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Abstract. β-skeletons are well-known neighborhood graphs for a set of
points. We extend this notion to sets of line segments in the Euclidean
plane and present algorithms computing such skeletons for the entire
range of β values. The main reason of such extension is the possibility
to study β-skeletons for points moving along given line segments. We
show that relations between β-skeletons for β > 1, 1-skeleton (Gabriel
Graph), and the Delaunay triangulation for sets of points hold also for
sets of segments. We present algorithms for computing circle-based and
lune-based β-skeletons. We describe an algorithm that for β ≥ 1 com-
putes the β-skeleton for a set S of n segments in the Euclidean plane in
O(n2α(n) logn) time in the circle-based case and in O(n2λ4(n)) in the
lune-based one, where the construction relies on the Delaunay triangu-
lation for S, α is a functional inverse of Ackermann function and λ4(n)
denotes the maximum possible length of a (n, 4) Davenport-Schinzel
sequence. When 0 < β < 1, the β-skeleton can be constructed in a
O(n3λ4(n)) time. In the special case of β = 1, which is a generalization
of Gabriel Graph, the construction can be carried out in a O(n logn)
time.

1 Introduction

β-skeletons in R
2 belong to the family of proximity graphs, geometric graphs

in which an edge between two vertices (points) exists if and only if they satisfy
particular geometric requirements. In this paper we use the following definitions
of the β-skeletons for sets of points in the Euclidean space (β-skeletons are also
defined for β ∈ {0,∞} but those cases have no significant influence on our
considerations) :

Definition 1. For a given set of points V = {v1, v2, . . . , vn} in R
2, a distance

function d and a parameter 0 < β < ∞ we define a graph

– Gβ(V ) – called a lune-based β-skeleton [11] – as follows: two points v′, v′′ ∈ V
are connected with an edge if and only if no point from V \ {v′, v′′} belongs to
the set N(v′, v′′, β) (neighborhood, see Fig. 1) where:
1. for 0 < β < 1, N(v′, v′′, β) is the intersection of two discs, each with radius

d(v′,v′′)
2β and having the segment v′v′′ as a chord,
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2. for 1 ≤ β < ∞, N(v′, v′′, β) is the intersection of two discs, each with
radius βd(v′,v′′)

2 , whose centers are in points (β
2 )v′ + (1 − β

2 )v′′ and in (1 −
β
2 )v′ + (β

2 )v′′, respectively;
– Gc

β(V ) – called a circle-based β-skeleton [5] – as follows: two points v′, v′′ are
connected with an edge if and only if no point from V \ {v′, v′′} belongs to the
set N c(v′, v′′, β) (neighborhood, see Fig. 1) where:
1. for 0 < β < 1 there is N c(v′, v′′, β) = N(v′, v′′, β),
2. for 1 ≤ β the set N c(v′, v′′, β) is a union of two discs, each with radius

βd(v′,v′′)
2 and having the segment v′v′′ as a chord.

Fig. 1. Neighborhoods of the β-skeleton: (a) for 0 < β ≤ 1 , (b) the lune-based skeleton
and (c) the circle-based skeleton for 1 < β < ∞. The relation between neighborhoods:
(d) N(v′, v′′, β) ⊆ Nc(v′, v′′, β).

Points v′, v′′ ∈ V are called generators of the neighborhood N(v′, v′′, β)
(N c(v′, v′′, β), respectively). The neighborhood N(v′, v′′, β) is called a lune. It
follows from the definition that N(v′, v′′, 1) = N c(v′, v′′, 1).

β-skeletons are both important and popular because of many practical appli-
cations which span a spectrum of areas from geographic information systems
to wireless ad hoc networks and machine learning. For example, they allow us
to reconstruct a shape of a two-dimensional object from a given set of sample
points and they are also helpful in finding the minimum weight triangulation of
a point set.

Hurtado, Liotta and Meijer [9] presented an O(n2) algorithm for the
β-skeleton when β < 1. Matula and Sokal [14] showed that the lune-based
1-skeleton (Gabriel Graph GG) can be computed from the Delaunay triangu-
lation in a linear time. Supowit [16] described how to construct the lune-based
2-skeleton (Relative Neighborhood Graph RNG) of a set of n points in O(n log n)
time. Jaromczyk and Kowaluk [10] showed how to construct the RNG from
the Delaunay triangulation DT for the Lp metric (1 < p < ∞) in O(nα(n))
time. This result was further improved to O(n) time [13] for β-skeletons where
1 ≤ β ≤ 2. For β > 1, the circle-based β-skeletons can be constructed in
O(n log n) time from the Delaunay triangulation DT with a simple test to filter
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edges of the DT [5]. On the other hand, so far the fastest algorithm for comput-
ing the lune-based β-skeletons for β > 2 runs in O(n

3
2 log

1
2 n) time [12].

