coefficients for the correlation between our metrics and
human judgement (to 3 s.f.)

Quality DSC DCC NOM NAC NOAM

Understandable −0.128 −0.271 −0.203 −0.0400 0.103

Reusable −0.0280 −0.158 −0.195 −0.200 0.0572

Flexible 0.0386 −0.0806 −0.0677 −0.0613 0.202

Table 4. P-values for a two-sided test of the Spearman’s Rank correlation coefficients
in Table 3 (to 3 s.f.)

Quality DSC DCC NOM NAC NOAM

Understandable 0.375 0.0571 0.156 0.783 0.478

Reusable 0.847 0.272 0.174 0.163 0.693

Flexible 0.790 0.578 0.640 0.672 0.160

6.2 Qualitative Results

We were intrigued as to why there was no correlation between the quality metrics
and the judgement of software engineers. In particular, we wished to understand
the thought processes of software engineers: what makes one design better than
another? We asked the engineers to justify their judgements in prose.

We then coded their responses as per grounded theory ([14] Chap. 4, [29]
Chap. 11), an inductive process where text responses are categorised in order to
derive trends from textual responses. This process is somewhat subjective; two
of the authors coded the data independently and then resolved their differences
through comparison and discussion. We divide the coding results between the
three questions, and the results are given in Tables 5, 6 and 7. The frequency
column indicates the number of responses that fell into a given category; a single
response may fall into multiple categories. We make the following observations:

Table 5. Classifications for rationale behind judgement of “Understandable”

Coding Frequency

Needs something more (dynamics, context, reqts, rationale etc.) 22

Incorrect or unclear responsibility assignment 13

Clear traceability to problem domain 10

Clear breakdown of purpose 6

Clear element naming 5

Missing abstractions 4

No response or no explanation 3

Poor layout 1

56 C. Simons et al.

Table 6. Classifications for rationale behind judgement of “Flexible”

Coding Frequency

Parts of the design should be easy to modify 12

Problem specific 11

Needs something more (dynamics, context, reqts etc.) 8

Incorrect or missing abstractions 8

Class coupling 5

Incorrect/unclear responsibility assignment 2

Separation of concerns 2

Hard to test 1

Simplistic 1

No response/no clear explanation 8

Table 7. Classifications for rationale behind judgement of “Reusable”

Coding Frequency

Problem specific 24

Parts of the design are reusable, others not 18

Class coupling 5

Needs something more (dynamics, context, reqts etc.) 5

Incorrect abstractions 3

Lack of object-oriented design 2

Separation of concerns 2

OO languages 1

Simplistic 1

No response 1

A Class Diagram is Not Enough. The responses reflect the conversation on
the professional network LinkedIn (see Sect. 5). It is clear that our respondents
are unable to assess the design of a system based solely on the class diagram; for
example, one respondent commented on their ability to understand the system:

“[A class diagram] offers no information about the interactions, pro-
cedures or validations and therefore is a really superficial view of the
software design”

We agree with this comment, and we are unaware of any object-oriented
SBSE refactoring that takes as input a description of the dynamic behaviour of
a system design. How can we expect to imitate the judgement of a software engi-
neer if we do not take into account the same information? The most commonly
request was for information about system behaviour.

Search-Based Refactoring: Metrics Are Not Enough 57

The Problem Domain Matters. Another trend was the relationship between
the design and the problem domain: from fundamental decisions such as the
names given to objects and associations, to the high-level mapping between
requirements and the model, it is clear that judging the model in isolation from
the problem domain is not meaningful to an engineer. Many comments referred
to the problem domain, or the way in which the problem had been analysed.

Qualities Have Meaning only in a Given Context. When considering a
given quality, there is a need for context. Many comments were along the lines
of “Reusable for what purpose?” or “Reusability depends on context. . . ”. It is
not enough to look at the high-level structure alone:

“Reusability is about more than just a class diagram and function def-
inition. It’s about how the software is actually written and this can be
good or bad”.

“Re-use only has meaning if it itself is defined/scoped, tested and man-
aged as part of the project”.

We may also consider parts of a model as representing distinct contexts:
respondents pointed out that the qualities may vary across different parts of the
model. It is perhaps naive to expect to holistically optimise a system.

Good Design is Intuitive. There was a clear difficulty amongst some respon-
dents in articulating their thought processes, as if it involved some aesthetic
judgement: for example, some replies included: “My guts says no”, “Seems to fit
together well”, “intuitive”. Such responses appear to resonate with the design
patterns notion of Quality Without a Name [2], generally taken to mean that
good quality is something that can be recognised, but difficult to describe in
words: i.e. “you know it when you see it”.

Our Standard Metrics Play a (Minor) Part. The aspects of the model that
could be judged by our respondents do indeed overlap with the intentions of our
chosen metrics. For example, engineers consider the object hierarchy, separation
of concerns, cohesion, and division of responsibilities as important elements in
judging design quality. However, these properties are given minor consideration
in their responses compared to the central concerns mentioned above.

7 Related Work

Although examples of related empirical investigations are not abundant in the
literature, Katmarksi and Koschke [23] conducted an empirical study to investi-
gate whether complexity metrics agree with programmer opinion. They selected
examples of Java source code for programmer complexity evaluation, and applied

58 C. Simons et al.

a variety of control-flow and data-flow complexity metrics. Among 200 partici-
pants, they report some matching of programmer ranking with complexity met-
rics, although participants were presented with small Java methods (12–51 lines
of code) and object-oriented design aspects were ignored. Moreover, the 200 par-
ticipants were drawn from a sample of students and academics, and Katmarksi
and Koschke suggest that “professional programmers might report differently”.

Ó Cinnéide et al. [32] conducted a rigorous investigation into refactoring
metrics — rather than refactoring source code, their goal was to assess the soft-
ware metrics that guide the automated refactoring through repeated refactoring
experiments. They investigated five cohesion metrics using eight real-world Java
systems, involving 300,000 lines of code and over 3,000 refactorings. The authors
report that the cohesion metrics disagreed with each other in 55 % of cases. It is
also interesting to note the disagreement among metrics alongside the disagree-
ment in software engineers’ impressions of software qualities in this experiment.

Recent studies by Bavota et al. [9] investigate possible relationships between
metrics, code smells and developer refactoring activities. They mined the evolu-
tion history of three Java open source projects to investigate whether refactoring
activities occur on code components for which certain indicators such as quality
metrics or the presence of smells as detected by tools suggest there might be
need for refactoring operations. Their results indicate that, more often than not,
quality metrics do not show a clear relationship with refactoring. In other words,
refactoring operations are generally focused on code components for which qual-
ity metrics do not suggest there might be need for refactoring operations. Such
findings do seem to resonate with the lack of correlation between quality metrics
and software engineer impressions of software qualities found in this experiment.

8 Threats to Validity

The biggest weakness of the survey is that the class models are small educa-
tional examples. This was constrained by two factors: the screen space used to
display designs, and the cognitive overhead on respondents to understand the
requirements and design sufficiently to answer our questions. As a consequence,
we excluded metrics that are only meaningful when considering larger models
(for example, those measuring the inheritance hierarchy). We spent much time
selecting and refining our case studies, after considering various approaches and
problems, and decided upon those that we considered to be as large as the afore-
mentioned restrictions would allow.

The qualities are often discussed informally within software engineering with-
out attention to their precise meaning. To reduce the risk of ambiguity, we
included definitions within the survey. Respondents were free to move between
the survey pages, meaning they could return to the definitions as necessary, and
indeed some respondents quoted our definitions within their rationale.

With any survey, there is a danger of bias in terms of the respondent popu-
lation. We tried to avoid this by targeting a specific set of organisations directly
relevant to the study, i.e. software engineers, through a set of professional insti-
tutions. One final lesson we learnt from the process is that we did not pilot the

Search-Based Refactoring: Metrics Are Not Enough 59

survey sufficiently. For example, it transpired that the survey did not work on
all mobile devices, which may have skewed our sample.

9 Conclusions

9.1 Refactoring Metrics Are Not Correlated with Human
Judgement

In Sect. 6.1, we were unable to refute the null hypothesis that there is no cor-
relation between these standard SBSE refactoring metrics and software quality.
Thus we are unable to support the conjecture that SBSE refactoring tools rely-
ing solely on these metrics will consistently propose useful refactored models to
engineers. Whilst we dealt with only a subset of available metrics and two exam-
ple problems, our qualitative results suggest that this statement will generalise
to other metrics and problem domains, simply because metrics do not take into
account the information required to make a sound judgement.

9.2 Wider Lessons Regarding Refactoring

We conclude from our qualitative analysis that metrics based on an object-
oriented design are insufficient to optimise software quality. Furthermore, no
simple metrics will be able to entirely capture the essential aspects of a software
design used by human engineers when making judgements of software qualities.

Software is inextricably connected to a problem domain, and attempting to
treat the design of a system in isolation disregards this connection. We note the
recent advances in Machine Learning and automatic programming to address
such concerns e.g. [3], and do not discount that such developments could one
day solve the problem of machine judgement of software quality. However, with-
out such advances we recommend that, although not novel, human-in-the-loop
systems are the only viable method for automated refactoring tools that produce
meaningful solutions.

Future work could include repeating the exercise but including some form of
design concerning the dynamic behaviour of each system. The lack of a dynamic
view (for example, a statechart) was the most common complaint amongst
respondents, and it would be interesting to see how this affects their ability
to discern the qualities of the software design, as well as the impact it may have
on the articulation of their rationale. However, we suspect that such an experi-
ment may be subject to very low response rates, and we recommend a smaller
focus-group approach involving observed exercises and interviews.

Omitting information that could deanonymise a respondent, the data gath-
ered and used to produce the figures in this paper are online [36].

Acknowledgements. We would like to thank our colleagues at UWE for their help in
the design of the survey; Mel Ó Cinnéide and Iman Hemati Moghadam for generously
sharing code; Per Runeson for his insightful advice; the professional organisations the
ACCU and BCS for permitting mailshots to their members; and we are very especially
grateful to all those who took the time to respond to the survey.

60 C. Simons et al.

References

1. ACCU: Association of C and C++ Users. http://www.accu.org/. Accessed: 3 June
2015

2. Alexander, C.: The Timeless Way of Building, vol. 1. Oxford University Press,
Oxford (1979)

3. Amal, B., Kessentini, M., Bechikh, S., Dea, J., Said, L.B.: On the use of machine
learning and search-based software engineering for Ill-defined fitness function:
a case study on software refactoring. In: Le Goues, C., Yoo, S. (eds.) SSBSE 2014.
LNCS, vol. 8636, pp. 31–45. Springer, Heidelberg (2014)

4. AMT: Amazon Mechanical Turk. http://www.mturk.com/mturk/welcome/.
Accessed: 3 June 2015

5. Apperly, H., Hofman, R., Latchem, S., Maybank, B., McGibbon, B., Piper, D.,
Simons, C.: Service- and Component-based Development. Addison-Wesley (2003)

6. Azar, D., Harmanani, H., Korkmaz, R.: A hybrid heuristic approach to opti-
mize rule-based software quality estimation models. Inf. Softw. Technol. 51(9),
1365–1376 (2009)

7. Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality
assessment. IEEE Trans. Softw. Eng. 28(1), 4–17 (2002)

8. de Oliveira Barros, M., de Almeida Farzat, F.: What can a big program teach us
about optimization? In: Ruhe, G., Zhang, Y. (eds.) SSBSE 2013. LNCS, vol. 8084,
pp. 275–281. Springer, Heidelberg (2013)

9. Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R., Palomba, F.: An experimental
investigation on the innate relationship between quality and refactoring. J. Syst.
Softw. 107, 1–14 (2015)

10. BCS: British Computer Society. http://www.bcs.org/. Accessed: 3 June 2015
11. BCS-BRISTOL: British Computer Society Bristol Branch. http://www.bristol.bcs.

org.uk/. Accessed: 3 June 2015
12. Bjork, R.: ATM Simulation. http://www.math-cs.gordon.edu/courses/cs211/

ATMExample/. Accessed: 3 June 2015
13. Blair, J., Czaja, R., Blair, E.: Designing Surveys: A Guide to Decisions and Pro-

cedures. Sage Publications, London (2014)
14. Gibbs, G.: Analysing Qualitative Data. Sage Publications, London (2007)
15. Glavas, G., Fertalj, K.: Metaheuristic approach to class responsibility assignment

problem. In: Proceedings of the ITI 33rd International Conference on Information
Technology Interfaces (ITI). IEEE (2011)

16. Glavaš, G., Fertalj, K.: Solving the class responsibility assignment problem using
metaheuristic approach. J. Comput. Inf. Technol. 19(4), 275–283 (2011)

17. Groves, R., Fowler, F., Couper, M., Lepkowski, J., Singer, E., Tourangeau, R.:
Survey Methodology. Wiley, New York (2004)

18. Harman, M., Clark, J.: Metrics are fitness functions too. In: Proceedings of the
10th International Symposium on Software Metrics. IEEE (2004)

19. Harman, M., Swift, S., Mahdavi, K.: An empirical study of the robustness of two
module clustering fitness functions. In: GECCO 2005. ACM (2005)

20. Harman, M., Tratt, L.: Pareto optimal search based refactoring at the design level.
In: GECCO 2007. ACM (2007)

21. ISO/IEC: Standard 25010:2011. http://www.iso.org/iso/catalogue detail.htm?
csnumber=35733. Accessed: 3 June 2015

22. Jensen, A., Cheng, B.: On the use of genetic programming for automated refactor-
ing and the introduction of design patterns. In: GECCO 2010. ACM (2010)

http://www.accu.org/
http://www.mturk.com/mturk/welcome/
http://www.bcs.org/
http://www.bristol.bcs.org.uk/
http://www.bristol.bcs.org.uk/
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733

Search-Based Refactoring: Metrics Are Not Enough 61

23. Katzmarski, B., Koschke, R.: Program complexity metrics and programmer opin-
ions. In: Proceedings of the 20th International Conference on Program Compre-
hension (ICPC). IEEE (2012)

24. Khan, Y., Khararah, O.: A systematic review on the relationships between
MOOD/QMOOD metrics and external software quality attributes. Technical
report, Department of Information and Computer Science, King Fahd University
of Petroleum and Minerals, Dhahran, Saudi Arabia (2014)

25. Kitchenham, B.: Guidelines for performing systematic literature reviews in soft-
ware engineering. Technical report, EBSE-2007-01, School of Computer Science
and Mathematics, Keele University, Keele, Staffs, ST5 5BG, United Kingdom
(2007)

26. Kitchenham, B., Mendes, E., Travassos, G.: A systematic review of cross-vs. within-
company cost estimation studies. In: Proceedings of the 10th International Con-
ference on Evaluation and Assessment in Software Engineering. British Computer
Society (2006)

27. Koc, E., Ersoy, N., Andac, A., Camlidere, Z., Cereci, I., Kilic, H.: An empirical
study about search-based refactoring using alternative multiple and population-
based search techniques. In: Gelenbe, E., Lent, R., Sakellari, G. (eds.) Computer
and Information Sciences II, pp. 59–66. Springer, London (2012)

28. Koc, E., Ersoy, N., Camlidere, Z.S., Kilic, H.: A web-service for automated software
refactoring using artificial bee colony optimization. In: Tan, Y., Shi, Y., Ji, Z. (eds.)
ICSI 2012, Part I. LNCS, vol. 7331, pp. 318–325. Springer, Heidelberg (2012)

29. Lazar, J., Feng, J., Hochheiser, H.: Research Methods in Human-Computing Inter-
action. Wiley, New York (2010)

30. LinkedIn: LinkedIn Professional Network. https://uk.linkedin.com/. Accessed: 3
June 2015

31. Moghadam, I., Ó Cinnéide, M.: Code-Imp: a tool for automated search-based refac-
toring. In: Proceedings of the 4th Workshop on Refactoring Tools (WRT 2011).
ACM Press (2011)

32. Ó Cinnéide, M., Tratt, L., Harman, M., Counsell, S., Moghadam, I.: Experimental
assessment of software metrics using automated refactoring. In: Proceedings of
the ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement. ACM (2012)

33. Object Management Group: Unified Modelling Language. http://www.uml.org/.
Accessed: 3 June 2015

34. O’Keeffe, M., Ó Cinnéide, M.: Automated design improvement by example. In:
Frontiers in Artificial Intelligence and Applications, vol. 161, p. 315 (2007)

35. Petre, M.: UML in practice. In: Proceedings of the International Conference on
Software Engineering (ICSE). IEEE (2013)

36. Simons, C., Singer, J., White, D.R.: Survey Materials and Data. http://www.cems.
uwe.ac.uk/∼clsimons/MetricsAreNotEnough/. Accessed: 3 June 2015

37. Simons, C., Parmee, I.: Elegant object-oriented software design via interactive,
evolutionary computation. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev.
42(6), 1797–1805 (2012)

38. Sjoberg, D., Anda, B., Mockus, A.: Questioning software maintenance metrics: a
comparative case study. In: Proceedings of the ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Measurement. ACM Press (2012)

39. Zhang, Y.: SBSE repository. http://crestweb.cs.ucl.ac.uk/resources/sbse
repository/. Accessed: 3 June 2015

https://uk.linkedin.com/
http://www.uml.org/
http://www.cems.uwe.ac.uk/~clsimons/MetricsAreNotEnough/
http://www.cems.uwe.ac.uk/~clsimons/MetricsAreNotEnough/
http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/
http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

Weaving Parallel Threads

Searching for Useful Parallelism in Functional Programs

José Manuel Calderón Trilla1(B), Simon Poulding2, and Colin Runciman1

1 University of York, York, UK
jmct@jmct.cc

2 Blekinge Institute of Technology, Karlskrona, Sweden

Abstract. As the speed of processors is starting to plateau, chip man-
ufacturers are instead looking to multi-core architectures for increased
performance. The ubiquity of multi-core hardware has made parallelism
an important tool in writing performant programs. Unfortunately, par-
allel programming is still considered an advanced technique and most
programs are written as sequential programs.

We propose that we lift this burden from the programmer and allow
the compiler to automatically determine which parts of a program can
be executed in parallel. Historically, most attempts at auto-parallelism
depended on static analysis alone. While static analysis is often able to
find safe parallelism, it is difficult to determine worthwhile parallelism.
This is known as the granularity problem. Our work shows that we can
use static analysis in conjunction with search techniques by having the
compiler execute the program and then alter the amount of parallelism
based on execution speed. We do this by annotating the program with
parallel annotations and using search to determine which annotations to
enable.

This allows the static analysis to find the safe parallelism and shift
the burden of finding worthwhile parallelism to search. Our results show
that by searching over the possible parallel settings we can achieve better
performance than static analysis alone.

1 Introduction

Moore’s law has often provided a ‘free lunch’ for those looking to run faster
programs without the programmer expending any engineering effort. Through-
out the 1990 s in particular, an effective way of having a faster x86 program
was to wait for IntelTM to release its new line of processors and run the pro-
gram on your new CPU. Unfortunately, clock speeds have reached a plateau
and we no longer get speedups for free [23]. Increased performance now comes
from including additional processor cores on modern CPUs. This means that
programmers have been forced to write parallel and concurrent programs when
looking for improved wall-clock performance. Unfortunately, writing parallel and
concurrent programs involves managing complexity that is not present in single-
threaded programs. The goal of the work outlined in this paper is to convince

c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 62–76, 2015.
DOI: 10.1007/978-3-319-22183-0 5

Weaving Parallel Threads 63

the reader that not all hope is lost. By looking for the implicit parallelism in pro-
grams that are written as single-threaded programs we can achieve performance
gains without programmer effort.

Our work focuses on F-Lite: a pure, non-strict functional language that
is suitable as a core language of a compiler for a higher-level language like
Haskell [17]. We have chosen to use a non-strict language because of the lack of
arbitrary side-effects [11], and many years of work in the area of implicit paral-
lelism [6,10,13] however we feel that many of our techniques would transfer well
to other language paradigms.

The primary contribution of this paper is to demonstrate that using search
based on dynamic execution of the parallelised program is a robust way to help
diminish the granularity problem that is difficult for static analysis alone. We
show that for some programs, the combination of search and static analysis can
achieve speed-ups that are nearly linear with respect to the number of cores.

The rest of this paper describes our technique in more detail. Section 2 discuss
the main background to this work: implicit parallelism in functional languages.
Section 3 provides a worked example to illustrate the static analysis we perform
to determine potential parallelism. We describe our empirical method and results
in Sect. 4. Lastly, we offer our conclusions and discuss related work in Sect. 6.

2 Implicit Parallelism in Functional Languages

In this section we will motivate and discuss the benefits and drawbacks of implicit
parallelism in a lazy purely functional language. We will also give a high-level
overview of strictness analysis which allows us to find safe parallelism in lazy
languages.

2.1 Background

Research into parallelism in lazy purely functional languages has a long history
that dates back to the early work on lazy functional languages [1,12,19,20]1.
Non-strictness makes it difficult to reason about when expressions are evalu-
ated. This forces the programmer to avoid the use of arbitrary side-effects. The
resulting purity means that functions in pure functional languages are referen-
tially transparent, or the result of a function depends only on the values of its
arguments (i.e. there is no global state that could effect the result of the function
or be manipulated by the function).

Purity alone is of huge benefit when dealing with parallelism. Because func-
tions do not rely on anything but their arguments the only communication
between threads necessary is the result of the thread’s computation, which is
shared via the program’s graph using the same mechanism used to implement
laziness [19].

Laziness, while forcing the programmer to be pure (which is a boon to par-
allelism), is an inherently sequential evaluation strategy. Lazy evaluation only
1 For a comprehensive review we suggest [7].

64 J.M. Calderón Trilla et al.

evaluates expressions when they are needed. This is what allows for the use of
infinite data structures, only what is needed will be computed.

The two reductions of sqr in Fig. 1 illustrate the key differences between lazy
evaluation and eager, or strict, evaluation.

Eager Evaluation

sqr (5 ∗ 5)

= sqr 25

= let x = 25 in x ∗ x

= 25 ∗ 25

= 625

Lazy Evaluation

sqr (5 ∗ 5)

= let x = 5 ∗ 5 in x ∗ x

= let x = 25 in x ∗ x

= 25 ∗ 25

= 625

Fig. 1. Eager and Lazy evaluation order for squaring a value.

In the case of eager evaluation the argument to sqr is evaluated before enter-
ing the function body. For lazy evaluation the argument is passed as a suspended
computation that is only forced when the value is needed (in this case when x
is needed in order to multiply x ∗ x). Notice that under lazy evaluation 5 ∗ 5 is
only evaluated once, even though it is used twice in the function. This is due to
the sharing of the result. This is why laziness is often described as call-by-need
with sharing [7].

In the case of sqr in Fig. 1, both eager and lazy evaluation required the same
number of reductions to compute the final result. This is not always the case;
take the following function definitions

bot :: Int → Int

bot x = x + bot

const :: a → b → a

const x y = x

In an eager language the expression const 5 bot will never terminate, while it
would return 5 in a lazy language as only the first argument to const is actually
needed in its body.

This tension between the call-by-need convention of laziness with paral-
lelism’s desire to evaluate expressions before they are needed is well known [24].
The most successful method of combating this tension is through the use of
strictness analysis [9,16,27].

2.2 Strictness, Demand Context, and Strategies

Here we will describe the method by which we identify the safe parallelism in
F-Lite programs and arrange for the evaluation of these expressions in parallel.

Weaving Parallel Threads 65

The strictness properties of a function determine which arguments are definitely
needed for the function to terminate, whereas the demand on an argument tells
us how much of the argument’s structure is needed. Strategies are functions that
evaluate their argument’s structure to a specific depth. By analysing the program
for strictness and demand information, we can then generate strategies for the
strict arguments to a function and evaluate the strategies in parallel to the body
of the function. The strategies we generate will only evaluate the arguments to
the depth determined by the demand analysis.

Strictness. Because we are working in a lazy language it is not always safe to
evaluate the arguments to a function before we enter the body of a function.
However, if a function uses the value of an argument within its body it is safe
to evaluate that argument before, or in parallel to, the execution of the body of
the function. In order to determine which arguments can be evaluated in this
way modern compilers use strictness analysis [16]. More formally, a function f
of n arguments

f x1 . . . xi . . . xn = . . .

is strict in its ith argument if and only if

f x1 . . . ⊥ . . . xn = ⊥
What this states is that f is only strict in its ith argument if f becomes

non-terminating2 by passing a non-terminating value as its ith argument.
Knowing the strictness information of a function is the first step in automatic

parallelisation. This is because if f is strict in its ith argument we do not risk
introducing non-termination (which would not otherwise be present) by evaluat-
ing the ith argument in parallel. In other words, evaluating xi in parallel would
only introduce non-termination to the program if evaluating f with xi would
have resulted in f ’s non-termination anyway.

F-Lite has two primitives for taking advantage of strictness information: par
and seq.

seq :: a b b par :: a b

seq x y = yxrapy = y

b

Fig. 2. Semantics of seq and par.

Both functions return the value of their second argument. The difference is
in their side-effects. seq returns its second argument only after the evaluation of
its first argument. par forks the evaluation of its first argument in a new parallel

2 In this paper we use the convention that ⊥ represents erroneous or non-terminating
expressions.

66 J.M. Calderón Trilla et al.

thread and then returns its second argument; this is known as sparking a parallel
task [4].

Strictness analysis was a very active research area in the 1980’s and the
development of analyses that provide the type of strictness information outlined
above is a well understood problem [2,5,16]. However, as outlined above, strict-
ness analysis does not provide satisfactory information about complex data-
structures [26]. This can be remedied by the use of projections to represent
demand.

Demand. So far our discussion of strictness has only involved two levels of
‘definedness’: a defined value, or ⊥. This is the whole story when dealing with
flat data-structures such as Integers, Booleans or Enumerations. However, in
lazy languages nested data-structures have degrees of definedness.

Take the following example function and value definitions in F-Lite

Both length and sum are functions on lists, but they use lists differently.
length does not use the elements of its argument list. Therefore length would
accept definedList and partialList (which has a non-terminating element)
as arguments and still return the correct value. On the other hand sum needs the
elements of the list, otherwise it would not be able to compute the sum. For this
reason, sum only terminates if it is passed a fully defined list and would result
in non-termination if passed partialList. Neither function would terminate if
passed infiniteList, since even length requires the list to have a finite length
(some functions do not require a finite list, such as head, the function that
returns the first element in a list). With these examples we say that length
demands a finite list, whereas sum demands a fully-defined list.

This additional information about a data-structure is extremely useful when
trying to parallelise programs. If we can determine how much of a structure is
needed we can then evaluate the structure to that depth in parallel.

The work that introduced this representation of demands was by Wadler and
Hughes [27] using the idea of projections from domain theory. The technique we
use in our compiler is a projection-based strictness analysis based on the work in
Hinze’s dissertation [9]. Hinze’s dissertation is also a good resource for learning
the theory of projection-based strictness analysis.

Strategies. With the more sophisticated information provided by projection-
based analysis, we require more than simply par and seq. To this end we use
the popular technique of strategies for parallel evaluation [15,25]. Strategies are
designed to evaluate structures up to a certain depth in parallel to the use of those

Weaving Parallel Threads 67

structures. Normally, strategies are written by the programmer for use in hand-
parallelised code. In order to facilitate auto-parallelisation we have developed a
method to derive an appropriate strategy from the information provided to us by
projection-based strictness analysis. The rules for the derivation are presented
as a denotational semantics and can be found in our earlier work [3].

2.3 The Granularity Problem

We have now discussed how we find the parallelism that is implicit in our pro-
gram, but none of the analysis we provide determines whether the safe paral-
lelism is worthwhile. Often static analysis will determine that a certain structure
is safe to compute in parallel, but it is very difficult to know when it is actually
of any benefit. Parallelism has overheads that require the parallel tasks to be
substantial enough to make up for the cost. A fine-grained task is unlikely to
require more computation than the cost of sparking and managing the thread,
let alone the potential to interrupt productive threads [7,10].

One of the central arguments in our work is that static analysis alone is
insufficient at finding both the implicit parallelism and determining whether the
introduced parallelism is substantial enough to warrant the overheads.

Our proposal is that the compiler should run the program and use the infor-
mation gained from running it (even if it only looks at overall execution time)
to remove the parallelism that is too fine-grained. By doing this we shift the
burden of the granularity problem away from our static analysis and onto our
search techniques. This way our static analysis is only used to determine the safe
parallel expressions, and not the granularity of the expressions.

3 Overview

In this section we will present a high-level overview of our technique. This will
provide the context for our discussion in the subsequent sections.

The program listed in Fig. 3 is the Tak program benchmark, often used for
testing the performance of recursion in interpreters and code generated by com-
pilers [14].

tak :: Int -> Int -> Int -> Int

tak x y z = case x <= y of

True -> z

False -> tak (tak (x - 1) y z)

(tak (y - 1) z x)

(tak (z - 1) x y)

main = tak 24 16 8

Fig. 3. Source listing for Tak

68 J.M. Calderón Trilla et al.

After we perform our projection-based strictness analysis, and introduce the
safe par annotations, we transform the program into a parallelised version. The
result of this transformation on Tak is listed in Fig. 4.

tak x y z = case x <= y of

True -> z

False -> let x’ = tak ((x - 1)) y z

y’ = tak ((y - 1)) z x

z’ = tak ((z - 1)) x y

in (par x’

(par y’

(seq z’

(tak x’ y’ z’))))

main = tak 24 16 8

Fig. 4. Source listing for Tak after analysis, transformation, and par placement

Each strict argument is given a name via a let binding. This is so that any
parallel, or seqed, evaluation can be shared between threads. When there are
multiple strict arguments (as is the case for tak) we spark the arguments in
left-to-right order except for the last strict argument, which we seq. This is a
common technique that is used to avoid potential collisions [25]. Collisions occur
when a thread requires the result of another thread before the result has been
evaluated. By ensuring that one of the arguments is evaluated in the current
thread (by using seq) we give the parallel threads more time to evaluate their
arguments, lessening the frequency of collisions.

While static analysis has determined that x’ and y’ can be evaluated in par-
allel safely, it does not determine whether parallel evaluation of those expressions
is worthwhile. In order to address this issue we take advantage of two key prop-
erties of our par annotations:

1. Each introduced par sparks off a unique subexpression in the program’s
source

2. The semantics of par (as shown in Fig. 2) allow us to return its second argu-
ment, ignoring the first, without changing the semantics of the program as a
whole.

These two properties allow us to represent the pars placed by static analysis
and transformation as a bit string. Each bit represents a specific par in the
program AST. When a par’s bit is ‘on’ the par behaves as normal, sparking off
its first argument to be evaluated in parallel and return its second argument.
When the bit is ‘off’ the par returns its second argument, ignoring the first.

This allows us to change the operational behavior of the program without
altering any of the program’s semantics.

Weaving Parallel Threads 69

4 Experimental Setup and Results

In this section we evaluate the use of search in finding an effective enabling of
pars that achieves a worthwhile speed-up when the parellelised program is run
in a multi-core architecture. As a reminder, the starting point for our proposed
technique is a program that was originally written to be run sequentially on a
single core; static analysis identifies potential sites at which par functions could
be applied; and then search is used to determine the subset of sites at which the
par is actually applied.

4.1 Research Questions

Our hypothesis is that enabling a subset of the pars will often be preferable to
enabling them all, hence the first research question:

RQ1. What speed-up is achieved by using search to enable a subset of pars
compared to the enabling all the pars found by static analysis?

Since the overall goal is to speed-up a sequential program by parallelising it
to use multiple cores, the second question is:

RQ2. What speed-up is achieved by parallelisation using search compared to
the original software-under-test (SUT) executed as a sequential program?

In this empirical work, we consider two algorithms: a simple hill-climbing
algorithm and a greedy algorithm:

RQ3. Which search algorithm achieves the larger speed-ups, and how quickly
do these algorithms achieve these speed-ups?

Since some pars can only have an effect when one or more other pars are also
enabled, there is an argument that a sensible starting point for both algorithms
is to have all pars enabled. An alternative is to start with a random subset of
the pars enabled. This motivates the final research question:

RQ4. Which form of initialisation enables the algorithm to find the best speed-
ups: all pars enabled (we refer to this as ‘all-on’ initialisation), or a random
subset enabled (‘random’ initialisation)?

4.2 Algorithms

Representation. We represent the choice of enabled pars as a bit string where
a 1 indicates that the par is applied at a site, and 0 that it is not. The length
of the bit string is the number of potential pars annotations found by the static
analysis.

Fitness. To facilitate experimentation, the SUTs are executed using a simulator
which records the number of reductions made by each thread. A parameter to
the simulator controls the number of cores available to the SUT, and thus the
maximum number of threads that may be run in parallel. We choose the number
of reductions made by the main thread as the fitness metric. The main thread

70 J.M. Calderón Trilla et al.

cannot complete until all the other threads it has started have completed, and
so this number of reductions is an indication of the SUT’s runtime. The simula-
tor includes a realistic overhead of 250 reductions for handling each additional
thread.

Hill-Climbing Algorithm. We utilise a simple hill-climbing algorithm in which
the neighbours of the current bitstring are those formed by flipping a single bit.
At each iteration, these neighbours of the current bitstring are considered in a
random order, and the fitness evaluated for each in turn. The first neighbour
that has a better fitness, i.e. fewer reductions are made by the main thread,
than the current bitstring becomes the current bitstring in the next iteration.
The algorithm terminates when no neighbour of the current bitstring has a better
fitness.

Greedy Algorithm. The greedy algorithm considers the bits in representation in
a random order. As each bit is considered, the bit is flipped from its current
setting and the resulting bit string evaluated; the setting of the bit—current or
flipped—with the better fitness is retained. The algorithm terminates once all
the bits have been evaluated.

4.3 Software-Under-Test

SumEuler. SumEuler is a common parallel functional programming benchmark
first introduced with the work on the 〈ν,G〉-Machine in 1989 [1]. This program
is often used a parallel compiler benchmark making it a ‘sanity-check’ for our
work. We expect to see consistent speed-ups in this program when parallelised
(9 par sites).

Queens + Queens2. We benchmark two versions of the nQueens program.
Queens2 is a purely symbolic version that represents the board as a list of lists
and does not perform numeric computation (10 par sites for Queens and 24 for
Queens2). The fact that Queens2 has more than double the number of par sites
for the same problem shows that writing in a more symbolic style provides more
opportunity for safe parallelism.

SodaCount. Solves a word search problem for a given grid of letters and a list
of keywords. Introduced by Runciman and Wakeling, this program was cho-
sen because it exhibits a standard search problem and because Runciman and
Wakeling hand-tuned and profiled a parallel version, demonstrating that impres-
sive speed-ups are possible with this program [21] (15 par sites).

Tak. Small recursive numeric computation that calculates a Takeuchi number.
Knuth describes the properties of Tak in [14] (2 par sites).

Taut. Determines whether a given predicate expression is a tautology. This
program was chosen because the algorithm used is inherently sequential. We
feel that it was important to demonstrate that not all programs have implicit
parallelism within them, sometimes the only way to achieve parallel speed-ups
is to rework the algorithm (15 par sites).

Weaving Parallel Threads 71

MatMul. List of list matrix multiplication. Matrix multiplication is an inher-
ently parallel operation, we expect this program to demonstrate speed-ups when
parallelised (7 par sites).

4.4 Method

The following four algorithm configurations were evaluated:

– hill-climbing with all-on initialisation
– greedy with all-on initialisation
– hill-climbing with random initialisation
– greedy with random initialisation.

Each algorithm configuration was evaluated for four settings of the num-
ber cores: 4, 8, 16 and 24 cores. Each algorithm/core count combination was
evaluated against each of the seven SUTs described above.

Since both search algorithms are stochastic, multiple runs were made for
each algorithm/core count/SUT combination, each using 30 different seeds to
the pseudo-random number generator. For all runs, after each fitness evaluation,
the best bit string found and its fitness (the number of reductions made by the
main thread), was recorded.

In addition, the fitness (number of reductions) was evaluated for a bit string
where all bits are set to 1: this equivalent to using the static analysis without
optimisation using search. This evaluation was made for each combination of
core count and SUT. Finally, the fitness was evaluated for the sequential version
of each SUT.

4.5 Results

The results are summarised in Table 1. This table compares the speed-up, cal-
culated as the ratio of the medians of the reduction counts, of hill-climbing with
all-on initialisation compared to (a) the parallelisation that would result from
the static analysis without optimisation; (b) the sequential version of the pro-
gram; (c) the greedy algorithm with all-on initialisation; and (d) the hill-climbing
algorithm with random initialisation. The speed-up is calculated as the factor by
which the number of reductions is reduced, and so values greater than 1 indicate
that the SUT parallelised using hill-climbing with all-on initialisation would be
faster in the multi-core environment. Values in bold in the table indicate that
differences between the algorithms used to calculate the speed-up are statisti-
cally significant at the 5 % level using a one- or two-sample Wilcoxon test as
appropriate3.

3 Since in the following we discuss the results for each SUT, or combination of SUT and
number of cores, individually as well as for the entire set of results as a family, we do
not apply a Bonferroni or similar correction to the significance level. Nevertheless we
note here that most of the currently significant differences would remain significant
if such a correction were applied.

72 J.M. Calderón Trilla et al.

Table 1. The speed-up, calculated as the ratio of the medians of the reduction counts,
achieved by the hill-climbing algorithm using all-on initialisation compared to the
default parallelisation from static analysis (static parallel), a sequential implementation
of the SUT (sequential), the greedy algorithm (greedy), and hill climbing using random
initialisation (random init). Speed-ups are rounded to 4 significant figures. Values in
bold font are significant at the 5 % level.

Hill-climbing speed-up compared to:

SUT Cores Static parallel Sequential Greedy Random init

MatMul 4 4.903 1.021 1 1

MatMul 8 4.625 1.021 1 1

MatMul 16 4.485 1.021 1 1

MatMul 24 4.439 1.021 1 1

Queens 4 1.080 1.294 1 1

Queens 8 1.043 1.369 1 1

Queens 16 1.017 1.401 1 1

Queens 24 1.003 1.401 1.000 1

Queens2 4 6.479 3.843 1 1

Queens2 8 6.421 7.607 1 1

Queens2 16 6.263 14.79 1 1

Queens2 24 6.101 21.54 1 1

SodaCount 4 4.237 3.773 1.000 1.055

SodaCount 8 3.544 6.207 1.007 1.071

SodaCount 16 3.110 10.40 1.081 1.072

SodaCount 24 2.810 13.26 1.004 1

SumEuler 4 1.494 3.948 1 1

SumEuler 8 1.486 7.773 1 1

SumEuler 16 1.460 14.77 1 1

SumEuler 24 1.432 20.69 1 1

Tak 4 1.609 1.560 1 1

Tak 8 1.609 3.118 1 1

Tak 16 1.608 6.230 1 1

Tak 24 1.608 9.330 1 1

Taut 4 1.000 1.000 1.000 1

Taut 8 1.000 1.000 1.000 1.000

Taut 16 1.000 1.000 1.000 1

Taut 24 1.000 1.000 1.000 1

Weaving Parallel Threads 73

4.6 Discussion

RQ1. For most of SUTs there is a relatively large speed-up of the hill-climbing
algorithm compared to the default parallelisation where all pars are enabled. The
largest speed-ups are for Queens2 where we might expect a wall-clock run time
that is more than 6 times better than the default parallelisation. For Queens and
Taut the speed-ups are closer to 1, but are in all cases statistically significant.

0

5

10

15

20

0 25 50 75 100
evaluations

sp
ee

du
p

co
m

pa
re

d
to

 s
eq

ue
nt

ia
l

alg,cores

HC,24

G,24

HC,16

G,16

HC,8

G,8

HC,4

G,4

(a) Queens2

5

10

0 20 40 60
evaluations

sp
ee

du
p

co
m

pa
re

d
to

 s
eq

ue
nt

ia
l

alg,cores

HC,24

G,24

HC,16

G,16

HC,8

G,8

HC,4

G,4

(b) SodaCount

Fig. 5. The speed-up, calculated as the ratio of the medians of the reduction counts,
obtained so far by the algorithm plotted against the number of fitness evaluations. HC
and G indicate the hill-climbing and greedy algorithm respectively, both using all-on
initialisation. The numbers following the algorithm abbreviation indicate the number
of cores (Color figure online).

74 J.M. Calderón Trilla et al.

We conclude that the hill-climbing algorithm can improve parallel performance
across a range of SUTs and across a range of core counts.

RQ2. For Queens2 and SumEuler, the speed-up compared the sequential version
of these SUTs is almost linear: it approaches the number of cores available. For
example, for SumEuler on 4 cores, the speed-up compared to the sequential
version is 3.95. A linear speed-up is the best that can be achieved, and so these
results are indicative that our proposed technique could be very effective in
practice. Meanwhile, for other SUTs such as MathMaul and Taut, there is little
speed-up over the sequential version of the SUT.

RQ3. The results show that for most SUTs, there is little difference in the
speed-up achieved by the hill-climbing and greedy algorithm. (For clarity, the
table shows the comparison only between the two algorithms using all-on initial-
isation, but similar results are obtained when initialisation is random.) Only for
SodaCount is there a non-trivial and statistically significant difference between
the hill climber and greedy algorithm for all core sizes. Figure 5 performs a fur-
ther analysis for this research question: for two of the SUTs, it plots the best
speed-up (compared to sequential) obtained so far by the algorithm against the
number of fitness evaluations. For Queens2 at all core counts, the greedy algo-
rithm finds the same best speed-up as the hill-climbing, but finds it in fewer
fitness evaluations, i.e. the search is faster. For SodaCount, the greedy algo-
rithm finds its best speed-up in relatively few evaluations. The hill-climber takes
longer but finds a better speed-up at all cores counts; the difference is most
noticeable in the results for 16 cores. For frequently-used SUTs that account for
a significant part of a system’s performance, the additional effort required to
find the best parallelisation using hill-climbing may be justified, but will depend
on context.

RQ4. For most SUTs there is no statistically significant difference between all-
on and random initialisation. For SodaCount, the all-on initialisation is slightly
better for core counts of 4, 8, and 16. This result provides evidence that all-on
initialisation may be beneficial, but requires further investigation to confirm the
generality.

5 Related Work

Research into parallel functional programming has been an active research area
since the early 1980s. Before research into implicit parallelism fell out of favor,
much of the work focused on the use of static analysis alone in parallelising
programs [7,10]. Harris and Singh used runtime feedback to find parallelism in
functional programs without the use of static analysis [8]. Our approach can
be seen as reversal of their approach, introduce parallelism at compile-time and
remove parallelism using runtime feedback.

A number of researchers in the late 1990 s applied metaheuristic search to
transform serial imperative programs into parallel ones. Both Nisbet [18] and

Weaving Parallel Threads 75

Williams [28] independently targeted FORTRAN programs using metaheuris-
tics to find an appropriate sequence of code transformation to enable the pro-
gram to take advantage of a target parallel architecture. The Paragen framework
described by Ryan and his collaborators applies genetic programming to opti-
mise a tree-like representation of parallelising transformations that are applied
to blocks of code, and a linear representation of transformations that are applied
to loops in the program [22]. The fitness used by Paragen is a combination of the
speed-up obtained and the equivalence of the serial and parallel versions of the
program based on a post hoc analysis of data dependencies. The two key differ-
ences from the work described in this paper are that: (a) here the search does
not derive a sequence of transformations, but instead determines which poten-
tial transformations, found by prior static analysis, are enabled; and, (b) any
transformed parallel program is guaranteed to be equivalent to the original ser-
ial program by construction. We believe that these differences may facilitate
scalability in our approach.

6 Conclusions

We have shown in this paper that the combination of static analysis and search
can parallelise programs. For some programs we are able to achieve close to linear
speed-ups which is as performant as can expected. As future work we will investi-
gate more sophisticated algorithms, including genetic algorithms and estimation
of distribution algorithms; and confirm the scalability of our approach.

References

1. Augustsson, L., Johnsson, T.: Parallel graph reduction with the 〈v,G〉-machine. In:
Proceedings of the Fourth International Conference on Functional Programming
Languages and Computer Architecture. FPCA 1989, pp. 202–213. ACM, New York
(1989)

2. Burn, G.L., Hankin, C., Abramsky, S.: Strictness analysis for higher-order func-
tions. Sci. Comput. program. 7, 249–278 (1986)

3. Calderón Trilla, J.M., Runciman, C.: Improving implicit parallelism. In: Proceed-
ings of the ACM SIGPLAN Symposium on Haskell. Haskell 2015 (2015). Under
submission

4. Clack, C., Peyton Jones, S.: The four-stroke reduction engine. In: Proceedings of
the 1986 ACM Conference on LISP and Functional Programming, pp. 220–232.
ACM (1986)

5. Clack, C., Peyton Jones, S.L.: Strictness analysis-a practical approach. In:
Jouannaud, J.-P. (ed.) Functional Programming Languages and Computer Archi-
tecture. LNCS, vol. 201, pp. 35–49. Springer, Heidelberg (1985)

6. Hammond, K.: Parallel functional programming: an introduction (1994). http://
www-fp.dcs.st-and.ac.uk/∼kh/papers/pasco94/pasco94.html

7. Hammond, K., Michelson, G.: Research Directions in Parallel Functional Program-
ming. Springer-Verlag (2000)

8. Harris, T., Singh, S.: Feedback directed implicit parallelism. SIGPLAN Not. 42(9),
251–264 (2007). http://doi.acm.org/10.1145/1291220.1291192

http://www-fp.dcs.st-and.ac.uk/~kh/papers/pasco94/pasco94.html
http://www-fp.dcs.st-and.ac.uk/~kh/papers/pasco94/pasco94.html
http://doi.acm.org/10.1145/1291220.1291192

76 J.M. Calderón Trilla et al.

9. Hinze, R.: Projection-based strictness analysis: theoretical and practical aspects.
Inaugural dissertation, University of Bonn (1995)

10. Hogen, G., Kindler, A., Loogen, R.: Automatic parallelization of lazy functional
programs. In: Krieg-Brückner, B. (ed.) ESOP 1992. LNCS, vol. 582, pp. 254–268.
Springer, Heidelberg (1992)

11. Hughes, J.: Why functional programming matters. Comput. J. 32(2), 98–107
(1989)

12. Hughes, R.J.M.: The design and implementation of programming languages. Ph.D.
thesis, Programming Research Group, Oxford University, July 1983

13. Jones, M., Hudak, P.: Implicit and explicit parallel programming in haskell (1993).
Distributed via FTP at http://nebula.systemsz.cs.yale.edu/pub/yale-fp/reports/
RR-982.ps.Z. Accessed July 1999

14. Knuth, D.E.: Textbook examples of recursion. In: Lifschitz, V. (ed.) Artificial Intel-
ligence and Theory of Computation, pp. 207–229. Academic Press, Boston (1991)

15. Marlow, S., Maier, P., Loidl, H., Aswad, M., Trinder, P.: Seq no more: better strate-
gies for parallel haskell. In: Proceedings of the Third ACM Haskell Symposium on
Haskell, pp. 91–102. ACM (2010)

16. Mycroft, A.: The theory and practice of transforming call-by-need into call-by-
value. In: Robinet, B. (ed.) International Symposium on Programming. LNCS,
vol. 83, pp. 269–281. Springer, Heidelberg (1980)

17. Naylor, M., Runciman, C.: The reduceron reconfigured. ACM Sigplan Not. 45(9),
75–86 (2010)

18. Nisbet, A.: GAPS: A compiler framework for genetic algorithm (GA) optimised
parallelisation. In: Proceedings of the International Conference and Exhibition on
High-Performance Computing and Networking, pp. 987–989. HPCN Europe 1998
(1998)

19. Peyton Jones, S.L.: Parallel implementations of functional programming languages.
Comput. J. 32(2), 175–186 (1989)

20. Plasmeijer, R., Eekelen, M.V.: Functional Programming and Parallel Graph
Rewriting, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1993)

21. Runciman, C., Wakeling, D. (eds.): Applications of Functional Programming. UCL
Press Ltd., London (1996)

22. Ryan, C., Ivan, L.: Automatic parallelization of arbitrary programs. In:
Langdon, W.B., Fogarty, T.C., Nordin, P., Poli, R. (eds.) EuroGP 1999. LNCS,
vol. 1598, pp. 244–254. Springer, Heidelberg (1999)

23. Sutter, H.: The free lunch is over: a fundamental turn toward concurrency in soft-
ware. Dr. Dobbs J. 30(3), 202–210 (2005)

24. Tremblay, G., Gao, G.R.: The impact of laziness on parallelism and the limits
of strictness analysis. In: Proceedings High Performance Functional Computing,
pp. 119–133. Citeseer (1995)

25. Trinder, P.W., Hammond, K., Loidl, H.W., Peyton Jones, S.L.: Algorithm + strat-
egy = parallelism. J. Funct. Program. 8(1), 23–60 (1998)

26. Wadler, P.: Strictness analysis on non-flat domains. In: Abramsky, S.,
Hankin, C.L. (eds.) Abstract Interpretation of Declarative Languages,
pp. 266–275. Ellis Horwood, Chichester (1987)

27. Wadler, P., Hughes, R.J.M.: Projections for strictness analysis. In: Kahn, G. (ed.)
FPCA 1987. LNCS, vol. 274, pp. 385–407. Springer, Heidelberg (1987)

28. Williams, K.P.: Evolutionary algorithms for automatic parallelization. Ph.D. the-
sis, Department of Computer Science, University of Reading, December 1998

http://nebula.systemsz.cs.yale.edu/pub/yale-fp/reports/RR-982.ps.Z
http://nebula.systemsz.cs.yale.edu/pub/yale-fp/reports/RR-982.ps.Z

An Improved Beam-Search for the Test Case
Generation for Formal Verification Systems

Mahmoud A. Bokhari1,2, Thorsten Bormer3, and Markus Wagner4(B)

1 Computer Science School, University of Adelaide, Adelaide, Australia
2 Computer Science Department, Taibah University,

Medina, Kingdom of Saudi Arabia
3 Institute for Theoretical Informatics, Karlsruhe Institute of Technology,

Karlsruhe, Germany
4 Optimisation and Logistics, University of Adelaide, Adelaide, Australia

markus.wagner@adelaide.edu.au

Abstract. The correctness of software verification systems is vital, since
they are used to confirm that safety and security critical software systems
satisfy their requirements. Modern verification systems need to under-
stand their target software, which can be done by using an axiomatiza-
tion base. It captures the semantics of the programming language used
for writing the target software. To ensure their correctness, it is neces-
sary to validate both parts: the implementation and the axiomatization
base. As a result, it is essential to increase the axiom coverage in order
to verify its correctness. However, creating test cases manually is a time
consuming and difficult task even for verification engineers. We present a
beam search approach to automatically generate test cases by modifying
existing test cases as well as a comparison between axiomatization and
code coverage. Our results show that the overall coverage of the existing
test suite can be improved by more than 20 %. In addition, our approach
explores the search space more efficiently than existing ones.

Keywords: Beam search · Formal verification · System testing

1 Introduction

Formal verification is the act of proving or disproving that an algorithm or its
implementation is correct with respect to its formal specification. The formal
mathematical approaches include, amongst others, model checking, deductive
verification, and program derivation [4,7,12].

The correctness of the program verification systems themselves is impera-
tive if they are to be used in practice. In principle, instead of or in addition to
testing, parts of verification tools (in particular the axiomatization and the cal-
culus) can be formally verified. For example, the Mobius project [2], the LOOP
project [15], and the Bali project [18], all aimed at the development of fully ver-
ified verification systems. One may employ formal methods to prove a system or
c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 77–92, 2015.
DOI: 10.1007/978-3-319-22183-0 6

78 M.A. Bokhari et al.

its calculus to be correct. But—as for any other type of software system—testing
and cross-validation are of great importance [3,10].

In our situation of testing formal verification systems, all tests have to be
programs (along with their formal specifications) that can be verified success-
fully, whether it is with or without human interaction. Due to their inherent
complexity, creating such test cases by hand is already a challenging problem
for experienced verification engineers. Currently, it is unknown how tests can be
generated automatically from scratch using existing methods.

A verification system consists of many testable components (e.g., parsers,
the user interface, proof procedures), and the so-called axiomatization is one of
them. It carries the formal definitions of the target program language, which
makes it a core component of the systems. The correctness of this component
is of outmost importance, especially when safety- and security-critical programs
are to be verified.

To ensure the correctness of program verification tools, it is necessary to vali-
date both parts: the implementation, as well as the axiomatization. Only testing
the implementation is not sufficient, even if a high code coverage is achieved.
For example, it was noted in [6] that there is a certain amount of “core code”
exercised by all tests, while there is only a small number of “core axioms” used
by many tests. Some logical defects stay hidden within the axiomatization unless
it is fully exercised. The work in [6] discovered two bugs in the axiomatization
as a result of the coverage maximization research.

Our goal is to increase the proportion of the axiomatization that is actively
used in successful verification attempts [6]. As a consequence, new bugs (“regres-
sions”) are more likely to be found in regression testing, when the implementa-
tion of the verification system (and its axiomatization) is changed. The prob-
lem is challenging for iterative search approaches due to the large number of
axioms (typically 100’s) and due to the time consuming verification process
(sometimes minutes), which also makes it unsuitable for population-based evo-
lutionary algorithms or ant-colony optimization as they require many evalua-
tions [1,13]. Besides the time-consuming evaluation process, the vast number
of infeasible ways of creating test cases renders the problem inappropriate for
disruptive approaches, such as simulated annealing and even the simple (1+1)
evolutionary algorithms. In [19] a collection of various breadth-first and depth-
first approaches with randomized components to this problem was investigated.
These approaches were not problem-specific in the sense that the search for the
next test case was completely uninformed. In contrast to this, we are using in
this article a beam search approach [8,9] that is informed by previous runs. We
do this in order to achieve two goals: (1) reduction of the likelihood to gener-
ate infeasible solutions, and (2) increase of the likelihood to cover previously
uncovered axioms.

First, we outline the specific problem in Sect. 2, and in Sect. 3 we formulate it
as an optimization problem. In the subsequent Sect. 4, we describe our informed
approach. We analyze our results and compare them with existing approaches
in Sect. 5. The paper concludes in Sect. 6 with a summary of key findings and a
description of potential future research.

An Improved Beam-Search for the Test Case Generation 79

2 Target of Optimization: Program Verification Systems

In this article, we concentrate on modern verification systems that allow for
auto-active verification. In auto-active verification, the requirement specification
together with all relevant information to find a proof (e.g., loop invariants) is
given to the verification tool right from the start of the verification process—
interaction hereafter is not possible. While some tools such as VCC [11] and
Caduceus [14] allow only this type of interaction, other such as the KeY tool [4],
offer in addition an interactive mode for the proof construction.

Program verification tools have to capture the program language semantics
of the programs to be verified. In some tools (e.g., as with logical frameworks like
Isabelle/HOL [17]) these semantics are mostly stored as one huge axiomatization
or a set of calculus rules and separate from the actual proof system. At this end
of the spectrum of program verification systems, (at least) one rule is defined
per program language construct (e.g., control flow statements or evaluation of
arithmetic expressions) in order to conduct proofs about program correctness.
The task of the actual implementation part of the verification tool is then mostly
to apply these rules, respectively axioms.

We consider in this article system tests, i.e., the verification tool is tested as a
whole. Though the correctness of a tool, of course, depends on the correctness of
its components and it makes sense to also test these components independently,
not all components are easy to test individually. For example, it is possible (and
useful) to unit-test an SMT solver that is used by a tool. But the verification
condition generator is hard to test separately as it is very difficult to specify its
correct behaviour. In the following, we concentrate on functional tests that can
be executed automatically, i.e., user-interface properties are not considered.

As is typical for verification tools following the auto-active verification para-
digm, we assume that a verification problem consists of a program to be verified
and a requirement specification that is added in form of annotations to the
program. Typical annotations are, e.g., invariants, pre-/postcondition pairs, and
assertions of various kinds. If P is a program and A is a set of annotations,
then we call the pair P+A. Besides the requirement specification, a verification
problem usually contains additional auxiliary annotations that help the system
in finding a proof. We assume that all auxiliary input (e.g., loop invariants) are
made part of the testing input, such that the test can be executed automatically.

Possible outcomes of running a verification tool on a test P+(REQ∪AUX) (a
verification problem consisting of a program P , a requirement specification REQ ,
and auxiliary annotations AUX) are:

Proved: A proof has been found showing that the program P satisfies REQ ∪
AUX .

Not provable: There is no proof (either P does not satisfy REQ or AUX is not
sufficient); the system may provide additional information on why no proof
exists, e.g., by a counter example or by showing the current proof state.

Timeout: No proof could be found given the allotted resources (time and space).

80 M.A. Bokhari et al.

In the following, we are only considering test cases for which the intended
outcome is that KeY finds a proof given the allocated computational resources.

3 Problem Formulation

In this section, we present how we determine the amount of testing done, and
how we intend to improve it.

3.1 Axiomatization Coverage

Measuring code coverage is an important method in software testing to judge
the quality of a test suite. This is also true for testing verification tools. However,
code coverage is not an indicator for how well the declarative logical axioms and
definitions—that define the semantics of programs and specifications and that
make up an important part of the system—are tested.

To solve this problem, we use the notion of axiomatization coverage [6]. It
measures the extent to which a test suite exercises the axioms (that capture
the program language semantics) used in a verification system. The idea is to
compute the percentage of axioms that are actually used in the proofs for the
verification problems that make up a test suite. The higher the coverage of a
test suite is, the more likely it is that a bug that is introduced in a new version
of the verification system is discovered.

We use the following version of axiomatization coverage: the percentage of
axioms needed to successfully verify correct programs. An axiom is defined to be
needed to verify a program, if it is an element of a minimal axiom subset, using
which the verification system is able to find a proof. That is, if the axiom is
removed from this subset, the tool is not able anymore to prove the correctness
of the program.

Definition 1 ([6]). A test case P+(REQ ∪ AUX) covers the axioms in a set
Th if Th � P+(REQ ∪ AUX) but Th ′ �� P+(REQ ∪ AUX) for all Th ′

� Th.

Note that, in general, the minimal set of axioms covered by a given verifica-
tion problem is not unique.

To compute an approximation of the axiom coverage for a test case
P+(REQ ∪ AUX), the procedure is as follows. In a first step, we verify the
test case with the verification tool using the complete axiom base available.
Besides gathering information on resource consumption of this proof attempt,
information on which axioms are actually used in the proof are recorded as set
T .1 Then, the iterative reduction phase starts. In a reduction step, we start from
the empty set C of covered axioms. For each axiom t in the set of initially used
axioms T , an attempt to prove the test case using axioms C ∪ (T \ {t}) is made.
If the proof does not succeed, we consider t to be necessary and we add t to the
set C. Then, we remove axiom t from T and start the next proof iteration until

1 “Used” does not imply that the application of the axiom was necessary.

An Improved Beam-Search for the Test Case Generation 81

T = ∅. After a single iteration of this computation, we repeat these operations
but this time on C, until no more axiom removal is possible without affecting
the ability to find a proof. As a result, this fixed-point algorithm finds a true
minimal set of axioms to construct the proof.

3.2 Maximizing Axiomatization Coverage

We increase the amount of testing done by generating additional tests from exist-
ing ones. We achieve this by preventing the verification system to use certain
parts of the axiomatization. Thus, we force the system to find alternative ways
of constructing a correctness proof for a given test case P+(REQ ∪AUX), while
using only a subset of the total set of axioms. We will refer to this subset of
allowed axioms as the whitelist WL. Now, the notion of what a test case consti-
tutes actually changes: it becomes a tuple of 〈P+(REQ ∪AUX),WL〉, of a pro-
gram P with a requirement specification REQ and auxiliary annotations AUX ,
and a whitelist WL.

The introduction of the whitelists allows us to reuse existing test cases, by
modifying the WL for each program and its specification. This is a big advan-
tage over writing new test cases, which is a very time consuming process even for
experienced verification engineers. On the other hand, our approach cannot fully
replace the need to extend test suites through additional test cases. For example,
take axioms for bitwise XOR-operations or for certain simplifications of inequal-
ities. Even though many parts of the axiomatization will be reused over and
over, it may not be possible to cover these, if the corresponding characteristics
are never found in any of the existing test cases.

4 Metaheuristic Approach

In the following, we describe the verification system that is the subject of our
study. Subsequently, we present our heuristic approaches to the problem. Note
that our approaches can be applied to the testing of further verification sys-
tems, if these can provide information on which axioms were used during the
construction of the proof; for example, this is the case for Microsoft’s VCC [11].

4.1 The KeY System

As the target for our case study we have chosen the KeY tool [4], a verifi-
cation system for sequential Java Card programs. In KeY, the Java Modeling
Language (JML) is used to specify properties about Java programs with the
common specification constructs like pre- and postconditions for methods and
object invariants. Like in other deductive verification tools, the verification task
is modularized by proving one Java method at a time.

In the following, we will briefly describe the workflow of the KeY system.
Let us assume the user has chosen one method to be verified against a single
pre-/postcondition pair. First, the relevant parts of the Java program, together

82 M.A. Bokhari et al.

with its JML annotations are translated to a sequent in Java Dynamic Logic, a
multimodal predicate logic. Validity of this sequent implies that the program is
correct with respect to its specification. Proving the validity is done using auto-
matic proof strategies within KeY, which apply sequent calculus rules imple-
mented as so-called taclets. For an in-depth introduction, we refer the interested
reader to [4]. The set of taclets provided with KeY captures the semantics of
Java. Additionally, it contains taclets that deal with first order logic formulas.
The development version of KeY as of 16 August 2012, contains 1520 taclets
and rules; we will call these axioms in the remainder of this article to facilitate
reading. Note that not all axioms are always available when performing a proof,
as some exist in several versions, depending on proof options chosen.

4.2 Algorithms

As stated above, we are aiming at maximizing the axiomatization coverage
through the creation of test cases 〈P+(REQ ∪ AUX),WL〉. The test suite that
we will consider already contains pairs P+(REQ∪AUX), such that we can focus
on the search for whitelists. This process can be very time consuming (several
hours) due to the reduction phases. Furthermore, it is very often the case that
infeasible whitelists are created, as they miss elements that are crucial for the
construction of the eventual proof. Even a very “careful” random generation of
whitelists is rarely successful. Therefore, we use an informed conservative app-
roach in which we attempt to use the knowledge gained so far.

Guidance Table. To efficiently navigate the search space, we propose a new
approach that uses a guidance table GT to guide and inform the search. This
GT consists of the following: each found axiom encountered in any minimal sets,
its replacement sets if it is successfully replaced, the total number of successful
uses for each replacement set, the total number of all successful replacements,
and the total number of unsuccessful replacements. All data is recorded for each
axiom. Table 1 illustrates an example of the guidance table: it shows that ax3
was replaced successfully four times; once by {ax5, ax6} and three times by
{ax7}. It also shows that it was not possible to replace {ax3}.

Table 1. Guidance Table example

Axiom Replacement Successful Total Successful Unsuccessful

Set Times Times Times

ax1 {ax4} 1 1 0

ax2 0 0 1

ax3 {ax5, ax6} 1 4 1

{ax7} 3 0

An Improved Beam-Search for the Test Case Generation 83

The major purpose of using the guidance table is to find equivalences between
axioms.2 In other words, it lists equivalent sets of axioms for each axiom or axiom
sets. For example, Table 1 depicts that ax3 has two equivalent sets of axioms
which are {ax5, ax6} and {ax7}. It is worth mentioning that these two sets are
only equivalent to that axiom in four cases in total. However, as they are not
completely equal to ax3, the first set could not replace ax3 in one instance.

In addition, discovering relationships between axioms enables the proposed
technique to find axioms that have a relatively large number of equivalent sets
to guide the search. Since our proposed method is based on the beam search
technique, which requires information regarding the search space, it is essential to
construct such a table that can be used to inform and guide it towards promising
nodes. Moreover, the guidance table can identify irreplaceable axioms that have
not been replaced successfully. Avoiding these axioms improves the performance
of the search process and the framework.

BeamSearch Approach. Algorithm 1 illustrates our informed beam search.
As can be seen at the first stage, the GT is initialised and sorted by the values
of the total successful replacement times. Then, the initial set of used axioms
T for proving the test case TC—in the form of 〈P+(REQ ∪ AUX),WL〉—is
obtained by running the verification tool on TC . If no proof can be constructed,
the method terminates. If a proof can be constructed, then we reduce the set T
to a minimal set M .

In the next stage, the GT is used to fill the promising node list that is used
for selecting the best nodes to explore. It includes all axioms that are found in
M as well as in GT , however, in some cases an axiom may not found in the GT
which means it is a newly covered axiom. Furthermore, these axioms must have
relatively high successfully replacement rates. Lastly, axioms that have not been
replaced are stored in the discarded list to be avoided in the search process.

In the subsequent stage, where the axioms are not found in the GT , the
method adds them to the promising node list. This step is considered to guar-
antee that all new axioms have to be dropped from the WL. As a result, new
equivalent axioms may get covered, which increases the chances of maximising
the overall axiomatization coverage.

In the final stage, the promising list is sorted by each axiom’s successful
replacements in a descending order, then the method starts exploring the promis-
ing axioms. We do this by dropping one at a time from the axiomatization base
WL and then re-running the proving procedure using the shorter WL (Step 1).
As a consequence a new test case might be generated, but this time an axiom
which has several logically equivalent sets of axioms has been removed from
it, which increases the chances of forcing the verification tool to use different
axioms.

BEAMSERCH
FastMinSet. In order to reduce the computation time, we use some

additional information obtained by the GT tool from the previous test runs.
2 “Equivalence” is not strictly logical here, but regarding the tool’s capability to find

a proof in a different way.

84 M.A. Bokhari et al.

Algorithm 1. BeamSearch
Data: GT: guidance table (sorted by successful replacements)
Data: TC: test case 〈P+(REQ ∪ AUX),WL〉
Data: T: initially used set of axioms during the proof
Data: M: minimal set of axioms needed for finding the proof
Data: WL: axiomatization base used by the verification tool
Data: PromisingNodeList: list containing the most promising nodes
Data: DiscardedList: list containing discarded nodes
Result: union of all minimal lists

1 T = Run(TC) ; /* run the verification tool */
2 if TC is not Proved OR Timeout then
3 Stop;
4 else
5 M = Reduce(T);
6 Add M to result; /* add the newest minimal list */
7 foreach axiom in M do
8 if GT contains axiom then
9 if axiom in GT has total successful time greater than 0 then

10 Add axiom to PromisingNodeList;
11 else
12 Add axiom to DiscardedList;
13 end

14 else
15 Add axiom to PromisingNodeList; /* adding new axiom, since it has not

been in the GT so far */

16 end

17 end
18 sort(PromisingNodeList); /* by total replacements (descending) */
19 foreach axiom in PromisingNodeList do
20 Drop axiom from current WL;
21 Repeat from Step 1;

22 end

23 end
24 return result;

For each test case TC , the GT tool collects and stores all of the initially used
axiom sets T and their reduced minimal sets of axioms M . In addition, it
arranges these sets to speed up the whole testing process. This can be done
by mapping each TC and T to a set of M . As a result, the tool generates a hash
table where the keys are pairs of 〈TC ,T 〉 and the values are sets of M .

The approach BeamSearchFastMinSet has two main parts: (1) it effectively
tries to quickly re-discover the previously found minimal sets M , and (2) con-
structs the promising list to inform the search. Algorithm 2 illustrates only the
first part, as the second part (i.e., building the promising list) is already discussed
in BeamSearch Approach in Sect. 4.2. As can be seen, the set T of axioms used
in proofs is obtained by running the verification tool on the test case TC using
the whole white list WL. Additionally, the approach looks for the corresponding
minimal set M from the hash table HT .

In the next stage, when M is found, the BeamSearchFastMinSet reruns the
tool again, but this time the WL is replaced by the corresponding M (which was a
successful reduction at least once before), to ensure the validity of M . It is worth
mentioning that we add this step, since the verification tool may undergo some
modifications that affect the proof procedure. Then the BeamSearchFastMinSet

uses the valid M for building the promising list. However, in case the HT does

An Improved Beam-Search for the Test Case Generation 85

Algorithm 2. BeamSearchFastMinSet

Data: HT: hash table ((TC, T), M)
Data: TC: test case 〈P+(REQ ∪ AUX),WL〉
Data: T: initially used set of axioms during the proof
Data: M: minimal set of axioms needed for finding the proof
Data: WL: axiomatization base used by the verification tool
Result: union of all minimal lists

1 T = Run(TC) ; /* run the verification tool on TC */
2 if TC is not proved OR Timeout then
3 Stop;
4 else
5 if HT contains 〈TC, T 〉) then
6 M = Get M from HT by 〈TC, T 〉;
7 WL = M;
8 T = Run(TC) ; /* rerun to ensure M is valid */
9 if TC is proved then

10 Add M to result; /* add the newest minimal list */
/* construct promising and discarded lists as in BeamSearch */

11 else
// TC is not proved, run BeamSearch

12 end

13 else
// HT does not contain 〈TC, T 〉, run BeamSearch

14 end

15 end
16 return result;

not contain such T (i.e., it is new, or M is not valid), the BeamSearchFastMinSet

continues its job as BeamSearch, by reducing T to a new minimal set M and
then constructs the promising list.

As can be noted, using BeamSearchFastMinSet significantly reduces the test-
ing time by eliminating the time needed for reducing T to M . Although Beam-
SearchFastMinSet runs the verification tool twice, still it is considerably faster
than the complete reduction of T to the minimal set M , since the later can
require dozens or even hundreds of verification attempts.

5 Experimental Investigations

In this section, we will first describe the experimental setup. We will briefly look
into the information that our beam search uses, before presenting and analyzing
the coverage results.

5.1 Experimental Setup

Our testing framework automatically executes the 319 test cases mentioned
above and measures the axiomatization coverage3. We also use Emma tool ver-
sion 2.0 to measure the code coverage4. It worth mentioning that we run 2
separated experiments, one for each coverage criterion. For code coverage the
3 The full code and the logfiles are available online http://cs.adelaide.edu.au/∼optlog/

research/software.php.
4 www.emma.sourceforge.net (last accessed: 5 April 2015).

http://cs.adelaide.edu.au/~optlog/research/software.php
http://cs.adelaide.edu.au/~optlog/research/software.php
www.emma.sourceforge.net

86 M.A. Bokhari et al.

reduction phase is disabled during the test, and therefore the number of covered
axioms is slightly different to those in the axiomatization experiment.

This test and all subsequent runs are performed on Intel Xeon E5430 CPUs
(2.66 GHz), on Debian GNU/Linux 5.0.8, with Java SE RE 1.7.0. The internal
resource constraints are set to twice the amount of resources needed for the
first proof run recorded initially. This allows for calculating axiom coverage in
reasonable time and ensures comparability of coverage measures between com-
puters of different processing power. Still, the computation of a single fix-point
takes typically minutes, and in a few cases even hours. Therefore, we limit the
computation time for each of the 319 test cases to 24 h for each approach, which
means an investment of 0.87 CPU years per approach. We compare our informed
beam-search approach to the different variant of uninformed breadth-first and
depth-first approaches reported in [19]. We observed in preliminary testing that
even the approaches with random selectivity produced the same results in inde-
pendent runs with negligible deviations (±1 covered axiom), which is why (in
addition to the computational cost) we limit our investigations to only one run
per approach.

Before our experiments, we build the guidance table for our beam search
based on re-runs of the Approaches 1–5 in [19]. This guidance table contains,
amongst others, the following interesting information. This step is mandatory,
as otherwise our approach default to a simple breadth-first search.

First, let us look at individual axioms. In Fig. 1, we show for all covered
axioms the number of times that they have been successfully and unsuccessfully
replaced. The use of this data is not straight-forward, since there is no specific
pattern. For instance, one of these axioms has 188 unsuccessful replacements,
while it is successfully replaced 36 times. Such axioms have to be moved towards
the end the promising list, as they appear to be dead ends more often than not.
On the end of the spectrum, one axiom is successfully replaced 143 times, while
it is unsuccessfully replaced only three times. This makes it a good candidate
for the beam search.

Once an axiom is replaced, we can often see that it is replaced by a set of two
axioms or by even larger sets. Figure 2 shows how many different single axioms

Fig. 1. Number of successful vs. unsuccessful replacements for each single axiom, shown
as positive and negative values. The axioms (along the x-axis) are sorted in a decreasing
order according to the number of successful replacements.

An Improved Beam-Search for the Test Case Generation 87

Fig. 2. Replacement set’s sizes and number of replacements for single axioms Beam-
SearchFastMinSet

are replaced by a set of axioms. For example, 446 pairs of axioms successfully
replace a single axiom, and there is one case where one axiom is replaced by an
enormous set of 63 axioms. In the future, we can study such cases in order to
identify equivalent sets of axioms. Moreover, they can help us to improve the
framework by restricting the number of times that we replace that one axiom in
the future, since it may increase the execution time for the proof procedure.

5.2 Code Coverage Results

Achieving high code coverage in software testing is of great importance to
judge the test suite. Nevertheless, in verifying deductive verification systems,
our results show axiomatization coverage is essential. This is because although
in 295 test cases the lines of code (LOC) coverage is more than 34 %, the axiom-
atization coverage is less than 10 %; moreover, 41 test cases have less than 1 %
of axiom coverage. Table 2 shows a summary of the coverage details for the test
cases.

As can be seen, the average LOC coverage is 37 %, in contrast, it is only
4.43 % for the axiomatization coverage. Most of test cases exercised nearly the
same proportion of the code as the standard deviation for LOC is 2.5 %. On the
other hand, there are fluctuations in the amount of covered axioms by the test
suite. This is due to the logical properties within each test case.

In addition, some test cases managed to exercise 89 % and 44 % of the class
and LOC coverage respectively, which is the maximum LOC coverage; nonethe-
less, they could not cover even 17 % of the axioms individually. In short, there
is no clear correlation between the exercised code and the used axioms.

The overall axiomatization coverage—as it is expected—is low with only
45 %. Additionally, the LOC coverage is only 51 %, which is significantly less
than the 85 % recommended by the software testing (see e.g. [20]). Though the
class coverage reached 90 %, after we analyzed the EMMA outputs, we find that
many classes are only partially covered. This includes classes that appear to be
crucial for the proof procedure: the LOC coverage there ranges from 62 % down
to even 0 % (see Table 3 for some examples).

88 M.A. Bokhari et al.

Table 2. Code Coverage vs. Axiomatization Coverage (excerpt). Sorted by axiom
percentage in descending fashion.

Test Cases Code Coverage Axiomatization Coverage

Class Line Number Axiom

Coverage Coverage of Axioms Percent

standard key-java dl-arrayUpdateSimp 87% 35% 3 0.20%

.... 182 test cases

heap-SmansEtAl-Iterator list 83% 40% 62 4.08%

... 134 test cases

heap-list-ArrayList concatenate 85% 44% 255 16.78%

min/max 81%/89% 34%/44% 3/255 0.2%/17%

meanstandard deviation 85%1.9% 37%2.5% 6752 4.43%3.4%

union 90% 51% 691 45%

Table 3. Some classes within KeY tool.

Class Method Coverage Line Coverage

Taclet 66 % 62 %

TacletBuilder 61 % 47 %

Proof 54 % 50 %

CompoundProof 0 % 0 %

5.3 Axiomatization Coverage Results

The coverage statistics of the different approaches are listed in Table 4. The
number 611 represents the result of the naive approach, where the full set of
1520 axioms is used and no alternatives are sought. This is our base value.

We start with some general observations. First, each of the individual
approaches improves the total coverage over the first minimal sets by about
12–15 % each. The highest individual improvements are made by our Beam-
SearchFastMinSet.

When considering all approaches together, then the initial coverage of about
611 axioms increases to a total of 755 axioms through the use of whitelists.
This means that all approaches together improve the achievable coverage
autonomously by about 24 %, and that is without requiring a verification engi-
neer to write a single new test case.

It is an interesting coincidence that our BeamSearchFastMinSet achieves a
total coverage of 722 axioms, which is identical to the coverage achieved by
Approaches 1–5 together. As we can see via the 755 axioms that are covered
by the union of all seven approaches, our beam search does not only cover most
of what Approaches 1–5 do, but it also covers additional 33 axioms. It appears
that the combination of guidance table and the fast reduction (when available)
allows it to search more effectively than the previous approaches.

An Improved Beam-Search for the Test Case Generation 89

Table 4. Coverage statistics. The first minimal sets refer to those found first by the
approaches, which initially use all 1520 axioms. The results for Approaches 1–5 are
based on reruns from [5].

axioms covered in . . . D
e
p
t
h
-F

ir
st

S
e
a
r
c
h

R
a
n
d
o
m

D
e
p
t
h
-F

ir
st

S
e
a
r
c
h

G
r
e
e
d
y

B
r
e
a
d
t
h
-F

ir
st

S
e
a
r
c
h

R
a
n
d
o
m

B
r
e
a
d
t
h
-F

ir
st

S
e
a
r
c
h

U
n
io

n

A
p
p
r
o
a
c
h
e
s
1
–
5

B
e
a
m
S
e
a
r
c
h

B
e
a
m
S
e
a
r
c
h
F
a
st
M

in
S
e
t

U
n
io

n
o
f
a
ll

se
v
en

a
p
p
ro

a
ch

es

. . . the first minimal sets
611 611 610 613 609 615 611 612 638

(40%) (40%) (40%) (40%) (40%) (40%) (40%) (40%) (42%)

. . . all minimal sets
701 699 688 687 684 722 692 722 755

(46%) (46%) (45%) (45%) (45%) (48%) (46%) (48%) (50%)

Table 5. Successful vs. unsuccessful replacements: unique single axioms.

Successfully Unsuccessfully Total Successfully

replaced replaced replaced

single axioms single axioms axioms

Depth-First search 29 230 259 11 %

Random Depth-First search 26 235 261 10 %

Greedy 21 218 239 9 %

Breadth-First search 181 259 440 41 %

Random Breadth-First search 193 267 460 42 %

BeamSearch 211 97 308 69 %

BeamSearchFastMinSet 231 90 321 72 %

Table 6. Analysis: equivalent sets found by each approach.

Equivalent sets Total % of equivalent sets

Depth-First search 7,544 132,735 6%

Random Depth-First search 3,880 40,446 10%

Greedy 2,458 80,886 3%

Breadth-First search 9,037 26,733 34%

Random Breadth-First search 10,784 28,842 37%

BeamSearch 33,178 75,180 44%

BeamSearchFastMinSet 54,821 258,319 21%

90 M.A. Bokhari et al.

Let us now investigate the differences between the approaches. First, by using
our GT tool, we obtain the number of times that a single axiom is successfully
replaced. The results are shown in Table 5, and they clearly show the structural
differences between the approaches. For example, the depth-first Approaches
1–3 have the smallest number of replacements of single axioms, which is expected
given their nature: they will explore shorter and shorter white lists first. The
breadth-first Approaches 4/5 on the other hand achieve significantly higher
single replacements, since they explore the replacement of single axioms first.
Our beam search achieves the highest number of replacements here, since it
prefers the replacements of single axioms, and it also considers single axioms
when it comes across new ones in the search. This has the big advantage for the
use of the guidance table that shorter keys are more likely to be existent, and
therefore of help. We will see this in the following.

Next, we obtain the number of equivalent sets found by each approach.
Table 6 presents the total attempts, as well as the amount of equivalent sets
and their percentages. As we can see, the success rate is in favor of Beam-
Search with 44 %. On the other hand, among all BeamSearchFastMinSet is
the fourth with 21 %, it comes after the Random Breadth-First search
and Breadth-First search with 37 % and 34 %, respectively. This is because
BeamSearchFastMinSet eliminates the reduction time for finding the minimal
sets M , which in turn enables it to spend more time exploring the search space.
In addition, it is worth mentioning that the numbers of the total attempts rep-
resent the sizes of each approach’s generated guidance table, which shows that
a large amount of information for the beam search is extracted.

In contrast to this, the number of equivalent sets for BeamSearchFastMinSet

is the largest amongst the algorithms. Moreover, there is a significant difference
between our beam search approaches and the breadth-first approaches Random
Breadth-First search and Breadth-First search, that achieve the fourth
and fifth highest number of equivalent sets. In total, all 74,219 unique test cases
created by all approaches are stored and are ready to be used for regression
testing, currently achieving a coverage that is 24 % higher than that achieved by
the 319 original test cases.

Summarizing the results of this section, we make the following conclusions:

1. Through the use of the guidance table, BeamSearchFastMinSet and Beam-
Search search more efficiently. This also allows us to identify more logical
relationships among the axioms to improve our framework for future runs.

2. Moreover, our results clearly show that even though BeamSearchFastMinSet

is using heuristic information and it has the ability to decrease the reduc-
tion time, the problem of finding potential candidates within such a difficult
search space makes it increasingly hard to cover further axioms. Therefore we
conjecture that we are getting increasingly close to the local optimum that
we can achieve with our current approach.

An Improved Beam-Search for the Test Case Generation 91

6 Conclusions and Future Work

In this article, we present a beam search approach for increasing the axiomati-
zation coverage in deductive verification systems, where a set of axioms—logical
rules that capture the semantics of a programming language—is used to find a
proof that a program satisfies its formal specifications. Our approach automati-
cally creates test cases by preventing the verification tool from using previously
covered axiom. Therefore, the system tries to find alternative axioms to prove
the program. A test case consists of the verifiable program, its requirements, and
the allowed set of axioms.

Our heuristic approach involves a learning process where the beam search
method uses a guidance table that contains special historical data from previous
runs. As a result, It explores the search space more effectively than previous
approaches that use uninformed breadth-first and depth-first variants. Whilst
successful in increasing the coverage of our tested verification system, these unin-
formed techniques often generated infeasible solutions during their search, and
they are not much directed towards an actual increase of the coverage.

The experiments reveal several interesting insights. First, our approach
achieves a coverage comparable to that of the union of five previous approaches,
when given the same computation budget. Furthermore, the overall coverage
has been improved over the starting point by 24 %. Second, the high number of
unsuccessful replacement attempts by our fast approach strongly indicates that
we are getting increasingly close to the local optimum of “maximum coverage”
that we can reach with our test case reuse. Finally, we found there is no corre-
lation between code and axiomatization coverage and therefore it is essential to
focus on maximizing the axiom coverage to uncover hidden defects.

We will continue our research in the following areas:

1. We plan to investigate the reasons why some axioms are not covered, amongst
others, using the help of developers of the verification systems. We will sys-
tematically write specific test cases aimed to increase the axiomatization cov-
erage for specific axioms.

2. Once we will have reached a satisfactory axiomatization coverage, we will
need to focus on combinations of axioms. Failures in a variety of domains are
often caused by combinations of several conditions (see studies like [16]). We
plan to combine combinatorial testing with combinatorial search techniques.
Then, combinations of language features and axioms will be used to form
complex test cases. The knowledge gained from the work presented here will
help us to focus our efforts in comprehensive testing.

