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Abstract. Blind extraction or separation statistically independent source signals
from linear mixtures have been well studied in the last two decades by searching
for local extrema of certain objective functions, such as nonGaussianity
(NG) measure. Blind source extraction (BSE) algorithm from underdetermined
linear mixtures of the statistically dependent source signals is derived using
nonparametric NG measure in this paper. After showing that maximization of the
NG measure can also separate or extract the statistically weak dependent source
signals, the nonparametric NGmeasure is defined by statistical distances between
different source signals distributions based on the cumulative density function
(CDF) instead of traditional probability density function (PDF), which can be
estimated by the quantiles and order statistics using the L2 norm efficiently. The
nonparametric NG measure can be optimized by a deflation procedure to extract
or separate the dependent source signals. Simulation results for synthesis and real
world data show that the proposed nonparametric extraction algorithm can
extract the dependent signals and yield ideal performance.

Keywords: Blind source separation (BSS) � Nongaussian measure � Indepen-
dent component analysis (ICA) � Dependent component analysis (DCA) � Blind
source extraction (BSE)

1 Introduction

Blind source separation (BSS) as an active topic in signal processing community aims
to separate linearly or nonlinearly mixtures in both noise-free and noisy environments
mixed latent source signals. It has become an important topic of research and devel-
opment in many areas [1–3]. Various algorithms have been proposed in the last two
decades to separate or extract source signals from their mixtures [1–7]. The propose of
BSS is to separate the potential source signals from the mixtures obtained by the
sensors without a priori about the source signals and the mixing process. This is
realized by a variety of criteria, including the minimization of mutual information (MI),
maximization of nonGaussianity (NG) and maximization of likelihood (ML) [8, 9].
A key factor in BSS is the assumption about the statistical properties of source signals
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such as statistical independence among different ones. When the source signals are
mutual independent, the BSS problem can be solved by using the so called independent
component analysis (ICA) method which has attracted considerable attention in the
signal processing fields and several efficient algorithms have been proposed [1–3].

Despite the success of using standard ICA for BSS in many applications, original ICA
algorithms are in the sense that all sources are assumed to be statistically independent
random variables, but the basic assumptions of ICA may not hold for some real-world
situations. Several extented ICA models have been considered based on the basic ICA
framework. This type ofmodel can be called dependent component analysis (DCA)model.
Multidimensional independent component analysis (MICA) model [11, 12] as the first
DCA model of BSS problem, instead of assuming all the source signals to be mutually
statistically independent, all the source signals are divided into several groups and the size
of the groups can be different, where the signals between different groups are statistical
independent and signals within the same group have dependencies, this DCA model can
also be called independent subspace analysis (ISA). DCA related algorithm concernmostly
the estimation of the entropy or of theMI. Various BSS algorithms have been developed in
response to different DCA models [13–24].

Another extension of the original BSS task is the blind source extraction
(BSE) problem. Unlike common BSS algorithms which consist of separating all the
source signals simultaneously by means of the maximization of an independence
measure between the output estimated signals, however, in some situations, it may be
more appropriate to extract only a single source of interest based on a certain funda-
mental signal property, which is the task of BSE [2, 10]. One of the main advantages of
BSE compared to traditional BSS is that it decreases computational cost since the
degrees of freedom are reduced, the possibility to relax the need for preprocessing or
postprocessing. Furthermore, this procedure has a great potential when the number of
sensors and sources are not equal, even when unknown or underdetermined.

In addition, as compared with overdetermined or determined BSS problem, the
underdetermined BSS one, where the number of available recorded mixtures is less
than the underlying source signals, is more difficult to treat and attracts much attention
in recent years. In this case, even if the mixing matrix is known or has been estimated,
it is impossible to estimate the source signals directly. Therefore, in order to realize the
source extraction from the mixed signals, some a priori knowledge about the whole
system must to be exploited, such as independence or sparsity [25, 26].

The simultaneous assumption of the two extensions of BSS, that is, DCA combined
with BSE in underdetermined situation seems to be a more realistic model than any of
the two models alone. For example, at the biomedical signal processing, only small
number of sources should be extracted which may be weak correlated in spatial.
Cardoso showed that strong relationship existed among MI, correlation and NG of
source estimates [27]. Inspired from this conclusion, we get that one can not resort
minimization the MI, but on the other hand, according to maximization the NG, the
dependent sources can be separated or extracted.