Let us consider the case when we compute the β-skeleton for a set of n
points V where every point v ∈ V is allowed to move along a straight-line
segment sv. Let S = {sv|v ∈ V }. For each pair of segments sv1 , sv2 containing
points v1, v2 ∈ V , respectively, we want to find such positions of points v1 and
v2 that sv ∩ N(v1, v2, β) = ∅ for any sv ∈ S \ {s1, s2}. We will attempt to solve
this problem by defining a β-skeleton for the set of line segments S as follows.

Definition 2. Gβ(S) (Gc
β(S), respectively) is a graph with n vertices such that

there exists a bijection between the set of vertices and the set of segments S,
and for s′, s′′ ∈ S an edge s′s′′ exists if there are points v′ ∈ s′ and v′′ ∈ s′′

such that (
⋃

s∈S\{s′,s′′} s)∩N(v′, v′′, β) = ∅ ((
⋃

s∈S\{s′,s′′} s)∩N c(v′, v′′, β) = ∅,
respectively).

Note that when segments degenerate to points, we have the standard
β-skeleton for a point set.

Geometric structures concerning a set of line segments, e.g. the Voronoi dia-
gram [3,15] or the straight skeleton [1] are well-studied in the literature.

Chew and Kedem [4] defined the Delaunay triangulation for line segments.
Their definition was generalized by Brévilliers et al. [2].

However, β-skeletons for a set of line segments were completely unexplored.
This paper makes an initial effort to fill this gap.

The paper is organized as follows. In the next section we present some basic
facts and we prove that the definition of β-skeletons for a set of line segments
preserves inclusions from the theorem of Kirkpatrick and Radke [11] formulated
for a set of points. In Sect. 3 we show a general algorithm computing β-skeletons
for a set of line segments in Euclidean plane when 0 < β < 1. In Sect. 4 we
present a similar algorithm for β ≥ 1 in both cases of lune-based and circle-
based β-skeletons. In Sect. 5 we consider an algorithm for Gabriel Graph. The
last section contains open problems and conclusions.

2 Preliminaries

Let us consider a two-dimensional plane R
2 with the Euclidean metric and a

distance function d.
Let S be a finite set of disjoint closed line segments in the plane. Elements of

S are called sites. A circle is tangent to a site s if s intersects the circle but not
its interior. We assume that the sites of S are in general position, i.e., no three
segment endpoints are collinear and no circle is tangent to four sites.

The Delaunay triangulation for the set of line segments S is defined as follows.

Definition 3. [2] The segment triangulation P of S is a partition of the convex
hull conv(S) of S in disjoint sites, edges and faces such that:

– Every face of P is an open triangle whose vertices belong to three distinct sites
of S and whose open edges do not intersect S,
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– No face can be added without intersecting another one,
– The edges of P are the (possibly two-dimensional) connected components of

conv(S) \ (F ∪ S), where F is the set of faces of P .

The segment triangulation P such that the interior of the circumcircle of each
triangle does not intersect S is called the segment Delaunay triangulation.

In this paper we will consider a planar graph (a planar multigraph, respec-
tively) DT(S) corresponding to the segment Delaunay triangulation P and its
relations with β-skeletons. This graph has a linear number of edges and is dual
to the Voronoi Diagram graph for S. It is also possible to study properties of
plane partitions generated by β-skeletons for line segments. We will discuss this
problem in the last section of this paper.

We can consider open (closed, respectively) neighborhoods N(v′, v′′, β) that
lead to open (closed, respectively) β-skeletons. For example, the Gabriel Graph
GG [7] is the closed 1-skeleton and the Relative Neighborhood Graph RNG [17]
is the open 2-skeleton.

Kirkpatrick and Radke [11] showed a following important inclusions connect-
ing β-skeletons for a set of points V with the Delaunay triangulation DT(V ) of
V : Gβ′(V ) ⊆ Gβ(V ) ⊆ GG(V ) ⊆ DT(V ), where β′ > β > 1.

We show that definitions of the β-skeleton and the Delaunay triangulation
for a set of line segments S preserve those inclusions. We define GG(S) as a
1-skeleton.

