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Abstract. Multiple sequence alignment (MSA) is a basic step in many bioin-
formatics analyses, and also a NP-hard problem. In order to improve the speed,
accuracy and cater to the requirement of large-scale sequences alignment, a wide
variety of MSA methods and softwares have been subsequently developed. In
this article, we will systematically review the wildly used methods and introduce
their practical results on the benchmark Balibase 3.0 references. We come to the
conclusion that computational complexity still is the bottleneck of MSA. We
also consider future development of MSA methods with respect to applying of
more different technologies and the prospect of parallelization of MSA.
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1 Introduction

With the further rapid development of new sequencing technology, the biological
applications become more and more widely, including exposition of relationship
between nucleosome positioning and DNA methylation [1], prediction of missense
mutation or protein functionality [2, 3], the assembly of new genomes [4], crop
breeding [5], and so on. For most of these applications, multiple sequence alignments
are fundamental.

For N sequences of length L, the exact way of computing an optimal alignment has
a computational complexity of OðNLÞ, which is excessive even for small number of
sequences. Unfortunately, all sequencing technologies in production, such as Illumina,
Helicos, SOLiD and Roche/454, can produce thousands or millions of sequences
concurrently [6, 7]. In order to overcome this difficulty, many heuristic methods,
including progressive methods [8] and iterative refinement methods [9] are developed.

This article aims to systematically review the recent advance of MSA methods. It is
organized as follows. We first introduce the basic theory of heuristic methods and
review the development of wildly used techniques, including Clustal, T-Coffee, MA-
FFT, MUSCLE and Kalign in Sect. 2, and then examine their programs on the
benchmark Balibase 3.0 references [10], Oxbench [11] and Homestrad in Sect. 3.
Finally, we discuss the future development of multiple sequence alignment in Sect. 4.
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2 Overview

2.1 Theory

Progressive Method. The progressive method is the first practical MSA construction
strategy, and still composes the key of a majority of MSA programs by now. A pro-
gressive method usually is made up of four steps as follows [12]:

Step 1: Calculate a distance matrix for N input sequences. The element of this
matrix is the distance of every pair of the input sequences, and there are many ways to
messure distance, for example, angle cosine and Euclidean distance. In a exact way,
N
2

� �
pair-wise alignments are needed to count the numbers of matches, mismatches,

and indels, which are then converted to the distance measures. This procedure is costly
when N is large, as its time complexity is OðN2L2Þ;

Step 2: Construct a guide tree according to the distance matrix calculated in Step1
by a clustering analysis method. The most widely used method is UPGMA
(Unweighted Pair-Group Method with Arithmetic means) [13] which takes computa-
tion time of OðN2Þ to construct the guide tree;

Step 3: In the guide tree, an external node represents each input sequence, while an
internal node represents an MSA;

Step 4: Repeat Step1 and Step2 for the generated pair-wise alignments after con-
struction of the initial MSA.

Iterative Refinement. The progressive method is implemented using a “greedy
algorithm” by what mistakes made at the initial alignment stages cannot be corrected
later [14]. To overcome this defect, an effective approach relies on post process known
as iterative refinement, which also consists of four steps as follow [12]:

Step 1: Construct an initial MSA;
Step 2: Divide the MSA constructed in Step1 into two groups, then get rid of the

columns made up of nulls from each of the two groups;
Step 3: Realign the two groups produced in Step2 by a pair-wise sequence-to-group

or group-to-group alignment method;
Step 4: Repeat Step2 and Step3 until no gain in the alignment score or the iterative

times exceeding a predefined number.

Scoring Function. A good scoring function is necessary to guarantee this procedure
work accurately. The most widely used function is sum-of-pairs (SP) score [15] and
weighted sum-of-pairs score (WSP) [16] with affine gaps.

For a sequence set A which is made up of N sequences of length L, we define WSP
as follow:
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WSPðAÞ ¼ P
1� i\j�N

wi;jHðai; ajÞ ¼
P

1� l�L

P
1� i\j�N

wi;j½Sðai;l; aj;lÞ � v � Gði; j; lÞ� ;
ð1Þ

where Hðai; ajÞ is the alignment score of a pair of sequences in A, wi;j is the weight
corresponding to the pair sequences ½ai; aj� (wi;j ¼ 1 is an unweighted case), Sðai;l; aj;lÞ
is the match score of the pair sequences ½ai; aj� at position l, Gði; j; lÞ is a Boolean
variable which is defined as follows, if a gap opens between ai and aj at position l,
Gði; j; lÞ ¼ 1, else Gði; j; lÞ ¼ 0, and v is the penalty of gap.