Here, we exploit some weaker conditions for extraction or separation source signals
assuming that they have statistically dependent properties in the underdetermined sit-
uation. Based on the generalization of the central limit theorem (CLT) to special
dependent variables, we will try to track the DCA model by maximization NG
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measure. The proposed NG measure is defined in terms of cumulative distribution
function (CDF) instead of the widespread probability density function (PDF) using the
nonparametric estimation method, afterwards, the NG distance between the given CDF
and the standard normal CDF is proposed which can be estimated by the order statistics
using the L2 norm efficiently. The NG distance based cost function will be optimized
resorting to a deflation procedure by gradient iterative algorithm, whose local maxi-
mization performs the extraction of one dependent component.

2 Theory Fundamentals

The problem of linear instantaneous BSS problem can be formulated as Eq. (1) (see [1–3]
for overview):

xðtÞ ¼ AsðtÞ þ nðtÞ ð1Þ

where sðtÞ ¼ ðs1ðtÞ; s2ðtÞ; � � � ; sNðtÞÞT is an unknown source vector which contains N
source signals. The M observed mixtures xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; � � � ; xMðtÞÞT are some-
times called as sensor outputs. Matrix A ¼ ½aij� 2 R

M�N is an unknown full column
rank mixing matrix. nðtÞ ¼ ðn1ðtÞ; n2ðtÞ; � � � ; nNðtÞÞT is a vector of additive noise.

The task of BSS contains estimation of the mixing matrix A or its pseudoinverse

separating (unmixing) matrix W ¼ Ay in order to estimate the original source signals
sðtÞ, given only a finite number of observation data fxðtÞ; t ¼ 1; � � � ; Tg.

In order to simplify the problem, most of the algorithms of BSS problem contain a
spatial decorrelation procedure V over noiseless xðtÞ to obtain the decorrelated signals
zðtÞ ¼ ðz1ðtÞ; z2ðtÞ; � � � ; zMðtÞÞT, that is,

zðtÞ ¼ VxðtÞ ð2Þ

So, the global mixture can be expressed as,

zðtÞ ¼ UsðtÞ ð3Þ

where U ¼ VA is an unknown orthogonal matrix.
After some standard BSS methods (such as ICA) are used to the preprocessed

decorrelated data zðtÞ, one can obtain an unitary linear transformation B and the
estimation of the source signals yðtÞ:

yðtÞ ¼ BzðtÞ ¼ BVxðtÞ ¼ BVAsðtÞ ð4Þ

Denote W ¼ BV, then one can get
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yðtÞ ¼ WAsðtÞ ð5Þ

Recall that two indeterminacies cannot be resolved in BSS without some priori
knowledges: scaling and permutation ambiguities. Thus, if the estimate of the mixing
matrix Â satisfies

P ¼ WA ¼ ÂA ¼ GD ð6Þ

where P is a global transformation which combines the mixing and separating system,
G is permutation matrix and D is some nonsingular scaling diagonal matrix, then ðÂ; ŝÞ
and ðA; sÞ are said to be related by a waveform-preserving relation.

The propose of BSE is to design an extracting vector w to extract an expected
source signal from the mixtures xðtÞ,

yðtÞ ¼ wTxðtÞ ¼ wTAsðtÞ ð7Þ

where yðtÞ is an estimated of a source signal with scalar ambiguity.
In applications, the priori information of the expected source signals can be utilized

to design proper extracted algorithms, so, any of the source signals could come out as
the first one with particular property, such as absolute normalized kurtosis value [2],
temporal structure [28–30], sparseness [31], morphological structure [32] and so on. In
this paper, as shown in Sect. 4, the priori information of the desired source signal to be
extracted is the maximum NG measure.

3 Generalized CLT and Nonparametric NG Measure

The Gaussian distribution has the maximum Shannon differential entropy (maximum
uncertainty) over all the continuous distributions defined on the real space with the
same variance. This fact makes the Gaussianity measure a very useful tool for the
characterization of data. In recent years, a connection between NG and ICA has been
suggested. It can also be explained by the CLT theory. Since CLT is not valid for any
set of dependent variables, we must be aware that one may not always recover the
original dependent source signals using maximum NG criteria. Caiafa et al. give a very
special condition on sources, for which the linear combinations of dependent signals
are not more Gaussian than the components and therefore the maximum NG criteria
fails, but fortunately this is not the case in most of real world scenarios [33]. Moreover,
the independence of source signals is not required when we solve blind deconvolution
problem [34]. Additionally, based on minimum entropy, the dependent source signals
can be recovered [35].