Theorem 1. Let us assume that line segments in S are in general position and
let Gβ(S) (Gc

β(S), respectively) denote the lune-based (circle-based, respectively)
β -skeleton for the set S. For 1 ≤ β < β′ following inclusions hold true: Gβ′(S) ⊆
Gβ(S) ⊆ GG(S) ⊆ DT(S) (Gc

β′(S) ⊆ Gc
β(S) ⊆ GG(S) ⊆ DT(S), respectively).

Proof. First we prove that GG(S) ⊆ DT(S). Let v1 ∈ s1, v2 ∈ s2 be such a
pair of points that there exists a disc D with diameter v1v2 containing no points
belonging to segments from S \ {s1, s2} inside of it. We transform D under a
homothety with respect to v1 so that its image D′ is tangent to s2 in the point t.
Then we transform D′ under a homothety with respect to t so that its image
D′′ is tangent to s1 (see Fig. 2). The disc D′′ lies inside of D, i.e., it does not
intersect segments from S \ {s1, s2}, and it is tangent to s1 and s2, so the center
of D′′ lies on the Voronoi Diagram V D(S) edge. Hence, if the edge s1s2 belongs
to GG(S) then it also belongs to DT(S).

The last inclusion is based on a fact that for 1 ≤ β < β′ and for any two
points v1, v2 it is true that N(v1, v2, β) ⊆ N(v1, v2, β′) (see [11]).

The sequence of inclusions for circle-based β-skeletons is a straightforward
consequence of the fact that two different circles intersect in at most two points.

3 Algorithm for Computing β-skeletons for 0 < β < 1

Let us consider a set S of n disjoint line segments in the Euclidean plane. First
we show a few geometrical facts concerning β-skeletons Gβ(S).
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Fig. 2. GG(S) ⊆ DT(S). The dotted line marks a fragment of Voronoi Diagram for
the given edges.

The following remark is a straightforward consequence of the inscribed angle
theorem.

Remark 1. For a given parameter 0 < β ≤ 1 if v is a point on the boundary
of N(v1, v2, β), different from v1 and v2, then an angle ∠v1vv2 has a constant
measure which depends only on β.

Let us consider a set of parametrized lines containing given segments. A line
P (si) contains a segment si ∈ S and has a parametrization qi(ti) = (xi

1, y
i
1) +

ti · [xi
2 − xi

1, y
i
2 − yi

1], where (xi
1, y

i
1) and (xi

2, y
i
2) are ends of the segment si and

ti ∈ R.
Let respective points from segments s1 and s2 be generators of a lune and let

an inscribed angle determining a lune for a given value of β be equal to δ. The
main idea of the algorithm is as follows. For any point v1 ∈ P (s1) we compute
points v2 ∈ P (s2) for which there exists a point v ∈ P (s), where s ∈ S \{s1, s2},
such that δ ≤ ∠v1vv2 ≤ 2π − δ, i.e., v ∈ N(v1, v2, β) (see Fig. 3). Then we
analyze a union of pairs of neighborhoods generators for all s ∈ S \ {s1, s2}. If
this union contains all pairs of points (v1, v2), where v1 ∈ s1 and v2 ∈ s2, then
(s1, s2) /∈ Gβ(S).

For a given t1 ∈ R and a segment s ∈ S \ {s1, s2} we shoot rays from a point
v1 = q1(t1) ∈ P (s1) towards P (s). Let us assume that a given ray intersects P (s)
in a point v = q(t) = (x1, y1) + t · [x2 − x1, y2 − y1] for some value of t ∈ R. Let
w(t) = −→v1v be the vector between points v1 and v. Then w(t) = [A1t + B1t1 +
C1, A2t + B2t1 + C2] where coefficients Ai, Bi, Ci for i = 1, 2 depend only on
endpoints coordinates of segments s1 and s. The ray refracts in v from P (s) in
such a way that the angle between directions of incidence and refraction of the ray
is equal to δ. The parametrized equation of the refracted ray is r(z, t) = v + z ·
Rδw(t) for z ≥ 0 (or r(z, t) = v + z · R′

δw(t) for z ≥ 0, respectively) where Rδ

(R′
δ, respectively) denotes a rotation matrix for a clockwise (counter-clockwise,

respectively) angle δ. If refracted ray r(z, t) intersects line P (s2) in a point q2(t2) =
r(z, t) (it is not always possible - see Fig. 3) then we compare the x-coordinates of
q2(t2) and r(z, t). As a result we obtain a function containing only parameters t1
and t2: z = J·t2+K·t1+L

D·t+E·t1+F , where coefficients J = −(x2 − x1),K = x2
2 − x2

1, L =
x2
1−x1,D = A1 cos δ+A2 sin δ, E = B1 cos δ+B2 sin δ, F = C1 cos δ+C2 sin δ are



70 M. Kowaluk and G. Majewska

fixed. Since y-coordinates of q2(t2) and r(z, t) are also equal we obtain t2(t) =
M ·t2+p1(t1)·t+p2(t1)

N ·t+p3(t1)
, where p1, p2 and p3 are (at most quadratic) polynomials of

variable t1 and M,N are fixed (the exact description of those polynomials and
variables is much more complex than the description of the coefficients in the
previous step and it is omitted here).

