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Abstract. This paper proposes a new feature extraction scheme for the
real-time human action recognition from depth video sequences. First, three
Depth Motion Maps (DMMs) are formed from the depth video. Then, on top of
these DMMs, the Local Binary Patterns (LBPs) are calculated within overlap-
ping blocks to capture the local texture information, and the Edge Oriented
Histograms (EOHs) are computed within non-overlapping blocks to extract
dense shape features. Finally, to increase the discriminatory power, the
DMMs-based LBP and EOH features are fused in a systematic way to get the
so-called DLE features. The proposed DLE features are then fed into
the l2-regularized Collaborative Representation Classifier (l2-CRC) to learn the
model of human action. Experimental results on the publicly available Microsoft
Research Action3D dataset demonstrate that the proposed approach achieves the
state-of-the-art recognition performance without compromising the processing
speed for all the key steps, and thus shows the suitability for real-time
implementation.
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1 Introduction

In the area of computer vision, human action recognition is a process of detecting and
labeling the humans in the video, and it has drawn much attention to researchers due to
the growing demands from vast applications, such as visual surveillance, video
retrieval, health monitoring, fitness training, human-computer interaction and so on
(e.g., [1, 2]). In the past decade, research has mainly focused on learning and recog-
nizing actions from image sequences captured by traditional RGB video cameras [3, 4].
However, these types of data source have some inherent limitations. For example, they
are sensitive to color and illumination changes, occlusions, and background clutters.

With the recent release of the cost-effective depth sensors, such as Microsoft Ki-
nect, numerous research works on human action recognition have been carried out
based on the depth maps. An example of depth map sequence is shown in Fig. 1.
Compared with conventional RGB cameras, the depth camera has many advantages.
For instance, the outputs of depth cameras are insensitive to changes in lighting
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conditions. Moreover, depth maps can provide 3D structural information for distin-
guishing human actions, which is difficult to characterize by using RGB video
sequences. On the other hand, human skeleton information can be extracted from depth
maps [5]. Specifically, 3D positions and rotation angles of the body joints can be
estimated by using the Kinect Windows SDK [6].

In this paper, we present a computationally efficient and effective human action

recognition method by utilizing Depth Motion Maps (DMMs) based Local Binary
Patterns (LBPs) and Edge Oriented Histograms (EOHs) to the l2-regularized Collab-
orative Representation Classifier (l2-CRC). Specifically, first, for each depth video, all
its video frames are projected onto three orthogonal Cartesian planes to generate the
projected maps corresponding to three projection views (front, side and top). For each
projection view, the accumulation of absolute differences between consecutive pro-
jected maps forms the corresponding DMMs (i.e., DMMf , DMMs and DMMt) [7].
Next, from these three DMMs, three LBP feature vectors are calculated with over-
lapping blocks, and three EOH feature vectors are calculated with non-overlapping
blocks. After that, these six feature vectors are concatenated through a sequential way
to form the so-called DLE features (since it contains DMMs-based LBP and EOH
features). Finally, the dimension of DLE feature vector is reduced by Principal Com-
ponent Analysis (PCA), and it is fed into the l2-CRC to recognize human actions.

The rest of this paper is organized as follows. Section 2 reviews the related work.
The whole approach (including the DLE features and l2-CRC) is presented in Sect. 3.
The experimental results are demonstrated in Sect. 4. Finally, Sect. 5 contains a brief
conclusion of this work.

2 Related Work

In this section, we review the recent related work for human action recognition from
depth video sequences, including low-level features and high-level skeleton
information.

In the last few years, a lot of low-level features for recognizing human actions from
depth video sequences have been introduced. In 2010, Li et al. [8] presented a
framework to recognize human actions from sequences of depth maps. They employed
an action graph to model the temporal dynamics of actions, and utilized a collection of
3D points to characterize postures. The loss of spatial context information between
interest points and computational inefficiency were considered as limitations of this

Fig. 1. A depth map sequence for the High throw action
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approach. To improve recognition rates, Vieira et al. [9] introduced the Space Time
Occupancy Patterns (STOP) feature descriptor. Furthermore, Wang et al. [10] con-
sidered 3-dimensional action sequences as 4-dimensional shapes and proposed Ran-
dom Occupancy Pattern (ROP), and sparse coding was utilized to further improve the
robustness of the proposed approach.