Conclusion 1. The maximum NG method can be described as exploring a linear
transformation of the mixed signals in the unit-variance signals space, so that the
transformed signals (source signal estimates) have maximum NG distributions.
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According to this conclusion, if we choose a robust and efficient NG measure, the
source signals can be extracted or separated properly.

A natural measure of NG based on the L2 distance of an estimated PDF to the
Gaussian PDF is introduced in [19, 33]. The NG measure is defined as Eq. (8):

dðy; gÞ ¼
Z

pgðyÞ � pyðyÞ
� �2

dy

� �1=2

ð8Þ

where the integral is defined in Lebesgue sense and is taken on all the range of variable
y, and pgðyÞ is the Gaussian PDF with the same variance of variable y whose PDF is
pyðyÞ. In this paper, we will build the NG measure using the concept of CDF instead of
traditional PDF. Let us call Fy and Fg are the CDFs of random variable y to be analyzed
and its equivalent Gaussian one, respectively, then, the NG measure based on CDF can
defined as Eq. (9):

dðFyi ;FgÞ ¼
Z 1

�1
FyiðxÞ � FgðxÞ
� �2

dx

� �1=2

ð9Þ

The definition of NG measure dðFyi ;FgÞ possesses the following property that the
distance measure should have:

dðFyi ;FgÞ ¼ 0; c ¼ 2

dðFyi ;FgÞ[ 0; c 6¼ 2

(
ð10Þ

where c is the shape parameter in the generalized Gaussian distribution (GGD).
The PDF of GGD can be described as: pðyÞ ¼ c

2c Cð1=cÞ exp � y� ly
�� ��/c� �c� �

, where

CðzÞ ¼ R10 e�ttz�1dt is Gamma function and c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2C 1=cð Þ=C 3=cð Þp

is the scale
parameter. By changing the values cðc[ 0Þ, a family of distributions with different
sharpness will be given. From the relationship between the CDF based NG measure
dðFyi ;FgÞ and the shape parameter or Gaussian parameter c, we can conclude that the
distance measure dðFyi ;FgÞ can be used as the measure of NG since it offers a global
minimum when the Gaussian parameter c various from 0þ to infinite and it reaches its
global minimum when c ¼ 2. In other words, the measure of NG obtains its global
minimum when the analyzed distribution is Gaussian.

As the definition of dðFyi ;FgÞ, we must estimate the CDF Fyi . So, the next question
is how to efficient get the estimation of CDF F̂yi . As we know, it would need high
computational cost through nonparametric histograms. Alternatively, an equivalent
measure can be established in terms of inverse CDF, which is defined as:

Qyi ¼ F�1
yi ; Qg ¼ F�1

g ð11Þ

The relationship between CDF F and its inverse Q can be generalized to the NG
distance, which is formulated as:
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DðQyi ;QgÞ ¼ 0; c ¼ 2

DðQyi ;QgÞ[ 0; c 6¼ 2

(
ð12Þ

Since the relationship between Q and F, they also present the monotone properties
in the proper intervals of c, consequently, the distance d �ð Þ and its correspondent D �ð Þ
preserve the same properties, as a result, one can conclude that

DðQyi ;QgÞ ¼
Z 1

0
QyiðxÞ � QgðxÞ
� �2

dx

� �1=2

ð13Þ

is also a proper NG measure. In order to estimate the NG measure DðQyi ;QgÞ from the
discrete samples, we must estimate Qyi firstly. The estimation of Qyi can be performed
robustly in a simple practical way by using the order statistics (OS) from a large set of
discrete time samples. Then the quantiles of the CDF can be constructed using OS,
which is a consistent estimator of the distribution [34]:

Q̂yi
k
T

� �
¼ yiðkÞ , F̂ yiðkÞ

� � ¼ k
T

ð14Þ

As a result, the estimation of NG measure using the OS can be expressed as:

D̂ðQyi ;QgÞ ¼ 1
T

XT
k¼1

yiðkÞ � Qg
k
T

� �
 �2 !1=2

ð15Þ

where Qg k=Tð Þ is the k=T quantile of the equivalent Gaussian distribution.

4 Nonparametric NG Algorithm for Dependent
Source Signals

Conclusion 2. The nonparametric NG measure D̂ðQyi ;QgÞ will reach a local maximum
at any output channel for each component if bi is forced to be unitary [36].