References

1. Back, T., Fogel, D.B., Michalewicz, Z.: Handbook of evolutionary computation.
IOP Publishing Ltd., (1997)

2. Barthe, G., et al.: MOBIUS: mobility, ubiquity, security. In: Montanari, U.,
Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp. 10–29. Springer,
Heidelberg (2007)

92 M.A. Bokhari et al.

3. Beckert, B., Klebanov, V.: Must program verification systems and calculi be veri-
fied? In: Verification Workshop (VERIFY), Workshop at Federated Logic Confer-
ences (FLoC), pp. 34–41 (2006)

4. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. The KeY Approach. LNCS, vol. 4334. Springer, Heidelberg (2007)

5. Beckert, B., Bormer, T., Wagner, M.: Heuristically creating test cases for program
verification systems. In: Metaheuristics International Conference (MIC) (2013)

6. Beckert, B., Bormer, T., Wagner, M.: A metric for testing program verification
systems. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp. 56–75.
Springer, Heidelberg (2013)

7. Bérard, B., Bidoit, B., Finkel, M., Laroussinie, F., Petit, A., Petrucci, L.,
Schnoebelen, P.: Systems and Software Verification: Model-checking Techniques
and Tools. Springer, Heidelberg (2010)

8. Blum, C., Blesa, M.J.: Probabilistic beam search for the longest common subse-
quence problem. In: Stützle, T., Birattari, M., H. Hoos, H. (eds.) SLS 2007. LNCS,
vol. 4638, pp. 150–161. Springer, Heidelberg (2007)

9. Bokhari, M., Wagner, M.: Improving test coverage of formal verification systems via
beam search. In: Companion of the 2015 Conference on Genetic and Evolutionary
Computation, GECCO 2015. ACM (2015) (to be published)

10. Bormer, T., Wagner, M.: Towards testing a verifying compiler. In: International
Conference on Formal Verification of Object-Oriented Software (FoVeOOS) Pre-
Proceedings, pp. 98–112. Karlsruhe Institute of Technology (2010)

11. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

12. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18, 453–457 (1975)

13. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput.
Intell. Mag. 1, 28–39 (2006)

14. Filliâtre, J.-C., Marché, C.: Multi-prover verification of C programs. In: Davies, J.,
Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 15–29. Springer,
Heidelberg (2004)

15. Jacobs, B., Poll, E.: Java program verification at nijmegen: developments and per-
spective. In: Futatsugi, K., Mizoguchi, F., Yonezaki, N. (eds.) ISSS 2003. LNCS,
vol. 3233, pp. 134–153. Springer, Heidelberg (2004)

16. Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software fault interactions and implica-
tions for software testing. IEEE Trans. Softw. Eng. 30, 418–421 (2004)

17. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

18. von Oheimb, D.: Hoare logic for Java in Isabelle/HOL. Concurrency Comput.
Pract. Experience 13, 1173–1214 (2001)

19. Wagner, M.: Maximising axiomatization coverage and minimizing regression test-
ing time. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2885–2892
(2014)

20. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Comput. Surv. 29, 366–427 (1997)

Combining Multiple Coverage Criteria
in Search-Based Unit Test Generation

José Miguel Rojas1, José Campos1(B), Mattia Vivanti2, Gordon Fraser1,
and Andrea Arcuri3,4

1 Department of Computer Science, The University of Sheffield, Sheffield, UK
{j.rojas,jose.campos,gordon.fraser}@sheffield.ac.uk

2 Università Della Svizzera Italiana (USI), Lugano, Switzerland
mattia.vivanti@usi.ch
3 Scienta, Oslo, Norway
arcuri82@gmail.com

4 University of Luxembourg, Luxembourg City, Luxembourg

Abstract. Automated test generation techniques typically aim at max-
imising coverage of well-established structural criteria such as statement
or branch coverage. In practice, generating tests only for one specific
criterion may not be sufficient when testing object oriented classes, as
standard structural coverage criteria do not fully capture the properties
developers may desire of their unit test suites. For example, covering a
large number of statements could be easily achieved by just calling the
main method of a class; yet, a good unit test suite would consist of smaller
unit tests invoking individual methods, and checking return values and
states with test assertions. There are several different properties that test
suites should exhibit, and a search-based test generator could easily be
extended with additional fitness functions to capture these properties.
However, does search-based testing scale to combinations of multiple cri-
teria, and what is the effect on the size and coverage of the resulting test
suites? To answer these questions, we extended the EvoSuite unit test
generation tool to support combinations of multiple test criteria, defined
and implemented several different criteria, and applied combinations of
criteria to a sample of 650 open source Java classes. Our experiments
suggest that optimising for several criteria at the same time is feasible
without increasing computational costs: When combining nine different
criteria, we observed an average decrease of only 0.4 % for the constituent
coverage criteria, while the test suites may grow up to 70%.

1 Introduction

To support developers in creating unit test suites for object-oriented classes,
automated tools can produce small and effective sets of unit tests. Test genera-
tion is typically guided by structural coverage criteria; for example, the search-
based unit test generation tool EvoSuite by default generates test suites opti-
mised for branch coverage [4], and these tests can achieve higher code coverage
than manually written ones [8]. However, although manual testers often check
c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 93–108, 2015.
DOI: 10.1007/978-3-319-22183-0 7

94 J.M. Rojas et al.

the coverage of their unit tests, they are usually not guided by it in creating
their test suites. In contrast, automated tools are only guided by code coverage,
and do not take into account how this coverage is achieved. As a result, auto-
matically generated unit tests are fundamentally different to manually written
ones, and may not satisfy the expectations of developers, regardless of coverage
benefit.

Fig. 1. This example shows how EvoSuite covers method set of the class
ArrayIntList: the method is called, but statement coverage is not achieved.

For example, consider the excerpt of class ArrayIntList from the Apache
Commons Primitives project in Fig. 1a. Applying EvoSuite results in a test
suite including the test case in Fig. 1b: The test calls set, but with parameters
that do not pass the input validation by checkRange, such that an exception is
thrown. Nevertheless, EvoSuite believes set is covered with this test, and adds
no further tests, thus not even satisfying statement coverage in the method. The
reason is that EvoSuite follows common practice in bytecode-based coverage
analysis, and only checks if branching statements evaluated to true and false [13].

Fig. 2. This example shows how EvoSuite covers method log, even though there is
no test that directly calls the method.

To cover method set fully, one would also need to aim at covering all instruc-
tions. However, when optimising test suites to cover branches and instructions,
automated techniques may find undesired ways to satisfy the target criteria. For

Combining Multiple Coverage Criteria in Search-Based Unit Test Generation 95

example, consider the excerpt of class Complex from the Apache Commons Math
project shown in Fig. 2a: EvoSuite succeeds to cover method log, but because
log is called by pow, in the end often only tests calling pow (see Fig. 2(b) are
retained, which makes it hard to check the behaviour of log independently (e.g.,
with test assertions on the return value of log), or to debug problems caused
by faults in log. Thus, a good test suite has different properties, which cannot
easily be captured by any individual structural coverage criterion.

In this paper, we define different criteria and their fitness functions to guide
search-based test suite generation, and investigate the effects of combining these
during test generation. Such a combination of multiple optimisation criteria
raises concerns about the effects on the size of resulting test sets, as well as
on the effectiveness of the test generators used for this optimisation. To investi-
gate these concerns, we performed a set of experiments on a sample of 650 open
source classes. In detail, the contributions of this paper are as follows:

– Identification of additional criteria to guide unit test suite generation.
– Implementation of these criteria as fitness functions for a search-based test

suite optimisation.
– An empirical study of the effects of multiple-criterion optimisation on effec-

tiveness, convergence, and test suite size.

Our experiments suggest that optimising for several criteria at the same time
is feasible without increasing computational costs, or sacrificing coverage of the
constituent criteria. The increase in size depends on the combined criteria; for
example, optimising for line and branch coverage instead of just line coverage
increases test suites by only 10 % in size., while optimising for nine different
criteria leads to an increase of 70 % in size. The effects of the combination of
criteria on the coverage of the constituent criteria are minor; for criteria with
fine-grained fitness functions the overall coverage may be reduced slightly (0.4 %
in our experiments), while criteria with coarse fitness functions (e.g. method
coverage) may benefit from the combination with other criteria.

2 Whole Test Suite Generation for Multiple Criteria

In principle, the combination of multiple criteria is independent of the underlying
test generation approach. For example, dynamic symbolic execution can generate
test suites for any coverage criteria as by-product of the path exploration [10].
However, our initial usage scenario lies in unit testing for object oriented classes,
an area where search-based approaches have been shown to perform well. In
search-based testing, the test generation problem is cast as a search problem,
such that efficient meta-heuristic search algorithms can be applied to create tests.

2.1 Whole Test Suite Generation

Whole test suite generation refers to the generation of test suites, which has been
shown to be more effective than iteratively generating individual test cases [5].

96 J.M. Rojas et al.

When applying search-based testing for this task, a common technique is to use
a genetic algorithm, which starts with a population of random test suites, and
then evolves these using standard evolutionary operators [5]. The evolution is
guided by a fitness function that estimates how close a candidate solution is to
the optimal solution; i.e., 100 % coverage in coverage-oriented test generation.

A test suite is a collection of unit tests for a target Class Under Test (CUT).
The CUT comprises a set of methods, each of which consists of a list of state-
ments. Each statement can be a conditional statement (e.g., if), a method call or
a regular statement. A conditional statement results in two branches depending
on the evaluation of its predicate. A unit test is an executable function which
sets up a test scenario, calls some methods in the CUT, and checks that the
observed behaviour matches the expected one. For simplicity, a unit test can
be regarded as a sequence of calls to methods of the CUT. Executing a unit
test yields an execution trace, i.e., a sequence of executed statements which can
either end normally with a regular statement, or with an uncaught exception.

2.2 Fitness Functions

In search-based test suite generation, a fitness function measures how good a
test suite is with respect to the search optimisation objective, which is usually
defined according to a test coverage criterion. Importantly, a fitness function
usually also provides additional search guidance leading to satisfaction of the
goals. For example, just checking in the fitness function whether a coverage
target is achieved would not give any guidance to help covering it.

Method Coverage. Method Coverage is the most basic criterion for classes
and requires that all methods in the CUT are executed by a test suite at least
once, either via a direct call from a unit test or via indirect calls.

Top-Level Method Coverage. For regression test suites it is important that
each method is also invoked directly (cf. Fig. 2). Top-Level Method Coverage
requires that all methods are covered by a test suite such that a call to the
method appears as a statement in a test case.

No-Exception Top-Level Method Coverage. In practice, classes often con-
sist of many short methods with simple control flow. Often, a generated test suite
achieves high levels of coverage by calling these simple methods in an invalid
state or with invalid parameters (cf. Fig. 1). To avoid this, No-exception Top-
level Method Coverage requires that all methods are covered by a test suite
via direct invocations from the tests and considering only normal-terminating
executions (i.e., no exception).

The fitness functions for Method Coverage, Top-Level Method Coverage and
No-exception Top-level Method Coverage are discrete and thus have no possible
guidance. Fitness values are simply calculated by counting the methods that

Combining Multiple Coverage Criteria in Search-Based Unit Test Generation 97

have been covered by a test suite. Let TotalMethods be the set of all public
methods in the CUT and CoveredMethods be the set of methods covered by the
test suite, then:

fcrit(Suite) = | TotalMethods | − | CoveredMethodscrit |

Line Coverage. A basic criterion in procedural code is statement coverage,
which requires all statements to be executed. Modern test generation tools for
Java or C# often use the bytecode representation for test generation, and byte-
code instructions may not directly map to source code statements. Therefore,
a more common alternative in coverage analysis tools, and the de-facto stan-
dard for most Java bytecode-based coverage tools, is to consider coverage of
lines of code. Each statement in a class has a defined line, which represents the
statement’s location in the source code of the class. The source code of a class
consists of non-comment lines, and lines that contain no code (e.g., whitespace
or comments). A unit test suite satisfies the Line Coverage criterion only if it
covers each non-comment source code line of the CUT with at least one of its
tests. Line Coverage is very easy to visualise, interpret, and to implement in an
analysis tool; all these reasons probably contribute to its popularity.

To cover each line of source code, we need to ensure that each basic code
block is reached. In traditional search-based testing, this reachability would be
expressed by a combination of approach-level and branch distance [14]. The
approach-level measures how far an individual execution and the target state-
ment are in terms of the control dependencies (i.e., distance between point of
diversion and target statement in control dependence graph). The branch dis-
tance estimates how far a predicate is from evaluating to a desired target out-
come. For example, given a predicate x == 5 and an execution with value 3,
the branch distance to the predicate evaluating to true would be |3 − 5| = 2,
whereas an execution with value 4 is closer to being true with a branch distance
of |4 − 5| = 1. Branch distances can be calculated by applying a set of standard
rules [12,14].

In contrast to test case generation, if we optimise a test suite to execute all
statements then the approach level is not necessary, as all statements will be
executed by the same test suite. Thus, we only need to consider the branch dis-
tance of all branches that are control dependencies of any of the statements in
the CUT. That is, for each conditional statement that is a control dependency
for some other statement in the code, we require that the branch of the state-
ment leading to the dependent code is executed. Thus, the Line Coverage fitness
value of a test suite can be calculated by executing all its tests, calculating for
each executed statement the minimum branch distances dmin(b,Suite) among all
observed executions to every branch b in the set of control dependent branches
BCD, i.e., the distances to all the branches which need to be executed in order
to reach such a statement. The Line Coverage fitness function is thus defined as:

fLC(Suite) = ν(| NCLs | − | CoveredLines |) +
∑

b∈BCD

ν(dmin(b,Suite))

98 J.M. Rojas et al.

where NCLs is the set of all non-comment lines of code in the CUT, CoveredLines
is the total set of lines covered by the execution traces of every test in the suite,
and ν(x) is a normalising function in [0, 1] (e.g., ν(x) = x/(x + 1)) [2].

Branch Coverage. The concept of covering branches is also well understood in
practice and implemented in popular tools, even though the practical definition
of branch coverage may not always match the more theoretical definition of cov-
ering all edges of a program’s control flow. Branch coverage is often interpreted
as maximising the number of branches of conditional statements that are covered
by a test suite. Hence, a unit test suite is said to satisfy the Branch Coverage
criterion if and only if for every branch statement in the CUT, it contains at
least one unit test whose execution evaluates the branch predicate to true, and
at least one unit test whose execution evaluates the branch predicate to false.

The fitness function for the Branch Coverage criterion estimates how close
a test suite is to covering all branches of the CUT. The fitness value of a test
suite is measured by executing all its tests, keeping track of the branch distances
d(b,Suite) for each branch in the CUT. Then:

fBC(Suite) =
∑

b∈B

v(d(b,Suite))

Here, d(b,Suite) for branch b ∈ B (where B is the set of all branches in the
CUT) on the test suite is defined as follows:

d(b,Suite) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if the branch has been covered,
ν(dmin(b,Suite)) if the predicate has been

executed at least twice,
1 otherwise.

Note that a predicate must be executed at least twice, because we need to cover
the true and false evaluation of the predicate; if the predicate were only executed
once, then the search could theoretically oscillate between true and false.

Direct Branch Coverage. When a test case covers a branch in a public
method indirectly, i.e., without directly invoking the method that contains the
branch, it is more difficult to understand how the test relates to the branch it
covers (cf. Fig. 2). Anecdotal evidence, from previous work with EvoSuite, also
indicates that developers dislike tests that cover branches indirectly, because
they are harder to understand and to extend with assertions [8]. Direct Branch
Coverage requires each branch in a public method of the CUT to be covered by
a direct call from a unit test, but makes no restriction on branches in private
methods. The fitness function is the same as the Branch Coverage fitness func-
tion, but only methods directly invoked by the test cases are considered for the
fitness and coverage computation of branches in public methods.

Combining Multiple Coverage Criteria in Search-Based Unit Test Generation 99

Output Coverage. Class ArrayIntList from Fig. 1 has a method size that
simply returns the value of a member variable capturing the size of the internal
array; class Complex from Fig. 2 has methods isNaN or isInfinite returning
boolean member values. Such methods are known as observers or inspectors, and
method, line, or branch coverage are all identical for such methods. Developers
in this case sometimes write unit tests to cover not only in the input values of
methods, but also in the output (return) values they produce; indeed output
diversity can help improve the fault detection capability [1].

To account for output uniqueness and diversity, the following function maps
method return types to abstract values that serve as output coverage goals:

output(Type) =

⎧
⎪⎪⎨

⎪⎪⎩

{true, false} if Type ≡ Boolean
{−, 0,+} if Type ≡ Number
{alphabetical, digit, ∗} if Type ≡ Char
{null, �= null} otherwise

A unit test suite satisfies the Output Coverage criterion only if for each public
method M in the CUT and for each Vabst ∈ output(type(M)), there is at least
one unit test whose execution contains a call to method M for which the concrete
return value is characterised by the abstract value Vabst.

The fitness function for the Output Coverage criterion is then defined as:

fOC(Suite) =
∑

g∈G

ν(do(g,Suite))

where G is the total set of output goals for the CUT and do(g,Suite) is an output
distance function that takes as input a goal g = 〈M,Vabst〉:

do(g,Suite) =

⎧
⎨

⎩

0 if g is covered by at least one test,
ν(dnum(g,Suite)) if type(M) ≡ Number and g is not covered,
1 otherwise.

In the case of methods declaring numeric return types, the search algorithm is
guided with normalised numeric distances (dnum). For example, if a call to a
method m with integer return type is observed in an execution trace and its
return value is 5 (positive integer), the goal 〈m,+〉 has been covered, and the
distances 5 and 6 are computed for goals 〈m, 0〉 and 〈m,−〉, respectively.

Weak Mutation. Test generation tools typically include values generated to
satisfy constraints or conditions, rather than values developers may prefer; in
particular, anecdotal evidence suggests developers like boundary cases. Test gen-
eration can be forced to produce such values using weak mutation testing, which
applies small code modifications to the CUT, and then checks if there exists a
test that can distinguish between the original and the mutant. In weak mutation,
a mutant is considered to be covered (“killed”) if the execution of a test on the
mutant leads to a different state than the execution on the CUT. A unit test

100 J.M. Rojas et al.

suite hence satisfies the Weak Mutation criterion if and only if for each mutant
for the CUT at least one its tests reaches state infection.

The fitness function for the Weak Mutation criterion guides the search using
infection distances with respect to a set of mutation operators [7]. We assume a
minimal infection distance function dmin(μ,Suite) exists and define:

dw(μ,Suite) =
{

1 if mutant μwas not reached,
ν(dmin(μ,Suite)) if mutant μwas reached.

This results in the following fitness function for weak mutation testing:

fWM(Suite) =
∑

µ∈MC

dw(μ,Suite)

where MC is the set of all mutants generated for the CUT.

Exception Coverage. One of the most interesting aspects of test suites not
captured by standard coverage criteria is the occurrence of actual faults. If excep-
tions are directly thrown in the CUTs with a throw statement, those will be
retained in the final test suites if for example we optimise for line coverage.
However, this might not be the case if exceptions are unintended (e.g., a null-
pointer exception when calling a method on a null instance) or if thrown in the
body of external methods called by the CUT. Unfortunately, it is not possible
to know ahead of time the total number of feasible undeclared exceptions (e.g.,
null-pointer exceptions), in particular as the CUT could use custom exceptions
that extend the ones in the Java API.

As coverage criterion, we consider all possible exceptions in each method
of the CUT. However, in contrast to the other criteria, it cannot be defined
with a percentage (e.g., we cannot say a test suite covers 42 % of the possible
exceptions). We rather use the sum of all unique exceptions found per CUT
method as metric to maximise. The fitness function for Exception Coverage is
thus also discrete, and is calculated in terms of the number of exceptions NE ,
explicit and implicit, that have been raised in the execution of all the tests in
the suite:

fEC(Suite) =
1

1 + NE

2.3 Combining Fitness Functions

All criteria considered in this paper are non-conflicting: we can always add new
tests to an existing suite to increase the coverage of a criterion without decreas-
ing the coverage of the others. However, with limited time it may be necessary
to balance the criteria, e.g., by prioritising weaker ones to avoid over-fitting for
just some of the criteria involved. Thus, multi-objective optimisation algorithms
based on Pareto dominance are less suitable than a linear combination of the
different objectives, and we can define a combined fitness function for a set of
n non-conflicting individual fitness functions f1 . . . fn as: fcomp =

∑n
i=1 wi × fi,

Combining Multiple Coverage Criteria in Search-Based Unit Test Generation 101

where w1 . . . wn are weights assigned to each individual function which allow for
prioritisation of the fitness functions involved in the composition. Given enough
time, a combined fitness search is expected to have the same result for each
involved non-conflicting fitness function as if they were optimised for individu-
ally.

For some of the above-defined fitness functions, a natural partial order exists.
For instance, Method Coverage subsumes Top-level Method Coverage. The intu-
ition is that we first want to cover all methods, independently of whether they
are invoked directly from a test case statement or not. In turn, Top-level Method
Coverage subsumes No-Exception Top-level Method Coverage, that is, covering
all methods with direct calls from test cases is more general than covering all
methods with direct calls from test cases which do not raise any exception. How-
ever, there is no natural order between other functions like for instance Output
Coverage and Weak Mutation. In this paper, we arbitrarily assign wi = 1 for all
i and leave the question of what are optimal wi values for future work.

3 Experimental Evaluation

In order to better understand the effects of combining multiple coverage criteria,
we empirically aim to answer the following research questions:

RQ1. What are the effects of adding a second coverage criterion on test
suite size and coverage?
RQ2. How does combining of multiple coverage influence the test suite size?
RQ3. Does combining multiple coverage criteria lead to worse performance
of the constituent criteria?
RQ4. How does coverage vary with increasing search budget?

3.1 Experimental Setup

Unit Test Generation Tool. We have implemented the discussed criteria in the
EvoSuite [4] tool for automatic unit test suite generation. EvoSuite uses a
genetic algorithm where each individual is a test suite [5]. Once a test suite has
been generated, EvoSuite applies minimisation in order to optimise the size
of the resulting test suite both in terms of total number of lines of code and in
number of unit tests. For each coverage goal defined by the selected criterion,
a test that covers this goal is selected from the test suite. Then, on a copy of
that test, all statements that do not contribute to satisfaction of the goal are
successively removed. When minimising for multiple criteria, the order in which
each criterion is evaluated may influence the resulting minimised test suite. In
particular, if criterion C1 subsumes criterion C2, then minimising for criterion
C2 first and then for C1 may lead to tests being added during minimisation
for C2, but made redundant later, by tests added during minimisation for C1.
EvoSuite counters this problem with a second minimisation pass where a final
minimised test suite with no redundant tests is produced.

102 J.M. Rojas et al.

Subject Selection. We used the SF110 corpus [6] of Java classes for our exper-
imental evaluation. SF110 consists of more than 20,000 classes in 110 projects;
running experiments on all classes would require an infeasibly large amount of
resources. Hence, we decided to select a stratified random sample of 650 classes.
That is, we constructed the sample iteratively such that in each iteration we
first selected a project at random, and then from that project we selected a class
and added it to the sample. As a result, the sample contains classes from all 110
projects, totalling 63,191 lines of code.

Experiment Procedure. For each selected class, we ran EvoSuite with ten dif-
ferent configurations: (1) All fitness functions combined; (2) Only Line Coverage
(baseline); 3-10) For each fitness function f defined in Sect. 2.2 (except Line Cov-
erage) a fitness function combining f and Line Coverage. Combining the other
criteria with Line Coverage instead of using each of them in isolation allows a
more objective evaluation, since not all the fitness functions for these other cri-
teria can provide guidance to the search on their own. Each configuration was
run using two time values for the search: 2 and 10 min. To take the randomness
of the genetic algorithm into account, we repeated the two minutes experiments
40 times, and the 10 min experiments five times.

Experiment Analysis. We used coverage as the main measurement of effective-
ness, for all the test criteria under study. Furthermore, we also analysed the
size of the resulting test suites; as the number of unit tests could be misleading,
we analysed the size of a test suite in terms of its total number of statements.
Statistical analysis follows the guidelines discussed in [3]: We use the Wilcoxon-
Mann-Whitney statistical symmetry test to assess the performance of differ-
ent experiments. Furthermore, we use the Vargha-Delaney Âab to evaluate if a
particular configuration a used on experiments performed better than another
configuration b. E.g, a Âab value of 0.5 means equal performance between con-
figurations; when Âab is less than 0.5, the first configuration (a) is worse; and
when Âab is more than 0.5, the second configuration (b) is worse.

3.2 Results and Discussion

RQ1: What are the effects of adding a second coverage criterion on test suite
size and coverage? Table 1 shows the results of the experiments when using a
two minute timeout for the search. Considering line coverage as baseline, adding
a further coverage criterion does not increase test suite size by a large amount.
For example, adding branch coverage only increases average test suite size from
22.25 statements to 24.92 (a relative 24.92−22.25

22.25 = 12% increase). The largest
increase is for the Exception Coverage testing criterion, which adds a further
28.00 − 22.25 = 5.75 statements on average to the test suites.

Regarding coverage of the criteria, already a basic criterion like line cover-
age can achieve reasonable results. For example, targeting also branch cover-
age explicitly only increases it by 3 % (from 73 % to 77 %). For other criteria,
improvements are higher. For example, we obtain a 88 − 71 = 17% coverage

Combining Multiple Coverage Criteria in Search-Based Unit Test Generation 103

Table 1. Coverage results for each configuration, average of all runs for all CUTs. Size
is measured in number of statements in the final minimised test suites.

Criteria Lines Branches D. Branches Methods Top Methods M. No Exc. Exceptions Mutation Output Size

ALL 0.78 0.75 0.75 0.87 0.90 0.88 1.35 0.75 0.64 38.01
Lines 0.78 0.73 0.22 0.81 0.74 0.71 0.45 0.69 0.27 22.25
L. & Branches 0.78 0.77 0.24 0.81 0.74 0.72 0.47 0.70 0.27 24.92
L. & D. Branches 0.78 0.76 0.76 0.87 0.85 0.82 0.48 0.70 0.27 26.73
L. & Methods 0.79 0.73 0.22 0.87 0.80 0.77 0.46 0.70 0.27 22.33
L. & Top Methods 0.78 0.73 0.22 0.87 0.89 0.86 0.48 0.70 0.27 24.89
L. & M. No Exc. 0.78 0.73 0.23 0.87 0.89 0.88 0.40 0.69 0.27 25.26
L. & Exceptions 0.78 0.72 0.22 0.81 0.78 0.70 1.93 0.70 0.27 28.00
L. & Mutation 0.79 0.75 0.23 0.81 0.75 0.72 0.50 0.76 0.27 27.45
L. & Output 0.77 0.71 0.21 0.80 0.77 0.75 0.36 0.69 0.64 23.98

improvement of No-exception Top-level Method Coverage, although with the
need of 25.26 − 22.25 = 3.01 more statements. Of particular interest is the case
of Output coverage, where a 64−27 = 37% increase is achieved with only slightly
larger test suites (less than two statements). The Direct Branch Coverage cri-
terion shows the largest increase (76 − 22 = 54%), which confirms that in the
traditional approach code is often covered through indirect calls; this increase
comes at the cost of 26.73 − 22.25 = 4.48 statements on average.

RQ1: In our experiments, adding a second criterion increased test
suites size by 14%, and coverage by 20% over line coverage test

suites.

RQ2: How does combining of multiple coverage influence the test suite size?
When combining all criteria together, test suite sizes increase substantially, from
22.25 to 38.01 statements. However, we argue that the resulting test suites could
still be manageable for developers: Their size is still less than twice the size of
the average baseline test suite. Interestingly, this increase of 15.76 (38.01−22.25)
is also less than the sum of the increases observed for each criterion in isolation
(25.56). This shows that the criteria are related and lead to coincidental coverage,
where tests covering one particular goal may lead to coverage of other goals.

RQ2: In our experiments, combining all nine criteria increased test
suites size by 70%.

RQ3: Does combining multiple coverage criteria lead to worse performance of
the constituent criteria? When combining different criteria together, the test
generation becomes more complicated. Given the same amount of time, it could
even happen that for some criteria we would get lower coverage compared to
just targeting those criteria in isolation. For example, the class Auswahlfeld
in the SF110 project nutzenportfolio consists of 29 methods, each consisting
of only a single line. There are only 15 mutants, and when optimising for line
coverage and weak mutation all mutations are easily covered within two minutes.
However, when using all criteria, then the number of additional test goals based

104 J.M. Rojas et al.

Table 2. For each criterion, we compare the “All” configuration for that criterion with
the configuration for that criterion and line coverage. Averaged effect sizes are reported
with p-values of the statistical tests of symmetry around 0.5.

Criterion All Just Line & Criterion Avg. Â12 p-value

Line 0.78 0.78 0.47 ≤ 0.001
Branch 0.75 0.77 0.47 ≤ 0.001
Direct Branch 0.75 0.76 0.47 ≤ 0.001
Exception 1.35 1.93 0.43 ≤ 0.001
Method 0.87 0.87 0.50 0.015
Top Method 0.90 0.89 0.50 0.025
Method No Exc. 0.88 0.88 0.51 ≤ 0.001
Mutation 0.75 0.76 0.46 ≤ 0.001
Output 0.64 0.64 0.51 ≤ 0.001

on the many methods (many of which return primitive types) means that on
average after two minutes of test generation only seven mutations are covered.

On the other hand, it is conceivable that coverage criteria can “help each
other”, in the sense that they might smooth the search landscape. For example,
the NewPassEventAction class from the jhandballmoves project in SF110 has
two complex methods with nested branches, and the if statements have complex
expressions with up to four conditions. When optimising method calls without
exceptions, after two minutes the constructor is the only method covered without
exceptions, as the search problem is a needle-in-the-haystack type search prob-
lem. However, if optimising for all criteria, then branch coverage helps reaching
test cases where both methods are called without exceptions.

Table 2 shows the comparison of the “All” configuration on each criterion
with the configuration that optimises line coverage and each particular criterion.
For each class, we calculated the Vargha-Delaney Â12 effect size [3]. For each
configuration comparison, we calculated the average Â12 and ran a Wilcoxon-
Mann-Whitney symmetry test on 0.5, to see if a configuration leads to better or
worse results on a statistically higher number of classes.

There is strong statistical difference in all the comparisons except Method
Coverage and Top-Level Method Coverage, which seem to consist of methods
that are either trivially covered by all criteria, or never covered. For No-exception
Top-level Method Coverage and Output Coverage there is a small increase in
coverage; this is likely because these criteria provide little guidance and benefit
from the combination with criteria with better guidance. For Exception Coverage
targeting all criteria decreases the average number of exceptions substantially
from 1.35 to 1.93, which may be caused by the search focusing more on valid
executions related to branches and mutants, whereas without that the search
becomes more random. For all other criteria there is a decrease in coverage,
although very small (≤ 2%).

Combining Multiple Coverage Criteria in Search-Based Unit Test Generation 105

RQ3: Combining multiple criteria leads to a 0.4% coverage decrease
on average; criteria with coarse fitness functions can benefit more
from the combination than criteria with finer grained guidance.

RQ4: How does coverage vary with increasing search budget? Fig. 3 compares the
performance of the “All” configuration with the ones of Line Coverage combined
with each further criterion. Performance is measured with different coverage cri-
teria in each subplot based on the type of comparison. For example, Branch Cov-
erage is used as performance metric when “All” is compared with “Line &Branch”
configuration, whereas Method Coverage is used as performance metric when

Fig. 3. Time analysis, per minute, for each criterion for the “All” configuration com-
pared with just optimising Line Coverage together with each of those criteria, one at
a time.

106 J.M. Rojas et al.

“All” is compared with “Line & Method”. Performance is reported through time,
from one minute to ten. The vertical y axes are scaled between the minimum and
maximum value each metric obtained.

Given enough time, the performance between each compared configuration
should converge to the same value. In other words, given enough time, one could
expect that the performance of “All” in each metric would become maximised
and equal to just generating data for that criterion alone. Figure 3 shows that
for the majority of criteria the performance of the “All” configuration remains
slightly below the more focused search, and for Exception Coverage the more
focused search even improves over time. For Output Coverage both configura-
tions seem to converge around ten minutes and for Method Coverage the “All”
configuration even takes a small lead. Overall, these results suggest that 10 min
might not be a long enough time interval to see convergence for all criteria;
possibly there might also be side-effects between the combination of criteria in
the “All” configuration that generate fitness plateaus in the search landscape.
Another possible conjecture is that, because the search in EvoSuite minimises
size as a secondary objective, over time the amount of exploration in the search
space will be reduced, making it more difficult to hit additional targets that are
not closely related to what is already covered. This could in principle be over-
come by keeping an archive of already covered goals and matching tests, and
letting the fitness function focus on uncovered goals.

RQ4: The influence of combining criteria is not limited to early
phases of the search but persists over longer time, and the

combination does not catch up with focused search within ten minutes.

Threats to Validity. To counter internal validity, we have carefully tested our
framework, and we repeated each experiment several times and followed rigorous
statistical procedures in the analysis. To cope with possible threats to external
validity, the SF110 corpus was employed as case study, which is a collection of 100
Java projects randomly selected from SourceForge and the top 10 most popular
projects [6]. We used only EvoSuite for experiments and did not compare
with other tools; however, at least in terms of the generated tests EvoSuite is
similar to other unit test generation tools. Threats to construct validity might
result from our focus on coverage; for example, this does not take into account
how difficult it will be to manually evaluate the test cases for writing assert
statements (i.e., checking the correctness of the outputs).

4 Related Work

Coverage criteria are well established to estimate the quality of test sets [18],
and combinations of criteria have been considered in the context of regression
testing [15]. For example, using multiple criteria can improve the fault detection
ability after minimisation [11], and Yoo and Harman [16,17] combined coverage
criteria with non-functional aspects such as execution time during minimisation.

Combining Multiple Coverage Criteria in Search-Based Unit Test Generation 107

Non-functional aspects have also been considered during test generation; for
example, Harman et al. [9] generated tests optimised for branch coverage and
memory consumption. In contrast to this approach, we combine different non-
conflicting functional criteria, and thus do not require specialised multi-objective
optimisation algorithms. In fact, some of the criteria previously implemented in
EvoSuite were already combinations of constituent criteria included in this
paper. For example, the default branch coverage configuration [5] in EvoSuite
combines method and branch coverage. Mutation coverage [7] combines branch
coverage with the infection distances used in this paper.

5 Conclusions

Although structural coverage criteria are well established in order to evaluate
existing test cases, they may be less suitable in order to guide test generation. As
with any optimisation problem, an imprecise formulation of the optimisation goal
will lead to unexpected results: For example, although it is generally desirable
that a reasonable test suite covers all statements of a Class Under Test (CUT),
the reverse may not hold—not every test suite that executes all statements is
reasonable. Indeed the desirable properties of a test suite are multi-faceted.

In this paper, we have tried to identify standard criteria used in practice as
well as functional aspects that are not captured by standard structural coverage
criteria, but are still common practice in object oriented unit testing. We have
implemented a search-based approach to generate test suites optimised for com-
binations of these criteria. Experiments with a sample of open source Java classes
have shown that such a combination does neither mean that the test suite sizes
become unreasonable, nor that the test generation performance suffers. In fact
some aspects can even benefit from the combination, for example when search
guidance in the case of search-based test generation is only coarse. An important
question that remains to be answered in future work is which selection of criteria
matches the expectations of practitioners; for this, we plan to perform controlled
experiments with real programmers.

Besides the criteria used in our experiments, the same approach could also be
applied in order to enhance test generation with other structural criteria, such as
dataflow criteria. On the other hand, there are also non-functional properties of
unit test suites that test generation will have to consider in future research, such
as the readability of the generated unit tests. However, unlike combinations of
functional criteria the inclusion of non-functional aspects may require dedicated
multi-objective optimisation algorithms, as functional and non-functional goals
may be conflicting (e.g., coverage vs. size).

Acknowledgments. Supported by the National Research Fund, Luxembourg
(FNR/P10/03) and the EPSRC project “EXOGEN” (EP/K030353/1).

108 J.M. Rojas et al.

References

1. Alshahwan, N., Harman, M.: Coverage and fault detection of the output-uniqueness
test selection criteria. In: Proceedings of ISSTA 2014, pp. 181–192. ACM (2014)

2. Arcuri, A.: It really does matter how you normalize the branch distance in search-
based software testing. Softw. Test. Verif. Reliab. 23(2), 119–147 (2013)

3. Arcuri, A., Briand, L.: A Hitchhiker’s guide to statistical tests for assessing random-
ized algorithms in software engineering. Softw. Test. Verif. Reliab. 24(3), 219–250
(2014)

4. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: Proceedings of FSE 2011, pp. 416–419. ACM (2011)

5. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. 39(2),
276–291 (2013)

6. Fraser, G., Arcuri, A.: A large scale evaluation of automated unit test generation
using evosuite. ACM Trans. Softw. Eng. Methodol. 24(2), 8:1–8:42 (2014)

7. Fraser, G., Arcuri, A.: Achieving scalable mutation-based generation of whole test
suites. Empirical Softw. Eng. 20(3), 1–30 (2014)

8. Fraser, G., Staats, M., McMinn, P., Arcuri, A., Padberg, F.: Does automated white-
box test generation really help software testers? In: Proceedings of ISSTA 2013,
pp. 291–301. ACM (2013)

9. Harman, M., Lakhotia, K., McMinn, P.: A multi-objective approach to search-
based test data generation. In: Proceedings of GECCO 2007, pp. 1098–1105. ACM
(2007)

10. Jamrozik, K., Fraser, G., Tillman, N., de Halleux, J.: Generating test suites with
augmented dynamic symbolic execution. In: Veanes, M., Viganò, L. (eds.) TAP
2013. LNCS, vol. 7942, pp. 152–167. Springer, Heidelberg (2013)

11. Jeffrey, D., Gupta, N.: Improving fault detection capability by selectively retaining
test cases during test suite reduction. IEEE Trans. Softw. Eng. 33(2), 108–123
(2007)

12. Korel, B.: Automated software test data generation. IEEE Trans. Softw. Eng.
16(8), 870–879 (1990)

13. Li, N., Meng, X., Offutt, J., Deng, L.: Is bytecode instrumentation as good as
source code instrumentation: an empirical study with industrial tools (experience
report). In: Proceedings of ISSRE 2013, pp. 380–389. IEEE (2013)

14. McMinn, P.: Search-based software test data generation: a survey. Softw. Test.
Verif. Reliab. 14(2), 105–156 (2004)

15. Sampath, S., Bryce, R., Memon, A.: A uniform representation of hybrid criteria
for regression testing. IEEE Trans. Softw. Eng. 39(10), 1326–1344 (2013)

16. Yoo, S., Harman, M.: Pareto efficient multi-objective test case selection. In: Pro-
ceedings of ISSTA 2007, pp. 140–150. ACM (2007)

17. Yoo, S., Harman, M.: Using hybrid algorithm for pareto efficient multi-objective
test suite minimisation. J. Syst. Softw. 83(4), 689–701 (2010)

18. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Comput. Surv. 29(4), 366–427 (1997)

Epistatic Genetic Algorithm for Test Case
Prioritization

Fang Yuan, Yi Bian, Zheng Li(B), and Ruilian Zhao

Department of Computer Science, Beijing University of Chemical Technology,
Beijing 100029, People’s Republic of China

yuanfang cs@163.com, arven 0@126.com, z.li@ieee.org,

rlzhao@mail.buct.edu.cn

Abstract. Search based technologies have been widely used in regres-
sion test suite optimization, including test case prioritization, test case
selection and test suite minimization, to improve the efficiency and
reduce the cost of testing. Unlike test case selection and test suite min-
imization, the evaluation of test case prioritization is based on the test
case execution sequence, in which genetic algorithm is one of the most
popular algorithms employed. When permutation encoding is used to
represent the execution sequence, the execution of previous test cases can
affect the presence of the following test cases, namely epistatic effect. In
this paper, the application of epistatic domains theory in genetic algo-
rithms for test case prioritization is analyzed, where Epistatic Test Case
Segment is defined. Two associated crossover operators are proposed
based on epistasis. The empirical studies show that the proposed two-
point crossover operator, E-Ord, outperform the crossover PMX, and can
produce higher fitness with a faster convergence.

Keywords: Test case prioritization · Epistasis · Genetic algorithm

1 Introduction

Test Case Prioritization (TCP) is an important branch in regression testing. The
other technologies are Test Suite Minimization (TSM) and Test Case Selection
(TCS) [1], in which a subset of test suite is obtained to fulfill a certain testing
criterion. It has been shown that some important test cases may be missed in
TSM and TCS, which leads the software in a high risk of containing undetected
errors [2]. TCP works on all test cases in a test suite and aims to identify the
best test case execution sequence to meet a certain testing criterion, which can
lower the risk of undetected errors [3].

In order to find the best test case execution sequence in TCP, all possible
permutations of a test suite should be investigated as candidates, thus TCP
is an NP-hard problem [3]. In practice, many test criteria are introduced to
TCP which leads TCP in multi-objective optimization. Heuristic optimization
algorithms have been employed to solve TCP, such as Non-dominated Sorting

c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 109–124, 2015.
DOI: 10.1007/978-3-319-22183-0 8

110 F. Yuan et al.

Genetic Algorithm (NSGA-II) [4], Ant Colony Optimization [5] and Particle
Swarm Optimization [6], where a challenge comes from the chromosome repre-
sentation, i.e., the binary encoding, which is used in test case selection and test
suite minimization, cannot be used in test case prioritization. Instead permuta-
tion encoding is employed in TCP, on which the fitness functions are defined.

In the permutation encoding, a former test case may significantly affect the
presence of the latter test cases, namely epistasis. Epistatic domains theory is
introduced to analyze the different genes with the interaction of other genes
in practical problems, such as two-dimensional bin-packing and graph coloring
problems [7], where the presence of a gene of a chromosome depends on genes
elsewhere in terms of fitness function value.

The effectiveness and efficiency are always the keys considered in the opti-
mization of search algorithms. GA has been used to solve TCP, TCS and TSM. It
is obvious that the evaluation of TCP is sequence related, while TCS and TSM
are not. Epistasis has been proven to have a high impact on GA for certain
problems, but not considered yet in the GA for TCP.

In this paper, we first analyze the interactions between genes in GA for TCP,
and then define Epistatic Test Case Segment (ETS) that is a gene segment with
the deterministic impact on fitness. Two refined crossover operators are proposed
with the application of epistasis in TCP and the empirical study shows a higher
fitness with a faster convergence.

The primary contributions of this paper are as follows:

1. This paper is the first of analyzing epistasis on TCP, where Epistatic Test
case Segment is defined to gain insight of problem domains.

2. Two proposed crossover operators are introduced based on epistasis for TCP.
3. Empirical study is conducted with respect to programs from Software-artifact

Infrastructure Repository (SIR) and a large scale open source V8 JavaScript
Engine from Google. The results suggest that GA with proposed adaptive
crossover strategies can better solve TCP.

The rest of the paper is organized as follows: Sect. 2 presents TCP and epista-
sis. Section 3 presents the proposed crossover operators. Section 4 elaborates the
experimental setup and results analysis. The related work is reviewed in Sect. 6.
Finally, Sect. 7 gives conclusions and future work.

2 Background

2.1 Search Based Test Case Prioritization

The purpose of TCP aims to find the optimal test case execution sequences
that can fulfill a set of testing objects as fast as possible. In order to identify
the best sequence in vast amount of possible permutations of test cases, search-
based technologies [8] have been employed to search for the optimal or near
optimal solutions. Genetic Algorithms (GA) is one of the most widely used
algorithms, in which the permutation encoding is used to represent test case

Epistatic Genetic Algorithm for Test Case Prioritization 111

Table 1. An example of 5 statements covered by 4 test cases

Test case Statement

1 2 3 4 5

A X X

B X X X

C X X

D X X

execution sequence. Table 1 presents a simple example of program fraction with
5 statements and 4 test cases. The execution sequence of B-D-C-A represents
that the test case B is executed first, then D and C, and test case A is the last.

In general, a variety of coverage criteria, such as statement coverage, branch
coverage and block coverage [9], are used as test objects in TCP. In this study
reported in the paper, we focus on GA and only statement coverage is considered
in the experiments. In practice, all the other types of criteria can be applied to the
algorithm. Consequently, Average Percentage of Statement Coverage (APSC) [3]
is used as the fitness function to evaluate a test case execution sequence. For a
program with M statements and N test cases, the APSC is defined as follows [3]:

APSC = 1 − TS1 + TS2 + · · · + TSM

NM
+

1
2N

(1)

where TSi denotes the id of the test case that first covers the statement i in
the execution sequence. Also for the example shown in Table 1, for the sequence
of B-D-C-A, TS1 = 2 means the statement 1 is first covered by the second test
case D since the first test case B doesn’t cover the statement 1 and the second
test case D does in the sequence of B-D-C-A. Based on the formula 1, APSC is
82.5 %.

2.2 The Epistasis in Genetic Algorithms

The epistasis is defined by geneticists to represent the influence between
genes [10]. In GA, a gene is said to be epistatic when its presence suppresses the
effect of a gene at another locus [11]. It has been applied in the two-dimensional
bin-packing problem and an adaptive algorithm based on the epistatic domains
theory is proposed that can quickly converge on the best solution. It has been
also reported that a representation of GA should be constructed in a manner
incorporating mild epistasis (neither too high nor too large) [12]. Recently, an
analysis of genetic algorithms is presented, in which epistasis plays an important
role [13].

Epistatic domains were mostly studied in GA with binary encoding or
real number encoding [14]. Seo and Moon [15] proposed an improved encod-
ing/crossover scheme for Travelling Salesman Problem (TSP), in which the dis-
tance between two genes were explicitly defined by corresponding epistasis. Per-
mutation encoding has been widely used in GA for TCP. In this paper, we

112 F. Yuan et al.

analyze GA with permutation encoding based on the epistatic domains theory
and hope to gain insights into the epistatic effects in TCP.

3 TCP with Epistasis

In this section, Epistatic Test case Segment is first defined for TCP, and then
two refined crossover operators are introduced based on the epistatic domains
theory.

3.1 Epistatic Test Case Segment

In GA of TCP, permutation encoding is commonly used, in which a gene is the id
of a test case, and a chromosome is a permutation of all test cases in a test suite.
As TCP aims to seek a test cases execution sequence, the presence of current
test case will be suppressed by the execution of previous test cases.

Consider the program fraction presented in Table 1 with two test cases
sequences, T1: A-B-C-D, and T2: B-C-A-D. Figure 1 shows the percentages of
statements coverage as a function of the fraction of the test suite, for the two per-
mutations T1 and T2, respectively. The area under the curve represents APSC
values, where the area filled with straight lines is the APSC for T1 and the area
in grey shadow for T2.

Fig. 1. The APSC for the example in Table 1

For the sequence T1: A-B-C-D, test case A is executed first and covers two
statements that haven’t been covered yet, accordingly the percentage statements
coverage becomes 40 % as shown in Fig. 1. While in the sequence T2: B-C-A-
D, test case A is executed after B and C, consequently A does not cover any
more statements that haven’t been covered, thus there is no change of APSC
value. Further observation reveals that once the maximum statement coverage
is reached (100 % in Fig. 1), the APSC value becomes constant.

Definition 1 Epistatic Test Case Segment (ETS). Given a permutation
of all test cases in a test suite, the epistatic test case segment is a test cases
segment which starts from the first test case in the execution sequence and ends
with the test case that first reaches the maximum value of the test object.

Epistatic Genetic Algorithm for Test Case Prioritization 113

For example, the segment A-B-C is the ETS for the sequence T1:A-B-C-D,
as shown in Fig. 1. It can be observed that for a test cases execution sequence
in TCP, the value of fitness function only depends on its ETS, and test cases
following ETS will not further improve the fitness value (although these test cases
are still ordered with the same criterion in general). Thus with the evolution of
a execution sequence in GA, the fitness value becomes higher, and the length of
ETS tends to become shorter.

In GA, the nature of crossover operators is to vary a chromosome or chro-
mosomes to create next generation. Certainly the new generation should be
different with the previous in terms of fitness. However in search-based TCP,
if a variation to a chromosome doesn’t occur within the ETS, the fitness value
would be the same as the previous value. Thus for a chromosome with ETS, the
crossover operators should vary the ETS rather than the whole chromosome. So,
in this study, two widely used crossover operators are refined in order to make
the crossover change occur within ETS.

3.2 One-point Crossover with Epistasis

One-point crossover, namely single-point crossover (SC), randomly selects a cut
point k within a chromosome then interchanges the two parent chromosomes at
this point to produce two new offsprings. When permutation encoding is used
in GA, simply swapping genes segments may cause the repetition of genes that
leads in a invalid offspring chromosome. Then in SC with permutation encoding,
the first part of offspring chromosome comes from one parent and the rest is
completed by genes from the other parent not used in offspring yet. Figure 2a
provides an example to illustrate the SC process.

Considering the epistatic test case segment (ETS) when GA is applied to
TCP, it’s possible that the randomly selected position k is out of ETS. Thus the
offspring has the same fitness with the parent. As discussed in Sect. 3.1, with
more iterations in GA, the length of ETS tends to become shorter, accordingly
the possibility that random k is outside of ETS becomes higher, which weakens
the ability of SC to produce chromosomes with new fitness function values.

In order to make the change of crossover occur in ETS, Epistasis-based single-
point crossover (E-SC) is proposed in this paper. Figure 2b illustrates the E-SC
operator and the detailed steps are presented in Algorithm 1. The highlighted
step 2 marks the difference between SC and E-SC: SC preserves the first k
elements of p1, while E-SC varies the first k elements of p1.

Algorithm 1. Epistasis-based Single-point Crossover
1. Select a random position k between 1 and the chromosome length l.
2. Copy last l − k genes from p1 to o1.
3. Copy all genes of p2 to o1 but excluding the duplicated genes copied from p1 as

the first k genes of o1.
4. Exchange p1 and p2 and re-execute step 1–3 to construct o2.

114 F. Yuan et al.

Fig. 2. The illustrations of Single-point Crossover (SC) and Epistasis-based Single-
point Crossover (E-SC), where the difference is different gene segments (highlighted in
gray) of parents are selected to preserve.

3.3 Two-point Crossover with Epistasis

Two-point crossover, as its name implies, is a type of crossover that randomly
selects two cut points and exchanges the genes between them to produce off-
springs. Order crossover (Ord), one of two-point crossover operators, is first
proposed for TSP and has been shown to preserve good gene segments from the
parents effectively [16]. Figure 3a illustrates how an offspring is generated with
Ord. It first randomly selects two positions within the chromosome where the
gene segment between them (highlighted in gray) are copied to the offspring from
one parent, then the rest are copied from the other parent with their original
order. The arrow indicates the start position for the rest genes copied to the
offspring.

Fig. 3. The illustrations of Order Crossover and Epistasis-based Order Crossover. The
only difference is the start position to generate offsprings.

Considering the epistatic test case segment (ETS), when GA with Ord is
applied to TCP, the genes constructing ETS for offspring mostly come from the
later genes of the parent, rather than from the ETS in parent. Consequently, the
offspring is unlikely to inherit good gene segments within ETS from parent.

Epistatic Genetic Algorithm for Test Case Prioritization 115

Epistasis-based Order Crossover (E-Ord) is introduced to address the issue.
As shown in Fig. 3b, E-Ord only changes the arrow position, i.e., the start posi-
tion for the rest genes copied from the second parent.

Algorithm 2 presents the detailed steps of the E-Ord. The highlighted line
marks the difference between Ord and E-Ord. More specifically, in the step 3,
E-Ord copies genes from the beginning of the parent to the beginning of the
offspring, thus the ETS in offspring can inherit gene segment from the ETS in
parent.

Algorithm 2. Epistasis-based Order Crossover
1. Select two random positions k1, k2 in the chromosome.
2. Copy elements in [k1, k2] of p1 to o1.

3. From the beginning, copy p2 as the rest elements of o1
(excluding the elements copied from p1.)

4. Exchange p1 and p2, execute step 1–3 again to construct o2.

3.4 Discussion

GA starts with a randomly generated population. Then new chromosomes are
reproduced from the parents and chromosomes with lower fitness values are
replaced until the termination condition is met. In the process producing, good
characteristics are spread throughout the population by favouring the mating of
fitter chromosomes, as a result, the most promising areas of the search space are
explored [17]. Although mutation also produces new chromosomes, it’s generally
agreed that crossover is the main force leading to a thorough search of the
problem space.

In crossover, little variation in ETS will lead to the increasing chromosomes
with the similar ETS. Crossover of chromosomes with almost identical ETS
produces few chromosomes with new ETSes. When a ETS becomes predominant
in the population, it is just as likely to become more predominant in the next
generation as it is to become less predominant [17]. In the end, sustained increase
of ETS in predominance over several successive generations will lead the ETSes
of population to being stable. Then, crossover cannot produce chromosomes with
new ETSes, which can be referred to as premature convergence of GA.

However, too large variation in ETS will cause the inheritance loss of good
characteristic of ETS identified by fitness function. Little inheritance will make
GA not produce offsprings from good ETSes and almost degenerate back to
a random search. A pure random search is good at exploration, but does no
exploitation. Then GA will lose its exploitation.

Above all, the qualitative scale of ETS’s change is presented in Fig. 4. The
coordinate axis shows the percentage scale of ETS’s change, changing bigger
from left to right. The proper variation scale of ETS should be near to the
middle of the axis although accurate scale isn’t given in this paper.

116 F. Yuan et al.

Fig. 4. The change scale of ETS

4 Empirical Study

This section describes the details of experiments and results. The following
research questions motivate our experiments:

RQ1: Does the proposed crossover operators based on epistatic domains theory
outperform the original crossovers in terms of effectiveness for TCP?

RQ2: Does the proposed crossovers based on epistatic domains theory outperform
the original crossovers in terms of efficiency for TCP?

RQ3: Does the proposed crossovers based on epistatic domains theory outperform
other two-point crossovers in terms of efficiency for TCP?

4.1 Experiment Setup

The study focuses on the impact of epistasis in GA for TCP, as three widely
studied relatively large programs and one large open source are selected as sub-
jects. flex, space and bash that from SIR Repository, have been used in previous
studies on GA for TCP, and v8 is an open source JavaScript engine employed
in Google Chrome browser. Each subject program has 100 test suites which are
produced by randomly selecting test cases from the test pool until the maximum
statement coverage is achieved. The information of the subjects is presented in
Table 2, including the subject size in term of source lines of code (SLOC) and
associated test suites size.

Table 2. Subjects in the experiments

Subject SLOC Test suite size

Min Max Average

flex 3016 1047 1470 1350.17

space 3815 1208 3229 1894.29

bash 6181 764 1467 1063.17

v8 59412 2564 6159 3909.15

All experiments are run on a CentOS 6.0 server with 24 Intel Xeon (R)
E5-2620 cores and 16 GB memory.

Epistatic Genetic Algorithm for Test Case Prioritization 117

4.2 Experimental Design

Three groups of experiments are designed. The first two are the comparison
between the consideration with epistasis and without, for single crossovers and
two point crossovers, respectively. To further illustrate the effectiveness and
efficiency the crossover, a widely used two-point crossover Partially-Mapped
crossover operator (PMX) [16] is compared in the third group of experiments.

Two types of GA termination conditions are set for three groups of experi-
ments, namely termination A and B. Termination A is to terminate GA while the
fitness of APSC reaches a stable status, and the number of iterations is counted
to measure the convergence of GA. Here a stable status is confirmed when the
difference between two adjacent generations’ best APSC values is less than 10−5

for continuous ten generations. Termination B fixes the number of iterations of
300 for GA execution, the highest fitness is recorded to measure the effectiveness
of the algorithm. Table 3 summarizes three groups of the six experiments briefly.

Table 3. Three groups of experiments, SC vs E-SC, Ord vs E-Ord, E-Ord vs PMX.

Experiment Setup

1A SC vs E-SC with termination A

1B SC vs E-SC with termination B

2A Ord vs E-Ord with termination A

2B Ord vs E-Ord with termination B

3A E-Ord vs PMX with termination A

3B E-Ord vs PMX with termination B

Each experiment is repeatedly executed 30 times as suggested in [18], except
v8 with only 10 times executions due to the limit of time. The population sizes
of all experiments are set 128.

4.3 Experimental Results

Experiments for SC and E-SC. To evaluate the effectiveness of GA with
the epistasis-based crossover, we first conduct the experiments with SC and E-
SC under termination conditions 1A and 1B, respectively. Figure 5 presents the
number of iterations of GA using SC and E-SC under the condition 1A for all
four subjects, where the X axis represents the sizes of 100 test suites, and Y axis
shows the iterations plotted in monotonically increasing order on the X axis.

It is interesting to notice that the iterations of GA keep almost the same
with either SC or E-SC along with increasing sizes of test suite, and the similar
trend can be found in all four programs, as Fig. 5 shown. This observation reveals
that when to solve TCP problem using GA with single-point crossover, there is
no correlation between the numbers of iterations and the sizes of test suites.
However, compared to GA with SC, GA with E-SC always takes more iterations
to reach a stable fitness.

118 F. Yuan et al.

Fig. 5. The average number of iterations to reach a stable APSC for each test suite by
GA with SC and E-SC, plotted in monotonically increasing order of the sizes of test
suites on X axis, for all four subjects respectively.

It seems that the proposed E-SC results in higher costs, i.e., larger numbers
of iterations for GA. However further investigations on quality of the fitness are
presented in Table 4, including the average iterations and the average final APSC
values for all 30 runs on each subject. The results show that the average APSC
obtained by GA with E-SC is higher than that with SC for each subject.

Table 4. The average iterations and average final APSC on each subject

Subject SC E-SC

Avg iters Avg APSC Variation Avg iters Avg APSC Variation

flex 56.12 0.9883 2.08E-06 74.28 0.9946 4.90E-07

space 63.52 0.9855 6.91E-07 78.42 0.9888 5.25E-07

bash 70.60 0.9590 6.23E-06 88.16 0.9686 3.69E-06

v8 62.26 0.9811 4.03E-06 79.98 0.9896 1.60E-06

From above experiments under the condition 1A, it can be concluded that
GA can get better results with more iterations by using the proposed E-SC in
test case prioritization.

Does the higher number of iterations mean the slower convergence of the GA?
To answer this question, the experiment is conducted under the condition 1B,
in which the maximal number of iterations is fixed at 300, and the best APSC

Epistatic Genetic Algorithm for Test Case Prioritization 119

values along with each generation are recorded. Figure 6 presents the results
for all four programs, where the X axis is the number of iterations and Y axis
corresponds to the highest fitness value among all individuals in the iterations.
It can be seen that for any generation, GA with E-SC always achieves higher
fitness value than that with SC. That is, E-SC has a faster convergence than SC
does.

Fig. 6. The average APSC values with the increasing iterations in GA with SC and
E-SC for four subjects respectively.

In conclusion, GA with E-SC gets significantly better APSC and achieves the
best result with fewer iterations. The reason may be inspired from the discussion
in Sect. 3.4, that is certain variation should be occurred within ETS. Too little
change of ETS may lead in the premature of GA.

Experiments for Ord and E-Ord. To evaluate the effectiveness of GA with
the proposed epistasis-based two-point crossover, the experiments are conducted
with Ord and E-Ord under the conditions 2A and 2B. Figure 7 presents the
iterations of GA with Ord and E-Ord for four subjects respectively. Similar with
the trend showed under the condition 1A, the experiment under the condition
2A also confirms that there is no strong correlation between the numbers of
iterations of GA and the sizes of test suites for both Ord and E-Ord. Further
more, GA with E-Ord always takes more iterations in average to reach a stable
fitness than GA with Ord.

120 F. Yuan et al.

Fig. 7. The average number of iterations to reach a stable APSC for each test suite by
GA with Ord and E-Ord, plotted in monotonically increasing order of the sizes of test
suites on X axis, for all four subjects respectively.

Table 5 presents the further statistic results. The average iterations of Ord
for different scales of programs are all around 25, while iterations of E-Ord are
various in different programs, but all larger than that of Ord.

Table 5. The average iterations and average final APSC with Ord and E-Ord

Test Case Ord E-Ord

Avg iters Avg APSC Variation Avg iters Avg APSC Variation

flex 24.93 0.9867 1.93E-06 101.08 0.9980 3.32E-08

space 26.29 0.9838 7.30E-07 167.78 0.9940 2.06E-07

bash 27.42 0.9553 7.10E-06 194.34 0.9836 1.34E-06

v8 25.98 0.9782 4.28E-06 130.64 0.9971 1.90E-07

As discussed in Sect. 3.4, too large variation in ETS will degenerate GA
to random search in TCP and further reduce the efficiency of GA. This may
seriously affect the speed of convergence in generation process.

Figure 8 presents the results of the experiment under the condition 2B, in
which the maximal number of iterations is fixed at 300. It can be seen that
E-Ord always has a higher fitness value than of Ord along with the increasing
iterations.

Epistatic Genetic Algorithm for Test Case Prioritization 121

Fig. 8. The average APSC values with the increasing iterations in GA with Ord and
E-Ord for four subjects respectively.

Experiments for E-Ord and PMX. To further illustrate the effectiveness
and efficiency of E-Ord, a more advanced two point crossover, Partially-Mapped
crossover operator(PMX) [16], is compared in the third group of experiments.

For the space limitation, we only report the results for 3A, i.e., the algorithms
terminated when the APSC is stable. Table 6 presents the average iterations and
the best APSC value achieved. It can be seen that both GAs achieved very high
APSC value (although the average APSC obtained by GA with E-Ord is a little
higher than that with PMX for all four subjects, and statistic analysis confirms
that the difference is statistical significant), but the number of iterations for
E-Ord is much fewer than that for PMX.

Table 6. The average iterations and average final APSC with PMX and E-Ord.

Test Case PMX E-Ord

Avg iters Avg APSC Variation Avg iters Avg APSC Variation

flex 157.04 0.9967 1.93E-06 101.08 0.9980 3.32E-08

space 187.93 0.9929 3.67E-06 167.78 0.9940 2.06E-07

bash 229.54 0.9801 7.10E-06 194.34 0.9836 1.34E-06

v8 226.88 0.9964 4.08E-06 130.64 0.9971 1.90E-07

122 F. Yuan et al.

Discussion. In single-point crossover, the original crossover operator has little
change within ETS, while in two-point crossover, the ordinal crossover is recog-
nized to make much change within ETS. When GA is applied to TCP, too small
change in ETS will narrow search space in generations and cause the premature
convergence of GA, while too much variation will degenerate GA to random
search. Thus the proposed two refined crossover operators are trying to fix these
issues and the empirical results also provide the evidence to support our pro-
posal. Further, the additional experiments prove that our E-Ord is better than
another advanced two-point crossover PMX.

5 Threats to Validity

The external threat that might have affected the accuracy of experiments is the
features of the subjects under test in this paper. Although there are three SIR
programs and an industrial program v8, their features may hardly cover the
most existing software. Thus, systematical analysis to ETS in TCP needs more
different scales of programs. Simultaneously more experiments are demanded to
further verify the effectiveness of ETS on GA in TCP. Another concern might be
the evaluation object used in experiments. APSC is employed as the objective
in the experiments to evaluate the different crossovers which directly affect the
effectiveness of ETS on GA.

The internal threat which might have influenced the experimental results is
that the repeated times of v8 is 10. There might exists some deviations in results
of experiments about v8 when we measured the APSC values, but this may not
strongly affect conclusions in this paper.

6 Related Work

TCP optimization is one of the most important activities in regression testing,
where the efficiency of algorithms is a key issue. Li et al. [3] first empirically stud-
ied five algorithms to TCP with single objective. There are also other algorithms
presented to TCP, including Ant Colony Optimization [19] and Particle Swarm
Optimization [6]. Recently, multi-objective TCP optimization is introduced [20].

Considering the computational cost, GPU based parallel computing is
adapted. Yoo et al. [21] used the GPGPU to accelerate the process of test cases
selection and test suite minimization. Then Li et al. [4] proposed the fine-grain
and coarse-grain GPU based parallel approaches for TCP where the crossover
operators were executed on GPU. Epitropakis et al. [20] analyzed three differ-
ent multi-objective algorithms in TCP using Coverage Compaction technology
to reduce the scale of computations, thus the effectiveness can be increased in
optimization process.

Improving algorithm operations is another direction to reduce the cost of
TCP. Srinivas adapted the probabilities of crossover and mutation to improve
GA [22] and some optimization to original algorithms were proposed [23]. This
paper studied the epistatic domains theory in GA for TCP and proposed two
adaptive crossover operators.

Epistatic Genetic Algorithm for Test Case Prioritization 123

7 Conclusions and Future Works

The optimization of test case prioritization is a search problem and many heuris-
tic algorithms have been applied, to which permutation encoding is used to
represent a test case execution sequence. Considering the epistasis in GA, this
paper defines the Epistatic Test Case Segment (ETS) for TCP, and proposes two
refined crossover operators that focus on the change within ETS. The empirical
studies based on four subjects provide the evidence that GA with the proposed
crossover operators are better in terms of the effectiveness and the efficiency.
Further analysis shows that the change caused by crossover operators in ETS
should be mild (neither too small nor too large).

The discussion of ETS is macroscopic with empirical study. In the future, the
interaction among the genes in ETS will be analysed theoretically, and multi-
objective ETS for TCP is also considered in next step.

Acknowledgments. The work described in this paper is supported by the National
Natural Science Foundation of China under Grant No. 61170082 and 61472025, the
Program for New Century Excellent Talents in University (NCET-12-0757) and SRF
for ROCS, SEM (LXJJ201303).

References

1. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Softw. Test. Verif. Reliab. 22(2), 67–120 (2012)

2. Wong, W.E., Horgan, J.R., London, S., Mathur, A.P.: Effect of test set minimiza-
tion on fault detection effectiveness. In: 17th International Conference on Software
Engineering, ICSE 1995, p. 41. IEEE (1995)

3. Li, Z., Harman, M., Hierons, R.M.: Search algorithms for regression test case pri-
oritization. IEEE Trans. Softw. Eng. 33(4), 225–237 (2007)

4. Li, Z., Bian, Y., Zhao, R., Cheng, J.: A fine-grained parallel multi-objective test
case prioritization on GPU. In: Ruhe, G., Zhang, Y. (eds.) SSBSE 2013. LNCS,
vol. 8084, pp. 111–125. Springer, Heidelberg (2013)

5. Singh, Y., Kaur, A., Suri, B.: Test case prioritization using ant colony optimization.
ACM SIGSOFT Software Eng. Notes 35(4), 1–7 (2010)

6. Hla, K.H.S., Choi, Y., Park, J.S.: Applying particle swarm optimization to prioritiz-
ing test cases for embedded real time software. In: Proceedings of the 2008 IEEE
8th International Conference on Computer and Information Technology Work-
shops, Sydney, Australia, pp. 527–532. IEEE, 8–11 July 2008

7. Davis, L.: Applying adaptive algorithms to epistatic domains. In: IJCAI, vol. 85,
pp. 162–164 (1985)

8. Harman, M., Jones, B.F.: Search-based software engineering. Inf. Softw. Technol.
43(14), 833–839 (2001)

9. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for
regression testing. IEEE Trans. Softw. Eng. 27(10), 929–948 (2001)

10. Smith, J.M., et al.: Evolutionary Genetics. Oxford University Press, Oxford (1989)
11. Beaslev, D., Bull, D.R., Martin, R.R.: An overview of genetic algorithms: Part 2,

research topics. Univ. Comput. 15(4), 170–181 (1993)

124 F. Yuan et al.

12. Davidor, Y.: Epistasis variance: suitability of a representation to genetic algo-
rithms. Complex Syst. 4(4), 369–383 (1990)

13. Paixão, T., Barton, N.: A variance decomposition approach to the analysis of
genetic algorithms. In: Proceeding of the Fifteenth Annual Conference on Genetic
and Evolutionary Computation Conference, pp. 845–852. ACM (2013)

14. Rochet, S., Slimane, M., Venturini, G.: Epistasis for real encoding in genetic algo-
rithms. In: Australian and New Zealand Conference on Intelligent Information
Systems, pp. 268–271. IEEE (1996)

15. Seo, D.I., Moon, B.R.: Voronoi quantizied crossover for traveling salesman problem.
In: GECCO, pp. 544–552 (2002)

16. Larrañaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdarevic, S.: Genetic
algorithms for the travelling salesman problem: a review of representations and
operators. Artif. Intell. Rev. 13(2), 129–170 (1999)

17. Beasley, D., Martin, R., Bull, D.: An overview of genetic algorithms: Part 1. fun-
damentals. Univ. Comput. 15, 58 (1993)

18. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess random-
ized algorithms in software engineering. In: 2011 33rd International Conference on
Software Engineering (ICSE), pp. 1–10. IEEE (2011)

19. Singh, Y., Kaur, A., Suri, B.: Test case prioritization using ant colony optimization.
ACM SIGSOFT Softw. Eng. Notes 35(4), 1–7 (2010)

20. Epitropakis, M.G., Yoo, S., Harman, M., Burke, E.K.: Pareto efficient multi-
objective regression test suite prioritisation. Techreport 14(01), 01 (2014)

21. Yoo, S., Harman, M., Ur, S.: Highly scalable multi objective test suite minimisation
using graphics cards. In: Cohen, M.B., Ó Cinnéide, M. (eds.) SSBSE 2011. LNCS,
vol. 6956, pp. 219–236. Springer, Heidelberg (2011)

22. Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in
genetic algorithms. IEEE Trans. Syst. Man Cybern. 24(4), 656–667 (1994)

23. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K.,
Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X.
(eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

Haiku - a Scala Combinator Toolkit
for Semi-automated Composition

of Metaheuristics

Zoltan A. Kocsis1(B), Alexander E.I. Brownlee1, Jerry Swan2,
and Richard Senington3

1 Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK
{zak,sbr}@cs.stir.ac.uk

2 Computing Science, University of York, York YO10 5GW, UK
dr.jerry.swan@gmail.com

3 Data Ductus AB, Skellefte̊a, Sweden
richard.senington@dataductus.se

Abstract. There is an emerging trend towards the automated design of
metaheuristics at the software component level. In principle, metaheuris-
tics have a relatively clean decomposition, where well-known frameworks
such as ILS and EA are parametrised by variant components for accep-
tance, perturbation etc. Automated generation of these frameworks is
not so simple in practice, since the coupling between components may be
implementation specific. Compositionality is the ability to freely express
a space of designs ‘bottom up’ in terms of elementary components: pre-
vious work in this area has used combinators, a modular and functional
approach to componentisation arising from foundational Computer Sci-
ence. In this article, we describe Haiku, a combinator tool-kit written
in the Scala language, which builds upon previous work to further auto-
mate the process by automatically composing the external dependencies
of components. We provide examples of use and give a case study in
which a programatically-generated heuristic is applied to the Travelling
Salesman Problem within an Evolutionary Strategies framework.

1 Introduction

Early work in Search Based Software Engineering (SBSE) only needed to out-
perform manual approaches and in many cases random search and hill-climbing
were sufficient for this. Now that the field is maturing and we wish to use SBSE
to tackle more difficult problems, there is a need to employ more sophisticated
search strategies. The difficulty facing the SBSE practitioner is the wealth of
different metaheuristics available: e.g. can a software problem most usefully be
solved with iterated local search, genetic algorithms, particle swarm or some
hybridization of these techniques or their component parts?

A metaheuristic is instantiated for a particular problem domain via three
domain-specific items, viz. a data structure for the representation of candidate
solutions (e.g. bit-string, permutation etc.); the ability to efficiently compare
c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 125–140, 2015.
DOI: 10.1007/978-3-319-22183-0 9

126 Z.A. Kocsis et al.

solution quality in order to guide the search process and lastly a collection
of methods for transforming solutions. While metaheuristics can provide good
results, operating at this level of abstraction offers no silver bullet. Rather, the
family of techniques is ideally used as a toolbox, from which a practitioner can
pick components and determine their effectiveness on a particular problem. Con-
sequently, considerable development effort is focused on operator and parameter
tuning for each new application (although it is encouraging to see increasing
automation in this area [19]). It has also long been the norm to combine or
hybridise methods, for example using several in parallel, attempting to introduce
the strengths of one method to others. As a concrete example of ‘composition by
hand’, previous work [6] has applied Tabu search [14] and simulated annealing
[16] at different points in a multi-stage local search algorithm. The desire for
greater automation has led to approaches such as hyper-heuristics [3], which are
the application of search to the problem of finding good heuristics (‘heuristics
for searching the space of heuristics’). Of particular interest for the automated
design of algorithms are generative hyper-heuristics [5], which assemble basic
components into more complex search algorithms. It is also worth mentioning
algorithm portfolios [38], which use a group (portfolio) of different algorithms at
the same time to solve a difficult problem. Fortunately for SBSE researchers, it
is possible to express the problem of creating search strategies as one of software
component assembly, thereby jointly incorporating knowledge from the domains
of software engineering and metaheuristics. This paper introduces Haiku, a tool-
kit written in the Scala1 language that facilitates the composition of metaheuris-
tic components via combinators, extending previous work in the pure functional
language Haskell [36].

Combinators are pure functions that depend exclusively on their input para-
meters. They are often higher-order functions, i.e. they can take other functions
as parameters and (significantly) can return new functions, created dynamically
from their inputs. A well-known example is function composition:

f ◦ g = x �→ f(g(x))

The function ◦ takes two parameters, functions f and g, and returns a new func-
tion expressed in terms of these parameters. Functional programmers are in the
habit of building reusable libraries using such functions because they encour-
age the expression of problems in terms of small building blocks. These building
blocks can be combined and extended in a vast number of ways, with permissible
combinations being enforced by the type system of the host programming lan-
guage. Metaheuristics are a good fit for this pattern: individual metaheuristics
can take functions (e.g. to provide an ordering of solutions or define acceptance
criteria) as parameters but are themselves functions which can be passed to other
metaheuristics (e.g. using an iterative improver as one component of a memetic
algorithm [26]).

Recent work [34] on the use of combinators to build search heuristics notes
that they have the look-and-feel of a Domain-Specific programming Language
1 for an introduction, see http://www.artima.com/scalazine/articles/steps.html.

http://www.artima.com/scalazine/articles/steps.html

Haiku - a Scala Combinator Toolkit 127

(DSL). Their modular nature allows new search algorithms to be developed for a
specific application with reduced effort [25]. Further, their pure functional nature
greatly simplifies the automated assembly of new search algorithms. In this con-
text, the basic principles of modularity and re-use (well-established practices in
software engineering) are fundamental to algorithm implementation. DSLs have
already found uses in parameter control for evolutionary algorithms [18].

Modularity means that components are self-contained and can be developed
independently, communicating only through clearly-defined interfaces. If the
interfaces are sufficiently general, parts can be re-used and recombined in new
ways. However, there is often a high degree of interdependence between algorithm
components, reducing modularity and inhibiting re-use. This is known as content
coupling, where the implementation of one component requires deep knowledge
of (and in many cases, access to) the internal mechanisms and implementation
details of another. This is a hindrance to the combination of different compo-
nents and their substitutability within metaheuristic frameworks. The Haiku
tool-kit presented in this article is structured in such a way that modularity and
re-usability are inherent in the component implementations.

The remainder of the paper is structured as follows: Sect. 2 summarises
related work. Section 3 introduces combinators in more detail and Sects. 4 and 5
describe the design and implementation of Haiku. A simple example of Haiku’s
use is provided in Sects. 6 and 7, composing combinators for Tabu search and
simulated annealing and applying all three to the Travelling Salesman Problem.
Finally, Sect. 8 provides conclusions and future work.

2 Related Work

There is a body of work applying combinators in the field of constraint program-
ming. Perron [30] describes a compositional approach in which search heuristics
are termed ‘goals’. This does not seem intended to support additional combina-
tors, and specifically targets depth-first search. The Comet system [39] features
‘fully-programmable’ search: in contrast to the composition approach of com-
binators, a search controller is used to determine the behaviour of the search
heuristic [40]. Choi et al. [7] describe a compositional framework for search that
relies on composing search engines and Desouter [8] describes a Scala framework
using combinators to build custom heuristics for constraint satisfaction prob-
lems. ‘Monadic constraint programming’ was introduced by Schrijvers et al. [33],
describing ‘stackable search transformers’. While these only provide a limited and
low-level form of search control, the concept is extended by Schrijvers [34], who
introduces the concept of search combinators. This bridges the gap between a
high-level modelling language for search and its efficient implementation. The
user is able to define application-specific search strategies by combining a small
set of primitives, effectively providing a Domain-Specific Language (DSL). This
also serves as the foundation of the work in [32], where a search algorithm is
used to automate the composition process.

McGillicuddy et al. [24] achieve rapid prototyping of combinatorial optimi-
sation algorithms via functional implementation of DSLs, as applied to dynamic

128 Z.A. Kocsis et al.

programming problems (unbounded knapsack and longest common substring).
Senington [36] argues for a specific function signature as forming a good basis
for building metaheuristics from combinators: metaheuristics are regarded as
stream transformations (i.e. functions that take a stream of solutions and return
an updated stream) which are composed into more complex search algorithms.
The paper presents a toolkit for expressing metaheuristics in the pure functional
language Haskell. Building on this toolkit, [35] describes the use of combinators
to move between perturbation, recombination and neighbourhood methods in
metaheuristics, demonstrated for the Travelling Salesman Problem (TSP).

Marmion et al. [22,23] propose a generic structure for stochastic local search
(SLS) algorithms, represented in a text-based grammar. The productions of the
grammar represent local search hybrids. In this structure, each SLS algorithm
has a definition of perturbation, optional subsidiary SLS, and acceptance cri-
terion. Hybridisation is possible by assembling algorithms via the subsidiary
local search. In common with this article, most of the human effort required is
in devising problem-specific components for neighbourhoods, perturbations and
heuristics. There are also some major differences with our work: Haiku defines
a search using program code rather than via a grammar, with the attendant pro-
grammatic flexibility, compile-time checking and IDE support that this provides.
Haiku’s automated mechanism for composing ‘environmental’ state (described
in more detail subsequently) is both less onerous and less error prone that the
requirement to manually embed information such as search trajectory within the
algorithm itself.

In order to automate metaheuristic construction, we need to be able to unam-
biguously determine the contribution of a component. This is clearly essential
for learning schemes involving reinforcement and/or credit assignment: if com-
ponent state is hidden, then we cannot determine which changes contribute to
the sucess of a metaheuristic. Popular metaheuristic frameworks such as ECJ or
JMetal [11,21] etc. do not prevent components from making arbitrary changes to
non-local state. In contrast, the various works on combinators due to Schrijvers
and Senington (above) allow unambiguous component substitution because of
their pure functional nature. Recall that the aspects of modularity that con-
cern us include decomposability of the different components as well as their
recombinability : the metaheuristic components such as acceptance, perturbation
should all be equipped with suitable composition operations (compositors). This
latter aspect of modularity is absolute (rather than quantitative). Existing meta-
heuristic frameworks don’t achieve the level of modularity that is sufficient for
recombination purposes. The essential contribution of this work is to address
this outstanding issue, as described in the following sections.

3 Combinators

Formally speaking, a combinator is a ‘pure’ function (i.e. referentially transpar-
ent and without side-effects) with no free variables (i.e. they are self-contained,
with no reference to external state). This modularity means that they can pro-
vide useful building blocks for describing a particular domain. Through the use

Haiku - a Scala Combinator Toolkit 129

of higher-order functions, combinators can combine their function parameters to
provide more sophisticated control flow. Combinator libraries have been success-
fully employed in functional languages to provide clean and extensible capabili-
ties for a diverse range of problems including real-time systems control [42] and
expressing parser logic [15,17]. These libraries capture patterns across diverse
operations; provide mechanisms for combining these building blocks and allow
extensibility via the provision of new constructs and control structures as differ-
ent end-uses become apparent.

Parsers provide a good example of the power and mechanism of combina-
tors since there is an obvious need to provide for many control structures, e.g.
matching a pattern many times in sequence; matching a single character or
matching one pattern separated by another pattern. These can all be expressed
as higher-order functions. In particular, most of this functionality can be defined
so that parsers tend to act on other parsers, hence anything which is a parser
can be passed to the library. This provides the high degree of customisability
and extensibility that we desire from combinators. What follows is an example
of a CSV parser written using parser combinators (this example is adapted from
[28]), illustrating the creation of several user defined blocks of code (such as cell)
built from library combinators and then reused.

val eol = Scanners.isChar(’\n’) // end of line
val cell = Scanners.notAmong(”,\n”).many()
// a cell is anything until , or \n
val line = cell.sepBy(Scanners.isChar(’,’))
// a line is a series of separated cells
val csvFile = line.endBy(eol);
// a csvfile is lines each ended by

The library of possible combinators can also be easily extended with user code,
e.g. an operator that matches an identical symbol on either side of a given term.
This could be coded by a user in the following manner and used in any expression
which takes a parser as a parameter:

def surroundedBy(b : Parser, a : Parser) : Parser = a.followedBy(b).endBy(a)

As discussed above, combinator libraries are essentially embedded DSLs and
hence (unlike ‘configuration-file’ based approaches) can make use of the full
power of the host language, as well as being customisable via the problem-
specific code used to parametrise the system. In devising an appropriate meta-
heuristic, we have a toolbox of common patterns (‘iterate until local optima’,
‘accept unimproved moves in inverse proportion to the number of iterations’
etc.) and a desire to automatically combine different elements of this toolbox.
Metaheuristics therefore share with combinators the essential notion of func-
tionally parametrised and (recursively) composable control structures. The use
of combinators is a natural fit for a generic metaheuristic library, allowing the
problem-specific elements to be coded in the host language without limitations.

130 Z.A. Kocsis et al.

def iteratedPerturbation[Sol](incumbent : Sol,
perturb : Sol => Sol,
accept : (Sol,Sol) => Sol,
isFinished : Sol => Boolean) : Sol = {
while(!isFinished(incumbent)) {
val incoming = perturb(incumbent)
incumbent = accept(incumbent, incoming)

}
// the return keyword is implicit in Scala:
incumbent

}
Listing 1.1. Iterated perturbation framework using polymorphic components

4 The Design of Haiku

There are many popular metaheuristic software libraries (e.g. [9,11,12,20,21,
41]), several of which abstract out common components such as acceptance,
perturbation, recombination et c. It is typically the case that well-known meta-
heuristics such as iterated local search, evolutionary and swarm algorithms etc.
then act as instances of the ‘Template Method’ design pattern [44], i.e. providing
a pre-defined invocation sequence for the concrete instantiations of the abstract
components with which they are (manually or automatically) configured. For
example, a framework for iterated perturbation which is parametrised by the
components for perturbation, acceptance and termination condition is given in
Listing 1.1.

It is therefore desirable to be able to combinatorially configure such frame-
works with different combinations of components. It is also known that different
components can perform well at different points in the search (see e.g. [37]), which
is particularly important in the case of dynamic environments [27]. One method of
composition for components is to use the ‘Composite’ Design Pattern [13], i.e. to
create a new component as a (perhaps dynamically-generated) function of exist-
ing components. As described by Woodward et al. [43], ensembles are a popular
example of this approach. An elementary example would be to define a composite
fitness function c as an aggregate of the fitness of a collection of surrogate functions
{f1, . . . , fk}, e.g. with c being given as a weighted sum of surrogates:

c :Sol → R

c :x �→ c1 ∗ f1(x) + c2 ∗ f2(x) + . . . + ck ∗ fk(x)

In order to ensure that our composite function can be plugged into the tar-
get framework, it needs to have the same signature as the abstract component
that it instantiates. For the elementary generation of composites (e.g. weighted
sum of fitness values, as above) this is straightforward: i.e. (in the case of a
single-objective) the surrogates and the composite can all be defined in terms of
functions from R → R.