Let lδt1(t) denote a value of the parameter t2 of the intersection point of the
line P (s2) and the line containing the ray that starts in q1(t1) and refracts in
q(t) creating an angle δ. Let kδ

t1 = lδt1 |I , where I is a set of values of t such that
the ray refracted in q(t) intersects P (s2). The function lδt1 is a hyperbola and
the function kδ

t1 is a part of it (see Fig. 3).

Fig. 3. Examples of correlation between parameters t and t2 (for a fixed t1) for a
presented composition of segments and (a) a refraction angle near π (dotted lines
show refracted rays that are analyzed) and (b) near π

2
. The value c corresponds to

the intersection point of lines P (s) and P (s2). Dotted curves show a case when a line
containing a refracted ray intersects P (s2) but the ray itself does not.

Note that for a given angle δ (2π − δ, respectively) extreme points of the
function kδ

t1 (k2π−δ
t1 , respectively) do not have to belong to the set {0, 1}. We can

find them by computing a derivative dt2
dt = MN ·t2+2Mp3(t1)·t+p1(t1)p3(t1)−Np2(t1)

(N ·t+p3(t1))2
.

Then we can compute the corresponding values of the parameter t2. This
way we obtain the pair (t1, t2) such that the segment q1(t1)q2(t2) is a chord of a
circle that is tangent to the analyzed segment s in q(t) and ∠q1(t1)q(t)q2(t2) = δ
(∠q1(t1)q(t)q2(t2) = 2π − δ, respectively).

Let T (t1, s, s2) =
⋃

γ∈[δ,2π−δ],t∈[0,1] k
γ
t1(t), i.e., this is a set of all t2 such that

points q1(t1) and q2(t2) generate a lune intersected by the analyzed segment
s. Let F (s1, s, s2) =

⋃
t1∈R,x∈T (t1,s,s2)

(t1, x) be a set of pairs of parameters
(t1, t2) such that the segment s intersects a lune generated by points q1(t1)
and q2(t2). The set F (s1, s, s2) is an area limited by O(1) algebraic curves of
degree at most 3. The curves correspond to the set of values of the parameter t2
corresponding to extreme points of kδ

t1 (k2π−δ
t1 , respectively). In particular there

are hyperbolas for angles δ and 2π − δ corresponding to rays refracted in the
ends of the segment s (for parameters t = 0 and t = 1) - see Fig. 4. In fact, the
curves that form the border of the set F (s1, s, s2) intersect each other pairwise
in at most 4 points, so the length of the Davenport-Schinzel sequence for those
curves is λ4(n) = O(n2α(n)).
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Fig. 4. Examples of sets F (s1, s, s2) for β near (a) 0 and (b) 1 (the shape of F (s1, s, s2)
also depends on the position of the segment s with respect to s1 and s2). Dotted
(dashed, respectively) curves limit the area corresponding to rays refracted through
the segment s and creating the angle δ (2π − δ, respectively).

Lemma 1. The edge s1, s2 belongs to the β-skeleton Gβ(S) if and only if [0, 1]×
[0, 1] \ ⋃

s∈S\{s1,s2} F (s1, s, s2) �= ∅.

Proof. If [0, 1] × [0, 1] \ ⋃
s∈S\{s1,s2} F (s1, s, s2) �= ∅ then there exists a pair of

parameters (t1, t2) ∈ [0, 1]×[0, 1] such that a lune generated by points q1(t1) ∈ s1
and q2(t2) ∈ s2 is not intersected by any segment s ∈ S \ {s1, s2}, i.e., (s1, s2) ∈
Gβ(S). The opposite implication can be proved in the same way.

Theorem 2. For 0 < β < 1 the β-skeleton Gβ(S) can be found in O(n3λ4(n))
time.