2.2 Alignment Technique

Clustal. In 1988, the first Clustal program was written by Des Higgins [17], and a
dynamic programming algorithm [18] and the progressive alignment strategy devel-
oped by Feng and Doolittle [8] were combined in this program. It used a word-based
alignment algorithm [19] to calculate the distance matrix and UPGMA method was
used to construct the guide tree. In 1992, ClustalV [20] implemented profile alignments
to generate guide trees from the multiple alignment using the Neighbour-Joining
(NJ) method [21]. In 1994, ClustalW [22] improved the sensitivity of progressive
multiple sequence alignment through sequence weighting, position-specific gap pen-
alties and weight matrix choice. In 1997, ClustalX [23] provided a visual interface, so
that the multiple alignment can be displayed on the screen and all parameters were
optional, which was a significant convenience to the user’s of evaluation. The latest
member of Clustal series program is Clustal Omega [14], which can align virtually any
number of protein sequences quickly and delivers accurate alignments. For con-
structing a guide tree, Clustal Omega uses a modified version of mBed [24] which has
complexity of OðN logNÞ and the guide tree is just as accurate as those from con-
ventional methods. In Clustal Omega, the alignments are then computed using the very
accurate HHalign package [25], which aligns two profile hidden Markov models [17].

T-Coffee. The first T-Coffee (Tree-based Consistency Objective Function for alignment
Evaluation) [26] version can be track back to 2000. It implemented progressive align-
ment with a consistency-based objective function [27] and tried to maximize the score
between the final multiple alignment and a library of pair-wise aligned residue scores
which is derived from a mixture of local and global pair-wise alignments. M-Coffee [28]
is an extension of T-Coffee and uses consistency to estimate a consensus alignment, and
a meta-method for assembling multiple sequence alignments (MSA) by combining the
output of several individual methods into one single MSA. TCS (Transitive Consistency
Score) [29] is a new extended version of the T-Coffee scoring scheme for overcoming the
problem that homology and evolutionary modeling are sensitive to the underlying MSA
accuracy, and it also can improve phylogenetic tree reconstruction.

MAFFT. MAFFT [30] was a method for rapid multiple protein sequence alignment
based on FFT (Fast Fourier Transform), first released in 2002. Homologous region
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were rapidly identified by the FFT. FFT converted an amino acid sequence to a
sequence whose composition were volume and polarity values of each amino acid
residue. The original MAFFT included two different heuristics, the progressive
methods were FFT-NS-1 and FFT-NS-2 and the iterate refinement method was
FFT-NS-i. In 2005, MAFFT version 5 [31] was released with improvement of accuracy
by offering new iterative refinement options, H-INS-i, F-INS-i and G-INS-i.
And MAFFT version 5 incorporated pair-wise alignment information into objective
function. In 2007, MAFFT version 6 [32] improved accuracy of multiple ncRNA
alignment with two techniques: the PartTree algorithm and the Four-way consistency
objective function. In 2010, for speeding up program, two natural parallelization
strategies (best-first and simple hill-climbing) were implemented for the iterative
refinement stage based on MAFFT version 6, and a simple hill-climbing approach was
selected as the default [33]. In 2012, two methods had been implemented as the ‘–add’
and ‘–addfragments’ options in the MAFFT package [34] for adding unaligned
sequences into an existing multiple sequence alignment.

The newest version is MAFFT version 7 [35], it has options for adding unaligned
sequences into an existing alignment, and beyond this, it has several new features,
including adjustment of direction in nucleotide alignment, constrained alignment and
parallel processing.

MUSCLE. MUSCLE (MUltiple Sequence Comparison by Log-Expectation) [36] is a
multiple sequence alignment method of protein sequences. MUSCLE uses two distance
measures for each pair of sequences: a kmer distance (for an unaligned pair) and the
Kimura distance (for an aligned pair). Guide tree is constructed using UPGMA.
MUSCLE uses a profile function called log-expectation (LE) score. And MUSCLE
includes three stages as follow:

Stage 1: Draft progressive. This stage includes four steps (similarity measure,
distance estimate, tree construction, progressive alignment) and produces a rapid
multiple alignment, while de-emphasizing accuracy.

Stage 2: Improved progressive. This stage also includes four steps (similarity
measure, tree construction, tree comparison, progressive alignment). In the stage1, the
main source of error is the k-mer distance measure, which leads to a suboptimal tree.
MUSCLE therefore re-estimates the tree using the Kimura distance, which is more
accurate but requires an alignment.