Haiku - a Scala Combinator Toolkit 131

Unfortunately, the composition of many popular metaheuristic components
is intrinsically not so straightforward. As a motivating example, consider an
attempt to compose the well-known methods of Exponential Monte Carlo (EMC)
[16] and Tabu acceptance [14]. EMC employs an annealing schedule, which tends
to decrease the probability of accepting unimproved solutions as the search pro-
gresses. The Tabu scheme uses a Tabu list to prohibit the acceptance of recently-
encountered solutions or operators. When attempting to automatically compose
these components, a problem therefore arises because they depend on different
notions of component state: e.g. EMC acceptance depends on the current state
of the annealing schedule, while Tabu Acceptance (TA) depends on the Tabu
list. Define acceptance to have signature:

State × State → State

where State is a generic type representing some combination of solution state Sol
and component state. For solution state Sol, this means that EMC has signature:

emc : (Sol, Schedule) × (Sol, Schedule) → (Sol, Schedule)

and TA has:

ta : (Sol, TabuList) × (Sol, TabuList) → (Sol, TabuList)

An attempt to build a combinator that composes EMC with TA requires boil-
erplate to propagate component state information for both acceptance criteria:

hybrid :(Sol, (Schedule, TabuList))×
(Sol, (Schedule, TabuList)) →
(Sol, (Schedule, TabuList))

This exemplifies a general issue: a composite combinator needs to be para-
metrised by the Cartesian product of the component states. This situation is
particularly onerous for the metaheuristic designer since boilerplate code needs
to be written for each specific combination of component states. What is there-
fore required is an automated means of dealing with Cartesian products of com-
ponent states by ‘lifting’ pre-existing operations so that they correctly apply
to the product state. The means by which Haiku provides this functionality is
described in more detail in the following section.

5 Haiku - Implementation

Tabu(diff,size=3)
transforms plainOldEMC
yielding hybridSearch

Actual Haiku code

Haiku is implemented in the Scala programming language. Scala was chosen
because it has previously been used to implement combinator libraries [28], and

132 Z.A. Kocsis et al.

its type system facilitates creating objects that behave like functions (e.g. fitness
below). Scala runs on the Java Virtual Machine (JVM) and can call (and be
called from) Java libraries and programs.

All Haiku components are parametrised by the type Dec[Sol], where Sol is
the type of solutions (as above) and Dec[Sol] (short for ‘decorable’) is a data type
containing the solution along with the environment, i.e. the aggregated state of
all composed components. The composition of components in Haiku is simply
illustrated in the context of the Evolutionary Strategy (ES) metaheuristic [2]. ES
is a population-based metaheuristic that has been applied across a wide range
of problem domains. In the general framework of ES, each iteration a set of one
or more solutions (‘parents’) is selected from the population according to their
fitness. λ new solutions (‘children’) are generated from these by duplication,
recombination and mutation. The children become members of the population,
and the population is reduced back to its original size μ. EA approaches are
classified into (μ + λ) and (μ, λ), according to the strategy used for reducing
the population back to μ solutions (generational succession). With (μ + λ), the
combined population of children and parents is ranked according to fitness, and
the μ highest-ranking solutions are retained. Children only replace parents if
they represent improvements. In (μ, λ) ES only the highest ranking μ children
remain in the population. Parents are deleted, even if the children represent a
decrease in fitness.

A single step of ES can be abstractly described by the composition of three
operations neighbourhood, bias and select, with signatures as follows:

neighbourhood[Sol] = Dec[Sol] →List[Dec[Sol]]
bias[Sol] = List[Dec[Sol]] →List[Double]

select[Sol] = List[(Dec[Sol],Double)] →Dec[Sol]

For some solution state s, the output of the neighbourhood function is defined to
consist of s together with its λ children. As explained in a subsequent section,
this formulation makes it easy to generalise the ‘plus’ and ‘comma’ strategies
described above for generational succession. The actual Scala code for a single-
step of ES is given in Listing 1.2 and is depicted diagrammatically in Fig. 1.

case class ES[Sol] {
type State = Dec[Sol]
def update(currentState : State) : State =

select(neighbourhood(currentState) zip bias(neighbourhood(currentState)))
// the zip function creates a list of pairs from the two list

}
Listing 1.2. Evolutionary Strategies update

It is important to remember that different neighbourhood, bias and select func-
tions may in fact have different associated component states. Therefore, the
requirement to form the Cartesian products of states is, as explained above,
unavoidable if one wishes to compose components. Haiku, uniquely among
metaheuristic frameworks, frees the end-user of the burden of having to do this

Haiku - a Scala Combinator Toolkit 133

Fig. 1. A single step of ES described by the composition of the neighbourhood, bias
and select operations

manually. In implementation terms, this is achieved by storing the relevant envi-
ronments as entries in a map. To ensure that access to this map is type-checked
and documented in the component declarations, the public interface requires
that callers implement the Uses[Env] marker trait.

Storing the aggregate component state in this manner has several benefits.
In particular, alternative approaches to aggregate state (e.g. monad transformer
stacks [33]) keep the ordering of the combinators explicit, so reordering com-
binators requires writing boilerplate (involving the infamous lift function). In
contrast, the map-based approach requires no boilerplate for reordering combi-
nators. The only drawback of this approach is that the presence of a decoration
can no longer be ensured at run-time: the combinators have to check for, and
handle the “missing decorations” case.

The Scala definition of Dec can be seen in Listing 1.32.

trait Uses[Env] { } // marker interface
case class Dec[A](extract : A, private val decor : Map[Uses[],Any]) {
def get[Env](c : Uses[Env]) : Option[Env] =

decor.get(c).map(.asInstanceOf[Env])
def set[Env](c : Uses[Env], value : Env) : Dec[A] =

Dec(extract, decor.updated(c,value)))
}

Listing 1.3. The Dec class

2 We would like to consider Dec[A] to be a subtype of A. This is not expressible in Scala
or any other mainstream language. Instead, we rely on Scala’s implicit conversions
to ensure that Dec[A] can be substituted for A.

134 Z.A. Kocsis et al.

6 Case Study: TSP

In this section, we use Haiku to create a hybrid metaheuristic for solving the
well-known Travelling Salesman Problem (TSP) [1]. The techniques used in
Haiku are not specific to the TSP, but it is a suitable problem for illustration.
First, an appropriate solution representation needs to be chosen. This example
uses the simplest possible one: a Tour is a permutation, implemented as a list of
nodes in the order they were visited.

type Node = Int
type Tour = Dec[List[Node]]

As described above, Haiku uses a bias function to measure solution qual-
ity. This allows us to compose measures of solution quality in various ways (as
described in more detail below), thereby facilitating the creation of surrogate
fitness measures. A fitness function is a deterministic bias function, mapping the
solution to an ordered set. The search algorithm then operates to minimise or
to maximise its value accordingly. In the case of the TSP, the goal is to opti-
mise the tour length associated with the solution. The following code defines the
corresponding bias function.

def length : FitnessFunction[Tour,Double] =
Minimise { x =>
val xnext = x.tail ++ List(x.head)
// the .zipped method turns a pair of lists into a list of pairs,
// and map invokes the tsp.dist function on each resulting pair.
val distances = (x, xnext).zipped map (tsp.dist)
distances.sum

}
The search requires an initial state: the following code creates a random tour:

val seed : Tour = RNG.shuffle { (0 until tsp.size).toList }
The RNG singleton provides the sole point of access to Haiku’s random num-
ber generator. Since the combinator implementation is stateless, results are
reproducible from a given random seed. The Haiku ES implementation uses
a neighbourhood function to move around the search space. The neighbourhood

function takes the current state of the search, and returns a list consisting of
the current state and its offspring. In the example below, lambda children are
created by reversing a random segment of the parent.

def transition = NeighbourhoodFunction { (x : Tour, lambda : Int) =>
val children = for(i ← 0 until lambda) yield {

val a = RNG.nextInt(tsp.size)
val b = a + RNG.nextInt(tsp.size − a)
val reversed = x.drop(a).take(b).reverse
x.take(a) ++ reversed ++ x.drop(a).drop(b)

}
List(x) ++ children

}

Haiku - a Scala Combinator Toolkit 135

Search objects encapsulate the information required for running a search, viz.
the neighbourhood function, the bias function, and the environmental variables
(if any). The following code creates a search object and executes 1000 iterations
of the search:

val search : Search[Tour] = ES(seed, transition, length) (†)
val result = search.run(1000)

6.1 Semi-automated Composition of Metaheuristics

We can use the combinator-decorator mechanisms of Haiku to create a accep-
tance criterion as a composite of Tabu search and simulated annealing. A previ-
ous comprehensive study [29] indicates that acceptance criteria can have a strong
effect on the cross-domain generalisability of a hyper-heuristic, so the ability to
create such hybrids is likely to have general utility. In Haiku, a combinator is
an object with a transforms method, of signature transforms : Search[A] →
Search[B]. The following code sets up EMC acceptance using the simulated
annealing combinator SA:

val emcSearch = SA.EMCAccept(100, t => 0.95∗t, length) transforms search (†)
The first two arguments determine the annealing schedule. The last argument

is the fitness function to be optimised. Naturally, simulated annealing requires a
real-valued fitness function. Tabu Search additionally requires a difference func-
tion, which yields the changes in the solution state from iteration to iteration.
The following code defines such a function:

def changes(x : Tour, y : Tour) : List[Node] = {
val diff = (x,y).zipped filter ((x,y) => x != y)
diff. 2

}
Using this difference function, the Tabu combinator can be invoked:

val hybridSearch = Tabu(changes, size = 2) transforms emcSearch (†)
Note that the change in environment (first from an empty environment to

an environment with temperature, then to an environment with a temperature
and a Tabu list) is handled without the end-user having to write any additional
boilerplate. Since bias functions are List[Double]-valued, it is possible to define
custom distributions over the neighbourhood. This can be seen as a generalisa-
tion of the standard ES generational succession strategy: as mentioned above,
a neighbourhood consists of the current state and its offspring, so if we always
assign a bias of 0 to the current state, we can obtain a (1, λ)-ES otherwise we
obtain a generalisation of (1 + λ)-ES in which the incumbent succeeds to the
next generation with some probability. The composition mechanism also allows
for fine-grained control over how the hybridisation occurs. For example, the
default compositor for Tabu is ‘intersection’ (i.e. takes the smaller of the two
acceptance probabilities, which can be seen in Fig. 2). The Compositor object
provides several built-in compositors, as can be seen in the following:

Tabu(changes, size = 2, Compositor.union).transforms(emcSearch) (†)

136 Z.A. Kocsis et al.

Fig. 2. The intersection composition operation

We used the Tabu and SA combinators to create the hybrid. Other elemen-
tary combinators provided by Haiku for decorating a search via the ‘transform’
method include:

1. Threshold: Adds threshold acceptance capabilities to a search object.
2. Inspector: Allows observation of the search object while the search is in

progress. Strict typing ensures that the search trajectory remains unchanged.

Notice that defining each hybrid (listings marked with †) for solving the TSP
requires only a single line of code.

7 Experiments

As an illustration of the utility of the composition mechanism, we demonstrate
that it is possible to find superior hybrids. We achieve this by performing a hyper-
heuristic search in the space of composed bias functions. Recall from Sect. 5 that
a bias function is given a neighbourhood and yields a bias, i.e. a list of corre-
sponding non-negative values. A bias compositor (such as union, intersection
etc. as described above) takes a pair of biases and returns a new bias. A simple
bias compositor that returns a list containing the weighted average of the corre-
sponding input values is defined below. It contains a weight value 0.0 ≤ m ≤ 1.0
as the sole hyper-heuristic parameter. This value essentially acts as an ‘interpo-
lator’ between the contribution of the two input biases:

def weightedAverageCompositor(x: Bias, y: Bias): Bias = x∗m + y∗(1−m)

In order to show that the composition mechanism can yield useful hybrids, we
performed a hyper-heuristic search for suitable m. Note that this search is over
[0, 1] ∈ R, despite the underlying space being permutation-based. The parameter
values were as shown in Table 1, with input biases as given for the Tabu and EMC
searches defined above. The heuristics were evaluated on 5 TSP instances from
TSPLib [31] having less than 100 cities (att48,eil51,eil76,pr76,st70). In all of
these instances, EMC significantly outperformed Tabu search (according to the
Mann-Whitney U/Wilcox signed rank test with p = 0.05).

The top-level hyper-heuristic search was performed using the real-valued opti-
mization method CMAES3, an extension of ES which maintains a numerical
3 the default implementation in the Apache Commons Math 3.3 library.

Haiku - a Scala Combinator Toolkit 137

Table 1. Parameter values

Parameter Value

Tabu List Size 3

Max MH ((1{plus,comma}1)-ES) iter 500

Num MH runs per HH iter 21

Max HH (CMAES) iter 1000

approximation of the search gradient. The fitness value for the hyper-heuristic
search was determined from an average of 21 runs of the (1{comma, plus}1)−ES
metaheuristic. In each case, CMAES converged quickly, taking resp. 117, 65, 57,
41 and 33 iterations 4.

Fig. 3. Comparison of the tours found by EMC and Hybrid searches on instance st70

In one of the five cases (st70), the hyper-heuristic search found a hybrid (the
weight m = 0.091) that was significantly better (according to the Mann-Whitney
U/Wilcox signed rank test with p = 0.05) than EMC search. Figure 3 is box plot
comparing the tour lengths found by the two algorithms.

8 Conclusion

We described Haiku, a combinator tool-kit written in Scala, for semi-automated
hybridisation of metaheuristics. Haiku addresses an intrinsic issue in the auto-
mated assembly of metaheuristic components, viz. the composition of component
state. Experiments on instances of the Travelling Salesman Problem reveal that
4 execution time: 117.7s, 162.7s, 80.8s, 57.8s and 59.4 s on an Intel Xeon 2.13 GHz

with 4 GB RAM.

138 Z.A. Kocsis et al.

such hybridisation can indeed be useful: we implemented a real-valued hyper-
heuristic which interpolates between a pair of acceptance criteria and used this
to demonstrate the existence of a Tabu-annealing hybrid which significantly out-
performs both its base components.

As discussed in Sect. 5, an important limitation of the library is the necessity
of additional run-time tests due to the lack of compile-time checking for miss-
ing decorations. Hopefully, the type-level programming techniques of Scala will
alleviate this issue in a future version of the library.

Future work should also widen the variety of available hybrids. Expanding
the palette of components (e.g. with Great Deluge [10] and Late Acceptance [4]
criteria) will allow a larger number of hybridisations to be explored inside the
Haiku framework.

References

1. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study (Princeton Series in Applied Mathematics).
Princeton University Press, Princeton (2007)

2. Beyer, H.G., Schwefel, H.P.: Evolution strategies - a comprehensive introduction.
Nat. Comput. 1(1), 3–52 (2002)

3. Burke, E.K., Gendreau, M., et al.: Hyper-heuristics: a survey of the state of the
art. J. Oper. Res. Soc. 64, 1695–1724 (2013)

4. Burke, E.K., Bykov, Y.: A late acceptance strategy in hill-climbing for examination
timetabling problems. In: Proceedings PATAT (2008)

5. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.:
Exploring hyper-heuristic methodologies with genetic programming. In: Mumford,
C.L., Jain, L.C. (eds.) Computational Intelligence. ISRL, vol. 1, pp. 177–201.
Springer, Heidelberg (2009)

6. Cambazard, H., Hebrard, E., OŚullivan, B., Papadopoulos, A.: Local search and
constraint programming for the post enrolment-based course timetabling problem.
Ann. Oper. Res. 194, 111–135 (2012)

7. Choi, C.W., Henz, M., Ng, K.B.: A compositional framework for search. In:
Pontelli, E. (ed.) Proceeding CICLOPS: Colloquium on Implementation of Con-
straint and LOgic Programming Systems, appeared as Technical report TR-CS-
003/2001, New Mexico State University. Paphos, November 2001

8. Desouter, B.: Modular search heuristics in Scala. Master’s thesis, Ghent University,
Belgium (2012). http://bdsouter.github.io/thesis/thesis.pdf

9. Gaspero, L., Schaerf, A.: Easylocal++: an object-oriented framework for the flex-
ible design of local-search algorithms. Softw. Pract. Exp. 33(8), 733–765 (2003)

10. Dueck, G.: New optimization heuristics: the great deluge algorithm and the record-
to-record travel. J. Comput. Phys. 104, 86–92 (1993)

11. Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective optimiza-
tion. Adv. Eng. Softw. 42, 760–771 (2011)

12. Fink, A., Voß, S.: Hotframe: a heuristic optimization framework. In: Voß, S.,
Woodruff, D. (eds.) Optimization Software Class Libraries, pp. 81–154. OR/CS
Interfaces Series, Kluwer Academic, Boston (2002)

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston (1995)

http://bdsouter.github.io/thesis/thesis.pdf

Haiku - a Scala Combinator Toolkit 139

14. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Norwell (1997)
15. Hutton, G., Meijer, E.: Monadic parsing in haskell. J. Funct. Program. 8(4), 437–

444 (1998)
16. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.

Sci. 220(4598), 671–680 (1983)
17. Leijen, D., Meijer, E.: Parsec: direct style monadic parser combinators for the real

world. Technical reports UU-CS-2001-27, Dep. of Comp. Sc., Univ. Utrecht (2001)
18. Liu, S., Bryant, B., Mernik, M., Črepinšek, M., Zubair, M.: PPCea: A Domain-

Specific Language for Programmable Parameter Control in Evolutionary Algo-
rithms. INTECH Open Access (2011)

19. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace pack-
age, Iterated Race for Automatic Algorithm Configuration. Technical report
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

20. Lukasiewycz, M., Glaß, M., Reimann, F., Teich, J.: Opt4J - A Modular Framework
for Meta-heuristic Optimization. In: Proceedings of the GECCO, pp. 1723–1730.
Dublin (2011)

21. Luke, S.: The ECJ Owner’s Manual (Oct 2010)
22. Marmion, M.-E., Mascia, F., López-Ibáñez, M., Stützle, T.: Automatic design of

hybrid stochastic local search algorithms. In: Blesa, M.J., Blum, C., Festa, P.,
Roli, A., Sampels, M. (eds.) HM 2013. LNCS, vol. 7919, pp. 144–158. Springer,
Heidelberg (2013)

23. Marmion, M.É., Mascia, F., López-Ibáñez, M., Stützle, T.: Towards the automatic
design of metaheuristics. In: Lau, H.C., Raidl, G., Hentenryck, P.V. (eds.) MIC
2013, Singapore, Aug 2013

24. McGillicuddy, D., Parkes, A.J., Nilsson, H.: An investigation into the use of Haskell
for dynamic programming. Proceedings of the PATAT (2014)

25. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005)

26. Moscato, P.: Memetic algorithms: a short introduction. In: New Ideas in Optimiza-
tion, pp. 219–234. McGraw-Hill Ltd., Maidenhead (1999)

27. Nguyen, T.T., Yao, X.: Continuous dynamic constrained optimization: the chal-
lenges. IEEE T Evol. Comput. 16(6), 769–786 (2012)

28. O’Sullivan, B., Goerzen, J., Stewart, D.: Real World Haskell. O’Reilly, North
Sebastopol (2008)

29. Özcan, E., Bilgin, B., Korkmaz, E.E.: A comprehensive analysis of hyper-heuristics.
Intell. Data Anal. 12(1), 3–23 (2008)

30. Perron, L.: Search procedures and parallelism in constraint programming. In:
Jaffar, J. (ed.) Principles and Practice of Constraint Programming. LNCS, vol.
1713, pp. 346–360. Springer, Berlin Heidelberg (1999)

31. Reinelt, G.: TSPLIB - A T.S.P. library. Technical reports 250, Universität Augs-
burg, Institut für Mathematik, Augsburg (1990)

32. Samulowitz, H., Sabharwal, A., Schrijvers, T., Tack, G., Stuckey, P.: Automated
design of search with composability (2013), 27th AAAI Conference on Artificial
Intelligence

33. Schrijvers, T., Stuckey, P., Wadler, P.: Monadic constraint programming. J. Funct.
Program. 19, 663–697 (2009)

34. Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H., Stuckey, P.: Search combina-
tors. Constraints 18(2), 269–305 (2013)

35. Senington, R., Duke, D.: Decomposing metaheuristic operations. In: Hinze, R. (ed.)
IFL 2012. LNCS, vol. 8241, pp. 224–239. Springer, Heidelberg (2013)

140 Z.A. Kocsis et al.

36. Senington, R.J.: Hybrid meta-heuristic frameworks: a functional approach. Ph.D.
thesis, University of Leeds (2013)

37. Soria-Alcaraz, J.A., Ochoa, G., Swan, J., Carpio, M., Puga, H., Burke, E.K.: Effec-
tive learning hyper-heuristics for the course timetabling problem. Euro. J. Oper.
Res. 238(1), 77–86 (2014)

38. Tang, K., Peng, F., Chen, G., Yao, X.: Population-based algorithm portfolios with
automated constituent algorithms selection. Inform. Sci. 279, 94–104 (2014)

39. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press,
Cambridge (2005)

40. Van Hentenryck, P., Michel, L.: Nondeterministic control for hybrid search. Con-
straints 11(4), 353–373 (2006)

41. Wagner, S., Kronberger, G.: Algorithm and experiment design with heuristic lab:
an open source optimization environment for research and education. In: Proceed-
ing GECCO Companion, pp. 1287–1316. ACM, New York (2012)

42. Wan, Z.: Functional Reactive Programming for Real-Time Reactive Systems. Ph.D.
thesis, Department of Computer Science, Yale University, December 2002

43. Woodward, J., Swan, J., Martin, S.: The ‘Composite’ design pattern in metaheuris-
tics. In: Proceedings of the GECCO Companion pp. 1439–1444. ACM, New York
(2014)

44. Woodward, J.R., Swan, J.: Template method hyper-heuristics. In: Proceedings of
the GECCO Companion, pp. 1437–1438. ACM (2014)

Parameter Control in Search-Based
Generation of Unit Test Suites

David Paterson, Jonathan Turner, Thomas White, and Gordon Fraser(B)

Department of Computer Science, The University of Sheffield, Sheffield, UK
Gordon.Fraser@sheffield.ac.uk

Abstract. Search-based testing supports developers by automatically
generating test suites with high coverage, but the effectiveness of a
search-based test generator depends on numerous parameters. It is unrea-
sonable to expect developers to understand search algorithms well enough
to find the optimal parameter settings for a problem at hand, and even
if they did, a static value for a parameter can be suboptimal at any
given point during the search. To counter this problem, parameter con-
trol methods have been devised to automatically determine and adapt
parameter values throughout the search. To investigate whether para-
meter control methods can also improve search-based generation of test
suites, we have implemented and evaluated different methods to control
the crossover and mutation rate in the EvoSuite unit test generation
tool. Evaluation on a selection of open source Java classes reveals that
while parameter control improves the values of mutation and crossover
rate successfully during runtime, the positive effects of this improvement
are often countered by increased costs of fitness evaluation.

1 Introduction

Search-based testing has been successfully applied to generate software tests in
various domains, such as unit tests for object-oriented classes [9,15]. Test gen-
eration tools implement efficient algorithms such as genetic algorithms (GAs),
which have many parameters that influence the effectiveness of the search, for
example mutation and crossover rates. A globally optimal setting of these para-
meters through tuning is difficult, as the best parameters depend on the specific
problem at hand. However, it is unlikely that a software developer wanting to
apply a search-based test generation tool knows enough about a genetic algo-
rithm to set these to an optimal value. Even if they did, the optimal values are
most likely to change during runtime [1]; for example, initially a higher mutation
rate may be more beneficial to foster exploration, whereas a lower mutation rate
for better exploitation may be preferrable in later parts of the search.

To overcome this problem, research has been carried out with the purpose of
automatically adapting these parameters throughout the search. This process is
referred to as Parameter Control (PC) [5]. Implementation of parameter control
has been positive in many application areas, which suggests that parameter con-
trol could also be applied to search-based test generation. To determine whether
c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 141–156, 2015.
DOI: 10.1007/978-3-319-22183-0 10

142 D. Paterson et al.

that is the case, we have implemented multiple different methods of parameter
control into the EvoSuite unit test generation tool [7]. Specifically, we imple-
mented a deterministic control method that depends only on the progress of
the search, an adaptive control method that changes values based on the overall
search performance, and self-adaptive control methods, which adapt parameters
based on individual fitness values. We applied these methods to control the muta-
tion and crossover rates in EvoSuite, and performed experiments to determine
if parameter control also provides a performance increase in search-based test
generation for object-oriented classes.

The experiments show that controlling parameters can have a major influ-
ence throughout the evolutionary search, but when optimising for unit test suites
there is the problem that more frequent mutation increases the costs of fitness
evaluation, which counters some of the beneficial effects of the control methods.
We found that a deterministic control method nevertheless leads to coverage
increase in seven out of ten classes, and self-adaptive control methods are partic-
ularly effective when controlling crossover rather than mutation, as the crossover
rate does not have an effect on the costs of fitness evaluation. However, adapting
the mutation and crossover rates per iteration has been shown to have negative
effects, with eight out of 10 classes achieving lower overall branch coverage.

This paper is organised as follows: Sect. 2 describes the search problem
addressed and introduces parameter control. Section 3 describes how different
control methods can be applied in the context of unit test generation, and Sect. 4
contains the results of an empirical evaluation of these techniques.

2 Background

This section describes search-based unit testing, parameter tuning and control
and the different categories of parameter control.

2.1 Search-Based Unit Test Generation

Search-based test generation is the application of meta-heuristic search algo-
rithms to create test cases [12]. Test cases are usually generated with the objec-
tive to build test suites that maximise code coverage criteria (e.g., statement or
branch coverage). The coverage criterion is encoded as a fitness function, which
can guide search algorithms like genetic algorithms to producing these test suites.
In the context of testing object-oriented classes, a test case is a unit test, i.e., a
small piece of code (e.g., a method consisting of a sequence of statements) that
checks whether the class under test is behaving as expected. The use of search-
based testing to generate unit tests was first proposed by Tonella [15], and this
approach as well as follow-up work (e.g., [3,9]) is based on genetic algorithms.

A genetic algorithm applies Darwin’s theory of evolution over a possibly
infinite search space. In unit test generation, the search space consists of all
possible unit tests for a class under test (CUT). Fraser and Arcuri [9] extended
this to a search space of unit test suites rather than unit tests, which is more

Parameter Control in Search-Based Generation of Unit Test Suites 143

efficient than generating individual tests iteratively [2]. Thus, the representation
we consider in this paper is a unit test suite, which consists of a set of unit tests,
each of which is a sequence of statements (e.g., method calls, constructor calls,
etc.). Much of the evolution process in a genetic algorithm can be compared with
a biological ecosystem, with a chromosome’s genes changing through mutation
and crossover, with the fittest members of each population surviving.

Mutation of test suites consists of mutation of the constituent unit tests, or
insertion of new unit tests into the test suite (deletion happens when a test case
has length 0 [9]). Each constituent unit test in a suite of size n is mutated with
probability 1/n, and the mutation of a unit test consists of deletion, insertion,
and modification of statements, which is performed with probabiliy 1/3. State-
ments in a unit test of length l are deleted or modified with probability 1/l, and
insertion uses a probability ρ, such that a new random statement is inserted at
a random position in the test with probability ρ, then another one is inserted
with probability ρ2, and so on until no statement is inserted.

Crossover treats the test suites like sequences and is typically implemented as
single point crossover. However, in order to avoid an undesired growth of the test
suite sizes (bloat), a relative position crossover [8] is preferable. Here, a random
value α is chosen from [0, 1], and then the first offspring contains the first α|P1|
test cases from the first parent P1, and the last (1 − α)|P2| test cases from the
second parent P2; the second offspring consists of the first α|P2| test cases from
the second parent, followed by the last (1 − α)|P1| test cases from the first.

Fitness calculation requires the execution of tests in a test suite, in order
to produce execution traces on which to calculate metrics related to the tar-
geted coverage objective (e.g., branch distances [10] when optimising for branch
coverage). Because the computational costs of executing tests are typically high
compared to the calculation of the actual fitness values from the execution traces,
these traces can be saved together with the individuals. Then, re-execution of
tests is only necessary when a test was changed through mutation; crossover
does not require re-execution of any tests [7].

2.2 Parameter Tuning and Control

In any genetic algorithm implementation, there are a number of parameters that
control the runtime operation of the method. These include mutation rate and
crossover rate, i.e., the probability with which these search operators are applied
on a new offspring. In many implementations, these values are set at the start
of the generation and never change.

The process of determining a good assignment of values to these parameters
is known as parameter tuning, and it can be beneficial to a genetic algorithm [6].
The process of tuning involves experimentation of the problem area with many
different combinations of parameter values and on large sets of different example
problems with the hope of finding a set of values that performs better than
any other set. Arcuri and Fraser [1] investigated the possibility of tuning the
parameters of a genetic algorithm in the context of unit test generation, but
found that default values suggested in the literature produced better results than

144 D. Paterson et al.

parameters tuned on any specific sample of classes. Indeed, since the problem of
search-based unit test generation is so varied, it seems unlikely to find parameter
tuning methods that perform consistently better than default.

In some cases, however, using a static value cannot lead to optimal results.
In mutation, for example, there are two ways a genetic algorithm can behave:
exploration, using a high mutation rate to explore a larger section of the search
space by changing each individual by an increased amount, and exploitation,
using a low mutation rate to make very minor adjustments to the individuals
when there is a relatively high overall fitness and exploration would result in too
much change. Bäck and Schütz [4] propose the idea that the mutation should
initially be exploring the search space, then further into the generations it should
look to exploit the population to home in on a solution. Controlling and adapting
the parameter values during the search is known as parameter control. Eiben
et al. [5] categorise parameter control methods into three classes:

Deterministic: Deterministic parameter control methods, such as the one
described by Bäck and Schütz [4], rely on the time or iteration progress
of algorithm to determine the mutation rate, therefore providing a function
of t. Deterministic methods by their nature, do not receive any feedback from
the genetic algorithm. These methods can be implemented when a mathe-
matical model of how a parameter should change over a period of time can
be produced, for example a 1/x curve. This is useful if, for instance, the algo-
rithm should explore the population at the start of generated (high quantity
of mutations) and exploit the population later in generation (low quantity
of mutations, high quantity of crossovers). Using deterministic parameter
control, the rates of all parameters at any given point t can be calculated.

Adaptive: An adaptive parameter control method may look at which parame-
ters are causing the most positive/negative impact on the best or average
fitness of a population, and reward the parameters that are having posi-
tive impact. For example, the method described by Lin et al. [11] controls
both mutation rate and crossover rate, seeing whether mutation or crossover
is providing more positive impact before increasing one and decreasing the
other by a small amount.

Self Adaptive: Self Adaptive parameter control uses the inherent properties of
genetic algorithms to its advantage, by adding parameters to the individuals
that are going to be mutated, and allowing evolution to occur not only on
the individual but the parameters as well. The individual’s parameters can
then be used instead of the algorithms global parameters. This theoretically
provides a way of calculating the ‘best’ mutation rates, because the better
mutation rates will provide fitter individuals.

3 Parameter Control in Unit Test Generation

In this section, we describe how existing parameter control methods can be
adapted to apply to search-based unit test suite generation. For each of the
three categories of parameter control we have chosen a representative technique
based on the literature.

Parameter Control in Search-Based Generation of Unit Test Suites 145

3.1 Mutation Strength in Mutating Unit Test Suites

As described in Sect. 2.1, the mutation of test suites is typically done using
probabilities based on the size of an individual, rather than fixed probabilities.
The intuition behind this choice is that with a mutation probability of 1/n for
a test suite of n tests, on average one test gets mutated. In order to apply
parameter control to mutations, this operator needs to be changed; however,
a variable mutation rate is not immediately applicable as the interpretation of
such a rate would be highly dependent on the size of an individual. Therefore,
we use a mutation strength [13], where the mutation parameter determines how
often the regular mutation operator is applied. The value of the mutation rate is
in the range [0, 1] and is interpreted as the percentage of individuals that should
be mutated on average. Thus, for a given test suite T and mutation rate M , the
mutation rate for that individual is calculated as m = M × |T |, and then we
apply a mutation with probability m, then another one with probability m − 1,
another one with probability m − 2, etc., until m ≤ 0.

3.2 Deterministic Parameter Control

The deterministic parameter control described by Bäck and Schütz [4] follows
the reasoning that mutation rate should decrease over time. The 1/x curve that
is generated by the following equation, which drastically reduces mutation rate
from a high initial point:

Pm(t) =
(

2 +
n − 2
T − 1

· t

)−1

where p0 = 1
2 and pT−1 = 1

n , T is the maximum possible number of generations,
t is the current generation number and n is the size of the individual. The
initial high values for mutation makes it possible for mass exploration during
early iterations. Early exploration allows the population to spread across the
problem domain and provides a greater chance of being able to converge on
a fitter individual at a later point. If this did not happen then the solution
range would only contain the genes of the random initial population. As the
algorithm progresses and mutation rate becomes closer to 0, mutation becomes
less likely to occur. This allows for crossover to exploit individuals in the current
population. This exploitation would hopefully allow for convergence towards the
fittest individual. When applying this in the context of unit test generation, there
are two difficulties: First, there is no fixed size n of the individuals — test suites
can have variable numbers of tests, and therefore due to the incorrect value of
the numerator in the equation, the generated curve tends to converge on 0 much
quicker than intended. This early convergence is detrimental to the algorithm,
and its effectiveness at mutating the initial population of test suites. Second, in
addition to variable sizes, the execution costs of different tests may vary greatly.
As a software developer applying a search-based test generation tool may not
want to wait for an undetermined amount of time but rather a fixed duration

146 D. Paterson et al.

(e.g., 1 min), the exact number of generations that will be executed in that
time cannot be known beforehand. We have therefore experimentally determined
the following function that approximates the Bäck and Schütz function, but is
neither dependent on the number of generations nor on the size of individuals:

Pm(t) = (Pmmax − Pmmin) · (2 +
15t

T − 1
)−1 + Pmmin

where Pmmax and Pmmin are the maximum and minimum possible values for
mutation (for EvoSuite these values are set at 1 and 0 respectively, however
this is dependent on the search problem). T is the total time the algorithm can
run for and t is the current time since the algorithm began. By adding 2 to the
value before ordering to the power of 1, the equation starts directly in the middle
of the maximum and minimum possible mutation values. Changing the value 15
to a higher value makes the curve steeper, whilst decreasing it makes the curve
more shallow. These values were chosen by experimentation in order to create an
optimal curve, changing these values would affect the rate of change and initial
value for mutation rate. Similarly to the original function, this function allows
for the early stages of the algorithm to have high values for mutation, allowing
for early exploration and later exploitation.

3.3 Adaptive Parameter Control

Lin et al. [11] described an adaptive control method that controls both muta-
tion and crossover rate. The algorithm, known as the Progressive Rate Genetic
Algorithm (PGRA), adapts the mutation rate and crossover rate during the run
of the genetic algorithm. By calculating the average increase in fitness provided
by both mutation and crossover, it is possible to find which function provides
the greatest contribution to the fitness of the general population. This can be
described simply by the following:

pc = pc + θ1 if C̃P > M̃P ,
pc = pc − θ1 if C̃P < M̃P ,

and
pm = pm + θ2 if C̃P < M̃P ,
pm = pm − θ2 if C̃P > M̃P ,

where pm and pc are mutation rate and crossover rate respectively. θ1 and θ2
are predefined constants, with the literature suggesting values of 0.01 to be most
optimal. M̃P and C̃P are the average mutation and crossover performance. M̃P
and C̃P are calculated by adding the increase in performance (e.g., increase in
fitness for a search problem where the fitness function should be maximised, or
decrease in fitness for a search problem where the fitness function should be min-
imised) in all individuals after mutation and crossover respectively, and dividing
this number by the amount of mutations and crossovers that have occured. For
example, if after five crossover operations the fitness values increase in total by
2.0, then the Crossover Performance (CP) would be 2.0/5 = 0.4

Parameter Control in Search-Based Generation of Unit Test Suites 147

For the above implementation of the PRGA, the literature suggests that
initial values of 0.5 for both mutation rate and crossover rate will provide the
most suitable solution. Despite this, we determined a value of 0.8 for crossover
rate and 0.1 for mutation rate through experiments to achieve the best fitness
values. These values may be specific for search-based test generation but it is
worthy of note.

3.4 Self-Adaptive Parameter Control

The final parameter control approach is a derivative of many other self-adaptive
approaches. By providing each individual with its own mutation and crossover
rate, this value is mutated once per iteration if the individual is mutated. The
mutation of these rates is carried out using Gaussian perturbation with a small
standard deviation, e.g., 0.05. When deciding to apply mutation to an individ-
ual, the mutation rate defined by that individual is used rather than a global
parameter. When applying crossover to two individuals, the average value of
their two crossover rates is used as common crossover rate. In doing this, indi-
viduals which have a more suitable mutation and crossover rate for the current
iteration are more likely to result in fitter offspring than others that do not, and
are therefore more likely to survive.

Since unlike the method devised by Lin et al., this method does not perform
a comparison between the benefit of mutation and crossover, it can be used
to control either or both parameters. In doing so it may be possible to find if
controlling one rate is beneficial over controlling another, or if controlling both
rates produces fitter individuals.

4 Empirical Evaluation

In order to determine how well these parameter control techniques work in the
context of unit test suite generation, we performed a set of experiments on a set
of open source classes. In this section, we summarise our findings for each of the
three types of control methods.

4.1 Experiment Set-Up

The parameter control techniques described in this paper were implemented into
the EvoSuite test generation tool [7], and the mutation operator was adapted
as described in Sect. 3.1 to allow for variation in the mutation strength. The
default value of mutation rate is set to 0.1, which was empirically determined to
perform similar to EvoSuite’s default mutation.

To study the behaviour of the different control techniques, 10 classes were
manually selected from the Apache Commons libraries [14]. The classes were
selected based on them being non-trivial in terms of the number of branches, as
a class with too few branches would lead to a solution being found too quickly
regardless of whether or not parameter control was used. Furthermore, classes

148 D. Paterson et al.

Table 1. Table showing the classes selected, the line numbers they have and the amount
of branches that EvoSuite uses as goals.

Project Class Lines of Coverable branches

Code (LOC)

org.apache.commons.cli CommandLine 152 49

GnuParser 62 21

HelpFormatter 416 143

Option 227 98

Options 106 33

Parser 206 75

org.apache.commons.collections4 ListUtils 248 89

CSVFormat 424 190

org.apache.commons.csv CSVParser 209 69

Lexer 245 141

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (milliseconds)

R
at

e

Mutation Rate
Crossover Rate
Baseline Mutation Rate
Baseline Crossover Rate

(a) Mutation rate over time for class
CSVFormat.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Time (milliseconds)

F
itn

es
s

Best Fitness
Best Baseline Fitness

(b) Fitness over time for class CSVFor-
mat.

Fig. 1. Deterministic parameter control applied in time to the CSVFormat class of the
org.apache.commons.csv package.

which required data from external sources (e.g., a database) were avoided, since
these classes pose specific problems and this study was to be done using the
default application scenario. See Table 1 for more information on the classes
chosen. EvoSuite ran on each of these 10 classes, with a maximum runtime
of 10 min (allowing for all searches to converge), with each parameter control
method being used independently. To ensure statistical correctness this process
was repeated 50 times per class and parameter control combination.

Other experiments were also done in an attempt to tune the parameters
used by the actual parameter control techniques. One such experiment ran to
determine the optimal start position for mutation and crossover rate for self

Parameter Control in Search-Based Generation of Unit Test Suites 149

adaptive parameter control. The values of 0.1 for mutation rate and 0.8 for
crossover rate were found to provide the most benefit.

Table 2. Average branch coverage and Â12 effect size statistics after 10 min. Significant
differences at p < 0.05 are shown in bold. Â12 > 0.5 means the control method is better
than the baseline, Â12 < 0.5 means it is worse.

Class Base Deterministic Adaptive SA/Xover SA/Mut. Self-Adaptive

Cov. Â12 Cov. Â12 Cov. Â12 Cov. Â12 Cov. Â12

CSVFormat 0.95 0.95 0.65 0.91 0.01 0.96 0.76 0.95 0.49 0.94 0.52

CSVParser 0.74 0.72 0.32 0.69 0.12 0.72 0.33 0.72 0.30 0.72 0.33

CommandLine 0.97 0.98 0.59 0.98 0.65 0.98 0.56 0.98 0.56 0.98 0.56

GnuParser 0.94 0.97 0.73 0.94 0.52 0.97 0.75 0.95 0.60 0.96 0.71

HelpFormatter 0.87 0.88 0.63 0.86 0.44 0.88 0.63 0.87 0.55 0.86 0.43

Lexer 0.78 0.76 0.44 0.66 0.05 0.80 0.66 0.73 0.31 0.72 0.27

ListUtils 0.91 0.91 0.66 0.89 0.27 0.91 0.65 0.90 0.41 0.90 0.43

Option 1.00 1.00 0.51 0.98 0.21 1.00 0.51 1.00 0.49 1.00 0.45

Options 1.00 1.00 0.50 1.00 0.47 0.99 0.45 0.99 0.42 0.99 0.45

Parser 0.75 0.80 0.65 0.62 0.17 0.85 0.76 0.81 0.66 0.84 0.74

4.2 Results

Table 2 summarises the branch coverage achieved after 10 min for each of the
classes and techniques. The default fitness function in EvoSuite is branch cov-
erage, therefore this can be used as the main metric on whether to judge if a
parameter control method performs better than baseline. Deterministic parame-
ter control leads to a significant improvement on the GnuParser class, and a
non-significant increase on six other classes. For CSVParser and Lexer there is
a non-significant decrease in coverage, and for class Option both techniques
achieve full coverage in the 10 min. Adaptive parameter control is slightly,
but non-significantly, better on CommandLine and GnuParser, but significantly
worse on six other classes. Self-adaptive control of the crossover rate leads to an
improvement on eight classes (three significant), and a non-significant decrease
on Options and CSVParser. Using self-adaptive control for the mutation rate
leads to an increase in four classes (significant for CommandLine, but worse cov-
erage on six classes (significant for CSVParser). The combination of both para-
meters leads to a significant increase on GnuParser and Parser, and a non-
significant increase on two; and decrease on six classes (significant for Lexer).
For all classes, the differences in coverage are small, which is likely due to 10 min
being ample time for EvoSuite to achieve coverage with most reasonable para-
meter settings. Therefore, in the remainder of this section we take a closer look
at how the parameters and fitness evolved throughout the search.

150 D. Paterson et al.

4.3 Deterministic Parameter Control

Figure 1a shows how the mutation rate starts at 0.5 as suggested by Bäck and
Schütz [4], and then quickly drops down to lower values. The high mutation
rate at the beginning achieves quick growth of the individuals, and in the early
phases of the search this leads to an improvement in fitness. All 10 classes show
an improvement in fitness after 400 generations, in particular Option, from the
org.apache.commons.cli package, where there was a 25 % increase in fitness
when using parameter control. The Option class (shown in Fig. 2a) had the
lowest fitness value out of all 10 tested classes, bringing forward the hypothesis
that deterministic parameter control performs better on classes that the baseline
performs well on. By contrast, the CSVParser class shows almost no difference
from the baseline.

0 100 200 300 400

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Iteration

F
itn

es
s

Best Fitness
Best Baseline Fitness

(a) Fitness values for Option class.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0.
2

0.
4

0.
6

0.
8

1.
0

Time (milliseconds)

F
itn

es
s

Best Fitness
Best Baseline Fitness

(b) Fitness values for Option class.

Fig. 2. Fitness values when using deterministic parameter control on the Option class
of the org.apache.commons.cli package.

The improvement in fitness is less pronounced when viewing the evolution
over time. In particular, for the Option class, 100 % coverage is achieved after
10 min with and without control, but it seems that the mutation rate drops too
low to be useful (i.e., for there to be enough mutations to advance the popula-
tion). In Fig. 2b, the baseline surpasses parameter control around 400 seconds
(4e+05 milliseconds). A possible reason for this is that using deterministic para-
meter control, once a mutation rate reaches such a low value that few mutations
are occurring, it is impossible to recover from local optima, since the function is
based on time alone.

4.4 Adaptive Parameter Control

The adaptive method devised by Lin et al. [11] changes the mutation and
crossover rates at the end of every generation, depending on the performance of
the operators while generating a new population. On the whole, the self-adaptive

Parameter Control in Search-Based Generation of Unit Test Suites 151

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

R
at

e

Mutation Rate
Crossover Rate
Baseline Mutation Rate
Baseline Crossover Rate

(a) Mutation and crossover rates.

0 100 200 300 400

0.
6

0.
7

0.
8

0.
9

1.
0

Iteration

F
itn

es
s

Best Fitness
Best Baseline Fitness

(b) Fitness.

Fig. 3. Adaptive parameter control applied in iterations to the Option class of the
org.apache.commons.cli package.

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

R
at

e

Mutation Rate
Crossover Rate
Baseline Mutation Rate
Baseline Crossover Rate

(a) Mutation and crossover rates.

0 100 200 300 400

0.
6

0.
7

0.
8

0.
9

1.
0

Iteration

F
itn

es
s

Best Fitness
Best Baseline Fitness

(b) Fitness.

Fig. 4. Adaptive parameter control applied in iterations to the GnuParser class.

control method improves the fitness at 400 generations in 7 out of the 10 classes,
with 5 of them being a significant improvement.

Figure 3a shows an example where the mutation and crossover rate for class
Option initially stay close to the default values, with an improvement over the
baseline fitness. The constant adaptation of crossover and mutation rates may
allow the method to escape local minima to find a more optimal solution. For
instance, if stuck in a local minimum, crossover would be expected to provide
no increase in fitness, whereas mutation may increase the fitness by a larger
margin, but with less probability. In this case mutation would be rewarded
and therefore would be more influential in further iterations. Interestingly, after
some time mutation seems to become more influential than crossover, which
leads to an increase in mutation and a decrease in crossover probability. Even-
tually, the mutation rate even overtakes the crossover rate. This behaviour can
be observed in all examples, and sometimes occurs even quicker, for example see

152 D. Paterson et al.

0 100 200 300 400

0.
85

0.
90

0.
95

1.
00

Iterations

N
or

m
al

is
ed

 fi
tn

es
s

va
lu

e
Adaptive
Baseline

(a) Plot of average fitness across 10
classes in terms of iterations.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0.
85

0.
90

0.
95

1.
00

Time (milliseconds)

N
or

m
al

is
ed

 fi
tn

es
s

va
lu

e

Adaptive
Baseline

(b) Plot of average fitness across 10
classes in terms of time.

Fig. 5. Iteration and Time comparison of fitness for Adaptive Parameter Control vs
Baseline.

class GnuParser shown in Fig. 4a. It is likely that in the initial phases of the
search different test suites cover different parts of the class, such that crossover
is particularly beneficial; later on in the search all test suites will cover the same
branches, and the remaining branches often provide little or no guidance (e.g.,
boolean flags, reference comparisons, etc.). In these cases, there is less benefit
from using crossover, whereas mutation will lead to coverage of new branches.
Overall, this setting of parameters is justified in terms of the achieved improve-
ment in fitness (Fig. 4b).

By design, the method devised by Lin et al. [11] performs very well when
viewed in terms of iterations. Figure 5a shows that after approximately 200 iter-
ations the method begins to drastically improve over baseline. However, higher
mutation rates increase the costs of fitness evaluations: Test cases are only exe-
cuted when mutated, so a higher mutation rate will lead to more test executions.
Thus, when viewing the effect of adaptive control over time the result looks dif-
ferent: It is clear that when viewing best individual fitness in terms of time there
is no improvement over baseline as shown by Fig. 5. The probable cause for this
is that in 7 out of 10 classes the mutation rate reaches a level that will severely
increase the iteration time of the algorithm due to the high cost of mutation.
It is clear that maintaining a low iteration time, and therefore increasing the
amount of iterations that can occur is essential in achieving optimal efficiency
in the genetic algorithm.

4.5 Self-Adaptive Parameter Control

Unlike the adaptive parameter control used, self-adaptive control can be applied
to parameters independently. We therefore consider controlling mutation and
crossover rate individually and in combination. The results in Fig. 6(a), (b) and
(c) show the self adaptive parameter control method working for 10 min of the

Parameter Control in Search-Based Generation of Unit Test Suites 153

genetic algorithm. Figure 6(a) is of both crossover and mutation rate being con-
trolled and shows that the average fitness of the best individual across 10 classes
was consistently better than the baseline through the entire run. An identical
result can be seen in Fig. 6(b) which shows only mutation rate being controlled.
However, Fig. 6(c) shows that controlling only crossover was substantially better
in regards to time than the other two.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0.
85

0.
90

0.
95

1.
00

Time (milliseconds)

N
or

m
al

is
ed

 fi
tn

es
s

va
lu

e

Self Adaptive
Baseline

(a) Average Fitness of Best Individual
of Self Adaptive PC controlling both
rates vs. baseline.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0.
85

0.
90

0.
95

1.
00

Time (milliseconds)

N
or

m
al

is
ed

 fi
tn

es
s

va
lu

e

Self Adaptive (Mutation)
Baseline

(b) Average Fitness of Best Individ-
ual of Self Adaptive PC controlling
mutation rate vs. baseline.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0.
85

0.
90

0.
95

1.
00

Time (milliseconds)

N
or

m
al

is
ed

 fi
tn

es
s

va
lu

e

Self Adaptive (Crossover)
Baseline

(c) Average Fitness of Best Individ-
ual of Self Adaptive PC controlling
crossover rate vs. baseline.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (milliseconds)

R
at

e

Mutation Rate
Crossover Rate
Baseline Mutation Rate
Baseline Crossover Rate

(d) Parameter Rates of Self Adaptive
PC controlling only crossover on class

.

Fig. 6. Self adaptive parameter control applied to EvoSuite.

The average mutation rate of self adaptive changed dramatically depending
on what problem the genetic algorithm was facing. When testing some classes,
the mutation rate would increase above the default mutation rate extremely and
stay there, whereas with others the mutation rate would only slightly fluctu-
ate around the default value. One example class which causes mutation rate to

154 D. Paterson et al.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Time (milliseconds)

F
itn

es
s

Best Fitness
Best Baseline Fitness

(a) Average fitness of best individual.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (milliseconds)

R
at

e

Mutation Rate
Crossover Rate
Baseline Mutation Rate
Baseline Crossover Rate

(b) Parameter rates.

Fig. 7. Self adaptive parameter control applied to the mutation and crossover rate on
CommandLine class.

increase is CommandLine from the org.apache.commons.cli package. The fit-
ness of the CommandLine class levels out before the 1 min mark (Fig. 7(a)). This
could happen because the mutation rate has fallen low when being controlled
and the local search has been diminished, or could be a local optimum. When
this happens, the mutation rate starts to rise (Fig. 7(b)). The reason for this is
that as no individual is getting fitter, the mutation rate cannot evolve so will
diversify through the population. As the limits for mutation rate are 0.01 and
1, the value shown, which is the average mutation rate of the entire population,
will tend to the half way value between these limits. This also has the positive
effect of increasing the mutation rate which may help bypass a local optimum.

The self adaptive method that controls only mutation performed similar to
controlling both parameters. This had the same trends for mutation rate that
controlling both did (for example, in the CommandLine class, the fitness straight-
ened and mutation rate started to increase to half way within the range). This
also shows that the mutation operator is dominant in EvoSuite and will affect
the fitness of an individual more than crossover. This will be discussed in more
detail below.

Finally, the method which only controlled crossover outperformed both other
methods. A plausible explanation as to why this outperformed the other two
methods could be that this method managed to do more iterations than the
other methods that controlled mutation, as mutation never increased, and so
fewer tests had to be revalidated, and subsequently the population of the genetic
algorithm evolved more. This meant that more individuals were eliminated and
a better fitness could be found. However, Fig. 6(d) shows the average crossover
rate over time and shows that the crossover rate never stabilised when being
controlled alone. That fact that mutation did find points that seemed stable
shows that mutation influences an individual’s fitness more than crossover.

Due to the behaviour of crossover rate and the values it changes to, it appears
that some parameters are less closely linked to the fitness of an individual. This

Parameter Control in Search-Based Generation of Unit Test Suites 155

means that these parameters could be controlled but will never settle on the
correct rate. If this is the case, it is likely that there is a range of rates that will
perform similarly and the value will fluctuate in this range.

5 Conclusions

Parameter control has been successfully applied in different application areas of
meta-heuristic search. In this paper, we investigated whether parameter control
also leads to an improvement in the context of search-based generation of unit
test suites. We implemented a deterministic, an adaptive, and a self-adaptive
control method in the EvoSuite unit test generation tool, and used these to
control the mutation and crossover rates in the underlying genetic algorithm.

Our experiments showed that controlling the mutation rate in EvoSuite
usually has advantages when comparing the behaviour in terms of iterations
of the genetic algorithm. However, a typical application scenario of EvoSuite
would use time as a stopping condition rather than iterations, and in this case
the influence of the mutation rate on the costs of fitness evaluations dramati-
cally increase iteration times, which can lead to less evolution in the same time.
Despite this, parameter control generally increases the fitness of the best indi-
vidual in search-based software testing when using deterministic or self adaptive
methods, and adaptive methods do not increase the fitness frequently due to the
rapidly increasing iteration time that a high mutation rate can have.

Our findings suggest future work to refine existing control methods to take
the costs of fitness evaluations into account. Furthermore, rather than controlling
the rate of mutations, in the case of unit test generation it may be more beneficial
to control and adapt the details of the mutation operator (e.g., whether to insert
or delete statements), rather than its strength.

Acknowledgments. This work was supported by the EPSRC project “EXOGEN”
(EP/K030353/1).

References

1. Arcuri, A., Fraser, G.: Parameter tuning or default values? An empirical investi-
gation in search-based software engineering. Empir. Softw. Eng. 18(3), 594–623
(2013). http://dx.doi.org/10.1007/s10664-013-9249-9

2. Arcuri, A., Fraser, G.: On the effectiveness of whole test suite generation. In:
Le Goues, C., Yoo, S. (eds.) SSBSE 2014. LNCS, vol. 8636, pp. 1–15. Springer,
Heidelberg (2014)

3. Baresi, L., Lanzi, P.L., Miraz, M.: Testful: an evolutionary test approach for java.
In: IEEE International Conference on Software Testing, Verification and Validation
(ICST), pp. 185–194 (2010)

4. Bäck, T., Schütz, M.: Intelligent mutation rate control in canonical genetic algo-
rithms. In: Michalewicz, M., Raś, Z.W. (eds.) ISMIS 1996. LNCS, vol. 1079, pp. 158–
167. Springer, Heidelberg (1996). http://dx.doi.org/10.1007/3-540-61286-6 141

http://dx.doi.org/10.1007/s10664-013-9249-9
http://dx.doi.org/10.1007/3-540-61286-6_141

156 D. Paterson et al.

5. Eiben, A., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algo-
rithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)

6. Eiben, A., Smit, S.: Evolutionary algorithm parameters and methods to tune them.
In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 15–36.
Springer, Berlin Heidelberg (2012)

7. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: ACM Symposium on the Foundations of Software Engineering (FSE),
pp. 416–419 (2011)

8. Fraser, G., Arcuri, A.: Handling test length bloat. Softw. Test. Verif. Reliab. 23(7),
553–582 (2013)

9. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. (TSE)
39(2), 276–291 (2013)

10. Korel, B.: Automated software test data generation. IEEE Trans. Softw. Eng. 16,
870–879 (1990)

11. Lin, W.Y., Lee, W.Y., Hong, T.P.: Adapting crossover and mutation rates in
genetic algorithms. J. Inf. Sci. Eng. 19(5), 889–903 (2003)

12. McMinn, P.: Search-based software test data generation: a survey: research articles.
Softw. Test. Verif. Reliab. 14(2), 105–156 (2004)

13. Stoean, C., Stoean, R.: Support Vector Machines and Evolutionary Algorithms for
Classification. Springer, Switzerland (2014)

14. The Apache Software Foundation: Apache commons released components (2015).
http://commons.apache.org/components.html

15. Tonella, P.: Evolutionary testing of classes. In: ACM International Symposium on
Software Testing and Analysis (ISSTA), pp. 119–128 (2004)

http://commons.apache.org/components.html

Hypervolume-Based Search for Test Case
Prioritization

Dario Di Nucci1(B), Annibale Panichella2, Andy Zaidman2,
and Andrea De Lucia1

1 University of Salerno, Salerno, Italy
{ddinucci,adelucia}@unisa.it

2 Delft University of Technology, Delft, The Netherlands
{a.panichella,a.e.zaidman}@tudelft.nl

Abstract. Test case prioritization (TCP) is aimed at finding an ideal
ordering for executing the available test cases to reveal faults earlier.
To solve this problem greedy algorithms and meta-heuristics have been
widely investigated, but in most cases there is no statistically significant
difference between them in terms of effectiveness. The fitness function
used to guide meta-heuristics condenses the cumulative coverage scores
achieved by a test case ordering using the Area Under Curve (AUC) met-
ric. In this paper we notice that the AUC metric represents a simplified
version of the hypervolume metric used in many objective optimization
and we propose HGA, a Hypervolume-based Genetic Algorithm, to solve
the TCP problem when using multiple test criteria. The results shows
that HGA is more cost-effective than the additional greedy algorithm on
large systems and on average requires 36 % of the execution time required
by the additional greedy algorithm.

Keywords: Test case prioritization · Genetic algorithm · Hypervolume

1 Introduction

Regression testing is aimed at verifying that software changes do not affect the
unchanged parts compromising their behaviours. Many approaches have been
proposed in literature for reducing the effort of regression testing [22,29], which
remains a particular expensive maintenance activity. One of these approaches is
test case prioritization (TCP) [11,25]. TCP is aimed at finding an ordering for
executing the available test cases, with the goal of executing those test cases that
are more likely to reveal faults earlier [12]. Most of the proposed techniques for
TCP are based on a coverage criterion [29], such as branch coverage [25], used
as a surrogate to prioritize test case with the idea that test cases having higher
code coverage also have a higher probability to reveal faults. Once a coverage
criterion is chosen, search algorithms can be applied for finding the ordering
maximizing the selected criterion.

c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 157–172, 2015.
DOI: 10.1007/978-3-319-22183-0 11

158 D. Di Nucci et al.

Greedy Algorithms have been widely investigated in literature for test case
prioritization, such as simple greedy algorithms [29], additional greedy algo-
rithms [25], 2-optimal greedy algorithms [22], or hybrid greedy algorithms [15].
Other than greedy algorithms, meta-heuristics have been applied as alternative
search algorithms to test case prioritization. To allow the application of meta-
heuristics, proper fitness functions have been developed [22], such as the Average
Percentage Block Coverage (APBC), or the Average Percentage Statement Cov-
erage (APSC). Each fitness function condenses the cumulative coverage scores
achieved by a test case ordering using the Area Under Curve (AUC) metric. As
such, multiple points are condensed in a single scalar value that can be used
as a fitness function of meta-heuristics such as single-objective genetic algo-
rithms. Later work on search-based TCP also employed multi-objective genetic
algorithms considering different AUC-based metrics as different objectives to
optimize [20,21]. Previous work shows that in most cases there is no statis-
tically significant difference between genetic algorithms and additional greedy
approaches in terms of effectiveness, i.e., in terms of the capability of the gener-
ated orderings to reveal regression faults earlier [22].

In this paper we notice that the AUC metrics used in the related literature
for TCP represents a simplified version of the hypervolume metric [2], which is a
widely know metric in many-objective optimization. Indeed, in many-objective
optimization the problem of condensing multiple criteria has already been inves-
tigated by using the more general concept of hypervolume under manifold [2],
which represents a generalization for the higher dimensional objective space of
the AUC-based metrics used in previous TCP studies. Indeed, we show that the
hypervolume metric allows to condense not only a single cumulative code cover-
age (as done by previous AUC metrics used in TCP literature) but also multiple
testing criteria, such as the test case execution cost or further coverage criteria, in
only one scalar value. Therefore, in this paper we propose HGA, a Hypervolume-
based Genetic Algorithm to solve the TCP problem when using multiple criteria.
To show the applicability of the proposed algorithm, we conducted an empir-
ical study involving six real world open-source programs. The results achieved
shows that HGA is more cost-effective than the additional greedy algorithm on
large systems and on average requires 36 % of the execution time required by
the additional greedy algorithm. As a further contribution, we also show that for
TCP the computation of the hypervolume metric is polynomial with respect to
the number of the testing criteria, while in general for traditional optimization
problems it is exponential.

2 Background and Related Work

Test Case Prioritization (TCP) has been widely investigated in literature. The
most investigated direction regards the choice of a proper testing criterion to use
for generating a test case ordering aimed at maximizing the real fault detection
rate. Since the fault capability can not be known to the tester in advance until
the test cases are executed according to the chosen ordering, researchers have

Hypervolume-Based Search for Test Case Prioritization 159

proposed to use surrogate metrics which are in some way correlated with the
fault detection rate [29]. Code coverage is one of the most widely used priori-
tization criterion, such as branch coverage [25], statement coverage [11], block
coverage [8], and function or method coverage [13]. Other prioritization criteria
were also used instead of structural coverage, such as interaction [3], clustering-
based [5], and requirement coverage [27].

In all the aforementioned works, once a prioritization criterion is chosen, a
greedy algorithm is used to order the test cases according to the chosen criterion.
Two main greedy strategies can be applied [15,32]: the total strategy selects
test cases according to the number of code elements they cover, whereas the
additional strategy iteratively selects a next test case that yields the maximal
coverage of code elements not yet covered by previously selected test cases.
Recently, Hao et al. [15] and Zhang et al. [32] proposed a hybrid approach that
combines total and additional coverage criteria showing that their combination
can be more effective than the individual components. Greedy algorithms have
also been used to combine multiple testing criteria such as code coverage and
cost. For example, Elbaum et al. [10] and Malishevsky et al. [23] considered
code coverage and execution cost, where the additional greedy algorithm was
customized to condense the two objectives in only one function (coverage per
unit cost) to maximize. Three-objective greedy algorithms have been also used to
combine statement coverage, history faults coverage and execution cost [24,29].

Other than greedy algorithms, meta-heuristics have been investigated as
alternative search algorithms to test case prioritization. Li et al. [22] compared
additional greedy algorithm, 2-optimal greedy, hill climbing and genetic algo-
rithms for code coverage based TCP. To allow the application of meta-heuristics
they developed proper fitness functions: APBC (Average Percentage Block Cov-
erage), APDC (Average Percentage Decision Coverage) or APSC (Average Per-
centage Statement Coverage). Each of these metrics condenses the cumulative
coverage scores (e.g., branch coverage) achieved when considering the test cases
in the given order sequentially [22] using the Area Under Curve (AUC) met-
ric. This area is delimited by the cumulative points whose y-coordinates are
the cumulative coverage scores (e.g., statement coverage) achieved when vary-
ing the number of executed test cases (x-coordinates) according to a specified
ordering [22]. Since this metric allows to condense multiple cumulative points in
only one scalar value, single-objective genetic algorithms can be applied to find
an ordering maximizing the AUC. According to the empirical results in [22], in
most cases the difference between the effectiveness of permutation-based genetic
algorithms and additional greedy approaches is not significant.

Later works highlighted that given the multi-objective nature of the TCP
problem, permutation-based genetic algorithms should consider more than one
testing criterion. For example, in a further paper Li et al. [21] proposed a
two-objective permutation-based genetic algorithm to optimize APSC and exe-
cution cost required to reach the maximum statement coverage (cumulative
cost). They use a multi-objective genetic algorithm, namely NSGA-II, to find
a set of Pareto optimal test case orderings representing optimal compromises

160 D. Di Nucci et al.

between the two corresponding AUC-based criteria. Similarly, Islam et al. [20]
used NSGA-II to find Pareto optimal test case orderings representing trade-offs
between three different AUC-based criteria: (i) cumulative code coverage, (ii)
cumulative requirement coverage, and (iii) cumulative execution cost. Both these
two multi-objective approaches to test case prioritization [20,21] have important
drawbacks. Firstly, they can provide hundreds of orderings representing trade-
offs between AUC metrics and not between the selected testing criteria. Fur-
thermore, no guidelines are given to guide the decision maker in selecting the
ordering to use. Another important limitation of these classical multi-objective
approaches is that they lose their effectiveness as the problem dimensionality
increases, as demonstrated by previous work in numerical optimization [18].
Therefore, other non classical many-objective solvers must be investigated in
order to deal with multiple (many) testing criteria. Finally, in [20–22] there is
no empirical evidence of the effectiveness of NSGA-II with respect to simple
heuristics, such as greedy algorithms, in terms of cost-effectiveness.

In this paper we notice that the most natural way to deal with the multi-
objective TCP problem is represented by the hypervolume-based solvers since the
AUC metrics used in the related literature for TCP represent a specific simplified
version of the hypervolume metric [2]. Indeed, in many-objective optimization
the hypervolume metrics is widely used to condense points from a higher dimen-
sional objective space in only one scalar value. Instead of using the Area Under
Curve to condense multiple points, the hypervolume metric uses the more gen-
eral concept of hypervolume under manifold for this aim [2]. For these reasons, in
this paper we propose to use an hypervolume metric to solve the multi-objective
TCP problem. Moreover, we determine that because of the monotonicity prop-
erties of the coverage criteria, the computation of the hypervolume for TCP
requires polynomial time versus the exponential time required for traditional
many-objective problems.

3 Hypervolume Indicator for TCP

In many-objective optimization there is a growing trend to solve many-objective
problems using quality scalar indicators to condense multiple objectives into
a single objective [2]. Therefore, instead of optimizing the objective functions
directly, indicator-based algorithms are aimed at finding a set of solutions that
maximizes the underlying quality indicator [2]. One of the most popular indi-
cators is the hypervolume, which measures the quality of a set of solutions as
the total size of the objective space that is dominated by one (or more) of such
solutions (combinatorial union [2]). For two-objective problems, the hypervol-
ume corresponds to the area under curve, i.e., the proportion of the area that is
dominated by a given set of candidate solutions.

To illustrate intuitively the proposed hypervolume metric, let us consider
for simplicity only two testing criteria: (i) maximizing the statement coverage
and (ii) minimizing the execution cost of a test suite. When considering the

Hypervolume-Based Search for Test Case Prioritization 161

test cases in a specific order, the cumulative coverage and the cumulative exe-
cution cost reached by each test case draw a set of points within the objec-
tive space. For example, consider the test suite T = {t1, t2, . . . , tn} with the
following statement coverage Cov = {covS(t1), covS(t2), . . . , covS(tn)} and exe-
cution cost Cost = {cost(t1), cost(t2), . . . , cost(tn)}. As depicted in Fig. 1(a),
if we consider the ordering τ = 〈t1, t2, . . . , tn〉 we can measure the cumulative
scores as follows: the first test case t1 covers a specific set of code statements
covS(t1) with cost equal to cost(t1) (first cumulative point p1); the second test
case in the ordering t2 reaches a new cumulative statement coverage covS(t1, t2)
= covS(t1) ∪ covS(t2) with cost(t1, t2) = cost(t1) + cost(t2) (second cumulative
point p2); and so on. Thus, each test case prioritization corresponds to a set
of points in the two-objective space denoted by the two testing criteria, i.e.,
statement coverage and execution cost in our example (see Fig. 1(a)). These
points are of weakly monotonically increasing since both cumulative coverage
and cumulative cost increase when adding a new test case from the ordering,
i.e., covS(t1) � covS(t1, t2) and cost(t1) � cost(t1, t2).

Fig. 1. Cumulative points in two- and three-objective test case prioritization. The gray
area (or volume) denotes the portion of objective space dominated by the cumulative
points P (τ).

Given this set of points we can measure how quickly the given ordering
τ optimizes the two objectives by measuring the proportion of the area domi-
nated by the corresponding cumulative points P (τ), denoted by the gray area in
Fig. 1(a). The dominated area is represented by all points in the objective space
that are worse than the cumulative points according to the concept of dominance
in the multi-objective paradigm:

162 D. Di Nucci et al.

Definition 1. We say that a point X dominates another point Y (also written
X >p Y) if and only if the values of the objective functions satisfy:

cost(X) � cost(Y) and covS(X) > covS(Y)
or

cost(X) < cost(Y) and covS(X) � covS(Y)
(1)

Two different orderings correspond to two different cumulative points and then
two different dominated areas. Therefore, we can compare the corresponding
fraction of dominated areas to decide whether one candidate test case order-
ing is better or not than another one (fitness function): larger dominated areas
imply faster statement coverage rate. In this two-objective space the dominated
area can easily be computed as the sum of the rectangles of width [cost(pi+1) −
cost(pi)] and height covS(pi) as reported in Fig. 1(a). Similarly, if we consider
a third testing criteria (such as branch coverage covB(pi)) each candidate pri-
oritization corresponds to a set of points in a three-dimensional space and, in
this case, the dominated proportion of the objective space is represented by a
volume instead of an area, as depicted in Fig. 1(b). Since even in this three-
objective space the cumulative points are always weakly monotonically increas-
ing, the dominated volume can be computed as the sum of the parallelepipeds
of width [cost(pi+1) − cost(pi)], height covS(pi) and depth covB(pi). For more
than three testing criteria the objective space dominated by a set of cumulative
points is called a hypervolume and represents a generalization of the area for a
higher dimensional space.

Without loss of generality, let T = {t1, t2, t3, . . . , tn} be a test suite of size
n and F = {cost, f1, . . . , fm} a set of testing criteria used to prioritize the
test case in T , where cost denotes the execution cost of each test case while
f1, . . . , fm are the remaining m testing criteria to maximize. Given a permutation
τ of test case in T we can compute the corresponding set of cumulative points
P (τ) = {p1, . . . , pn} obtained by cumulating the scores cost, f1, . . . , fm achieved
by each test case in the order τ .

Definition 2. The hypervolume dominated by a permutation P (τ) of test cases
can be computed as follows:

IH(τ) =
(n−1)∑

i=1

[cost(pi+1) − cost(pi)] × f1(pi) × · · · × fm(pi) (2)

where [cost(pi) − cost(pi+1)] × f1(pi) × · · · × fm(pi) measure the hypervolume
dominated by a generic cumulative point pi but non-dominated by the next point
pi+1 in the ordering τ . Since in test case prioritization the maximum values of all
the testing criteria are known (e.g., the maximum execution cost or the maximum
statement coverage are already known), we can express the hypervolume as a
fraction of the whole objective space as follows:

Hypervolume-Based Search for Test Case Prioritization 163

Definition 3. The fraction of the hypervolume dominated by a permutation
P (τ) of test cases is:

IHP (τ) =

(n−1)∑

i=1

[cost(pi+1) − cost(pi)] × f1(pi) × · · · × fm(pi)

cost(pn) × fmax
1 × . . . fmax

m

(3)

where cost(pn) is the execution cost of the whole test suite T . Such a metric
ranges in the interval [0; 1]. It is equal to +1 in the ideal case where the test case
ordering allows to reach the maximum test criteria scores independently from
the execution cost value cost(pi). A higher IHP (τ) mirrors a higher ability of
the prioritization τ in maximizing the testing criteria with lower cost. In this
paper we consider the IHP (τ) metric as suitable fitness function to guide search
algorithms, such as genetic algorithm, in finding the optimal ordering τ in multi-
objective test case prioritization. As such, we propose a new genetic algorithm
named HGA (Hypervolume-based Genetic Algorithm).

Since in TCP a candidate test case ordering corresponds to a set of monoton-
ically increasing cumulative scores (as described in the previous section) we can
use the Eq. 3 for computing the dominated hypervolume instead of the more
expensive algorithm used in traditional many-objective optimization [2]. Specif-
ically, the IHP (τ) metric sums up the slices of dominated hypervolume delim-
ited by two subsequent cumulative points. Thus, let m be the number of the
testing criteria and let n be the number of cumulative points (corresponding
to the size of the test suite), the IHP (τ) requires to sum the n hypervolume
slices, each one computed as the multiplication of m test criteria scores. Thus,
the overall computational time is O(n × m). Conversely, in traditional many-
objective optimization the points delimiting the non-dominated hypervolume
are non-monotonically increasing and thus, the computation of hypervolume
metric requires a more complex algorithm which is exponential with respect to
the number of objectives m [2], or testing criteria for TCP.

The IHP (τ) metric proposed in this paper can be viewed as a generaliza-
tion of the cumulative scores used in previous work on search-based test case
prioritization. For example, the APSC metric measures the average cumulative
fraction of statements coverage as the Area Under Curve delimited by the test
case ordering with respect to the cumulative statement coverage scores [22].
Under the light of the proposed hypervolume metric, APSC can be viewed as
a simplified version of IHP (τ) where all test cases have execution cost equal to
one and only the statement coverage is considered as testing criterion. A similar
consideration can be performed for all the other cumulative fitness functions
used in previous work on search-based test case prioritization [20–22].

4 Empirical Evaluation

The goal of this study is to evaluate the Hypevolume-based GA, with the pur-
pose of solving the test case prioritization problem. The quality focus of the study

164 D. Di Nucci et al.

is represented in terms of three—possibly conflicting—testing criteria which are
pursued when performing test case prioritization, namely execution cost (to min-
imize), statement coverage (to maximize), and past fault coverage (to maximize).
The context of our study consists of six open-source and industrial programs
available from the Software-artifact Infrastructure Repository (SIR) [19]: four
GNU open-source programs bash, flex, grep, and sed; and two programs of
the Siemens suite, namely printtokens, and printtokens2. Their main charac-
teristics are summarized in Table 1. We selected these programs since they have
been used in previous work on regression testing [4,7,22,30,31], hence, allowing
us—wherever possible—to compare results. For two programs extracted from
the Siemens suite, SIR provides a large number of test suites but with a limited
number of test cases. Therefore, in the context of our study we considered all
the available test cases.

Table 1. Programs used in the study.

Program LOC # of Test Cases Description

bash 59,846 1,200 Shell language interpreter

flex 10,459 567 Fast lexical analyser

grep 10,068 808 Regular expression utility

printtokens 726 4,130 Lexical analyzer

printtokens2 520 4,115 Lexical analyzer

sed 14,427 360 Non-interactive text editor

The empirical evaluation is steered by the following research questions:

RQ1: What is the cost-effectiveness of HGA, compared to cost-aware additional
greedy algorithms? This research question aims at evaluating to what extent
faults (effectiveness) can be detected earlier (lower execution cost) using the
test cases ordering obtained by HGA, in comparison with a baseline technique
namely two-and three-objective additional greedy algorithms. This reflects the
software engineer’s needs to obtain the maximum advantage from testing even
if it is prematurely stopped at some point.

RQ2: What is the efficiency of HGA, compared to cost-aware additional greedy
algorithms? With this second research question we are interested in comparing
the running time (efficiency) required by HGA to find an optimal ordering, in
comparison with two- and three-objective additional greedy algorithms.

Testing Criteria. To answer our research questions we consider three objectives
widely used in previous test case prioritization work [17,22]:

– Statement coverage criterion. We measure statement coverage achieved by
each test case using the gcov tool part of the GNU C compiler (gcc).

Hypervolume-Based Search for Test Case Prioritization 165

– Execution cost criterion. In this paper we approximate the execution cost by
counting the number of executed instructions in the code, instead of measuring
the actual execution time, similarly as done in previous work [24,29]. To this
aim we use the gcov tool to measure the execution frequency of each source
code instruction.

– Past fault coverage criterion. As for the past fault coverage criterion, we con-
sider the versions of the programs with seeded faults available in the SIR
repository [19]. SIR also specifies whether or not each test case is able to
reveal these faults. Such information can be used to assign a past fault cov-
erage value to each test case subset, computed as the number of known past
faults that this subset is able to reveal in the previous version.

Problem Formulation. Using the three test case prioritization criteria described
above, we examine two and three-objective formulations of TCP problem. The
two-objective TCP problem is aimed at finding an optimal ordering of test cases
which (i) minimizes the execution cost and (ii) maximizes the statement coverage.
In this case the IHP (τ) metric corresponds to the area under curve delimited by
the two criteria. For the three-objective TCP problem we consider the past faults
coverage as third criteria to be maximized. Thus, in this second case the IHP (τ)
metric corresponds to the volume under manifolds delimited by the three criteria.
We note that it is possible to formulate other criteria by just providing a clear map-
ping between tests and criterion-based requirements. The formulations are used
to illustrate how the Hypervolume-based metric introduced in this paper can be
applied to any number and kind of testing criteria to be satisfied, where further
criteria just represent additional axes to be considered when computing the fitness
function IHP (τ).

Evaluated Algorithms. For the two-objective formulation of the test case pri-
oritization problem, we compare HGA instantiated with two criteria and the
additional greedy algorithm used by Yoo and Harman [30] and by Rothermel
et al. [25], which considers at the same time coverage and cost by maximizing
the coverage per unit of time of the selected test cases (cost cognizant additional
greedy). Note that, after reaching the maximum coverage with the additional
greedy, there are possible remaining un-prioritized test cases that cannot add
additional coverage. These remaining test cases could be ordered using any algo-
rithm; in this work we re-apply additional greedy algorithm as done in previous
work [22]. Similarly, for what concerns the three-objective formulation of the test
case prioritization problem, we compare HGA instantiated for three criteria with
the additional greedy algorithm used by Yoo and Harman [30], which conflates
code coverage, execution cost and past coverage in one objective function to be
minimized. Also in this case the additional greedy is re-applied multiple times in
order to have a complete test cases ordering.

Implementation. All the algorithms have been implemented using JMetal [9],
a Java-based framework for multi-objective optimization with metaheuristics. In
details, we use the Parallel Genetic Algorithm which evaluates the individuals
in parallel using multiple threads, thus reducing the execution time. We use

166 D. Di Nucci et al.

a population of 100 individuals that are initially randomly generated within the
solution space. At each generation, offsprings are generated by combining pairs of
fittest individuals with probability pc = 0.90 by using the PMX-Crossover, which
swaps the permutation elements at a given crossover point. As mutation operator
we use the SWAP-Mutation, which randomly swaps two chosen permutation
elements within each offspring. The fittest individuals are selected using the
tournament selection with tournament size equal to 10. The algorithm ends
when reaching 250 generations. To account for the inherent randomness nature
of GAs [1], we performed 20 independents runs for each program under study
and for each TCP problem.

Evaluation Metrics. To address RQ1 we use the cost-cognizant average fault
detection percentage metric (APFDc) proposed by Elbaum et al. [10]. This metric
measures the effectiveness of a given test cases ordering by summing up the
costs of the first test cases that are able to reveal the faults [10]. The higher
the AFDPc value, the lower the average cost needed to detect the same number
of faults. Since we performed 20 independent runs, we reports the mean and
the standard deviation of the APFDc scores achieved for each program under
study and for each TCP problem. We statistically analyze the obtained results,
to check whether the differences between the APFDc scores produced by the
compared algorithms over different independent runs are statistically significant
or not. To this aim we use the Welch’s t test [6] with a p-value threshold of 0.05
for both the TCP problems. Welch’s t-test is generally used to test two groups
with unequal variance, e.g., in our case the variance of the APFDc produced by
the additional greedy and HGA is different1. Significant p-values indicate that
the corresponding null hypothesis can be rejected in favour of the alternative
ones. Other than testing the null hypothesis, we use the Vargha-Delaney (Â12)
statistical test [28] to measure the effect size, i.e., the magnitude of the difference
between the APFDc achieved with different algorithms. To address RQ2 we
compare the average running time required by each algorithm for each software
program used in the empirical study. The execution time was measured using a
machine with Intel Core i7 processor running at 2.40GHz with 12GB RAM.

5 Empirical Results

Table 2 reports the AFDPc values for the two-objective and three-objective test
case prioritization problem obtained by (i) the additional greedy algorithm, and
(ii) HGA. Specifically, the table reports mean size and standard deviation over
20 independent runs of the algorithms. In both problem formulations, HGA is
more cost-effective than the additional greedy algorithm for 4 out of 6 programs
since the mean AFDPc is higher. In particular, for the two-objective formula-
tion there is an improvement in terms of AFDPc ranging between 5 % and 11 %,
1 Since the additional greedy is a deterministic algorithm, the variance over 20 inde-

pendent runs is zero. Conversely, because of the random inheritance of GAs, HGA
does not reach a zero variance.

Hypervolume-Based Search for Test Case Prioritization 167

Table 2. Test case prioritization problem: AFDPc achieved by HGA and additional
greedy in two and three objective formulations. The best result for each program is
highlighted in bold face.

Program 2-Objective 3-Objective

Add. Greedy HGA Add. Greedy HGA

Mean St. Dev. Mean St. Dev.

bash 0.658 0.705 0.046 0.658 0.743 0.053

flex 0.604 0.677 0.116 0.507 0.578 0.100

grep 0.793 0.815 0.023 0.793 0.816 0.039

printtokens 0.588 0.287 0.091 0.496 0.203 0.052

printtokens2 0.733 0.462 0.326 0.312 0.275 0.253

sed 0.787 0.831 0.081 0.688 0.744 0.103

while in the three-objective formulation the improvement ranges between 3 %
and 12 %. This has practical implications from the tester’s perspective since the
test cases orderings obtained by HGA detect more faults at the same (or lower)
execution cost. Conversely, the additional greedy algorithm has better perfor-
mance on printtokens and printtokens2 for both two- and three-objective
TCP problems. Indeed, for these programs we can observe that the AFDPc val-
ues obtained by the additional greedy are substantially higher than the mean
AFDPc values achieved by HGA (+27 % for two-objective problem and +3.27 %
for the three-objective one on printtokens2). For these two programs we can
also observe that HGA has a higher variability when compared with the other
programs as demonstrated by the higher standard deviations: for example the
standard deviation for printtokens is larger than 25 % for both two- and three-
objective TCP while for bash it is less than 6 %. This high variability can be due
to the fact that printtokens and printtokens2 are two very small programs
with less than 1,000 lines of code while their test suites are very large because
they contain more than 4,000 test cases. Hence, for these programs reaching the
maximum statement coverage and past faults coverage requires the execution of
only 30 test cases on average, i.e., less than 1 % of the whole test suites. For the
two considered coverage criteria the majority of test cases are equivalent (i.e.,
they have the same code and past fault coverage) but only few of them are really
able to detect new faults. the obtained ordering. Thus, HGA might select other
test cases that are equivalent in terms of code (or past fault) coverage but that
have different fault detection capabilities. For the additional greedy algorithm
this is not the case since it always generates the same test case ordering. This
analysis highlights that the poor performance of HGA for printtokens and
printtokens2 can be due to the used testing criteria more than the algorithm
itself.

To provide statistical support to our preliminary analysis, Table 3 reports the
results of the Welch’s t-test and the Vargha-Delaney (Â12) statistic, obtained by

168 D. Di Nucci et al.

Table 3. Welch’s t-test p-values of the hypothesis HGA > Additional Greedy for the
two and three objective test case prioritization problem. p−values that are statistically
significant (i.e., p − value < 0.05) are reported in bold face. Â12 > 0.5 means HGA
is better than Additional Greedy; Â12 < 0.5 means Additional Greedy is better than
HGA, and Â12 = 0.5 means they are equal.

Program 2-Objective 3-Objective

p-value Â12 Magnitude p-value Â12 Magnitude

bash < 0.01 0.88 Large < 0.01 0.95 Large

flex < 0.01 0.70 Medium < 0.01 0.75 Large

grep < 0.01 0.85 Large < 0.01 0.85 Large

printtokens 1 0.10 Large 1 0.10 Large

printtokens2 1 0.30 Large 0.73 0.40 Small

sed 0.01 0.85 Large 0.01 0.80 Large

comparing (across the 20 GA runs) the AFDPc value yielded by the algorithms
under investigation. As expected, HGA is statistically better than the addi-
tional greedy in 4 cases out of 6 for both two- or three-objective TCP problems.
For these cases the effect size (Â12) is always large with the only exception of
flex where for the two-objective TCP problem the effect size is medium. For
printtokens we can observe that HGA is statistically worse than the addi-
tional greedy algorithm for both two- and three-objective TCP problems and
the magnitude of the difference is also large according to the Â12 statistic. For
printtokens2 there is no statistically significant difference between HGA and
the greedy algorithm for the three-objective TCP problem while for the two-
objective problem there is a statistically significant difference in favour of the
additional greedy.