Proof. We analyze O(n2) pairs of line segments. For each pair of segments s1, s2
we compute

⋃
s∈S\{s1,s2} F (s1, s, s2). For each s ∈ S \ {s1, s2} we find a set of

pairs of parameters t1, t2 such that N(q1(t1), q2(t2), β)∩s �= ∅. The arrangement
of n − 2 curves in total can be found in O(nλ4(n)) time [6]. Then the difference
[0, 1]× [0, 1]\⋃

s∈S\{s1,s2} F (s1, s, s2) can be found in O(nλ4(n)) time. Therefore
we can verify which edges belong to Gβ(S) in O(n3λ4(n)) time.

4 Finding β-skeletons for 1 ≤ β

Let us first consider the circle-based β-skeletons. According to Theorem 1 for
1 ≤ β there are only O(n) edges which can belong to the β-skeleton for a given
set of line segments. We will use this property to compute β-skeletons faster
than in the previous section.

Lemma 2. For 1 ≤ β and the set S of n line segments the number of connected
components of the set [0, 1]× [0, 1]\⋃

s∈S\{s1,s2} F (s1, s, s2) is O(n) for any pair
s1, s2 ∈ S.

Proof. According to Theorem by Kirkpatrick and Radke [11] for 1 ≤ β < β′ the
following inclusion holds Gβ′(v) ⊆ Gβ(V ). Therefore any neighborhood for β′ is
included in some neighborhood for β with the same pair of generators. On the
other hand, for a given parameter β and a given connected component of the
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set [0, 1] × [0, 1] \ ⋃
s∈S\{s1,s2} F (s1, s, s2) there exists a sufficiently big β′ such

that for β′ the component contains only one point (we increase an arbitrary
neighborhood corresponding to the connected component for a given β). Hence,
the number of one point components (for all values of β) estimates the number of
connected components for a given β. But in this case at least one disc forming the
neighborhood is tangent to two segments different than s1 and s2 or at least one
generator of the neighborhood is at the end of s1 or s2. In the first case the two
segments tangent to the disc and segments s1, s2 are the the closest ones to the
center of the disc. Therefore the complexity of the set of such components does
not exceed the complexity of the 4-order Voronoi diagram for S, i.e., it is O(n)
[15]. In the second case there is a constant number of additional components.

Lemma 3. For any t1 ∈ R and s1, s2 ∈ S there is at most one connected
component of the set [0, 1] × [0, 1] \ ⋃

s∈S\{s1,s2} F (s1, s, s2) that contains points
with the same t1 coordinate.

Proof. Let the inscribed angle corresponding to N c(s1, s2, β) be equal to δ. Let
a = q1(t1) and b ∈ P (s2) (b′ ∈ P (s2), respectively) be points such that the
angle between ab (ab′, respectively) and P (s2) is equal to δ (for δ = π

2 we have
b = b′), see Fig. 5. Boundaries of all neighborhoods N c(s1, s2, β) generated by
a and a point in s2 contain either b or b′. There exists the leftmost (rightmost,
respectively) position (might be in infinity) of the second neighborhood generator
with respect to the direction of t2. Between those positions no neighborhood
intersects segments from S \ {s1, s2}. Hence, points corresponding to positions
of such generators belong to the same connected component of [0, 1] × [0, 1] \⋃

s∈S\{s1,s2} F (s1, s, s2).

Fig. 5. Neighborhoods that have one common generator.

The algorithm for computing circle-based β-skeletons for β ≥ 1 is almost the
same as the algorithm for β < 1.

Theorem 3. For β ≥ 1 the circle-based β-skeleton Gc
β(S) can be found in

O(n2α(n) log n) time.

Proof. Due to Theorem 1 we have to analyze O(n) edges of DT (S). For β ≥ 1 and
for the given segments s1, s2 ∈ S each set F (s1, s, s2) can be divided in two sets
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with respect to the variable t1. For each t1 the first set contains part of F (s1, s, s2)
that is unbound from above with respect to t2 and the second one contains part
of F (s1, s, s2) unbound from below (see Fig. 6). The part that contains pairs
(t1, t2) such that the set of values of t2 is R can be divided arbitrarily. We use
Hershberger’s algorithm [8] to compute unions of sets for s ∈ S \ {s1, s2} in
each group separately. Then, according to Lemma 3 we find an intersection of
complements of computed unions. It needs O(nα(n) log n) time. Hence, the total
time complexity of the algorithm is O(n2α(n) log n).

Fig. 6. An example of (a) refracted rays and (b) correlations between variables t1 and
t2 for circle-based β-skeletons, where β ≥ 1. (the shape of F (s1, s, s2) depends on the
position of the segment s with respect to s1 and s2)

Let us consider the lune-based β-skeletons now. Unfortunately, Lemma 3
does not hold in this case.