Stage 3: Refinement. This stage is made up of four steps (choice of bipartition,
profile extraction, re-alignment, accept/reject). The third stage performs iterative
refinement using a approximate tree-dependent restricted partitioning [21].

Kalign. Kalign [31] was a MSA algorithm, which proposed in 2005. It also imple-
mented progressive alignment. And unlike other progressive methods, Kalign
employed Wu-Manber approximate string-matching algorithm [37] which made Kalign
more accurate in aspect of distance estimation. In 2007, Emmanuelle Becher etc.
proposed a tool called HMM-Kalign [38] for generating sub-optimal alignments. As
the name implies, HMM-Kalign was based on original Kalign by implementing Hidden
Markove Model. The newest inproved edition of Kalign was Kalign-LCS [39].
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It applied the longest common subsequence (LLCS) in similarity measure step, and
obtained a balance between accuracy and speed.

3 Practical Result

We examine ClustalW, Clustal Omega, T-Coffee, MAFFT:Auto, MAFFT:FFT-NS-1,
MAFFT:G-INS-i, MUSCLE and Kalign on the benchmark Balibase 3.0 references,
OXbench and Homestrad, respectively.

We evaluate the alignment results with BaliScore, including SP-score (Sum of Pairs
score) which is the percentage of homologies in the reference alignment recovered in the
estimated alignment and TC-score (Total column score) is the percentage of columns
that are recovered entirely correctly in the estimated alignment (Tables 1, 2 and 3).

Table 1. Summary of the techniques described in the review

Name Method Guide tree Sequence Server

ClustalW [22] Progressive NJ Protein
DNA

http://www.clustal.org/
clustal2/

http://www.ebi.ac.uk/Tools/
msa/clustalw2/

Clustal Omega [14] Progressive mBed,
PartTree

Protein
DNA
RNA

http://www.clustal.org/
omega/

http://www.ebi.ac.uk/Tools/
msa/clustalo/

T-Coffee [26] Progressive – Protein
DNA
RNA

http://www.tcoffee.org/
http://www.ebi.ac.uk/Tools/
msa/tcoffee/

MAFFT [35] FFT-NS-1 Progressive PartTree Protein
DNA
RNA

http://mafft.cbrc.jp/
alignment/server/

http://www.ebi.ac.uk/Tools/
msa/mafft/

FFT-NS-2
G-INS-1
FFT-NS-i Iterative refinement
E-INS-i
L-INS-i
G-INS-i
Q-INS-i

MUSCLE [36] Step1
Step2

Progressive UPGMA Protein http://www.drive5.com/
muscle/

http://www.ebi.ac.uk/Tools/
msa/muscle/

Step3 Iterative refinement

Kalign Progressive Wu-Manber Protein
DNA
RNA

http://msa.sbc.su.se/cgi-bin/
msa.cgi

http://www.ebi.ac.uk/Tools/
msa/kalign/
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From the results of SP-score and TC-score, we can see that all programs we
examined are not sensitive to divergence of sequence. All programs suffer by the
impact of a highly divergent “orphan” sequence, residue difference between groups,
N/C-terminal extensions, and internal insertions to varying degrees, respectively. And
on the whole, Clustal Omega and T-Coffee perform well, especially the results
corresponding to T-Coffee are the best.

Table 2. The SP-score of various individual methods on the benchmark Balibase 3.0 references