Following another way, Yang et al. [11] computed Depth Motion Maps (DMMs)
based Histogram of Oriented Gradients (HOG) features and fed them into SVM
classifier to recognize human actions. In 2013, Chen et al. [7] utilized the DMMs as
feature descriptor and l2-CRC as classifier to recognize human actions. In that year,
Oreifej and Liu [12] presented a new descriptor called histogram of oriented 4D
surface normals (HON4D). To improve recognition accuracy, some researchers
proposed methods based on features extracted from depth and RGB video sequences
simultaneously. For instance, Luo et al. [13] extracted 3D joint features for each
depth video, and utilized Centre-Symmetric Motion Local Ternary Pattern (CS-Mltp)
to extract both the spatial and temporal features of the RGB sequences. Besides,
some researchers are still working to improve the robustness as well as recognition
rate of the action recognition methods. For example, binary range sample feature
descriptor was proposed by Lu et al. [14]. In 2015, Chen et al. [15] proposed another
DMMs method, where DMMs- based LBP features coupled with the Kernel-based
Extreme Learning Machine (KELM) classifier was used to recognize human actions.
Recently, inspired by the DMMs-based works in [7, 11, 15], Farhad et al. [16]
proposed another method by designing an effective feature descriptor, called
DMM-CT-HOG for short. More precisely, HOG was employed to DMMs-based
contourlet sub-bands to compactly represent the body shape and movement infor-
mation toward distinguishing actions.

There are also many skeleton based algorithms by utilizing high-level skeleton
information extracted from depth maps. In 2012, Yang and Tian [17] proposed a
human action recognition framework by using Eigen joints (position difference of
points) and Naive-Bayes-Nearest-Neighbor (NBNN) classifier. In the same year, Xia
et al. [18] proposed Histogram of 3D Joints Locations (HOJ3D) in depth maps. They
applied Hidden Markov Model (HMM) to model the dynamics and action recognition.
On the other hand, Wang et al. [19] utilized both skeleton and point cloud information
and introduced an actionlet ensemble model to represent each action and capture the
intra-class variance via occupancy information. In 2013, Luo et al. [20] proposed group
sparsity and geometry-constraint dictionary learning (DL-GSGC) algorithm for rec-
ognizing human actions from skeleton data. Recently, body part based skeleton rep-
resentation was introduced to characterize the 3D geometric relationships between
different body parts by utilizing rotations and translation in [21]. In this approach,
human actions were characterized as curves. In [22] the skeleton joint features were
extracted from skeleton data and an evolutionary algorithm was utilized for feature
selection. However, we have to point out that, though some of the skeleton-based
methods show high recognition performance, they are not suitable in the case where
skeleton information is not available.
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3 Our Approach

In this section, DMMs and LBP are briefly reviewed, and our proposed DLE features
(DMMs-based LBP and EOH features) are then introduced.

3.1 DMMs Construction

In the feature extraction stage, DMMs for each depth video sequence are first computed
by using approaches demonstrated in [7]. Specifically, given a depth video sequence
with K depth maps, each depth map is projected onto three orthogonal Cartesian planes
(from front, side and top views) to get three projected maps. The accumulation of
absolute differences between consecutive projected maps from front view constructs a
DMM, which is referred to as DMMf . Similarly, DMMs and DMMt can also be con-
structed for side and top views. The following equation is used to form each DMM:

DMMv ¼
XK�1

j¼1

mapjþ1
v � map j

v

�� ��; ð1Þ

where j is the frame index, v 2 ff ; s; tg denotes the projection view, and mapv stands
for the projected map. Figure 2 illustrates an example of DMMs for a High throw
action video sequence.