According to Theorem 1, in this case we have to consider only O(n) pairs of
line segments in S (the pairs corresponding to edges of DT (S)). We will analyze
pairs of points belonging to given segments s1, s2 ∈ S which generate discs such
that each of them is intersected by any segment s ∈ S \{s1, s2}. We will consider
β-skeletons for β > 1 (a 1-skeleton is the same in the circle-based and lune-based
case). Let q1(t1) ∈ s1 and q2(t2) ∈ s2 be generators of a lune N(q1(t1), q2(t2), β)
and let C1(q1(t1), q2(t2), β) be a circle creating a part of its boundary containing
point q1(t1).

We will shoot a ray from a lune generator and we will compute a possible
position of the second generator when the refraction point belongs to the lune.
Let an angle between a shot ray and a refracted ray be equal to π

2 and let q(t) ∈
s ∩ C1(q1(t1), q2(t2), β). Unfortunately, the ray shot from q1(t1) and refracted
in q(t) does not intersect the segment s2 in q2(t2). However, we can define a
segment s′ such that the ray shot from q1(t1) refracts in q(t) if and only if the
same ray refracted in a point of s′ passes through q2(t2) (see Fig. 7).

Lemma 4. Assume that β ≥ 1, q1(t1) ∈ P (s1) and q2(t2) ∈ P (s2), where s1, s2 ∈
S. Let a point q(t) ∈ P (s), where s ∈ S \ {s1, s2}, belong to C1(q1(t1), q2(t2), β).
Let l be a line perpendicular to the segment (q1(t1), q(t)), passing through q2(t2)
and crossing (q1(t1), q(t)) in a point w. Then d(q1(t1),w)

d(q1(t1),q(t))
= 1

β .
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Fig. 7. The auxiliary segment s′ and rays refracted in q(t) and w.

Proof. Let x be an opposite to q1(t1) end of the diameter of C1(q1(t1), q2(t2), β).
Then d(q1(t1), x) = 2d(q1(t1), c), where c is the center of C1(q1(t1), q2(t2), β).
From the definition of the β-skeleton follows that d(q1(t1),q2(t2))

d(q1(t1),x)
= d(q1(t1),q2(t2))

2d(q1(t1),c)
·

2d(q1(t1),q2(t2))
2βd(q1(t1),q2(t2))

= 1
β . According to Thales’ theorem d(q1(t1),w)

d(q1(t1),q(t))
=

d(q1(t1),q2(t2))
d(q1(t1),x)

= 1
β (see Fig. 7).

The algorithm computing a lune-based β-skeleton for β ≥ 1 is similar to

the previous one. Let P (s′) = h
1
β

q1(t1)
(P (s)), where h

1
β

q1(t1)
is a homothety with

respect to a point q1(t1) and a ratio 1
β . Like in the case of circle-based β-skeletons

we compute pairs of parameters t1, t2 such that the ray shot from q1(t1) refracts
in a point of s′ and intersects the segment s2 in q2(t2), i.e., an analyzed segment
s intersects a disc limited by the circle C1(q1(t1), q2(t2), β).

However, in the case of lune-based β-skeletons we analyze only one hyper-
bola (functions for clockwise and counterclockwise refractions are the same).
Moreover, sets F (s1, s, s2) and F (s2, s, s1) are different. They contain pairs of
parameters t1, t2 corresponding to points generating discs such that each of them
separately is intersected by the segment s. Therefore, we have to intersect those
sets to obtain a set of pairs of parameters corresponding to points generating
lunes intersected by s (see Fig. 8).

Theorem 4. For β ≥ 1 the lune-based β-skeleton Gβ(S) can be found in
O(n2λ4(n)) time.

Proof. β-skeletons for β ≥ 1 satisfy the inclusions from Theorem 1. Hence, the
number of tested edges is linear. For each such pair of segments s1, s2 we compute
the corresponding sets of pairs of points generating lunes that do not intersect
segments from S \ {s1, s2}. Similarly as in Theorem 2 we can do it in O(nλ4(n))
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Fig. 8. An example of (a) a composition of three segments s1, s2, s, (b) correlations
between variables t and t2 (parametrizing s and s2, respectively), (c) the set F (s1, s, s2)
and (d) the intersection F (s1, s, s2) ∩ F (s2, s, s1), where β > 1.

time. Therefore, the total time complexity of the algorithm (after analysis of
O(n) pairs of segments) is O(n2λ4(n)).

