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Abstract. We consider stabbing regions for a set S of n line segments in
the plane, that is, regions in the plane that contain exactly one endpoint
of each segment of S. Concretely, we provide efficient algorithms for
reporting all combinatorially different stabbing regions for S for regions
that can be described as the intersection of axis-parallel halfplanes; these
are halfplanes, strips, quadrants, 3-sided rectangles, and rectangles. The
running times are O(n) (for the halfplane case), O(n log n) (for strips,
quadrants, and 3-sided rectangles), and O(n2 logn) (for rectangles).

1 Introduction

Let S be a set of n line segments in the plane. We say that a region R ⊆ R
2 is a

stabbing region for S if R contains exactly one endpoint of each segment of S; see
Fig. 1(a). Depending on the segment configuration, a stabbing region of a certain
shape may not exist, as shown in Fig. 1(b). Our aim in this paper is to compute
efficiently all stabbing regions R for a given set of segments S, for regions R that
can be described as the intersection of axis-parallel (i.e., horizontal or vertical)
halfplanes. Thus, the shapes here considered are halfplanes, strips, quadrants,
3-sided rectangles, and rectangles. This problem fits into the general framework
of classification or separability problems, since any stabbing region implicitly
classifies all endpoints of S into two sets: the ones inside R (including those on its
boundary) are the red points, and the ones outside R are the blue points. Thus,
we focus on computing the combinatorially different stabbing regions for S,
which are those that provide a different classification of the endpoints of the
segments in S.

Separability and classification problems have been widely investigated and
arise in many diverse problems in computational geometry. In our context, per-
haps the simplest stabbing region one can consider is a halfplane, whose bound-
ary is defined by a line, and so it is equivalent to a line that intersects all
segments (thus classifying their endpoints). Edelsbrunner et al. [13] presented
an O(n log n) time algorithm for solving the problem of constructing a represen-
tation of all stabbing lines (with any orientation) of a set S of n line segments.

When no stabbing halfplane exists, it is natural to ask for other types
of stabbing regions. Claverol et al. [10] studied the problem of reporting all
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Fig. 1. (a) A set of segments that has a stabbing rectangle. (b) A set of segments for
which no stabbing rectangle exists.

combinatorially different stabbing wedges (i.e., the stabbing region defined by
the intersection of two halfplanes) for a set S of n segments; see also [9]. Their
algorithm runs in O(n3 log n) time and uses O(n2) space. They also studied some
other stabbers such as double-wedges and zigzags (see [10] for a table comparing
the time and space complexities for these stabbers).

Results. Following this line of research, we introduce new shapes of stabbing
regions and exploit their geometric structure to obtain efficient algorithms. Con-
cretely, in Sect. 2, we study the case in which the stabbing region is formed by
at most two halfplanes, that is, halfplanes, strips, and quadrants. Our approach
partitions the plane into three regions: a red one that must be contained in any
stabbing region, a blue one that must be avoided by any stabbing region, and a
gray region for which we do not have enough information yet. The algorithms are
based on iteratively classifying segments and updating the boundaries of these
regions, a process that we call cascading. The running times obtained are O(n)
(for the halfplane case), and O(n log n) (for strips and quadrants). In Sect. 3 we
show that the cascading approach can be extended to 3-sided rectangles, and
that the number of combinatorially different solutions is still O(n), resulting in
an O(n log n) algorithm. Finally, we focus on stabbing rectangles in Sect. 4, for
which our algorithm runs in O(n2 log n) time. This is close to being worst-case
optimal, since there can be Θ(n2) combinatorially different solutions.

Note that even though we present our algorithms for stabbing regions defined
by axis-parallel halfplanes, they extend to any two fixed orientations by making
an appropriate affine transformation.

Other Related Work. Dı́az-Báñez et al. [12] considered a similar stabbing con-
cept: a region R stabs a collection of segments if at least one endpoint of each
segment is in R. In this setting, the endpoints of the segments are not necessarily
classified. Moreover, existence of a stabber is always guaranteed (one can always
find a large enough region that contains all segments). Thus, all studied prob-
lem focus on optimization. For instance, they search for a polygonal stabber with
minimum perimeter or area. In their work, they show that the general problem
is NP-hard and provide polynomial-time algorithms for some particular cases,
like disjoint segments. Other relevant references on stabbing problems that focus
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on optimization problems in two dimensions are [3,6,7,15,17–20,22]. Variants of
these problems have also been studied in three dimensions (e.g. [4,8,14,16,21]).