3.2 Overview of LBP

Local Binary Pattern (LBP) operator [23] is a powerful tool for texture description, and
it has become very popular in various applications due to its discriminative power and
computational simplicity. The original version of LBP operator works in 3 × 3 pixel
blocks. All circumjacent pixels in the working block are thresholded by the center pixel
and weighted by powers of 2 and then summed to label the center pixel. The LBP
operator can also be extended to neighborhood with different sizes (see Fig. 3) [23]. To
do this, consider a circular neighborhood denoted by ðN;RÞ, where N is the number of
sampling points and R represents the radius of the circle. These sampling points lie
around the center pixel ðx; yÞ and at coordinates ðxi; yiÞ ¼ ðxþ Rcosð2pi=NÞ;
y� Rsinð2pi=NÞÞ. If a sampling point does not fall at integer coordinates, then the

Fig. 2. DMMs for a High throw action video sequence
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pixel value is bilinearly interpolated. Specifically, the LBP label for pixel (x, y) can be
calculated as follows:

LBPN;R x; yð Þ ¼
XN�1

i¼0

Th f xi; yið Þ � f x; yð Þð Þ:2i ; ð2Þ

where ThðxÞ ¼ 1 if x� 0ð Þ and Th xð Þ ¼ 0 if x\0. An example of LBP label com-
putation is shown in Fig. 3.

Another extension to the original operator is so called uniform patterns [23].
A local binary pattern is considered as uniform if the binary pattern has at most 2
bitwise transitions from 0 to 1 or vice versa when the bit pattern is in circular form. For
example, the patterns 00000000 (0 transitions) and 01110000 (2 transitions) are uni-
form whereas the patterns 11001001 (4 transitions) and 01010011 (6 transitions) are
not uniform pattern.

After calculating the LBP codes for all pixels in an image, an occurrence histogram
is computed for the image or an image region to represent the texture information.
Though the original LBP operator in Eq. 2 provides 2N different binary patterns, only
uniform patterns are sufficient to describe image texture [23]. Therefore, only uniform
patterns are used to compute the occurrence histogram, i.e., the histogram has an
independent bin for each uniform pattern.

3.3 DLE Features Extraction

To construct DLE features, we use the computed DMMs, LBPs and EOHs with the
following three stages.

In the first stage, LBP coded images corresponding to DMMf , DMMs and DMMt

are divided into 4 × 2, 4 × 3 and 3 × 2 overlapped regions respectively [15]. For all the
DMMs, histograms are computed for each block by setting 50 % overlap between two
consecutive blocks. Finally, all histograms of all the blocks are merged to compute
three feature vectors for the three DMMs. The LBP feature vectors for DMMf , DMMs

and DMMt are referred as LBPf , LBPs and LBPt.
In the second stage, to compute EOHs [24], each DMM is first split into 4 × 4

non-overlapping rectangular regions. In each region, 4 directional edges (horizontal,
vertical, 2 diagonals) and 1 non-directional edge are computed using Canny edge
detector. Histograms are then computed for each block. The concatenation of all his-
tograms for all regions yields a feature vector for the DMM. Thus, three feature vectors

Fig. 3. Extended LBP and LBP label computation for the neighborhood (8, 1)
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for the three DMMs are generated for each action video sequence. An example of
EOHs computation is shown in Fig. 4, where DMMf of Horizontal wave action video
sequence is set as an image. The EOH feature vectors for DMMf , DMMs and DMMt are
labeled as EOHf , EOHs and EOHt.

In the third stage, the computed EOHf and LBPf are fused to get a feature vector
that describes texture and edge features compactly for DMMf and this feature vector is
mentioned as Featf . In the same way, Feats and Featt can be calculated and their
concatenation with Featf provides a feature vector for the relevant action video
sequence. Figure 5 illustrates our feature extraction approach for the High throw action
video sequence.