5 Computing Gabriel Graph for Segments

In the previous sections we constructed sets of all pairs of points generating
neighborhoods that do not intersect segments other than the segments containing
generators. Now we want to find only O(n) pairs of generators (one pair for
each edge of a β-skeleton) that define the graph. Let 2 − V R(s1, s2) denote a
region of the 2-order Voronoi diagram for the set S corresponding to s1, s2 and
3 − V R(s1, s2, s) denote a region of the 3-order Voronoi diagram for the set S
corresponding to s1, s2, s. If an edge s1s2, where s1, s2 ∈ S belongs to the Gabriel
Graph then there exists a disc D(p, r) centered in p, which does not contain
points from S \{s1, s2} and its diameter is v1v2, where v1 ∈ s1, v2 ∈ s2 and 2r =
d(v1, v2). The disc center p belongs to the set (2−V R(s1, s2))∩(3−V R(s1, s2, s))
for some s ∈ S \ {s1, s2}.

First, for segments s1, s2 ∈ S we define a set of all middle points of segments
with one endpoint on s1 and one on s2. This set is a quadrilateral Q(s1, s2) (or

a segment if s1 ‖ s2) with vertices in points (x1
i ,y1

i )+(x2
j ,y2

j )

2 , where (xk
i , yk

i ) for
i = 1, 2 are endpoints of the segments sk for k = 1, 2 (boundaries of the set are
determined by the images of s1 and s2 under four homotheties with respect to
the ends of those segments and a ratio 1

2 ).
Let us analyze a position of a middle point of a segment l whose ends slide

along the segments s1, s2 ∈ S. Let the length of l be 2r. We rotate the plane so
that segment s1 lies in the negative part of x-axis and the point of intersection
of lines containing segments s1 and s2 (if there exists) is (0, 0). Let the segment
s2 lie on the line parametrized by u · [x1, y1] for 0 ≥ x1, 0 ≤ y1, 0 ≤ u. Then the
middle point of l is (x, y), where x = −|√r2 − (uy1

2 )2| + u · x1, y = uy1
2 .

Since (x − 2x1
y1

y)2 + (y)2 = r2 − (uy1
2 )2 + (uy1

2 )2 = r2, then we have x2 +
y2(1 + 4(x1

y1
)2) − 4x1

y1
xy = r2, so all points (x, y) for a given r lie on an ellipse -

see Fig. 9.
We want to find a point p ∈ 3 − V R(s1, s2, s) which is a center of a segment

v1v2, where v1 ∈ s1 and v2 ∈ s2, and d(p, s) > d(v1,v2)
2 . Then the disc with
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Fig. 9. (a)The set of middle points of segments v1v2,where v1 ∈ s1 and v2 ∈ s2 and
(b) the curve c such that the distance between a point on the curve p and the segment
s is equal to the length of the radius of a corresponding disc centered in p.

the center in p and the radius d(v1,v2)
2 intersects only segments s1, s2, i.e., there

exists an edge of GG(S) between s1 and s2.
We need to examine two cases. First, we consider the situation when the

closest to p point of a segment s belongs to the interior of s. Let P (s) be the
line that contains segment s, which endpoints are (xs

1, y
s
1) and (xs

2, y
s
2), and let

q(ts) = (xs
1, y

s
1)+ts·[xs

2−xs
1, y

s
2−ys

1] be the parametrization of P (s). Let L(s, r) be
a line parallel to P (s) with parametrization l(tL) = (xL

1 , yL
1 )+tL ·[xs

2−xs
1, y

s
2−ys

1]
such that the distance between P (s) and L(s, r) is equal to r. We compute the
intersection of the ellipse x2 + y2(1 + 4(x1

y1
)2) − 4x1

y1
xy = r2 and the line L(s, r).

The result is [xL
1 + tL(xs

2 − xs
1)]

2 + [yL
1 + tL(ys

2 − ys
1)]

2 − −4x1
y1

[xL
1 + tL(xs

2 −
xs
1)][y

L
1 + tL(ys

2 −ys
1)] = r2, so tL satisfies an equation At2L +BtL +C = r2 where

coefficients A,B,C are fixed and depend on x1, y1, x
s
i , x

L
i , ys

i , y
L
i for i = 1, 2. This

equation defines a curve c (see Fig. 9) which intersects corresponding ellipses.
A point p which belongs to a part of the ellipse that lies on the opposite side of
the curve c than the segment s is a center of a disc which has a diameter v1v2,
where v1 ∈ S1, v2 ∈ S2, and does not intersect segment s.