Table 4. Average Execution Time for Algorithms

Program 2-Objective 3-Objective

Add. Greedy HGA Add. Greedy HGA

bash 2h 21 min 57s 3min 1s 2h 46 min 40s 11min 13s

flex 2 min 19s 43s 2 min 46s 51s

grep 9 min 41s 2min 19s 11 min 21s 2min

printtokens 2 min 47s 2s 3 min 19s 11s

printtokens2 3 min 11s 1s 6 min 51s 5s

sed 25s 12s 30s 16s

To answer our RQ2, Table 4 reports the mean execution time required by
each algorithm for each software program used in the empirical study. For both

Hypervolume-Based Search for Test Case Prioritization 169

two- and tree-objective formulation, we can note that HGA requires less execu-
tion time for its convergence with respect to the additional greedy algorithm.
Specifically, HGA on average takes 36 % of the execution time required by the
additional greedy for the same software system. This is an important improve-
ment if we also consider that HGA is not only much faster than the additional
greedy algorithm, but it also provides orderings that are able to reveal more
faults (RQ1).

It is important to highlight that the running times of the additional greedy
algorithms reported in this paper are substantially higher than the running times
reported in previous studies for test case selection using the same additional
greedy algorithms and for the same software systems [24,31]. For example in [31]
the average running time of the two-objective additional greedy algorithm for
grep is 20 seconds against 11 min and 21 seconds reported in this paper. This
huge difference concerns the different stop conditions used to end the additional
greedy algorithm in test case selection and test case prioritization problems. In
the test case selection problem the additional greedy ends when the maximum
code coverage is reached, thus, as reported by Harrold et al. [16] the execu-
tion time of O (| T | ·max | Ti |), where | T | represents the size of the original
test suite, while max | Ti | denotes the cardinality of the largest group of test
cases which is able to reach the maximum coverage. For TCP the additional
greedy algorithm does not end when the maximum coverage is reached but it
is re-applied until all test cases are selected in order to obtain a complete test
case ordering. Thus, for TCP the running time of the (re-started) additional
greedy algorithm is O (|T | × |T |) motivating the higher execution time reported
in this paper. These findings are particularly interesting since in previous works
on multi-objective test case selection [24,31] the additional greedy algorithm
turned out to be faster than genetic algorithms with the only exception of large
programs [24]. For multi-objective TCP problems we highlight that genetic algo-
rithms, and HGA in particular, are always faster than the additional greedy
algorithm independently of the size of the program and the test suites. We also
note that despite the lower running time, HGA is more cost-effective than the
additional greedy algorithm (RQ1).

6 Threats to Validity

This section discusses the threats to the validity of our empirical evaluation,
classifying them into construct, internal, and external validity.

Construct Validity. In this study, they are mainly related to the choice of the
metrics used to evaluate the characteristics of the different test case prioritization
algorithms. In order to evaluate the optimality of the experimented algorithms
(HGA, and additional greedy) we used the APFDc [10], a well-know metric
used in previous work on multi-objective test case prioritization [13,14]. Another
construct validity threat involves the correctness of the measures used as test
criteria: statement coverage, faults coverage and execution cost. To mitigate such
a threat, the code coverage information was collected using two open-source

170 D. Di Nucci et al.

profiler/compiler tools (GNU gcc and gcov). The execution cost was measured
by counting the number of source code blocks expected to be executed by the
test cases, while the original fault coverage information was extracted from the
SIR repository [19].

Internal Validity. To address the random nature of the GAs themselves [1], we
ran HGA 20 times for each subject program (as done in previous work [7,22,30]),
and considered the mean APFDc scores. The tuning of the GA’s parameters is
another factor that can affect the internal validity of this work. In this study we
used the same genetic operators and the same parameters used in previous work
on test case prioritization [20,22].

External Validity. We considered 6 programs from the SIR, that were also
used in most previous work on regression testing [4,7,22,26,31]. However, in
order to corroborate our findings, replications on a wider range of programs and
optimization techniques are desirable. Also, there may be optimization algo-
rithms or formulations of the test case prioritization problem not considered in
this study that could produce better results. In this paper we compared HGA
with the additional greedy algorithm in order to evaluate the benefits of the
proposed algorithms over the most used. Moreover, in order to make the results
more generalizable, we evaluated all the algorithms with respect to solving two
different formulations of the test case prioritization problem with two and three
objectives to be optimized.

7 Conclusion and Future Work

This paper proposes a hypervolume-based genetic algorithm (HGA) to solve
multi-criteria test case prioritization. Specifically, we use the concept of hyper-
volume [2], which is widely investigated in many-objective optimization, to gen-
eralize the traditional Area Under Curve (AUC) metrics used in previous work
on test case prioritization [20–22]. Indeed, the proposed hypervolume metric con-
denses multiple testing criteria through the proportion of the objective space,
while AUC based metrics can manage only one cumulative code coverage crite-
rion per time [22].

To show the applicability of HGA we instantiated the TCP problem using
three different testing criteria. The empirical study conducted on six real-world
open source programs demonstrated that the proposed algorithm is not only
much faster than greedy algorithms, but is also able to generate test case order-
ings allowing to reveal more regression faults at the same level of execution cost
for large software programs. This denotes an important finding since previous
search-based approaches based on AUC metrics did not statistically outperform
greedy algorithms in terms of effectiveness [22].

Given the promising results obtained in this paper, we plan to apply the
hypervolume metric when considering up to three testing criteria in order to
investigate its scalability with respect to greedy algorithms for higher dimen-
sional TCP problems. We also plan to replicate the study, considering more

Hypervolume-Based Search for Test Case Prioritization 171

and different software systems and different coverage criteria to corroborate
the results reported in this paper. Then, we plan to incorporate diversity mea-
sures proposed in previous studies on multi-objective test case selection [7,24] to
improve the performances of HGA for software systems with highly redundant
test suites, where greedy algorithms are particularly competitive. Finally, we
plan to apply the proposed meta-heuristic also for other test case optimitization
problems.

References

1. Arcuri, A., Briand, L.C.: A practical guide for using statistical tests to assess
randomized algorithms in software engineering. In: Proceedings of International
Conference on Software Engineering (ICSE), pp. 1–10. ACM (2011)

2. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indica-
tor: optimal μ-distributions and the choice of the reference point. In: Proceedings
of SIGEVO workshop on Foundations of Genetic Algorithms (FOGA), pp. 87–102.
ACM (2009)

3. Bryce, R.C., Colbourn, C.J., Cohen, M.B.: A framework of greedy methods for
constructing interaction test suites. In: Proceedings International Conference on
Software Engineering (ICSE), pp. 146–155 (2005)

4. Chen, T.Y., Lau, M.F.: Dividing strategies for the optimization of a test suite. Inf.
Process. Lett. 60(3), 135–141 (1996)

5. Cohen, M., Dwyer, M., Shi, J.: Constructing interaction test suites for highly-
configurable systems in the presence of constraints: A greedy approach. IEEE
Trans. Softw. Eng. 34, 633–650 (2008)

6. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. Wiley, New York
(1998)

7. De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A.: On the role of diversity
measures for multi-objective test case selection. In: Proceedings of International
Workshop on Automation of Software Test (AST), pp. 145–151 (2012)

8. Do, H., Rothermel, G., Kinneer, A.: Empirical studies of test case prioritization
in a junit testing environment. In: 15th International Symposium on Software
Reliability Engineering, pp. 113–124. IEEE Computer Society (2004)

9. Durillo, J.J., Nebro, A.J.: jMetal: a java framework for multi-objective optimiza-
tion. Adv. Eng. Softw. 42, 760–771 (2011)

10. Elbaum, S., Malishevsky, A., Rothermel, G.: Incorporating varying test costs and
fault severities into test case prioritization. In: Proceedings of International Con-
ference on Software Engineering (ICSE), pp. 329–338. IEEE (2001)

11. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Prioritizing test cases for regres-
sion testing. In: Proceedings of International Symposium on Software Testing and
Analysis (ISSTA), pp. 102–112. ACM (2000)

12. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Prioritizing test cases for regression
testing. Softw. Eng. Notes 25, 102–112 (2000)

13. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Test case prioritization: a family
of empirical studies. IEEE Trans. Softw. Eng. 28(2), 159–182 (2002)

14. Elbaum, S., Rothermel, G., Kanduri, S., Malishevsky, A.: Selecting a cost-effective
test case prioritization technique. Softw. Qual. J. 12(3), 185–210 (2004)

15. Hao, D., Zhang, L., Zhang, L., Rothermel, G., Mei, H.: A unified test case priori-
tization approach. ACM Trans. Softw. Eng. Methodol. 24(2), 10:1–10:31 (2014)

172 D. Di Nucci et al.

16. Harrold, M.J., Gupta, R., Soffa, M.L.: A methodology for controlling the size of a
test suite. ACM Trans. Softw. Eng. Methodol. 2, 270–285 (1993)

17. Huang, Y.C., Huang, C.Y., Chang, J.R., Chen, T.Y.: Design and analysis of cost-
cognizant test case prioritization using genetic algorithm with test history. In:
Proceedings of Annual Computer Software and Applications Conference (COMP-
SAC), pp. 413–418. IEEE (2010)

18. Hughes, E.: Evolutionary many-objective optimisation: many once or one many?
IEEE Congr. Evol. Comput. 1, 222–227 (2005)

19. Hyunsook Do, S.G.E., Rothermel, G.: Supporting controlled experimentation with
testing techniques: an infrastructure and its potential impact. Empirical Softw.
Eng.: Int. J. 10, 405–435 (2005)

20. Islam, M., Marchetto, A., Susi, A., Scanniello, G.: A multi-objective technique to
prioritize test cases based on latent semantic indexing. In: Proceedings of Euro-
pean Conf. on Software Maintenance and Reengineering (CSMR), pp. 21–30. IEEE
(2012)

21. Li, Z., Bian, Y., Zhao, R., Cheng, J.: A fine-grained parallel multi-objective test
case prioritization on GPU. In: Ruhe, G., Zhang, Y. (eds.) SSBSE 2013. LNCS,
vol. 8084, pp. 111–125. Springer, Heidelberg (2013)

22. Li, Z., Harman, M., Hierons, R.M.: Search algorithms for regression test case pri-
oritization. IEEE Trans. Softw. Eng. 33(4), 225–237 (2007)

23. Malishevsky, A.G., Ruthruff, J.R., Rothermel, G., Elbaum, S.: Cost-cognizant test
case prioritization. Technical report, Department of Computer Science and Engi-
neering (2006)

24. Panichella, A., Oliveto, R., Di Penta, M., De Lucia, A.: Improving multi-objective
test case selection by injecting diversity in genetic algorithms. IEEE Trans. Softw.
Eng. 41(4), 358–383 (2015)

25. Rothermel, G., Untch, R., Chu, C., Harrold, M.: Prioritizing test cases for regres-
sion testing. IEEE Trans. Softw. Eng. 27(10), 929–948 (2001)

26. Rothermel, G., Harrold, M.J., von Ronne, J., Hong, C.: Empirical studies of test-
suite reduction. Softw. Test. Verif. Reliab. 12, 219–249 (2002)

27. Srikanth, H., Williams, L., Osborne, J.: System test case prioritization of new and
regression test cases. In: International Symposium on Empirical Software Engi-
neering (2005)

28. Vargha, A., Delaney, H.D.: A critique and improvement of the cl common language
effect size statistics of mcgraw and wong. J. Educ. Behav. Stat. 25(2), 101–132
(2000)

29. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization:
a survey. Softw. Test. Verif. Reliab. 22(2), 67–120 (2012)

30. Yoo, S., Harman, M.: Pareto efficient multi-objective test case selection. In: Pro-
ceedings of International Symposium on Software Testing and Analysis (ISSTA),
pp. 140–150. ACM (2007)

31. Yoo, S., Harman, M.: Using hybrid algorithm for Pareto efficient multi-objective
test suite minimisation. J. Syst. Softw. 83(4), 689–701 (2010)

32. Zhang, L., Hao, D., Zhang, L., Rothermel, G., Mei, H.: Bridging the gap between
the total and additional test-case prioritization strategies. In: Proceedings of Inter-
national Conference on Software Engineering (ICSE), pp. 192–201. IEEE (2013)

Optimizing Aspect-Oriented Product Line
Architectures with Search-Based Algorithms

Thainá Mariani1(B), Silvia Regina Vergilio1, and Thelma Elita Colanzi2

1 Federal University of Parana, Curitiba, PR, Brazil
{tmariani,silvia}@inf.ufpr.br

2 State University of Maringa, Maringá, PR, Brazil
thelma@din.uem.br

Abstract. The adoption of Aspect-Oriented Product Line Architec-
tures (AOPLA) brings many benefits to the software product line design.
It contributes to improve modularity, stability and to reduce feature tan-
gling and scattering. Improvements can also be obtained with a search-
based and multi-objective approach, such as MOA4PLA, which generates
PLAs with the best trade-off between different measures, such as cohe-
sion, coupling and feature modularization. However, MOA4PLA opera-
tors may violate the aspect-oriented modeling (AOM) rules, impacting
negatively on the architecture understanding. In order to solve this prob-
lem, this paper introduces a more adequate representation for AOPLAs
and a set of search operators, called SO4ASPAR (Search Operators for
Aspect-Oriented Architectures). Results from an empirical evaluation
show that the proposed operators yield better solutions regarding the
fitness values, besides preserving the AOM rules.

Keywords: Aspects · SPL · Search-based design

1 Introduction

A Software Product Line (SPL) defines a set of software products that share fea-
tures to satisfy a domain. In the SPL context, features are visible functionalities
for the user. A feature can be designed like a variability, representing a variable
functionality which may or not be present in a product. On the other hand, a fea-
ture can be a mandatory functionality, being present in every product. An SPL
offers some artifacts to build products. The Product Line Architecture (PLA) is
an important artifact that contains all the commonalities and variabilities of an
SPL. The PLA is used to derive the architecture of each product [12].

The use of Aspect-Oriented Modeling (AOM) concepts in the PLA design is
useful to modularize crosscutting features and has been adopted and investigated
by many works [10,13–15,19,20,22]. These works show that the adoption of an
Aspect-Oriented Product Line Architecture (AOPLA) contributes to improve
modularity, stability and to reduce feature tangling and scattering.

In addition to this, the PLA design needs to consider different principles, such
as cohesion, coupling and feature modularization. Hence, we can observe that the
c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 173–187, 2015.
DOI: 10.1007/978-3-319-22183-0 12

174 T. Mariani et al.

PLA design is a complex task [12], related to several factors. Such task has been
properly addressed in the Search-Based Software Engineering (SBSE) field. To
this end, Colanzi et al. [4] introduced MOA4PLA (Multi-objective Optimization
Approach for PLA Design), a search-based design approach for multi-objective
optimization of PLAs. The approach aims at optimizing a PLA and generating a
set of alternatives with the best trade-off among different objectives. MOA4PLA
includes a meta-model to represent the PLA at the class diagram level, and a
model to evaluate the PLA alternatives based on specific PLA attributes. Search
based operators were also proposed to guide the optimization algorithms. They
change the architecture by modifying its organization, i.e., by inserting, removing
or moving its elements.

MOA4PLA has presented promising results [4]. However, we observe that it
has some limitations when optimizing AOPLAs. The meta-model does not cap-
ture AOM particularities. The search operators may violate AOM rules, and these
violations are propagated to the produced solutions. These violations reduce the
AOM benefits and impact negatively in the architecture understanding.

To reduce such limitations and considering the AOM benefits, this paper
proposes a way to represent AOPLAs and a set of search-based operators that
aggregate AOM rules. Such proposed representation and operators are imple-
mented and evaluated for AOPLA design, in the MOA4PLA context, but it can
also be used with other search-based approaches for AO architectures in general,
such as that ones described in [17]. This happens because the proposed opera-
tors include traditional operations such as move methods, move operators and
so on [17], and feature-driven operations, specific for the PLA context [4].

An empirical evaluation of the proposed representation and search operators
was conducted using the MOA4PLA approach and three AOPLAs. A qualita-
tive analysis shows that the proposed operators preserve the AOM rules during
the optimization, which contributes to improve the architecture quality. More-
over, a quantitative analysis shows improvement related to cohesion and feature
modularization in the fitness values.

This paper is organized as follows. Section 2 presents MOA4PLA, the search-
based approach used in this work. Sections 3 and 4 introduce, respectively, the
representation adopted to AOPLA and the proposed search operators. Section 5
describes how the empirical study was conducted. Section 6 presents and analy-
ses the obtained results. Finally, Sect. 7 contains some concluding remarks and
possible future works.

2 Search-Based Design of PLAs

Search-based design approaches are found in the literature [17]. Most of them are
based on Multi-Objective Algorithms (MOAs), that is, search-based algorithms
that can properly deal with problems influenced by several factors. The works
address the context of standard software design [1,18,21], and also PLA design
context [4,9]. PLA design is part of software architecture design, so an approach
proposed for PLA design is also valid for architectures in general. Considering

Optimizing Aspect-Oriented Product Line Architectures 175

this, we decided to implement our ideas in the PLA context, with the approach
MOA4PLA [4], which is described in this section.

MOA4PLA uses search-based multi-objective algorithms guided by tradi-
tional search operators and an operator specific to improve feature modulariza-
tion. As output, a set of PLA alternatives, with the best trade-off between the
objectives, is generated. The approach also includes a meta-model to represent
the PLA elements. The MOA4PLA activities are shown in Fig. 1.

The first activity is the Construction of the PLA Representation. The input
is a PLA designed at the class diagram level. This diagram should contain the
architectural elements and information about the SPL variabilities. From this
input a PLA representation is generated, according to the meta-model of Fig. 2.
A PLA contains architectural elements such as packages, interfaces, operations
and their inter-relationships. Each architectural element is associated with fea-
ture(s) by using UML stereotypes. It can either be common to all SPL products
or variable, appearing only in some product(s). Variable elements are associated
with variabilities that have variation points and their variants.

In the activity Definition of the Evaluation Model, a model to evaluate the
PLA alternatives is defined according to the needs and priorities of the architect.

MOA4PLA-Processact

Construction of the PLA RepresentationDefinition of the Evaluation Model

Multi-objective Optimization

Transformation and Selection

 : PLA : Evaluation Measures

 : Constraints

 : Evaluation Model : PLA Representation

 : Set of PLA Representations

 : Set of Potential PLAs

Fig. 1. MOA4PLA activities [4].

Fig. 2. MOA4PLA meta-model [4].

176 T. Mariani et al.

In this work we use two objectives also used by Colanzi et al. in [4]. The first objec-
tive (CM) is related to conventional metrics, which evaluate basic design princi-
ples, such as cohesion and coupling. Cohesion measures how strongly-related are
the functionalities inside an element. Coupling evaluate the interdependency level
of an element, which is measured by the relationships between architectural ele-
ments. The second objective (FM) is related to feature-driven metrics, specific to
the SPL context. FM evaluates the architecture modularization level by measur-
ing the feature scattering, feature interaction and feature-based cohesion [19]. Fea-
ture scattering measures the number of elements in which a feature is present. It
considers that a feature scattered in many elements impacts negatively on modu-
larity. Feature interaction measures the number of features interacting in common
architectural elements, which worsen the modularization. Feature-based cohesion
indicates that an element associated with many features is not stable because a
modification in any of the associated features may impact the other ones. Briefly,
these two objectives aim at analyzing if the obtained solutions (alternatives PLAs)
are likely to represent proper designs from the point of view of high cohesion, low
coupling, reuse and feature-based modularity. More details about how FM and
CM are calculated can be found in [4].

In the Multi-Objective Optimization activity, the PLA representation
obtained in the first activity is optimized according to the constraints informed
by the architect. Here, the multi-objective algorithms are selected and then exe-
cuted. The MOA4PLA search operators are herein called traditional operators
and its main functionality are described as following: (i) move method moves
a method from a class to another; (ii) move attribute moves an attribute from
a class to another; (iii) add class creates a class and moves to it a method or
an attribute selected from a random class; (iv) move operation moves an opera-
tion from an interface to another; (v) add package creates a package, creates an
interface inside this package and moves an operation from a random interface to
the created one; and (vi) the feature-driven operator selects a crosscutting fea-
ture to be modularized and, to do this, all elements associated with the selected
crosscutting feature are moved to a modularization package.

After the operators application, each generated PLA is evaluated by the
evaluation model defined in the previous activity. As output, a set of PLA rep-
resentations with the best trade-off between the objectives (CM and FM) is
generated. In the last activity Transformation and Selection, each PLA repre-
sentation obtained by the previous activity is converted to a class diagram. At
last, the architect can select one of these PLAs to be adopted for the SPL.

As mentioned before, MOA4PLA can be applied to AOPLAs, however it
presents some limitations mainly related to the meta-model to represent the
solutions and search operators. However, we did not find approaches related
to search-based design of AOPLAs. Found works [10,13–15,19,20,22] show the
importance of AOPLAs, highlighting the benefits provided: to improve modu-
larity, stability, feature tangling and scattering.

Due to these benefits and the lack of works regarding search-based design of
AOPLAs, we introduce in the next sections a new way to represent AOPLAs,
and operators that consider AOM rules.

Optimizing Aspect-Oriented Product Line Architectures 177

3 Representation of AOPLAs

To allow the optimization of AOPLAs by MOA4PLA, a representation of the
AOM elements in class diagrams is needed. The required elements are aspects,
advices, join points, pointcuts and crosscutting relationship. An aspect is a mod-
ule responsible for encapsulating a crosscutting concern. Such aspect is similar
to a class, because contains methods, attributes and can be part of inheritance.
An aspect defines join points, advices and pointcuts. A join point is an execution
point of a system, such as a call procedure which needs functionalities delegated
to an aspect. An advice is an aspect functionality and can be executed before,
after or during a join point execution. A pointcut determines which join points
crosscut which aspects. Finally, a crosscutting relationship is needed to connect
aspects and its join points [11].

MOA4PLA uses a class diagram as input, therefore we searched for
approaches to represent the AOM elements in this kind of diagram. UML does
not offer specific support to modeling AOM elements, but it is commonly used
for this goal [3]. That way, the AOM elements can be modeled in a class dia-
gram, in which an aspect element is represented as a class with the <<aspect>>
stereotype. Such representation is coherent, since an aspect structure is simi-
lar to a class structure. The crosscutting relationship can be represented as a
dependency with the <<crosscutting>> stereotype [3]. We choose the notation
presented by Pawlak et al. [16] to be adopted in this work. Such notation is sui
table to represent the main AOM elements and it can be easily adapted to the
MOA4PLA representation. The notation proposed by Pawlak et al. [16] presents
stereotypes to represent aspects as classes and advices as methods. Such nota-
tion also introduces a crosscutting relationship that represents the connection
between an aspect and its join points. A join point, in turn, can be a method of
any class. Next we present the representations used for the AOM elements.

– Aspect: aspects are represented as classes with the <<aspect>> stereotype;
– Advice: advices are represented as methods inside the corresponding aspect.

An advice must have one of the following stereotypes with the described
functionality: (i) <<before>> prescribes the advice execution before a join
point; (ii) <<after>> prescribes the advice execution after a join point; (iii)
<<around>> prescribes the advice execution along with a joint point; and
(iv) <<replace>> prescribes the advice execution replacing the join point
execution;

– Crosscutting relationship: it is represented by an unidirectional association
with the <<pointcut>> stereotype. Such relationship is necessary to connect
an aspect and elements which have join points. In the relationship ends are
informed which advices crosscut which join points. The ends should contain
keywords with methods names (advices or join points) separated by commas,
or the word all to all methods.

Figure 3 illustrates the presented notation. The example has aspect cross-
cutting join points that are in two different classes. The class Aspect with the
<<aspect>> stereotype represents the aspect and all its methods represent

178 T. Mariani et al.

Fig. 3. Notation of Pawlak [16] for representing AOM elements.

advices. There are two crosscutting relationships between Aspect and Class1.
One of them informs that the advice advice1 crosscuts all the methods of Class1.
The other informs that the advice advice2 crosscuts operation1. That way, all
the Class1 methods are join points of the aspect. The crosscutting relationship
between Aspect and Class2 defines that all the advices crosscut the operation2
and operation3 methods, thus such methods are join points of the aspect.

4 Search Operators for AOPLAs

According to the chosen notation, violations in an AOPLA can occur if an aspect
is disconnected from its advices and crosscutting relationships. This is a problem
because advices define functionalities of an aspect, and crosscutting relationships
associate the aspect with its join points. To prevent this problem, next, we
introduce a set of search operators called Search Operators for Aspect-Oriented
Architectures (SO4ASPAR) which avoid violations in AOPLAs.

SO4ASPAR is derived from the MOA4PLA operators by aggregating AOM
rules. However, such rules can also be added to other similar search-based
design operators. Nevertheless, the search operators which aggregate the AOM
rules are named Move Method4ASPAR (Move Method for Aspect-oriented Archi-
tectures), Move Attribute4ASPAR (Move Attribute for Aspect-oriented Archi-
tectures), Add Class4ASPAR (Add Class for Aspect-oriented Architectures),
Move Operation4ASPAR (Move Operation for Aspect-oriented Architectures),
Add Package4ASPAR (Add Package for Aspect-oriented Architectures) and Fea-
ture Driven4ASPAR (Feature Driven for Aspect-oriented Architectures). Next
we present the rules aggregated to these operators. They are specific to the
elements aspect and join point.

4.1 Aspect Rules

Aspects are well-defined elements responsible for modularizing a concern. An
aspect can contain advices, methods and attributes, which define the aspect
functionalities. Two aspect rules were defined as follows:

1. Advices, methods or attributes should not be moved from an
aspect. If one of these elements is moved to other elements, a modular-
ized concern can become scattered in the architecture and consequently, the
aspect lose its benefits regarding modularization and cohesion.

Optimizing Aspect-Oriented Product Line Architectures 179

2. Methods and attributes should not be moved to aspects, because if
they were, an aspect could be associated with additional concerns besides its
main concern, losing its main modularization functionality.

In general, violations to both rules could occur using the conventional opera-
tors by moving elements from a class to another, since an aspect is structurally
represented as a class and the conventional operators interpret an aspect as a
class. Figure 4 presents an example of how an aspect structure can be violated
if the operators do not aggregate the aspect rules. Figure 4(a) shows an aspect
and a class before an application that moves a method. Figure 4(b) shows the
same elements after such application, in which the exitGame method of Game
was moved to the CIPersistDataMgt aspect. The application resulted in an AOM
rule violation, because the aspect lost its main functionality of modularizing the
<<persistence>> feature by getting associated also with the<<play>> feature.

Aspect rules are aggregated to operators which move methods or attributes.
That way, such operators cannot move advices, methods or attributes from or
to an aspect. Such rules are used to define the operators Move Method4ASPAR,
Move Attribute4ASPAR, Add Class4ASPAR and Feature Driven4ASPAR.

Fig. 4. Example of an aspect violation.

4.2 Join Point Rule

The join point rule defines that when a joint point is moved to an element, a
crosscutting relationship must be added/adapted between the aspect and the
target element, and removed/adapted between the aspect and the source ele-
ment. Such rule is used to move methods that represent join points, in order to
avoid a join point disconnected of its crosscutting relationship with an aspect,
since it complicates the identification of relations between these elements.

Join point rule is aggregated to search operators that move methods or
operations. Based on this, such rule is used to define the search opera-
tors Move Method4ASPAR, Add Class4ASPAR, Move Operation4ASPAR, Add
Package4ASPAR and Feature Driven4ASPAR.

180 T. Mariani et al.

The join point rule procedure is detailed in Algorithm 1. It receives as input
the join point, the aspect, the source element and the target element. Two steps
are executed along to the search operators main functionality, more exactly after
an operation for moving a join point from an element to another. The first step
(lines 9–13) verifies the crosscutting relationship between the aspect and the
source element. If the end cover only the join point name, the relationship is
removed, otherwise the join point name is removed from the relationship end.
The second step (lines 14–26) verifies if the target element has a crosscutting
relationship that covers the advices related to the join point. In an affirmative
case, the join point name is added in the relationship end. Otherwise, a cross-
cutting relationship, the advices, and join points names are added in these ends.

Algorithm 1. Join Point Rule

1 Algorithm: Join Point Rule

2 Input: aspect, sourceElement, targetElement, joinPoint
3 begin
4 relationshipSourceElement ← crosscutting relationship between aspect and

sourceElement which defines joinPoint;
5 advicesRSE ← all advices of relationshipSourceElement;
6 JoinPoints ← all join points of relationshipSourceElement;
7 RelationshipsTargetElement ← all crosscutting relationships between aspect and

targetElement;
8 create ← true;
9 if JoinPoints == 1 then

10 remove relationshipSourceElement;
11 else
12 remove joinPoint from relationshipSourceElement;
13 end
14 foreach relationshipTargetElement ∈ RelationshipsTargetElement do
15 advicesRTE ← advices from relationshipTargetElement;
16 if advicesRTE == advicesRSE then
17 add joinPoint in relationshipTargetElement;
18 create ← false;
19 break ;

20 end

21 end
22 if create == true then
23 create a crosscutting relationship (relationshipTargetElement) between aspect

and targetElement;
24 add joinPoint in relationshipTargetElement;
25 add advicesRSE in relationshipTargetElement;

26 end

27 end

Figure 5 presents an example of the join point rule. Figure 5(a) shows the orga-
nization before the application of Move Operation4ASPAR. In such organization,
the CIPersistDataMgt aspect and the IPersistAlbumMgt interface are connected
by a crosscutting relationship, which in turn has in its ends the removeAlbum
advice and the removeAlbum join point. Figure 5(b) shows the structure after
the operator and join point rule application. The removeAlbum joint point was
moved to IPlayMedia by Move Operation4ASPAR. Consequently, the join point
rule removed the relationship between CIPersistDataMgt and IPersistAlbumMgt,
since it connected the aspect exclusively to the moved join point. Lastly, aiming to

Optimizing Aspect-Oriented Product Line Architectures 181

Fig. 5. Example of a joint point rule application.

connect the aspect and advice again with its join point, a crosscutting relationship
was inserted between CIPersistDataMgt and IPlayMedia.

5 Empirical Study Description

To allow evaluation, we extended OPLA-Tool that provides automated support
to use MOA4PLA [4]. This tool works with jMetal [8]. The extension receives
as input an XMI file, representing the class diagram, according to the proposed
representation. SO4ASPAR operators were implemented as mutation operators
in the NSGA-II [5]. The fitness functions CM and FM (Sect. 2) and the procedure
to set the initial population are the same used in the related work [4]. The used
fitness functions do not consider the AOM elements, like aspects and crosscutting
relationships in the calculation. However, such elements can impact also other
elements like classes and interfaces, which are considered in such functions.

The evaluation goal is to verify if the proposed search operators can opti-
mize an AOPLA as the traditional MOA4PLA search operators and, at the same
time, preserve the AOM rules. Such empirical study was guided by the following
research question: “How are the SO4ASPAR results when compared with tra-
ditional operators of MOA4PLA?” From this general question we derived the
following other two questions:

–RQ1: How are the results considering the fitness values of the solutions?
–RQ2: How are the results considering AOM rules violations?

To answer these questions, some experiments were conducted. One experi-
ment with the MOA4PLA traditional operators, named here SO (from Search

182 T. Mariani et al.

Table 1. PLAs characteristics.

PLA Fitness (FM, CM) Packages Interfaces Classes Features Aspects Pointcuts

AGM (727, 6.1) 11 18 30 12 2 7

MM (1074, 4.1) 10 18 14 14 2 8

BET (1411, 90.0) 56 30 109 16 6 7

Operators), and the second experiment with SO4ASPAR and using the intro-
duced representation. In order to answer RQ1 we conducted a quantitative analy-
sis. In such analysis we used hypervolume [23] as the main quality indicator and
the Kruskal Wallis [6] non-parametric statistical test. Hypervolume was used
because it is able to evaluate solution sets generated by multi-objective algo-
rithms and also because it is one of the most used quality indicators in the liter-
ature [2]. To answer RQ2 we conducted a qualitative analysis. In such analysis we
took into account that the architect will choose just one solution (AOPLA) from
the set of non-dominated solutions. Hence, we choose the solution of each exper-
iment with the lowest Euclidean Distance (ED) to be analyzed. ED measures
the distance between a solution and the ideal solution for the problem. In this
work, the ideal solution has the values for FM and CM equals to 0. Results from
these quantitative and qualitative analyses are presented in the next section.

We used the following three academic AOPLAs: (i) Arcade Game Maker
(AGM), (ii) Mobile Media (MM); and (iii) Electronic Tickets in Urban Trans-
portation (BET). AGM [19] is an SPL which contains a set of arcade games
operating in various environments. MM [19] is an SPL to manage photos, videos
and music in mobiles. BET [7] is an SPL to manage urban transportation, includ-
ing payments, trips, gates and others. We adapted such AOPLAs by using the
notation presented in Sect. 3. Table 1 presents some characteristics of the used
AOPLAs, such as the original fitness and numbers of classes, features, aspects
and so on.

SO and SO4ASPAR experiments were conducted for each AOPLA, resulting
in 6 experiments. For each experiment 30 runs were performed. The parame-
ters needed are the population size, number of generations and mutation rate.
Their values were set considering previous performed parameters tuning for each
AOPLA. That way, AGM and MM have the population size of 50 individuals,
300 generations and 90 % of mutation rate. BET has also population of 50 indi-
viduals, but 100 generations and 100 % of mutation rate.

5.1 Threats to Validity
The main threat of this work is the size of the AOPLAs. They have few elements
and are non-commercial. However, mostly of the time just feature models are
available and the owners do not publish a complete SPL documentation. Never-
theless, the used AOPLAs offer support to comparisons between the operators.

The notation used in the AOPLA representation has a limitation. Such nota-
tion represents join points by names. This is a problem because join points with

Optimizing Aspect-Oriented Product Line Architectures 183

Table 2. Number of solutions
in the pareto fronts.

PLA PFtrue PFknown

SO SO4ASPAR

AGM 12 19 12

(0) (12)

MM 32 24 32

(0) (32)

BET 13 13 13

(0) (13)

Table 3. Hypervolume results.

PLA Experiment Average Kruskal

(Std.Dev.) (p-value)

AGM SO 10.4734 (0.0157) TRUE

SO4ASPAR 0.6126 (0.1191) (4.28E-11)

MM SO 0.7928 (0.0409) TRUE

SO4ASPAR 0.9262 (0.0293) (3.17E-11)

BET SO 0.8668 (0.0375) FALSE

SO4ASPAR 0.8905 (0.0367) (0.06)

a same name can be swapped by the operators. However, the adopted notation
is, among the notations found in the literature, the one that better represent
the aspects elements used in this work. Finally, the used algorithms are non-
deterministic. To reduce such threat we conducted 30 independent runs for each
experiment. Besides that, we also used common quality indicators usually used
in the literature in multi-objective approaches.

6 Results and Analysis

In this section the results obtained by the experiments are quantitatively
(Sect. 6.1) and qualitatively (Sect. 6.2) analyzed.

6.1 Quantitative Results

Firstly and in order to answer RQ1, our analysis used two sets: PFknown and
PFtrue. The PFknown front of each experiment is the union of the fronts obtained
by all 30 runs. The PFtrue front in this case is the approximated PFtrue, which is
the union of all PFknown obtained for each AOPLA. The union of several fronts
results in a set of the non-dominated and non-repeated solutions from these fronts.
Table 2 shows the number of solutions present in PFtrue and PFknown. The num-
ber of solutions of PFknown that belong to PFtrue is presented in parenthesis.

Results of Table 2 show that PFtrue is composed only by solutions achieved by
SO4ASPAR for all AOPLAs. That way, all solutions found by SO are dominated
by solutions found by SO4ASPAR. Regarding the original AOPLAs, we observe
that most of the achieved solutions dominated the original ones.

Figure 6 shows the sets PFknown found for each AOPLA. That way, it is
possible to analyze how the experiments optimize the objectives. Figure 6(a)
shows such fronts for AGM, Fig. 6(b) for MM, and Fig. 6(c) for BET.

Results presented in Fig. 6 shows that SO4ASPAR experiments found, in gen-
eral, solutions with the best trade-off between the objectives. We can observe
that preserving AOM rules improves feature modularization and also cohesion.

184 T. Mariani et al.

Fig. 6. PFknown found by the experiments.

Conceptually, an aspect is a well-defined and cohesive element which can mod-
ularize a feature. That way, preserving its structure allows that such benefits
remain in the generated solutions, which can be tracked to the obtained fitness
values. Although the aspects elements are not evaluated by the MOA4PLA met-
rics, the movement of aspects elements (methods, advices, attributes) to classes
may worsen the fitness value, since a feature modularized by an aspect can be
scattered in the AOPLA, which also worsen the classes cohesion.

Hypervolume was also used to analyze the results. Table 3 shows the obtained
results for each AOPLA in each experiment. Hypervolume average, calculated
among the 30 runs, and the standard deviation are shown in Column 3. The
best average found for each AOPLA is highlighted. Column 4 presents if there
is statistic difference (Kruskal Wallis test with 5 % of significance) between the
hypervolume values of the experiments.

Table 3 shows that, for the AGM and MM AOPLAs, the hypervolume aver-
ages calculated for the conducted experiments are statistically different. That
way, for these AOPLAs, SO4ASPAR operators provide better results than SO.
For BET AOPLA, both experiments do not present statistical difference and,
therefore, they are considered equivalent. We observed that due to the large
number of elements existing in such AOPLA (see Table 1) the impact of the
aspects elements is minimal related to all other elements, so it was not possible
to improve the results considerably.

Results presented in this section allows answering RQ1. In this sense, results
regarding Pareto Fronts show that using the proposed operators improves the
fitness values (related to feature modularization and cohesion). Finally, hypervol-
ume results show that the SO4ASPAR results is quantitatively better or equiv-
alent than using SO operators.

6.2 Qualitative Results

Qualitative results were obtained by analyzing the organization of aspects ele-
ments in the solutions found by the experiments. Therefore, we can verify if
the organization of such elements is in accordance to the AOM rules. Firstly,
an analysis was conducted with the AGM AOPLA. The SO solution with the

Optimizing Aspect-Oriented Product Line Architectures 185

lowest ED has the fitness (FM: 631, CM: 4.083) and the SO4ASPAR solution
has the fitness (FM: 595, CM: 3.083). Figure 7 shows excerpts containing the
organization of the aspects elements in the original AOPLA and in the obtained
solutions.

Figure 7(a) presents the ExceptionControlMgt aspect whose advice throwEx-
ception crosscuts the initialize join point of the IInitializationMgt interface.
Figure 7(b) shows how these elements are in the SO solution. The initialize join
point was moved to Interface12146, so the crosscutting relationship related to
such join point was lost. Figure 7(c) shows the same elements in the SO4ASPAR
solution. In such solution, the join point also was moved, but the crosscut-
ting relationship was added between the aspect and the target interface (Inter-
face3546). That way, the AOM rules were preserved.

A second analysis was conducted with the MM AOPLA. The SO solution with
the lowest ED has the fitness (FM: 884, CM: 4.071). And, the fitness of the solution
that has the lowest ED found by SO4ASPAR is (FM: 773, CM: 4.076). Figure 8
shows some aspects elements of the original AOPLA and the solutions found.

Figure 8(a) shows some elements of the original MM AOPLA, which has the
PersistDataMgt aspect, for which its advice saveAlbum crosscuts the (addAlbum

Fig. 7. Aspects elements of the AGM PLA.

Fig. 8. Aspects elements of the MM AOPLA.

186 T. Mariani et al.

and addMediaAlbum) join points that are in the IPersistAlbumMgt interface.
Figure 8(b) shows these elements in the SO solution. The advice saveAlbum
was moved to Class16592. Hence, the aspect lost its functionality and, more-
over, the crosscutting relationship between PersistDataMgt and IPersistAlbum-
Mgt became incoherent. Figure 8(c) shows the same elements in the SO4ASPAR
solution. In this case, the elements remain as in the original AOPLA.

Besides the analysis presented for the lowest ED solutions, we analyzed most
part of the other solutions and in all of them, no violations occurred. Therefore,
we can answer RQ2, by concluding that the SO operators violated AOM rules,
while the SO4ASPAR operators showed that the organizations of elements which
follow the AOM rules are more understandable.

7 Concluding Remarks

This paper contributes to search-based design of AOPLAs by introducing a rep-
resentation for AOPLA and search operators named SO4ASPAR (Search Opera-
tors to Aspect-Oriented Architectures), which aggregate the AOM rules. This set
of operators allows the aspect-oriented architecture optimization by search-based
design approaches. The generated solutions does not violate AOM rules.

The proposed representation takes into account the input AOPLA given by a
class diagram, and allows representations of the AOM elements, such as aspects
and crosscutting relationships. AOM rules were defined according to the chosen
notation, and used to define and create the SO4ASPAR operators.

The operators were implemented and evaluated with MOA4PLA approach.
Experiments were performed with the traditional MOA4PLA operators (SO) and
the proposed search operators (SO4ASPAR). A quantitative analysis showed an
improvement in the fitness values (feature modularization and cohesion) of the
solutions generated by SO4ASPAR. Regarding the hypervolume quality indica-
tor, SO4ASPAR presented better or statistically equivalent results to SO. A qual-
itative analysis showed that the AOM rules were preserved by the SO4ASPAR
experiments and violated by the SO experiments. For the SO4ASPAR exper-
iments, the organization of the aspects elements in the generated AOPLAs is
more similar to the original ones.

Future works include the creation of new operators to aggregate rules of
other modeling approaches, like architectural styles. Furthermore, the addition
of AOM metrics in the fitness function must also be investigated. Such metrics
can evaluate more accurately the AOM benefits. Other experiments should be
conducted with other AOPLAs.

References

1. Bowman, M., Briand, L., Labiche, Y.: Solving the class responsibility assignment
problem in object-oriented analysis with multi-objective genetic algorithms. IEEE
Trans. Softw. Eng. 36, 817–837 (2010)

2. Bringmann, K., Friedrich, T., Klitzke, P.: Two-dimensional subset selection for
hypervolume and epsilon-indicator. In: GECCO (2014)

Optimizing Aspect-Oriented Product Line Architectures 187

3. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P.,
Nord, R., Stafford, J.: Documenting Software Architectures: Views and Beyond,
2nd edn. Addison Wesley, Boston (2011)

4. Colanzi, T.E., Vergilio, S.R., Gimenes, I.M.S., Oizumi, W.N.: A search-based app-
roach for software product line design. In: SPLC (2014)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

6. Derrac, J., Garc̀ıa, S., Molina, D., Herrera, F.: A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms. Swarm Evol. Comput. 1, 3–18 (2011)

7. Donegan, P.M., Masiero, P.C.: Design issues in a component-based software prod-
uct line. In: SBCARS (2007)

8. Durillo, J.J., Nebro, A.J.: jmetal: a java framework for multi-objective optimiza-
tion. Adv. Eng. Softw. 42, 760–771 (2011)

9. Guizzo, G., Colanzi, T.E., Vergilio, S.R.: A pattern-driven mutation operator for
search-based product line architecture design. In: Le Goues, C., Yoo, S. (eds.)
SSBSE 2014. LNCS, vol. 8636, pp. 77–91. Springer, Heidelberg (2014)

10. Jingjun, Z., Xueyong, C., Guangyuan, L.: Mapping features to architectural com-
ponents in aspect-oriented software product lines. In: CSSE (2008)

11. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: ECOOP, pp. 220–242 (1997)

12. van der Linden, F., Schmid, K., Rommes, E.: Software Product Lines in Action:
The Best Industrial Practice in Product Line Engineering. Springer, Secaucus, NJ,
USA (2007)

13. Nyben, A., Tyszberowicz, S., Weiler, T.: Are aspects useful for managing variability
in software product lines? a case study. In: SPLC (2005)

14. Oizumi, W., Contieri Jr., A., Correia, G., Colanzi, T., Ferrari, S., Gimenes, I.,
Oliveira Jr., E., Garcia, A., Masiero, P.: On the proactive design of product-line
architectures with aspects: an exploratory study. In: COMPSAC (2012)

15. Oldevik, J.: Can aspects model product lines? In: AOSD (2008)
16. Pawlak, R., Duchien, L., Florin, G., Legond-Aubry, F., Seinturier, L., Martelli, L.:

A UML notation for aspect-oriented software design. In: AOM (2002)
17. Räihä, O.: A survey on search-based software design. Comput. Sci. Rev. 4(4),

203–249 (2010)
18. Räihä, O.: Genetic Algorithms in software architecture synthesis. Ph.D. thesis,

University of Tampere, Tampere, Finland (2011)
19. Sant’Anna, C.N.: On the modularity of aspect-oriented design : a concern-driven

measurement approach. Ph.D. thesis, Pontificial Catolic University of Rio de
Janeiro, Rio de Janeiro, RJ (2008)

20. Saraiva, D., Pereira, L., Batista, T., Delicato, F.C., Pires, P.F., Kulesza, U., Araújo,
R., Freitas, T., Miranda, S., Souto, A.L., Coelho, R.: Architecting a model-driven
aspect-oriented product line for a digital tv middleware: a refactoring experience.
In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285, pp. 166–181.
Springer, Heidelberg (2010)

21. Simons, C., Parmee, I., Gwynllyw, R.: Interactive, evolutionary search in upstream
object-oriented class design. IEEE Trans. Softw. Eng. 36(6), 798–816 (2010)

22. Tizzei, L., Rubira, C., Lee, J.: An aspect-based feature model for architecting
component product lines. In: EUROMICRO (2012)

23. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3 (1999)

Adaptive Neighbourhood Search
for the Component Deployment Problem

Aldeida Aleti1(B) and Madalina Drugan2

1 Faculty of Information Technology, Monash University, Melbourne, Australia
aldeida.aleti@monash.edu

2 Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
mdrugan@vub.ac.be

Abstract. Since the establishment of the area of search-based software
engineering, a wide range of optimisation techniques have been applied
to automate various stages of software design and development. Archi-
tecture optimisation is one of the aspects that has been automated with
methods like genetic algorithms, local search, and ant colony optimisa-
tion. A key challenge with all of these approaches is to adequately set the
balance between exploration of the search space and exploitation of best
candidate solutions. Different settings are required for different problem
instances, and even different stages of the optimisation process.

To address this issue, we investigate combinations of different search
operators, which focus the search on either exploration or exploitation for
an efficient variable neighbourhood search method. Three variants of the
variable neighbourhood search method are investigated: the first variant
has a deterministic schedule, the second variant uses fixed probabilities to
select a search operator, and the third method adapts the search strategy
based on feedback from the optimisation process. The adaptive strategy
selects an operator based on its performance in the previous iterations.
Intuitively, depending on the features of the fitness landscape, at differ-
ent stages of the optimisation process different search strategies would
be more suitable. Hence, the feedback from the optimisation process
provides useful guidance in the choice of the best search operator, as
evidenced by the experimental evaluation designed with problems of dif-
ferent sizes and levels of difficulty to evaluate the efficiency of varying
the search strategy.

Keywords: Adaptive neighbourhood search · Component deployment
optimisation

1 Introduction

One of the main aims of search-based software engineering (SBSE) is the automa-
tion of software design and development [14]. Ideally, the system developer would
only have to submit requirements models, which would be used to generate the
entire software system. Although many stages of software design and develop-
ment have been automated, such as architecture design optimisation [1,3], code
c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 188–202, 2015.
DOI: 10.1007/978-3-319-22183-0 13

Adaptive Neighbourhood Search for the Component Deployment Problem 189

generation and repair [25], and software test case generation [4], a system that
performs the enormous task of completely automating the process of software
development from requirements does not exist, at least not yet. Nevertheless,
each individual effort in the automation of specific stages brings us one step
closer to the ultimate goal of SBSE.

The decision regarding the architecture of the system, being one of the most
creative and important steps of software development [3] affects the quality of the
final software system. Designing a software architecture that does not only sat-
isfy the functional requirements, but that is at the same time optimal in terms
of quality attributes, such as performance and reliability is not an easy task.
The concept of software architecture is defined as ‘the fundamental concepts or
properties of a system in its environment embodied in elements, relationships,
and in the principles of its design and evolution’ [15]. In this paper we focus
on embedded systems, where the architecture is composed of software compo-
nents, hardware units, interactions of software components, and communications
between hardware units. The allocation of software components into the hard-
ware units and the assignment of interactions to the communication network,
known as the component deployment problem is among design decision that
have to be made at this stage. The search space of this problem is very large.
For instance, in a system with 10 hardware units and 60 software components
there are 2060 ≈ 1.15×1078 possible options, which are clearly beyond a human’s
capacity to handle at a reasonable amount of time.

This has lead to the application of a wide range of search-based methods
in software architecture design [3], to deal with the complexity of software sys-
tems, the enormous design space and the effect of design decisions on quality
attributes. Furthermore, search-based methods may produce architectures that
a system designer would have not been able to think of, helping with the creative
process. These efforts include methods like linear programming [9,23], genetic
algorithms [1,17,20], and local search [13]. The majority of these approaches con-
sider experimental studies to determine the success of the optimisation strategy
based on a set of selected problem instances. The no-free-lunch theorems tell us
that ‘for any algorithm, any elevated performance over one class of problems is
exactly paid for in performance over another class’ [26].

More specifically, the performance of an optimisation algorithm highly
depends on the fitness landscape of the targeted optimisation problem. Examples
of landscape features are the number and distribution as well as the sizes of the
optima, the location of the global optimum, and plateaus. A fitness landscape
with a single optimum is easy to search with a local search method. On the other
extreme, problems with many local optima and an isolated global optimum cre-
ate a fitness landscape that is rugged and hard to explore. A plateau symbolises
the presence of neighbouring solutions with equal fitness, where the progress of
a search algorithm potentially stagnates.

The choice of neighbourhood structure determines whether the fitness land-
scape is easy to search. For example, if the fitness difference between any two
neighbouring solutions is on average small then the landscape is more likely to be

190 A. Aleti and M. Drugan

suited for a wide range of local search operators. In contrast, if significant fitness
difference is encountered in the neighbourhood, different operators will produce
different quality results, and the choice of the operator becomes important.

For new problems, like the Component Deployment, the structure of the fit-
ness landscape that arises from different search operators is not known. A poor
choice of the neighbourhood operator may lead to suboptimal algorithm per-
formance. Ideally, the neighbourhood operator should be adapted during the
search-based on the structure of the fitness landscape. In this work, we inves-
tigate three strategies for varying the neighbourhood operator: a determinis-
tic schedule, where the change is controlled by a deterministic rule, a variable
schedule, where operators are selected based on predefined probabilities, and an
adaptive strategy, which uses feedback from the optimisation process.

2 Component Deployment Optimisation

The component deployment problem refers to the allocation of software com-
ponents to the hardware nodes, and the assignment of inter-component com-
munications to network links. Formally, we define the software components as
C = {c1, c2, ..., cn}, n ∈ N. The execution of the software system is initiated in
one software component (with a given probability), and during its execution uses
many other components connected via communication links, which are assigned
with a transition probability [16]. A software component has a memory size sz
expressed in KB (kilobytes), workload wl, which is the computational require-
ment of a component expressed in MI (million instructions), and initiation prob-
ability q0, which is the probability that the execution of a system starts from
the component. Software components interact to perform various tasks. Each
interaction from component ci to cj is annotated with the following properties:
(i) data size dsij in kilobytes, referring to the amount of data transmitted from
software component ci to cj during a single communication event, and (ii) next-
step probability pij the probability that the execution of component ci ends with
a call to component cj .

The hardware architecture is composed of a distributed set of hardware hosts,
denoted as H = {h1, h2, ..., hm}, m ∈ N. Each hardware host is annotated
with the following properties: (i) memory capacity (cp) expressed in kilobytes,
(ii) processing speed (ps), which is the instruction-processing capacity of the
hardware unit, expressed in million instructions per second (MIPS), and (iii)
failure rate (fr), which characterises the probability of a single hardware unit
failure [7].

The hardware hosts are connected via links denoted as N = {n1, n2, ...ns},
with the following properties: (i) data rate (drij), which is the data transmis-
sion rate of the bus, expressed in kilobytes per second (KBPS), and (ii) failure
rate (frij) is the exponential distribution characterising the data communication
failure of each link.

The way the components are deployed affects many aspects of the final sys-
tem, such as the processing speed of the software components, how much hard-
ware is used or the reliability of the execution of different functionalities [5,21],

Adaptive Neighbourhood Search for the Component Deployment Problem 191

which constitute the quality attributes of the system. Formally, the component
deployment problem is defined as D = {d | d : C → H}, where D is the set of all
functions assigning components to hardware resources.

2.1 Objective Function

The reliability evaluation obtains the mean and variance of the number of visits
of components in a single execution and combines them with the failure para-
meters of the components. Failure rates of execution elements can be obtained
from the hardware parameters, and the time taken for the execution is defined
as a function of the software-component workload and processing speed of its
hardware host. The reliability of a component ci can be computed by Eq. 1,
where d(ci) denotes the hardware host where component ci is deployed.

Ri = e
−frd(ci)·

wli
psd(ci) . (1)

where d(ci) is the deployment function that returns the hardware host where
component ci has been deployed. The reliability of a communication element is
characterised by the failure rates of the hardware buses and the time taken for
communication, defined as a function of the bus data rates dr and data sizes
ds required for software communication. The reliability of the communication
between component ci and cj is defined as

Rij = e
−frd(ci)d(cj)·

dsij
drd(ci)d(cj) . (2)

The probability that a software system produces the correct output depends
on the number of times it is executed. The expected number of visits for each
component v : C → R≥0 is vi = qi +

∑
j∈I vj ·pji, where I denotes the index set

of all components. The transfer probabilities pji can be written in a matrix form
Pn×n, where n is the number of components. Similarly, the execution initiation
probabilities qi can be expressed with matrix Qn×1. The matrix of expected
number of visits for all components Vn×1 can be calculated as V = Q + PT · V .

The reliability of a software system is also influenced by the failure rate of the
network links used during the execution of the system. The more frequently the
network is used, the higher is the probability of producing an incorrect output.
It should be noted that the execution of a software system is never initiated
in a network link, and the only predecessor of link lij is component ci. Hence,
the expected number of visits of network links v : C × C → R≥0 is calculated
as vij = vi · pij . Finally, the reliability of a deployment architecture d ∈ D is
calculated as:

R =
n∏

i=1

Rvi
i

∏

i,j (if used)

R
vij

ij . (3)

192 A. Aleti and M. Drugan

2.2 Constraints

The problem is naturally constrained, since not all possible deployment architec-
tures can be feasible. For the purpose of this work, we consider three constraints:
allocation, memory and communication.

Allocation constraint takes care of the allocation of all software components into
hardware resources. Formally, this constraint is modelled as

m∑

j=1

xij = 1, ∀i = 1, . . . , n, (4)

where xij is 1 if the software component i is deployed on the hardware unit j,
and 0 otherwise.

Hardware memory capacity deals with the memory requirements of software
components and makes sure that there is available memory in the hardware
units. Processing units have limited memory, which enforces a constraint on the
possible components that can be deployed into each hardware host. Formally,
the memory constraint is defined as

n∑

i=1

szixij ≤ cpj , ∀j ∈ {1, . . . , m}. (5)

Communication constraint is responsible for the communication between
software components. If the transition probability between two software compo-
nents i and j is positive, pij > 0, these two components will communicate with
a certain probability. Therefore, either they should be deployed on the same
hardware unit, or on different units that are connected with a communication
link (bus) with a positive data rate, drij > 0. This is modelled as follows:

xik + xjl ≤ 1, if pij > 0 and drkl ≤ 0. (6)

2.3 Related Work

For many decades, researchers have been developing evermore sophisticated algo-
rithms to solve the component deployment problem [3]. Notable examples are
genetic algorithms [18,19], ant colony optimisation [5,24] and heuristics [6]. Aleti
et al. [5] formulated the component deployment problem as a biobjective optimi-
sation problem with data transmission reliability and communication overhead
as objectives. Memory capacity constraints, location and colocation constraints
were considered in the formulation, which was solved using P-ACO [12] as well
as MOGA [11]. P-ACO was found to produce better solutions in the initial opti-
misation stages, whereas MOGA continued to produce improved solutions long
after P-ACO had stagnated.

A Bayesian learning method was developed by Aleti and Meedeniya [6] and
applied to the formulation defined by Aleti et al. [5]. The probabilities of a

Adaptive Neighbourhood Search for the Component Deployment Problem 193

solution being part of the non-dominated set was calculated as the ratio of non-
dominated solutions produced in the current generation and the overall num-
ber of solutions in the generation. Compared to NSGA-II [10] and P-ACO, the
Bayesian method was found to produce approximation sets with higher hyper-
volume values.

Meedeniya et al. [18] applied NSGA-II to the robust optimisation of the
CDP considering a varying response time. In reality, vehicles and their ECUs
are exposed to temperature differences and similar external factors, which causes
the software components to react differently at each invocation. The formulation
by Meedeniya et al. [18] treats response time and reliability as probability distri-
butions and presents solutions which are robust with regards to the uncertainty.

In the work by Thiruvady et al. [24], one of the most successful ACO solvers,
Ant Colony System (ACS) is combined with constraint programming (CP) to
optimise problem instances with different degrees of constrainedness. The con-
straints considered are limited memory of a hardware unit, collocation restric-
tions of software components on the same hardware units, and communication
between software components. Furthermore, the authors explore the alterna-
tive of adding a local search to ACS and CP-ACS. When the search space is
extremely constrained, the feasible areas form isolated islands between which
the CP solver finds it hard to navigate, unless it is allowed to cross through an
infeasible space using relaxation mechanisms. For this reason, ACS outperforms
the CP-hybrid in the component deployment optimisation problem, especially
when the colocation constraint is very tight.

Both constraints and the objective function affect the suitability of optimisa-
tion methods in solving the component deployment problem. The choice of the
search operator becomes essential in the efficiency of the optimisation process.
In many cases, different search operators may be optimal at different stages
of the optimisation process, which motivated this work. Using feedback from
the search to adjust the neighbourhood operator has the potential for avoiding
getting stuck in a local optimum, or in an infeasible area of the search space.

3 Varying the Neighbourhood Operator
for the Component Deployment Problem

Variable neighbourhood search is a general, successful and powerful local search-
based method for difficult optimization problems. Local search (LS) based meta-
heuristics starts from an initial solution and iteratively generates new solutions
using a neighbourhood strategy. Each step, a solution that improves over the
existing best-so-far solution is chosen. The local search stops when there is no
possible improvement, i.e. in a local optimum. Because LS can be stuck in local
optima, some advanced local search algorithms consist in alternating (randomly
or adaptively) the neighbourhood of the current solution.

The suitability of a local search method for solving an optimisation prob-
lem instance depends on the structure of the fitness landscape of that instance.
A fitness landscape in the context of combinatorial optimisation problems refers

194 A. Aleti and M. Drugan

to the (i) search space S, composed of all possible solutions that are connected
through (ii) the search operator, which assigns each solution s∈S to a set of
neighbours N(s)⊂S, and the fitness function F : S→�. As the neighbourhood
of a solution depends on the search operator, a given problem can have any
number of fitness landscapes. The neighbourhoods can be very large, such as
the ones arising from the crossover operator of a genetic algorithm, while a 2-
opt operator of a permutation problem has a neighbourhood that is relatively
limited in size.

3.1 Neighbourhood Strategies

We vary the application of three different neighbourhood operators: OneFlip,
kOpt and Perturb. The search starts with a randomly initialised solution, where
components are randomly allocated to hardware hosts.

kOpt exchanges the host allocations of k components. In this work, the
value of k is equal to 2. Formally, the 2Opt operator produces a new solution d′

i

from existing di by switching the mapping of two components, e.g. for selected
k, l: d′

i = [di(c1), di(c2), ..., di(ck)..., di(cl), ..., di(cn)] while the original solution
is di =[di(c1), di(c2), ..., di(cl)..., di(ck), ..., di(cn)]. With this operator, from one
solution di we can generate

(
n
2

)
possible new solutions.

OneFlip neighbourhood operator changes the allocation of a single com-
ponent. Formally, the OneFlip operator produces a new solution d′

i from exist-
ing solution di by changing the mapping of one components, e.g. for selected
k: d′

i = [di(c1), d′
i(c2), ..., di(ck), ..., di(cn)] while the original parent solution is

di = [di(c1), di(c2), ..., di(ck), ..., di(cn)]. From one solution di, we can generate
2n new solutions corresponding to the n positions and 2 values for each posi-
tion.

Perturb changes the allocation of a random component into a random host.
The application of this neighbourhood operator creates a new solution d′

i from
existing solution di by changing the mapping of one components, e.g. for a ran-
dom k: d′

i=[di(c1), d′
i(c2), ..., di(ck), ..., di(cn)] while the original parent solution

is di = [di(c1), di(c2), ..., di(ck), ..., di(cn)]. From one solution di, we can gener-
ate k1n new solutions corresponding to the n positions and k1 values for each
position in di.

3.2 Adaptive Neighbourhood Search for the Component
Deployment Problem

Each operator is applied until a local optimum is found. The solution is then
evaluated (line 7 in Algorithm1) and the change in fitness is recorded. The
adaptive neighbourhood uses the change in fitness as feedback for adjusting the
operator selection probabilities. At the beginning, all operators have equally
probability of being selected. The selection probabilities are updated over the
iterations based on operator performance. The main steps of these methods are
described in Algorithm 1. The feedback is used to decide whether to continue to
use the current operator or switch to a different one, as shown in Algorithm2.

Adaptive Neighbourhood Search for the Component Deployment Problem 195

Algorithm 1. Neighbourhood operators.
procedure OneFlip(S)

2: S∗ = S
localOptimum = True

4: for all c < C do
h = RandomlySelectHost(H)

6: S′ = AssignComponentToHost(S, c, h)
Evaluate(S′)

8: if S′ > S∗ then
S∗ = S′

10: end if
end for

12: improvement = FitnessDifference(S, S∗)
S = S∗

14: Return(improvement)
end procedure

16: procedure KOpt(S, k)
S∗ = S

18: localOptimum = True
for c = 0; c < |C| − k; c + + do

20: S′ = AssignComponentToHost(S, c, d(c + k))
S′ = AssignComponentToHost(S, c + k, d(c))

22: Evaluate(S′)
if S′ > S∗ then

24: S∗ = S′

end if
26: end for

improvement = FitnessDifference(S, S∗)
28: S = S∗

Return(improvement)
30: end procedure

procedure Perturb(S)
32: c = RandomlySelectComponent(C)

h = RandomlySelectHost(H)
34: S′ = AssignComponentToHost(S, c, h)

Evaluate(S′)
36: if S′ > S∗ then

S∗ = S′

38: end if
improvement = FitnessDifference(S, S∗)

40: S = S∗

Return(improvement)
42: end procedure

The mechanism used for the selection of the neighbourhood operator is a
fitness proportionate method (line 4 in Algorithm2). Each operator is assigned a
selection probability proportionate to its quality (line 14 in Algorithm2). For the
purpose of this work, the fitness change in the solution modified by an operator

196 A. Aleti and M. Drugan

Algorithm 2. Adaptive neighbourhood search.
procedure AN

2: S = RandomlyAllocate(C,H)
N = SelectNeighbourhoodOperator(P (N))

4: if N == OneFlip then
Q(N)=OneFlip(S)

6: end if
if N == KOpt then

8: Q(N)=KOpt(S, k)
end if

10: if N == Perturb then
Q(N)=Perturb(S)

12: end if
ReportFeedback(Q(N))

14: Return(S)
end procedure

is used to updates the operator’s quality. Given the operator’s quality Q(N), the
update rule for the operator’s selection probability P (N) is calculated as

P (N) = αP (N) + (1 − α)Q(N), (7)

where α is a parameter that controls the influence of previous versus immediate
performance. Higher values for α increase the effect of previous performance,
whereas lower values focus on immediate effects. In this study, α was set to 0.9.
Formally, the operators quality is calculated as:

Q(N) =
|f(S) − f(S∗)|

f(S)
(8)

where f(S) is the quality of the solution at the start of the search, and f(S∗) is
the quality of the optimised solution.

The deterministic neighbourhood strategy, performs a variable neighbour-
hood search by applying the three neighbourhood operators sequentially, in the
order given in Algorithm3. We have selected this order arbitrarily and can be
changed by the user. Another alternative would have been to select at random
one of these operators.

The variable neighbourhood search, on the other hand, assigns equal prob-
abilities to OneFlip and kOpt. The main steps are listed in Algorithm3. At
each iteration, VN selects one of the two operators with equal probability. The
Perturb operator is the most disruptive operator since it can make the largest
changes in the search space. Therefore, Perturb is applied after the OneFlip or
kOpt with a very small probability, which ensures that the search does not get
trapped in a local optimum.

Adaptive Neighbourhood Search for the Component Deployment Problem 197

Algorithm 3. Deterministic and variable neighbourhood search operators.
procedure DN

2: S = RandomlyAllocate(C,H)
OneFlip(S)

4: Perturb(S)
KOpt(S, k)

6: Return(S)
end procedure

8:
procedure VN

10: S = RandomlyAllocate(C,H)
r = Random([0,1])

12: if r > 0.5 then
OneFlip(S)

14: end if
if r < 0.5 then

16: KOpt(S, k)
end if

18: p = Random([0,1])
if p < 0.01 then

20: Perturb(S)
end if

22: Return(S)
end procedure

4 Experiments

To evaluate the efficiency of the proposed methods for varying the neighbourhood
search operator, we have designed a set of experiments with problems of different
sizes and level of difficulty. The design of experiments and the analysis of results
is described in the following sections.

4.1 Experimental Design

The problems used for the experiments consist of a number of randomly gener-
ated instances with varying complexity and constrainedness. The memory con-
straint takes its tightness from the ratio of components to hardware hosts - the
fewer hosts, the less ‘space’ there is for components. The smallest instances con-
sist of 10 hosts and 23 software components whereas the largest instances consist
of 62 hardware hosts and 130 software components. All algorithms were allowed
50 000 function evaluations, and all trials were repeated 30 times to account
for the stochastic behaviour of the algorithms. Results from the 30 runs were
analysed and compared using the Kolmogorov-Smirnov (KS) non-parametric
test [22]. Furthermore, the effect size was reported for each experiment.

The validity of the presented experiments may be questioned on the grounds
that the results may only reflect the performance of the algorithms in certain

198 A. Aleti and M. Drugan

problem instances, and there is a chance that the approaches may perform dif-
ferently for other problems. In the design of experiment, we aimed at reducing
this threat by generating problem instances of different sizes and characteristics.
Instead of manually setting specific problem properties, we developed a prob-
lem generator integrated in ArcheOpterix [2]. The problem generator and the
problem files can be downloaded from http://users.monash.edu.au/∼aldeidaa/
ArcheOpterix.html. As a result, the experiments set themselves apart from an
instance-specific setting to a broader applicability.

4.2 Results

The experiments were performed on a 64-core 2.26 GHz processor computer.
There was little difference in the run-times of the different optimisation schemes
for the same problem instances. The main difference in run-time was observed
between the problem instances with different size. Solving the smaller instances
was faster, since the evaluation of the quality attributes takes less time. The
distributions of the fitness values (reliability function in Eq. 3) of the 30 runs
are visualised as boxplots for Adaptive Neighbourhood (AN), Variable neigh-
bourhood (VN), deterministic neighbourhood (DN) and local search (LS). The
middle lines represent the median value for each case. The means and stan-
dard deviations for all problem instances and optimisation schemes are shown
in Table 1. AN outperforms the other strategies in the majority of the prob-
lem instances, which indicates that using feedback from the search to adapt the
neighbourhood operator benefit the optimisation process (Fig. 1).

Table 1. The mean and standard deviation of the 30 trials of adaptive neighbourhood
search (AN), variable neighbourhood search (VN), deterministic neighbourhood search
(DN) and local search (LS).

AN VN DN LS

Problem Mean Std. dev Mean Std. dev Mean Std. dev Mean Std. dev

H10C23 0.999871 0.000000 0.999871 0.000000 0.998980 0.000057 0.999871 0.000000

H20C45 0.999993 0.000000 0.999979 0.000004 0.999965 0.000009 0.999993 0.000000

H25C54 0.999981 0.000000 0.999980 0.000000 0.999935 0.000010 0.999979 0.000000

H30C65 0.999780 0.000002 0.999746 0.000007 0.999615 0.000048 0.999743 0.000005

H35C74 0.999986 0.000000 0.999980 0.000001 0.999912 0.000023 0.999983 0.000000

H42C85 0.999777 0.000039 0.999770 0.000027 0.999759 0.000037 0.999737 0.000045

H55C107 0.999796 0.000004 0.999771 0.00007 0.999679 0.000006 0.999667 0.000043

H62C130 0.999974 0.000009 0.999932 0.000008 0.999918 0.000016 0.999919 0.000013

As the adaptive neighbourhood strategy consistently outperforms the
three other optimisation schemes, we use the Kolmogorov-Smirnov (KS) non-
parametric test [22] to check for a statistical difference. The 30 results of the
repeated trials for each of the problem instances were submitted to the KS
analysis. The adaptive neighbourhood search (AN) was compared to the other

http://users.monash.edu.au/~{}aldeidaa/ArcheOpterix.html
http://users.monash.edu.au/~{}aldeidaa/ArcheOpterix.html

Adaptive Neighbourhood Search for the Component Deployment Problem 199

(a) H10C23 (b) H20C45

(c) H25C54 (d) H30C65

(e) H42C85 (f) H35C74

(g) H55C107 (h) H62C130

Fig. 1. Boxplots of fitness values (reliability function in Eq. 3) for Adaptive Neighbour-
hood (AN), Variable neighbourhood (VN), deterministic neighbourhood (DN) and local
search (LS).

200 A. Aleti and M. Drugan

Table 2. The KS test values and effect size of the 30 trials of adaptive neighbour-
hood search vs. variable neighbourhood search (AN vs. VN), adaptive neighbourhood
search vs. deterministic neighbourhood search (AN vs. DN) and adaptive neighbour-
hood search vs. local search (AN vs. LS).

KS test Effect size

Problem AN vs. VN AN vs. DN AN vs. LS AN vs. VN AN vs. DN AN vs. LS

H10C23 1 ≤ 0.01 1 0.00 0.99 0.00

H20C45 ≤ 0.01 ≤ 0.01 1 0.92 0.91 0.00

H25C54 0.02 ≤ 0.01 ≤ 0.01 0.99 0.95 0.99

H30C65 ≤ 0.01 0.05 ≤ 0.01 0.95 0.92 0.98

H35C74 ≤ 0.01 ≤ 0.01 ≤ 0.01 0.97 0.98 0.99

H42C85 0.01 0.03 0.03 0.91 0.92 0.94

H55C107 ≤ 0.01 0.02 ≤ 0.01 0.90 0.99 0.90

H62C130 0.01 0.04 0.05 0.92 0.90 0.93

three optimisation schemes, with a null hypothesis of an insignificant difference
between the performances (AN vs. VN, AN vs. DN, and AN vs. LS). The results
of the tests are shown in Table 2.

All KS tests, used for establishing that there is no difference between inde-
pendent datasets under the assumption that they are not normally distributed,
result in a rejection of the null hypothesis at a 95 % confidence level in the major-
ity of the cases. AN and LS have the same performance in two problems H20C45
and H10C23. The search space of these two instances is relatively small, and the
problems can be solved to high quality with local search. For larger and more
complex search spaces, the local search method fails at finding good results. The
deterministic neighbourhood search method has the worst performance out of
the four optimisation schemes. Clearly, applying the three operators sequentially
does not benefit the search, although for the large problem instances, varying
the neighbourhood produces better results than local search, even if it is done
in a deterministic way.

Since statistical significance depends on the sample size, we also compute
the effect size for each comparison (AN vs. VN, AN vs. DN, and AN vs. LS), as
shown in Table 2. The effect of the sample size is measured using the Cohen’s d
estimation [8], which considers the pooled standard deviation. In reporting the
effect size, we follow the guidelines proposed by Cohen [8]: a ‘small’ effect size
is 0.2, a ‘medium’ effect size is 0.5, and a ‘large’ effect size is 0.8. In essence,
the effect size indicates the number of standard deviations difference between
the means of the samples. The effect size for the problem instances that show
statistical significance in terms of the KS test was above 0.9. As a results, it can
be concluded that the difference in the performance of the optimisation schemes
is meaningful, and that the AN strategy is the most successful search method
for the component deployment problem.

Adaptive Neighbourhood Search for the Component Deployment Problem 201

5 Conclusion

This paper propose an adaptive variable neighbourhood search for component
deployment components that uses multiple neighbourhood operators to escape
local optimum. These operators are adaptively selected such that the operator
that improves the most the fitness value and most frequently the current solu-
tion is selected the most often. Two other versions of this variable neighbourhood
search algorithm alternate uniformly at random or deterministically the three
operators. We test the three proposed algorithms and a simple version of multi-
ple restarts local search on several instances of component deployment problems
with different level of difficulty. The experimental results show that the adap-
tive variable neighbourhood algorithm outperforms the other algorithms. We
conclude that the local search algorithms are useful optimization algorithms for
component deployment problems.

Acknowledgements. This research was supported under Australian Research Coun-
cil’s Discovery Projects funding scheme, project number DE 140100017.

References

1. Aleti, A.: Designing automotive embedded systems with adaptive genetic algo-
rithms. Autom. Softw. Eng. 22, 199–240 (2015)

2. Aleti, A., Björnander, S., Grunske, L., Meedeniya, I.: ArcheOpterix: an extendable
tool for architecture optimization of AADL models. In: Model-based Methodologies
for Pervasive and Embedded Software, pp. 61–71. ACM and IEEE Digital Libraries
(2009)

3. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software archi-
tecture optimization methods: a systematic literature review. IEEE Trans. Softw.
Eng. 39(5), 658–683 (2013)

4. Aleti, A., Grunske, L.: Test data generation with a kalman filter-based adaptive
genetic algorithm. J. Syst. Softw. 103, 343–352 (2015)

5. Aleti, A., Grunske, L., Meedeniya, I., Moser, I.: Let the ants deploy your software
- an ACO based deployment optimisation strategy. In: ASE, pp. 505–509. IEEE
Computer Society (2009)

6. Aleti, A., Meedeniya, I.: Component deployment optimisation with bayesian learn-
ing. In: ACM Sigsoft Symposium on Component based Software Engineering, pp.
11–20. ACM (2011)

7. Assayad, I., Girault, A., Kalla, H.: A bi-criteria scheduling heuristic for distributed
embedded systems under reliability and real-time constraints. In: Dependable Sys-
tems and Networks, pp. 347–356. IEEE Computer Society (2004)

8. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Lawrence Erl-
baum Associates, Hillsdale (1988)

9. Coit, D.W., Konak, A.: Multiple weighted objectives heuristic for the redundancy
allocation problem. IEEE Trans. Reliab. 55(3), 551–558 (2006)

10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2000)

202 A. Aleti and M. Drugan

11. Fonseca, C.M., Fleming, P.J., et al.: Genetic algorithms for multiobjective opti-
mization: formulation, discussion and generalization. In: ICGA, vol. 93, pp. 416–
423 (1993)

12. Guntsch, M., Middendorf, M.: Solving multi-criteria optimization problems with
population-based ACO. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K.,
Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 464–478. Springer, Heidelberg
(2003)

13. Harman, M., Afshin Mansouri, S., Zhang, Y.: Search-based software engineering:
trends, techniques and applications. ACM Comput. Surv. 45(1), 11:1–11:61 (2012)

14. Harman, M., McMinn, P.: A theoretical and empirical study of search-based test-
ing: local, global, and hybrid search. IEEE Trans. Softw. Eng. 36(2), 226–247
(2010)

15. ISO/IEC. IEEE international standard 1471 2000 - systems and software engi-
neering - recommended practice for architectural description of software-intensive
systems (2000)

16. Kubat, P.: Assessing reliability of modular software. Oper. Res. Lett. 8(1), 35–41
(1989)

17. Malek, S., Medvidovic, N., Mikic-Rakic, M.: An extensible framework for improving
a distributed software system’s deployment architecture. IEEE Trans. Softw. Eng.
38(1), 73–100 (2012)

18. Meedeniya, I., Aleti, A., Avazpour, I., Amin, A.: Robust archeopterix: architecture
optimization of embedded systems under uncertainty. In: Software Engineering for
Embedded Systems, pp. 23–29. IEEE (2012)

19. Meedeniya, I., Aleti, A., Grunske, L.: Architecture-driven reliability optimization
with uncertain model parameters. J. Syst. Softw. 85(10), 2340–2355 (2012)

20. Meedeniya, I., Buhnova, B., Aleti, A., Grunske, L.: Architecture-driven reliabil-
ity and energy optimization for complex embedded systems. In: Heineman, G.T.,
Kofron, J., Plasil, F. (eds.) QoSA 2010. LNCS, vol. 6093, pp. 52–67. Springer,
Heidelberg (2010)

21. Meedeniya, I., Buhnova, B., Aleti, A., Grunske, L.: Reliability-driven deployment
optimization for embedded systems. J. Syst. Softw. 84, 835–846 (2011)

22. Pettitt, A.N., Stephens, M.A.: The kolmogorov-smirnov goodness-of-fit statistic
with discrete and grouped data. Technometrics 19(2), 205–210 (1977)

23. Shan, S., Gary Wang, G.: Reliable design space and complete single-loop reliability-
based design optimization. Reliab. Eng. Syst. Saf. 93(8), 1218–1230 (2008)

24. Thiruvady, D., Moser, I., Aleti, A., Nazari, A.: Constraint programming and ant
colony system for the component deployment problem. Procedia Comput. Sci. 29,
1937–1947 (2014)

25. Weimer, W., Forrest, S., Le Goues, C., Nguyen, T.V.: Automatic program repair
with evolutionary computation. Commun. ACM 53(5), 109–116 (2010)

26. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1(1), 67–82 (1997)

Transformed Search Based Software
Engineering: A New Paradigm of SBSE

He Jiang(&), Zhilei Ren, Xiaochen Li, and Xiaochen Lai

School of Software, Dalian University of Technology, Dalian, China
{jianghe,zren,laixiaochen}@dlut.edu.cn,

li1989@mail.dlut.edu.cn

Abstract. Recent years have witnessed the sharp growth of research interests in
Search Based Software Engineering (SBSE) from the society of Software
Engineering (SE). In SBSE, a SE task is generally transferred into a combina-
torial optimization problem and search algorithms are employed to achieve
solutions within its search space. Since the terrain of the search space is rugged
with numerous local optima, it remains a great challenge for search algorithms
to achieve high-quality solutions in SBSE. In this paper, we propose a new
paradigm of SBSE, namely Transformed Search Based Software Engineering
(TSBSE). Given a new SE task, TSBSE first transforms its search space into
either a reduced one or a series of gradually smoothed spaces, then employ
search algorithms to effectively seek high-quality solutions. More specifically,
we investigate two techniques for TSBSE, namely search space reduction and
search space smoothing. We demonstrate the effectiveness of these new tech-
niques over a typical SE task, namely the Next Release Problem (NRP). The
work of this paper provides a new way for tackling SE tasks in SBSE.

Keywords: Search based software engineering � Search space transformation �
Search space reduction � Search space smoothing � Next release problem

1 Introduction

Since Harman and Jones proposed the conception of Search Based Software Engi-
neering (SBSE) in 2001 [1], SBSE has attracted a great amount of research interests
from the society of Software Engineering (SE). As shown in the SBSE repository1, up
to Feb. 3, 2015, 1389 relevant research papers involving over 659 authors around the
world have been published.

As stated in [1, 2], a SE task in SBSE is firstly transferred into an optimization
problem for solving and then various search algorithms are employed to seek solutions
within its search space, a high-dimensional rugged space consisting of points (solutions).
Some typical search algorithms include Evolutionary Algorithms (EA, e.g., Genetic
Algorithms, Genetic Programming, and Memetic Algorithms), Ant Colony Algorithms
(ACO), Tabu Search (TS), Simulated Annealing (SA), Particle Swarm Optimization
(PSO), Hill Climb (HC), etc. Up to now, SBSE has covered most SE tasks across all the

1 SBSE repository: http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/.

© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 203–218, 2015.
DOI: 10.1007/978-3-319-22183-0_14

http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/

stages of the software lifecycle, including requirement/specification, design, verification,
testing/debugging, maintenance, and software project management (see Fig. 1).

Since the search spaces in SBSE are usually rugged with numerous local optima,
search algorithms are apt to get trapped into poor local optima. In this paper, we
propose a new paradigm of SBSE named Transformed Search Based Software Engi-
neering (TSBSE) to tackle this challenge. In TSBSE, the search spaces are transformed
so as to either constrain search algorithms within promising regions or provide better
initial solutions for search algorithms. More specifically, we present two techniques for
search space transformation, namely search space reduction and search space
smoothing. Taking the Next Release Problem (NRP) as a case study, we investigate
how to resolve SE tasks within TSBSE.

The remainder of this paper is structured as follows. In Sect. 2, we present the new
SBSE paradigm TSBSE. Then in Sect. 3 we present the related work of the NRP. In
Sects. 4 and 5, we present the detailed technique of search space smoothing over NRP
and the experimental results, respectively. In Sect. 6, we discuss the threats to validity.
Finally, we conclude this paper and discuss the future work in Sect. 7.

2 Transformed Search Based Software Engineering

In this section, we introduce the new paradigm of SBSE, namely Transformed Search
Based Software Engineering (TSBSE). A key challenge lying in SBSE is that search
algorithms in SBSE may easily get trapped into poor local optima, due to the rugged
terrain of search spaces with numerous local optima. Therefore, TSBSE aims to tackle
the above challenge by transforming the search spaces. As shown in Fig. 2, given a SE
task, TSBSE firstly transfers it into a combinatorial optimization problem. Then,
TSBSE transforms the related search space to facilitate the process of searching
solutions. More specifically, two techniques are available for search space transfor-
mation, namely search space reduction and search space smoothing. Third, search
algorithms, e.g., EA, ACO, TS, SA, PSO, are employed to search within the trans-
formed search space. In the following part, we illustrate more details of search space
reduction and search space smoothing.

1.Problem Transfer

3. Apply Result

2.Search within
Search Space

Fig. 1. Roadmap of SBSE

204 H. Jiang et al.

Search Space Reduction. In SBSE, a search space may consist of numerous local
optima and, search algorithms are apt to get trapped into poor local optima. The basic
idea of search space reduction in TSBSE is to constrain search algorithms in a reduced
search space consisting of high-quality solutions. In such a way, search algorithms
could better find high-quality solutions within reasonable running time.

Some related studies [3, 4] in the literature can be viewed as the applications related
to search space reduction. For example, in [3], Xuan et al. proposed a backbone based
multilevel algorithm to solve NRP. They constrain a shared common part of optimal
solutions and reduce the search space into smaller ones. Then, they employ Simulated
Annealing to iteratively search for high-quality solutions.

In Fig. 3, we present the pseudo code of the search space reduction. First, in each
reduction level, the search algorithm is applied on the current reduced search space to
produce a set of high quality solutions Ck

0. Then, the search space is reduced according
to the solutions Ck

0, e.g., by fixing the common parts of the solutions (lines 2–6 of
Algorithm 1). Second, after the search space reduction phase, the search algorithm is
applied on the final reduced search space, to obtain a local optimum Cdþ1

0 (line 7 of
Algorithm 1). Third, the local optimum Cdþ1

0 is transferred gradually back to the
feasible solution to the original search space (lines 8–10 of Algorithm 1). During the
refinement procedure, the best solution achieved so far is recorded. After the refinement
phase, the best solution is returned (line 11 of Algorithm 1).