SP-score ClustalW Clustal
Omega

T-Coffee MAFFT:
Auto

MAFFT:
FFT-NS-1

MAFFT:
G-INS-i

MUSCLE Kalign

BaliBase Set: 11 98.7 % 99.3 % 100 % 82.9 % 62.7 % 88.4 % 90.4 % 91.2 %

BaliBase Set: 12 97.3 % 100 % 100 % 93.1 % 87.8 % 94.4 % 90.3 % 90.5 %

BaliBase Set: 20 43.5 % 93.8 % 95.6 % 42.9 % 36.9 % 48.0 % 47.6 % 70.1 %

BaliBase Set: 30 61.4 % 70.7 % 94.4 % 63.7 % 63.6 % 66.4 % 60.8 % 65.0 %

BaliBase Set: 40 93.4 % 93.3 % 97.4 % 90.7 % 88.4 % 90.6 % 90.3 % 88.7 %

BaliBase Set: 50 69.1 % 71.4 % 84.7 % 63.5 % 58.3 % 66.5 % 58.7 % 61.7 %

Average of
BaliBase

77.2 % 88.1 % 95.4 % 66.3 % 66.3 % 75.7 % 73.0 % 77.9 %

OXbench set: full 0 100 % 100 % 2.0 % 1.7 % 2.3 % 2.4 % 1.0 %

OXbench set:
master

7.7 % 73.2 % 100 % 6.9 % 6.1 % 9.0 % 7.0 % 7.1 %

OXbench set:
extended

8.1 % 11.7 % 96.2 % 7.4 % 7.3 % 8.3 % 8.8 % 7.8 %

Average of
OXbench

5.3 % 61.6 % 98.7 % 5.4 % 5.0 % 6.5 % 6.1 % 5.3 %

Homestrad 96.9 % 95.1 % 99.1 % 82.7 % 75.1 % 83.9 % 77.9 % 77.3 %

Table 3. The TC-score of various individual methods on the benchmark Balibase 3.0 references

TC-score ClustalW Clustal
Omega

T-Coffee MAFFT:
Auto

MAFFT:
FFT-NS-1

MAFFT:
G-NS-i

MUSCLE Kalign

BaliBase Set: 11 97.4 % 98.7 % 100 % 76.3 % 42.1 % 80.3 % 85.5 % 84.2 %

BaliBase Set: 12 94.2 % 100 % 100 % 86.5 % 78.8 % 88.5 % 80.8 % 80.8 %

BaliBase Set: 20 0 85.9 % 88.5 % 0 0 0 0 0

BaliBase Set: 30 22.7 % 33.1 % 79.1 % 22.7 % 22.1 % 23.3 % 23.9 % 23.0 %

BaliBase Set: 40 61.5 % 58.1 % 80.8 % 50.6 % 38.5 % 48.3 % 45.3 % 40.4 %

BaliBase Set: 50 24.4 % 27.7 % 0 16.5 % 13.5 % 19.0 % 12.7 % 12.2 %

Average of
BaliBase

50.3 % 67.3 % 74.7 % 42.1 % 32.5 % 43.2 % 41.4 % 40.1 %

OXbench set: full 0 100 % 100 % 0 0 0 0 0

OXbench set:
master

0 50.0 % 100 % 0 0 0 0 0

OXbench set:
extended

0 0 83.7 % 0 0 0 0 0

Average of
OXbench

0 50.0 % 94.6 % 0 0 0 0 0

Homestrad 91.8 87.0 % 95.5 % 53.0 % 31.4 % 57.2 % 44.2 % 31.5
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4 Conclusion and Future Development

In the past years, MSA achieved great development, and obtained good effect which
applied in many biological applications. But there still is plenty room to improve
multiple sequence alignment, especially in the respect of robustness and accuracy. In
order to solve these problems, in one hand, we should continue to develop recent
efficient MSA techniques, such as T-Coffee, in other hand we should transform the way
of thinking and apply more techniques which are not just heuristic methods, even not
just biological informatics technology to improve MSA.

Happily, many researchers devote themselves to develop MSA method. Sabari
Pramanik and S.K. Setua [40] define a new form of chromosome representation, and
deploy it on steady state Genetic Algorithm, then get better results. Siavash Mirarab,
Nam Nguyen, and Tandy Warnow propose an algorithm called PASTA [41] to realize
estimation of large-scale multiple sequence alignment. And there is a interesting
method called Phylo [42], which is a human-based computing framework applying
‘‘crowd sourcing’’ techniques to solve the Multiple Sequence Alignment
(MSA) problem. The key idea of Phylo is to convert the MSA problem into a casual
game that can be played by ordinary web users with a minimal prior knowledge of the
biological context. Cactus [43] caters to the phenomenon that much attention has been
given to the problem of creating reliable multiple sequence alignments in a model
incorporating substitutions, insertions, and deletions while far less attention has been
paid to the problem of optimizing alignments in the presence of more general rear-
rangement and copy number variation.

Another trend of development is parallelization of MSA. Because of that MSA
is a NP-hard problem and the huge amount of data, the programs of MSA are costly in
the respect of time. Hence, it’s necessary to implement parallel solutions in MSA.
Jucele F. A. et al. [44] present two parallel solutions using the BSP/CGM model, with
MPI and CUDA implementations. And the results of this method show that the use of
parallel processing allows the manipulation of more and larger sequences. Evandro A.
Marucci et al. [45] propose a parallel algorithm for multiple sequence similarities
calculation based on the k-mer counting method, and obtain a very good scalability and
a nearly linear speedup.
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