In the second case one of the endpoints of the segment s is the nearest point to
p (among the points from s). Let D1(r) and D2(r) be discs with diameter r and
with centers in corresponding ends of the segment s. We compute the intersection
of D1(r) = {(x, y) : (xs

1−x)2+(ys
1−y)2 = r2} (D2(r) = {(x, y) : (xs

2−x)2+(ys
2−

y)2 = r2}, respectively) and ellipse x2 + y2(1+4(x1
y1

)2)− 4x1
y1

xy = r2. We obtain

xs
1(x

s
1 − 2x) + ys

1(y
s
1 − 2y) − y2(x1

y1
)2 + 4(x1

y1
)xy = 0, so x = N1y2+N2y+N3

N4y+N5
and y

satisfies an equation M1y
4 + M2y

3 + M3y
2 + M4y + M5 = 0 where coefficients

Ni and Mj for i, j = 1, . . . , 5 depend on xs
1, y

s
1, x1, y1, r (or on xs

2, y
s
2, x1, y1, r,

respectively). If there exists a point p /∈ D1(r)∪D2(r) that belongs to the part of
the ellipse between the segments s1, s2, then there also exists a disc with center
in p and a diameter d(v1, v2) = 2r, where v1 ∈ s1 and v2 ∈ s2, which does not
contain ends of the segment s.

In both cases we obtain a curve c(r) dependent on the parameter r - see
Fig. 9. We check if a set Q(s1, s2) ∩ (2 − V R(s1, s2)) ∩ (3 − V R(s1, s2, s)) and
the segment s are on the same side of the curve c. Otherwise, the segment s1s2
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belongs to the Gabriel Graph for the set S (i.e., there exists a point p which is
the center of a segment v1v2, where v1 ∈ s1, v2 ∈ s2, and d(p, s) > d(v1,v2)

2 for
all s ∈ S \ {s1, s2}).

Theorem 5. For a set of n segments S the Gabriel Graph GG(S) can be com-
puted in O(n log n) time.

Proof. The 2-order Voronoi diagram and the 3-order Voronoi diagram can be
found in O(n log n) time [15]. The number of triples of segments we need to test
is linear. For each such triple we can check if there exists an empty 1-skeleton lune
in time proportional to the complexity of the set Q(s1, s2)∩(2−V R(s1, s2))∩(3−
V R(s1, s2, s)). The total complexity of those sets is O(n). Hence, the complexity
of the algorithm is O(n) + O(n log n) = O(n log n).

6 Conclusions

The running time of the presented algorithms for β-skeletons for sets of n line seg-
ment ranges between O(n log n), O(n2α(n) log n) and O(n3λ4(n)) and depends
on the value of β. For 0 < β < 1 the β-skeleton is not related to the Delaunay
triangulation of the underlying set of segments. The existence of a relatively effi-
cient algorithm for the Gabriel Graph suggests that it may be possible to find a
faster way to compute β-skeletons for other values of β, especially for 1 ≤ β ≤ 2.

The edges of the Delaunay triangulation for line segments can be repre-
sented in the form described in this paper as rectangles contained in [0, 1]× [0, 1]
square in the t1, t2-coordinate system. If for each pair of β-skeleton edges the
intersection of the corresponding sets for the β-skeleton and the Delaunay tri-
angulation is not empty then there exist a plane partition generated by some
pairs of generators of β-skeleton neighborhoods. Unfortunately, it is not always
possible. The algorithms shown in this work for each pair of segments find such
a position of generators that the corresponding lune does not intersect any other
segment. We could consider a problem in which the number of used generators of
neighborhoods is n (one generator per each edge). Then the method described
in the paper can also be used. We analyze a n-dimensional space and test if
[0, 1]n \ ⋃

si,sj∈S,s∈S\{si,sj} F (si, s, sj) × Rn−2 �= ∅, where i and j also define
corresponding coordinates in Rn. Unfortunately, such an algorithm is expensive.
However, in this case a β-skeleton already generates a plane partition.

The total kinetic problem that can be solved in similar way is a construc-
tion β-skeletons for points moving rectilinear but without limitations concern-
ing intersections of neighborhoods with lines defined by the moving points. In
this case the form of sets F (si, s, sj) changes and the solution is much more
complicated.

Are there any more effective algorithms for those problems?
Additional interesting questions about β-skeletons are related to their con-

nections with k-order Voronoi diagrams for line segments.

Acknowledgments. The authors would like to thank Jerzy W. Jaromczyk for impor-
tant comments.
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