2. Search Space Transformation

1.Problem Transfer

4. Apply Result

2.1Search Space Reduction 2.2 Search Space
Smoothing

3. Search within
Search Spaces

Fig. 2. Roadmap of TSBSE

Transformed Search Based Software Engineering 205

Search Space Smoothing. In SBSE, the terrain of a search space is usually rugged
with many poor local optima. Hence, the solutions of search algorithms may heavily
depend on the initial solutions fed into search algorithms. For example, Hill Climbing
may easily get trapped into a poor local optimum, if it is initialized with a random
solution. The idea of search space smoothing is to transform a search space into a series
of gradually smoothed ones. In the most smoothed search space, search algorithms are
apt to achieve high-quality solutions. Then, the resulting solutions are fed into the
second smoothed search space as its initial solutions. Since the terrains of the two
search spaces are similar in shape, these initial solutions could lead search algorithms to
better hit new high-quality solutions. In such a way, we eventually return to the original
search space and achieve the final solutions.

Figure 4 presents the process of search space smoothing over a one-dimensional
search space. The original search space is smoothed into two smoothed search spaces.
First, a solution is initialized in the most smoothed search space (smoothed search

Algorithm 1: Search Space Reduction
Input: search space , search algorithms , maximum number of reduc-
tion levels, a set of solutions
Output: best solution

1 begin
2 for k = 1 to do
3 Obtain a set of solutions by in
4 Calculate high quality part of
5 Reduce the search space to by
6 end
7 Obtain a local optimum in the reduced search space by
8 for k = to do
9 Refine the solution with and in level k

10 end
11 return the best solution achieved
12 end

Fig. 3. Pseudo Code of Search Space Reduction

Fig. 4. Illustration of search space smoothing over one-dimensional search space

206 H. Jiang et al.

space II) and a local optimum b is achieved. Then, the solution b is used as the initial
solution in smoothed search space I, and a local optimum c can be achieved. Finally,
the solution c is used as the initial solution in the original search space and the final
solution d is eventually returned.

In Fig. 5, we present the pseudo code of the search space smoothing. First, we
generate a smoothed search space

Q
0, in which the initial solutions C0 is generated

(lines 1–2 of Algorithm 2). Then, the search is conducted over a series of search spaces,
which are transferred gradually back towards the original, rugged search space (lines 3–
7 of Algorithm 2). More specifically, at each iteration, the search space is firstly tuned,
and the best solutions up to the previous iteration is regarded as the initial solutions. The
algorithm is then applied on the current tuned search space with these initial solutions to
obtain the current best solutions. Finally, after the search space is transferred to the
original search space, the best solution in the original search space is returned (line 8 in
Algorithm 2).

Some early studies [5] in the literature demonstrate that combinatorial optimization
problems could be better solved by search space smoothing. However, as to our
knowledge, no related work has been done in SBSE. Since for most tasks in SBSE, it is
still a challenge on how to prevent search algorithms from getting trapped into poor
local optima. We believe that search space smoothing is a promising technique to solve
the above problem and may significantly improve the effectiveness of search algo-
rithms in SBSE.

3 Related Work

3.1 The Next Release Problem

Bagnall et al. [6] first proposed the Next Release Problem (NRP) to balance the profits of
customers and the developing costs of requirements in the next release of software

Algorithm 2: Search Space Smoothing
Input: search space , search algorithms , maximum number of smooth-
ing levels, a set of solutions
Output: best solution

1 begin
2 Generate a smoothed search space
2 Generate initial solutions in
3 for k = 1 to do
4 Tune the search space to , towards the original, rugged space.
5 Assign the current best solutions as the initial solution
6 Apply with in to get the current best solutions
7 end
8 return the best solution achieved
9 end

Fig. 5. Pseudo Code of search space smoothing

Transformed Search Based Software Engineering 207

systems. Besides customer profits, a variety of problem objectives have been proposed in
literature, such as component prioritization [7], fairness [8], etc. According to the number
of problem objectives, we can classify the NRP into two categories, namely
single-objective NRP (or the NRP for short) and multi-objective NRP (or MONRP for
short).

For the category of single-objective NRP, Bagnall et al. [6] apply numerous
search-based algorithms, including greedy algorithms, local search, etc., on five ran-
domly generated instances to solve the NRP. In this work, they model the problem as
searching for the maximum profits from customers within a predefined cost bound of a
software system. The problem can be formalized as follows [6]:

Maximize
X

i�S
wi subject to cost [i2SR̂i

� ��B;B� Zþ ð1Þ

where S is a set of customers, R̂ is a set of requirements, wi is the importance of the ith
customer, and cost [i2SR̂i

� �
means the cost of satisfying all the requirements R̂ of the

ith customer. The cost should be within some bounds B.
Following the problem definition, Greer and Ruhe [9] propose a genetic

algorithm-based approach to iteratively generate the final decision of the NRP. Jiang
et al. [10] propose an ant colony optimization algorithm with a local search operator
(first found hill climbing) to approximately solve the NRP. A backbone-based multi-
level algorithm is proposed in [3]. In this paper, Xuan et al. iteratively reduce the search
space by adding the common part of the customers and customers with zero cost to the
requirements selection into the combined backbone (approximate backbone and soft
backbone). Then they refine the final decision according to the solution in the reduced
search space and the combined backbone. Baker et al. [7] extend the NRP with the
component selection and ranking, and explore both greedy and simulated annealing
algorithms to this problem. Moreover, Ngo-The and Ruhe [11] propose a two-phase
optimization approach, which combine integer programming and genetic program-
ming, to allocate the resources of software releases. Paixão et al. proposed a recov-
erable robust approach for [12] and extands the NRP with a novel formulation which
considers the production of robust solutions [13, 14]. Fuchshuber et al. [15] modify the
hill climbing algorithm with some patterns observed from the terrain visualization.
Araújo et al. [16] draw machine learning models into the NRP. Harman et al. [17]
analyze the NRP from the perspective of requirement sensitivity analysis. In this paper,
we propose the framework of search space transformation for SBSE, and take the
single-objective NRP as a case study. In contrast to solving the problems directly, we
smooth the search space to improve the search ability of existing algorithms.

For the category of multi-objective NRP, Zhang et al. [18] first take multi-factors in
requirements engineering into consideration and apply the genetic algorithm-based
multiobjective optimization to the MONRP. Many related work extend MONRP by
balancing factors between the benefits and fairness [19], sensitivity [20] robustness
[21], or uncertainty [22]. Besides, Saliu and Ruhe [23] aim at optimizing release plans
from both the business perspectives and the implementation perspectives. Zhang et al.
[24] seek to balance the requirements needs of today with those of the future. Veerapen
et al. [25] evaluate integer linear programming approach on both the single-objective

208 H. Jiang et al.

and multi-objective NRP. A recent work by Zhang et al. [26] conduct comprehensive
empirical study of different search algorithms across different real world datasets in
NRP. Another review is conducted by Pitangueira [27].

3.2 Search Space Reduction for the NRP

Search space reduction is an effective approach to search high quality solutions for
SBSE in the framework of search space transformation. A typical application of search
space reduction has been studied in [3].

In [3], Xuan et al. propose a Backbone-based Multilevel Algorithm (BMA) to solve
the NRP. The BMA employs multilevel reductions to iteratively reduce the problem
scale and refine the final optimal solution. For each level, BMA combines approximate
backbone with soft backbone to build a part of final optimal solution and reduce the
search space by removing the common part of the optimal customers. The approximate
backbone is employed to fix the common part of local optima of several local search
operators. While the soft backbone is employed to augment the approximate backbone
by adding the customers who provide profits with zero cost to the requirements
selection. Based on the backbones, BMA resolves the large scale problem to a small
one and search solution to it efficiently. Finally, BMA constructs a solution to the
original instance by combining the approximate backbone, the soft backbone, and the
current solution to the reduced instance together. The experiments show that search
space reduction with backbones can significantly reduce the problem scale, meanwhile
improves the quality of solutions for NRP without time cost.

4 Search Space Smoothing for the NRP

In this section, we present the main idea of search space smoothing for the NRP, and
propose the algorithm framework. More specifically, we first introduce the motivation
of search space smoothing. Then, we demonstrate how to realize the search space
smoothing framework.

4.1 The Motivation

The motivation of search space smoothing is intuitive and simple, which is usually
described analogously as “seeing the forest before trees” [28]. The idea of search space
smoothing is to capture the general characteristics of the search space first, and
gradually gain more details of the search terrain. This process is realized by transferring
the search terrain from a smooth on towards the original rugged one. To achieve the
performance improvement with search space smoothing, researchers have proposed
various approaches. Among these approaches, most adopt the instance perturbation
techniques, to realize the gradual transfer from smooth search terrains to the original
rugged ones. Through a series of instance perturbations, search space smoothing
intends to avoid the search from being stuck by locally optimal traps. With the help of
well-defined smoothing strategies, search space smoothing is able to conduct such

Transformed Search Based Software Engineering 209

search space transferring at the cost of only a few extra parameters. In the existing
literatures, there exist several smoothing approaches, such as power law smoothing,
sigmoidal smoothing, etc. In this study, we take the power law smoothing as an
example, to investigate the possibility of realizing the search space smoothing.

As mentioned in Sect. 2, the objective of the NRP is to maximize the revenue of the
selected customer subset. Following the existing search space smoothing studies [5,
28], we propose the following smoothing formula:

wiðaÞ ¼ �wþ ðw0
i � �wÞa; w0

i � �w
�w� ð�w� w0

iÞa; w0
i\�w

;

�
ð2Þ

where w0 is the normalized revenue of the ith customer, �w indicates the normalized
average revenue of all the customers, and a is a parameter that controls the degree of
smoothing. By introducing the parameter, smoothed instances could be generated. In
Fig. 6, we provide the illustration of the influence caused by the smoothing parameter.
In the figure, the x- and y- axes represent the normalized revenue and the smoothed
revenue calculated with Eq. 2, respectively. The curves in the figure correspond to
different configurations of the parameter. It is obvious that when a � 1, all the reve-
nues tend to be equal, meanwhile when a is 1, the instance would degenerate to the
original instance. By adaptively controlling a, the search terrain could be fine-tuned
accordingly.

In Fig. 7, we present the pseudo code of the search space smoothing framework for
the NRP. The framework works in an iterative paradigm, according to certain schedule
of the parameter a. For example, suppose the simplest schedule: let a decreases linearly
from 5 to 1. At each iteration, we first construct a smoothed instance according to Eq. 2
(line 7 of Algorithm 3). Then, with the best solution up to the previous iteration as the
initial solution, we apply the embedded algorithm to improve the incumbent solution
(lines 8–9 of Algorithm 3). As a decreases towards 1, the search space gets transferred
towards the original space. Finally, when the main loop terminates, the best solution
achieved is returned (line 11 of Algorithm 3).

0

0.2

0.4

0.6

0.8

1

1.2

0
0.

04
2

0.
08

4
0.

12
6

0.
16

8
0.

21
0.

25
2

0.
29

4
0.

33
6

0.
37

8
0.

42
0.

46
2

0.
50

4
0.

54
6

0.
58

8
0.

63
0.

67
2

0.
71

4
0.

75
6

0.
79

8
0.

84
0.

88
2

0.
92

4
0.

96
6

sm
oo

th
ed

re
ve

nu
e

normalized revenue

=1

=2

=3

=4

Fig. 6. Revenue Smoothing Transformation Scheme

210 H. Jiang et al.

We could observe that, search space smoothing does not make assumptions about
the algorithm which is embedded in the framework. Hence, it is easy to implement
search space smoothing based variants that adopt other algorithms. For the following
section, we would examine the flexibility of search space smoothing with a simple
evolutionary search algorithm.

4.2 Search Space Smoothing Based Memetic Algorithm

After introducing the background information of the search space smoothing frame-
work, we proceed to adapt the smoothing techniques for solving the NRP. In this
subsection, we embed a simple Memetic Algorithm (MA) into the search space
smoothing framework (denoted as SSS-MA). The reason we choose MA as the
embedded algorithm is that, MA could be viewed as the combination of genetic
algorithm and local search techniques. By balancing the intensification ability of local
search and the diversification of the genetic operators, MAs have achieved promising
performances in various problem domains [29, 30].

The pseudo code of SSS-MA is presented in Fig. 8. Similar to the existing genetic
algorithms, MA is a population based iterative process. The population consists of a set
of solutions to the NRP instance, each of which is encoded as a Boolean vector. MA
realizes the problem solving procedure with two phases, i.e., the initialization phase
and the main loop phase. First, all the individuals are randomly initialized and eval-
uated (line 2 of Algorithm 4). Then, for the second phase, the population is iteratively
evolved to optimize the individuals. At each iteration, we first modify the parameter a if
necessary. In this study, we consider a simple schedule, i.e., decrease a linearly from 5
to 1. After the smoothed instance is constructed (lines 4–5 of Algorithm 4), genetic
operators such as crossover and mutation are applied over each individual. In this

Algorithm 3: Search Space Smoothing for NRP
Input: Embedded Algorithm A
Output: optimized solution s

1 begin
2 for each customer i do
3 Normalize all the revenues so that 0
4 end
5 Generate initial solutions
6 for in predefined schedule do
7 Set the revenue vector with respect to Eq. 2
8 Assign the initial solution with the current best solution
9 Apply A with the smoothed instance for optimization

10 end
11 return best solution achieved
12 end

Fig. 7. Pseudo Code of the search space smoothing framework for NRP

Transformed Search Based Software Engineering 211

study, uniform crossover and bit-flipping mutation are employed to produce the off-
spring individuals (lines 7–9 of Algorithm 4). Furthermore, in addition to the genetic
operators, MA features the use of local search operators (line 10 of Algorithm 4). In
this study, we apply a bit-flipping based hill climbing procedure as the local search
operator. After all the operators have been applied, all the individuals and their off-
spring undergo a selection operator, to construct the population for the next iteration
(line 12 of Algorithm 4). In this study, the truncation based selection mechanism is
adopted. With the selected individuals, the evolution process continues the following
iterations, until certain stopping criteria are met.

5 Experiments

In this section, we present the extensive experiments, to demonstrate the effectiveness
of search space smoothing applied to the NRP. More specifically, we first present the
preliminary information of the experiments. Then, numerical experiments are con-
ducted over the benchmark instances. We compare the SSS-MA with the baseline MA,
to examine the performance of the proposed algorithm. Finally, we investigate why
search space smoothing works by illustrate the anytime performance of SSS-MA.

Before presenting the experimental results, we first briefly give the background
information of the experiments. In this study, the algorithms are implemented in C++,
compiled with g++ 4.9. The experiments are conducted on a PC with an Intel Core i5

Algorithm 4: Search Space Smoothing based Memetic Algorithm for NRP
Input: maximum iterator nIter, population size nPop, elitism rate eRate, mu-
tation rate mRate
Output: best solution achieved

1 begin
2 initialization
3 for i 1 to nIter do

4

5 Modify instance variables with Eq. 2
6 for nPop (1 – eRate) do
7 Randomly select two individuals as parents
8 Apply uniform crossover
9 Apply bit-flipping mutation over the offspring

10 Apply hill climbing over the offspring
11 end
12 Apply elitism selection
13 end
14 return best solution achieved
15 end

Fig. 8. Pseudo Code of SSS-MA

212 H. Jiang et al.

3.2 GHz CPU and 4 GB memory, running GNU/Linux with kernel 3.16. For the
benchmark instances, there are two classes from [3] and [6], respectively.

To evaluate the performance of SSS-MA, we consider two comparative algorithms.
First, we adopt the basic MA as the baseline algorithm. The only difference between
MA and SSS-MA lies in the smoothing mechanism. By comparing the two algorithms,
we are able to examine the usefulness of search space smoothing. Second, besides MA,
we employ the solution achieved by the backbone guided algorithm BMA [3] as the
reference to evaluate the effectiveness of SSS-MA objectively, since BMA is among
the best heuristics for the NRP. Next, since there are parameters in both MA and
SSS-MA, we have to conduct the parameter tuning task. In this study, we choose to
tune the elitism ratio and the mutation rate, and fix the rest parameters for the two
algorithms. The reason for this experiment scheme is that, during the implementation,
we find that these two parameters have the major influence on the performance. In
particular, we employ the automatic tuning tool irace [31]. The parameter settings for
the algorithms are summarized in Table 1.

5.1 Numerical Results

After the preliminary experiment, we proceed to carry out the numerical experiments.
For each benchmark instances, we independently execute the two algorithms for 10
times, and report the results in Table 2. The table is organized as follows. The first
column indicates the instances. The second column presents the best known solution
quality achieved by BMA. Then, in columns 3–5 and 6–8, the results for MA and
SSS-MA are given, respectively. For each algorithm, we list the maximum and the
mean of the solution quality, as well as the average time in seconds. From the table,
several interesting observations could be drawn. First, from the effectiveness aspect,
SSS-MA is able to achieve solutions with better quality than SSS-MA. Over the 39
instances, SSS-MA outperforms MA over 36 instances, in terms of the best solution
quality. When we compare the average solution quality of the two algorithms, similar
observations could be found. For both the two comparison scenarios, the conclusion
that SSS-MA outperforms MA is supported by the nonparametric Wilcoxon’s
two-sided signed rank test (with p-values < 0.0001). In particular, SSS-MA obtains
solutions that are better than the currently best known solutions over 6 instances.
Second, from the efficiency aspect, SSS-MA is slower than MA over all the instances.
The reason for this phenomenon might be that, for SSS-MA, especially during its
beginning iterations, the search is conducted over the smoothed terrain, it is possible

Table 1. Parameter setup for MA and SSS-MA

Parameter MA SSS-MA

Maximum iteration 5000 5000
Population size 10 10
Elitism rate 0.51 0.27
Mutation rate 0.02 0.01

Transformed Search Based Software Engineering 213

Table 2. Results

Instance BMA MA SSS-MA
Best Best Average Time Best Average Time

nrp1-0.3 1201 1204 1191.1 1.22 1200 1189.2 2.59
nrp1-0.5 1824 1836 1812.8 1.38 1834 1784.2 2.62
nrp1-0.7 2507 2507 2507 1.15 2507 2507 2.42
nrp2-0.3 4726 4007 3927.7 5.57 4365 4179.8 13.53
nrp2-0.5 7566 7034 6840.7 7.16 7353 7202.2 15.79
nrp2-0.7 10987 10585 10419 7.85 10683 10589.5 16.56
nrp3-0.3 7123 6846 6756 7.25 7001 6894.2 14.70
nrp3-0.5 10897 10566 10522.2 7.95 10758 10644.6 15.75
nrp3-0.7 14180 13867 13819.5 7.78 13990 13953 15.58
nrp4-0.3 9818 8950 8841.6 17.96 9164 9003.8 29.72
nrp4-0.5 15025 14609 14457.6 20.22 14794 14613.6 32.95
nrp4-0.7 20853 19996 19906.6 22.60 20205 20117.4 35.76
nrp5-0.3 17200 14873 14564.3 19.33 15417 15165.7 40.68
nrp5-0.5 24240 22409 22204.5 14.95 22785 22616.3 34.89
nrp5-0.7 28909 27494 27283.6 10.41 27854 27761.8 28.75
nrp-e1-0.3 7572 7396 7344.5 12.95 7539 7460.8 20.63
nrp-e1-0.5 10664 10607 10555 15.16 10740 10676.3 22.90
nrp-e2-0.3 7169 7053 6984.2 15.04 7097 7046.2 22.16
nrp-e2-0.5 10098 10021 9964.8 17.93 10081 10021.7 25.27
nrp-e3-0.3 6461 6345 6305 10.00 6385 6329.4 16.59
nrp-e3-0.5 9175 9090 9034.5 11.55 9095 9054.2 18.35
nrp-e4-0.3 5692 5553 5525.1 10.66 5633 5576.7 16.24
nrp-e4-0.5 8043 7982 7919 12.46 7989 7965.4 18.14
nrp-m1-0.3 10008 9573 9490.6 17.31 9735 9627 28.26
nrp-m1-0.5 14588 14416 14305.7 20.38 14607 14470.4 32.44
nrp-m2-0.3 8272 8044 7927.6 16.70 8128 8030.6 25.49
nrp-m2-0.5 11975 11970 11879.1 20.28 12045 11979.7 29.43
nrp-m3-0.3 9559 9302 9226.6 15.22 9470 9332 26.40
nrp-m3-0.5 14138 14123 14045.9 17.85 14289 14167.7 30.00
nrp-m4-0.3 7408 7197 7123.8 13.85 7288 7211.5 21.87
nrp-m4-0.5 10893 10836 10774.7 16.53 10940 10875.1 24.92
nrp-g1-0.3 5938 5917 5862 9.24 5930 5897.4 15.04
nrp-g1-0.5 8714 8657 8610.4 11.00 8701 8669.5 17.08
nrp-g2-0.3 4526 4474 4452.2 8.34 4495 4477.1 12.42
nrp-g2-0.5 6502 6447 6436.4 9.91 6489 6455.5 14.09
nrp-g3-0.3 5802 5749 5722.7 8.50 5739 5711.9 14.37
nrp-g3-0.5 8402 8327 8293.7 9.77 8359 8308.9 15.90
nrp-g4-0.3 4190 4149 4134.9 6.88 4173 4143.2 10.79
nrp-g4-0.5 6030 6002 5977.4 7.86 6010 5977.8 11.93

214 H. Jiang et al.

that the hill climbing operator may be more time consuming. However, we can see that
the times for the two algorithms are in the same order of magnitude.

5.2 Anytime Performance Comparison

In the previous subsection, we have observed that SSS-MA outperforms MA in terms
of solution quality. However, SSS-MA is more time consuming accordingly. In this
subsection, we intend to investigate the dynamic characteristics of the two algorithms,
by visually comparing their anytime performance. We choose nrp-2-0.3 and nrp-g1-0.5
as the typical instances, and plot the anytime performance curves of MA and SSS-MA.
In Fig. 9, the x-axis indicates the number of iterations elapsed, and the y-axis indicates
the average solution quality achieved by the two algorithms.

From the figure, we find that for the beginning iterations, MA outperforms
SSS-MA. For example, over nrp2-0.3, after 200 iterations, the solution quality of MA
is 31559, while that of SSS-MA is 30089. However, as the search terrain gets trans-
ferred back to the original terrain, the solution obtained by SSS-MA is improved
accordingly. After 400 iterations, SSS-MA is able to achieve better solutions compared
to MA. These observations demonstrate that SSS-MA is able to avoid locally optimal
traps to some extent. Similar observations could be found over NRP-g1-0.5. Similar
phenomenon could be observed on the other instance we examine. Based on the
anytime performance comparison, we partially confirm that the reason for the slow
convergence of SSS-MA is caused by the smoothing operation.

6 Threats to Validity

In this paper, we demonstrate the effectiveness of search space smoothing, one of the
techniques in TSBSE, on a typical SE task the NRP. However, there are some threats to
validity: First, we validate the effectiveness of search space smoothing in TSBSE on 39
instances in the NRP and demonstrate the effectiveness of search space reduction with
several related work. The proposed technique should be validated with more real world

10000

20000

30000

40000

50000

1
27

9
55

7
83

5
11

13
13

91
16

69
19

47
22

25
25

03
27

81
30

59
33

37
36

15
38

93
41

71
44

49
47

27

O
pt

im
al

 S
ol

ut
io

n

Iterator Number

NRP2-03

MA

SSS-MA

60000

65000

70000

75000

80000

85000

90000

1
27

9
55

7
83

5
11

13
13

91
16

69
19

47
22

25
25

03
27

81
30

59
33

37
36

15
38

93
41

71
44

49
47

27

O
pt

im
al

 S
ol

ut
io

n

Iterator Number

NRP-G1-05

MA

SSS-MA

Fig. 9. Performance Comparison between MA and SSS-MA

Transformed Search Based Software Engineering 215

data set and SE tasks. Second, we smooth the search space in the NRP with a typical
search space smoothing technique, the power law smoothing, which has been suc-
cessfully applied in several research work [28, 29]. With this technique, we improve
the optimal solution of the NRP with some time costs. However, the search space
smoothing technique may slightly affect the results of our case study. In the future, we
should validate and compare more search space smoothing techniques for SE tasks, and
propose more time efficient formulas.

7 Conclusion and Future Work

In this paper, we address the conception of Transformed Search Based Software
Engineering (TSBSE). Taking the Next Release Problem from the requirements
engineering as a case study, we investigate the feasibility of applying search space
smoothing for SBSE. The contributions of this study are tri-fold. First, we propose the
conception of the TSBSE, which unifies the techniques such as search space reduction
and search space smoothing. To the best of our knowledge, this is the first time such
conception is issued in the software engineering community. Second, we develop a
Search Space Smoothing based Memetic Algorithm (SSS-MA). We demonstrate that,
with minor modification, algorithms could be embedded into the search space
smoothing framework. Furthermore, numerical results reveal that, the proposed algo-
rithm is able to update several best known solutions over the benchmark of the NRP
instances. For the future work, we are interested in the following directions. First,
SSS-MA tends to be slower than directly executing the embedded algorithm. Hence,
how to accelerate the problem solving process deserves more efforts. Second, in the
existing literature, there exist several smoothing schemes. Comparisons between these
schemes seem interesting. Third, we would explore the possibility of extending the
search space smoothing framework to more problems in software engineering.

Acknowledgement. This work is supported in part by the National Natural Science Foundation
of China under Grants 61175062, 61370144, and 61403057, and in part by China Postdoctoral
Science Foundation under Grant 2014M551083.

References

1. Harman, M., Jones, B.: Search-based software engineering. Inf. Softw. Technol. 43(14),
833–839 (2001)

2. Harman, M., Mansouri, A., Zhang, Y.: Search based software engineering: trends,
techniques and applications. ACM Comput. Surv. 45(1), 11–75 (2012). Article 11

3. Xuan, J., Jiang, H., Ren, Z., Luo, Z.: Solving the large scale next release problem with a
backbone-based multilevel algorithm. IEEE TSE 38(5), 1195–1212 (2012)

4. Ren, Z., Jiang, H., Xuan, J., Luo, Z.: An accelerated limit crossing based multilevel
algorithm for the p-Median problem. IEEE TSMCB 42(2), 1187–1202 (2012)

5. Jun, G., Huang, X.: Efficient local search with search space smoothing: A case study of the
traveling salesman problem (TSP). IEEE Trans. Syst. Man Cybern. 24(5), 728–735 (1994)

216 H. Jiang et al.

6. Bagnall, A.J., Rayward-Smith, V.J., Whittley, I.M.: The next release problem. Inf. Softw.
Technol. 43(14), 883–890 (2001)

7. Baker, P., Harman, M., Steinhofel, K., Skaliotis, A.: Search based approaches to component
selection and prioritization for the next release problem. In Software Maintenance, pp. 176–
185 (2006)

8. Finkelstein, A., Harman, M., Mansouri, S.A., Ren, J., Zhang, Y.: A search based approach to
fairness analysis in requirement assignments to aid negotiation, mediation and decision
making. Requirements Eng. 14(4), 231–245 (2009)

9. Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative approach. Inf.
Softw. Technol. 46(4), 243–253 (2004)

10. Jiang, H., Zhang, J., Xuan, J., Ren, Z., Hu, Y.: A hybrid ACO algorithm for the next release
problem. In: SEDM, pp. 166–171 (2010)

11. Ngo-The, A., Ruhe, G.: Optimized resource allocation for software release planning. IEEE
Trans. Software Eng. 35(1), 109–123 (2009)

12. Paixão, M.H.E., de Souza, J.T.: A recoverable robust approach for the next release problem.
In: Ruhe, G., Zhang, Y. (eds.) SSBSE 2013. LNCS, vol. 8084, pp. 172–187. Springer,
Heidelberg (2013)

13. Paixão, M., Souza, J.: A scenario-based robust model for the next release problem. In:
GECCO, pp. 1469–1476 (2013)

14. Paixão, M., Souza, J.: A robust optimization approach to the next release problem in the
presence of uncertainties. J. Syst. Softw. 103, 281–295 (2014)

15. Fuchshuber, R., de Oliveira Barros, M.: Improving heuristics for the next release problem
through landscape visualization. In: Le Goues, C., Yoo, S. (eds.) SSBSE 2014. LNCS, vol.
8636, pp. 222–227. Springer, Heidelberg (2014)

16. Araújo, A.A., Paixão, M.: Machine learning for user modeling in an interactive genetic
algorithm for the next release problem. In: Le Goues, C., Yoo, S. (eds.) SSBSE 2014. LNCS,
vol. 8636, pp. 228–233. Springer, Heidelberg (2014)

17. Harman, M., Krinke, J., Medina-Bulo, I., Palomo-Lozano, F., Ren, J., Yoo, S.: Exact
scalable sensitivity analysis for the next release problem. TOSEM 23(2), 19 (2014)

18. Zhang, Y., Harman, M., Mansouri, S.A.: The multi-objective next release problem. In:
GECCO, pp. 1129–1137. ACM (2007)

19. Finkelstein, A., Harman, M., Mansouri, S.A., Ren, J., Zhang, Y.: A search based approach to
fairness analysis in requirement assignments to aid negotiation, mediation and decision
making. Requirements Eng. 14(4), 231–245 (2009)

20. Harman, M., Krinke, J., Ren, J., Yoo, S.: Search based data sensitivity analysis applied to
requirement engineering. In: GECCO, pp. 1681–1688. ACM (2009)

21. Gueorguiev, S., Harman, M., Antoniol, G.: Software project planning for robustness and
completion time in the presence of uncertainty using multi objective search based software
engineering. In: GECCO, pp. 1673–1680. ACM (2009)

22. Li, L., Harman, M., Letier, E., Zhang, Y.: Robust next release problem: handling uncertainty
during optimization. In: GECCO, pp. 1247–1254 (2014)

23. Saliu, M.O., Ruhe, G.: Bi-objective release planning for evolving software systems. In: FSE,
pp. 105–114 (2007)

24. Zhang, Y., Alba, E., Durillo, J.J., Eldh, S., Harman, M.: Today/future importance analysis.
In: GECCO, pp. 1357–1364. ACM (2007)

25. Veerapen, N., Ochoa, G., Harman, M., Burke, E.K.: An integer linear programming
approach to the single and bi-objective next release problem. Inf. Softw. Technol. 65, 1–13
(2015)

26. Zhang, Y., Harman, M., Ochoa, G., Ruhe, G., Brinkkemper, S.: An empirical Study of
meta-and hyper-heuristic search for multi-objective release planning. RN 14, 07 (2014)

Transformed Search Based Software Engineering 217

27. Pitangueira, A.M., Maciel, R.S.P., Barros, M.: Software requirements selection and
prioritization using SBSE approaches: A systematic review and mapping of the literature.
J. Syst. Softw. 103, 267–280 (2014)

28. Coy, S.P., Golden, B.L., Runger, G.C., Wasil, E.A.: See the forest before the trees:
fine-tuned learning and its application to the traveling salesman problem. IEEE SMCA. 28,
454–464 (2014)

29. Fraser, G., Arcuri, A., McMinn, P.: A Memetic Algorithm for whole test suite generation.
J. Syst. Softw. 103(2), 311–327 (2014)

30. Moscato, P., Cotta, C.,Mendes, A.:Memetic algorithms. In: Onwubolu, G.C., Babu, B.V. (eds.)
New Optimization Techniques in Engineering, pp. 53–85. Springer, Berlin, Heidelberg (2004)

31. Lopez-Ibanez, M., Dubois-Lacoste, J., Stutzle, T., et al.: The irace package, iterated race for
automatic algorithm configuration. IRIDIA, Universite Libre de Bruxelles, Belgium,
Technical Report TR/IRIDIA/2011-004 (2011)

218 H. Jiang et al.

SBSE Challenge Papers

Regression Test Case Prioritisation for Guava

Yi Bian2(B), Serkan Kirbas3,4, Mark Harman1, Yue Jia1, and Zheng Li2

1 CREST, Department of Computer Science, University College London,
Malet Place, London WC1E 6BT, UK

2 Department of Computer Science, Beijing University of Chemical Technology,
Beijing 100029, People’s Republic of China

marvinbian@yeah.net
3 Department of Computer Science, Brunel University London, Kingston Lane,

Uxbridge, London UB8 3PH, UK
4 Computer Engineering Department, Bogazici University, 34342

Bebek, Istanbul, Turkey

Abstract. We present a three objective formulation of regression test
prioritisation. Our formulation involves the well-known, and widely-used
objectives of Average Percentage of Statement Coverage (APSC) and
Effective Execution Time (EET). However, we additionally include the
Average Percentage of Change Coverage (APCC), which has not previ-
ously been used in search-based regression test optimisation. We apply
our approach to prioritise the base and the collection package of the
Guava project, which contains over 26,815 test cases. Our results demon-
strate the value of search-based test case prioritisation: the sequences we
find require only 0.2 % of the 26,815 test cases and only 0.45 % of their
effective execution time. However, we find solutions that achieve more
than 99.9 % of both regression testing objectives; covering both changed
code and existing code. We also investigate the tension between these
two objectives for Guava.

Keywords: Regression testing · Test case prioritisation · NSGA-II

1 Introduction

Test Case Prioritisation (TCP) reorders a sequence of test cases, based on testing
objectives [1–3,6–8]. Most previous work on test case prioritisation has been
single objective, though it has been argued that much more work is needed on
multiple active approaches [11]. Yoo et al. [9] extended single objective test case
selection to the multiple objective paradigm, but there is far less work on multi
objective prioritisation [12–15].

This paper introduces a multi objective formulation of the test prioritisation
problem, in which we include an additional objective which, perhaps surprisingly,
has not previously been studied in any multi objective regression test optimisa-
tion work. That is, in addition to statement coverage, and execution time, which
c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 221–227, 2015.
DOI: 10.1007/978-3-319-22183-0 15

222 Y. Bian et al.

have been widely studied, we also use coverage of changed code as an objec-
tive, since this is clearly critical in regression test optimisation. Our formulation
therefore balances the tension between coverage of (specifically) changed code
against all code, while seeking to minimise the overall execution time.

We apply our approach to Guava [4], an open source Java project containing
several google versions of core Java utility libraries. These libraries provide day-
to-day functionalities including collections, data caching, concurrency support,
string manipulation1. In this work, we selected test suites for one of the major
package of Guava, com.google.common.collect, which contains 26,815 test cases.
We chose to test this package because it provides the core data collection that
are used in every Java program, such as, list, set, maps, tables etc. [5].

2 Our Approach to Test Case Prioritisation

This section presents our algorithm representation and fitness functions to test
case prioritisation problem. Given a test suite T with n elements, and a set of n
objectives, f1, ..., fn. We seek to find a new permutation of T , T ′ = < t′1, ..., t

′
n >

where ∃i ∈ {1, ..., n} ∧ fi(T ′) > fi(T ′′) [11].
We use NSGA-II [10], with a permutation encoding in which the N test

cases are given a sequence number from 0 to N − 1. We used rank selection,
order crossover, and order-changing mutation operators in the NSGA-II. Figure 1
shows an example of the order crossover operator. It first randomly selects two
points and then swaps elements between these points and order the remainder
from the beginning of the position. The crossover rate is 0.1 and mutation rate
is 0.001.

Fig. 1. An example of the order crossover

We have considered three objectives in test case prioritisation. The first one is
Average Percentage of Change Coverage (APCC). APCC allows us to prioritise
tests focused on the code that has been added or modified recently. To extract
the code change information, we first extract the current version of Guava from
the git repository and then use the “Blame” function to determine which lines
have been changed. Given a line number as input, the “Blame” function returns
the previous revision numbers in which if the line was added or a modified.
1 https://code.google.com/p/guava-libraries/.

https://code.google.com/p/guava-libraries/

Regression Test Case Prioritisation for Guava 223

We mark the line as “changed” if the date of the revision returned is after the
previous release of the Guava library. APCC is defined as follow:

APCC = (1 − TC1 + TC2 + · · · + TCM

NM
+

1
2N

) ∗ 100% (1)

In this formula, N is the number of test cases, M is total number of changed
statements, and TCi denotes the identifier of the test case that first covers the
changed statement i in the execution sequence. A higher APCC value means the
given test sequence cover more source code changed faster.

In addition to prioritising for the objective of covering changed code, we also
include two more standard (and previously studied) objectives: Average Percent-
age of Statements Covered (APSC) and Effective Execution Time (EET) [14].
APSC has been widely used in TCP work [8], which measures the rate of average
number of lines of code covered by given execution of test sequence. Effective
Execution Time (EET) calculates execution time required for the test sequence
to achieve 100 % of the test objectives (so, 100 % of either APCC, APSC or both
depending on the problem formulation). Let ETi be the execution time of test
case i, and Nlength is the number of test cases that achieve the test objectives,
EET is defined as follow:

EET =
Nlength∑

i=0

ETi (2)

3 Experiments and Results

In order to understand the impact of the newly introduced APCC metric, we have
carried out three different multiple objective experiments, as set out in Table 1.

Table 1. Three groups of experiments are conducted

Group Optimisation Objectives

G1 APSC and EET

G2 APCC and EET

G3 APSC, APCC and EET

All experiments were run on a CentOS 5.11 with 8 Intel E5426 CPU cores and
16G memory. In each experiment, there are 26,815 test cases in the optimisation
sequences for 62 classes in the collection package. We manually extracted the code
change information as explained in the approach section. Based on this Git analy-
sis, we found that 140 lines have changed in the latest git commit. As Guava is
quite mature and stable now and there are some latest git commits about one or
two years ago, so there wasn’t many major changes to the collection package.

224 Y. Bian et al.

For our search, we use the popular and widely-used NSGA-II algorithm. We
experimented with three different population sizes: 100, 200, and 500, Each with
a generation upper limit (termination condition) of 1000 generations. We also
terminate the search if the sum value of average change in different optimisation
objectives is smaller than 0.0001 in 10 consecutive generations. We compared
the original sequence and average results from a set of random sequences. We
generated 100,000 random sequences, from which we construct a pareto front
using elite sorting based APSC, APCC and EET, repeating this process 100
times, so that 10,000,000 random test sequences are constructed in total.

The results for each of the three experiments are presented in Table 2. In
Table 2, the APSC APCC and EET columns show the average best fitness value
respectively over 100 runs. The Length and Time(s) show the number of selected
tests to achieve maximum coverage (all statement coverage for G1 and G3 and
statement coverage for G2) and execution time on average. The generation and
front set columns show the average number of generations and the size of pareto
front. The original row reports the results of running the default test suite where
the random row shows the results using random generated sequence as a baseline.
In the experiments involving random generation, the time spent (recorded in the
sixth column) is that time on the fitness function calculation and elite sorting
of randomly generated individuals.

The results of our experiments suggest that prioritisation can be very effective
for Guava, finding test sequences that achieve coverage of both test adequacy
criteria with only a tiny fraction of the budget required by the entire test suite.
That is, both 100 % APCC and APSC can be achieved with 0.2 % of test cases
and 0.45 % of total execution time for the entire suite. For the Guava developer
this highlights the value of prioritising test cases in order to maximise early
coverage of both changed and unchanged statements.

Table 2. Average value of objectives in different group of experiments

Strategy APSC APCC EET(s) Length Time(s) Generation Front set

original 24.8085 % 9.1243 % 210.47 26808.00 - - -

random 86.1261 % 89.7498 % 188.26 24031.36 442.02 - 19.30

100 G1 99.9584 % - 1.13 80.65 71.82 800.09 2.39

G2 - 99.9834 % 0.39 22.94 4.06 82.40 1.24

G3 99.9563 % 99.9900 % 1.40 111.32 71.48 721.30 4.84

200 G1 99.9674 % - 1.03 59.02 99.65 477.70 2.78

G2 - 99.9925 % 0.28 7.13 5.47 34.57 1.66

G3 99.9657 % 99.9921 % 1.08 65.76 107.39 432.58 5.61

500 G1 99.9709 % - 0.96 49.93 180.33 214.70 2.73

G2 - 99.9927 % 0.28 7.00 12.91 31.50 1.77

G3 99.9692 % 99.9923 % 0.94 48.15 210.27 223.69 7.43

Regression Test Case Prioritisation for Guava 225

Table 3. The p−value of Mann-Whitney-Wilcoxon test and Vargha and Delaney ̂A12

between two different set of TCP experiment groups

Group 100 vs. 200 100 vs. 500 200 vs. 500

MWW VDA MWW VDA MWW VDA

G1 3.24E-08 0.7263 2.71E-20 0.8778 6.10E-10 0.7533

G2 2.32E-30 0.9687 9.67E-33 0.9877 1.66E-07 0.7142

G3 1.67E-13 0.8018 1.39E-23 0.9097 7.09E-07 0.7030

Table 4. The total number of test cases in one group and intersection number between
two different groups

100 200 500 Total

G1 G2 G3 G1 G2 G3 G1 G2 G3

100 G1 - 430 2060 624 71 2221 489 64 571 2591

G2 - 1008 295 59 1101 237 52 265 1260

G3 - 1223 140 8889 823 134 945 10758

200 G1 - 65 1337 420 59 483 1486

G2 - 142 63 30 66 167

G3 - 859 142 995 11933

500 G1 - 49 448 935

G2 - 49 165

G3 - 1066

The 100, 200, 500 rows show the overall results of three experiments run-
ning with population size of 100, 200 and 500 respectively. We used the Mann−
Whitney−Wilcoxon test with Bonferroni correction to check the hypervolume
distribution of pareto front sets in different population size and then we compare
the significants between these results by using Vargha and Delaney Â12 effect.
The results are in Table 3. In Table 3, MWW and VDA show the p-value and the
Â12 value. The results show that the hypervolume of the pareto front generated
from three different population settings has significant differences with a high
effect size.

We also calculated the number of similar test cases used by the different
sequences as shown in Table 4. In order to avoid double counting, we combined
the test cases with the same statement coverage which reduced the number of
test cases considered from 26,815 to 14,516 different test cases. In Table 4, the
number on each cell denotes the number of test cases in the intersection of
the two different test sequences (row and column values) considered and the last
column is the total number of those test cases in the sequences. Again the results
are total number over all 100 runs.

226 Y. Bian et al.

The results indicate that, as we might expect, covering all objectives (G3)
is similar to covering statements with minimal execution time (G1). This is
because there are relatively few changed statements, so covering all statements
and all changed statements is very much similar to covering all statements;
the former subsumes the latter. However, targeting the coverage of only the
changed statements at minimal cost, yields very different test suites that either
attempting statement coverage alone or both statement coverage and changed
statement coverage.

In the future we will consider to include the fault information based on
Guava project to verify which combine of objectives is more effective for testing
the errors in Guava project. Also we need to include more objective to satisfy
the requirements of industrial needed, for example, adding the mutation testing
to measure the errors detection ability between test sequences or considering to
give a higher the coverage value for the test sequence that can quickly coverage
the most important classes in project. At last we are also considering to use
GPGPU technology to accelerate the TCP process which will obviously improve
the efficiency of regression testing.

4 Conclusions and Actionable Findings

In our experiments, we extended multi-objective test case prioritisation process
to consider coverage of changed statements and applied it to test prioritisation
for Guava’s collection package. Our experiments revealed that prioritisation can
dramatically reduce the size of test sequences required to achieve early coverage
of changed statements (and all statements) for Guava developer. Also targeting
only coverage of the changed statements yields very different test sequences to
targeting coverage of all statements.

References

1. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritisation:
a survey. Softw. Test. Verification Reliab. 22(2), 67–120 (2012)

2. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for
regression testing. IEEE Trans. Softw. Eng. 27(10), 929–948 (2001)

3. Huang, P., Ma, X., Shen, D., Zhou, Y.: Performance regression testing target pri-
oritisation via performance risk analysis. In: Proceedings of the 36th International
Conference on Software Engineering, pp. 60–71. ACM, May 2014

4. Guava Project Web Site. https://github.com/google/guava
5. http://blog.takipi.com/google-guava-5-things-you-never-knew-it-can-do/
6. Jiang, B., Chan, W.K.: On the integration of test adequacy, test case prioritisation,

and statistical fault localization. In: 2010 10th International Conference on Quality
Software (QSIC), pp. 377–384. IEEE (2010)

7. Elbaum, S., Malishevsky, A.G., Rothermel, G.: Test case prioritisation: a family of
empirical studies. IEEE Trans. Softw. Eng. 28(2), 159–182 (2002)

8. Li, Z., Harman, M., Hierons, R.M.: Search algorithms for regression test case pri-
oritisation. IEEE Trans. Softw. Eng. 33(4), 225–237 (2007)

https://github.com/google/guava
http://blog.takipi.com/google-guava-5-things-you-never-knew-it-can-do/

Regression Test Case Prioritisation for Guava 227

9. Yoo, S., Harman, M.: Pareto efficient multi-objective test case selection. In: Pro-
ceedings of the 2007 International Symposium on Software Testing and Analysis,
pp. 140–150. ACM (2007)

10. Deb, K., Pratap, A., Agarwal, S., et al.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

11. Harman, M.: Making the case for MORTO: multi objective regression test opti-
mization. In: ICST Workshops, pp. 111–114 (2011)

12. Sun, W., Gao, Z., Yang, W., et al.: Multi-objective test case prioritization for GUI
applications. In: Proceedings of the 28th Annual ACM Symposium on Applied
Computing. pp. 1074–1079. ACM (2013)

13. Snchez, A.B., Segura, S., Ruiz-Corts, A.A.: Comparison of test case prioritization
criteria for software product lines. In: 2014 IEEE Seventh International Conference
on Software Testing, Verification and Validation (ICST), pp. 41–50. IEEE (2014)

14. Li, Z., Bian, Y., Zhao, R., Cheng, J.: A fine-grained parallel multi-objective test
case prioritization on GPU. In: Ruhe, G., Zhang, Y. (eds.) SSBSE 2013. LNCS,
vol. 8084, pp. 111–125. Springer, Heidelberg (2013)

15. Epitropakis, M.G., Yoo, S., Harman, M., Burke, E.K.: Empirical evaluation of
pareto efficient multi-objective regression test case prioritisation. In: Proceedings
of the 2015 International Symposium on Software Testing and Analysis, pp. 234–
245. ACM (2015)

Continuous Test Generation on Guava

José Campos1(B), Gordon Fraser1, Andrea Arcuri2,3, and Rui Abreu4,5

1 Department of Computer Science, The University of Sheffield, Sheffield, UK
{jose.campos,gordon.fraser}@sheffield.ac.uk

2 Scienta, Oslo, Norway
3 University of Luxembourg, Luxembourg City, Luxembourg

aa@scienta.no
4 PARC, Palo Alto, USA

5 University of Porto, Porto, Portugal
rui@computer.org

Abstract. Search-based testing can be applied to automatically gener-
ate unit tests that achieve high levels of code coverage on object-oriented
classes. However, test generation takes time, in particular if projects
consist of many classes, like in the case of the Guava library. To allow
search-based test generation to scale up and to integrate it better into
software development, continuous test generation applies test generation
incrementally during continuous integration. In this paper, we report
on the application of continuous test generation with EvoSuite at the
SSBSE’15 challenge on the Guava library. Our results show that continu-
ous test generation reduces the time spent on automated test generation
by 96 %, while increasing code coverage by 13.9 % on average.

Keywords: Search-based testing · Automated unit test generation ·
Continuous integration · Continuous test generation

1 Introduction

To support software testers and developers, tests can be generated automati-
cally using various techniques. Search-based testing is well suited for the task of
generating unit tests for object-oriented classes, where a test typically consists
of a sequence of method calls. Although search-based unit test generation tools
have been successfully applied to large projects [4], performance is not one of
the strengths of search-based test generation: Every fitness evaluation requires
costly test execution. For example, we found that our EvoSuite [2] search-based
unit test suite generator requires somewhere around 2 minutes of search time to
achieve a decent level of coverage on most classes, and more time for the search
to converge. While 2 minutes may not sound particularly time consuming, it is
far from the instantaneous result developers might expect while writing code.
Even worse, a typical software project has more than one class — for example,
Guava version 18 has more than 300 classes, and consequently generating tests
for 2 minutes per class would take more than 10 h.
c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 228–234, 2015.
DOI: 10.1007/978-3-319-22183-0 16

Continuous Test Generation on Guava 229

0
10
20
30
40
50
60
70
80
90

100
110

2009 2010 2011 2012 2013 2014 2015

C
om

m
its

(a) Number of commits per month.

0

75000

150000

225000

300000

375000

450000

525000

2009 2010 2011 2012 2013 2014 2015

Li
ne

s
of

 C
od

e

(b) Lines of code over time.

Fig. 1. Activity of the Guava library based on the Git log.

In practice, however, generating tests for an entire software project of this
size may not be required frequently. Instead, software projects evolve and grow
over size. For example, Fig. 1a shows that the Guava library is actively devel-
oped, with many commits per month. However, not every class is changed every
day, and the software takes time to grow (Fig. 1b). An opportunity to exploit this
incremental nature of software is offered by the regular build and test phases
applied every day as part of continuous integration. Continuous test genera-
tion [1] is the synergy of automated test generation with continuous integration:
Tests are generated during every nightly build, but resources are focused on
the most important classes, and test suites are built incrementally over time.
CTG supports the application of test suite augmentation [7,8], but importantly
addresses the time-budget allocation problem of individual classes, is not tied to
an individual coverage criterion, and is applicable for incremental test genera-
tion, even if the system under test did not change. In this paper, as part of the
SSBSE’15 challenge, we describe the application of continuous test generation
on the Guava library.

2 Continuous Test Generation (CTG)

Experimentation on automated test generation typically (e.g., [4]) consists of
applying a tool to an entire software project, and to allocate the same amount
of time to every artifact (e.g., class under test). In practice, even if one would
restrict this test generation to code that has been changed since the last time
of test generation, the computational effort (e.g., CPU time and memory used)
to generate tests may exceed what developers are prepared to use their own
computers for while they are working on them. However, integration and testing
is often performed on remote continuous integration systems — these continuous
integration systems are well suited to host continuous test generation.

Continuous integration is often invoked on every commit to a source code
repository, or for nightly builds which test all the changes performed since the
last nightly build. Applying test generation during continuous integration creates
a scheduling problem: Which classes should be tested, and how much time should
be spent on each class? For example, in order to distinguish trivial classes from
more complex classes, EvoSuite uses the number of branches in the class to

230 J. Campos et al.

allocate a time budget proportional to the size of a class. The choice of which
class to test can be based on change information: First, as new or modified code is
more likely to be faulty [6], EvoSuite prioritises changed classes, and allocates
more time to them. Second, EvoSuite monitors the coverage progress of each
class: As long as invoking EvoSuite leads to increased coverage, it is invoked
even if the class has not been changed. However, once EvoSuite can no longer
increase coverage, we can assume that all feasible goals have been covered and
stop the invocation of the tool on those classes.

As a further optimisation, we exploit the fact that a test generation tool may
be repeatedly applied to the same classes, with or without changes. Instead of
initialising the initial population of the genetic algorithm in EvoSuite com-
pletely randomly, we can include the previous version of the test suite as one
individual of the initial population of the genetic algorithm.

To assess the effectiveness of CTG, we consider the following scenario: CTG
is invoked after every commit to the source code repository as part of continuous
integration. To simulate this scenario, we selected all compiled Git commits to
the Guava project between version 17 and 18. In total 126 (out of 148) different
versions of Guava have been selected. This represents 45,025 classes in total, and
an average of 357 classes per version. We configured CTG with an amount of time
proportional to the number of classes in each project, i.e., one minute per class
under test. We compare two configurations of CTG: The baseline configuration
(Simple) tests each class for one minute for every invocation. The advanced
configuration (History) allocates budget based on change and coverage history,
and reuses past results. We repeated each experiment five times (more repetitions
were not possible due to the computational costs of the experiment).

In the first commit, the number of classes tested by both configuration is
the same, and thus so is the time spent on test generation (Fig. 2b) and the
achieved coverage (Fig. 2a). Between commits 1 and 11, only nine classes have
been changed which allowed the History strategy to reduce the time spent on
test generation from 253 minutes (at first commit) to 8 minutes (at commit

33

35

37

39

41

43

45

47

49

51

53

1 13 25 37 49 61 73 85 97 109 121

Commits

%
 B

ra
nc

h
C

ov
er

ag
e

HISTORY SIMPLE

(a) Test suite branch coverage.

0

30

60

90

120

150

180

210

240

270

300

1 13 25 37 49 61 73 85 97 109 121

Commits

T
im

e
(m

in
)

HISTORY SIMPLE

(b) Time spent on test generation.

Fig. 2. Branch coverage, and time spent on test generation for the Guava open source
case study over the course of 126 commits. For each commit we report the average
branch coverage over all classes and over the five runs for “History”, and “Simple”
strategies.

Continuous Test Generation on Guava 231

number 11). During the same time the coverage increased from 0.37 to 0.46,
while during the same period the Simple strategy just increased coverage from
0.35 to 0.39 on average, spending on average 250 minutes per commit. After 126
commits, History achieved 49 % branch coverage on average, having spent a total
of 1,333 minutes on test generation. On the other hand, Simple just achieved 43 %
coverage with 30,937 minutes spent on test generation. This means that History
achieved a relative improvement of +13.9 % in branch coverage within −95.7%
of Simple’s time.

3 Guava’s Challenges

Although the previous section showed that a CTG strategy based on History is
able to achieve more coverage than a Simple strategy, even after 126 commits
EvoSuite only covered 49 % of the total number of branches. In this section
we discuss the challenges of testing the Guava project. Figure 3 visualises the
coverage achieved by EvoSuite after 10 minutes of test generation (averaged
over 30 runs) in a tree-map, where the size of a box is proportional to the number
of branch coverage goals in that class, and the colour represents the coverage
achieved. EvoSuite identified 359 testable (i.e., top-level public classes) out
of 468 source files. In total there are 1,692 classes including member classes,
anonymous classes, but the latter are tested as part of their containing classes.
Overall, there seems to be a large number of classes with high coverage, and
some classes where EvoSuite failed to achieve any substantial coverage.

Figure 3 contains two noticeable problematic classes, MapMakerInternalMap
and LocalCache, which both have around no coverage, but represent a large
share of the area in the figure. MapMakerInternalMap consists of only six meth-
ods which all simply return a Boolean value, but also has a complex con-
structor that receives a MapMaker instance, and a total of 52 internal classes
(including interfaces, abstract classes, and enum classes). As EvoSuite con-
siders all methods of inner classes as target methods equal to the methods of
the main class under test, most of the time is spent on trying to instantiate
these inner classes. However, these classes all have several generic type para-
meters, and EvoSuite struggles to efficiently resolve these1. A further prob-
lem for MapMakerInternalMap lies in the constructor, as the top right hand
corner of Fig. 3 shows that EvoSuite struggles to cover MapMaker for simi-
lar reasons, and so it rarely manages to instantiate a valid instance to pass
into the MapMakerInternalMap constructor; even if it does, this needs to satisfy
many constraints before the entire constructor executes without exception. The
LocalCache class similarly has a complex constructor that requires complex
dependencies with generic types, and many inner classes with further generic
type parameters. Clearly, adding a more sophisticated generic type system or
treating inner classes separately would lead to higher coverage.
1 Note that Java would allow ignoring these type parameters, but we argue that this

would severely degrade the usefulness of the generated tests to developers, and might
miss important coverage scenarios [5].

232 J. Campos et al.

% Branch Coverage
 0 10 20 30 40 50 60 70 80 90 100

Ascii

ConverterEnums
Functions

Joiner

Objects

Preconditions

Predicates

Present

SplitterStopwatch

Strings

Suppliers

Utf8

Verify

CacheBuilder

CacheBuilderSpec CacheStats

LocalCache

LongAdder

AbstractMapBasedMultimap

AbstractSortedMultiset

AbstractTable

ArrayTable

Collections2

ConcurrentHashMultiset

Count

Cut

DiscreteDomain

HashBiMap
ImmutableBiMap

ImmutableCollection

ImmutableList

ImmutableMap

ImmutableMultimap

ImmutableRangeMap

ImmutableRangeSet

ImmutableSet

ImmutableSortedMap

ImmutableSortedMultiset

Iterables

Iterators LinkedHashMultimap

LinkedListMultimap

Lists

MapConstraints

MapMaker

MapMakerInternalMap

MinMaxPriorityQueue

MultimapBuilder

Multimaps

Multisets

ObjectArrays

Queues

Range

Sets

SingletonImmutableSet

SortedLists

StandardTable

Tables

TreeBasedTable

TreeMultiset

TreeRangeMap

TreeRangeSet

CharEscaper

Escapers

UnicodeEscaper

BloomFilter

BloomFilterStrategies

Funnels

HashCode
Hashing

SipHashFunction

ByteSource
ByteStreams

CharSourceCharStreams

Closer

Files

Resources

BigIntegerMathDoubleMath

IntMathLongMath

HostAndPort

HostSpecifier

InetAddresses

InternetDomainName

MediaType

PercentEscaper

Booleans Bytes

CharsDoubles Floats

Ints

Longs

Shorts

UnsignedBytes

UnsignedLongUnsignedLongs

PublicSuffixType

ClassPath

TypeResolver

TypeToken

AbstractFuture

AtomicDoubleAtomicDoubleArray

AtomicLongMap

FuturesMonitor

MoreExecutors
RateLimiter

ServiceManager

Striped

base

cache

collectescape

eventbus

hash

io

math

net

primitives
publicsuffix reflect

util

Fig. 3. Branch coverage for the Guava version 18. The area of each box is proportional
to the number of branches in each class, and the colour represents the coverage achieved
in 10 minutes, averaged over 30 repetitions.

Unique undeclared exceptions
 0 2 4 6 8 10 12 14

Ascii

ConverterEnums
Functions

Joiner

Objects

Preconditions

Predicates

Present

SplitterStopwatch

Strings

Suppliers

Utf8

Verify

CacheBuilder

CacheBuilderSpec CacheStats

LocalCache

LongAdder

AbstractMapBasedMultimap

AbstractSortedMultiset

AbstractTable

ArrayTable

Collections2

ConcurrentHashMultiset

Count

Cut

DiscreteDomain

HashBiMap
ImmutableBiMap

ImmutableCollection

ImmutableList

ImmutableMap

ImmutableMultimap

ImmutableRangeMap

ImmutableRangeSet

ImmutableSet

ImmutableSortedMap

ImmutableSortedMultiset

Iterables

Iterators LinkedHashMultimap

LinkedListMultimap

Lists

MapConstraints

MapMaker

MapMakerInternalMap

MinMaxPriorityQueue

MultimapBuilder

Multimaps

Multisets

ObjectArrays

Queues

Range

Sets

SingletonImmutableSet

SortedLists

StandardTable

Tables

TreeBasedTable

TreeMultiset

TreeRangeMap

TreeRangeSet

CharEscaper

Escapers

UnicodeEscaper

BloomFilter

BloomFilterStrategies

Funnels

HashCode
Hashing

SipHashFunction

ByteSource
ByteStreams

CharSourceCharStreams

Closer

Files

Resources

BigIntegerMathDoubleMath

IntMathLongMath

HostAndPort

HostSpecifier

InetAddresses

InternetDomainName

MediaType

PercentEscaper

Booleans Bytes

CharsDoubles Floats

Ints

Longs

Shorts

UnsignedBytes

UnsignedLongUnsignedLongs

PublicSuffixType

ClassPath

TypeResolver

TypeToken

AbstractFuture

AtomicDoubleAtomicDoubleArray

AtomicLongMap

FuturesMonitor

MoreExecutors
RateLimiter

ServiceManager

Striped

base

cache

collectescape

eventbus

hash

io

math

net

primitives
publicsuffix reflect

util

Fig. 4. Number of undeclared thrown exceptions for the Guava version 18. (Results
are based on 30 repetitions).

Continuous Test Generation on Guava 233

Beside achieving a certain degree of code coverage, EvoSuite can also find
faults in the system under test [3]. Typical examples are methods crashing by
throwing unexpected exceptions. Even in the case of Guava, many potential
faults were found, as shown in Fig. 4. For example, there are 14 distinct excep-
tions in class Iterables alone. However, a closer look at some of these excep-
tions show that those were expected, although not declared in the signature
(e.g., with the throws keyword) of those methods. Java does not enforce to
declare expected unchecked exceptions (e.g., input validation) in the signatures,
although those are very important for a library to understand its behaviour
in case of wrong inputs. To complicate the matter even further, a developer
might mention the expected exceptions (e.g., a NullPointerException if an
input parameter is null) only in the JavaDocs, using the tag @Throws. However,
JavaDocs do not become part of the compiled bytecode. Therefore, if a devel-
oper fails to write proper method declarations, an automated testing tool cannot
distinguish between real, critical faults and expected failing input validations.

4 Conclusions

In this paper, we have presented the results of applying EvoSuite on the Guava
library. Using a continuous test generation approach reduces the amount of time
spent on test generation dramatically, while leading to overall higher coverage.
On the majority of classes, EvoSuite achieves a substantial degree of coverage,
but a closer look revealed problems with generic types and inner classes, which
pose new research and engineering challenges to be faced in the future. To learn
more about EvoSuite, visit our Web site at: http://www.evosuite.org/.

Acknowledgments. This work is supported by the EPSRC project “EXOGEN”
(EP/K030353/1) and by the National Research Fund, Luxembourg (FNR/P10/03).

References

1. Campos, J., Arcuri, A., Fraser, G., Abreu, R.: Continuous test generation: enhanc-
ing continuous integration with automated test generation. In: IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), ASE 2014. pp. 55–66.
ACM, New York (2014)

2. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: ACM SIGSOFT European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE), ESEC/FSE 2011, pp. 416–419. ACM, New York (2011)

3. Fraser, G., Arcuri, A.: 1600 faults in 100 projects: automatically finding faults while
achieving high coverage with EvoSuite. Empirical Softw. Eng. (EMSE) 20(3), 611–
639 (2013)

4. Fraser, G., Arcuri, A.: A large-scale evaluation of automated unit test genera-
tion using EvoSuite. ACM Trans. Softw. Eng. Methodol. (TOSEM) 24(2), 8:1–8:42
(2014)

http://www.evosuite.org/

234 J. Campos et al.

5. Fraser, G., Arcuri, A.: Automated test generation for java generics. In: Winkler, D.,
Biffl, S., Bergsmann, J. (eds.) SWQD 2014. LNBIP, vol. 166, pp. 185–198. Springer,
Heidelberg (2014)

6. Graves, T.L., Karr, A.F., Marron, J.S., Siy, H.: Predicting fault incidence using
software change history. IEEE Trans. Softw. Eng. (TSE) 26(7), 653–661 (2000)

7. Santelices, R., Chittimalli, P.K., Apiwattanapong, T., Orso, A., Harrold, M.J.: Test-
suite augmentation for evolving software. In: IEEE/ACM International Conference
on Automated Software Engineering (ASE), ASE 2008, pp. 218–227. IEEE Com-
puter Society, Washington, DC (2008)

8. Xu, Z., Kim, Y., Kim, M., Rothermel, G., Cohen, M.B.: Directed test suite augmen-
tation: techniques and tradeoffs. In: ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE), FSE 2010, pp. 257–266. ACM, New York (2010)

Generating Readable Unit Tests for Guava

Ermira Daka1, José Campos1(B), Jonathan Dorn2, Gordon Fraser1,
and Westley Weimer2

1 Department of Computer Science, The University of Sheffield, Sheffield, UK
jose.campos@sheffield.ac.uk

2 University of Virginia, Charlottesville, Virginia, USA

Abstract. Unit tests for object-oriented classes can be generated auto-
matically using search-based testing techniques. As the search algorithms
are typically guided by structural coverage criteria, the resulting unit
tests are often long and confusing, with possible negative implications
for developer adoption of such test generation tools, and the difficulty
of the test oracle problem and test maintenance. To counter this prob-
lem, we integrate a further optimization target based on a model of test
readability learned from human annotation data. We demonstrate on a
selection of classes from the Guava library how this approach produces
more readable unit tests without loss of coverage.

Keywords: Readability · Unit testing · Automated test generation

1 Introduction

Search-based testing can support developers by generating unit tests for object-
oriented classes automatically. Developers need to read these generated tests to
provide test oracles, or when investigating test failures. These are difficult manual
tasks, which are influenced by the representation of the tests. For example, con-
sider the unit tests generated by EvoSuite [4] shown in Fig. 1. Both test cases
cover the method listeningDecorator in class MoreExecutors taken from the
Guava library, but they are quite different in presentation. Which of the two
would developers prefer to see — i.e., which one of the two is more readable?

An automated unit test generation tool would typically ignore this question,
as most tools are driven by structural criteria (e.g., branch coverage). To over-
come this issue, we introduced [2] a unit test readability model that quantifies
the readability of a unit test. The model is learned from human annotation data,
and is integrated into the search-based EvoSuite unit test generation tool, in
order to guide it to generate more readable tests. For example, even though the
first test in Fig. 1 is longer, it is deemed less readable as it has very long lines
and more identifiers. In this paper, we demonstrate readability optimized unit
test generation using the Guava library.

c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 235–241, 2015.
DOI: 10.1007/978-3-319-22183-0 17

236 E. Daka et al.

Executor executor0 = MoreExecutors.directExecutor();
int int0 = 0;
ScheduledThreadPoolExecutor scheduledThreadPoolExecutor0 = new

ScheduledThreadPoolExecutor(int0);
int int1 = 0;
ScheduledExecutorService scheduledExecutorService0 =

MoreExecutors.getExitingScheduledExecutorService(scheduledThreadPoolExecutor0);
ListeningExecutorService listeningExecutorService0 =

MoreExecutors.listeningDecorator((ExecutorService) scheduledThreadPoolExecutor0);

// Undeclared exception!
try {
ListeningExecutorService listeningExecutorService0 =

MoreExecutors.listeningDecorator((ExecutorService) null);
fail("Expecting exception: NullPointerException");

} catch(NullPointerException e) {
//
// no message in exception (getMessage() returned null)
//

}

Fig. 1. Two versions of a test that exercise the same functionality in the Guava class
MoreExecutors, but have a different appearance and readability.

2 Measuring Unit Test Readability

Because readability relates to human subjective experience, machine learning
has previously been applied to learn models of readability from user annota-
tions of code snippets. A classifier of code readability was learned by Buse and
Weimer [1], and later refined by Posnett et al. [5], by mapping each code snippet
to a set of syntactic features and then using machine learning on the feature
vectors and user annotation.

In principle these code readability models also apply to unit tests, which are
essentially small programs. However, the features of unit tests can differ substan-
tially from regular code. For example, complex control flow is less common for
unit tests (in particular automatically-generated ones). Furthermore, the classi-
fiers used in previous work are not sufficient to guide test generation — for this
we needed a regression (numeric value predictive) model.

To generate such a model, we collected [2] 15,669 human judgments of read-
ability (in a range of 1–5) on 450 unit test cases using Amazon Mechanical Turk1.
Participants were required to pass a Java qualification test to ensure familiar-
ity with the language. The unit tests underlying this study were collected from
manually-written and automatically-generated tests for several open source Java
projects (Apache commons, poi, trove, jfreechart, joda, jdom, itext and guava).
We defined a set of 116 initial syntactic features of unit tests, and through fea-
ture selection ultimately learned a formal model based on 24 features, including
line width, aspects of the identifiers, and byte entropy. The model’s ratings are
predictive of human annotator judgments of test case readability.
1 http://aws.amazon.com/mturk/.

http://aws.amazon.com/mturk/

Generating Readable Unit Tests for Guava 237

For a given unit test we can extract a vector of values for these features, which
allows the application of machine learning techniques. The model is trained on
the feature vectors together with the user ratings, and when used for prediction
the model produces a readability rating for a given feature vector.

3 Generating Readability Optimized Tests

EvoSuite [4] uses a genetic algorithm to evolve individual unit tests or sets of
unit tests, typically with the aim to maximize code coverage of a chosen test
criterion. Over the time, we have collected ample anecdotal evidence of aspects
developers disliked about the automatically-generated tests, and EvoSuite now
by default applies a range of different optimizations to the tests generated by
the genetic algorithm. For example, redundant statements in the sequences of
statements are removed, numerical and string values are minimized, unnecessary
variables are removed, etc. However, the readability of a test may be an effect
of the particular choice of parameters and calls, such that only generating a
completely different test, rather than optimizing an existing one, would maximize
readability.

To integrate the unit test readability model into EvoSuite, we explored the
following approaches: (1) As code coverage remains a primary objective for the
test generation, the readability model can be integrated as a secondary objec-
tive. If two individuals of the population have the same fitness value, during rank
selection the one with the better readability value is preferred. (2) Because read-
ability and code coverage may be conflicting goals (e.g., adding a statement may
improve coverage, but decrease readability), classical multi-objective algorithms
(e.g., NSGA-II [3]) can be used with coverage and readability as independent
objectives.

However, EvoSuite’s post-processing steps may complicate initial readabil-
ity judgments: An individual that seems unreadable may become more readable
through the post-processing (and vice-versa). Therefore, we consider the follow-
ing solutions: (1) Measure the readability of tests not on the search individu-
als, but on the result of the post-processing steps. That is, the fitness value is
measured in the style of Baldwinian optimization [6] on the improved pheno-
type, without changing the genotype. This can be applied to the scenario of
a secondary objective as well as to multi-objective optimization. (2) Optimize
readability as another post-processing step, using an algorithm that generates
alternative candidates and ranks them by readability [2].

4 Generating Readable Tests for Guava

To study these approaches for readability optimization in detail, we selected
five classes from Guava randomly, and generated tests as described in the pre-
vious section. Figure 2 summarizes the overall results (over 5 runs) in terms of
the modeled readability scores for these five different classes with and without

238 E. Daka et al.

base.Splitter math.DoubleMath

net.PercentEscaper primitives.UnsignedBytes

util.concurrent.MoreExecutors

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Configurations

EvoSuite default (wo. post−processing)
Readability as a Secondary Criteria (wo. post−processing)
NSGA−II (wo. post−processing)
Manual
EvoSuite default (wi. post−processing)
Readability as a Secondary Criteria (wi. post−processing)
NSGA−II (wi. post−processing)
Readability as post−processing

Fig. 2. Readability scores of manually-written and automatically-generated test cases
in 7 different configurations.

optimization with both post-processing and no post-processing techniques. Fur-
thermore, the readability values of the manually-written tests for these classes
are included for reference.

The first three boxes of each plot show substantial improvement over the
default configuration by including the readability model as a secondary objective
or as a second fitness function. In all five classes, the multi-objective optimization
achieves the most readable tests. However, note that without post-processing,
these tests do not yet have assertions (which according to the model have a neg-
ative effect on readability). Despite this, in all five classes the average readability
of the manually written tests (fourth box) is slightly higher.

Boxes 5–7 show a similar pattern when applying EvoSuite’s post-processing
steps. However, we can see the large effects EvoSuite’s many post-processing
steps have, as the generated tests approach the readability of manual tests. For
Splitter and DoubleMath the improvement over the default is significant at
α = 0.05 (calculated by using Wilcoxon test), on UnsignedBytes and
MoreExecutors there is an improvement although not significant. On
PercentEscaper there is no significant difference. The final box shows the results
of a post-processing step driven by the readablity model, which is generally

Generating Readable Unit Tests for Guava 239

slightly below NSGA-II, but on the other hand is computationally much cheaper.
We note that using the readability model in a post-processing step is generally
on par with the multi-objective optimization.

These results demonstrate that our search-based approach can produce test
cases that are competitive with manual tests in terms of modeled readability.

4.1 User Agreement

To validate whether users agree with these optimizations, we selected 50 pairs of
test cases for the selected 5 classes, where the tests in each pair cover the same
coverage objective, and each pair consists of one test generated using EvoSuite’s
default configuration, whereas the other one is optimized. Half of the pairs were
selected from the configurations that do use post-processing, and half from the
configurations that do not. We used Amazon Mechanical Turk to run a forced-
choice survey, showing a random subset of pairs to each participant. As when
building the model, participants were required to pass a Java qualification test.

1 2 3 4 5 6 7 8 9 10

0.0

0.5

1.0

Pairs

%
 c

ho
os

in
g

op
tim

iz
ed

 te
st

avg

Post−processing
No Post−processing

(a) Splitter

1 2 3 4 5 6 7 8 9 10

0.0

0.5

1.0

Pairs

%
 c

ho
os

in
g

op
tim

iz
ed

 te
st

avg

Post−processing
No Post−processing

(b) DoubleMath

1 2 3 4 5 6 7 8 9 10

0.0

0.5

1.0

Pairs

%
 c

ho
os

in
g

op
tim

iz
ed

 te
st

avg

Post−processing
No Post−processing

(c) PercentEscaper

1 2 3 4 5 6 7 8 9 10

0.0

0.5

1.0

Pairs

%
 c

ho
os

in
g

op
tim

iz
ed

 te
st

avg

Post−processing
No Post−processing

(d) UnsignedBytes

1 2 3 4 5 6 7 8 9 10

0.0

0.5

1.0

Pairs

%
 c

ho
os

in
g

op
tim

iz
ed

 te
st

avg

Post−processing
No Post−processing

(e) MoreExecutors

Fig. 3. Percentage of users preferring the optimized test cases

Figure 3 summarizes the 2,250 responses we received from 79 different par-
ticipants. The error bars indicate the 95 % confidence interval around the rate
at which the participants preferred the optimized test. Overall, the participants

240 E. Daka et al.

preferred the optimized test 59 % of the time (p < 0.01 calculated with Fleiss’
kappa test). In four of the classes (Splitter, DoubleMath, UnsignedBytes, and
MoreExecutors) we can see this preference at the level of individual tests. For
example, we have 95 % confidence that participants preferred the UnsignedBytes
tests generated without post-processing at a rate higher than random chance.
For pairs generated without post-processing the preference is generally clearer
than for those with post-processing, where for these classes the difference in
readability is generally small.

Notably, there is one pair of tests for class PercentEscaper where the users
preferred the default version to the one optimized using the readability model.
The model predicts that the shorter, optimized test is preferable to the longer
test produced by EvoSuite’s default configuration, which contains an exception.
However, this exception has a clear and easily to interpret message shown in a
comment in the test, which the users seem to count as readable — which is not
something a syntactic readability model could do.

Although human preference for our tests is modest, it is present, and our
readability improvements are orthogonal to the structural coverage of the gen-
erated test suite.

4.2 Test Suite Generation

To see how results generalize, we generated test suites for all 359 top-level,
public classes in Guava. Because the use of post-processing steps during fitness
evaluation has high computational costs, we applied the readability optimization
as a post-processing step, and compare the result to the default configuration
with the regular post-processing steps. Calculated after 20 repetitions, there
are 235 out of the 359 classes where the optimization leads to higher average
readability values, and 162 cases are significant at α = 0.05; there are 38 classes
where readability is worse, with 8 of them being significant. On average, the
readability score (averaged over all tests in a test suite) is increased by 0.14
(Â12 = 0.76), without affecting code coverage.

5 Conclusions

While there has been significant research interest in test input generation in gen-
eral and test case generation in particular, the readability of the resulting tests is
rarely considered. Anecdotal evidence suggests that readability is a factor in the
adoption of automatically-generated tests. We evaluate multiple approaches to
incorporate a learned model of test readability, based on human annotations, into
a test suite generation algorithm. We find that post processing approaches are
competitive with more expensive search strategies. We can produce test suites
that are equally powerful with respect to structural coverage metrics but are
more readable. In a modest but statistically significant manner, humans prefer
our readability-optimized test cases.

Acknowledgment. Supported by EPSRC project EP/K030353/1 (EXOGEN).

Generating Readable Unit Tests for Guava 241

References

1. Buse, R.P., Weimer, W.R.: A metric for software readability. In: Proceedings of the
2008 International Symposium on Software Testing and Analysis, ISSTA 2008, pp.
121–130. ACM, New York, NY, USA (2008)

2. Daka, E., Campos, J., Fraser, G., Dorn, J., Weimer, W.: Modeling readability to
improve unit tests. In: European Software Engineering Conference and ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, ESEC/FSE 2015
(2015)

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. Trans. Evol. Comp 6(2), 182–197 (2002)

4. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-
oriented software. In: European Conference on Foundations of Software Engineering
(ESEC/FSE), pp. 416–419 (2011)

5. Posnett, D., Hindle, A., Devanbu, P.: A simpler model of software readability. In:
Working Conference on Mining Software Repositories (MSR), pp. 73–82 (2011)

6. Whitley, D., Gordon, V.S., Mathias, K.: Lamarckian evolution, the Baldwin effect
and function optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN
1994. LNCS, vol. 866. Springer, Heidelberg (1994)

Testing Django Configurations Using
Combinatorial Interaction Testing

Justyna Petke(B)

CREST Centre, University College London, London, UK
j.petke@ucl.ac.uk

Abstract. Combinatorial Interaction Testing (CIT) is important
because it tests the interactions between the many parameters that make
up the configuration space of software systems. We apply this testing
paradigm to a Python-based framework for rapid development of web-
based applications called Django. In particular, we automatically create
a CIT model for Django website configurations and run a state-of-the-art
tool for CIT test suite generation to obtain sets of test configurations.
Our automatic CIT-based approach is able to efficiently detect invalid
configurations.

1 Introduction

Software testing is a challenging and highly important task. It is widely believed
that half the costs of software projects are spent on testing. Search-based soft-
ware engineering (SBSE) techniques have also been successfully applied to the
problem [6]. Moreover, over half of the literature on the whole field of SBSE is
concerned with testing [7]. In order to apply an automated test method to the
problem at hand, one might require information about the inner workings of the
system to be tested. Such white-box testing techniques [3,8,11,16,17] generate
test suites that systematically exercise the program, for instance, to cover all
program branches. These, however, require knowledge of inner workings of the
system under test, setup could take significant amount of time, while resultant
test suite might not be better than the one generated manually [4].

The vast majority of software systems can be configured by setting some
top-level parameters. For checking system behaviour under the different settings,
knowledge of the inner workings of such systems is not necessarily required. This
is a situation where black-box testing methods, such as Combinatorial Interac-
tion Testing (CIT), come in handy. The aim of an automated technique for
software configurations is to generate a test suite that exercises various system
settings. Testing all possible combinations of parameters is infeasible in practice.
There exist, for instance, a model for the Linux kernel that contains over 6000
features that can be set1. Even if all these took Boolean values, 26000 configu-
rations would have had to be generated in order to test them all. In order to
1 Linux kernel feature model is available at: https://code.google.com/p/linux-

variability-analysis-tools/source/browse/2.6.28.6-icse11.dimacs?repo=formulas.

c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 242–247, 2015.
DOI: 10.1007/978-3-319-22183-0 18

https://code.google.com/p/linux-variability-analysis-tools/source/browse/2.6.28.6-icse11.dimacs?repo=formulas
https://code.google.com/p/linux-variability-analysis-tools/source/browse/2.6.28.6-icse11.dimacs?repo=formulas

Testing Django Configurations Using Combinatorial Interaction Testing 243

avoid this combinatorial explosion problem, techniques such as CIT have been
introduced.

Combinatorial Interaction Testing (CIT) aims to test a subset of configu-
rations, yet preserve high fault detection rate when compared with a set of
all possible parameter combinations. It is a light-weight black-box testing tech-
nique that allows for efficient and effective automated test configuration gener-
ation [12]. Several studies have shown that CIT test suites are able to discover
all the known interaction faults of the system under test [1,10,15,18]. Hence, we
have chosen this method to test Django, a very popular Python-based framework
for rapid development of web-based applications.

Django2 was designed to help developers create database-driven websites as
quickly as possible. Among popular sites using it are: Instagram, Mozilla and
The Washington Times. Django is written in Python and comes with its own
set of unit tests. A global settings file is also provided and contains parameters
that can be configured in any Django-based web application. The set of values
for some of the Django settings is potentially infinite, since they admit strings.
We have thus concentrated on Boolean parameters only. We used CIT to test
the various combinations of Django’s Boolean settings available and discovered
several invalid configurations.

2 Background

Combinatorial interaction testing (CIT) has been used successfully as a system
level test method [1,2,9,10,14,15,18]. CIT combines all t-combinations of para-
meter inputs or configuration options in a systematic way so that we know we
have tested a measured subset of the input or configuration space. A CIT test
suite is usually represented as a covering array (CA): CA(N ; t, vk1

1 vk2
2 ...vkm

m),
where N is the size of the array, t is its strength, sum of k1, ..., km is the number
of parameters and each vi stands for the number of values for each of the ki
parameters.

Suppose we want to generate a pairwise interaction test suite for an instance
with 3 parameters, where the first parameter can take 4 values, the second one
can only take 3 values and the third parameter can take 5 values. Then the
problem can be formulated as: CA(N ; 2, 413151). Furthermore, in order to test
all combinations one would need 4 ∗ 3 ∗ 5 = 60 test cases. If, however, we cover
all interactions between any two parameters, then we only need 20 test cases.
Such a test suite is called a 2-way or pairwise test suite.

There are several approaches for covering array generation. The two most
popular ones use either simulated-annealing (SA) or a greedy algorithm. The
SA-based approach is believed to produce smaller test suites, while the greedy
one is regarded to be faster [5]. A state-of-the-art CIT tool that implements an
SA-based algorithm is Covering Arrays by Simulated Annealing (CASA)3. It is
relatively mature in the CIT area, so we chose it for our experiments.
2 Django is available at: https://www.djangoproject.com/.
3 CASA is available at: http://cse.unl.edu/∼citportal/.

https://www.djangoproject.com/
http://cse.unl.edu/~citportal/

244 J. Petke

3 Setup

In order to generate a CIT test suite for Django, we need to first find the para-
meters that we can configure. The source distribution of Django comes with a
top-level settings file called global settings.py, an extract of which is shown
in Fig. 1. There are 137 parameters defined. In order to ease tester effort we only
consider Boolean ones. Otherwise, we would have to inspect each non-Boolean
parameter to identify which values are allowed (theoretically each parameter of
type string can take infinitely many values). This can be done as a future step.

Whether a user’s session cookie expires when the Web browser is closed.
SESSION_EXPIRE_AT_BROWSER_CLOSE = False
The module to store session data
SESSION_ENGINE = ’django.contrib.sessions.backends.db’

Fig. 1. An extract from Django’s global settings.py file.

We construct a CIT model for global settings.py automatically by count-
ing the number of Boolean parameters. There are 23 such parameters. Hence
the CIT model is: CA(t; 223). We produce test configurations for t = 2 and
t = 3 using the CASA tool, that is, we produce a pairwise test suites and a test
suite that covers all value combinations between any three parameters. Higher-
strength CIT is feasible [13], however, pairwise testing is the most popular both
in the literature as well as in the industry. 3-way testing is not as frequently used
and there are only few studies focusing on higher-strength CIT4.

Next, we automatically construct multiple copies of the setting.py file based
on the CIT test configurations that will be substituted in turn with the default
settings file that is created whenever a Django project is started. We first ran the
unit test suite to check if all tests pass. We do not know whether these exercise
all possible Django configurations. Next, we evaluate each CIT test case by first
running the Django development server. Afterwards we re-run the tests and
invoked two websites: ‘Welcome to Django’ page and the ‘polls’ website, which
is the default website used in Django tutorials5. We chose these two webpages
since they are the most basic ones and hence any fault-triggering test case for
these will likely produce a fault for more complex webpages. We use MacBook
Air with 1.7 GHz Intel Core i7 processor and 8 GB of RAM.

We emphasise that each step is automated (except for voting which could be
automated as well): from parameter extraction through model generation and
test case generation to actual testing of the system. Therefore, the whole process
could potentially be applied to any other configurable software system, without
knowledge of the inner workings of such a system.
4 This is partially due to the fact that the higher interaction strength t is required,

the larger the number of test cases that need to be generated. Pairwise testing is
believed to be good enough, especially since several empirical studies have shown
that 6-way testing can discover all the known faults [10].