3.4 L2-CRC

Motivated by the success of l2-CRC in human action recognition [7, 16], we use this
classifier to model human actions. For a better explanation of the l2-CRC, let us

Fig. 4. EOH computation for DMMf of Horizontal wave action sequence

Fig. 5. Architecture of the proposed action recognition method
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consider a data set with C classes. By arranging the training samples column wisely, we
can obtain an over-complete dictionary B ¼ ½B1;B2. . .. . .:;BC� ¼ ½b1; b2; . . .. . .:; bn 2
Rd�n; where d is the dimensionality of samples, n is the total number of training
samples, Bj 2 Rd�mj ; ðj ¼ 1; 2; . . .. . .:;CÞ is the subset of the training samples
belonging to the jth class and bi 2 Rdði ¼ 1; 2; . . .. . .:; nÞ is the single training sample.

Let us express any unknown sample V 2 Rd using matrix B as follows:

v ¼ Bc, ð3Þ

Here c is a n� 1 vector associated with coefficients corresponding to the training
samples. Practically, one cannot solve Eq. 3 directly as it’s typically underdetermined
[25]. Usually we obtain the solution by solving the following norm minimization problem:

ĉ ¼ argmin
c

fk v� Bc k22 þ ak Mc k22g; ð4Þ

where M stands for the Tikhonov regularization matrix [26] and a represents the
regularization parameter. The term involved with M permits the imposition of prior
knowledge of the solution by utilizing the approach described in [27–29], where the
training samples that are highly dissimilar from a test sample are provided less weight
than the training samples that are highly similar. Specifically, the form of the matrix
M 2 Rd�n is considered as follows:

M ¼
v� b1k k2 0 . . . 0

0 v� bnk k2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . v� bnk k2

0
BBB@

1
CCCA ð5Þ

According to [30] the coefficient vector ĉ is calculated as follows:

ĉ ¼ ðBTBþ aMTMÞ�1BTV: ð6Þ

By using the class labels of all the training samples, ĉ can be partitioned into C
subsets ĉ ¼ ½ĉ1; ĉ2; . . .. . .::; ĉC� with ĉjðj ¼ 1; 2; 3; . . .. . .;CÞ. After portioning ĉ the
class label of the unknown sample v is then calculated as follows:

classðvÞ ¼ argminfejg
j2f12;...:Cg

; ð7Þ

where ej ¼ k v� Bjĉk2.

4 Experimental Results

In this section, we first evaluate our proposed method on publicly available MSR-
Action3D dataset and then compare our recognition results with other methods.
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4.1 MSR-Action3D Dataset and Setup

MSR-Action3D dataset [8] contains 20 actions, where each action is performed by 10
different subjects 2 or 3 times facing the RGB-D camera. The list of 20 actions is: high
wave, horizontal wave, hammer, hand catch, forward punch, high throw, draw x, draw
tick, draw circle, hand clap, two hand wave, side boxing, bend, forward kick, side kick,
jogging, tennis swing, tennis serve, golf swing, and pickup throw. This dataset is a
challenging dataset as it contains many actions with similar appearance. In order to
have a fair evaluation of the proposed method, we follow the same experimental
settings as described in [8]. Specifically, we divide the 20 actions into three action
subsets (AS1, AS2 and AS3), which are shown in Table 1. For each action subset, five
subjects (1, 3, 5, 7 and 9) are used for training and the rest for testing. Usually, this type
of experimental setup is known as cross subject test.

In all the experiments, for each action video sequence, the first/last four frames are
removed due to two reasons. Firstly, at the beginning/end of an action video sequence,
the subjects are mostly at stand-static position with a small body movement, which is
not necessary for the motion characteristics of the involved action. Secondly, in our
approach of computing DMMs, small movements at the beginning/end result in a
stand-still body shape with large pixel values along the DMM edges, which leads to a
large amount of recognition error.