To extract a different source signal at each output channel, a multistage deflation
procedure must be applied to the separation system. The NG measure D̂ðQyi ;QgÞ is
maximized at each output channel successively under the constriction that the vector bi
has to be orthonormal to the previously obtained vectors, the separation matrix is
composed of all the vectors bi. Taking into account Eq. (4) in vector form:

yiðtÞ ¼ bTi zðtÞ ð16Þ

where bTi is the i-row of the separation matrix B, the goal is to update bi at each stage
by optimizing a cost function JðbiÞ. We take the objective function JðbiÞ as:

Blind Nonparametric Determined and Underdetermined Signal Extraction Algorithm 51



JðbiÞ ¼ DðQyi ;QgÞ ð17Þ

JðbiÞ will be optimized by the stochastic gradient rule of the constrained optimi-
zation method with the constrains [36]:

biðk þ 1Þ ¼ biðkÞ þ lrJjbiðkÞ
s:t: bi is orthonormal to fb1; � � � ; bi�1g

(
ð18Þ

Denote YiðkÞ ¼ yiðkÞ � Qg k=Tð Þ, then the gradient of JðbiÞ in Eq. (15) is:

rJjbiðkÞ¼
1
2T

XT
t¼1

YiðtÞ½ �2
 !�1=2d

PT
t¼1

YiðtÞ½ �2
� �

dbi

��������
biðkÞ

¼ 1
T

XT
t¼1

YiðtÞ½ �2
 !�1=2 XT

t¼1

YiðtÞ
 !

z
dyiðtÞ
dyi

������
biðkÞ

ð19Þ

where dyiðtÞ
dyi

���
biðkÞ

¼ et ¼ ½0; 0; � � � ; 0; 1; 0; � � � ; 0�T and etðlÞ ¼
1 if yiðlÞ ¼ yiðtÞ
0 else

( �����
t¼1;���;T

.

After the ith source signal is extracted, bi must be normalized and projected over
the subspace orthonormal Ci�1 to the vectors obtained at every previous stage. Let us
quote that the Ci�1 expression is

Ci�1 ¼ I� ðBi�1BT
i�1Þ�1BT

i�1 ð20Þ

where Bi�1 ¼ ðb1; � � � ; bi�1Þ.

5 Computer Simulations

In order to show the performance and the validity of the proposed algorithm, simu-
lations using Matlab are given below. The simulation results presented in this section
are divided into four Examples. The statistical performance, or accuracy, was measured
by the index signal-to-interference ratio (SIR) as,

SIR si; yj
� � ¼ 10 log

PT
t¼1

siðtÞð Þ2

PT
t¼1

jsiðtÞj � jyjðtÞj
� �2 ; i; j ¼ 1; � � � ;N

where yiðtÞ is the estimation of siðtÞ.
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5.1 Simulations on Determined BSS Case

In this simulation, we use N ¼ 4 source signals which are extracted from the real world
photo. It should be noted that the source signals are extracted from different pixel
columns of real world images and then stack these columns one by one to get a one
dimensional source signals. By selecting different intervals between the columns of the
image, we can control the level of dependence between the source signals. We choose
the columns of the photo which are relatively far away, therefore they are mutually
weak correlated. The source’ correlation coefficients are shown in Table 1.

The input mixed signals of the algorithm are generated by mixing the four source
signals with a 4� 4 random mixing matrix in which the elements are distributed with
Nð0; 1Þ. After convergence of the proposed algorithm, the average results of the per-
formance criteria evaluated by SIR over 10 experiments are shown in Table 2.

5.2 Simulations on Underdetermined BSE Case

In this example, we use 4 source signals which are extracted from the same real world
photo as example 1. The 3*4 mixing matrix are generated by the randn function of
Matlab. The source’ correlation coefficients are shown in Table 3.

Table 1. The correlation coefficients between different source signals

Source 1 Source 2 Source 3 Source 4

Source 1 1.0000 0.1396 −0.0305 −0.2182
Source 2 0.1396 1.0000 −0.0987 −0.0074
Source 3 −0.0305 −0.0987 1.0000 0.1967
Source 4 −0.2182 −0.0074 0.1967 1.0000

Table 2. Average SIR for different source signals using the proposed algorithm over 10
experiments

Performance index Source signals
s1 s2 s3 s4

SIR 24.07 21.95 14.98 27.86

Table 3. The correlation coefficients between different source signals

Source 1 Source 2 Source 3 Source 4

Source 1 1.0000 0.1923 0.0473 −0.1803
Source 2 0.1923 1.0000 0.1298 −0.1571
Source 3 0.0473 0.1298 1.0000 −0.1184
Source 4 −0.1803 −0.1571 −0.1184 1.0000

Blind Nonparametric Determined and Underdetermined Signal Extraction Algorithm 53



After convergence of the proposed algorithm, the average results of the perfor-
mance criteria evaluated by SIR over 10 experiments are shown in Table 4. The
correlation coefficients of source signals and their corresponding extracted signals
using the proposed algorithm are shown in Table 5.