5 Django tutorials are available at: https://www.djangoproject.com/.

https://www.djangoproject.com/

Testing Django Configurations Using Combinatorial Interaction Testing 245

4 Results

The source distribution of Django comes with its own test suite. It is composed
of unit tests that perform 9242 checks on the MacBook Air laptop used. Thus,
we first ran the existing test suite to check if all of them pass. It is possible that
some of these test various Django configurations, but we have not investigated
this. The original test suite did not reveal any faults.

The CASA tool, which uses simulated-annealing, produced 8 test configura-
tions that cover all pairwise interactions between the 23 parameters extracted
from global settings.py settings file in less than a second. 223 tests would
have been needed to test all possible combinations of parameter settings. 3-
way test suite was created within 42 sec. The CIT test suites generated are the
smallest possible for the chosen criteria6. We have created the default project,
as presented in part 1 of Django’s ‘Writing your first Django app’ tutorial, and
substituted the settings.py file with the automatically generated variants in
turn. In 4 out of 8 configurations, from the pairwise test suite, an error occurred.
An explanation, however, was provided by Django as shown in Fig. 2.

Django version 1.9.dev20150502163522, using settings ’mysite.settings’
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.
CommandError: You must set settings.ALLOWED_HOSTS if DEBUG is False.

Fig. 2. An error caught by Django.

Before moving forward, we have added a constraint to the CIT model that
the parameter ‘ALLOWED HOSTS’ must be set to ‘[‘127.0.0.1’, ‘localhost’]’ if
the ‘DEBUG’ parameter is False. We re-generated and re-run the tests and they
all passed. Next, we invoked the ‘Welcome Page’ after starting the server for each
of the different test setting configurations generated using CASA. We repeated
the experiment with the ‘polls’ website described in the Django tutorial. If the
voting page opened properly, we also posted a vote. Since our results were similar
for both ‘Welcome Page’ and ‘polls’ websites, we report only those for the ‘polls’
website. We mention differences where applicable.

Our experiments revealed that most of the combinations of configuration
values were invalid. For the pairwise test suite 6 out of the 8 test configurations
did not allow for the ‘polls’ webpage to be invoked. In particular, in 4 cases
HTTP error 301 was thrown and the website did not load within pre-specified
amount of time (10 s). In 2 cases security HTTP error 400 was thrown with the
following message: ‘You’re accessing the development server over HTTPS, but
it only supports HTTP’.

The 3-way test suite for the ‘polls’ website consisted of 23 test cases. 4 runs
produced correct results; 11 produced HTTP error 301 and timed-out; and secu-
rity HTTP error 400 was observed 6 times. Additionally, two configurations
6 The smallest known test suite sizes for various CIT models are available at: http://

www.public.asu.edu/∼ccolbou/src/tabby/catable.html.

http://www.public.asu.edu/~ccolbou/src/tabby/catable.html
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html

246 J. Petke

triggered an error that only occurred when invoking the ‘polls’ webpage, but not
the ‘Welcome to Django’ one. It was triggered by pressing the voting button,
causing redirection to ‘Forbidden page’ and throwing HTTP error 403.

We tried to find the minimal configurations causing each type of error. We
first extracted configurations that were set to the same values in all the set-
tings files causing the same type of error. We then compared these against
the default settings to find changes. In the case of the HTTP 301 error, there
was only one line that all the relevant settings files had in common, namely
‘PREPEND WWW = True’, which was set to ‘False’ in the default settings
file. We checked that indeed it was the cause of the HTTP 301 error. More-
over, we found a post online from a user of Django, who had encountered the
same problem. It took him 5 days to figure out the root cause of this error
manually. Using the same approach, we found that the security HTTP error 400
was caused by ‘SECURE SSL REDIRECT = True’ and ‘Forbidden page’ HTTP
403 errors were caused by ‘CSRF COOKIE SECURE = True’. This is not to
say that the three configurations are always invalid. In Django documentation
for ‘PREPEND WWW’ parameter, for instance, it states ‘This is only used if
CommonMiddleware is installed’.

This small experiment has shown that even though Django server seems to
be well-tested, one needs to be careful when modifying the default settings. CIT
can provide a quick way of finding invalid configurations for a particular Django
project.

5 Conclusions

Many real-world software systems are highly configurable. Combinatorial inter-
action testing (CIT) techniques have been developed specifically for such sys-
tems. CIT test suites cover all interactions between any set of t parameters.
Different parameter values can be set, for instance, via modifying a top-level
settings file. An example of such a system is a very popular framework for rapid
web development called Django. By applying CIT techniques to test basic web-
sites written in Django automatically we discovered that under many test con-
figurations invoking a basic website produces errors. Moreover, each step of our
approach is (or could be) automated and does not involve any knowledge of the
inner workings of the Django system. Therefore, it can be applied to any other
configurable software system.

References

1. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an
approach to testing based on combinatorial design. IEEE Trans. Software Eng.
23(7), 437–444 (1997)

2. Cohen, M.B., Colbourn, C.J., Gibbons, P.B., Mugridge, W.B.: Constructing test
suites for interaction testing. In: Proceedings of the International Conference on
Software Engineering, pp. 38–48, May 2003

Testing Django Configurations Using Combinatorial Interaction Testing 247

3. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Software Eng.
39(2), 276–291 (2013). http://doi.ieeecomputersociety.org/10.1109/TSE.2012.14

4. Fraser, G., Staats, M., McMinn, P., Arcuri, A., Padberg, F.: Does automated white-
box test generation really help software testers? In: International Symposium on
Software Testing and Analysis, ISSTA 2013, Lugano, Switzerland, July 15–20,
2013, pp. 291–301 (2013). http://doi.acm.org/10.1145/2483760.2483774

5. Garvin, B.J., Cohen, M.B., Dwyer, M.B.: Evaluating improvements to a meta-
heuristic search for constrained interaction testing. Empirical Software Eng. 16(1),
61–102 (2011)

6. Harman, M., Jia, Y., Zhang, Y.: Achievements, open problems and challenges
for search based software testing (keynote). In: 2015 IEEE Eighth International
Conference on Software Testing, Verification and Validation (2015)

7. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering:
Trends, techniques and applications. ACM Comput. Surv. 45(1), 11 (2012).
http://doi.acm.org/10.1145/2379776.2379787

8. Harman, M., McMinn, P.: A theoretical and empirical study of search-based test-
ing: Local, global, and hybrid search. IEEE Trans. Software Eng. 36(2), 226–247
(2010)

9. Kuhn, D.R., Okun, V.: Pseudo-exhaustive testing for software. In: SEW. pp. 153–
158. IEEE Computer Society (2006)

10. Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software fault interactions and implica-
tions for software testing. IEEE Trans. Software Eng. 30(6), 418–421 (2004)

11. McMinn, P.: Search-based software test data generation: a survey. Softw. Test.
Verif. Reliab. 14(2), 105–156 (2004). http://dx.doi.org/10.1002/stvr.294

12. Petke, J., Cohen, M., Harman, M., Yoo, S.: Practical combinatorial interaction
testing: empirical findings on efficiency and early fault detection. IEEE Trans.
Software Eng. 99, 1–1 (2015)

13. Petke, J., Cohen, M.B., Harman, M., Yoo, S.: Efficiency and early fault detection
with lower and higher strength combinatorial interaction testing. In: European
Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering. ESEC/FSE 2013, pp. 26–36. ACM, Saint
Petersburg, Russian Federation, August 2013

14. Qu, X., Cohen, M.B., Rothermel, G.: Configuration-aware regression testing: an
empirical study of sampling and prioritization. In: Proceedings of the International
Symposium on Software Testing and Analysis, pp. 75–86 (2008)

15. Qu, X., Cohen, M.B., Woolf, K.M.: Combinatorial interaction regression testing:
A study of test case generation and prioritization. In: ICSM, pp. 255–264. IEEE
(2007)

16. Tillmann, N., de Halleux, J.: White-box testing of behavioral web service contracts
with Pex. In: Proceedings of the 2008 Workshop on Testing, Analysis, and Ver-
ification of Web Services and Applications, held in conjunction with the ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
2008), TAV-WEB 2008, Seattle, Washington, USA, 21 July 2008, pp. 47–48 (2008).
http://doi.acm.org/10.1145/1390832.1390840

17. Tonella, P.: Evolutionary testing of classes. In: Proceedings of the ACM/SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2004, Boston,
Massachusetts, USA, 11–14 July 2004, pp. 119–128 (2004). http://doi.acm.org/10.
1145/1007512.1007528

18. Yilmaz, C., Cohen, M.B., Porter, A.: Covering arrays for efficient fault character-
ization in complex configuration spaces. IEEE Trans. Software Eng. 31(1), 20–34
(2006)

http://doi.ieeecomputersociety.org/10.1109/TSE.2012.14
http://doi.acm.org/10.1145/2483760.2483774
http://doi.acm.org/10.1145/2379776.2379787
http://dx.doi.org/10.1002/stvr.294
http://doi.acm.org/10.1145/1390832.1390840
http://doi.acm.org/10.1145/1007512.1007528
http://doi.acm.org/10.1145/1007512.1007528

Synthesis of Equivalent Method Calls in Guava

Andrea Mattavelli1(B), Alberto Goffi1, and Alessandra Gorla2

1 Università Della Svizzera Italiana (USI), Lugano, Switzerland
{andrea.mattavelli,alberto.goffi}@usi.ch
2 IMDEA Software Institute, Madrid, Spain

alessandra.gorla@imdea.org

Abstract. We developed a search-based technique to automatically syn-
thesize sequences of method calls that are functionally equivalent to a
given target method. This paper presents challenges and results of apply-
ing our technique to Google Guava. Guava heavily uses Java generics, and
the large number of classes, methods and parameter values required us to
tune our technique to deal with a search space that is much larger than
what we originally envisioned. We modified our technique to cope with
such challenges. The evaluation of the improved version of our technique
shows that we can synthesize 188 equivalent method calls for relevant
components of Guava, outperforming by 86 % the original version.

1 Introduction

Reusable software libraries frequently offer distinct functionally equivalent API
methods in order to meet different client components’ needs. This form of intrin-
sic redundancy in software [3] has been successfully exploited in the past for var-
ious purposes, such as to automatically produce test oracles [1] and to increase
the reliability of software systems [2]. Even when completely automated in their
internals, these techniques require developers to manually identify functionally
equivalent sequences of method calls within the system. This activity can be
tedious and error prone, and may thus be a showstopper for a widespread adop-
tion of these techniques.

To support developers in this manual task, we developed a search-based tech-
nique that can automatically synthesize and validate sequences of method calls
that are test-equivalent to a given target method [7]. This paper reports the
results of using our prototype implementation SBES to automatically synthe-
size functionally equivalent method calls for the Google Guava library, and more
precisely for its extensive set of collections. Guava collections heavily use Java
generics, a language feature that was not supported in our original work. More-
over, the high number of classes, methods and parameter values made the search
space large, and as a consequence more challenging for our search-based tech-
nique. We cope with such challenge by means of memetic algorithms.

We evaluated SBES on 220 methods belonging to 16 classes of the Google
Guava collections library. Compared to the old version of our prototype, the
support of Java generics and the use of memetic algorithms allow to find 86 %
more true functionally equivalent method sequences.
c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 248–254, 2015.
DOI: 10.1007/978-3-319-22183-0 19

Synthesis of Equivalent Method Calls in Guava 249

2 Synthesis of Equivalent Sequences of Method Calls

Our search-based technique aims to automatically synthesize a sequence of meth-
od invocations whose functional behavior is equivalent to a target method. For
example, given the method put(key,value), which inserts a new key-value pair in
a Guava Multimap instance, our technique may be able to synthesize Multimap
m=new Multimap(); m.putAll(key, new List().add(value)) as a possible equiva-
lence. Producing solutions that would be equivalent for all possibly infinite
inputs and states, is a well-known undecidable problem. The problem becomes
tractable, though, by reducing the number of potential executions to a finite set.
Therefore, our technique deems as equivalent two sequences of method calls that
produce identical results and lead to identical states on a given set of test inputs,
which we refer to as execution scenarios. This definition of equivalence is based
on the testing equivalence notion defined by De Nicola and Hennessy [4].

We implemented our technique in a tool for Java called SBES (Search-Based
Equivalent Synthesis) that manipulates source code. SBES employs an iterative
two-phase algorithm to generate sequences of method calls that are equivalent to
a given input method m. In the first phase—the Synthesis phase—it generates
a candidate sequence eq whose behavior is equivalent to m on the existing set
of execution scenarios. In order to do that, SBES generates a stub class that
extends the class declaring m, and encloses all execution scenarios and an artifi-
cial method method under test, which acts as the main driver for the synthesis:

1 public void method under test() {
2 if (distance(exp s[0], act s[0])==0 && distance(exp s[1], act s[1])==0 &&
3 distance(exp r[0], act r[0])==0 && distance(exp r[1], act r[1])==0)
4 ; // target
5 }

SBES aims to generate a sequence of method calls eq that covers the true branch
of this artificial method. The condition evaluates whether the return value and
the state reached by executing eq in each execution scenarios are test-equivalent
to executing m. Arrays act r and exp r store the return values of eq and m
respectively. Similarly, act s and exp s store the corresponding reached states.
The synthesis phase may lead to spurious results, since it considers only a finite
set of execution scenarios. Therefore, in the second phase of the algorithm—
the Validation phase—SBES aims to remove spurious results by looking for
counterexamples (that is, previously unknown scenarios for which eq and m
are not test-equivalent). In this phase, SBES automatically generates a slightly
different stub class with the following artificial method:

1 public void method under test(Integer key, String value) {
2 ArrayListMultimap clone = deepClone(this);
3 boolean expect = this.put(key, value);
4 boolean actual = clone.putAll(key, new ArrayList().put(value));
5 if (distance(this,clone)>0 || distance(expect,actual)>0)
6 ; // target
7 }

SBES aims once again to generate a sequence of method calls that can cover
the true branch. In this case, though, the condition asserts the non equivalence
between m and eq. The code shows the stub based on the example of the Guava

250 A. Mattavelli et al.

Multimap class, the target method put(key,value), and the candidate equivalence
putAll(key, new List().add(value)). If this phase produces a counterexample, the
algorithm iterates, adding the counterexample to the initial set of scenarios.
Otherwise, SBES returns eq as the final result.

In both phases, SBES exploits a custom version of EvoSuite as a search-
based engine [5]. We modified EvoSuite such that it has the true branch of
method under test as the sole goal to cover. Since the condition of the artificial
method branch is a conjunction of atomic clauses, the fitness function evaluates
the branch distance of each clause separately, aiming to generate an individual
whose all clauses evaluate to true. The branch distance of each atomic clause
is computed using numeric, object or string distance functions depending on
the involved type. EvoSuite does not have a proper notion of object distance,
and as a consequence it is unable to effectively guide the evolution when a
branch condition evaluates an object. Using method equals to compare objects
would yet fail at providing any guidance, since this method returns a boolean
value, and thus flattens the fitness landscape [8]. To overcome this issue, we
implemented a notion of distance that quantifies the difference between two
objects. To calculate such distance, we compute the distance of all the object’s
fields. For non-primitive fields, we recursively call the object distance function
on them. As a result, the distance between two objects amounts to the sum of
the distance of all the inspected fields. Two objects are deemed as identical if
their distance is zero. We refer the interested reader to our previous paper for
further details on SBES [7].

3 Extending SBES to Deal with Google Guava

In our previous work we demonstrated the effectiveness of SBES on few, selected
Java classes such as Stack and a set of classes from the GraphStream library.
Using SBES on Google Guava was challenging for at least two reasons. First,
Guava contains more than 335 classes and 5,400 methods. The combinato-
rial explosion of classes, parameters, and method calls only considering the
library itself is enormous. Second, most of the classes in the library are imple-
mented using generic types. Generic types allow developers to abstract algo-
rithms and data structures, but their presence increases the complexity of the
synthesis process. Ignoring generic types exacerbates the combinatorial explo-
sion mentioned before, since type erasure substitutes generics with the base class
java.lang.Object. Yet, by considering generic types we must concatenate method
calls that both satisfy and adhere to the generic types specified at class instan-
tiation time, increasing the complexity of the generation process.

To cope with Guava, we extended SBES along two lines. First, we added
generic-to-concrete type replacement to our prototype. In those cases where the
execution scenarios declare and use concrete classes rather than generic types,
we exploit such information. For example, suppose to synthesize equivalences for
method Multimap<K,V>.put(key,value), with the following initial execution sce-
nario: Multimap<Integer,String> m=new Multimap();m.put(15, “String”). Since

Synthesis of Equivalent Method Calls in Guava 251

in the execution scenario the generic types K and V are replaced with Integer and
String respectively, we can safely replace all the occurrences of the generic types
with the concrete classes in the stub class. By resolving generic types, EvoSuite
obtains more information to guide the search towards better individuals, without
wasting time to find syntactically valid concrete classes. The second extension
tries to mitigate the combinatorial explosion of method calls and parameters. In
our previous evaluation we observed that in order to find valid solutions, it is
necessary to invoke methods either in a specific order or with specific parame-
ter values. To efficiently synthesize such sequences of method calls, we exploit
memetic algorithms. Memetic algorithms combine both global and local searches
to generate better individuals, thus accelerating the evolution towards a global
optimum. EvoSuite already supports memetic algorithms [6], in Sect. 4 we briefly
discuss how we found the optimal configuration of memetic search.

4 Experimental Evaluation

The purpose of evaluating SBES on the Google Guava library was twofold.
First, we wanted to show that many methods of the Guava API have equiv-
alent sequences of method calls. Second, we wanted to demonstrate that SBES
can effectively synthesize such equivalent sequences. In particular, we wanted to
assess whether the improvements that we brought to SBES with respect to our
previous work could identify substantially more correct solutions.

Experimental Setup. We limited our evaluation to the classes declared in
package collect, and in particular we selected a random set of concrete classes
for which we identified a list of equivalences in previous studies [1–3]. As a
result, we selected 16 subject classes with a total of 220 methods under analysis.
These classes represented a challenge for SBES since they declare a high number
of methods, which strains the search process. Moreover, these classes make an
extensive use of generic types. For each target method we first evaluated the
effectiveness—measured in terms of true synthesized solutions—of the original
version of SBES. We then evaluated the effectiveness of SBES with generic-to-
concrete type replacement, which we refer to as SBESG. Finally, we evaluated the
effectiveness of combining the generic-to-concrete support and memetic search.
We refer to this version as SBESG,M . We ran the experiments by feeding the
prototype with the class under analysis, the target method, and an initial execu-
tion scenario, which consists of one test case that was either extracted from the
existing test suite, or generated automatically with EvoSuite. For each target
method, we iterated the entire synthesis process 20 times—regardless of the suc-
cess of the first phase—with a search budget of 180 seconds for both the first and
second phase. The search budgets were validated in our previous evaluation [7].

252 A. Mattavelli et al.

Table 1. Guava classes considered with their number of methods under evaluation and
equivalences synthesized by the three prototype versions SBES, SBESG, and SBESG,M

Class Methods SBES SBESG SBESG,M

TP FP TP FP TP FP

ArrayListMultimap 15 7 1 13 1 12 3

ConcurrentHashMultiset 16 5 0 9 1 6 2

HashBasedTable 16 3 6 3 8 2 8

HashMultimap 15 7 0 9 2 13 1

HashMultiset 16 6 0 15 3 19 5

ImmutableListMultimap 11 1 1 2 1 2 0

ImmutableMultiset 8 3 0 1 0 3 0

LinkedHashMultimap 15 6 1 9 1 12 3

LinkedHashMultiset 16 5 1 19 2 19 6

LinkedListMultimap 15 6 2 10 1 11 0

Lists 8 18 0 17 3 15 1

Maps 9 6 0 5 0 8 0

Sets 10 12 2 15 0 21 0

TreeBasedTable 15 0 8 4 8 3 10

TreeMultimap 14 4 1 9 3 8 2

TreeMultiset 20 12 5 32 13 34 10

Total 220 101 28 172 47 188 50

Results. Table 1 summarizes the results of our experiments.1 For the selected
target methods of Google Guava, SBES, SBESG, and SBESG,M could success-
fully synthesize 101, 172 and 188 equivalent sequences of method calls respec-
tively. SBESG finds 70 % more equivalences than the base version. Such result
confirms that generic-to-concrete type replacement can indeed reduce the search
space without reducing potential behaviors of the class, ultimately improving
the synthesis process. Similarly, memetic algorithms successfully improve the
synthesis process: SBESG,M can generate 9 % more solutions than SBESG. How-
ever, the effectiveness of memetic algorithms largely depends on the frequency
at which EvoSuite performs the local search [6]. If the local search occurs too
often, it steals search budget from the global search. On the other hand, if the
local search occurs infrequently, it does not bring much benefits. To find the opti-
mal configuration, we ran SBESG,M such that the local search was done once
every 10, 50, 75, 85, and 100 generations. As expected, a frequent local search
degrades the effectiveness of the approach. With 10 generations we obtained the
worst result (we synthesized 30 equivalences less than SBESG, i.e., −17%), and
obtained consistently better results for the other configurations up to the opti-
1 A replication package is available at http://star.inf.usi.ch/sbes-challenge.

http://star.inf.usi.ch/sbes-challenge

Synthesis of Equivalent Method Calls in Guava 253

mal rate of once every 75 generations. After this threshold, local search seems
not to be frequent enough, since the effectiveness decreased again (−7% w.r.t.
the optimal configuration).

For all runs we manually validated the solutions. While on the one hand
SBESG and SBESG,M identify more truly equivalent solutions (reported as TP
in Table 1) than SBES, they also produce more false positives (FP in Table 1).
In some cases, as for HashBasedTable, TreeBasedTable, and TreeMultiset, this is
due to the inability of EvoSuite to generate a syntactically valid test case as a
counterexample. The validation phase, thus, fails in invalidating even the most
trivial spurious candidate. In the reminder of the cases, instead, false positives
are due to a major limitation of the technique: the behavior of the target branch
in the artificial method during the validation phase is comparable to a flag
variable. In fact, the object distance during the validation phase is zero for all
generated solutions, except for those corner cases in which the behavior of the
candidate is not equivalent. As a consequence, the evolution in the second phase
lacks any guidance. This is a limitation of our approach, and we are actively
working to overcome such issue.

5 Conclusion

This paper introduces significant improvements over our previous work on the
automatic synthesis of functionally equivalent sequences of method calls [7]. The
experiments on 220 methods belonging to 16 classes of the Google Guava library
show that generic-to-concrete type replacement and memetic algorithms allowed
the new prototype to outperform the previous version by 86 % in terms of true
equivalences synthesized.

Acknowledgment. This work was supported in part by the Swiss National Sci-
ence Foundation with projects SHADE (grant n. 200021-138006) and ReSpec (grant
n. 200021-146607). The authors would like to thank Mauro Pezzè and Paolo Tonella
for their contributions to the previous version of the technique.

References

1. Carzaniga, A., Goffi, A., Gorla, A., Mattavelli, A., Pezzè, M.: Cross-checking ora-
cles from intrinsic software redundancy. In: International Conference on Software
Engineering (ICSE), pp. 931–942. ACM (2014)

2. Carzaniga, A., Gorla, A., Mattavelli, A., Perino, N., Pezzè, M.: Automatic recovery
from runtime failures. In: International Conference on Software Engineering (ICSE),
pp. 782–791. IEEE (2013)

3. Carzaniga, A., Mattavelli, A., Pezzè, M.: Measuring software redundancy. In: Inter-
national Conference on Software Engineering (ICSE), pp. 156–166. IEEE (2015)

4. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoret. Comput.
Sci. 34(1–2), 83–133 (1984)

254 A. Mattavelli et al.

5. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: Symposium on the Foundations of Software Engineering (FSE), pp.
416–419. ACM (2011)

6. Fraser, G., Arcuri, A., McMinn, P.: A memetic algorithm for whole test suite gen-
eration. J. Syst. Softw. 103, 311–327 (2015)

7. Goffi, A., Gorla, A., Mattavelli, A., Pezzè, M., Tonella, P.: Search-based synthesis
of equivalent method sequences. In: Symposium on the Foundations of Software
Engineering (FSE), pp. 366–376. ACM (2014)

8. Harman, M., Hu, L., Hierons, R.M., Wegener, J., Sthamer, H., Baresel, A.,
Roper, M.: Testability transformation. IEEE Trans. Softw. Eng. (TSE) 30(1), 3–16
(2004)

Object-Oriented Genetic Improvement
for Improved Energy Consumption

in Google Guava

Nathan Burles1(B), Edward Bowles1, Alexander E.I. Brownlee2,
Zoltan A. Kocsis2, Jerry Swan1, and Nadarajen Veerapen2

1 University of York, York YO10 5DD, UK
nathan.burles@york.ac.uk

2 University of Stirling, Stirling FK9 4LA, UK

Abstract. In this work we use metaheuristic search to improve
Google’s Guava library, finding a semantically equivalent version of
com.google.common.collect.ImmutableMultimap with reduced energy con-
sumption. Semantics-preserving transformations are found in the source
code, using the principle of subtype polymorphism. We introduce a new
tool, Opacitor, to deterministically measure the energy consumption,
and find that a statistically significant reduction to Guava’s energy con-
sumption is possible. We corroborate these results using Jalen, and
evaluate the performance of the metaheuristic search compared to an
exhaustive search—finding that the same result is achieved while requir-
ing almost 200 times fewer fitness evaluations. Finally, we compare the
metaheuristic search to an independent exhaustive search at each varia-
tion point, finding that the metaheuristic has superior performance.

Keywords: Genetic Improvement · Object-oriented programming ·
Subclass substitution · Liskov Substitution Principle · Energy profiling

1 Introduction

Across all scales of computing, from mobile devices to server farms, there is
widespread interest in minimizing energy requirements. For a given program, it
is likely that there are many functionally-equivalent programs exhibiting a vari-
ety of different non-functional properties. Previous work by Sahin et al. [13] has
measured the effect of 6 popular refactorings on 9 real Java programs, concluding
that the effect of these refactorings on energy usage are highly end-application
dependent and that commonly-applied predictive metrics are of little practical
use. This is therefore a strong motivator for the application of techniques from
Search Based Software Engineering (SBSE). In this article, we use metaheuris-
tic search to find semantically equivalent programs with reduced energy con-
sumption. Semantics preserving transformations are achieved via the behavioral
equivalence that is central to object-orientation.

c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 255–261, 2015.
DOI: 10.1007/978-3-319-22183-0 20

256 N. Burles et al.

Related Work. Although there are a number of works in Genetic Program-
ming (GP) and Grammatical Evolution (GE) that claim to be ‘Object Oriented’
[1,2,8,12,15], we are not aware of any concerned with the central pillar of Object
Orientation, viz. the Liskov Substitution Principle (LSP) [7] as exemplified by
subtype polymorphism. In this respect, the closest work we are aware of is that
of the SEEDS framework of Manotas et al. [9], in which alternative subtypes
of container classes are substituted into bytecode in order to minimize power
consumption. The search mechanism that is employed in SEEDS is that of a
separate exhaustive search at each object allocation location: our approach dif-
fers by using a genetic approach to assign subclasses to constructor invocations.
It is certainly therefore the first work deserving of the title of ‘Object-Oriented
Genetic Improvement’. Related work in a non-SBSE context is the interesting use
of strong-typing corresponding to different operating modes (e.g. ‘battery level
high’) [4], allowing the programmer to delineate differing responses to operating
conditions (e.g. opting to render a low resolution image when energy is low).

2 Implementation

In outline, the improvement process is as follows:

1. Parse the source file designated for improvement, yielding an Abstract Syn-
tax Tree (AST). Identify variation points, i.e. source nodes in the AST cor-
responding to the creation of Guava container objects.

2. Obtain the complete set of possible target substitutions T (i.e. all the con-
tainer classes within the Guava, Apache Collections1, and the Java 8 util
package). For each source node Si in the AST, find the subset of possible
target substitutions t(Si) ⊆ T which are actually valid.

3. Given a sequence of the k source nodes [S1, . . . , Sk] from the AST, the search
space is then given by all combinations from [t(S1), . . . , t(Sk)]. The solution
representation is thus an assignment i �→ s ∈ t(Si), 1 ≤ i ≤ k, represented as
an element r ∈ Z

k, with constraints 0 ≤ ri < |t(Si)|.
4. Given such an assignment, the AST node for each variation point can be

replaced with its target substitution and the correspondingly mutated source
file can be written out to disk.

5. The program containing the mutated source is then compiled and evaluated
by a measure related to its energy consumption. By this means, combinatorial
search is performed in the space of these representations using the Genetic
Algorithm metaheuristic [6], in order to find the sequence of substitutions
which minimize energy consumption.

Variation Points. The open-source Java framework Google Guava implements
a variety of concrete subclasses of java.util.Collection. There are well-known
tradeoffs in performance characteristics between different collection subclasses:
1 Guava v18.0, Apache Collections v4.0.

Object-Oriented Genetic Improvement for Improved Energy 257

for example, finding a specific element in a linked list is O(n) but in a hash-set
it is O(1). We selected com.google.common.collect.ImmutableMultimap as a test-
case for improvement, since it features a number of instantiations of Collection
subclasses. Source file parsing (and subsequent re-generation, described below)
was done with a popular open-source library com.github.javaparser.JavaParser2.
Within this file, three types of syntax fragments were identified for use as
variation points: calls to constructors (e.g. new LinkedHashMap<>()); calls to
Guava factory classes (e.g. Maps.newHashMap()); and calls to Guava static cre-
ator methods (e.g. ImmutableList.of()). These were filtered to include only frag-
ments creating a collection object, i.e., one implementing java.util.Collection,
java.util.Map or com.google.common.collect.Multimap. In total, 5 variation points
were found, with between 5 and 45 possible substitutions each.

Mutating the Source Code. For each variation point, one of three approaches
to determining the interface of the created object was used: the method’s return
type for return statements; the declared type for variable declarations. For other
expressions, the least-general interface implemented by the class was used: one
of Map,Set,List,Multimap,Multiset or Collection. The potential substitutions for
a variation point are classes implementing the appropriate interface in Guava,
Apache Collections, java.util, and java.util.concurrent. Excluded were abstract
and inner classes, and those expecting a particular type (e.g. Treecollections
require elements implementing Comparable). A modified version of JavaParser’s
SourcePrinter performed the required code substitution at each variation point in
ImmutableMultimap’s source. A careless programmer might depend on function-
ality not guaranteed by the LSP, e.g. relying on a collection being sorted, despite
this not being part of the superclass type specification that is actually visible
at the point at which such reliance is made. This is a logical error on behalf of
the programmer, and strictly speaking necessitates that they rewrite the code.
Although we do not cater for such programming errors in our experiments, the
best that can be done in such cases is to include any existing unit tests as a
constraint on the search.

Measuring Energy Consumption. During the evolutionary process the fit-
ness function was the energy consumption measured using a new tool, Opaci-
tor, designed to make measurements deterministic. Opacitor traces the execu-
tion of Java code, using a modified version of OpenJDK, generating a histogram
containing the number of times each Java opcode was executed—allowing very
similar programs to be distinguishable. A model of the energy costs of each
Java opcode, created by Hao et al. [5], is then used to calculate the total num-
ber of Joules used. As the Just-In-Time compilation (JIT) feature of the Java
Virtual Machine (JVM) is non-deterministic, it is disabled during evolution. Sim-
ilarly, Garbage Collection (GC) is non-deterministic and so the JVM is allocated
enough memory to avoid GC. During the final testing, after evolution has com-
pleted, these features are re-enabled to ensure that the results remain valid on
2 During development we discovered and fixed a bug in the hashCode implementation

of the Node class in the com.github.javaparser.JavaParser library.

258 N. Burles et al.

an unmodified JVM. It should be noted that a significant benefit of Opacitor,
compared to other approaches which require timing or physical energy measure-
ment, is that it is unaffected by anything else executing on the experimental
system. This means that it can be parallelised, or executed simultaneously with
other programs, without difficulty. In previous work [14] we successfully used
Jalen [11] to calculate the energy required, and compare two algorithms; during
the final testing we have used this technique as a corroboration that Opacitor
is effective and generates reliable measurements.

3 Experiments

The first experiment performed was the use of a metaheuristic to search for a
solution with reduced energy consumption. We elected to use a Genetic Algo-
rithm (GA) [6] to search the space of solutions, since this is known to be a useful
approach for a variety of assignment problems [3]. The solution representation
used is a vector of integers r ∈ Z

k. The representation itself is constrained with
the required constraints 0 ≤ ri < |t(Si)|.

The GA was configured with a population of 500, running for 100 gener-
ations. New populations were generated using an elitism rate of 5 %, single-
point crossover with a rate of 75 %, and one-point mutation with a rate of 50 %
with candidates selected using tournament selection with arity 2. These parame-
ters were selected, after preliminary investigations, in order to provide sufficient
genetic diversity to the evolution without requiring an excessive number of fit-
ness evaluations as each evaluation takes in the order of 10 s on a 3.25 GHz CPU.
During experimentation we ran the GA five times, with a different seed to the
random number generator, in order to test the robustness of the evolution.

A second experiment ran an exhaustive search on the entire search space of
674,325 possible solutions, using 32 3.25 GHz cores to allow it to finish within
2.5 days, in order to determine how close the GA came to finding an ideal
solution.

The final experiment ran an exhaustive search independently on each varia-
tion point, following the example of Manotas et al. [9] but on source code instead
of bytecode, before combining each of the substitutions at the end.

4 Results

Statistical testing was carried out using the Wilcoxon/Mann Whitney U Statisti-
cal Tests and Vargha-Delaney Effect size tests (as implemented in the Astraiea
framework [10]). The results were obtained with 100 samples in each dataset.
The result of each of the runs of the GA was the same set of substitutions, and
so this set was used thereafter.

When considering a full exhaustive search of the entire problem space of
674,325 possible combinations of substitutions, performed to gauge the effec-
tiveness of the GA, the best set of substitutions were the same as those found

Object-Oriented Genetic Improvement for Improved Energy 259

Table 1. Energy (J) required to exercise the various methods provided by the
ImmutableMultimap class 10,000 times (mean of 100 runs, and standard deviation σ),
as well as the p-values (p) and effect size measures (e) comparing our result to the
original or the result of an independent exhaustive search at each variation point.

Measurement technique GA Original Independent exhaustive

J J p e J p e

Opacitor 216.49 298.58 – – 266.43 – –

Opacitor with JIT and GC 11.15 14.75 <.001 0.93 13.45 <.001 0.85

σ2.06 σ1.13 σ1.15

Jalen 11.81 15.25 <.001 0.94 13.46 <.001 0.82

σ2.18 σ1.00 σ0.66

by the GA. The use of a GA therefore provided a speed-up of almost 200 while
still successfully finding the best possible result.

The combined results of the original library, our improved version, and the
version using only independent exhaustive search are shown together in Table 1.
During the evolution, with JIT disabled and GC avoided, the best solution found
used 216.49 J. This compares with 298.58 J required by the original, and 266.43 J
required by the solution found using an exhaustive search independently on each
variation point. As the measurements in this case are deterministic, and thus
generate only one observation for each version, no statistical tests are necessary.

The GA required approximately 3,500 fitness evaluations to find its best
solution (the number of evaluations varied slightly between different evolutionary
runs), while the exhaustive search at each variation point required only 105
evaluations. Although using the GA was therefore significantly slower than the
approach used in similar work [9], the final result is also significantly better.

More interestingly, similarly impressive results were also obtained when non-
determinism was reintroduced post-evolution—with JIT enabled and the JVM’s
memory allocation unmodified (allowing for GC when necessary). In this case the
GA’s solution required 11.15 J, compared with 14.75 J for the original and 13.45 J
for the independent exhaustive search. As the energy measurement is no longer
deterministic, the p-values and effect size measures vary accordingly. Vargha and
Delaney suggest that a value of 0.71 indicates a large difference between data
sets, and so the results demonstrate that the GA’s solution provides a significant
improvement over both the original and the independent exhaustive search.

To help corroborate that the model-based energy measurement provides real-
istic results, we used Jalen (with JIT and GC) to compare the three versions
of ImmutableMultimap. The results support the assertion that Opacitor pro-
vides realistic and reliable energy measurements, as well as the hypothesis that
performing the evolution using the deterministic measure would map correctly
to results generated in a non-deterministic, realistic environment.

260 N. Burles et al.

5 Conclusion

We have introduced ‘Object-Oriented Genetic Improvement’, a technique by
which non-functional properties such as time or energy consumption may be
optimised by substituting suitable alternative subclasses to constructor invo-
cations. By virtue of subclass adherence to the ‘Liskov Substitution Princi-
ple’ [7], we can make semantics-preserving changes to source code in order
to take advantage of the vastly different performance characteristics displayed
by different collection implementations. We applied this technique to the
com.google.common.collect.ImmutableMultimap class, part of Google’s Guava
library, using a new tool, Opacitor, to evaluate the energy consumption of
candidate solutions.

Our results showed that significant improvements could be made, with the
best solution providing a saving of approximately 24 %. The results generated by
Opacitor were corroborated using Jalen, which uses time and CPU utilisation
as a proxy for energy consumption. Thus, the results show that the substitutions
improve both the energy consumption and the execution time of the class. We
further compared the results of our technique to those obtained using an app-
roach used in related work [9]—a separate exhaustive search at each variation
point—and found that although the number of fitness evaluations increased using
a GA, the performance of the final result was significantly improved. This shows
that the variation points within code are not always independent. This is intu-
itively the case for ImmutableMultimap—two of the identified variation points
instantiate the BuilderMultimap private class which exists within ImmutableMul-
timap, while other variation points exist within the BuilderMultimap sub-class.
An independent exhaustive search at each variation point may therefore decide
to substitute BuilderMultimap for a more efficient alternative, even though more
efficient subclass substitutions can be made within the private class.

Acknowledgement. Work funded by UK EPSRC grant EP/J017515/1. Data avail-
able at https://github.com/nburles/burles2015object.

References

1. Abbott, R.J.: Object-oriented genetic programming, an initial implementation. In:
Proceedings of the 6th International Conference on Computational Intelligence and
Natural Computing, North Carolina, USA (2003)

2. Bruce, W.S.: Automatic generation of object-oriented programs using genetic pro-
gramming. In: Proceedings of the 1st Annual Conference on Genetic Programming,
pp. 267–272. MIT Press, Cambridge (1996)

3. Chu, P.C., Beasley, J.E.: A genetic algorithm for the generalised assignment prob-
lem. Comput. Oper. Res. 24(1), 17–23 (1997)

4. Cohen, M., Zhu, H.S., Senem, E.E., Liu, Y.D.: Energy types. In: Proceedings of
the ACM International Conference on Object Oriented Programming Systems Lan-
guages and Applications, OOPSLA 2012, pp. 831–850. ACM, NY (2012)

https://github.com/nburles/burles2015object

Object-Oriented Genetic Improvement for Improved Energy 261

5. Hao, S., Li, D., Halfond, W.G., Govindan, R.: Estimating mobile application energy
consumption using program analysis. In: 35th International Conference on Software
Engineering, pp. 92–101. IEEE (2013)

6. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge (1992)

7. Liskov, B.: ‘Data abstraction and hierarchy’ (keynote address). SIGPLAN Not.
23(5), 17–34 (1987)

8. Lucas, S.: Exploiting reflection in object oriented genetic programming. In:
Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004.
LNCS, vol. 3003, pp. 369–378. Springer, Heidelberg (2004)

9. Manotas, I., Pollock, L., Clause, J.: Seeds: a software engineer’s energy-
optimization decision support framework. In: Proceedings of the 36th International
Conference on Software Engineering, pp. 503–514. ACM, NY (2014)

10. Neumann, G., Swan, J., Harman, M., Clark, J.A.: The executable experimental
template pattern for the systematic comparison of metaheuristics. In: Proceedings
of the 2014 Conference Companion on Genetic and Evolutionary Computation
Companion, pp. 1427–1430. ACM (2014)

11. Noureddine, A., Bourdon, A., Rouvoy, R., Seinturier, L.: Runtime monitoring of
software energy hotspots. In: Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pp. 160–169. IEEE (2012)

12. Oppacher, Y., Oppacher, F., Deugo, D.: Evolving java objects using a grammar-
based approach. In: Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, pp. 1891–1892. ACM, NY (2009)

13. Sahin, C., Pollock, L., Clause, J.: How do code refactorings affect energy usage?
In: Proceedings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, pp. 36:1–36:10. ACM, NY (2014)

14. Swan, J., Burles, N.: Templar - a framework for template-method hyper-
heuristics. In: Machado, P., Heywood, M.I., McDermott, J., Castelli, M.,
Garćıa-Sánchez, P., Burelli, P., Risi, S., Sim, K. (eds.) EuroGP 2015. LNCS,
vol. 9025, pp. 205–216. Springer, Switzerland (2015)

15. White, T., Fan, J., Oppacher, F.: Basic object oriented genetic programming. In:
Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds.) IEA/AIE
2011, Part I. LNCS, vol. 6703, pp. 59–68. Springer, Heidelberg (2011)

Automated Transplantation of Call Graph
and Layout Features into Kate

Alexandru Marginean(B), Earl T. Barr, Mark Harman,
and Yue Jia

Department of Computer Science, CREST Centre, UCL, London, UK
alexandru.marginean.13@ucl.ac.uk

Abstract. We report the automated transplantation of two features
currently missing from Kate: call graph generation and automatic lay-
out for C programs, which have been requested by users on the Kate
development forum. Our approach uses a lightweight annotation system
with Search Based techniques augmented by static analysis for auto-
mated transplantation. The results are promising: on average, our tool
requires 101 min of standard desktop machine time to transplant the call
graph feature, and 31 min to transplant the layout feature. We repeated
each experiment 20 times and validated the resulting transplants using
unit, regression and acceptance test suites. In 34 of 40 experiments con-
ducted our search-based autotransplantation tool, μScalpel, was able
to successfully transplant the new functionality, passing all tests.

1 Introduction

We recently introduced a search based technique for automated software trans-
plantation [2,7]. Guided by dependence analysis and testing, our approach uses a
variant of genetic programming to identify and extract useful functionality from
a donor program, and transplant it into a (possibly unrelated) host program.
We implemented our approach as a tool called μScalpel, which is publicly
available [1].

In this challenge paper, we illustrate the way in which realistic, scalable, and
useful real-world transplantation can be achieved using μScalpel. We apply
our tool to the SSBSE 2015 Challenge program Kate1, a popular text editor
based on KDE. Its rich feature set and available plugins make it a popular,
lightweight IDE for C developers. We perform two automated transplantations
using μScalpel. In the first one, we transplant call graph drawing ability from
the GNU utility program cflow, to augment Kate with the ability to construct
and display call graphs.

This is a useful feature for a lightweight IDE, like Kate, and would clearly
be nontrivial to implement from scratch. Using our search based autotransplan-
tation, μScalpel, the developer merely needs to identify the entry point of
the source code in the donor program (cflow in this case) and the tool will do

1 http://kate-editor.org.

c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 262–268, 2015.
DOI: 10.1007/978-3-319-22183-0 21

http://kate-editor.org

Automated Transplantation of Call Graph and Layout Features into Kate 263

the rest; extracting the relevant code, matching names spaces between host and
donor and executing regressions, unit and acceptance tests. Like much previous
work on genetic programming [12], our approach relies critically on the avail-
ability of high quality test suites. We do not directly address this issue in the
present paper, but believe that existing achievements in Search Based [5] and
other [4] test data generation techniques will help us to ensure that this reliance
is reasonable and practical.

Our second transplantation incorporates a pretty printer for C, which Kate
only partially supports and which its users have requested. At the time of writing,
we deployed a new version of Kate that incorporates these features. We hope
to be able to report on the uptake of this ‘genetically improved’ Kate at the
conference.

Our work is closely related to recent achievements in genetic improvement,
which have been able to dramatically speed up real world systems [9,14,15], port
between languages [8], balance memory consumption and execution time [16],
reduced energy consumption [3,13] and fix bugs [10]. Most closely related to
our approach is work on auto-specialisation using transplantation [11] and grow
and graft genetic improvement [6]. Whereas auto-specialisation transplants from
different versions of the same system (or closely related systems) and grow and
graft transplants newly grown simple features, μScalpel transplants large-scale
features (and subsystems) from one or more donors into an unrelated host.

2 The µSCALPEL Transplantation Framework

We presented a framework for transplanting a feature between two unrelated
systems and a tool to implement our approach [1] in our recent ISSTA paper [2],
so we provide merely a summary here to make the paper self-contained. Given
a host H program that is lacking a feature of interest, a donor program D,
that implemented the feature, and a lightweight annotation system, our tool,
μScalpel, attempts to autotransplant the feature from D into H. The feature
of interest in the donor is called the Organ. From the entry of the donor, there
are one or more path that reaches the Organ Entry point, called veins.

Our approach uses Genetic Programming (GP), augmented by static analy-
sis, for extracting, configuring, and transplanting the organ into the host environ-
ment. GP explores combinations of statements on the vein, and in the host–donor
variable mappings, that will enable the organ to execute in the host environment,
guided by testing. The first stage of our approach uses context insensitive slicing
on the call graph of the donor program to construct a map, with the key being
the variables available in the vein, and the values being the variables in scope
at the implantation point in the host [2]. GP is used to transplant the feature
in the host system, having the host–donor map, and the code base represented
by these context insensitive slices. The search space has two dimensions: the
variable mapping and the statements available to form the transplant itself. The
tool that implements out approach, μScalpel, is publicly available [2].

264 A. Marginean et al.

3 Applying Autotransplantation to Kate

We chose two popular, real world systems, as the donor programs: GNU cflow2,
and GNU Indent3. The former generates call graphs for C programs, a fea-
ture that is missing from Kate; the latter pretty prints C source files, with far
fewer restrictions than Kate’s existing built-in indentation functionality. Kate’s
existing indentation feature fails to wrap a line that is too long, for example.
It simply adds space or tabs in a programming language independent manner,
whereas GNU’s Indent exploits language awareness to provide far better for-
matting functionality.

μScalpel requires user to provide an implantation point in H, and the entry
point of the feature in D. We chose one of the Kate plugins as the implantation
point. We start from the time date plugin template4, and annotate the entry point
in Kate, in the function ‘void TimeDatePluginView:: slotInsertTimeDate()’ of the
plugin. This function is called every time the user selects the menu element cor-
responding to the current plugin. We chose this point as the implantation point
for allowing the user to chose whenever wants to generate the call graphs. The
annotation added in the host is: ‘void TimeDatePluginView::slotInsertTimeDate()
{ /* IP */’ .

For the cflow donor, the desired functionality is to transplant the tree form
of the call graphs. Thus, we label the function ‘tree output()’ as the organ entry
in the donor system. The organ generates the call graph of a C program and dis-
plays it in the tree format (option ‘-T’ from cflow). The annotation is: ‘void
tree output(){ /*OE*/’. For the Indent donor, the desired functionality is to
enable Kate to completely format a C source file. We want to format the cur-
rent opened document in the Kate’s main page. Thus, we label the function
‘indent single file()’ as the organ entry point. This function reformats the source
file, according to the settings of GNU Indent. The annotation is: ‘exit values ty
indent single file(BOOLEAN using stdin){/*OE*/’. The developer need only pro-
vide μScalpel with these simple annotations and suitable test cases and the
reminder of the transplantation process is entirely automated.

We used several different test suites to validate our transplant. First, we
execute the original regression test suite, available with Kate. Since this test
suite does not execute the organ, we augmented it with test cases specifically
aimed at executing the organ. Second, we generated an acceptance test suite,
aimed at checking the transplanted functionality when executed in the host.
As with all approaches to GP, the test cases are used to guide the search for
suitable code.

Provision of these test cases remains the responsibility of the software engi-
neer. Such tests, or a large subset thereof, would be likely required by a human
transplantation process in any case, so this is not a significant additional burden.
Furthermore, even were such costs attributed to the autotransplantation process,

2 http://gnu.org/software/cflow.
3 http://gnu.org/software/indent.
4 https://techbase.kde.org/Development/Tutorials/Kate/KTextEditor Plugins.

http://gnu.org/software/cflow
http://gnu.org/software/indent
https://techbase.kde.org/Development/Tutorials/Kate/KTextEditor_Plugins

Automated Transplantation of Call Graph and Layout Features into Kate 265

it would be likely easier, in many cases, to define suitable test cases to check a
transplant than it would be to generate one from scratch while ensuring it is
sufficiently tested. In order to estimate the human cost, we recorded the elapsed
developer time required to construct the isolation, acceptance, and regression++
test cases that are specifically required to validate the transplantation, thereby
providing an upper bound on human effort. Our estimation for annotations and
the test suites is one hour for both of the transplants.

For all our test suites we provide coverage information. Table 2 shows the
results of our tests for both donor programs. We also manually generated the
ice-box test suite, used by the GP in the process of transplanting the feature.

4 Experiments and Results

We seek to answer three research questions. RQ1) Can we transplant the two
desired features into Kate, without breaking the original functionality of Kate?
RQ2) Do the transplanted features (organs) provide the desired functionality
inside Kate? RQ3) What is the computational effort required by automatic
transplantation? We repeat each of the transplantation experiments 20 times,
executing μScalpel on a Ubuntu 14.10 machine, 64-bit architecture, 16 GB
ram, and 8 cores processor.

Table 2 presents the number of runs in which for every test suite, all test cases
pass. We report the number of successful runs for the regression, augmented
regression, and acceptance test suites individually and also report the coverage
achieved by test cases (of the entire Kate system, and of just the transplanted
organ). This coverage data is that reported by the publicly available coverage
metric tool gcov. Table 2a shows the results of the test suites for cflow donor
transplant, while Table 2b shows the results of the test suites for Indent donor
transplant. For cflow, 16 out of 20 runs where unanimously successful, while for
Indent 18 out of 20 runs were unanimously successful.

We deem a transplantation attempt to be successful if (and only if) all the test
cases from the corresponding test suite passed. The row labelled ‘Unanimously’
reports the number of transplantation attempts in which all test cases passed in
all test suites. The line ‘Isolation’ reports the results of the isolation test suite,
which is used by the GP algorithm for evolving the organ (as opposed to being
used for valuation purposes).

Observe that even were we to find that automated transplantation was only
successful one a few of the 20 attempts, then this would be sufficient to demon-
strate the feasibility of autotransplantation in general. The testing process can
be used to validate any transplantation attempt, allowing the software engineer
to discard any and all failed attempts. As a result show, autotransplantation
achieves a much higher success rate than this, minimal, feasibility requirement.
Overall, we have evidence that autotransplantation is feasible for the popular
real world system Kate. We now turn to the specific research questions, we posed
to answer them.

266 A. Marginean et al.

Table 1. Runtime data,
averaged over 20 runs.

RQ1 Table 2 revels that for both of the trans-
plants, all the regression test cases passed. However,
the organs were not executed by the existing regression
test suites, so we manually augmented them to gener-
ate the regression++ test suites. Organ coverage for the
regression++ test suites is: 59 % for cflow, and 58 % for
Indent. For cflow 17 out of 20 transplantation attempts
passed all test in these augmented test suites, while for Indent, 18 out of 20 pass
all. Clearly one can never do enough regression testing, but these results provide
release some confidence. In future work we plan to use automated search based
software testing [5] to further improve autotransplantation regression testing.

RQ2 For cflow 18 out of 20 transplants passed all acceptance tests, while
for Indent 19 out of 20 pass, giving confidence that μScalpel has success-
fully transplanted code, such that the desired functionality is available to host
program.

RQ3 Table 1 reports the timing information for the transplants. On average,
transplanting the call graph feature from cflow took 101 min, while the layout
feature from Indent took 31 min. In less than 44 hours total time, we were able to
complete all 40 repetitions of the two experiments. The human effort required to
incorporate these two new features would surely have been considerably greater.

Table 2. Transplantation results. Figures marked with * exclude regression test cases
that failed before the transplantation (only one for Kate).

A Flavour for the Transplants Produced by μScalpel Fig. 1 provides
a flavour of the Indent transplant. Figure 1a shows portion of the vein, identified
in the static slicing processing. The vein starts at the function main(), and ends
at organ entry; the function indent single file(). The vein contains the function
process args(), which initialises globals, based on the command line parameters
originally used in the donor Indent. Figure 1b shows the resulting code after the
inlining process. The brackets capture the code corresponding to each original
function. Figure 1c shows the code transplanted into Kate by one of the successful
transplants. An α–renaming scheme is used to avoid namespace conflicts within
the host, and between the inlined functions.

Some organ statements must be removed, due to failed test cases or incorrect
binding to host variables. Some variables may even be unbindable, leading to

Automated Transplantation of Call Graph and Layout Features into Kate 267

process_args(){
}
main(){

...
process_args();
indent_all();

}

indent_all(){
...
indent_single_

file();
...

}

(a) Indent Code

...
BOOL using_stdin = false;
exit_status = total_success;

...
for (i = 1; i < argc; ++i) {

char *optArg = argv[i];
...

input_files++;
...
in_file_names[input_files-1]

= optArg;
...

if (exit_status == total_success) {
...

exit_status=indent_single_file
(using_stdin);

...
}

(b) Indent Inlined Source Code

void graft_h264(...,
char * $_host_input, ...) { ...
BOOL $_main_using_stdin;
$_main_using_stdin = false;
$_main_exit_status = $_donor_total_success;
...
BOOL * $_process_args1_using_stdin1 = &

$_main_using_stdin;
...
$_global_input_files++;

...
$_global_in_file_names[$_global_input_files -

1] = $_host_input;
...
if ($_main_exit_status==$_donor_total_success){
BOOL $_indent_single_file_using_stdin_2 =

$_main_using_stdin;
return $_organ_entry_indent_single_file(

$_indent_single_file_using_stdin_2);
}

}

(c) Transplanted Source Code

Fig. 1. Transplant operation in cflow donor transplant. Code snippet from the begin-
ning of the graft. means function inlining; optArg is mapped to $ host input;
means statement replacement under α — renaming; grayed statements are deleted.

an uncompilable (or crashable) transplant. For example, the variables argc and
argv simply cannot be bound to host variables, because Kate has no concept
of ‘command line argument’. Fortunately, GP discovers such issues. It removes
the first for statement in Fig. 1b . The variable optArg is used for parsing the
command line parameters of Indent. This variable was mapped at the variable
$ host input$, thereby correctly using input from Kate call graph computation.

5 Conclusions

We demonstrated that search based automated transplantation (a form of genetic
improvement) can be used to automatically transplant non-trivial features (that
are requested by users, but hitherto unimplemented by developers) into the large
real-world system Kate.

References

1. Barr, E.T., Harman, M., Jia, Y., Marginean, A., Petke, J.: μSCALPEL (2014).
http://crest.cs.ucl.ac.uk/autotransplantation/MuScalpel.html

2. Barr, E.T., Harman, M., Jia, Y., Marginean, A., Petke, J.: Automated software
transplantation. In: ISSTA (2015, to appear)

3. Bruce, B., Petke, J., Harman, M.: Reducing energy consumption using genetic
improvement. In: GECCO 2015 (2015)

4. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
CACM 56(2), 82–90 (2013)

5. Harman, M., Jia, Y., Zhang, Y.: Achievements, open problems and challenges for
search based software testing (keynote). In: ICST (2015)

6. Harman, M., Jia, Y., Langdon, W.B.: Babel Pidgin: SBSE can grow and graft
entirely new functionality into a real world system. In: Le Goues, C., Yoo, S. (eds.)
SSBSE 2014. LNCS, vol. 8636, pp. 247–252. Springer, Heidelberg (2014)

http://crest.cs.ucl.ac.uk/autotransplantation/MuScalpel.html

268 A. Marginean et al.

7. Harman, M., Langdon, W.B., Weimer, W.: Genetic programming for reverse engi-
neering (keynote paper). In: WCRE (2013)

8. Langdon, W.B., Harman, M.: Evolving a CUDA kernel from an nVidia template.
In: IEEE CEC (2010)

9. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. TEVC 19(1), 118–135 (2015)

10. Le Goues, C., Forrest, S., Weimer, W.: Current challenges in automatic software
repair. SQJ 21(3), 421–443 (2013)

11. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement
& code transplants to specialise a C++ program to a problem class. In: EuroGP
(2014)

12. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic program-
ming (2008). published via http://lulu.com and freely available at http://www.
gp-field-guide.org.uk

13. Schulte, E., Dorn, J., Harding, S., Forrest, S., Weimer, W.: Post-compiler software
optimization for reducing energy. In: ASPLOS, pp. 639–652 (2014)

14. Sidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., Rinard, M.C.: Managing per-
formance vs. accuracy trade-offs with loop perforation. In: FSE, pp. 124–134 (2011)

15. Sitthi-amorn, P., Modly, N., Weimer, W., Lawrence, J.: Genetic programming for
shader simplification. ACM TOG 30(6), 152:1–152:11 (2011)

16. Wu, F., Harman, M., Jia, Y., Krinke, J., Weimer, W.: Deep parameter optimisation.
In: GECCO 2015 (2015)

http://lulu.com
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk

Grow and Serve: Growing Django Citation
Services Using SBSE

Yue Jia(B), Mark Harman, William B. Langdon,
and Alexandru Marginean

CREST, Department of Computer Science, University College London,
WC1E 6BT, Malet Place, London, UK

yue.jia@ucl.ac.uk

Abstract. We introduce a ‘grow and serve’ approach to Genetic
Improvement (GI) that grows new functionality as a web service run-
ning on the Django platform. Using our approach, we successfully grew
and released a citation web service. This web service can be invoked
by existing applications to introduce a new citation counting feature.
We demonstrate that GI can grow genuinely useful code in this way, so
we deployed the SBSE-grown web service into widely-used publications
repositories, such as the GP bibliography. In the first 24 hours of deploy-
ment alone, the service was used to provide GP bibliography citation
data 369 times from 29 countries.

1 Introduction

Reusing bespoke features developed for a specific system on other systems
requires a substantial amount programmers’ effort. This effort can be reduced
by implementing the features as web services, thereby using standard proto-
cols to share data and to provide functionality to client applications. We argue
that such service-based architecture, where available, provides a useful possible
deployment mechanism for genetic improvement. We use a variant of the ‘grow
and graft’ genetic improvement approach [5] to grow a new feature implemented
in Python, which can then subsequently be served as a Django service module.
Such web services can be easily invoked by existing applications to introduce new
features. We call this approach ‘grow and serve’; it is ‘grow and graft’ genetic
improvement without the graft.

Our approach is a form of genetic improvement [6,9,11,15], which has
been used for code migration [7], improving energy efficiency [3,10,13], mem-
ory/speed trade-offs [16], automated repair [1,9], and performance improvement
[8,11,12,14,15]. More specifically we use the ‘grow and graft’ approach [5], in
which new functionality is grown in isolation and subsequently grafted into an
existing system. However, in previous work, the grafting phase has specialised
the previously grown code for the system into which it is to be grafted. Similar
specialisation is also required in genetic improvement by program transplan-
tation [2,12]. However, in our approach, the grafting phase is not only highly

c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 269–275, 2015.
DOI: 10.1007/978-3-319-22183-0 22

270 Y. Jia et al.

general, it also becomes trivial; the extra functionality we grow simply becomes
a web service module running on the Django framework.

This paper follows the result reporting style used in our previous work on
‘grow and graft’ genetic improvement, reporting on the guidance required for
the grow stage as we did previously [5]. However, the primary claim of the
present paper is that we have been able to grow useful functionality that was
not previously available. For this reason we chose to grow an application that
we believe may be useful to some readers. Our agenda is to migrate genetic
improvement research from demonstration examples, grown in the laboratory
and of primarily scientific interest, to real-world usable code. Our starting point
for this outward genetic improvement spread is our own academic community,
since we believe we might hope to understand some of their requirements.

Specifically, we use our tools to provide a citation reporting service. The
reader can use this to augment existing webpages with citation information,
served by Django, genetically improved by the incorporation of the citation ser-
vice module we grew. We make this available, so that the reader can investigate
the code produced by genetic improvement, but also so that he or she can, for
example, automatically augment any publication listing websites with citation
information.

Citation numbers can provide helpful information in publication reposito-
ries. However, this information is missing from many publication repositories
(such as the GP bibliography, the mutation and the SBSE repositories). It is not
straightforward for the provider of the bibliography to provide citation informa-
tion, for example from Google Scholar, without considerable effort or supporting
technology. We believe that this makes this an interesting and worthwhile can-
didate for our genetic improvement approach. To demonstrate the usefulness of
this new functionality, we have used it to augment the GP bibliography website
(and others) with this functionality, an instance of ‘GP for GP’; using GP to
envolve an improvement to the website concerned with GP. We recorded the first
24 hours of deployment usage, finding that the service was used to provide GP
bibliography citation data 369 times from 29 countries.

2 Approach Used to Grow and Serve a Citation Service

Django is an open source web application framework with a stateless service
with which we provide a simple URL link to query the number of citations for a
publication. The URL takes the title of the publication and returns the number
of citations it has attracted. We use the Google Scholar website to source citation
information, but our approach could equally be applied to other citation data
providers, such as Microsoft Academic Search or Research Gate.

Django turns features implemented in Python into web applications or web
services. Therefore, we grow the citation service as Python code using the ‘grow’
phase of our ‘grow and graft’ approach [5]. The ‘graft’ phase becomes trivial;
we simply copy the automatically-grown Python code into an existing Django

Grow and Serve: Growing Django Citation Services Using SBSE 271

template running on an Apache server. Our GP system implements a strongly-
typed GP that takes a grammar file and a test harness as input and outputs a
program that passes all the tests specified in the test harness.

The grammar file specifies a set of data types and potential APIs suggested
by the developer as likely to be useful to GP. Retrieving citation information
is clearly not straightforward, and we do not expect the GP to discover this
for itself. Rather, we provide GP with several different types of APIs that it
may find useful. These can be divided into four categories: handling HTTP
requests, parsing HTML trees, string manipulation, and list manipulation. All
of these functionaries are Python built-in functions or are supported by widely-
used packages (such as the lxml and requests models).

Our approach is therefore to give the GP phase ‘hints’, in the form of pre-
existing code that may be useful. As we have argued previously [5], we believe
that these hints would be trivial for the human programmer to provide, but
almost impossible for GP to discover by itself. As such, the provision of such
hints represents an ideal trade-off between human and machine-based effort.

The GP system was designed to evolve imperative programs, formed by
a sequential list of assignments and functional calls [5]. We adapted the sys-
tem to evolve Python code by converting the object-oriented APIs into an
imperative form. For example, function foo.bar(arg) is turned into function
foo bar(foo, arg).

We manually created these functions, to expedite experimentation. However,
the process we followed was entirely algorithmic and therefore could have been
fully automated. These functions are provided in the test harness file. The test
harness also includes the functional tests and fitness computation components
for evaluating the evolved code segments. At each generation, GP evolves a
population of code segments and inserts them into the test harness. The test
harness is executed and evaluated for fitness.

Fitness Functions: We experimented with 8 different fitness functions, com-
posed of a set of 22 equally-weighted fitness components. The default (starting)
fitness value is set zero, which denotes a completely useless candidate solution.
The fitness value is subsequently incremented, based on the candidate solution’s
ability to satisfy each of the different fitness components.

The first set of components are the ‘essential’ fitness requirements; that the
new code must pass the test cases that capture correct functionality. We designed
five black-box functional tests to cover the different possible forms of input and
feedback from the source of citation data, as shown in Table 1. We increase
the fitness value by 1 if the execution of a test completes without raising an
exception. The fitness value is further increased by 1 if the evolved function also
returns the expected output. This gives us 10 essential fitness components; 2 for
each of the 5 tests, shown in Table 1.

Our grow and graft genetic improvement research agenda starts with a fun-
damental assumption: For many programming tasks, it will prove to be easier
for the programmer to specify a few criteria for successful solutions, than it
will be for the programmer to generate the solutions from scratch. This notion

272 Y. Jia et al.

Table 1. The 5 Functional Black Box Test Cased Used for Essential Fitness

1 Characristic Input Expected Output

1 Full Title ‘Higher Order Mutation Testing’ return ‘Cited by 102’

2 Key Words ‘Babel Pidgin’ return ‘Cited by 5’

3 1 Citation ‘Genetic Improvement for Adaptive
Software Engineering’

return ‘Cited by 1’

4 0 Citation ‘Achievements, open problems and
challenges for search based software
testing’

return ‘No Citation’

5 Bad Title ‘sdfsdsdf sdoi
jsdlkfjsdljlksdlkadslkfsadjlsdfkljsdflksd’

return ‘No Citation’

that ‘checking is easier than generating’ goes the very heart of the motivation
for SBSE itself [4]. We think of these criteria for successful solutions as ‘hints’
provided by the programmer to the GP.

We designed three sets of assistant fitness functions to provide these hints
(See Fig. 1). These functions are classified according to our assessment of human
effort required to provide them. The set of ‘Inclusion’ fitness functions specify
the names of functions that might be included in a successful solution. We do
not give the GP any information about the parameters to pass nor the expected
results with these fitness components. The programmer simply has to identify
a set of candidate functions which may (or may not) prove to be useful in a
candidate solution. We believe that this requires very little human effort, since
most programmers will be readily able to call to mind a set of such possible
candidate functions for any given programming task. In the case of the problem
in hand, the functions we make available with the ‘Inclusion’ fitness are simply
the data structure manipulation functions likely to be useful in any solution.

1 Inclusion Call to request get
2 Inclusion Call to generate html tree
3 Inclusion Call to search html tree
4 Inclusion Call to filter list
5 Inclusion Call to concat

6 Ordering concat before send
7 Ordering generate html after input
8 Ordering search html after generated
9 Ordering filter list after search

10 Necessary concat gives correct link
11 Necessary Correct call to Google Scholar
12 Necessary result contains citation data

Fig. 1. The 12 Fitness Component Hints

The ‘Order’ fitness components
denote a slightly more sophisticated
requirement of human effort. They
capture constraints on the order-
ing in which included calls are per-
formed. Clearly, this requires more
thought on the part of the pro-
grammer. However, we believe that
even novice programmers are aware
of simple ordering constraints such
as ‘concatenating partial results
together before passing onto the
output’. It may even be possible
for non-programmers to provide this
kind of hint.

Finally, the most sophisticated fitness components are the ‘necessity condi-
tions’, which denote pre-and post-conditions on the states of computation. These

Grow and Serve: Growing Django Citation Services Using SBSE 273

can be thought of as intermediate white box assertion checks that complement
the essential black box test cases. Providing such assertions requires more effort
from the programmer, but it may help to guide the GP to solutions faster. Per-
haps, more importantly, these assertions may provide a useful interface between
human understanding and search-based automation. The assertions can be used
to constrain solutions such that they satisfy the programmer’s conception of
expected behaviour at key checkpoints in the computation.

Without such assertions, a perfectly valid solution may be evolved that passes
all black box tests, yet remains incomprehensible to the human programmer.
Ultimately, such evolved ‘source’ code may become ‘the new object code’, remov-
ing this concern for all programmers who are content to trust the backend object
code that emerges from the ‘compilation’ process [6]. However, in the intermedi-
ate period during which we seek uptake of ideas like genetic improvement, such
checkpoints may provide a useful human-machine interface.

Experiment: We used the default crossover, mutation, and elitism operators
from the original babel pidgin system [5] with values 0.5, 1.0 and 0.05 respec-
tively and population size 200. The GP terminates when best fitness remains
unchanged for 30 generations. We run our experiments on an iMac running
OSX 10.10. To speed up the evaluation, we cached the Google Scholar webpage
test case results for faster fitness evaluation. This cached call is replaced by an
external Google Scholar enquiry link in the final version evolved. All experiments
were repeated 30 times to allow for inferential statistical comparison of results.

Results: The results are shown in Fig. 2. Fitness components are labelled as
follows: E: Essential, I: Inclusion, O: Ordering and N: Necessity. In Fig. 2 we
list the eight choices of fitness components in increasing order of sophistication,
loosely denoting the programmer effort required to provide the hints to the
GP. We analyse the results using a nonparametric two-tailed binomial test to
compare success achieved using the essential fitness, E, with each and all of those
we achieved using more sophisticated fitness. We use the Hochberg correction in
order to account for the fact that we are performing seven different inferential
statistical tests.

Fitness Successful runs Time in f=Fitness
Used in 30 trials seconds evaluations

E 0 (p=N/A) 204 6,306
EI 0 (p=N/A) 281 7,400
EO 0 (p=N/A) 379 10,226
EN 0 (p=N/A) 348 9,686
EIO 1 (p=0.500) 425 10,806
ENI 0 (p=N/A) 438 11,133
ENO 9 (p=0.020) 443 11,633
ENIO 16 (p=0.002) 499 12,700

Fig. 2. Results for Growing Django service

With an α level of 0.05, the
widely-used threshold for statisti-
cal significance, this corrected sta-
tistical test indicates that the result
for ENIO and for ENO is signifi-
cantly different to that for E (with
a Vargha-Delaney Â12 effect sizes
0.76 and 0.65 respectively). Over-
all, the results indicate the impor-
tance of ordering constraints, and
the power of providing the neces-
sity constraints to capture simple
pre- and post-conditions.

274 Y. Jia et al.

Encouragingly, the results also suggest that, perhaps, these more sophisti-
cated pre-and post-conditions are not always required in order to find successful
solutions. Since the approach can be repeated multiple times, and the program-
mer can and use fitness to reject inadequate solutions, we need only be successful
on one occasion within reasonable time, after repeated executions. Since a suc-
cessful solution is found using EIO fitness after only 425 sec, we have tentative
evidence that useful functionality can be grown in isolation and deployed as a
service using relatively modest programmer hints.

3 Deployment, Conclusions and Future Work

We deployed the service on the Microsoft Azure cloud, incorporating it into the
GP1 and Mutation testing repositories2. We also made the citation counting
service available as text-returning3 and image-returning4 services for others to
use. We believe that ‘grow and serve’ may prove to be widely applicable: The
approach will be applicable to any software framework, such as Django, into
which behaviour-describing modules can be deployed.

References

1. Arcuri, A., Yao, X.: A novel co-evolutionary approach to automatic software bug
fixing. In: CEC, pp. 162–168 (2008)

2. Barr, E.T., Harman, M., Jia, Y., Marginean, A., Petke, J.: Automated software
transplantation. In: ISSTA (2015), to appear

3. Bruce, B.R., Petke, J., Harman, M.: Reducing energy consumption using genetic
improvement. In: GECCO (2015, to appear)

4. Harman, M., Jones, B.F.: Search based software engineering. IST 43(14), 833–839
(2001)

5. Harman, M., Jia, Y., Langdon, W.B.: Babel Pidgin: SBSE can grow and graft
entirely new functionality into a real world system. In: Le Goues, C., Yoo, S. (eds.)
SSBSE 2014. LNCS, vol. 8636, pp. 247–252. Springer, Heidelberg (2014)

6. Harman, M., Langdon, W.B., Jia, Y., White, D.R., Arcuri, A., Clark, J.A.: The
GISMOE challenge: constructing the pareto program surface using genetic pro-
gramming to find better programs (keynote paper). In: ASE, pp. 1–14 (2012)

7. Langdon, W., Harman, M.: Evolving a CUDA kernel from an nVidia template. In:
CEC, pp. 1–8, July 2010

8. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. TEC 19(1), 118–135 (2015)

9. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: a generic method for
automatic software repair. TSE 38(1), 54–72 (2012)

10. Li, D., Tran, A.H., Halfond, W.G.J.: Making web applications more energy efficient
for OLED smartphones. In: ICSE, pp. 527–538 (2014)

1 http://www.cs.bham.ac.uk/∼wbl/biblio/.
2 http://crestweb.cs.ucl.ac.uk/resources/mutation testing repository/index.php.
3 http://yuejia.cloudapp.net/gpcitation/publication-title/.
4 http://yuejia.cloudapp.net/gpcitation/img/publication-title/.

http://www.cs.bham.ac.uk/~wbl/biblio/
http://crestweb.cs.ucl.ac.uk/resources/mutation_testing_repository/index.php
http://yuejia.cloudapp.net/gpcitation/publication-title/
http://yuejia.cloudapp.net/gpcitation/img/publication-title/

Grow and Serve: Growing Django Citation Services Using SBSE 275

11. Orlov, M., Sipper, M.: Flight of the FINCH through the Java wilderness. TEC
15(2), 166–182 (2011)

12. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improve-
ment and code transplants to specialise a C++ program to a problem class. In:
Nicolau, M., Krawiec, K., Heywood, M.I., Castelli, M., Garćıa-Sánchez, P.,
Merelo, J.J., Rivas Santos, V.M., Sim, K. (eds.) EuroGP 2014. LNCS, vol. 8599,
pp. 137–149. Springer, Heidelberg (2014)

13. Schulte, E., Dorn, J., Harding, S., Forrest, S., Weimer, W.: Post-compiler software
optimization for reducing energy. In: ASPLOS, pp. 639–652 (2014)

14. Sitthi-amorn, P., Modly, N., Weimer, W., Lawrence, J.: Genetic programming for
shader simplification. ACM TOG 30(6), 152:1–152:11 (2011)

15. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. TEC
15(4), 515–538 (2011)

16. Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisation.
In: GECCO (2015, to appear)

Specialising Guava’s Cache to Reduce
Energy Consumption

Nathan Burles1(B), Edward Bowles1, Bobby R. Bruce2, and Komsan Srivisut1

1 University of York, York YO10 5DD, UK
{nathan.burles,eab530,ks1077}@york.ac.uk

2 CREST Centre, University College London, London WC1E 6BT, UK
r.bruce@cs.ucl.ac.uk

Abstract. In this article we use a Genetic Algorithm to perform
parameter tuning on Google Guava’s Cache library, specialising it to
OpenTripPlanner. A new tool, Opacitor, is used to deterministically
measure the energy consumed, and we find that the energy consumption
of OpenTripPlanner may be significantly reduced by tuning the default
parameters of Guava’s Cache library. Finally we use Jalen, which uses
time and CPU utilisation as a proxy to calculate energy consumption,
to corroborate these results.

Keywords: Parameter tuning · Library specialisation · Energy profil-
ing · Reduced power consumption

1 Introduction

The practice of releasing software with configurable parameters is common. This
is due to the widely accepted belief that few pieces of software are truly optimal
for all situations and therefore an interface is required to allow a more optimal
solution to be deployed. Configurable parameters allow developers to release
software for general use instead of developing multiple versions, each tailored to
a specific environment.

The issue with this model is that few know how to properly tune parameters.
To do so requires in-depth knowledge of the software to be configured and the
domain in which it is to be deployed. It is for this reason Automatic Parameter
Tuning is advantageous. Automated Parameter Tuning is the automatic process
of tweaking software parameters until optimal (or near optimal) configurations
are found depending on non-functional (and occasionally functional) properties
desired by the user.

Research into parameter tuning has focused primarily on execution time
[9,17–19], memory consumption [17], and occasionally functional attributes such
as output precision [7]. The rise in mobile computing technology [6] with limited
battery life, and growth in large server farms responsible for consuming large
amounts of energy [10] has sparked a new wave of research into energy efficient
software [2,7,12,15]. For this reason we wish to use SBSE to tune and specialise
parameters to reduce energy consumption.

This paper will outline a method of optimising parameters to reduce
energy consumption using Genetic Algorithms (GAs) to tune Google Guava’s1

1 Available at https://github.com/google/guava.

c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 276–281, 2015.
DOI: 10.1007/978-3-319-22183-0 23

https://github.com/google/guava

Specialising Guava’s Cache to Reduce Energy Consumption 277

CacheBuilder class as used by OpenTripPlanner2. Guava’s Cache is similar to
a map, in that it stores a set of associated keys and values. They differ mainly in
their approach to persistence—a map retains all stored associations until they
are explicitly removed, whereas a Cache generally evicts entries automatically
in order to conserve memory.
The ECJ Toolkit. We have chosen to use ECJ [11] to implement the GA
as it is one of the most popular Java-based toolkits for evolutionary computa-
tion [4,20]. Using ECJ requires little setup, only the configuration of parameters;
the selection of the desired Evolutionary Algorithm, the Evolutionary Algorithm
parameters (population size, mutation rate, etc.), and the desired fitness eval-
uation function. For our requirements ECJ serves as a black-box Evolutionary
Algorithm which we trust to be fully tested and reliable.

2 Related Work

Previous work in tuning parameters to reduce energy consumption has been suc-
cessful, albeit in a round-about manner. In 2011 Hoffmann et al. introduced Pow-
erDial [7], a system for dynamically modifying trade-offs between accuracy in com-
putation anduse of system resources during load peaks. Though not directly reduc-
ing energy consumption per se, the framework aims to reduce the amount of com-
puting infrastructure required to manage load peaks in server farms that translates
to significant reductions in energy consumption (as well as capital costs).

Optimising other non-functional attributes using automatic parameter tun-
ing has also been successful. Wu et al. [21] used Genetic Algorithms to tune
both “shallow” and “deep” parameters for both execution time and memory
consumption in the widely used dlmalloc memory allocator. They were able to
show clear trade-offs between these two attributes with possible configuration
options resulting in up to 21 % reduction in memory consumption and a 12 %
reduction in execution time.

Although it is a relatively new area of interest, using SBSE techniques such
as GAs to reduce energy consumption has previously been used by both Schulte
et al. in 2014 [15] and Bruce et al. in 2015 [2] to reduce energy consumption as
a post- and pre-compilation process respectively.

3 Implementation

The improvement process is as follows:

1. Find variation points within the CacheBuilder class, i.e. the declaration of
default values for parameters, and identify the valid values for each of these
parameters, for example integers: int initialCapacity = ?, or enumerated
types: Strength keyStrength = Strength.{strong, weak, soft}.

2. Generate a template version of the CacheBuilder class to allow the variation
points to be easily replaced by the respective element in a solution vector.

3. Given k parameters, the solution representation is a vector containing k inte-
gers [S1, . . . , Sk], where Sk is in the range identified earlier.

2 Available at http://www.opentripplanner.org.

http://www.opentripplanner.org

278 N. Burles et al.

4. Given an assignment, the default parameter values can be replaced and the
modified source file can be written out to disk. The library containing the
mutated parameters is compiled and evaluated as part of OpenTripPlanner
by a measure related to its energy consumption.

Variation Points. The first two items in the process are performed manually, as
the most reliable way to determine valid values for the parameters is by reading
the API documentation. In total, due to dependencies and mutual exclusions,
there are 9 parameters which may be modified—6 integer values and 3 binary
or ternary values.
Mutating the Source Code. For each variation point, the range of potential
substitution values were selected to be appropriate. For example the initial-
Capacity and maximumSize parameters were assigned the range [0, 100000],
whereas keyStrength was assigned the range [0, 1] (mapping to {strong, weak})
and valueStrength the range [0, 2] (mapping to {strong, weak, soft}). As a tem-
plate version of the CacheBuilder class has been created, the substitution values
can be directly inserted and written to disk—using an enumeration where appro-
priate for the selection of reference strengths.
Measuring Energy Consumption. We have used a new tool, Opacitor, to
measure the energy consumption during the evolutionary process. Opacitor
is designed to make measurements deterministic, meaning that multiple runs
are no longer required and very similar algorithms can be accurately compared.
Using a modified version of OpenJDK, Opacitor counts the number of times
each Java opcode was executed. Combined with a model of the energy costs of
each Java opcode, created by Hao et al. [5], the tool is then able to calculate the
number of Joules used.

In order for a Java program running in a standard environment to be deter-
ministic, various features of the Java Virtual Machine (JVM) must be disabled—
namely Just-In-Time compilation (JIT) and Garbage Collection (GC). It is not
appropriate to explicitly disable GC, and so instead the initial memory allocated
to the JVM is increased to the point that GC does not occur. These features
are re-enabled after the evolution has completed, to allow a comparison to occur
under realistic conditions.

An important benefit of a model- and trace-based tool such as Opacitor,
when compared to more common approaches such as timing or physical energy
measurement, is that is can be run concurrently with other programs without
any detrimental effects. This means that fitness evaluations can be executed in
parallel on a multi-core system.

Previous work [16] used Jalen [14] to successfully calculate the
energy required by Quicksort. Jalen uses time and CPU utilisation as a proxy
to calculate energy consumption, and so we have used this tool to corroborate
the results generated by Opacitor during the final comparison.

4 Experiments

We used a metaheuristic search to specialise Guava’s Cache library to suit Open-
TripPlanner with the property of reduced energy consumption. We decided to

Specialising Guava’s Cache to Reduce Energy Consumption 279

use a GA [8] to search the space of solutions, since this has been shown to be
an effective approach for a number of assignment problems [3]. The solution
representation used is a vector of integers r ∈ Z

k. The representation is con-
strained such that each integer falls within its respective bounds, for example a
boolean parameter rbool ∈ [0, 1] or a size parameter may be rsize ∈ [1, 100000]
(limited to ensure the memory requirement does not exceed that available to the
experimental machine).

The GA was configured with a population of 100, running for 100 genera-
tions. New populations were generated using an elitism rate of 5 %, single-point
crossover with a rate of 75 %, and one-point mutation with a rate of 25 % with
candidates selected using tournament selection with arity 2. These parameters
were selected, after preliminary investigations, in order to provide a sufficient
opportunity for the evolution to proceed without requiring an excessive number
of fitness evaluations as each evaluation takes over 2 min on a 3.25 GHz CPU.
During experimentation we ran the GA five times, with a different seed to the
random number generator, in order to test the robustness of the evolution.

5 Results

Statistics were generated using the Astraiea statistical testing framework [13]
which performs tests in accordance with the guidelines of Arcuri and Briand [1],
namely the Wilcoxon/Mann Whitney U Statistical Tests and Vargha-Delaney
Effect size tests. The results were obtained with 100 samples in each dataset.
The result of each of the runs of the GA was a similar set of parameter settings,
differing only in the exact integers used for the size parameters, and so the first
results generated were used for the final comparison between the original library
and our specialised version.

The results of the final comparison between Cache versions are shown in
Table 1. During the evolution, with JIT disabled and GC avoided, the best set
of parameters found used 13596.94 J. This compares favourably with 13857.65 J
required by the original version, although it may not initially appear to be a
particularly sizeable reduction. This is due to the overhead incurred by Open-
TripPlanner when initially loading mapping and transit data—this is unaffected

Table 1. Energy (J) required to exercise Guava’s Cache library, as used by OpenTrip-
Planner (mean of 100 runs, and standard deviation σ), as well as the p-values (p) and
effect size measures (e) comparing our result to the original.

Measurement GA Original OpenTripPlanner

technique Overhead (J)J J p e

Opacitor 13596.94 13857.65 – – 10027.24

Opacitor with 807.69 888.82 652.98
<.001 1.00

JIT and GC σ1.57 σ1.75 σ1.27

783.79 815.50 662.45
Jalen <.001 1.00

σ2.18 σ1.84 σ1.48

280 N. Burles et al.

by the Guava Cache, and so these measurements are also included in Table 1 to
allow a more useful comparison. Subtracting this overhead shows the improve-
ment more representatively—the evolved version used 3569.70 J and the original
version used 3830.41 J. As the measurements in this case are not subject to
noise, only one measurement for each of the versions is generated and thus no
statistical tests are required.

More interestingly, significant results were also found when noise was
reintroduced—enabling JIT and using the JVM’s default memory allocation set-
tings (allowing for GC when necessary). In this case the GA’s solution required
807.69 J, compared with 888.82 J for the original (or 154.71 J and 235.84 J respec-
tively after subtracting the overhead). As the energy measurement now contains
noise, due to the non-determinism of JIT and GC, the p-values and effect size
measures are calculated. Vargha and Delaney suggest that a large difference
between data sets is indicated by a value of 0.71, and so the results show that a
significantly improved version of Guava’s Cache has been found by the GA.