A more general formulation for the above-mentioned problems is using color-
spanning objects. In this case, the input is a set of n colored points, with c
colors, and the goal is to find an object (rectangle, circle, etc.) that contains at
least (or exactly) k points of each color. Our setting is the particular case in
which c = n/2 and we want to contain exactly one point of each color class.
The color-spanning objects (for the at least objective) that have been studied in
the literature are strips, axis-parallel rectangles [1,11], and circles [2]. All cases
can be solved in roughly O(n2 log c) time. Less research has been done for the
exact objective. Among others, we highlight the research of Barba et al. [5]. In
this work they give algorithms that, in O(n2c) time, compute disks, squares,
and axis-aligned rectangles that contain exactly one element of each of the c
color classes. The algorithm that we present in Sect. 4 (axis-aligned rectangle
stabber) improves the result of [5] for the particular case in which c = n/2 and
one looks for an axis-aligned color spanning rectangle. Our algorithm is almost
a linear factor faster, and also allows to report all possible solutions (whereas
their algorithm only reports one region).

Some Notation. The input consists of a set S = {s1, . . . , sn} of n segments. For
simplicity, we assume that there is no horizontal or vertical segment in S, and
that all segments have non-zero length. The modifications needed to make our
algorithms handle these special cases are straightforward, albeit rather tedious.
For any 1 ≤ i ≤ n, let pi and qi denote the upper and lower endpoint of si,
respectively. Given a point p ∈ R

2, we write x(p) (resp. y(p)) for its x- (resp.
y-) coordinate. Let yb = maxsi∈S{y(qi)} and yt = minsi∈S{y(pi)}; these values
correspond to the y-coordinates of the highest bottom endpoint and the lowest
top endpoint, respectively, of the segments in S. The segments attaining those
values are denoted by sb and st, respectively (i.e., y(qb) = yb and y(pt) = yt).

2 Stabbing with One or Two Halfplanes

This section deals with stabbing regions that can be described as the intersection
of at most two halfplanes. That is, our aim is to obtain a halfplane, strip, or
quadrant that contains exactly one endpoint of each segment of S. Note that
such stabbing objects do not always exist.

2.1 Stabbing Halfplane

For completeness (since it will be used in the upcoming sections), we explain
a straightforward algorithm for determining if a horizontal stabbing halfplane
exists. That is, a horizontal line such that one of the (closed) halfplanes defined
by the line contains exactly one endpoint of each segment. Observe that such
a stabbing halfplane can be perturbed so that it has no endpoint of a segment
on its boundary. In this case, the complement of a stabbing halfplane is also a
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stabber. Thus, we are effectively looking for a horizontal line that intersects the
interior of all segments. As we are dealing with horizontal stabbers, the problem
becomes essentially one-dimensional, and it will ease our presentation to state
the problem in that way.

All segments can be projected onto the y-axis, becoming intervals. Consid-
ering the set S = {s1, . . . , sn} of projected segments, the question is simply
whether all the intervals in S have a point in common. Clearly, any horizontal
line y := u stabbing S must have its y-coordinate between the values yb and yt,
namely yb ≤ u ≤ yt. Therefore, such a line exists if and only if yb ≤ yt. Moreover,
whenever this condition happens, both the upper and lower halfplanes will be
stabbing halfplanes (and any other horizontal halfplane will be equivalent to one
of the two). This simple observation directly leads to a linear-time algorithm.

Observation 1. All axis-aligned stabbing halfplanes of a set of n segments can
be found in O(n) time.

2.2 Stabbing Strips

We now consider the case in which the stabbing region is a horizontal strip.
Note that the existence of stabbing halfplanes directly implies the existence of
stabbing strips, but the reverse is not true. Thus, our aim is to compute all non-
trivial stabbing strips; intuitively speaking, we are not interested in stabbing
strips that can be extended to stabbing halfplanes. More formally, we say that
a stabbing region R is non-trivial if there is no stabbing region described as
the intersection of fewer halfplanes that is combinatorially equivalent to R (i.e.,
gives the same classification of the endpoints of the segments in S).