5.3 Simulations on Effect of Strong Correlations

In order to verify the performance of the proposed algorithm for strong correlations
between source signals, we choose four face images extracted from face databases of
[37] as the source signals. The source’ correlation coefficients are shown in Table 6.
The input mixed signals of the algorithm are generated by mixing the four source
signals with a 4� 4 random mixing matrix in which the elements are distributed with
Nð0; 1Þ. After convergence of the proposed algorithm, the average results of the per-
formance criteria evaluated by SIR over 10 experiments are shown in Table 7. The
definition of SIR for images can be found in [38].

Table 4. Average SIR for different source signals using the proposed algorithm over 10
experiments

Performance index Source signals
s2 s3 s4

SIR 16.43 19.90 21.83

Table 5. The correlation coefficients of source signals and their corresponding extracted signals
using the proposed algorithm

Extracted signals using the Proposed Algorithms Source signals
s1 s2 s3 s4

y1 0.1765 0.1232 0.0411 −0.9967
y2 −0.2711 −0.9154 −0.0798 0.2098
y3 −0.1476 0.2224 0.9392 −0.2493

Table 6. The correlation coefficients between four different face images

Source 1 Source 2 Source 3 Source 4

Source 1 1.0000 0.9106 0.8421 0.8388
Source 2 0.9106 1.0000 0.8379 0.8363
Source 3 0.8421 0.8379 1.0000 0.9279
Source 4 0.8388 0.8363 0.9279 1.0000

Table 7. Average SIR for different source signals using the proposed algorithm over 10
experiments

Performance index Source signals
s1 s2 s3 s4

SIR 62.22 54.48 52.87 54.96
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5.4 Simulations on Comparison with Other Algorithms

For comparison, we display the this simulation, at the same convergent conditions, the
proposed algorithm was compared along two sets of criteria, statistical and computa-
tional with other popular BSS algorithms such as FastICA (the nonlinearity function to
be chosen as y3), COMBI, SOBI and JADEop algorithm [39]. The computational load
was measured as CPU time needed for convergence (using Matlab R2010b and run in
the CPU 3.0 GHz Pentium4 computer). The four source signals and mixed signals are
the same as Sect. 5.1.

The statistical performance, or accuracy, was measured using an alternative popular
BSS performance index called cross-talking error index E defined as [2]. The sepa-
ration results of the 4 different sources are shown in Table 8 for various BSS algorithms
(averaged over 100 Monte Carlo simulations).

From Table 8 we conclude that the proposed algorithm can make an ideal sepa-
ration results for statistically dependent source signals, the BCA algorithm can also get
ideal separation results for these source signals, the other four popular BSS algorithms
can not all work well in this condition, but when the boundaries of the source signals
are not satisfied properly, the proposed algorithm can also works well, that is to say our
proposed method has a further wide field of applications. Then we will discuss the
computational load for convergence, as a nonparametric method, the proposed algo-
rithm requires more computation than all the other algorithms, but it has a better
convergent performance, moreover the nonparametric estimation method has the robust
properties, so from the convergent performance and computation load two aspects, the
proposed algorithm can work in the DCA situation.

6 Conclusions

Most of state-of-the-art algorithms for solving BSS or BSE problem rely on inde-
pendence or at least second order statistical assumption of the source signals. In this
paper, we developed a nonparametric BSE algorithm for statistical dependent source
signals using the nonparametric NG measure. We show that maximization of the NG
measure can not only separate the statistically independent but also dependent source
signals, even in the underdetermined BSE situation. The NG measure is defined by
statistical distances between distributions based on the CDF instead of traditional PDF
which can be realized by the order statistics efficiently. Simulation results on both
synthetic and real world data show that the proposed nonparametric algorithm is able to
extract the dependent source signals and yield ideal performance. The next purpose of
this study is utilizing the proposed method to extract ERP signals in the brain-computer
interfaces (BCI) applications.

Table 8. The separation results of various BSS algorithms

Different Algorithms FastICA COMBI SOBI JADEop BCA Proposed

Performance index E 0.1999 0.1913 0.3972 0.3218 0.1671 0.1677
Computation time (s) 0.22 0.32 0.09 0.08 0.1374 0.96
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