To help corroborate these figures, and support the assertion that Opacitor
provides realistic results, we used Jalen (with JIT and GC) to provide additional
measurements. The results generated by Jalen can be seen to support the results
provided by Opacitor.

6 Conclusion

We have demonstrated a method of optimising parameters to reduce energy con-
sumption using Genetic Algorithms, applied to Google Guava’s CacheBuilder
class as used by OpenTripPlanner and using a new tool, Opacitor, to evaluate
the energy consumption.

Our results showed that specialising libraries to software packages can pro-
vide significant improvements, with the best solution in this case providing a
saving of approximately 9 %. The results generated by Opacitor were corrob-
orated using Jalen, which uses time and CPU utilisation as a proxy for energy
consumption. As such, it is reasonable to claim that specialising the library has
improved both the energy consumption and the execution time of the software
using it. Modifying the Cache’s default parameters also has an effect on the mem-
ory consumption, and so future work should investigate the trade-off between
energy/time and memory.

Acknowledgement. Work funded by UK EPSRC grant EP/J017515/1. Data avail-
able at https://github.com/nburles/burles2015specialising.

References

1. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing random-
ized algorithms in software engineering. Softw. Test. Verif. Reliab. 24(3), 219–250
(2012)

2. Bruce, B.R., Petke, J., Harman, M.: Reducing energy consumption using genetic
improvement. In: GECCO (2015, to aappear)

3. Chu, P.C., Beasley, J.E.: A genetic algorithm for the generalised assignment prob-
lem. Comput. Oper. Res. 24(1), 17–23 (1997)

https://github.com/nburles/burles2015specialising

Specialising Guava’s Cache to Reduce Energy Consumption 281

4. Gagné, C., Parizeau, M.: Genericity in evolutionary computation software tools:
principles and case-study. Int. J. Artif. Intell. Tools 15(02), 173–194 (2006)

5. Hao, S., Li, D., Halfond, W.G., Govindan, R.: Estimating mobile application energy
consumption using program analysis. In: 35th International Conference on Software
Engineering, pp. 92–101. IEEE (2013)

6. Heggestuen, J.: Business insider: one in every 5 people in the world own a smart-
phone, one in every 17 own a tablet (2013). http://www.businessinsider.com/
smartphone-and-tablet-penetration-2013-10. Accessed 3 May, 2015

7. Hoffmann, H., Sidiroglou, S., Carbin, M., Misailovic, S., Agarwal, A., Rinard, M.:
Dynamic knobs for responsive power-aware computing. ACM SIGPLAN Not. 46,
199–212 (2011). ACM

8. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge (1992)

9. Katagiri, T., Kise, K., Honda, H., Yuba, T.: FIBER: a generalized framework for
auto-tuning software. In: Veidenbaum, A., Joe, K., Amano, H., Aiso, H. (eds.)
ISHPC 2003. LNCS, vol. 2858, pp. 146–159. Springer, Heidelberg (2003)

10. Koomey, J.: Growth in data center electricity use from 2005 to 2010, August 2011
11. Luke, S., Panait, L., Balan, G., et al.: A java-based evolutionary computation

research system, March 2004. http://cs.gmu.edu/∼eclab/projects/ecj
12. Manotas, I., Pollock, L., Clause, J.: SEEDS: a software engineer’s energy-

optimization decision support framework. In: Proceedings of the 36th International
Conference on Software Engineering, pp. 503–514. ACM Press, New York (2014)

13. Neumann, G., Swan, J., Harman, M., Clark, J.A.: The executable experimental
template pattern for the systematic comparison of metaheuristics. In: Proceedings
of the 2014 Conference Companion on Genetic and Evolutionary Computation
Companion, pp. 1427–1430. ACM (2014)

14. Noureddine, A., Bourdon, A., Rouvoy, R., Seinturier, L.: Runtime monitoring of
software energy hotspots. In: Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pp. 160–169. IEEE (2012)

15. Schulte, E., Dorn, J., Harding, S., Forrest, S., Weimer, W.: Post-compiler soft-
ware optimization for reducing energy. In: Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 639–652. ACM (2014)

16. Swan, J., Burles, N.: Templar-a framework for template-method hyper-heuristics.
In: Machado, P., Heywood, M.I., McDermott, J., Castelli, M., Garćıa-Sánchez, P.,
Burelli, P., Risi, S., Sim, K. (eds.) EuroGP 2015, LNCS, vol. 9025, pp. 205–216.
Springer, Heidelberg (2015)

17. Tăpuş, C., Chung, I.H., Hollingsworth, J.K., et al.: Active harmony: towards auto-
mated performance tuning. In: Proceedings of the 2002 ACM/IEEE Conference on
Supercomputing, pp. 1–11. IEEE Computer Society Press (2002)

18. Vuduc, R.W., Demmel, J.W., Bilmes, J.: Statistical models for automatic perfor-
mance tuning. In: Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S.,
Tan, C.J.K. (eds.) ICCS 2001. LNCS, vol. 2073, pp. 117–126. Springer, Heidelberg
(2001)

19. Whaley, R.C., Dongarra, J.J.: Automatically tuned linear algebra software. In:
Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, pp. 1–27.
IEEE Computer Society (1998)

20. White, D.R.: Software review: the ECJ toolkit. Genet. Program Evolvable Mach.
13(1), 65–67 (2012)

21. Wu, F., Weimser, W.: Deep parameter optimisation. In: GECCO (2015, to appear)

http://www.businessinsider.com/smartphone-and-tablet-penetration-2013-10
http://www.businessinsider.com/smartphone-and-tablet-penetration-2013-10
http://cs.gmu.edu/~eclab/projects/ecj

Multi-objective Module Clustering for Kate

Matheus Paixao(B), Mark Harman, and Yuanyuan Zhang

CREST Centre, University College London, London, UK
matheus.paixao.14@ucl.ac.uk

Abstract. This paper applies multi-objective search based software
remodularization to the program Kate, showing how this can improve
cohesion and coupling, and investigating differences between weighted
and unweighted approaches and between equal-size and maximising
clusters approaches. We also investigate the effects of considering
omnipresent modules. Overall, we provide evidence that search based
modularization can benefit Kate developers.

Keywords: Software module clustering · Multi-objective optimization ·
Search based software engineering

1 Introduction

This paper reports on experiments with multi-objective search based software
re-modularization through module clustering applied to the system Kate [1], a
C/C++ editor for KDE platforms. Both unweighted and weighted data were con-
sidered, as well as omnipresent modules. We follow the approach initially intro-
duced by Mitchell and Mancoridis [2], in which a Module Dependency Graph
(MDG) is remodularized to improve cohesion and coupling, as more recently
amended and extended by Praditwong et al. [3] to the multi-objective optimiza-
tion paradigm. In the unweighted MDG, an edge between two modules denotes
a dependency between these modules. For a weighted MDG, an edge denotes
the strength of the dependency, which is represented by the edge weight [4]. By
using the MDG, the optimization algorithm can then search for a partition of
this graph that optimizes the considered quality metrics.

Cluster_1 Cluster_2

Cluster_3

M1

M5

M4

M2

M3

Fig. 1. Modularization example

Search based modularization seeks parti-
tions that cluster modules to favour high cohe-
sion and low coupling. Consider the simple
example (shown in Fig. 1), in which edges
denote inter-module dependencies. A simple
solution would be X =< 1, 3, 3, 2, 1 >. This vec-
tor of modules assignments denotes a modular-
ization solution of the five modules into three
clusters. Modules m1 and m5 are in cluster c1,
m2 and m3 in c3, and finally m4 in c2. The MDG
that represents these five modules is depicted
with this modularization solution in Fig. 1.

c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 282–288, 2015.
DOI: 10.1007/978-3-319-22183-0 24

Multi-objective Module Clustering for Kate 283

The set of fitness functions considered by the two approaches are presented next:
– Maximizing Clusters (MCA)

cohesion (max)
coupling (min)
number of clusters (max)
MQ (max)
number of isolated clusters (min)

– Equal-size Clusters (ECA)
cohesion (max)
coupling (min)
number of clusters (max)
MQ (max)
cluster size difference (min)

The metrics of cohesion and coupling are related to the dependencies between
modules. Cohesion is the sum of the weights of all edges that start and finish
in the same cluster. On the other hand, coupling is the sum of the weights of
all edges that start in a cluster and finish in another cluster. MQ means Modu-
larization Quality [2], which is the metric used in the previous single objective
works. An isolated cluster is the one that has only one module inside it. To illus-
trate each fitness function of both MCA and ECA, consider the modularization
example given in Fig. 1. The set of metrics would be assigned as cohesion: 2,
coupling: 2, number of clusters: 3, MQ: 0.66, isolated clusters: 1, cluster size
difference: 1.

2 Modularizing Kate Using SBSE

Kate’s source code is organized in two folders, src and session, where each folder
accommodates some classes. First, the call graph of each function and the inheri-
tance graph between classes were extracted using Doxygen [5]. Kate’s unweighted
and weighted MDGs were created from these graphs, where each class is con-
sidered a module, and a function call or inheritance represents a dependency
between modules. The weight of an edge in the weighted MDG is the number
of functions calls between the classes. For the unweighted MDG, all edges have
the same weight of 1. The clusters are the folders the classes are in. The original
Kate’s unweighted MDG can be seen in Fig. 2. Function calls are represented by
continuous black arrows and inheritance relationships by dashed red arrows. As
can be seen, Kate has only two clusters, corresponding to src and session.

We used the Two-Archive Genetic Algorithm [6], configured based on
previous work [3] with crossover probability 0.8 and mutation probability
0.004 log2(M), where M is the number of modules. The population size used
was 10M , and the algorithm was executed for 10000 generations.

We used both MCA and ECA optimization approaches, each of which was
executed 30 times. Each execution generates a pareto front. In order to com-
pare the two approaches, the solution with highest cohesion was selected as a
representative of each execution. This set of representative solutions was then
used to compute the average and standard deviations of each quality metric. We
also performed non-parametric statistical testing and effect size assessment using
a paired Wilcoxon and Vargha-Delaney tests, respectively, as recommended in
guidance on assessing algorithms differences for SBSE [7,8]. These tests were
carried out using the systematic metaheuristic comparison tool Astraiea [9].

Space is limited to six pages. Although this paper is self-contained, the inter-
ested reader can find more examples of modularization results, analysis and

284 M. Paixao et al.

src

session

AbstractKateSaveModifiedDialogCheckListItem

GUIClient

MainWindow

KateApp

KateAppAdaptor

KateMainWindow KatePluginManager

KateViewManager

KateSessionManager

KateConfigDialog

KateDocManager

KateConfigPluginPage

KateSaveModifiedDialog

KateMwModOnHdDialog

KatePluginInfo

KateQuickOpen

KateViewSpace

KateRunningInstanceInfo

KateSaveModifiedDocumentCheckListItem

KateTabBar KateTabButton

Main
SideBar

ToolView

TmpToolViewSorterToggleToolViewAction

KateSession

KateSessionChooser

KateSessionManageDialog

KateSessionOpenDialog

KateSessionsAction

Fig. 2. Kate’s original unweighted modularization, where continuous black arrows rep-
resent function calls and dashed red arrows represent inheritance (Color figure online).

discussion in the complementary Technical Report [10]. We also make available
Kate’s modularization data at www0.cs.ucl.ac.uk/staff/m.paixao/kateMod/, to
support replication and further studies. Finally, the multi-objective software
module clustering tool we developed for this work will be made available in the
near future. We pose and answer three research questions, which occupy the
remainder of this paper.

RQ1: How much can Kate’s modularization be improved for the
unweighted and weighted MDGs?

Table 1 presents the results for both MCA and ECA approaches for the
unweighted and weighted MDGs in comparison to Kate’s original modulariza-
tion. In case of statistical difference between MCA and ECA, the value is high-
lighted and the effect size is presented. As one can see, both multi-objective
approaches were able to find solutions with better quality metrics than the
original modularization for the two different datasets. Regarding cohesion, cou-
pling and MQ, MCA could improve such metrics in 16.3%, 83% and 7.88%
for unweighted data, and 3.93%, 46.8% and 70.41% for weighted data, respec-
tively. Considering ECA, these values are similar, 16.4%, 83.7% and 1.65% for
unweighted, and 3.49%, 41.57% and 60.35% for weighted.

For the other quality metrics, MCA and ECA also presented similar results
for both datasets, which suggests that these two different approaches did not find
very different results for this case study. In fact, almost no statistical difference
was detected between MCA and ECA, as can be visually seen in the plots of the
solutions found in Fig. 3.

www0.cs.ucl.ac.uk/staff/m.paixao/kateMod/

Multi-objective Module Clustering for Kate 285

Table 1. Quality metrics results for the unweighted and weighted MDGs in comparison
to Kate’s original modularization

Fitness Kate’s Original MCA ECA Effect Size

U
n
w

e
ig

h
te

d Cohesion 51 59.30 ± 1.10 59.37 ± 1.08 -
Coupling 10 1.70 ± 1.10 1.63 ± 1.08 -

Number of Clusters 2 2.57 ± 0.92 2.37 ± 0.87 -
MQ 1.308 1.42 ± 0.28 1.33 ± 0.36 -

Isolated Clusters 0 0.53 ± 0.76 - -
Cluster Difference 11 - 14.03 ± 7.79 -

W
e
ig

h
te

d

Cohesion 250 259.83 ± 4.62 258.73 ± 5.23 -
Coupling 21 11.17 ± 4.62 12.27 ± 5.23 -

Number of Clusters 2 5.90 ± 1.04 6.97 ± 1.54 0.22
MQ 1.69 2.88 ± 0.46 2.71 ± 0.55 -

Isolated Clusters 0 2.27 ± 1.26 - -
Cluster Difference 19 - 21.23 ± 2.03 -

 10

 20

 30

 40

 50

 60

 70

 80

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

C
oh

es
io

n

Modularization Quality

MCA
ECA

(a) Unweighted MDG

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7 8

C
oh

es
io

n

Modularization Quality

MCA
ECA

(b) Weighted MDG

Fig. 3. MCA and ECA solutions location for the unweighted and weighted data

RQ2: What difference do omnipresent modules make?
For almost all systems, there is usually a subset of modules that have more

dependencies than the average. These modules have been called omnipresent [11]
because they belong to the whole system, rather than to a single cluster.

Based on previous works [11], omnipresent modules were handled using
thresholds. By choosing an omnipresent threshold ot = 3, for example, mod-
ules that have 3 times more dependencies than the average are considered
omnipresent. Two different thresholds were used in this work, ot = 3 and
ot = 2. After identified, the omnipresent modules are isolated from the MDG,
and not considered during the optimization process. Because the results for
both unweighted and weighted datasets when considering omnipresent modules
are similar, only the unweighted results will be discussed. Table 2 presents such
results.

286 M. Paixao et al.

Table 2. Quality metrics results for the unweighted dataset and different thresholds
for omnipresent modules

Fitness Kate’s Original MCA ECA Effect Size

o
t

=
3

Cohesion 34 35.60 ± 1.36 35.47 ± 1.54 -
Coupling 5 3.40 ± 1.36 3.53 ± 1.54 -

Number of Clusters 2 5.07 ± 1.44 4.77 ± 1.69 -
MQ 1.32 3.32 ± 1.02 3.11 ± 1.18 -

Isolated Clusters 0 0.27 ± 0.44 - -
Cluster Difference 16 - 12.63 ± 4.03 -

o
t

=
2

Cohesion 29 27.20 ± 0.95 27.67 ± 0.91 -
Coupling 0 1.80 ± 0.95 1.33 ± 0.91 -

Number of Clusters 2 5.70 ± 1.04 4.17 ± 1.75 0.73
MQ 1.40 3.96 ± 0.69 2.93 ± 1.17 0.76

Isolated Clusters 0 0.00 ± 0.00 - -
Cluster Difference 17 - 6.03 ± 2.99 -

Cluster_4

Cluster_0

Cluster_7

Cluster_10

Cluster_6

Cluster_11Cluster_1

Cluster_2Cluster_8

Omnipresent Modules

AbstractKateSaveModifiedDialogCheckListItemKateSaveModifiedDocumentCheckListItem

GUIClient MainWindow SideBar

ToolView

KateConfigDialog

KateDocManager

KatePluginManager

KateSaveModifiedDialog

KateMwModOnHdDialog

KateQuickOpen

KateViewManager

KatePluginInfo

KateRunningInstanceInfoMain

KateTabBar KateTabButtonKateViewSpace

TmpToolViewSorter

ToggleToolViewAction

KateSession

KateSessionChooser

KateSessionOpenDialog

KateSessionsAction

KateApp KateMainWindow KateSessionManager

Fig. 4. Example of solution generated for the unweighted dataset and ot = 2

For both ot = 3 and ot = 2, the improvements for cohesion and coupling were
small. However, since the MQ metric had improvements of 151.5% and 182.8%,
and the number of clusters was much bigger, a better overall modularization was
achieved. Both approaches had almost the same performance for both thresholds,
for almost no statistical difference was detected.

As an answer to RQ2, there is nearly no difference in the behavior of the
multi-objective approach when omnipresent modules are considered. It tends to

Multi-objective Module Clustering for Kate 287

improve all metrics, with both MCA and ECA presenting similar results. How-
ever, the magnitude of the improvement is smaller. This might happen because
the isolation of omnipresent modules reduces the search space, making the orig-
inal solution closer to the optimal.

RQ3: Can the multi-objective module clustering provide useful
advice?

Figure 4 presents an example of solution found for the unweighted dataset
and omnipresent threshold ot = 2. Despite not being shown in this paper, the
solutions for the other scenarios achieved similar modularization. We can see that
this solution does capture intuitive clustering of functionality (even though it is
computed structurally with no knowledge of purpose of intent). For instance,
‘Tool’, ‘Plugins’ and ‘Tab’ all appear to be related, and they were clustered
together by the SBSE approach. Also the ‘session’ cluster, which appeared to
make some sense in the original clustering, has been retained by the algorithm.

3 Conclusion and Future Works

This paper demonstrated that, by applying a multi-objective module clustering
approach, it was possible to improve Kate’s original modularization for several
quality metrics. The optimization technique had basically the same performance
for both unweighted and weighted datasets, as well as considering omnipresent
modules. The generated solutions were also able to provide useful advice about
Kate’s modularization. As future research directions, it is expected to apply the
multi-objective module clustering approach to other systems.

References

1. Kate (2015). http://kate-editor.org/. Accessed in April, 2015
2. Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y.F., Gansner, E.R.: Using auto-

matic clustering to produce high-level system organizations of source code. In:
IWPC, vol. 98, pp. 45–52. Citeseer (1998)

3. Praditwong, K., Harman, M., Yao, X.: Software module clustering as a multi-
objective search problem. IEEE Trans. Softw. Eng. 37(2), 264–282 (2011)

4. Mahdavi, K., Harman, M., Hierons, R.M.: A multiple hill climbing approach to
software module clustering. In: Proceedings of the International Conference on
Software Maintenance, ICSM 2003, pp. 315–324. IEEE (2003)

5. Doxygen (2015). http://www.stack.nl/∼dimitri/doxygen/index.html. Accessed in
April, 2015

6. Praditwong, K., Yao, X.: A new multi-objective evolutionary optimisation algo-
rithm: the two-archive algorithm. In: 2006 International Conference on Computa-
tional Intelligence and Security, vol. 1, pp. 286–291. IEEE (2006)

7. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing random-
ized algorithms in software engineering. Softw. Test. Verif. Reliab. 24(3), 219–250
(2014)

http://kate-editor.org/
http://www.stack.nl/~dimitri/doxygen/index.html

288 M. Paixao et al.

8. Harman, M., McMinn, P., de Souza, J.T., Yoo, S.: Search based software
engineering: techniques, taxonomy, tutorial. In: Meyer, B., Nordio, M. (eds.)
Empirical Software Engineering and Verification. LNCS, vol. 7007, pp. 1–59.
Springer, Heidelberg (2012)

9. Neumann, G., Swan, J., Harman, M., Clark, J.A.: The executable experimental
template pattern for the systematic comparison of metaheuristics. In: Proceedings
of the 2014 Conference Companion on Genetic and Evolutionary Computation
Companion, pp. 1427–1430. ACM (2014)

10. Paixao, M., Harman, M., Zhang, Y.: Improving the module clustering of a c/c++
editor using a multi-objective genetic algorithm. RN 15(02), 01 (2015)

11. Mancoridis, S., Mitchell, B.S., Chen, Y., Gansner, E.R.: Bunch: a clustering tool
for the recovery and maintenance of software system structures. In: Proceedings
of the IEEE International Conference on Software Maintenance, (ICSM 1999), pp.
50–59. IEEE (1999)

SBSelector: Search Based Component Selection
for Budget Hardware

Lingbo Li(B), Mark Harman, Fan Wu, and Yuanyuan Zhang

CREST, Department of Computer Science, University College London,
Malet Place, London WC1E 6BT, UK

lingbo.li.13@ucl.ac.uk

Abstract. Determining which functional components should be inte-
grated to a large system is a challenging task, when hardware con-
straints, such as available memory, are taken into account. We formulate
such problem as a multi-objective component selection problem, which
searches for feature subsets that balance the provision of maximal func-
tionality at minimal memory resource cost. We developed a search-based
component selection tool, and applied it to the KDE-based application,
Kate, to find a set of Kate instantiations that balance functionalities
and memory consumption. Our results report that, compared to the
best attainment of random search, our approach can reduce at most
23.70% memory consumption with respect to the same number compo-
nents. While comparing to greedy search, the memory reduction can be
up to 19.04%. SBSelector finds a instantiation of Kate that provides 16
more components, while only increasing memory by 1.7%.

1 Introduction

Using Component Based Software Engineering (CBSE) [6], a new software edi-
tion (or instance) can be developed by composing pre-existing components, each
of which contributes new functionalities to the system. In an ideal world, we
would simply include all components, thereby yielding maximal functionality.
However, in practice, resource constraints need to be taken into account. In this
paper, we focus on the resource constraint of memory consumption.

There are many component selection methods that use an iterative selec-
tion/rejection model to filter components based on pre-defined rules/criteria
(i.e., stakeholders’ requirements) or expert experience [4]. From Requirements
Engineering perspective of view, the component selection problem is also known
as the Next Release Problem (NRP) [1,10], which can be addressed using search-
based techniques. Previous work on SBSE formulations of component selection
[2] proposed a single-objective NRP model to select components, later Zhang et
al. [12] introduced Multi-Objective NRP (MONRP), and Li et al. [9] extended
MONRP with a simulation-based approach to address uncertainty. Kwong et al.
[8] also demonstrated how NRP can be re-deployed for multi objective compo-
nent selection. In their work, selecting highly rated components and the cou-
pling and cohesion relationships among components were considered as improv-
ing optimisation objectives.
c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 289–294, 2015.
DOI: 10.1007/978-3-319-22183-0 25

290 L. Li et al.

In this paper, we develop and implement a tool SBSelector, which uses a
multi-objective SBSE approach to component selection, and apply it to the large,
real world system Kate, a text editor written in C++. Kate is a configurable
multi-platform text editor [7]. It can be extended by ‘plug-in’ type components
to enrich its functionality. Some plug-ins are written in native C++, while others
are written in Python. There is a special C++ plug-in called Pâté that switches
on/off functionality to support Python-based plug-ins. There are currently 37
plugins available, yielding a component selection search space of 237 candidate
instances; already too many to support exhaustive exploration, thereby motivat-
ing search-based approach.

2 Component Selection as an Instance of MONRP

This section briefly outlines the problem formulation and implementation.

Objectives: There are two objectives which are taken into account. Both of
them aim to maximise the users’ satisfaction. The first objective is to maximise
the number of enabled supplement components of Kate: Maximize Component(�x)=
∑n

i=1(xi). In general, the more components are integrated, the more features are
available for users to increase their satisfaction. The second objective is defined
as minimising the worst-case memory consumption of Kate: Minimize Memory(�x)=

max1≤j≤m memory(�x). Where n is the number of components, and m is the num-
ber of simulations. The decision vector �x = {x1, · · · , xn} ∈ {0, 1}n determines
the inclusion of components in the system: xi is 1 if component i is selected
and 0 otherwise. The function memory(�x) denotes one evaluation of memory
consumption for decision vector �x.

Algorithmic and Implementation Details: The optimisation process is
implemented in a Java-based Linux toolkit, SBSelector, which directly modi-
fies the configuration file to select components. Since SBSelector is a component
selection tool, there are no changes made to the source code of the software,
making SBSelector easily applicable to other Linux software.

The core of SBSelector adopts Non-dominated Sorting Genetic Algorithm-II
(NSGA-II) [3]. Initially, SBSelector generates and evaluates solution popula-
tion P0 with size N randomly. Each individual is a component configuration
representing the selection of components. Tournament selection, single point
crossover, and bit-flip mutation are then applied to reproduce a new popula-
tion P ′

0. Each generated offspring solution in P ′
0 is evaluated, and merged into

P0, which is then sorted by non-dominated sorting, thereby, producing a new
population P1 with size N for next generation. The population evolves until a
termination condition is met. In our experiments, the evolution terminates when
the pre-defined generation number is reached. The main evaluation process of
SBSelector is presented in Algorithm 1.

In each simulation, Kate is executed for 1.5 s, and its memory consumption
is measured every 100 ms through analysing the results of standard Unix utility,
ps. SBSelector evaluates the dependence constraints, using a ‘repair method’ [11]
to ensure that all dependence constraints are met.

SBSelector: Search Based Component Selection for Budget Hardware 291

Algorithm 1. SBSelector evaluation process
Require: the solution (configuration) S for evaluation

com num = CountSelectedComponents(S)
memories = ∅
for i = 1, ..,m do

memory = EvaluateMemory(S)
memories = memories ∪ {memory}

end for
max memory = GetMax(memories)
SetF itnessOne(S, com num)
SetF itnessTwo(S,max memory)
return S

3 Experiments and Results

In this paper, to evaluate the feasibility and effectiveness of SBSelector, we
answer the following Research Questions:

RQ1 Does the extra memory consumed by enabling all plugins of Kate simply
equal to the summation of the extra memory consumed by enabling each
plugin one at a time?
We ask this question as a baseline for this work. If two plugins share some

libraries, it is likely that the extra memory consumed by enabling both plugins
will be less than the sum of the extra memories consumed by enabling each
of them. Therefore, if we observe that the extra memory needed by Kate with
all plugins enabled is much less than the summation of that with each plugin
enabled, there might be hidden shared dependencies between these plugins. This
motivates the use of search of optimisation to find the combination of enabled
plugins.

RQ2 How effectively can SBSelector find optimised combination of enabled
plugins compared to random search and a greedy strategy selection?
Without SBSE, human developers (or users) may include components ran-

domly or greedily based on the memory consumed. We use random search as well
as greedy search and compare the optimised combination of components given
by NSGA-II against the result of random search and greedy search, to under-
stand how much improvement we can achieve with search based techniques. The
initial population size of NSGA-II is set to 50, and the total number of evalu-
ations is 2500. The random search is performed as a sanity check [5], thus the
total number of evaluations is the same with that of NSGA-II. Since the Greedy
search is deterministic, it is executed once only.

RQ3 Given some mandatory plugins, can SBSelector still find combinations of
optional plugins that only trade a little amount of memory consumption?
In reality, some of the components are mandatory to the software or to the

user, thus can not be excluded. In this question, we want to know whether the
fixed inclusion has any impact to the effectiveness of SBSelector. We evaluate
SBSelector for one particular scenario S1 , where all Python plugins, ‘Search
and Replace’, and ‘SQL Plugin’ are essential for Python developers. The result
of S1 is compared to scenario S2 where all components are open to select.

292 L. Li et al.

In order to provide the experiment results in the form of statistical power,
we execute our experiments for 10 times. In this case, 10 executions proved to
provide a sufficient statistical power to avoid Type two errors, since the results
were so strongly better than random search, the baseline against which we com-
pared. All experiments were performed using a machine with dual Intel Core
i5 3.20 GHz CPU and 4 GB RAM. The operating environment is Ubuntu 13.04
with Qt 4.8.4, KDE Development Platform 4.11.5, and KIO Client 2.0.

Answer to RQ1: The sum of all plugins’ individual memory consumption is
45776.4 Kbytes, meanwhile, the extra memory consumed by Kate with all the
plugins enabled is 22127.6 Kbytes. Specially, Pâté is the most expensive plugin
(consumed 14255.6 Kbytes), while the Python program language based plugins
are the cheapest. They use very little memory when they are enabled. The prob-
able reason of this interesting finding is that, Pâté is the infrastructure of Python
program language based plugins. It has to provide comprehensive invokable inter-
face for those Python based plugins. Moreover, Python is a lightweight dynamic
programming language, which means the loading memory consumed by these
Python based plugins may be negligible. Consequently, enabling Pâté means
nearly all required Python based underlying libraries are loaded. In summary,
the result reveals that there are some plugins sharing the underlying libraries
consuming less memory together. This promotes the applicability of our tool for
the user without exact source code level knowledge of Kate.

Answer to RQ2: The results are plotted in two figures for two types of attain-
ment: the best attainment (Fig. 1a) and the median attainment (Fig. 1b) sur-
faces for three approaches: NSGA-II, random search, and greedy search. It can
be observed that, in both best and median attainments, there is an obvious
gap between the attainment surfaces generated by NSGA-II and random search.
The gap is considerably larger when the number of enabled plugins is between
24 and 34. Up to 23.79% memory can be saved by proper component selec-
tion. To perform a statistics comparison between random search and NSGA-II,
we use hypervolume indicator to represent the quality of the results. Wilcoxon
signed-rank test is performed and its outcome denotes that there is a significant
difference between the Pareto-front generated by NSGA-II and random search
(p-value = 0.004, Vargha-Delaney effect size = 1). This indicates that our tool
SBSelector outperforms the simulated human behaviour in terms of finding the
solutions with more components while consume less amount of memory.

When human developers or users select components using greedy strategy,
assuming they have the knowledge of the memory usages of all individual plugins,
the outcome is better than random selection and close to the outcome of NSGA-
II. Figure 1 exhibits that, with some basic information, greedy strategy can find,
though not optimal, considerably better solutions than random search. Despite
good solutions found by greedy search, NSGA-II constantly outperforms greedy
search. Specially, with respect to including exact 27 components, the memory
reduction from the greedy solution to the best solution found by NSGA-II is
19.04%. In other words, without knowledge of the exact dependencies among
underlying libraries, greedy strategy may mislead the software developer to sub-
optimal solutions. Such loss will be amplified with the growth of the scale of the

SBSelector: Search Based Component Selection for Budget Hardware 293

(a) Best attainment surface (b) Median attainment surface

Fig. 1. Answer to RQ2 . Comparison of 10-run attainment surfaces for NSGA-II, ran-
dom search, greedy search.

problem. The Wilcoxon signed-rank test result indicates that the Pareto-front
generated by NSGA-II and greedy search are moderately significantly different
(p-value = 0.064, Vargha-Delaney effect size = 0.3). In Summary, comparing to
simulated human behaviour, search based techniques can effectively find more
memory-efficient component combinations. The amount of economized memory
can be up to 23.79%.

Answer to RQ3: In order to evaluate the effectiveness and applicability of
our tool, we apply our tool in the scenario where Kate is used by a Python
programmer. The result of S1 and the comparison with the best attainment
surface of S2 is presented in Fig. 2.

Fig. 2. Anwser to RQ3 The com-
parison between the Pareto front of
S1 and the best attainment surface
of S2 .

When enabling 11 mandatory plugins in
S1 , Kate consumes 58, 840 KBytes, which is
the minimum memory consumption for S1 as
shown in Fig. 2. As the number of included
plugins gradually increases, the memory con-
sumption of the best solutions found by
NSGA-II grows insignificantly. For instance,
after including exact 16 optional plugins, the
memory consumption of Kate only increases
1.7%. Surprisingly, when including more
than 19 optional plugins, NSGA-II found bet-
ter solutions in S1 than that found in S2 .
This is because making 11 plugins manda-

tory significantly reduces the search space, thus NSGA-II can focus more on the
rest solutions and performs better at certain areas. In summary, the answer to
RQ3 is, SBSelector is applicable and effective in practise when some plugins
are mandatory.

4 Conclusions

In this paper, we demonstrated that component selection problem can be treated
as an instance of MONRP, and addressed it using search based techniques.

294 L. Li et al.

The results presented illustrate the trade-off between two types of user expe-
riences. Moreover, our results can be used to support to further investigate the
hidden implicit relationships among Kate’s plugins. The results also highlight
some solutions that, when embedding the same number of components, our app-
roach can reduce the memory consumption by up to 23.79%. In one specific use
case, SBSelector can find a solution that provides 16 more components while
only increase 1.7% memory consumption. Future work will investigate applying
our tool to large scale software systems (i.e., Chrome and Firefox), and con-
sider the topic as well as the popularity of components as an added constraint
& objectives.

References

1. Bagnall, A.J., Rayward-Smith, V.J., Whittley, I.M.: The next release problem. Inf.
Softw. Technol. 43(14), 883–890 (2001)

2. Baker, P., Harman, M. Steinhofel, K., Skaliotis, A.: Search based approaches to
component selection and prioritization for the next release problem. In: Proceed-
ings of the 22nd IEEE International Conference on Software Maintenance (ICSM
2006), pp. 176–185. IEEE Computer Society, Washington, DC (2006)

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. Trans. Evol. Comput. 6(2), 182–197 (2002)

4. Fahmi, S.A., Choi, H.-J.: A study on software component selection methods. In:
Proceedings of the 11th International Conference on Advanced Communication
Technology, ICACT 2009, vol. 1, pp. 288–292. IEEE Press, Piscataway (2009)

5. Harman, M., McMinn, P., de Souza, J.T., Yoo, S.: Search based software engi-
neering: techniques, taxonomy, tutorial. In: Meyer, B., Nordio, M. (eds.) Empir-
ical Software Engineering and Verification. LNCS, vol. 7007, pp. 1–59. Springer,
Heidelberg (2012)

6. Heineman, G.T., Councill, W.T. (eds.): Component-based Software Engineering:
Putting the Pieces Together. Addison-Wesley Longman Publishing Co. Inc., Boston
(2001)

7. Kate. http://kate-editor.org/. Accessed in April 2015
8. Kwong, C.K., Mu, L.F., Tang, J.F., Luo, X.G.: Optimization of software compo-

nents selection for component-based software system development. Comput. Ind.
Eng. 58(4), 618–624 (2010)

9. Li, L., Harman, M., Letier, E., Zhang, Y.: Robust next release problem: handling
uncertainty during optimization. In: Proceedings of the 2014 Conference on Genetic
and Evolutionary Computation, GECCO 2014, pp. 1247–1254. ACM, New York
(2014)

10. Zhang, Y., Finkelstein, A., Harman, M.: Search based requirements optimisation:
existing work and challenges. In: Rolland, C. (ed.) REFSQ 2008. LNCS, vol. 5025,
pp. 88–94. Springer, Heidelberg (2008)

11. Zhang, Y., Harman, M., Lim, S.L.: Empirical evaluation of search based require-
ments interaction management. Inf. Softw. Technol. 55(1), 126–152 (2013). Special
section: Best papers from the 2nd International Symposium on Search Based Soft-
ware Engineering 2010

12. Zhang, Y., Harman, M., Afshin Mansouri, S.: The multi-objective next release
problem. In: Proceedings of the 9th Annual Conference on Genetic and Evolution-
ary Computation (GECCO 2007), pp. 1129–1137. ACM, New York (2007)

http://kate-editor.org/

Search-Based Bug Report Prioritization
for Kate Editor Bugs Repository

Duany Dreyton(B), Allysson Allex Araújo, Altino Dantas, Átila Freitas,
and Jerffeson Souza

Optimization in Software Engineering Group, State University of Ceará,
Doutor Silas Munguba Avenue, 1700, Fortaleza 60714-903, Brazil

{duany.dreyton,allysson.araujo,altino.dantas,jerffeson.souza}@uece.br,
atila.freitas@aluno.uece.br

http://goes.uece.br

Abstract. The prioritization of bugs in online repositories can be con-
sidered a complex and important task. Thus, providing an automatic
strategy to deal with this challenge can be useful and significantly col-
laborate with the repository use. In this paper, a search-based approach
to prioritize bugs in the Kate Editor Bugs Repository is proposed, tak-
ing into account some valuable information given by the repository users
about the bugs. Experiments demonstrate the proposed approach can
be calibrated to fit particular scenarios and can produce intelligent bug
orders.

Keywords: Bugs prioritization · Genetic algorithm · SBSE · Kate
editor

1 Introduction

Bug repositories have a vital role in software quality, specially in open source
projects. As advantages, one can mention the large participation of users
publishing code problems, suggesting enhancements and commenting on bug
reports [1]. However, as large scale systems become even more common, the
number of bugs in repositories grows significantly. Thus, the management of all
these information may be considered as a complex task to deal with, including
the decision about which bugs have more urgency to be fixed. Usually, a devel-
oper has to decide on its own, among all bugs, which should be fixed early, based
on some personal criteria. Therefore, it is important for a bug repository to offer
an intelligent bug prioritization process, which can stimulate developers to select
the most important bugs to fix.

Search Based Software Engineering (SBSE) proposes the use of artificial intel-
ligence techniques to solve complex problems in Software Engineering [2,3]. Pri-
oritization is an activity frequently exploited by SBSE, given the many opportu-
nities to be applied in the software development process [4,5]. However, there are
no previous works which have directly investigated bugs prioritization in open
c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 295–300, 2015.
DOI: 10.1007/978-3-319-22183-0 26

296 D. Dreyton et al.

bug repositories using SBSE concepts. Anyway, other studies have been con-
ducted to automatically prioritize bugs to be fixed. In [6] the use of a machine
learning technique was proposed, namely Support Vector Machines, to build
a bug priority recommender. Similarly, in [7], a classification based approach
for automatic bug priority prediction using Support Vector Machine and Näıve
Bayes classification algorithms was developed.

Kate Editor is a popular multi-platform and multi-document text editor, part
of KDE environment, with plug-in support and written in C/C++. The website
for Kate Editor project1 contains links to the source code repository and an
online bug repository. In the Kate Editor Bugs Repository, several information
could be useful to allow an automated prioritization of bugs, such as the bug
severity, priority level, precedence between bugs, current state, change history
and the comments offered by the repository users.

Thereby, considering information about the bugs provided by the repository
users, in this paper a formulation to bug prioritization in the Kate Editor Bugs
Repository applying a Genetic Algorithm it is proposed and evaluated.

2 Problem Formulation

Consider B = {b1, b2, b3, · · · , bN} the set of all available bugs, where N is the
number of bugs present in the repository. Consider P = {p1, p2, p3, · · · , pM} a
specific order of bugs from set B, where M is a parameter previously defined by
the repository administrator which represents the number of bugs presented as
solution. Thus, the proposed optimization formulation is presented next:

Maximize (α × relevance(P) + β × importance(P) − γ × severity(P))
subject to pos(P, bi) < pos(P, bj), if bi ≺ bj and bj ∈ P

(1)

where pos(P, bi) returns the position of bug bi in P if bi ∈ P , and ∞ otherwise.
The relevance(P) function considers the votes of the repository users to

measure how relevant is to solve all bugs present in P . This is obtained by the
following function:

relevance(P) =
N∑

i=1

votesi × isIn(P, bi) (2)

where votesi stores the normalized number of votes given by the repository users
to bug bi. The isIn(P, bi) function indicates whether bi is in P , thus, it returns 1
if bi ∈ P , and 0 otherwise.

The importance(P) function aims at encouraging the early resolution of bugs
considered to have higher priority by the repository users, given by:

importance(P) =
N∑

i=1

priorityi × (M − pos(P, bi) + 1) × isIn(P, bi) (3)

1 http://kate-editor.org/.

http://kate-editor.org/

Search-Based Bug Report Prioritization for Kate Editor Bugs Repository 297

where priorityi indicates the priority value given by repository users to bug bi.
importance(P) increases as the bugs with higher priority are anticipated in P .

The severity(P) function represents the impact of the early resolution of
the bugs with highest severity. Thus, the solution is proportionally penalized
according to this relation, where the bugs considered as more severe to the
project have to be prioritized as soon as possible in the solution, as follows:

severity(P) =
N∑

i=1

severityi × pos(P, bi) × isIn(P, bi) (4)

where severityi is the severity value assigned by the users to bug bi. A lower
value of severity is reached when bugs with more severity are allocated in the
initial positions.

It is important to highlight the freedom to configure the weights α, β and
γ according to the faced scenario. For instance, if the context requires a solu-
tion that prioritizes the relevance over importance and severity, it could be
appropriate to set α = 2, β = 1 and γ = 1, for example.

In summary, the proposed approach aims at prioritizing bugs, considering
votes, priority and severity values assigned to the bugs by repository users,
respecting the precedence constraint. Thus, it is expected that the approach
finds valid bug fix orders with high relevance and importance, but with low
severity to the project.

3 Prioritizing Bugs for Kate Editor Bugs Repository

In order to apply the optimization process to prioritize bugs in the Kate Edi-
tor Bugs Repository, the following data extraction process was performed: three
different bug states were considered, the Unconfirmed bugs, recently added into
the repository, but still not officially confirmed, the Confirmed bugs, those con-
sidered as valid and available to be fixed and the Reopened bugs, those which at
some point were closed, but had to be reopened. Unconfirmed bugs are consid-
ered in this approach because they can potentially become confirmed.

During data analysis, the relevant information, present in the repository, to
be used in the proposed model were identified as follows:

1. Number of votes, which represents the relevance of a bug to the community;
2. Priority, which aims at defining the level of importance of a certain bug. This

value is quantified as {Very Low (VLO): 0.2, Low (LO): 0.4, Normal (NOR):
0.6, High (HI): 0.8, Very High (VHI): 1.0};

3. Severity, responsible for measuring how serious is a bug, or if it is a request for
a new feature. This value is quantified as {Wishlist: 0.1, Minor: 0.25, Average:
0.4, Crash: 0.55, Major: 0.70, Severe: 0.85, Critical: 1.0}.

4. Precedence, when a bug fix depends on the previous bug or a set of bugs.

In relation to extraction process, the number of votes were obtained using
data scraping techniques. The priority and severity values were obtained through

298 D. Dreyton et al.

the JSON API2 provided by the repository. Thereby, three datasets were gen-
erated collecting up all bugs with states previously defined for different time
intervals, as follows:

– dataset-1: 303 bugs, present in the repository on April 27th, 2013;
– dataset-2: 407 bugs, present in the repository on April 27th, 2014;
– dataset-3: 543 bugs, present in the repository on April 9th, 2015.

Regarding the Genetic Algorithm settings, it was used a canonical version
available in JMetal Framework [8] with the following configurations: 1, 000 indi-
viduals per population, 1, 000, 000 evaluations of fitness, single point crossover
with 90% crossover rate, bitflip mutation with 1

M mutation rate and binary
tournament selection. These parameters were empirically obtained by prelimi-
nary tests. Represented as an array of integers, each individual is a vector P
where the index represents the position of a bug bi. Solutions that does not
satisfy the precedence constraints are discarded.

In order to demonstrate the influence of each weight configuration (see Eq. 1)
in the search process, three different configurations were considered: {α = 2,
β = 1, γ = 1}, {α = 1, β = 2, γ = 1} and {α = 1, β = 1, γ = 2}.

For each weight configuration, M and dataset, the GA was executed 30 times
to deal with the stochastic nature of the algorithm [9]. In terms of results, the
average and standard deviation of values of relevance, importance and severity
were collected. To support replication, all datasets, results and source code were
made available online for public access3.

Therefore, the experiments were conducted in order to answer the following
research questions:

RQ1: Is the proposed approach sensible to different weight configurations?
RQ2: What is the result of applying the proposed approach in the Kate Editor

Bugs Repository considering a balanced weight configuration?

3.1 Results and Analysis

Table 1 shows the average and standard deviation of relevance, importance and
severity values for each dataset and different weight configurations using a P
with 30 bugs.

When weights {α = 2, β = 1, γ = 1} are used, a higher relevance value
is reached for the three datasets. Considering dataset-1 alone, the increase was
1.54 % and 2.75 % in relation to the other weight configurations. In the sec-
ond configuration, {α = 1, β = 2, γ = 1}, the importance gets more influence
and, consequently, results presented higher importance values for all datasets.
Analyzing specifically the dataset-2, it reached 0.688 of importance value. This
represents a gain of 6.34 % in relation to {α = 2, β = 1, γ = 1} and 1.92 % to
{α = 1, β = 1, γ = 2}. Finally, using {α = 1, β = 1, γ = 2}, the severity is

2 https://docs.python.org/3.4/library/json.html.
3 http://goes.uece.br/duanydreyton/ssbsechallenge2015/en/.

https://docs.python.org/3.4/library/json.html
http://goes.uece.br/duanydreyton/ssbsechallenge2015/en/

Search-Based Bug Report Prioritization for Kate Editor Bugs Repository 299

Table 1. Average and standard deviation of relevance, importance and severity values
for each dataset and different weight configurations, with M = 30.

Weight Configurations α = 2, β = 1, γ = 1 α = 1, β = 2, γ = 1 α = 1, β = 1, γ = 2

dataset-1 Relevance 0.859±0.064 0.846±0.075 0.836±0.063

Importance 0.649±0.021 0.691±0.011 0.680±0.014

Severity 0.124±0.014 0.121±0.013 0.110±0.007

dataset-2 Relevance 0.870±0.045 0.833±0.059 0.827±0.0777

Importance 0.647±0.017 0.688±0.017 0.675±0.0147

Severity 0.128±0.012 0.124±0.013 0.113±0.010

dataset-3 Relevance 0.851±0.050 0.840±0.054 0.841±0.042

Importance 0.646±0.016 0.707±0.013 0.673±0.015

Severity 0.146±0.016 0.141±0.018 0.118±0.015

considered twice more important than the other objectives. For dataset-3, it was
possible to reach a severity of 0.118, which represents a reduction of 19.18 % to
{α = 2, β = 1, γ = 1} and 16.31 % to {α = 1, β = 2, γ = 1}.

Given these results, it is possible to answer RQ1, by attesting the solutions
are properly influenced by the weights, enabling the opportunity to configure
which options better suit specific scenarios.

Table 2 shows the first five prioritized bugs of the best solution found using a
balanced weight configuration, that is, {α = 1, β = 1, γ = 1}, in order to answer
RQ2.

Table 2. Information of the first five prioritized bugs of the best found solution using
{α = 1, β = 1, γ = 1} in dataset-3 with M = 30.

Order ID’s Description Votes Priority Severity

(relevance) (importance) (severity)

1 267618 [PATCH] Kate sidebar does
not appear with old
sessions

41 1.0 0.55

2 343329 Remote files open up empty 131 0.6 0.7

3 226905 Add support for mime-type
sections to. kateconfig files

20 1.0 0.1

4 241502 Kate find bar and split view 40 1.0 0.1

5 313455 JJ Autobracket plugin does
not replicate all the
functionality of the built
in function

219 0.6 0.4

As can been seen, the first prioritized bug have 41 votes, 1.0 and 0.55 for
priority and severity values, respectively. In relation to the first, the second bug

300 D. Dreyton et al.

has more votes and a small advantage in severity, but with a lower priority value.
Analyzing the third bug, the values of votes and severity are considerably smaller
than the previous ones, but it has the maximum of priority value.

It is important to mention that even a bug with high number of votes do
not necessarily should be in the initial positions in P , given that Eq. 2 is not
influenced by the position of a bug. The complete list of prioritized bugs in P is
available in the supporting webpage.

4 Conclusions

As bugs repositories became more spread and large, the necessity of prioritizing
bugs becomes more imminent, presenting itself as a complex task.

The objective of this paper was to propose a formulation and apply a Genetic
Algorithm to prioritize bugs in the Kate Editor Bugs Repository. Each objective
of the proposed model is related to a valuable information given by the repository
users about the bugs. Experimental results demonstrated the proposed approach
is sensitive to different weight configurations, allowing the user to adjust the
option which better suits the faced scenario.

As future works, one can consider the evaluation of prioritization produced
by this proposed approach by experts to validate the produced ranking; the
adaptation of the proposed approach to other bugs repositories; the application
of other meta-heuristics and the building of a multi-objective version of the
approach.

References

1. Anvik, J., Hiew, L., Murphy, G.C.: Who should fix this bug?. In: Proceedings of the
28th international conference on Software engineering, pp. 361–370. ACM (2006)

2. Harman, M.: The current state and future of search based software engineering. In:
2007 Future of Software Engineering, pp. 342–357. IEEE Computer Society (2007)

3. Harman, M., McMinn, P., de Souza, J.T., Yoo, S.: Search based software engineering:
techniques, taxonomy, tutorial. In: Meyer, B., Nordio, M. (eds.) Empirical Software
Engineering and Verification. LNCS, vol. 7007, pp. 1–59. Springer, Heidelberg (2012)

4. Tonella, P., Susi, A., Palma, F.: Interactive requirements prioritization using a
genetic algorithm. Inf. Softw. Technol. 55(1), 173–187 (2013)

5. Vidal, S.A., Marcos, C., Dı́az-Pace, J.A.: An approach to prioritize code smells for
refactoring. Automated Software Engineering, pp. 1–32 (2014)

6. Kanwal, J., Maqbool, O.: Managing open bug repositories through bug report priori-
tization using svms. In: Proceedings of the International Conference on Open-Source
Systems and Technologies, Lahore, Pakistan (2010)

7. Kanwal, J., Maqbool, O.: Bug prioritization to facilitate bug report triage. J. Com-
put. Sci. Technol. 27(2), 397–412 (2012)

8. Durillo, J.J., Nebro, A.J.: jmetal: A java framework for multi-objective optimization.
Adv. Eng. Softw. 42(10), 760–771 (2011)

9. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing random-
ized algorithms in software engineering. Softw. Test. Verif. Reliabi. 24(3), 219–250
(2014)

Inferring Test Models from Kate’s Bug Reports
Using Multi-objective Search

Yuanyuan Zhang(B), Mark Harman, Yue Jia, and Federica Sarro

CREST, Department of Computer Science, University College London,
Malet Place, London WC1E 6BT, UK

yuanyuan.zhang@ucl.ac.uk

Abstract. Models inferred from system execution logs can be used to
test general system behaviour. In this paper, we infer test models from
user bug reports that are written in the natural language. The inferred
models can be used to derive new tests which further exercise the buggy
features reported by users. Our search-based model inference approach
considers three objectives: (1) to reduce the number of invalid user events
generated (over approximation), (2) to reduce the number of unrecog-
nised user events (under approximation), (3) to reduce the size of the
model (readability). We apply our approach to 721 of Kate’s bug reports
which contain the information required to reproduce the bugs. We com-
pare our results to start-of-the-art KLFA tool. Our results show that our
inferred models require 19 tests to reveal a bug on average, which is 98
times fewer than the models inferred by KLFA.

Keywords: SBSE · NLP · Topic modelling ·Model inference · NSGA-II

1 Introduction and Background

Many systems allow users to submit bug reports when they encounter unex-
pected behaviour. Developers need to validate and fix these issues, based on these
bug reports. Unfortunately, not all of the bug-fixes work as expected. A recent
study suggests that up to 24 % of post-release bug-fixes of large software systems
are incorrect and some of the generated patches even introduce additional faults
into the software [1,2]. These bad bug fixes not only affect the reliability of the
software source code but also have negative impact on their users [1].

Generating additional tests that exercise the reported buggy features could
improve software developers’ confidence in their bug fixes. In this paper, we
adapt an event-based model inference approach for such test enhancement using
search-based algorithms. Event-based model inference has been widely used in
software testing [3,4]. This technique takes system logs as inputs and generates
a finite state machine which recognises execution sequences observed from the
log file. Such a log file is often automatically generated and contains a sequence
of function calls.

c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 301–307, 2015.
DOI: 10.1007/978-3-319-22183-0 27

302 Y. Zhang et al.

In this work, our approach aims to infer models from user bug reports instead
of using system logs. Bug reports submitted by users are written in natural lan-
guage, many of which include a set of instructions that can be used to reproduce
the bugs. An inferred model from these bug reports is a generalisation of the
set of user events which has triggered software bugs. The model can be used to
generate new test data targeting the user-reported buggy features of the system.

Traditional single objective inferencing approaches tend to suffer from two
intertwined problems. The inferred model either misses some behaviour specified
in bug reports (under generalising) and includes some infeasible behaviour (over
generalising). To overcome this limitation, we adapted the multi-objective app-
roach proposed by Tonella et al. [5] to balance these two conflicting objectives.

We apply our approach to the SSBSE 2015 Challenge program Kate [6],
a popular multi-platform text editor. We provide empirical evidence that the
model generated from our approach not only provides good trade-offs between
under and over approximation but also provides a good level of fault detection
ability.

2 Models Inference Framework

Our approach to bug-report model inference consists of four phases. The first
phase extracts raw bug issue reports from the Kate bug tracking system. Then
the second phase parses the raw data extracted to retrieve bug information,
such as textual descriptions of the execution steps for bug reproduction, the
related components, the status and severity of the bug. In the third phase, bug
descriptions are used to identify execution trace information. In particular, we
use topic modelling to mine and extract reproducible user events. In the final
phase, we use two multi-objective search algorithms to infer models from the
user events.

Phase 1 - Bug Report Extraction: Kate is a multi-platform text editor writ-
ten in C/C++. The KDE Bugtracking System [7] is used by the Kate project
to maintain and keep track of reported software bugs. A web crawler was imple-
mented to collect raw HTML webpage data from the KDE Kate bug repository.
There have been 5,583 bug issues reported (including those already resolved,
verified and closed) since January 2000. Our crawler visits the webpage of each
bug issue and saves it as raw bug report data.

Phase 2 - Raw Data Parsing: we extract bug descriptions for each bug issue
by parsing the raw data according to a set of search rules. We manually developed
the search rules based on HTML files to capture information about bug issue
ID, status, component, importance, description. In particular, in the textual
description, steps to reproduce are the most important part of the bug report.
They provide valuable information for the developer in order to test and fix the
issue. We retrieve such information from the Kate bug HTML files by locating
content between the ‘Steps to Reproduce’ and ‘Actual Results’ keywords.

Phase 3 - Data Mining Trace Events: there are three steps in Phase 3:
(1) preparing the training corpus; (2) clustering similar trace steps; (3) mapping

Inferring Test Models from Kate’s Bug Reports Using Multi-objective Search 303

trace events. First, since ‘Steps to Reproduce’ patterns are written in natural
language, we need to refine the patterns to remove noise. The Natural Lan-
guage ToolKit (NLTK) [8] was used to preprocess the raw patterns. NLTK is
an open source library for Natural Language Processing (NLP) implemented
in Python. We first tokenise the patterns from strings to vectors, then remove
English language stop words, numbers and punctuation marks. Next, we stem
tokens to their root form and filter out low-frequency words that only appear
once. We save all the refined patterns together as corpus in the Vector Space
Model (VSM), which will be used in the next step.

In the second step, we cluster similar preprocessed trace steps using a tool
called gensim [9], an open source NPL topic modelling tool, supporting semantic
topic detection. In order to cluster steps, we transform a pre-prepared training
corpus into a term frequency-inverse document frequency (tf-idf) matrix and
then project it into a Latent Semantic Indexing (LSI) space. For each trace step,
we compute similarity against the transformed corpus. The similarity measure
used is the cosine similarity between two vectors. The most similar steps are
clustered. We repeatedly combine clusters if their similarity measure is greater
than a predefined similarity threshold (cosine > 0.7 in the experiment on which
we report here). At this stage, the user events are generated by locating shared
common tokens in one cluster. We found some generated user events have the
same semantics, for example, ‘open kate’, ‘start kate’ and ‘launch kate’ all rep-
resent the same user behaviour. These events should be treated as one, otherwise
the algorithm will generate many similar states. In the last step, we solve this
problem by manually examining half of the user events and creating a mapping
to transform duplicated user events.

Phase 4 - Model Inference: We use two multi-objective algorithms, a Genetic
Algorithm and the NSGA-II algorithm to infer models from the user events gen-
erated. In this work, there are three objectives taken into account to optimise
the inferred models. These objectives are those proposed by Tonella et al. [5].
The first objective is to minimise the amount of model behaviour which does
not follow any existing trace events generated. This type of unobserved model
behaviour is over approximation, which is unlikely to occur in reality. The second
objective is to minimise the amount of behaviour which is not accepted by the
model, namely under approximation. It is measured by the number of unrecog-
nised trace events. The third objective is to minimise the number of states in a
model, to ensure we favour simplicity where possible.

3 Experiments and Results

To evaluate the feasibility and effectiveness of our approach, we answer the
following research questions: RQ0: What are the prevalence and the character-
istics of the trace events generated? RQ1: What are the performance of multi-
objective optimisation compared to the benchmark model inference technique,
KLFA [10] in terms of the hypervolume, running time and the number of solu-
tions? RQ2: What is the fault revealing ability of the models inferred?

304 Y. Zhang et al.

In total, our approach takes 721 bug reports that contain ‘Steps to Repro-
duce’ patterns as inputs and generates 452 user event trace files containing 265
unique trace events. To answer RQ0, we manually analysed these events which
can be divided into six categories, as shown in Table 1. As can be seen from
the table, the user events generated from our approach cover a wide range of
functionalities of Kate, from basic operations to advanced features.

Table 1. Example of user events generated

Category Basic operation Text editing Programming

Examples Start Kate copy paste text select haskell mode

open multiple files change input method show javascript console

score screen fold section check regular expression

drag cursor find replace fold function

resize window captialize text check indentation

close file set bookmark color enter vi command

Category Configuration Plugins Shortcut

Examples change keyboard setting enable plugin quickswitcher ctrl 1

change background color enable plug xml ctrl g

change print margin enable plugin spellcheck ctrl o

change print page range enable plugin tabbar ctrl r

enable command line enable plugin terminal alt right

enable static word wrap enable plugin treeview alt tab

To answer RQ1, we adopt one of standard, widely-used measures of multi-
objective solution quality - hypervolume. Hypervolume is the volume covered by
the solutions in the objective space. It is the union of hypercubes of solutions
on the Pareto front [11]. By using a volume rather than a count, this measure
is less susceptible to bias when the numbers of points on the two compared
fronts are very different. We also measure the running time of the algorithms
and the number of solutions generated. For algorithms that produce good quality
solutions, quick and diverse answers are an important algorithmic property for
decision makers.

Table 2. Objectives and performance metrics results for GA, NSGA-II and KLFA

Algorithm
Performance

Objectives - Mean (Min, Max) Quality Metrics - Mean
Over Under Size of Running No. of

Approximation Approximation Model Time Solutions

GA 2 (0, 66) 219 (208, 225) 13 (2, 53) 3239.66s 25

NSGA-II 0.1 (0.0, 7) 215 (183, 226) 19 (1, 94) 2341.14s 17

KLFA 55707 4 289 556.30s 1

Table 2 shows the mean, lowest and highest values of three objectives and
average running time and the number of solutions generated by GA and NSGA-
II for 30 executions. As KLFA generates deterministic solutions, we only report

Inferring Test Models from Kate’s Bug Reports Using Multi-objective Search 305

the results with one run for KLFA. Figure 1 shows the distribution of models
generated by three techniques, along three objectives, in the form of box plots.
As can be seen from the results, both GA and NSGA-II are able to infer models
which have a lower over-approximation account but relatively higher under-
approximation account. By contract, the models inferred by KLFA have a very
high over-approximation account. In terms of size of a model, both GA and
NSGA-II are able to keep the size of a model small.

The statistical analysis of hypervolume results is reported in Table 3. We use
Cliff’s method [12] for assessing statistical significance and the Vargha-Delaney
Â12 metric for effect size measure where the result is significant (at the 0.05 α
level). The results of all algorithms are significantly different. The effect size of
the two search algorithms are very small and both of them outperform KLFA.

GA NSGA−II KLFA

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

Algorithms

O
ve

r−
A

pp
ro

xi
m

at
io

n

GA NSGA−II KLFA

0
50

10
0

15
0

20
0

Algorithms

U
nd

er
−

A
pp

ro
xi

m
at

io
n

GA NSGA−II KLFA

0
50

10
0

15
0

20
0

25
0

30
0

Algorithms

S
iz

e
of

 M
od

el

Fig. 1. Box plots of the over-approximation, under-approximation and size counts from
the models inferred by multi-objective GA, NSGA-II and KLFA - 30 runs

Table 3. Hypervolume results of the statistical analysis for GA, NSGA-II and KLFA

Algorithm Algorithm Hypervolume

Cliff’s method Vargha-Delaney effect size

(x) (y) p-value Â12

GA NSGA-II 1e-04 0.06

GA KLFA 1e-04 1.00

NSGA-II KLFA 1e-04 1.00

To answer RQ2, we investigate the fault-revealing ability of the models
inferred. In software testing, the effectiveness of a test suite is assessed according
to its ability to detect real bugs. We evaluate the fault-revealing ability of the
models by checking the number of bug traces accepted by the models. If a bug
trace is accepted by a model, it means the model can be used to generate test
event traces to capture this bug. We have equally divided all valid bug reports
into training and validation sets based on their submission time. We used the

306 Y. Zhang et al.

training set to infer models. We then check if the models inferred can capture
the bug reported in the validation set. The training set contains 226 bug reports
submitted between 07/2009 to 10/2012 , while the evaluation set contains 226
more recently submitted between 11/2012 and 02/2015. Table 4 shows the aver-
age number of bugs by each set of Pareto Front solution, the total number of
bug detected and the average number of tests to be generated per bug revealed.
Although KLFA generates find more bug in the validation set, it generates 500
times more tests traces. On the other hand, the models inferred using search only
take less than 20 tests to reveal a bug on average where as KLFA takes 1,863.
This makes former models preferable in place as the cost involved in checking
the results of test sequence requires human effort.

Table 4. Results for fault-revealing ability of the models inferred

Avg. # Traces Avg. # Bugs Total # Avg. Test per

(L = 4) Pareto Front Bugs bug revealed

GA 147 8 16 18

NSGA-II 116 6 22 19

KLFA 55,906 30 30 1863

4 Conclusion

We have studied the use of multi-objective search algorithm to infer models from
software bug reports. The models inferred are well-balanced between the amount
of over- and under-approximation of users behaviour. We also found that our
approach generates smaller number of user event traces per bug revealed than
KLFA, thereby these models are more preferable in practice. We believe that
model inferencing techniques for documents written in natural language may
prove to be widely applicable to many software documents, such as bug reports
in our case.

Acknowledgements. We wish to express our gratitude to Paolo Tonella for his help-
ful suggestion and the search-based FSM tools provided.

References

1. Yin, Z., Yuan, D., Zhou, Y., Pasupathy, S., Bairavasundaram, L.: How do fixes
become bugs? In: Proceedings of the 19th ACM SIGSOFT Symposium and the
13th European Conference on Foundations of Software Engineering (ESEC/FSE
2011), Szeged, Hungary, pp. 26–36. ACM, 5–9 September 2011

2. Buggy McAfee update whacks Wndows XP PCs: http://news.cnet.com/8301-1009
3-20003074-83.html

http://news.cnet.com/8301-1009_3-20003074-83.html
http://news.cnet.com/8301-1009_3-20003074-83.html

Inferring Test Models from Kate’s Bug Reports Using Multi-objective Search 307

3. Krka, I., Brun, Y., Popescu, D., Garcia, J., Medvidovic, N.: Using dynamic exe-
cution traces and program invariants to enhance behavioral model inference. In:
Proceedings of the ACM/IEEE 32nd International Conference on Software Engi-
neering (ICSE 2010), Cape Town, South Africa, pp. 179–182. IEEE, 2–8 May 2010

4. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behav-
ioral models. In: Proceedings of the 30th International Conference on Software
Engineering (ICSE 2008), Leipzig, Germany, pp. 501–510. ACM, 10–18 May 2008

5. Tonella, P., Marchetto, A., Nguyen, D.C., Jia, Y., Lakhotia, K., Harman, M.:
Finding the optimal balance between over and under approximation of models
inferred from execution logs. In: Proceedings of IEEE 5th International Conference
on Software Testing, Verification and Validation (ICST), Montreal, QC, Canada,
pp. 21–30. IEEE, 17–21 April 2012

6. The Kate Editor: http://kate-editor.org/
7. KDE Bugtraking System: https://bugs.kde.org/
8. The Natural Language ToolKit (NLTK): http://www.nltk.org/
9. Řeh̊uřek, R., Sojka, P.: Software framework for topic modelling with large cor-

pora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, Valletta, Malta, pp. 45–50. ELRA, May 2010. http://is.muni.cz/
publication/884893/en

10. Mariani, L., Pastore, F.: Automated identification of failure causes in system logs.
In: Proceedings of the 19th International Symposium on Software Reliability Engi-
neering (ISSRE 2008), Seattle, WA, USA, pp. 117–126. IEEE, 10–14 November
2008

11. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

12. Cliff, N.: Ordinal Methods for Behavioral Data Analysis. Lawrence Erlbaum Asso-
ciates Inc., New Jersey (1996)

http://kate-editor.org/
https://bugs.kde.org/
http://www.nltk.org/
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

Short Papers

Introducing Learning Mechanism for Class
Responsibility Assignment Problem

Yongrui Xu1, Peng Liang1(&), and Muhammad Ali Babar2

1 State Key Lab of Software Engineering, Wuhan University, Wuhan, China
{xuyongrui,liangp}@whu.edu.cn

2 School of Computer Science, The University of Adelaide, Adelaide, Australia
ali.babar@adelaide.edu.au

Abstract. Assigning responsibilities to classes is a vital task in object-oriented
design, which has a great impact on the overall design of an application.
However, this task is not easy for designers due to its complexity. Though many
automated approaches have been developed to help designers to assign
responsibilities to classes, none of them considers extracting the design
knowledge (DK) about the relations between responsibilities in order to adapt
designs better against design problems. To address the issue, we propose a novel
Learning-based Genetic Algorithm (LGA) for the Class Responsibility
Assignment (CRA) problem. In the proposed algorithm, a learning mechanism
is introduced to extract DK about which responsibilities have a high probability
to be assigned to the same class, and the extracted DK is employed to improve
the design qualities of generated solutions. An experiment was conducted,
which shows the effectiveness of the proposed approach.

Keywords: CRA problem � Data mining � Genetic algorithm � The Baldwin
effect

1 Introduction

In object-oriented design, assigning responsibilities to classes is a vital task, which has
a great impact on the overall design of an application [1]. The main goal of Class
Responsibility Assignment (CRA) is to find an optimal assignment of responsibilities
(where responsibilities are presented in terms of methods and attributes) to classes and
how objects should interact by using the methods [2]. Since the number of responsi-
bilities can reach to hundreds and thousands in a normal industrial size system, and
CRA depends heavily on human judgment and decision-making, it is challenging for
designers to assign responsibilities to classes (especially for novice designers) [1].

Existing approaches on automated CRA can prevent novice designers from making
improper software design [1–3]. In these automated approaches, quality metrics (e.g.,
structural metrics) are defined to evaluate the design qualities of generated solutions.
However, several issues need to be considered for employing these automated CRA

This work is partially sponsored by the NSFC under Grant No. 61170025 and No. 61472286.

© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 311–317, 2015.
DOI: 10.1007/978-3-319-22183-0_28

approaches: (1) in [4], the authors argued that no magic metrics for the evaluation of
design quality had been found; (2) structural metrics seem to be ‘cheating’ the software
engineer: they are ‘improving the design’ from the structural metrics standpoint, but
these changes do not correspond to the expectations of designers [5]. Considering
these, a new trend for evaluating CRA results is to compare the similarity between
generated solutions and expert designs [2]. The reason of this comparison is that the
designs produced by experienced designers (experts) follow design principles as much
as possible, and expert designs possess the desired design properties.

As a reflection of this trend, we need to take a fresh look at the automated approach
for CRA. The underlying reason of making generated solutions close to expert designs
is that the designs produced by different experts are similar within the same context,
and the best design practices (i.e., a type of implicit design knowledge (DK)) for the
design problem may exist in these similar parts. If the implicit DK can be captured
automatically and further used to generate software design solutions, it may adapt
solutions better against design problems. To this end, a novel Learning-based Genetic
Algorithm (LGA) is proposed in this paper, which introduces a learning mechanism for
automated CRA. The contributions of this work are: (1) introduce learning mechanism
for automated CRA, which adapts the generated solutions better against the design
problems by considering the extracted DK; (2) propose a novel Genetic Algorithm
(GA) based on the Baldwin effect, which considers relations between individuals to
make better exploration and exploitation in the solution space. The proposed algorithm
may also be applied to solve other software engineering (SE) problems with Search
Based Software Engineering (SBSE) techniques.

2 Approach

In this section, we introduce the proposed Learning-based Genetic Algorithm (LGA) and
the theories behind it. We also describe the procedure of applying LGA for CRA.

2.1 Learning-Based Genetic Algorithm (LGA)

Darwinism states that all species of organisms arise and develop through the natural
selection of small, inherited variations that increase the individual’s ability to compete,
survive, and reproduce. However, Darwinism has been questioned that whether it is
suitable for the phenomenon of microevolution [6]. Microevolution means changes can
occur within existing species or gene pools without natural selection. To support
microevolution, the Baldwin effect was proposed as a post-Darwinian mechanism of
evolution [7]. The core mechanism of the Baldwin effect is the learning mechanism for
individuals in response to changes in their environment.

Traditional GAs inspired by Darwinism are widely used in the field of SBSE, but
they do not support microevolution well. Consequently, traditional GAs lead to iso-
lations between candidate solutions, and cannot fully exploit the relations between
candidate solutions to improve design qualities of final solutions. For instance, in a
CRA problem, the relations between responsibilities in candidate solutions should be

312 Y. Xu et al.

extracted as DK and be fully exploited to improve design qualities of individuals (i.e.,
candidate solutions) in the population. In addition, preferable individuals, which have
better design qualities than others in a population, should evangelize their responsibility
assignment as DK to other individuals, which leads to an adaptive change taking place
simultaneously for most of the individuals of the population. To support microevolu-
tion of individuals with SBSE techniques, a Learning-based Genetic Algorithm
(LGA) based on the Baldwin effect is proposed and shown in Fig. 1, which introduces a
novel learning operator to support the learning mechanism for individuals.

2.2 Solving CRA with LGA

In this section, we mainly show how to use the universal learning operator in LGA to
extract implicit DK to improve design qualities for the CRA problem. Step 1 to Step 5
in Fig. 1 are omitted, which are detailed in [1, 2].

When Step 5 in Fig. 1 is completed, a new generation is produced in both GAs.
In LGA, according to the fitness of each individual, the individuals of this generation
are further classified into three groups: preferable individuals group (PG), ordinary
individuals group (OG), and inferior individuals group (IG). If the fitness of an indi-
vidual is in the top 20 % of the generation, the individual may have good design
qualities, and it belongs to PG. If the fitness is in the bottom 30 %, the individual may
have poor design qualities, and it belongs to IG. The remaining individuals with
moderate design qualities belong to OG. For CRA, individuals of IG should learn the
DK extracted from individuals of PG to evolve these IG individuals, which is defined
as “learning mechanism” in this paper. Figure 2 shows the four sub-steps about how to
extract the DK according to the relations between responsibilities from individuals in
PG, and how to apply the extracted DK for individuals in IG in order to make adaptive
changes for these IG individuals.

1. Initial
Population

2. Calculate
the Fitness

3. Selection
Operator

4. Crossover
Operator

5. Mutation
Operator

2. Calculate
the Fitness

3. Selection
Operator

4. Crossover
Operator

5. Mutation
Operator

6. Learning
Operator

1. Initial
Population

(a) Genetic Algorithm (Darwinism)

(b) Learning-based Genetic Algorithm (the Baldwin effect)

Fig. 1. Traditional Genetic Algorithm and Learning-based Genetic Algorithm

6.1 Construct
dataset from PG

6.2 Generate
frequent itemsets

6.3 Generate
rule set

6.4 Learn
adaptively for IG

Process Sequence

Start End

Fig. 2. The procedure of learning in the learning operator

Introducing Learning Mechanism for Class Responsibility 313

2.2.1 Construct Dataset from PG
A dataset which can be further used to extract DK is needed in our approach, and Step
6.1 constructs this dataset from individuals in PG. The dataset is composed of records,
and each record contains responsibilities which are assigned to the same class in a PG
individual. For example, suppose there are five responsibilities (i.e., R1 to R5) that need
to be assigned to classes. An individual ind in PG may assign R1 and R2 to Class1, and
assign other responsibilities to Class 2. In this situation, two records exist for ind: {R1,
R2} and {R3, R4, R5}. Different with the genotype of ind, the two records are inde-
pendent records in the constructed dataset. Hence, the dataset can be generated by
combining records of all the individuals in PG.

2.2.2 Generate Frequent Itemsets and the Rule Set
In Step 6.2, we use the Apriori algorithm, an association algorithm from data mining,
to discover the frequent itemsets of responsibilities from the dataset generated in Step
6.1. In data mining, a frequent itemset contains the elements, which have a high
probability to appear together in records. When Step 6.2 is completed, the DK about
which responsibilities are always assigned to the same class in PG individuals can be
discovered. For example, suppose {R1, R2} and {R3, R4, R5} are two frequent itemsets
acquired by the Apriori algorithm in Step 6.2, we then know R1 and R2 are often
assigned to the same class in different PG individuals (similar case for R3, R4, and R5).

However, it is not enough that the proposed approach can only be aware of which
responsibilities have a high probability to be assigned to the same class in PG indi-
viduals. We need to discover and understand which responsibilities make other
responsibilities be assigned to the same class in the frequent itemsets before intro-
ducing learning for individuals in IG. For instance, if {R1, R2} is a frequent itemset
acquired in Step 6.2, we need to know whether R1 leads to the assignment of R2 to the
same class with R1 (i.e., R1 => R2), or vice versa (i.e., R2 => R1). Each situation above
(e.g., R1 => R2) is called a rule, and a rule set is generated in Step 6.3. The generated
rule set in Step 6.3 contains the DK about how to optimize responsibilities assignment
for design problems. In Step 6.3, all possible rules for each frequent itemset are
generated, and we use support, confidence, and lift measures which are widely used in
data mining to filter out uninteresting and repeated rules [8]. Suppose a rule has the
form X => Y, the support of the rule is the proportion of records that contain both X and
Y in the constructed dataset, and the confidence of this rule is the proportion of records
that contain Y among the records that contain X. In addition, the lift measure calculates
the relevance between X and Y in a rule. When Step 6.3 is completed, the DK for
design problems is automatically extracted with our approach, and individuals in IG
can learn these DK from the rule set in Step 6.4.

2.2.3 Learn Adaptively for Individuals in IG
According to the support and confidence measure of each rule calculated in Step 6.3,
the concept of learning rate is introduced for each rule. More specifically, a rule with
higher values of support and confidence measures will have a higher learning rate,
resulting that this rule has a higher probability to be learned by individuals in IG. In
Step 6.4, each individual in IG tries to learn each rule in the generated rule set with the
learning rate of that rule, and adaptively changes the individual itself with the rules that

314 Y. Xu et al.

the IG individual decides to learn. For instance, if an individual in IG decides to learn
the rule “R1 => R2”, the individual will change itself, and assign R2 to the class which
contains R1. However, each rule has its precondition, which should be satisfied before
the rule is applied by individuals in IG. We define the precondition of a rule according
to the left part of the rule. For example, in the rule “R1, R2 ⇒ R3”, the left part of the
rule is {R1, R2}, and the precondition of the rule is that R1 and R2 should belong to the
same class in an individual. If R1 and R2 are assigned in different classes in an indi-
vidual in IG, this rule cannot be applied by this individual. In Step 6.4, individuals in
IG apply the extracted DK from individuals in PG to make adaptive changes in order to
better adapt against design problems.

With the novel learning operator in LGA, our proposed approach for CRA can fully
exploit the use information between responsibilities, and extract the DK from indi-
viduals which have better design qualities in the population. In addition, our approach
supports the microevolution mechanisms for the population, and allows individuals to
adaptively change themselves to better adapt against the design problems.

3 Experiment

To evaluate the effectiveness of the proposed approach, we compare our approach with
a GA based approach. The experiments were performed on a Dual Core@2.30 GHz
with 10 GB of RAM. We use three software design problems (i.e., CBS, GDP, and SC)
that are used in [3], which spans a range of size and complexity, to compare the
similarity degree of the design solutions generated by the two approaches with the
expert design. Expert designs can be found in [9]. F-Score is a cluster/classification
evaluation measure that combines “precision” and “recall” from information retrieval,
and existing CRA work [2] used it to calculate the similarity degree between two
solutions, which is an appropriate measure for our purpose. The definition of the F-
Score measure for the CRA problem can be found in [2], and higher F-Score value
means the generated solution is closer to the expert design. Given the probabilistic
nature of the algorithms, multiple runs are mandatory. For each problem instance, we
run the evaluation 30 times for each algorithm to calculate the mean F-Score values of
all the individuals in the population, and the mean value of the 30 F-Score values is
used to represent the final F-Score value for an instance with corresponding algorithms.
To enable a fair comparison, we used the same settings in each evaluation. The pop-
ulation size is 100, and for traditional genetic operators used in both algorithms, binary
tournament is used as the default selection operator, swap mutation as the default
mutation operator with reciprocal of chromosome lengths mutation probability, and
single point crossover as the default crossover operator with crossover rate 0.9. The F-
Score values of the three design problems with the two approaches are shown in
Table 1. The results indicate that the proposed approach can generate solutions which
are closer to expert design for all the three problems.

Introducing Learning Mechanism for Class Responsibility 315

4 Related Work

Traditional GAs inspired by Darwinism do not support learning during the evolu-
tionary process. To tackle this problem, the authors in [10] introduced macroevolu-
tionary algorithm (MA) for optimization problems. Similar to our proposed LGA, MA
can also exploit the presence of links between “species” that represent candidate
solutions to the optimization problem. However, the two approaches have essential
difference on the evolutionary model: LGA is based on the Baldwin effect, while MA is
inspired by macroevolution. In addition, many existing work also introduced machine
learning (ML) techniques in evolutionary algorithms to generate better solutions for
their problems [11–14], while our approach used an association algorithm in the search
process. To our knowledge, it is the first time that a ML technique is employed for the
CRA problem, which shows that introducing ML techniques in GAs can facilitate
generating solutions closer to expert design.

5 Conclusions

In this paper, we propose a novel Learning-based Genetic Algorithm (LGA) for the
CRA problem, which is based on the Baldwin effect. In LGA, an association algorithm
is used to extract the implicit DK about which responsibilities have a high probability
to be assigned to the same class, and the extracted DK is further employed to improve
the design qualities of the individuals with poor design qualities in the population. An
experiment was conducted to evaluate the effectiveness of our approach, and the results
show that the approach can generate solutions closer to expert design. In the next step,
a tool that supports LGA for CRA problem will be developed and LGA will be
evaluated against the GA approach for CRA problem.

References

1. Bowman, M., Briand, L.C., Labiche, Y.: Solving the class responsibility assignment
problem in object-oriented analysis with multi-objective genetic algorithms. IEEE Trans.
Softw. Eng. 36(6), 817–837 (2010)

2. Masoud, H., Jalili, S.: A clustering-based model for class responsibility assignment problem
in object-oriented analysis. J. Syst. Softw. 93(7), 110–131 (2014)

3. Smith, J.E., Simons, C.L.: The influence of search components and problem characteristics
in early life cycle class modelling. J. Syst. Softw. 103(5), 440–451 (2015)

Table 1. F-Score values of design problems with different approaches

CBS GDP SC

LGA for CRA 0.8347 0.7891 0.7019
GA for CRA 0.8289 0.7434 0.6583

316 Y. Xu et al.

4. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice: Using Software Metrics to
Characterize, Evaluate, and Improve the Design of Object-Oriented Systems, 1st edn.
Springer, Heidelberg (2006)

5. de Oliveira, M., de Almeida, F., Horta, G.: Learning from optimization: a case study with
apache ant. Inf. Softw. Technol. 57(1), 684–704 (2015)

6. Kelly, K.: Out of Control: The New Biology of Machines, Social Systems and the Economic
World, 1st edn. Basic Books, New York (1995)

7. Baldwin, J.M.: A new factor in evolution. Am. Nat. 30(354), 441–451 (1896)
8. Merceron, A., Yacef, K.: Interestingness measures for association rules in educational data.

In: Educational Data Mining, pp. 57–66 (2008)
9. Manual Designs. http://www.cems.uwe.ac.uk/*clsimons/CaseStudies/ManualDesigns.pdf.

Accessed on 01 July 2014
10. Marín, J., Solé, R.V.: Macroevolutionary algorithms: a new optimization method on fitness

landscapes. IEEE Trans. Evol. Comput. 3(4), 272–286 (1999)
11. Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F., Mendes, E.: Using tabu

search to configure support vector regression for effort estimation. Empir. Softw. Eng. 18(3),
506–546 (2013)

12. Amal, B., Kessentini, M., Bechikh, S., Dea, J., Said, L.B.: On the use of machine learning
and search-based software engineering for Ill-defined fitness function: a case study on
software refactoring. In: Le Goues, C., Yoo, S. (eds.) SSBSE 2014. LNCS, vol. 8636,
pp. 31–45. Springer, Heidelberg (2014)

13. Minku, L., Yao, X.: An analysis of multi-objective evolutionary algorithms for training
ensemble models based on different performance measures in software effort estimation. In:
PROMISE 2013, Article No. 8 (2013)

14. Sarro, F., Di Martino, S., Ferrucci, F., Gravino, C.: A further analysis on the use of genetic
algorithm to configure support vector machines for inter-release fault prediction. In:
ACM SAC 2012, pp. 1215–1220 (2012)

Introducing Learning Mechanism for Class Responsibility 317

http://www.cems.uwe.ac.uk/~clsimons/CaseStudies/ManualDesigns.pdf

Transformed Vargha-Delaney Effect Size

Geoffrey Neumann1(B), Mark Harman2, and Simon Poulding3

1 University of Stirling, Stirling, UK
gkn@cs.stir.ac.uk

2 CREST Centre, University College London, London, UK
3 Blekinge Institute of Technology, Karlskrona, Sweden

Abstract. Researchers without a technical background in statistics may
be tempted to apply analytical techniques in a ritualistic manner. SBSE
research is not immune to this problem. We argue that emerging ritu-
als surrounding the use of the Vargha-Delaney effect size statistic may
pose serious threats to the scientific validity of the findings. We believe
investigations of effect size are important, but more care is required in
the application of this statistic. In this paper, we illustrate the prob-
lems that can arise, and give guidelines for avoiding them, by applying
a ‘transformed’ Vargha-Delaney effect size measurement. We argue that
researchers should always consider which transformation is best suited
to their problem domain before calculating the Vargha-Delaney statistic.

Keywords: Vargha and Delaney · Effect size · Threats to validity

1 Introduction

Software engineering researchers, and SBSE researchers in particular, have been
increasingly adept at applying statistical analysis to their empirical data. In
addition to measuring and reporting the statistical significance of the data, many
researchers also rightly report an effect size. Statistical significance indicates
how likely an observed difference between, for example, two randomized search
algorithms is genuine rather than a result of chance. By contrast, the effect size
provides an indication of the practical importance of any observed difference
between the algorithms, while taking into account their inherent variability.

Vargha and Delaney’s effect size measure [17] is regarded as a robust test
when assessing randomized algorithms such as those used in SBSE [3]. The
test returns a statistic, Â (often denoted Â12 in SBSE research), that takes
values between 0 and 1; a value of 0.5 indicates that the two algorithms are
stochastically equivalent, while values closer to 0 or 1 indicate an increasingly
large stochastic difference between the algorithms.