To find an appropriate value for the parameter N(number of sampling points) and R
(radius) in LBP computation, we carry out experiments on different values of ðN;RÞ.
Specifically, for each value of R in f1; 2; . . .::; 6g; we select four values f4; 6; 8; 10g for
N. We observe the promising result at pair ð4; 1Þ. Moreover, the computational com-
plexity of the uniform LBP features depends on the number of sampling points (i.e., N),
because the dimensionality of the LBP histogram feature based on uniform patterns is
NðN � 1Þ þ 3: [23] Since the pair ð4; 1Þ makes low computational complexity and high
recognition accuracy, we set N ¼ 4 and R ¼ 1 for the entire experiment. Besides, in the
l2-CRC, the key parameter a is set as a ¼ 0:0001 according to the five-fold
cross-validation. In order to improve the computational efficiency in the classification
step, Principle Component analysis (PCA) is utilized to reduce the dimension of the
DLE feature vector. The PCA transform matrix is calculated using the training feature

Table 1. Three subsets of the MSR-Action3D dataset

Label Action set 1 (AS1) Label Action set 2 (AS2) Label Action set 3 (AS3)

2 Horizontal wave 1 High wave 6 High throw
3 Hammer 4 Hand catch 14 Forward kick
5 Forward punch 7 Draw x 15 Side kick
6 High throw 8 Draw tick 16 Jogging
10 Hand clap 9 Draw circle 17 Tennis swing
13 Bend 11 Two hand wave 18 Tennis serve
18 Tennis serve 14 Forward kick 19 Golf swing
20 Pickup throw 12 Side boxing 20 Pickup throw
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set and then applied to the test feature set. The principle components that account for
99 % of the total variation are retained.

4.2 Comparison with Other Methods

We compare the performance of our proposed method with several other competitive
methods that were conducted on MSR-Action3D dataset with the same experimental
setup. The comparison of the average recognition accuracy is shown in Table 2. It can
be seen that, the recognition result of our method outperforms all the other methods
listed in the table. Overall, our recognition result indicates that the fusion of
DMMs-based LBP and EOH features obtains higher discriminatory power. On the
other hand, the block-based dense features generated by LBPs and EOHs provides
effective texture and edge information. Figure 6 shows the confusion matrices for the
three action subsets separately. The confusion matrices state that actions with high
similarities get relatively low accuracies. For example, action draw x is confused with
draw tick due to the similarities of their DMMs and therefore action draw x is classified
with low accuracy (see confusion matrix for the action subset AS2). The assigned label
for each action (see Table 1) is used as axes label in the matrices to understand the
classification accuracy and error of the corresponding action.

Table 2. Comparison of average recognition accuracies (%) corresponding to the three action
subsets for the cross subject test

Method Average accuracy (%)

Li et al. [8] 74.7
Yang et al. [11] 91.6
Chen et al. [7] 90.5
Farhad et al. [16] 92.3
Xia et al. [18] 79.0
Chaaraoui et al. [22] 93.2
Vemulapolli et al. [21] 92.5
Chen et al. [15] 94.9
Luo et al. [13] 93.8
Ours 95.8

Fig. 6. Confusion matrices for the subset AS1, AS2 and AS3 (from left to right)
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4.3 Computational Time

There are five main components in our human action recognition framework: DMMs
calculation, EOHs computation, and LBPs extraction, dimensionality reduction
(PCA) and action recognition (l2-CRC). Table 3 shows the average processing times of
the five components for each depth video sequence with 33 frames (in our experiments
each video sequence has 33 frames on average). Our code is written with MATLAB
and the processing time is obtained on a PC with 3.20 GHz Intel Core i5-3470 CPU.
Noted that, according to the processing time, the proposed method can process 30
frames per second, and thus it is compatible for the real-time operation.

5 Conclusion

This paper has presented a computationally efficient and effective human action rec-
ognition method for the depth video sequences by applying the fused version of
DMMs-based LBP and EOH features to the l2-CRC classifier. Experimental results on
the public domain datasets have revealed that our method provides higher action
recognition accuracy compared to the existing methods and allows to recognize actions
in real-time.
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