One of the most attractive properties of the Vargha-Delaney test is the sim-
ple interpretation of the Â statistic: for results from two algorithms, A and B,
ÂAB is simply the expected probability that algorithm A produces a superior
value to algorithm B. If ÂAB = 0.7 then Algorithm A is expected to ‘beat’
Algorithm B 70 % of the time, which may lead us to conclude the Algorithm A

c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 318–324, 2015.
DOI: 10.1007/978-3-319-22183-0 29

Transformed Vargha-Delaney Effect Size 319

is ‘better’ than Algorithm B (and with a fairly large effect size). We can think of
ÂAB as a contest between algorithms A and B, repeated over a number of trial
applications, with a draw counting equally for both algorithms. Other effect size
statistics do not have this intuitive interpretation.

However, if we are to ensure this contest has a correct interpretation, we must
be careful to compare the ‘right’ data values from the algorithms. In this paper
we argue that the data observed for two techniques or algorithms may need to
undergo transformation before we calculate the Â statistic. While data transfor-
mations of the types we describe here are a common practice in statistics, we
contend they are not applied in SBSE research as often as they should be. In the
following section we demonstrate that the Vargha-Delaney test can be misinter-
preted when it is applied to untransformed data, leading to serious threats to
validity that can reverse the scientific findings of the study that contains them.

2 Misapplication of Vargha-Delaney Effect Size

Consider the illustrative data that might be obtained from two different algo-
rithms, set out in Fig. 1(a), in which the problem demands that lower values are
better than higher values. Suppose the values recorded in each trial are execution
times in seconds. In this case, ÂAB = 0.315. As lower scores are better here, this
would indicate that A is the clear winner out of A and B.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
6.02 0.01 0.00 0.02 0.04 0.05 0.01 0.03 15.00 9.04
0.05 0.05 2.00 0.09 0.08 0.06 0.05 0.09 0.09 0.08

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
6.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.00 9.00
0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fig. 1. Illustrative Example of Three SBSE Algorithm Results

The analysis is deceptively simple, and in fact it is oversimplified. Unfortu-
nately, many SBSE researchers (the present authors included) might have been
tempted to simply apply Â to raw (untransformed) data. This oversimplifica-
tion can lead to serious threats to the construct validity of the scientific findings.
To illustrate this threat to validity, suppose we are interested in execution time
because our use-case involves a user who will become irritated should they have
to wait too long for an answer. It is widely believed that response times lower
than 100 ms are, for all practical purposes, imperceptible to users [4].

If this is our use-case, then we should, at least, first transform the data to
reflect the fact that values lower than 100 ms are considered equally good (essen-
tially ‘instantaneous’). The transformed data for this response-time scenario is
depicted in Fig. 1(b). In this more use-case-compliant analysis, ÂAB = 0.615,

320 G. Neumann et al.

completely reversing the findings of the study; Algorithm A is now seen to be
the loser, not the winner. As can be seen, applying Vargha-Delaney effect size
to untransformed data can result in a potential threat to validity, able to under-
mine the scientific findings of the entire study. Transforming the data prior to
the application of the Vargha-Delaney test addresses this threat.

We refer to this approach as Pre-Transforming Data (PTD). It is one of
two techniques discussed in this paper for avoiding these important threats to
validity. As an alternative to transforming data before Â is calculated, the com-
parisons that are performed during the Â test could be modified. We refer to
this as the Modified Comparison Function (MCF) technique. PTD is simpler
to apply and normally sufficient, although the MCF technique is strictly more
expressive, and so may be necessary in some scenarios. For example, when the
quality of a result is a function of multiple values, pareto dominance could be
incorporated into an MCF while PTD could not achieve this.

The key to the correct application of the Vargha-Delaney effect size measure
lies in considering what it means for one algorithm to be superior to another.
This is a question that goes to the very heart of any empirical investigation of
algorithms. Non-parametric statistical tests such as Vargha-Delaney are cham-
pioned because of a lack of assumptions. However, we have to be careful not
to relinquish one set of questionable assumptions, only to tacitly incorporate
another set of highly flawed assumptions. In particular, we ought not to be
seduced by the apparent precision of our measurements, but should be ready to
transform our data to represent the appropriate precision of the solution space.
In the remainder of this paper we give guidelines to illustrate how researchers
might choose different transformations for different scenarios.

3 Transforming Data and the Â Comparison Function

Calculating Â requires the comparison of each data point in one sample set
with each data point in the other. The calculation is implemented in many
statistical packages and is widely used. One advantage of using PTD is that the
experimenter need not change the computation of Â at all. Rather, they simply
apply their existing Â computation to the pre-transformed data, in order to
avoid the threat to validity.

When PTD is used, Â is calculated only after the data has been transformed
using a many-to-one function, fptd. The function fptd captures the precision
inherent in the judgement of whether one algorithm is superior to another for
our proposed use-case. fptd can be used to ‘bucket together’ any observed values
that should be considered equivalent for the purposes of algorithm comparison
(such as all those timings lower than 100ms in response time).

By contrast, MCF modifies the way in which the comparisons themselves are
performed. Given two numeric results x1 and x2, Â simply determines which
is true out of x1 > x2, x1 < x2 and x1 = x2. With the MCF technique, this
comparison is replaced by a function, fmcf , which takes, as input, two results
x1 and x2. These may be simple numeric values or may be more complex data

Transformed Vargha-Delaney Effect Size 321

structures. fmcf returns one of three possible outcomes (x1is better than x2, x1is
worse than x2 and x1equals x2).

In the remainder of this paper we consider possible ways in which fptd and
fmcf might be defined for different use-case scenarios, thereby illustrating our
proposed approach to the transformed Vargha-Delaney effect size measure.

Using Moore’s law: An observation originally made in 1965 by Gordon Moore
stated that the number of transistors on a dense integrated circuit approximately
doubles every two years [11]. There are various interpretations of the speed up
implications achievable simply by advances in underlying hardware. However,
if Algorithm A is faster than Algorithm B by 10 % we can safely assume that
this ‘advantage’ is equivalent to less than 6 months of Moore’s law. The precise
determination of bucketing remains for the researcher to define and justify, but
we might consider exponentially larger bucket sizes to take account of the erosion
of performance advantages due to Moore’s law.

Implementation differences: For problems concerning computational efficiency
bucketing techniques could be set so that only improvements that are greater than
those matched by mere implementation improvements are counted. Areas of imple-
mentation that we might consider include parallelization or hardware and soft-
ware changes. In the case of parallelization it is possible to estimate how much
time could be saved if a serial process were run in parallel. Amdahl’s law [2] states
that if a process is currently being run entirely sequentially and s is the propor-
tion of time spent executing parts of the process that cannot be parallelized, then
parallelizing it would cause it to run 1/(s + (1−s)

N) times faster where N is the
number of available processors. If the cost of additional parallel computation can
be assessed, then this could be used to determine a threshold for bucketing.

Categorical Thresholds: In some situations there is a natural boundary that
could be used as a threshold for equivalence bucketing. Often this will be a
boundary between an unacceptable result and an acceptable result (as in the
case of branch coverage distance [5]).

Singh and Kahlon [15] and Shatnawi [14] give thresholds for object oriented
programming metrics such as information hiding, encapsulation, class complexity,
inheritance, class size, cohesion and coupling. These metrics can be used to predict
certain characteristics of ‘poorly designed’ programs (those above threshold have
a ‘code smell’). The fitness function that guides search-based refactoring to remove
such smells might use the raw OOP metric value to guide it [7,12]. However, when
it comes to assessing effect size, we should only consider a ‘win’ occurring when
the metric value indicates the smell is removed (i.e. the metric value moves within
threshold).

Thresholds can be defended and justified in many ways. There are often
precedents of considering certain threshold values. For example Schneider [13]
favours precision above 0.6 and recall above 0.7 (based on work by Ireson [9]),
while McMinn states that the proportion of runs in which a branch is covered
in 50 runs during testing needs to be more than 60 % [10]. PTD could be used

322 G. Neumann et al.

here, accompanied by a justification of the transformation applied to the data
based on these threshold values. Doing so will strengthen the conclusion validity
by ruling out ‘trivial wins’.

Time Scales: Ali et al. [1] review test case generation and state that a difference
of a few minutes in how long a test case takes to run is unlikely to be of practi-
cal importance. One might characterise improvements in terms, of whether the
difference is noticeable (100ms delay threshold), whether it can be used interac-
tively (a few second delay), whether it can be achieved overnight (perhaps more
suitable to regression test optimisation [18]) and so on. These could be used as
thresholds for PTD.

Decomposition: If fitness is calculated from more than one metric then this
provides many more options for Transformed VD. Many ideas from multi objec-
tive optimization, such as pareto dominance, could be explored even though the
problem itself was not optimized as a multi objective problem. This could simply
mean using a MCF, which only returns a difference between two solutions when
one solution pareto dominates the other (it achieves at least equal performance
in every objective and better performance in at least one objective [16]).

However, a much more sophisticated and problem specific MCF could be
used. Objectives could be prioritized, each objective could have its own thresh-
olds and conditional statements could be used so that the importance of one
objective depends on the results of other objectives. In addition to objectives,
fitness functions obtained by testing on a set of problem instances are also poten-
tially decomposable. Comparisons could, for example, take into account growth
functions across a set of problem instances of increasing complexity so that scala-
bility can be compared. Hsu notes the importance of both objective prioritization
and growth functions in software testing [8].

This discussion has highlighted many ways in which two solutions can be com-
pared which cannot be replicated simply by pre-transforming the data, clearly
demonstrating that this is one area in which the MCF technique provides much
more power than both standard Â and also PTD. However, PTD is simple: once
transformed, the data can be compared using any existing VD test.

4 Conclusion

We have demonstrated how ritualistic application of the Vargha-Delaney Â effect
size may reverse technical findings, leading to a fundamentally flawed scientific
analysis. The problem applies, not only to work on Search Based Software Engi-
neering (SBSE) [6], but any work involving the comparison of randomised algo-
rithms, although we chose to illustrate the problem using examples drawn from
SBSE. This serious threat to validity cannot be overcome by simply avoiding the
use of Â, because effect size reporting is essential. To address this problem, we
proposed two approaches that enable the Vargha-Delaney measure to be applied
to transformed data. Finally, we observe that although our paper focuses on

Transformed Vargha-Delaney Effect Size 323

the Vargha-Delaney effect size, there is no reason why these ideas could not be
applied to other statistical tests used by SBSE researchers.

References

1. Ali, S., Briand, L.C., Hemmati, H., Panesar-Walawege, R.K.: A systematic review
of the application and empirical investigation of search-based test case generation.
IEEE Trans. Softw. Eng. 36(6), 742–762 (2010)

2. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the Spring Joint Computer Conference,
pp. 483–485. ACM, 18–20 April 1967

3. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing ran-
domized algorithms in software engineering. Softw. Test. Verif. Reliab. 24, 219–250
(2012)

4. Department of Defense: US DOD MIL-STD 1472-F: Human engineering standard
(1999)

5. Harman, M., Jia, Y., Zhang, Y.: Achievements, open problems and challenges for
search based software testing (keynote). In: 8th IEEE International Conference on
Software Testing, Verification and Validation (ICST 2014), Graz, Austria, April
2015

6. Harman, M., Jones, B.F.: Search based software engineering. Inf. Softw. Technol.
43(14), 833–839 (2001)

7. Harman, M., Tratt, L.: Pareto optimal search-based refactoring at the design level.
In: 9th Annual Conference on Genetic and Evolutionary Computation (GECCO
2007), pp. 1106–1113. ACM Press, London, July 2007

8. Hsu, H.Y., Orso, A.: Mints: a general framework and tool for supporting test-suite
minimization. In: IEEE 31st International Conference on Software Engineering,
ICSE 2009, pp. 419–429. IEEE (2009)

9. Ireson, N., Ciravegna, F., Califf, M.E., Freitag, D., Kushmerick, N., Lavelli, A.:
Evaluating machine learning for information extraction. In: Proceedings of the
22nd international conference on Machine learning, pp. 345–352. ACM (2005)

10. McMinn, P.: How does program structure impact the effectiveness of the crossover
operator in evolutionary testing? In: 2010 Second International Symposium on
Search Based Software Engineering (SSBSE), pp. 9–18. IEEE (2010)

11. Moore, G.E., et al.: Cramming more components onto integrated circuits. Proc.
IEEE 86(1), 82–85 (1998)

12. O’Keeffe, M., ÓCinnédie, M.: Search-based refactoring: an empirical study. J.
Softw. Maint. 20(5), 345–364 (2008)

13. Schneider, K., Knauss, E., Houmb, S., Islam, S., Jürjens, J.: Enhancing security
requirements engineering by organizational learning. Requirements Eng. 17(1),
35–56 (2012)

14. Shatnawi, R.: A quantitative investigation of the acceptable risk levels of object-
oriented metrics in open-source systems. IEEE Trans. Software Eng. 36(2), 216–225
(2010)

15. Singh, S., Kahlon, K.: Object oriented software metrics threshold values at quan-
titative acceptable risk level. CSI Transact. ICT 2(3), 191–205 (2014)

324 G. Neumann et al.

16. Srinivas, N., Deb, K.: Multi-objective function optimization using non-dominated
sorting genetic algorithms. Evol. Comput. 2(3), 221–148 (1995)

17. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common lan-
guage effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2),
101–132 (2000)

18. Yoo, S., Harman, M.: Regression testing minimisation, selection and prioritisation:
a survey. J. Softw. Test. Verif. Reliab. 22(2), 67–120 (2012)

Optimizing Software Product
Line Architectures with OPLA-Tool

Édipo Luis Féderle1, Thiago do Nascimento Ferreira1(B),
Thelma Elita Colanzi2, and Silvia Regina Vergilio1

1 DInf - Federal University of Paraná, Curitiba CP: 19081, 81531-980, Brazil
edipofederle@gmail.com, {tnferreira,silvia}@inf.ufpr.br
2 DIN - State University of Maringá, Maringá 87020-900, Brazil

thelma@din.uem.br

Abstract. MOA4PLA is an approach proposed for Product Line Archi-
tecture (PLA) design optimization, based on multi-objective algorithms
and different metrics that consider specific PLA characteristics. To allow
the practical use of MOA4PLA, this paper describes OPLA-Tool, a sup-
porting tool that implements the complete MOA4PLA process. OPLA-
Tool has a graphical interface used to choose algorithms, parameters,
search operators used in the optimization, and to visualize the alternative
PLAs (solutions), with their fitness values associated and corresponding
class diagrams. The paper also describes an experiment conducted to
evaluate the usefulness of OPLA-Tool. Results show that OPLA-Tool
achieves its purpose and that improved solutions are obtained.

Keywords: SPL · Multi-objective algorithms · Architecture

1 Introduction

The Software Product Line (SPL) has been adopted in the industry, with focus
on reuse of software artifacts, for building product families [10,12]. The Product
Line Architecture (PLA) is an important artifact that contains all the common-
alities and variabilities of a SPL. It is the basis to derive the products architec-
tures. Then, the PLA needs to be generic and flexible, and we can conclude that
the PLA design is not an easy task. It is impacted by many factors, and several
problems may occur as a result of a poorly designed architecture, for exam-
ple, instability, failure to meet business requirements, maintenance, scalability,
implementation difficulties, and so on [6].

To help in this task, Colanzi et al. [3] introduced MOA4PLA, a Multi-objective
Optimization Approach for PLA Design. Such approach encompasses a process,
including: the construction of the PLA representation by using a metamodel;
the definition of an evaluation model that includes a set of metrics that are
specific for the PLA context; search operators to improve modularization and to
be used by search-based and multi-objective algorithms. At the end, a set of PLA
alternatives is produced, representing the best trade-off between the objectives.
c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 325–331, 2015.
DOI: 10.1007/978-3-319-22183-0 30

326 É.L. Féderle et al.

MOA4PLA has presented good results, reported in the literature [2,3]. However,
to allow the use of MOA4PLA, in practice, a supporting tool is fundamental.

In the literature, we can find some tools that could provide automated sup-
port for MOA4PLA. Darwin Tool [7] uses Genetic Algorithm to produce software
architectures by adding/removing design patterns and Dearthóir Tool [1] opti-
mizes software architectures using the heuristic Simulated Annealing. It restruc-
tures classes hierarchies and moves their methods to minimize and eliminate
methods unused and code duplication. However, we can observe that such tools
need adaptation to support MOA4PLA application. Also, they do not consider
specific PLA characteristics.

In this sense, a tool, called OPLA-Tool (Optimization for PLA Tool), was
proposed to support the use of MOA4PLA. OPLA-Tool implements the complete
MOA4PLA process and allows the automated PLA optimization, contributing
to reduce efforts in the PLA design. In addition to this, it makes easy experi-
mental evaluation of MOA4PLA. In this way, this paper describes OPLA-Tool
and presents an empirical study conducted in order to evaluate its usefulness by
analysing the obtained solutions.

This paper is organized as follows. Section 2 reviews MOA4PLA and presents
OPLA-Tool. Section 3 describes how the empirical study was conducted, presents
and analyses the results. Finally, Sect. 4 concludes the paper.

2 OPLA-Tool

OPLA-Tool implements the MOA4PLA process, presented in Fig. 1(a). The
modules that compose OPLA-Tool are presented in Fig. 1(b).

Construction of the PLA RepresentationDefinition of the Evaluation Model

Multi-objective Optimization

Transformation and Selection

 : PLA : Evaluation Measures

 : Constraints

 : Evaluation Model : PLA Representation

 : Set of PLA Representations

 : Set of Potential PLAs

(a) MOA4PLA Process [3]. (b) OPLA-Tool Modules

Fig. 1. MOA4PLA Approach and OPLA-Tool

The module OPLA-GUI offers a graphical interface that allows the architect
to select the input PLA, the search based algorithm parameters and operators.
This module is also responsible for showing the results in terms of PLA alter-
native designs and theirs fitness. All input and output artifacts are XMI files,
which is a standard used to allow information exchange by different UML tools.

Optimizing Software Product Line Architectures with OPLA-Tool 327

The module OPLA-Encoding automated the step Construction of the PLA
Representation (Fig. 1(a)). It receives as input a class diagram, XMI files, gen-
erated by Papyrus1 (Eclipse plugin), which is used to create and edit UML
models. The PLA design is encoded from class diagram (with classes, interfaces,
attributes, methods, components and SPL variabilities including variation points
and variants) to the representation used by the algorithm. More details about
this representation are found in [3].

By using OPLA-GUI, the architect selects the metrics to be used in the evalu-
ation model (Definition of the Evaluation Model step). Four objective functions
are available in OPLA-Tool: (a) CM function provides basic indicator about
cohesion, coupling and size; (b) FM function measures the feature modulariza-
tion; (c) Ext function measures the extensibility degree of SPL in terms of the
PLA abstraction [8]; and (d) Eleg function measures the design elegance [11].

The module OPLA-Core implements the Multi-Objective Optimization step.
The algorithm searches for the best solutions (alternative PLAs), guided by the
evaluation model previously defined and using MOA4PLA search operators, spe-
cific for PLA context [2,3]. In this first version of OPLA-Tool, two algorithms are
available: NSGA-II and PAES. They were implemented by using jMetal [5], an
object-oriented framework developed in Java and used in multi-objective opti-
mization with metaheuristics. Modules OPLA-Patterns and OPLA-ArchStyles
implement search operators related, respectively to, design pattern, such as Bridge
and Strategy, and architectural styles, such as layered and client-server ones.

Figure 2 shows the main OPLA-Tool screens. In the General Configuration
Tab the default settings, such as UML profile or temporary directory, are defined.
In the Execution Configuration Tab the algorithms are selected and configured.
The Results Tab presents the solutions found by the algorithm and corresponding
objective values. The Non-Dominated Solutions Tab shows the found values rel-
ative to the non-dominated solutions generated. Finally, the architect visualizes
the solutions in a readable form (class diagram) generated by OPLA-Decoding
module (Transformation and Selection step), and selects the best one accord-
ing to his/her needs. The tool does not implement any mechanism to help in
this choice.

3 Empirical Study

An empirical study was performed aiming at evaluating whether OPLA-Tool is
useful to support the automated MOA4PLA application in PLA design optimiza-
tion. Differently from the experiments previously reported in [2,3], the exper-
iment herein described was conducted with both algorithms implemented in
OPLA-Tool: NSGA-II and PAES, and three objectives: CM, FM, Ext, related to
basic design principles, feature modularization and PLA extensibility. The goal

1 http://www.eclipse.org/modeling/mdt/papyrus/.

http://www.eclipse.org/modeling/mdt/papyrus/

328 É.L. Féderle et al.

(a) General Configuration Tab (b) Execution Configurations Tab

(c) Results Tab (d) Non-Dominated Solutions

Fig. 2. Main screens in OPLA-Tool

is to compare both algorithms according to some common quality indicators, as
well as, to evaluate the solutions obtained2.

Three PLAs were used: Arcade Game Maker (AGM) [9] (original fitness
(CM, FM, Ext) = (6.1, 789, 1.5)); Mobile Media (MM) [13] (0.3, 221, 7); and
Electronics Tickets for Urban Transport (BET) [4] (0.02, 742, 3). We adopted
the same parameters for the algorithms used by Colanzi et al. [3]: maximum
number of evaluations: 30, 000; population size: 100, 90% for mutation rate. The
algorithms were executed 30 times. The PFk were obtained from the solutions
of all these executions, by eliminating duplicate and dominated ones.

Below we analyse the results, which are presented in Table 1. This table
presents the total number of solutions in PFk found by each algorithm, as well
as, the hypervolume values, with average and standard deviation. The same table
also shows the results for the statistical test of Friedman (95% significance) used
to confirm whether there is difference in the use of one or another algorithm.
In this case, only for AGM there was not statistical difference between both
algorithms. PAES is the best for MM and BET in terms of hypervolume.

2 The OPLA-Patterns and OPLA-ArchStyles modules were not used and will be eval-
uated in other studies.

Optimizing Software Product Line Architectures with OPLA-Tool 329

Table 1. Number of solutions and hypervolume

PLA PFk hypervolume statistical test

NSGA-II PAES NSGA-II PAES p-value difference?

AGM 11 20 0.00477 ± 0.00167 0.00308 ± 0.00209 0.06788 no

MM 6 7 0.00347 ± 0.00132 0.00642 ± 0.00221 0.00348 yes

BET 18 23 0.00652 ± 08.0E-4 0.00813 ± 3.6E-4 4.3204E-8 yes

Figure 3(a) and (b), produced by OPLA-Tool, show the fitness of the solu-
tions (CM and FM) in the search space. For AGM (Fig. 3(a)), NSGA-II found a
lower number of solutions but they are better distributed in the search space. It
can also be noticed that some solutions of both algorithms are similar. For MM,
the algorithms found a similar number of solutions, depicted in Fig. 3(b). How-
ever, PAES solutions are better, dominating all NSGA-II solutions. For BET,
NSGA-II solutions are better and dominate PAES solutions. Picture with BET
solutions is not shown due to lack of space.

(a) PLA AGM. (b) PLA MM.

Fig. 3. Solutions in the search space

An analysis of the fitness values of the obtained solutions show, in most
cases, an improvement with respect to the values associated with the original
PLA. For AGM, we observe that the NSGA-II solutions presented better fitness
values for CM and FM , with respect to the original PLA. Only in one solution,
the value of FM is equal to the original value. In all solutions the values for Ext
are the same. For MM, all solutions had improvements over the CM function,
however all solutions had worse results in FM function. For BET, all solutions
had improvements in relation to CM function with worst results in FM function.
For all PLAs, the values of Ext function remained the same.

Regarding PAES results, for AGM, all solutions are better in relation to its
original CM values. In 20 solutions, 12 had improvements in FM . For MM, all

330 É.L. Féderle et al.

solutions are better in relation to CM , and three solutions had improvements
in FM . However, only one solution had bad values of FM and Ext. For BET,
all solutions had improvements in relation to CM , with bad FM values. Again,
for all PLAs, the values of Ext function did not change.

We also analyzed the solutions with best trade-off between the objectives
(best ED values), and observed an improvement in the quality. For instance,
by taking for AGM, the NSGA-II solution with best ED, we observe that in
the original PLA, the GameBoard class has attributes and methods that are
associated with three features: <<play>>, <<movement>> and <<collision>>.
In the mentioned solution, the only attribute of GameBoard class, associated with
<<collision>>, was moved to a new class (Class10881). The same happens with
methods of original class associated with the feature <<collision>>. In this case,
in the solution the features are better modularized.

This experiment allows us to state that OPLA-Tool is useful to automate
the application of the complete MOA4PLA process. All MOA4PLA activities
are supported by OPLA-Tool. Different algorithms and objective functions can
be used, generating improved solutions with respect to the original PLA designs.

4 Conclusion and Future Work

This paper described OPLA-Tool, a tool for PLA optimization based on multi-
objective algorithms. It implements the complete process of MOA4PLA and has
a graphical interface to visualize the results, alternative class diagrams for a PLA
to be optimized according to a model defined by the architect.

Three PLAs and the algorithms NSGA-II and PAES were used in a study
conducted to evaluate the usefulness of the tool. The solutions presented better
fitness values mainly considering traditional metrics and feature modularization.
PAES presented the best hypervolume values for two PLAs, with statistical
difference, and a greater number of solutions in most cases. However, NSGA-II
solutions presented better fitness values when compared with the original ones.

Future work includes improvements in the OPLA-Tool mainly related to the
visualization of the solutions, implementation of new algorithms and objectives.
All these new facilities should be evaluated in future experiments. A future
evaluation is to take into account the opinion of the architects of each PLA.

References

1. Cinneide, M.: Towards automated design improvement through combinatorial opti-
misation. In: Proceedings of Workshop on Directions in Software Engineering Envi-
ronments (2004)

2. Colanzi, T.E., Vergilio, S.R.: A feature-driven crossover operator for product line
architecture design optimization. In: Proceedings of COMPSAC 2014 (2014)

3. Colanzi, T.E., Vergilio, S.R., Gimenes, I.M.S., Oizumi, W.N.: A search-based app-
roach for software product line design. In: Proceedings of SPLC 2014 (2014)

Optimizing Software Product Line Architectures with OPLA-Tool 331

4. Donegan, P.M., Masiero, P.C.: Design issues in a component-based software prod-
uct line. In: Brazilian Symposium on Software Components, Architectures and
Reuse (SBCARS), pp. 3–16 (2007)

5. Durillo, J.J., Nebro, A.J., Alba, E.: The jMetal framework for multi-objective opti-
mization: design and architecture. In: Proceedings of 2010 IEEE Congress on Evo-
lutionary Computation (CEC), Barcelona, Spain, pp. 4138–4325, Julho 2010

6. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Long-
man, Amsterdam (2002)

7. Hadaytullah, S.V., Räihä, O., Koskimies, K.: Tool support for software architecture
design with genetic algorithms. In: Proceedings of the 5th ICSEA (2010)

8. Oliveira Jr., E.D.: Systematic evaluation of software product line architectures. J.
Univ. Comput. Sci. 19, 25–52 (2013)

9. SEI: AGM (2015). http://www.sei.cmu.edu/productlines/ppl/
10. SEI: Product line hall of fame (2015). http://splc.net/fame.html
11. Simons, C., Parmee, I.: Elegant object-oriented software design via interactive,

evolutionary computation. IEEE Transact. Syst. Man Cybern. 42(6), 1797–1805
(2012)

12. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations
Theory and Practice. Wiley, New York (2010)

13. Young, T.: Using AspectJ to Build a Software Product Line for Mobile Devices.
Master’s thesis, University of British Columbia (2005)

http://www.sei.cmu.edu/productlines/ppl/
http://splc.net/fame.html

Exploring the Landscape of Non-Functional
Program Properties Using Spatial Analysis

Matthew Patrick1(B) and Yue Jia2

1 Department of Plant Sciences, University of Cambridge, Cambridge, UK
mtp33@cam.ac.uk

2 Department of Computer Science, University College London, London, UK
yue.jia@ucl.ac.uk

Abstract. Deciding on a trade-off between the non-functional proper-
ties of a system is challenging, as it is never possible to have complete
information about what can be achieved. We may at first assume it is
vitally important to minimise the processing requirements of a system,
but if it is possible to halve the response time with only a small increase
in computational power, would this cause us to change our minds? This
lack of clarity makes program optimisation difficult, as it is unclear which
non-functional properties to focus on improving. We propose to address
this problem by applying spatial analysis techniques used in ecology to
characterise and explore the landscape of non-functional properties. We
can use these techniques to extract and present key information about
the trade-offs that exist between non-functional properties, so that devel-
opers have a clearer understanding of the decisions they are making.

Keywords: Spatial analysis ·Fitness landscapes ·Program optimisation

1 Introduction

Non-functional properties describe theway inwhich a systemoperates, rather than
the actions the system performs [1]. Although two systems might be functionally
equivalent, they may differ significantly in terms of their response time, power con-
sumption and/or memory usage. These non-functional properties often conflict
with one another. For example, reducing the response time may lead to increased
power and memory requirements. The landscape of non-functional properties can
be expressed as a Pareto surface of candidate programs [2], whereby no program
is included that is surpassed on every non-functional property by some other pro-
gram; each candidate program has the same functional properties, but expresses
a different possible trade-off between non-functional properties. The task of the
developer is to select a program from the Pareto surface that has the most desir-
able trade-off of non-functional properties.

It can be difficult for developers to understand the effect their decisions have on
a system’s non-functional propertieswhilst the system is still beingbuilt. For exam-
ple, how is the developer to knowwhichnon-functional propertieswill be important
c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 332–338, 2015.
DOI: 10.1007/978-3-319-22183-0 31

Exploring the Landscape of Non-Functional Program Properties 333

for each code unit before the units have been put together? This is why work on the
non-functional properties of a system tends to occur towards the end of its devel-
opment [1]. Yet, at this late stage, there is a limit to the improvements that can be
made; it would be better for the developer to work on the non-functional proper-
ties in tandem with the functional ones. Development tools could apply techniques
such as genetic programming to explore thePareto optimal landscape [2]. In theory,
the developer would only need to specify the functional properties of each module,
then the tool will be able to suggest a number of alternative solutions, with a range
of non-functional properties.

Unfortunately, there is still a long way to go before this scenario can be realised.
Tools and techniques have been developed for creating Pareto-optimal landscapes
of non-functional properties [3]. There are also metrics available for evaluating
how difficult the optima are to achieve [4]. Yet, little attention has been given to
understanding the landscapes in terms of the relationships between non-functional
properties. This is important, as it would allow developers to decide which proper-
ties they are most interested in and hence where to focus the optimisation efforts.
We propose to characterise the landscape of non-functional properties by applying
techniques commonly used in spatial analysis for ecology.

2 Spatial Analysis

Spatial analysis techniques have been applied to understand the behaviour of var-
ious natural phenomena, ranging from the number of species a landscape can sup-
port [5], through to the rate at which a disease is able spread [6] and the likelihood
that a species will recover after a major disturbance (such as a fire [7]). The spa-
tial properties of a landscape have a significant effect on the behaviour of these
natural phenomena, such that it is not sufficient to assume that conditions are the
same everywhere in the landscape. Similarly, changes made to the program code
of a computer system are likely to have a much greater effect on its non-functional
properties when made in some regions of the Pareto-optimal landscape than oth-
ers. In ecology, spatial analysis is used to predict where things are likely to happen,
why and what will change in the future. In modelling the non-functional properties
of a system, spatial analysis can be used to determine the likely effect of decisions
made during development and give some idea of what needs to be done to achieve
desirable performance.

Spatial analysis techniques measure differences between values in one part of a
landscape and values in another [8]. Metrics can be applied to determine composi-
tion (how much of each property the landscape has), or configuration (what spatial
patterns occur in the data). They can take into account the structural properties of
the landscape (e.g. actual distances between features) or its functional properties
(e.g. the distance that a particular organism is able to travel). The configuration of
a landscape is typically assessed in terms of its auto-correlation (the similarity of
nearby values), complexity (the way its shape changes with scale) and connectivity
(the likelihood that different regions will influence each other). All three of these
properties are useful for characterising and exploring landscapes of non-functional
properties.

334 M. Patrick and Y. Jia

3 Characterising the Landscape

Auto-correlation may be measured using metrics such as Moran’s I [8], which is
based upon Pearson’s correlation coefficient. Applied globally, it measures clus-
tering across the entire landscape. A positively auto-correlated landscape, which
has the high values for a non-functional property clustered into one region and the
low values in another, has a Moran’s I value around 1. By contrast, a negatively
auto-correlated landscape, which has patches of high and low values alternately
interspersed, has a Moran’s I value around -1. Applied locally, it identifies regions
that are clustered (with similar values) or anti-clustered (with different values). In
Eq. 1, zi and zj are the values at each point, whilst wij is the distance weighting
between them and n the number of points. Another local metric, the Getis and Ord
G∗

i statistic [8], highlights regions of particularly high or low fitness compared to
the rest of the landscape. This is useful for identifying rapid changes in the trade-
offs between non-functional properties.

Ii =
nzi

∑
j wijzj

z2i
G∗

i =

∑
j wijzj∑

j zj
(1)

The complexity of a landscape may be interpreted in terms of its fractal dimen-
sion [8], whichmeasures the slope of thePareto surface’s perimeter (for each dimen-
sion) at different scales. The slope will be linear for a smooth landscape, but the
perimeter of a rugged landscape is much larger at finer scales. The fractal dimen-
sion can be used to suggest how much the landscape values are likely to change
in-between the pointswe have data for. The values of a rugged landscape (high frac-
tal dimension) change between nearby points more often than a smooth landscape
(low fractal dimension). Other techniques, such as Kernel Density Estimation and
Cox Processes can be used to predict missing values [9]. These techniques are use-
ful for visualising the landscape, as they help to fill in points for which we do not
yet know the non-functional properties. By interpolating between programs with
known non-functional properties, they might also be used to suggest programs that
could achieve the properties desired.

Connectivity is typically assessed by representing the landscape as a network
of connected regions. Network representations are used in ecology to model the
flow or migration of organisms from one patch of habitat to another [8]. Yet, it is
also possible to use them to divide the landscape into natural segments. We can
represent points on the Pareto surface as nodes in the network and set the connec-
tivity of the edge between each node to be some measure of similarity between the
non-functional properties. A clustering technique, such Normalised Graph Cuts
for image segmentation [10], can then be used to divide the landscape into dis-
tinct regions that are effective for different sets of non-functional properties. This
helps to represent the landscape of trade-offs between non-functional properties in
a way the developer can easily understand, as it reduces the problem of presenting
a continuous landscape in multiple dimensions as a discrete set of options for the
developer to choose from. As well as making it easier for the developer to visualise,
it might also be used to suggest new targets for optimisation in order to achieve a
particular set of non-functional properties.

Exploring the Landscape of Non-Functional Program Properties 335

4 Worked Example

We demonstrate some of the ways in which spatial analysis can characterise land-
scapes of non-functional properties, by means of a simple worked example. Token
passing is often used to provide mutually exclusive access in distributed systems:
a processor is only allowed access to the shared resource whilst it holds a token.
Millard et al. [11] investigated the fairness and stabilisation time of token passing
schemes on unidirectional ring networks, in which mutual exclusion can only be
guaranteed if there is exactly one token. Stabilisation time measures the average
time it takes to eliminate any additional tokens introduced by transient failures.
For successful operation, stabilisation time must be less than the failure rate. How-
ever, it may also be important for each processor to have equal access to the shared
resource — this is known as fairness. We use spatial analysis to illustrate some of
the trade-offs between these two non-functional properties.

The experiments were performed using the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) to perform multi-objective optimisation on the non-
functional properties of a ring network with three processors (n1, n2 and n3). The
policy of each processor is determined by its probability of holding onto a token
or passing it along to the next processor. A processor which has a high probability
of holding on to a token is said to be selfish, whereas a processor which has a low
probability is said to be selfless. We applied spatial analysis to understand more
about the policies that were explored by the algorithm. The Getis and Ord statistic
indicates stabilisation time is shortest when some of the processors are selfish and
others are selfless (see Fig. 1), whereas token passing is fairest when the probabili-
ties are more similar (see Fig. 2). Millard et al. [11] explain that selfless processors
pass tokens along to selfish processors which are still holding onto theirs, thus elim-
inating the additional tokens more quickly.

Red indicates high values, blue indicates low values.

Fig. 1. Getis-Ord stabilisation time
(Color figure online)

Fig. 2. Getis-Ord fairness (Color figure
online)

336 M. Patrick and Y. Jia

Fig. 3. Moran’s i stabilisation time
(Color figure online)

Fig. 4. Moran’s i fairness (Color figure
online)

Fig. 5. Segment stabilisation time
(Color figure online)

Fig. 6. Segment fairness (Color figure
online)

NB: The graphs are not symmetric due to the path followed by the NSGA-II

The Moran’s i statistic shows strong auto correlation in the centre of Fig. 4,
where solutions are fairest: once a fair probability assignment has been found,
exploring around this area is unlikely to bring significant further improvements.
The area of highest auto correlation in stabilisation time also occurs in the cen-
tre of the graph (see Fig. 3). However, this is the region where stabilisation time is
longest. It suggests that multiple restarts might be necessary to optimise networks
for stabilisation time, so as to escape this plateau in fitness. Overall, the Moran’s
i statistic is useful for revealing how the fitness landscape change across the input
domain and indicating areas where issues may occur in optimisation.

Finally, Figs. 5 and 6 show parallel coordinates for the median values of 10 dis-
tinct segments (partitions of points on the fitness landscape), created using the

Exploring the Landscape of Non-Functional Program Properties 337

Normalised Graph Cuts procedure and coloured according to median fitness. The
results support Millard et al.’s findings that fair networks have similar probabilities
of holding on to tokens for each processor, whereas networks that contain a greater
number of selfish processors stabilise more quickly. The segments with shortest sta-
bilisation time have high probabilities of holding on to tokens for two of the three
processors (see Fig. 5); these segments also have the worst fairness (see Fig. 6). The
segmentwith lowprobabilities for all processors is fairest, but it also has the longest
stabilisation time.

5 Conclusion

It can be difficult for developers to optimise the non-functional properties of a pro-
gram and as a result this tends to be done towards the end of development or not
at all. Research has been conducted into automatic optimisation techniques. Yet
there remains a divide between this and the tools needed for developers to be able to
explore and select their preferred non-functional properties. We propose to bridge
this divide by applying spatial analysis techniques used in ecology to help develop-
ers understand the fitness landscape. We can identify particular input regions that
have important properties, estimate properties not yet explored and guide explo-
ration towards potentially useful regions. Spatial analysis techniques were shown
to be effective at characterising the fitness landscape for a simple example involving
token-passing. We encourage other researchers to take advantage of the techniques
offered by spatial analysis in their own work.

References

1. Rosa, N.S., Justo, G.R.R., Cunha, P.R.F.: A framework for building non-functional
software architectures. In: 16th ACM Symposium on Applied Computing, pp. 141–
147. ACM, New York (2001)

2. Harman, M., Langdon, W.B., Jia, Y., White, D.R., Arcuri, A., Clark, J.A.: The GIS-
MOE challenge: constructing the pareto program surface using genetic programming
to find better programs. In: 25th IEEE/ACM International Conference on Auto-
mated Software Engineering, pp. 1–14. IEEE Press, New York (2012)

3. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. IEEE Trans. Evol. Comput. 19, 118–135 (2015)

4. Lu, G., Li, J., Yao, X.: Fitness landscapes and problem difficulty in evolutionary algo-
rithms: from theory to applications. In: Richter, H., Engelbrecht, A.P. (eds.) Recent
Advances in the Theory and Application of Fitness Landscapes. ECC, vol. 6, pp.
133–152. Springer, Heidelberg (2014)

5. Imad, C., Slaheddine, S., Jihen, B., Rguibi-Idrissi, H., Dakki, M.: Factors affecting
bird richness in a fragmented cork oak forest in Morocco. Acta Oecologica 35, 197–
205 (2009)

6. Gilligan, C.A., van den Bosch, F.: Epidemiologial models for invasion and persistence
of pathogens. Annu. Rev. Phytopathol. 46, 385–418 (2008)

7. Wittenberg, L., Malkinson, D., Beeri, O., Halutzy, A., Tesler, N.: Spatial and tem-
poral patterns of vegetation recovery following sequences of forest fires in a mediter-
ranean landscape, Mt. Carmel Israel. CATENA 71, 76–83 (2007)

338 M. Patrick and Y. Jia

8. Fortin, M.-J., Dale, M.R.T.: Spatial Analysis: A Guide for Ecologists. Cambridge
University Press, Cambridge (2005)

9. Diggle, P.J.: Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, 3rd
edn. CRC Press, Boca Raton (2013)

10. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 22, 888–905 (2000)

11. Millard, A.G., White, D.R., Clark, J.A.: Searching for pareto-optimal randomised
algorithms. In: Fraser, G., de Souza, J.T. (eds.) SSBSE 2012. LNCS, vol. 7515, pp.
183–197. Springer, Heidelberg (2012)

Graduate Student Papers

Interactive Software Release Planning
with Preferences Base

Altino Dantas(B), Italo Yeltsin, Allysson Allex Araújo, and Jerffeson Souza

Optimization in Software Engineering Group, State University of Ceará,
Doutor Silas Munguba Avenue 1700, Fortaleza 60714-903, Brazil
{altino.dantas,allysson.araujo,jerffeson.souza}@uece.br,

italo.medeiros@aluno.uece.br

http://goes.uece.br

Abstract. The release planning is a complex task in the software devel-
opment process and involves many aspects related to the decision about
which requirements should be allocated in each system release. Several
search based techniques have been proposed to tackle this problem, but
in most cases the human expertise and preferences are not effectively
considered. In this context, this work presents an approach in which the
search is guided according to a Preferences Base supplied by the user.
Preliminary empirical results showed the approach is able to find solu-
tions which satisfy the most important user preferences.

Keywords: Release planning · Interactive Genetic Algorithm · SBSE

1 Introduction

The decision about which requirements should be allocated in a set of releases is
a complex task in any incremental software development process. Thus, release
planning is known to be a cognitively and computationally difficult problem [1].
This problem involves many aspects, such as the customers needs and specific
constraints [2].

The current SBSE approaches to the software release planning fail to effec-
tively consider the users preferences. Therefore, the users can have issues accept-
ing such results, given that their expertise was not properly captured in the deci-
sion process. On the other hand, when human expertise might be considered,
Interactive Optimization can be applied. The main idea of this approach is to
incisively incorporate the decision maker in the optimization process, allowing a
fusion of his preferences and the objective aspects related to the problem [3].

Given this context, the Interactive Genetic Algorithm (IGA) arises. This
algorithm is derived from the Interactive Evolutionary Computation (IEC) and
is characterized by the use of human evaluations in the computational search
through bioinspired evolutionary strategies [3]. However, repeated user evalu-
ations can cause a well-known critical problem in IEC, the human fatigue [4].
This problem may result in a direct quality reduction of user evaluations, given
the cognitive exhaustion.
c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 341–346, 2015.
DOI: 10.1007/978-3-319-22183-0 32

342 A. Dantas et al.

Regarding to the application of search based techniques to release planning,
in [5] was proposed a method called EVOLVE based on GAs to decision support,
which was extended in [1] considering diversification as a means to approach the
uncertainties. Moreover, in [6] was proposed an approach aimed at maximizing
the client satisfaction and minimizing the risks of the project. Recently, Araújo
and Paixão [7] propose an interactive approach with machine learning to NRP.

This paper proposes an interactive approach to software release planning
which employs an IGA guided through a Preferences Base supplied by the user.

2 Proposed Approach

The proposed interactive approach is comprised of three components (Fig. 1).

Fig. 1. Proposed approach components and their relations.

The Interactions Manager supports the user interactions, enabling the manip-
ulation of the preferences, solutions visualization and control (start and finish) of
the search process. The user preferences are stored in the Preferences Base. The
Optimization Process is responsible to search solutions considering the Preferences
Base.

Initially, through the Interactions Manager, the user defines his preferences,
which are stored in the Preferences Base, and starts the Optimization Process. The
best solution is shown after each execution of the search algorithm and the user can
manipulate the preferences, rerun or stop the search process.

2.1 Release Planning Model

Consider a set of requirements R = {r1, r2, r3, ..., rN} available to be selected for a
set of releases K = {k1, k2, k3, ..., kP }, where N and P are the number of require-
ments and releases, respectively. Each requirement ri has a implementation cost
and risk defined by costi and riski, respectively. Each release kq has a budget con-
straint sq. Thus, the requirements with highest risk should be allocated earlier and
the sum of the costs of all requirements ri allocated in kq cannot exceed the sq.

Consider C = {c1, c2, c3, ..., cM} as the set of clients, where M is the num-
ber of clients and each client cj has a degree of importance for the company that
is reflected by a weight factor wj . A requirement ri might have a different value
for each client defined by importance(cj , ri) which represents how important the
requirement ri is to the client cj . Finally, the solution representation is a vector
S = {x1, x2, x3, ..., xN} where xi ∈ {0, 1, 2, ..., P}, where xi = 0 implies that
requirement ri is not allocated, otherwise it is allocated in release kq for q = xi.

Interactive Software Release Planning with Preferences Base 343

2.2 Model of User Preferences for Release Planning

The Preferences Base contains a set of preference assertions and their respective
importance level, explicitly described by a user. A Preference Assertion repre-
sents a requirement engineer’s preference, defined by propositional predicates, as
described in Table 1. Thus, consider T = {t1, t2, t3, ...tZ} the set of all preferences,
where Z is the number of preferences. Each ti is a tuple which contains the corre-
sponding preference assertion and the importance levelLi ∈ [1, 10]. This modeling
is provided to favor the process of preferences manipulation.

2.3 The Interactive Formulation for Software Release Planning

Considering the definitions in Sects. 2.1 and 2.2, the fitness function is defined as:

Fitness(S) =

{
score(S), if Z = 0
score(S)

penalty(S) otherwise

where score(S) is defined as:

score(S) =
N∑

i=1

yi × (valuei × (P − xi + 1) − riski × xi)

where yi ∈ {0, 1} is 1 if requirement ri was allocated in some release, that is, xi �= 0,
and 0 otherwise. The valuei contains the weighted sum of importance specified by
each client cj for a requirement ri, calculated by:

valuei =
M∑

j=1

wj × importance(cj , ri)

Therefore, the score(S) function is higher when the requirements with highest
value and risk are allocate in earlier releases.

When there are preferences, which are obtained by user interaction, the
Fitness(S) is penalized according to the importance level of each preference which
was not satisfied, as follow:

penalty(S) = 1 + µ ×
(∑Z

i=1 Li × violation(S, Ti)∑Z
i=1 Li

)

where the parameter µ ∈ R
+
0 defines the weight of the user preferences in the

penalty, Li is the importance level of preference Ti and violation(S, Ti) returns
0 if solution S satisfies the preference Ti and 1 otherwise. Therefore, the higher the
number of not satisfied preferences the higher penalty value.

Thus, the proposed interactive formulation for release planning is:

maximize Fitness(S),

subject to
n∑

i=1

costi × fi,q � sq,∀q ∈ {1, 2, ..., P}

344 A. Dantas et al.

Table 1. Set of preference assertions for Release Planning

where fi,q indicates whether the requirement ri was allocated in the release kq.

3 Preliminary Empirical Study

A preliminary empirical study was conducted to evaluate the proposed approach
over two distinct instances composed by real data with 50 and 25 independent
requirements obtained from [8], named as dataset-1 and dataset-2, respectively.

Interactive Software Release Planning with Preferences Base 345

The implementation risk of each requirement was randomly assigned. The num-
ber of releases for dataset-1 and dataset-2 was fixed to 5 and 8, respectively. The
budget for each release was defined as the sum of all requirements costs divided by
the number of releases. The instances and results are available on-line1.

Regarding to the search algorithm, the IGA was applied with 100 individuals
per population, 1000 generations, 90 % crossover rate, 1 % mutation rate and 20 %
elitism rate. These parameters were empirically obtained. The IGA was executed
30 times for each instance and µ variation.

To simulate a user, for each instance, a set of preference assertions, without
conflicting, was randomly generated and included in the Preferences Base. The
number of preferences was 50 and 25 for the dataset-1 and dataset-2, respectively.

The experiments aimed at answering the follow research question:

RQ: How effective is the approach in finding solutions which satisfy a high number
of important preferences?

3.1 Results and Analysis

Table 2 shows average and standard deviation for the percentage of number of Sat-
isfied Preferences (SP), Satisfaction Level (SL) and score values of the solution for
each instance when µ varies. SL is a percentage of how much was reached of the
total importance of all preferences.

Table 2. Results of SP, SL and score with µ variation for each instance. The symbol
� means this result is not significantly higher than the previous one, considering the µ
variation, � (not significantly lower), � (significantly higher) and � (significantly lower),
considerering a 0.05 significance level

With µ = 0, that is, without considering the user preferences during the search
process, the solutions satisfied in average 40% and 37% of all preferences, reach-
ing 40% and 36% of SL respectively for dataset-1 and dataset-2. Using µ = 0.2,
1 http://goes.uece.br/altinodantas/pb4isrp/en.

http://goes.uece.br/altinodantas/pb4isrp/en

346 A. Dantas et al.

SP reached 62% and SL raised to 66% for dataset-1, 64% and 66% for dataset-
2. Comparing the results from µ = 1 to µ = 0, dataset-1, SP and SL increased
43% and 48% respectively, with a scoring loss of only 10.3%. For dataset-2, the
increments were 51% and 58% and score loss of 11.7%.

So, given the number of user preferences equals to the number of requirements,
it is possible to satisfy more than 80% of preferences and get about 90% of Satis-
faction Level losing a maximum of 11.7% of score. Therefore, these results answer
the RQ, showing that the approach can satisfy the most the preferences with high
importance level. Besides, Wilcoxon Test showed that, for lower values of µ, there
was significant increase in SP and SL, specially, but, with significant loss of score.
For values ofµ near 1, there was no significant variations in SP, SL and score. These
results can indicate the more appropriate µ configuration.

4 Conclusions

In any iterative software development process, the decision about which require-
ments will be allocated in each software release is as complex task.

The main objective of this work was to propose an interactive approach using
a preferences base for release planning. An IGA was employed, guided by a Pref-
erences Base, which provided a final solution able to satisfy almost of all user pref-
erences, prioritizing the most important ones, with little loss of score.

As future works, it is expected to implement a mechanism to identify logical
conflicts between user preferences; assess the proposal with other interactive meta-
heuristics and consider interdependences between requirements.

References

1. Ruhe, G., Ngo-The, A.: A systematic approach for solving the wicked problem of
software release planning. Soft. Comput. 12(1), 95–108 (2008)

2. Ruhe, G., Saliu, M.O.: The art and science of software release planning. IEEE Softw.
22(6), 47–53 (2005)

3. Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of ec opti-
mization and human evaluation. Proc. IEEE 89(9), 1275–1296 (2001)

4. Harman, M., Mansouri, S.A., Zhang, Y.: Search based software engineering: a com-
prehensive analysis and review of trends techniques and applications. Department
of CS, King College London, Technical report. TR-09-03 (2009)

5. Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative app-
roach. Inf. Softw. Technol. 46(4), 243–253 (2004)

6. Colares, F., Souza, J., Carmo, R., Pádua, C., Mateus, G.R.: A new approach to the
software release planning. In: XXIII Brazilian Symposium on Software Engineering,
SBES 2009, pp. 207–215. IEEE (2009)

7. Araújo, A.A., Paixão, M.: Machine learning for user modeling in an interactive
genetic algorithm for the next release problem. In: Le Goues, C., Yoo, S. (eds.)
SSBSE 2014. LNCS, vol. 8636, pp. 228–233. Springer, Heidelberg (2014)

8. Karim, M.R., Ruhe, G.: Bi-objective genetic search for release planning in support of
themes. In: Le Goues, C., Yoo, S. (eds.) SSBSE 2014. LNCS, vol. 8636, pp. 123–137.
Springer, Heidelberg (2014)

Software Defect Classification with a Variant
of NSGA-II and Simple Voting Strategies

Emil Rubinić(B), Goran Mauša, and Tihana Galinac Grbac

Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia
{erubinic,gmausa,tgalinac}@riteh.hr

Abstract. Software Defect Prediction is based on datasets that are
imbalanced and therefore limit the use of machine learning based classi-
fication. Ensembles of genetic classifiers indicate good performance and
provide a promising solution to this problem. To further examine this
solution, we performed additional experiments in that direction. In this
paper we report preliminary results obtained by using a Matlab variant
of NSGA-II in combination with four simple voting strategies on three
subsequent releases of the Eclipse Plug-in Development Environment
(PDE) project. Preliminary results indicate that the voting procedure
might influence software defect prediction performances.

Keywords: SDP · SBSE · Multi-objective optimisation · NSGA-II

1 Introduction

Software Verification and Validation (V and V) became an important aspect
of the software life cycle and one of the key issues is developing an effective V
and V strategy based on early fault detection and Software Defect Prediction
(SDP). The verification space is huge and strategy may be based on numerous
objectives. Therefore, it is of big importance to find the best “trade-off” solutions
among multiple, and often conflicting objectives. Such optimisation problems are
known as Multi-objective Optimization Problems (MOP) and are a common case
in Search Based Software Engineering (SBSE). Performance of machine learning
approaches may vary significantly in relation to data imbalance and numerous
approaches have been developed to address this problem. Within the SDP sev-
eral approaches have already been studied [13] and AdaBoost.NC resulted with
the best overall performances in terms of the measures such as balance, G-mean
and AUC. A multiobjective genetic programming (MOGP) has been proposed
to evolving accurate and diverse ensembles of genetic program classifiers [3] and
has shown that this approach outperforms its individual members. Actually, the
MOGP approach has shown promising results when applied to fault prediction
[10] and in software reliability growth modeling [2]. As part of our project [7] we
study performance stability using different machine learning methods over dif-
ferent levels of imbalance for SDP. We partialy replicated study [3] and identified
that voting procedure may have significant influence on classifier performances
c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 347–353, 2015.
DOI: 10.1007/978-3-319-22183-0 33

348 E. Rubinić et al.

that actually motivated our further experiments that we present in this paper.
In this paper, we experiment with a Matlab variant of NSGA-II [5] to create a
classification model, and four simple voting strategies to elect one solution from
a set of NSGA-II solutions.

Pareto Optimality. The concept of optimality was primarily proposed by Edge-
worth and generalized by Pareto [4]. The individual x is said to be Pareto optimal
if there does not exist another individual y from a set of individuals which would
improve any optimisation objective without aggravating at least one other objec-
tive, i.e., there is no y from set of individuals that dominates x [12]. MOP algo-
rithms tend to minimise or maximise two or more objective functions subjected to
several equality and/or inequality constraints. Several Genetic Algorithms (GA)
have been proposed [4] based on the Pareto optimality.

ElitistNon-dominated SortingGA II. (NSGA-II) is one of the most represen-
tative second generation Multi-Objective Evolutionary Algorithms (MOEA) [1].
After the initialization, the individuals are sorted based on Pareto dominance and
several fronts are created. The individuals on the first front dominate the individ-
uals on the second and so on. Rank is assigned to each individual regarding to
the front they belong to (first front rank 1, second rank 2 etc. - the lower the bet-
ter). Ensuring diversity is important so that algorithm does not get stuck at a local
optima and is able to explore unexplored fitness landscape for better solutions [8].
Crowding distance is the measure which helps to ensure diversity among neigh-
boring individuals (the higher the better). Binary tournament selection based on
rank and the crowding distance is used to select the parent population. Crossover
and mutation are used to create offspring population. Then, the next generation
is selected from the parent population and the offspring population. The elitist
strategy is implemented so that fitter individuals have a greater probability to
pass on to the next generation [1,5].

2 Empirical Study

Data Sets Description. In this article the data from three subsequent releases
of the Eclipse Plug-in Development Environment (PDE) project is used: 2.0
(PDE2.0), 2.1 (PDE2.1), 3.0 (PDE3.0). Datasets are created using the Bug-
Code Analyzer tool [9] each containing 48 different attributes for .java source
files and number of bugs linked to the file. A file is classified as Fault Prone
(FP) if contains at least one fault and otherwise it is classified as Non Fault
Prone (NFP). Each dataset is 50 times randomly divided into training and test
datasets of equal length, as shown in Table 1.

GA Configuration. The configuration of our approach is motivated by several
articles [3,6,11]. A Matlab R2014a implementation of NSGA-II, further refered
to as mNSGA-II1 is used for minimising multiple objective functions which has

1 http://www.mathworks.com/help/gads/gamultiobj.html.

http://www.mathworks.com/help/gads/gamultiobj.html

Software Defect Classification with a Variant of NSGA-II 349

Table 1. PDE release datasets, and the training and test sets summary

Name Whole set Training sets Test sets

Attributes FP NFP Total FP NFP FP NFP

No. Type No. (%) No. (%) No. mean std mean std mean std mean std

PDE2.0 Integer 111 (19%) 465 (81%) 576 54.0 4.5 234.0 4.5 57.0 4.5 231.0 4.5

decimalPDE2.1 48 124 (16%) 637 (84%) 761 62.2 4.8 318.2 4.8 61.8 4.8 318.8 4.8

PDE3.0 275 (31%) 606 (69%) 881 137.2 6.7 303.3 6.5 137.8 6.7 302.7 6.5

the ability of using a number of sub-populations. Each sub-population is sepa-
rated from each other to achieve a wider Pareto front. Individuals can migrate
at a predetermined rate and generation interval from one sub-population to
another. mNSGA-II was set to 3 sub-populations each a size of 200. Migration
was set to every 20th generation with fraction of 20 %. The initial population was
randomly created using a random function with uniform distribution. A single
point crossover with a rate 60 %, adaptive feasible mutation because of bounded
constraints, binary tournament selection and distance crowding in the function
space was used. A fraction to keep on the first Pareto front while solver selects
individuals from other fronts, called the Pareto fraction2, was set to 0.1 and 0.35
respectively. Regarding the Pareto fraction, six task are used, which are defined:
PDE2.0-0.10, PDE2.1-0.10 and PDE3.0-0.10 and PDE2.0-0.35, PDE2.1-0.35
and PDE3.0-0.35. The algorithm terminates if a solution with optimal fitness is
found or when a maximum of 100 generations is reached. In total we used 97 deci-
sion variables X and three different bounded constraints. The first 48 variables
are weight factors w1−w48 in a range of [−100, 100] assigned to dataset attributes
a1 - a47. An arithmetical operator is placed between attributes, depending on
the next 47 variables o1 - o47 from set {+, −, *, % }. In case of division with
zero, the zero is changed to one and algorithm continues. The last two variables
are the last operator o48 and the noise ε in range [−1000, 1000]. X and one
classifier C can be defined as:

X = [w1, w2, ...w48, o1, o2, ..., o47, o48, ε] (1)

C = [(w1 · a1)o1(w2 · a2)o2...(w48 · a48)]o48w49 (2)

During the training process mNSGA-II produces (at each generation) a pop-
ulation of decision variables which is tested on a given training set. If C >0 the
file is classified as FP, otherwise it is classified as NFP. This approach were used
in article [3]. The objectives to be maximised are the ratio of correctly classi-
fied files that actually belong to FP files, the True Positive Rate (TPR), and
the ratio of correctly classified files that actually belong to NFP files, the True
Negative Rate (TNR) [3]. Our objectives are:

minimise(1 − TPR) and minimise(1 − TNR) (3)

2 http://www.mathworks.com/help/gads/examples/multiobjective-genetic-
algorithm-options.html

http://www.mathworks.com/help/gads/examples/multiobjective-genetic-algorithm-options.html
http://www.mathworks.com/help/gads/examples/multiobjective-genetic-algorithm-options.html

350 E. Rubinić et al.

For each run mNSGA-II returns a set of solutions located on the Pareto approx-
imated (PA) front. The term PA front is used to indicate that there may be a
better Pareto front which our algorithm did not evolve [3]. We obtained 50 PA
fronts for each task. For a given task, the Pareto optimal (PO) front and the
median Pareto front is derived. PO solutions (on the PO front) are calculated
as non-dominated solutions among the union of all evolved PA solutions. To
evaluate the quality of developed fronts, a trapezoidal numerical integration was
used (hyperarea) [4].

Making Use of Population. The individuals with the best fitness on training
sets do not guarantee best results on test sets. Four voting strategies are used
to make one classifier from a set of solutions, similar as Bhowan et al. [3]. The
first strategy is a majority vote of the individuals on the PA Front (PF-vote) of
the evolved population. The second one simply Removes solutions from the PA
Front (RPF-vote) that have a TPR or TNR rate of less than 0.5. The third one is
similar to the first and the fourth one is similar to the second, with a difference of
using the whole Final Population to select the final solution (FP-vote and RFP-
vote). In case of equal votes the file is classified as FP. A comparison between
the performances of ensemble methods is made by calculating the distance z of
the results from the zenith point3 (TPR = 1 and TNR = 1):

z =
√

((1 − TPR)2 + (1 − TNR)2) (4)

0 0.5 1
0

0.5

1

TPR

T
N
R

PDE20−035−training

0 0.5 1
0

0.5

1

TPR

T
N
R

PDE20−035−test

Fig. 1. TPR and TNR of evolved solutions on PDE2.0-0.35 at training and test sets
(Color figure online)

3 Results

Figure 1 displays TPR and TNR of evolved solutions during 50 mNSGA-II runs
for the PDE2.0-0.35 task, each time with a different combination of a training
and test set. The obtained PA front solutions are represent by blue dots, the

3 http://en.wikipedia.org/wiki/Zenith.

http://en.wikipedia.org/wiki/Zenith

Software Defect Classification with a Variant of NSGA-II 351

Table 2. Hyperarea of evolved PA fronts and training execution times

Task: Hyperarea training Hyperarea testing Training time(s)

mean std min max PO mean std min max PO total mean std

PDE2.0-0.10 0.89 0.02 0.84 0.93 0.94 0.81 0.02 0.77 0.87 0.89 2901.6 58.0 10.9

PDE2.0-0.35 0.89 0.02 0.84 0.93 0.94 0.81 0.03 0.76 0.87 0.91 2401.9 48.0 11.5

PDE2.1-0.10 0.82 0.02 0.77 0.86 0.87 0.74 0.03 0.66 0.77 0.83 3577.8 71.6 1.4

PDE2.1-0.35 0.82 0.02 0.76 0.89 0.89 0.74 0.02 0.66 0.78 0.83 3294.6 65.9 12.2

PDE3.0-0.10 0.78 0.02 0.73 0.82 0.83 0.74 0.01 0.71 0.78 0.80 3806.4 76.1 13.9

PDE3.0-0.35 0.80 0.01 0.76 0.82 0.84 0.74 0.02 0.71 0.78 0.81 3548.0 71.0 14.5

PO solutions by blue dots, the PO front with green line and the median Pareto
front calculated from the PA solutions is displayed with a red line. The test
results are more dispersed compared to the training results, which is natural
because the model was created on training sets. Table 2 reports average (mean),
standard deviation (std), minimal (min), maximal (max) and PO hyperarea of
evolved PA fronts during all mNSGA-II runs for each task. The best fronts have
been evolved on PDE2.0 (smallest set) and the worst on PDE3.0 (biggest set).
Training durations are also given in Table 2 with the purpose of comparing the
duration of −0.10 and −0.35 tasks. Training time can vary depending on the
computer configuration used. As it can be seen from Table 2, the −0.35 tasks
are carried out more quickly compared to the −0.10 tasks, and training time
increases as the size of dataset increases.

Table 3. Voting results summary using different strategies on the test datasets

Task: PF-vote RPF-vote

TPR TNR z TPR TNR z

mean std mean std mean std mean std mean std mean std

PDE2.0-010 0.618 0.106 0.848 0.049 0.420 0.080 0.744 0.091 0.760 0.058 0.363 0.052

PDE2.0-035 0.583 0.097 0.870 0.042 0.442 0.085 0.685 0.088 0.796 0.044 0.383 0.059

PDE2.1-010 0.563 0.095 0.791 0.069 0.495 0.057 0.650 0.075 0.702 0.060 0.469 0.035

PDE2.1-035 0.538 0.106 0.824 0.061 0.503 0.083 0.625 0.077 0.741 0.054 0.462 0.049

PDE3.0-010 0.600 0.081 0.752 0.064 0.480 0.041 0.679 0.056 0.676 0.045 0.461 0.025

PDE3.0-035 0.612 0.067 0.740 0.057 0.474 0.040 0.655 0.052 0.693 0.050 0.466 0.032

Task: FP-vote RFP-vote

TPR TNR z TPR TNR z

mean std mean std mean std mean std mean std mean std

PDE2.0-010 0.703 0.083 0.796 0.044 0.369 0.053 0.764 0.062 0.741 0.039 0.356 0.034

PDE2.0-035 0.628 0.080 0.847 0.031 0.405 0.066 0.718 0.078 0.773 0.040 0.369 0.044

PDE2.1-010 0.665 0.077 0.696 0.060 0.462 0.036 0.674 0.071 0.685 0.059 0.461 0.034

PDE2.1-035 0.590 0.083 0.778 0.054 0.473 0.058 0.642 0.077 0.716 0.055 0.464 0.044

PDE3.0-010 0.704 0.059 0.651 0.051 0.464 0.025 0.684 0.055 0.672 0.045 0.460 0.027

PDE3.0-035 0.643 0.054 0.711 0.044 0.463 0.032 0.663 0.047 0.686 0.039 0.464 0.031

352 E. Rubinić et al.

Table 3 presents the voting methods results. TNR is greater than TPR in
most tasks. We suppose this is because the dataset is imbalanced. RPF-vote and
RFP-vote strategies have produced more balanced and less dispersed results
compared to the PF-vote and the FP-vote. From the results we can assume
that border solutions, created by mNSGA-II, do not contribute much to the
improvement of the software defect classification model for imbalanced datasets
(like PDE2.0 and PDE2.1). The results of voting strategy performances indicate
that the use of the whole final population in voting (FP-vote, RFP-vote), instead
of just the first front (PF-vote, RPF-vote) with a smaller mNSGA-II Pareto
fraction can produce more dense results towards the zenith point and therefore
improve the classifier performance.

4 Conclusion and Future Work

This study has shown that using the whole final population instead of just the
first front of Matlab variant of NSGA-II together with removing border solutions
from voting process (RFP-vote) can lead to the creation of a better model for
software defect classification. However, in this study only one MOEA was used on
only three datasets. Moreover, a recent study has found that SPEA-II can evolve
a better Pareto front compared to NSGA-II on some tasks and that SPEA-II
tends to locate more results on the middle region of the Pareto front [3]. In
our study, the middle region solutions are more desirable than the edge region
solutions. Therefore, our future work will perform a more detailed study on this
subject, exploring other models and including test of statistical significance.

Acknowledgments. The work presented in this paper is supported by the University
of Rijeka Research Grant 13.09.2.2.16.

References

1. Abraham, A., Goldberg, R.: Evolutionary Multiobjective Optimization: Theoret-
ical Advances and Applications. Springer, Heidelberg (2006). Science & Business
Media

2. Afzal, W., Torkar, R.: A comparative evaluation of using genetic programming for
predicting fault count data. In: ICSEA 2008, pp. 407–414 (2008)

3. Bhowan, U., Johnston, M., Zhang, M., Yao, X.: Evolving diverse ensembles using
genetic programming for classification with unbalanced data. IEEE TEC 17(3),
368–386 (2013)

4. Coello Coello, C., Lamont, G.: Evolutionary Algorithms for Solving Multi-
Objective Problems. Genetic and Evolutionary Computation Series. Springer,
Berlin (2007)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE TEC 6(2), 182–197 (2002)

6. Ferrucci, F., Gravino, C., Oliveto, R., Sarro, F.: Genetic programming for effort
estimation: an analysis of the impact of different fitness functions. In: SSBSE 2010,
pp. 89–98 (2010)

Software Defect Classification with a Variant of NSGA-II 353

7. Galinac Grbac, T., Mauša, G., Dalbelo Bašić, B.: Stability of software defect pre-
diction in relation to levels of data imbalance. In: SQAMIA (2013)

8. Harman, M., McMinn, P.: A theoretical and empirical study of search based testing:
local. global and hybrid search. IEEE TSE 36(2), 226–247 (2010)

9. Mauša, G., Galinac Grbac, T., Dalbelo Bašić, B.: Software defect prediction with
bug-code analyzer - a data collection tool demo. In: SoftCOM 2014 (2014)

10. Sarro, F., Di Martino, S., Ferrucci, F., Gravino, C.: A further analysis on the use
of genetic algorithm to configure support vector machines for inter-release fault
prediction. In: SAC 2012, pp. 1215–1220

11. Sarro, F., Ferrucci, F., Gravino, C.: Single and multi objective genetic programming
for software development effort estimation. In: ACM SAC 2012, pp. 1221–1559
(2012)

12. Shin, Y., Harman, M.: Pareto efficient multiobjective test case selection. In: ISSTA
2007, pp. 140–150 (2007)

13. Wang, S., Yao, X.: Using class imbalance learning for software defect prediction.
IEEE Trans. Reliab. 62(2), 434–443 (2013)

Author Index

Abreu, Rui 228
Aleti, Aldeida 188
Ali Babar, Muhammad 311
Araújo, Allysson Allex 295, 341
Arcuri, Andrea 93, 228

Barr, Earl T. 262
Bian, Yi 109, 221
Bokhari, Mahmoud A. 77
Bormer, Thorsten 77
Bowles, Edward 255, 276
Brownlee, Alexander E.I. 125, 255
Bruce, Bobby R. 276
Burles, Nathan 255, 276

Calderón Trilla, José Manuel 62
Campos, José 93, 228, 235
Colanzi, Thelma Elita 173, 325

Daka, Ermira 235
Dantas, Altino 295, 341
De Jong, Kenneth 3
De Lucia, Andrea 157
Di Nucci, Dario 157
Dorn, Jonathan 235
Dreyton, Duany 295
Drugan, Madalina 188

Féderle, Édipo Luis 325
Ferreira, Thiago do Nascimento 325
Fraser, Gordon 93, 141, 228, 235
Freitas, Átila 295

Goffi, Alberto 248
Gorla, Alessandra 248
Grbac, Tihana Galinac 347

Harman, Mark 221, 262, 269, 282, 289,
301, 318

Jia, Yue 221, 262, 269, 301, 332
Jiang, He 203

Kirbas, Serkan 221
Kocsis, Zoltan A. 125, 255

Lai, Xiaochen 203
Langdon, William B. 12, 269
Li, Lingbo 289
Li, Xiaochen 203

Li, Zheng 109, 221
Liang, Peng 311

Marginean, Alexandru 262, 269
Mariani, Thainá 173
Mattavelli, Andrea 248
Mauša, Goran 347

Neumann, Geoffrey 318

Paixao, Matheus 282
Panichella, Annibale 157
Paterson, David 141
Patrick, Matthew 332
Petke, Justyna 242
Poulding, Simon 62, 318

Ren, Zhilei 203
Rojas, José Miguel 93
Rubinić, Emil 347
Runciman, Colin 62

Sarro, Federica 301
Senington, Richard 125
Simons, Chris 47
Singer, Jeremy 47
Souza, Jerffeson 295, 341
Srivisut, Komsan 276
Swan, Jerry 125, 255

Turner, Jonathan 141

Veerapen, Nadarajen 255
Vergilio, Silvia Regina 173, 325
Vivanti, Mattia 93

Wagner, Markus 77
Weimer, Westley 235
White, David R. 47
White, Thomas 141
Wu, Fan 289

Xu, Yongrui 311

Yeltsin, Italo 341
Yoo, Shin 31
Yuan, Fang 109

Zaidman, Andy 157
Zhang, Yuanyuan 282, 289, 301
Zhao, Ruilian 109

	Message from the SSBSE 2015 General Chair
	Message from the SSBSE 2015 Program Chairs
	Organization
	Contents
	Invited Talks
	Co-Evolutionary Algorithms: A Useful Computational Abstraction?
	1 Introduction
	2 What IS Co-Evolution?
	3 A CoEA Framework
	4 Understanding Co-Evolutionary Algorithms
	4.1 CoEAs as Dynamical Systems
	4.2 CoEAs and Dynamic Fitness Landscapes
	4.3 CoEA Time Clocks
	4.4 Coupling CoEA Fitness Landscapes
	4.5 CoEA Problem Solutions

	5 Conclusions
	References

	Genetic Improvement of Software for Multiple Objectives
	1 Introduction
	2 Evolving Useful Programs from Primordial Ooze
	2.1 Hashes, Caches and Garbage Collection
	2.2 Mashups, Hyper-Heuristics and Multiplicity Computing
	2.3 Genetic Programming and Non-Function Requirements

	3 Improvement of Substantial Human Written Code
	3.1 Automatic Bug Fixing
	3.2 Auto Porting Functionality
	3.3 Bowtie2GP Improving 50000 lines of C++
	3.4 BarraCUDA
	3.5 Genetically Improved GPU Based Stereo Vision
	3.6 Genetically Improved GPU Based 3D Brain Imaging

	4 Plastic Surgery: Better MiniSAT from multiple Authors
	5 Creating and Incorporating New Functionality
	5.1 Babel Pidgin: Adding Double Language Translation Feature
	5.2 Grow and Serve GP Citations
	5.3 104 Speedup on Folding RNA Molecules

	6 GISMO Key Findings
	7 GISMO Impact
	References

	Research Papers
	Amortised Optimisation of Non-functional Properties in Production Environments
	1 Introduction
	2 Amortised Optimisation
	2.1 State-Based Steps: A Hill Climbing Example

	3 Case Study: Optimising the JIT Parameters for Pypy
	3.1 JIT Parameter Optimisation
	3.2 Experimental Setup
	3.3 Results

	4 Case Study: Optimising Algorithms to Hardware
	4.1 Blocked Matrix Multiplication (BMM)
	4.2 Experimental Setup
	4.3 Results

	5 Related Work
	6 Conclusion
	References

	Search-Based Refactoring: Metrics Are Not Enough
	1 Motivation
	2 Hypothesis
	3 Survey Design
	3.1 Selection of Software Designs
	3.2 Selection of Design Qualities
	3.3 Selection of Metrics
	3.4 Correlation Analysis
	3.5 Target Population

	4 Questionnaire Design
	5 The Survey Process
	6 Results
	6.1 Quantitative Results
	6.2 Qualitative Results

	7 Related Work
	8 Threats to Validity
	9 Conclusions
	9.1 Refactoring Metrics Are Not Correlated with Human Judgement
	9.2 Wider Lessons Regarding Refactoring

	References

	Weaving Parallel Threads
	1 Introduction
	2 Implicit Parallelism in Functional Languages
	2.1 Background
	2.2 Strictness, Demand Context, and Strategies
	2.3 The Granularity Problem

	3 Overview
	4 Experimental Setup and Results
	4.1 Research Questions
	4.2 Algorithms
	4.3 Software-Under-Test
	4.4 Method
	4.5 Results
	4.6 Discussion

	5 Related Work
	6 Conclusions
	References

	An Improved Beam-Search for the Test Case Generation for Formal Verification Systems
	1 Introduction
	2 Target of Optimization: Program Verification Systems
	3 Problem Formulation
	3.1 Axiomatization Coverage
	3.2 Maximizing Axiomatization Coverage

	4 Metaheuristic Approach
	4.1 The KeY System
	4.2 Algorithms

	5 Experimental Investigations
	5.1 Experimental Setup
	5.2 Code Coverage Results
	5.3 Axiomatization Coverage Results

	6 Conclusions and Future Work
	References

	Combining Multiple Coverage Criteria in Search-Based Unit Test Generation
	1 Introduction
	2 Whole Test Suite Generation for Multiple Criteria
	2.1 Whole Test Suite Generation
	2.2 Fitness Functions
	2.3 Combining Fitness Functions

	3 Experimental Evaluation
	3.1 Experimental Setup
	3.2 Results and Discussion

	4 Related Work
	5 Conclusions
	References

	Epistatic Genetic Algorithm for Test Case Prioritization
	1 Introduction
	2 Background
	2.1 Search Based Test Case Prioritization
	2.2 The Epistasis in Genetic Algorithms

	3 TCP with Epistasis
	3.1 Epistatic Test Case Segment
	3.2 One-point Crossover with Epistasis
	3.3 Two-point Crossover with Epistasis
	3.4 Discussion

	4 Empirical Study
	4.1 Experiment Setup
	4.2 Experimental Design
	4.3 Experimental Results

	5 Threats to Validity
	6 Related Work
	7 Conclusions and Future Works
	References

	Haiku - a Scala Combinator Toolkit for Semi-automated Composition of Metaheuristics
	1 Introduction
	2 Related Work
	3 Combinators
	4 The Design of Haiku
	5 Haiku - Implementation
	6 Case Study: TSP
	6.1 Semi-automated Composition of Metaheuristics

	7 Experiments
	8 Conclusion
	References

	Parameter Control in Search-Based Generation of Unit Test Suites
	1 Introduction
	2 Background
	2.1 Search-Based Unit Test Generation
	2.2 Parameter Tuning and Control

	3 Parameter Control in Unit Test Generation
	3.1 Mutation Strength in Mutating Unit Test Suites
	3.2 Deterministic Parameter Control
	3.3 Adaptive Parameter Control
	3.4 Self-Adaptive Parameter Control

	4 Empirical Evaluation
	4.1 Experiment Set-Up
	4.2 Results
	4.3 Deterministic Parameter Control
	4.4 Adaptive Parameter Control
	4.5 Self-Adaptive Parameter Control

	5 Conclusions
	References

	Hypervolume-Based Search for Test Case Prioritization
	1 Introduction
	2 Background and Related Work
	3 Hypervolume Indicator for TCP
	4 Empirical Evaluation
	5 Empirical Results
	6 Threats to Validity
	7 Conclusion and Future Work
	References

	Optimizing Aspect-Oriented Product Line Architectures with Search-Based Algorithms
	1 Introduction
	2 Search-Based Design of PLAs
	3 Representation of AOPLAs
	4 Search Operators for AOPLAs
	4.1 Aspect Rules
	4.2 Join Point Rule

	5 Empirical Study Description
	5.1 Threats to Validity

	6 Results and Analysis
	6.1 Quantitative Results
	6.2 Qualitative Results

	7 Concluding Remarks
	References

	Adaptive Neighbourhood Search for the Component Deployment Problem
	1 Introduction
	2 Component Deployment Optimisation
	2.1 Objective Function
	2.2 Constraints
	2.3 Related Work

	3 Varying the Neighbourhood Operator for the Component Deployment Problem
	3.1 Neighbourhood Strategies
	3.2 Adaptive Neighbourhood Search for the Component Deployment Problem

	4 Experiments
	4.1 Experimental Design
	4.2 Results

	5 Conclusion
	References

	Transformed Search Based Software Engineering: A New Paradigm of SBSE
	Abstract
	1 Introduction
	2 Transformed Search Based Software Engineering
	3 Related Work
	3.1 The Next Release Problem
	3.2 Search Space Reduction for the NRP

	4 Search Space Smoothing for the NRP
	4.1 The Motivation
	4.2 Search Space Smoothing Based Memetic Algorithm

	5 Experiments
	5.1 Numerical Results
	5.2 Anytime Performance Comparison

	6 Threats to Validity
	7 Conclusion and Future Work
	Acknowledgement
	References

	SBSE Challenge Papers
	Regression Test Case Prioritisation for Guava
	1 Introduction
	2 Our Approach to Test Case Prioritisation
	3 Experiments and Results
	4 Conclusions and Actionable Findings
	References

	Continuous Test Generation on Guava
	1 Introduction
	2 Continuous Test Generation (CTG)
	3 Guava's Challenges
	4 Conclusions
	References

	Generating Readable Unit Tests for Guava
	1 Introduction
	2 Measuring Unit Test Readability
	3 Generating Readability Optimized Tests
	4 Generating Readable Tests for Guava
	4.1 User Agreement
	4.2 Test Suite Generation

	5 Conclusions
	References

	Testing Django Configurations Using Combinatorial Interaction Testing
	1 Introduction
	2 Background
	3 Setup
	4 Results
	5 Conclusions
	References

	Synthesis of Equivalent Method Calls in Guava
	1 Introduction
	2 Synthesis of Equivalent Sequences of Method Calls
	3 Extending SBES to Deal with Google Guava
	4 Experimental Evaluation
	5 Conclusion
	References

	Object-Oriented Genetic Improvement for Improved Energy Consumption in Google Guava
	1 Introduction
	2 Implementation
	3 Experiments
	4 Results
	5 Conclusion
	References

	Automated Transplantation of Call Graph and Layout Features into Kate
	1 Introduction
	2 The SCALPEL Transplantation Framework
	3 Applying Autotransplantation to Kate
	4 Experiments and Results
	5 Conclusions
	References

	Grow and Serve: Growing Django Citation Services Using SBSE
	1 Introduction
	2 Approach Used to Grow and Serve a Citation Service
	3 Deployment, Conclusions and Future Work
	References

	Specialising Guava's Cache to Reduce Energy Consumption
	1 Introduction
	2 Related Work
	3 Implementation
	4 Experiments
	5 Results
	6 Conclusion
	References

	Multi-objective Module Clustering for Kate
	1 Introduction
	2 Modularizing Kate Using SBSE
	3 Conclusion and Future Works
	References

	SBSelector: Search Based Component Selection for Budget Hardware
	1 Introduction
	2 Component Selection as an Instance of MONRP
	3 Experiments and Results
	4 Conclusions
	References

	Search-Based Bug Report Prioritization for Kate Editor Bugs Repository
	1 Introduction
	2 Problem Formulation
	3 Prioritizing Bugs for Kate Editor Bugs Repository
	3.1 Results and Analysis

	4 Conclusions
	References

	Inferring Test Models from Kate's Bug Reports Using Multi-objective Search
	1 Introduction and Background
	2 Models Inference Framework
	3 Experiments and Results
	4 Conclusion
	References

	Short Papers
	Introducing Learning Mechanism for Class Responsibility Assignment Problem
	Abstract
	1 Introduction
	2 Approach
	2.1 Learning-Based Genetic Algorithm (LGA)
	2.2 Solving CRA with LGA
	2.2.1 Construct Dataset from PG
	2.2.2 Generate Frequent Itemsets and the Rule Set
	2.2.3 Learn Adaptively for Individuals in IG

	3 Experiment
	4 Related Work
	5 Conclusions
	References

	Transformed Vargha-Delaney Effect Size
	1 Introduction
	2 Misapplication of Vargha-Delaney Effect Size
	3 Transforming Data and the Comparison Function
	4 Conclusion
	References

	Optimizing Software Product Line Architectures with OPLA-Tool
	1 Introduction
	2 OPLA-Tool
	3 Empirical Study
	4 Conclusion and Future Work
	References

	Exploring the Landscape of Non-Functional Program Properties Using Spatial Analysis
	1 Introduction
	2 Spatial Analysis
	3 Characterising the Landscape
	4 Worked Example
	5 Conclusion
	References

	Graduate Student Papers
	Interactive Software Release Planning with Preferences Base
	1 Introduction
	2 Proposed Approach
	2.1 Release Planning Model
	2.2 Model of User Preferences for Release Planning
	2.3 The Interactive Formulation for Software Release Planning

	3 Preliminary Empirical Study
	3.1 Results and Analysis

	4 Conclusions
	References

	Software Defect Classification with a Variant of NSGA-II and Simple Voting Strategies
	1 Introduction
	2 Empirical Study
	3 Results
	4 Conclusion and Future Work
	References

	Author Index