As in Sect. 2.1, we can ignore the x-coordinates of the endpoints, project the
points onto the y-axis, and work with the set S instead. The endpoints of the
classified segments can be seen in the projection onto the y-axis as a set of blue
and red points. It follows that there is a separating horizontal strip for them if
and only if the red points appear contiguously on the y-axis. More precisely, the
points must appear on the y-axis in three contiguous groups, from top to bottom,
first a blue group, then a red group, and then another blue group. We refer to
the two groups of blue points as the top and bottom blue points, respectively. We
denote the intervals of the y-axis spanned by them by Bt and Bb, respectively.
The interval of the y-axis spanned by the group of red points is denoted by R.
Since all points above Bt and below Bb must be necessarily blue, we extend Bt

and Bb from +∞ and until −∞, respectively. Thus, the y-axis is partitioned into
three colored intervals and two uncolored (gray) intervals separating them. See
Fig. 2(a).

Observation 2. Let si and sj be two segments in S such that si is above sj (in
particular, this implies that the projected segments si and sj are disjoint). Then,
any horizontal stabbing strip must contain qi and pj.

Lemma 1. Any non-trivial horizontal stabbing strip for S contains points qb

and pt.
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With the previous observations in place, we can present our algorithm. We
give an intuitive idea in rather general terms because it will also be used in
the upcoming sections. Our algorithm starts by classifying a few segments of S
using some geometric observations (say, Lemma 1). As soon as some points are
classified, we partition the plane into three regions: the red region (a portion of
the plane that must be contained by any stabber), the blue region (a portion
of the plane that cannot be contained in any stabber) and the gray region (the
complement of the union of the two other regions; that is, regions of the plane
for which we still do not know). If a segment of S has an endpoint in either the
blue or red regions we can classify it (that is, if an endpoint is in a red region,
that endpoint must be red, and its opposite endpoint blue). This coloring may
enlarge either the red or blue regions, which may further allow us to classify
other segments of S, and so on. We call this process the cascading procedure.
This approach will continue until either we find a contradiction (say, the red
and blue regions overlap), or we have classified all segments of S (and thus we
have found a stabber). Thus, at any instant of time we partition S into three
sets C, W , and U . A segment is in C if it has been already classified, in W if it is
waiting for being classified (there is enough information to classify it, but it has
not been done yet), or in U if its classification is still unknown. The algorithm
is initialized with C = W = ∅, and U = S.

Regions. In addition to the three sets of segments, the algorithm maintains red
and blue candidate regions that are guaranteed to be contained or avoided in any
solution, respectively. When we are looking for a horizontal strip, these regions
will also be horizontal strips. Thus, it suffices to maintain the projection of the
regions on the y-axis. The blue and red regions are represented by the intervals
Bt, Bb and R: the blue region is Bt∪Bb, and the red region is R. The complement
of Bt ∪ Bb ∪ R is called the gray region. Note that the gray region, like the blue
one, consists of two disjoint components. During the execution of the algorithm
the regions will be updated as new segments become classified. See Fig. 2(a).

The algorithm starts by computing sb and st. If a stabbing halfplane exists,
one can find a stabbing strip and report it. Otherwise, by Lemma 1, we know
how to classify both segments (i.e., qb and pt are classified as red, and pb and qt

as blue). Thus, we move them from U to W . See Fig. 2.

Cascading Procedure. The procedure iteratively classifies segments in W based
on the red and blue regions. This is an iterative process in the sense that the
classification of one segment can make the blue or red region grow, making other
segments move from U to W .

As long as W is not empty, we pick any segment s ∈ W , assign the corre-
sponding colors to its endpoints, and move s from W to C. If a newly assigned
endpoint lies outside its corresponding zone, the red or blue area must grow to
contain that point. Note that after the red or blue region grows, other segments
can change from U to W . The process continues classifying segments of W until
either: (i) a contradiction is found (the red region is forced to overlap with the
blue region), or (ii) set W becomes empty.
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Fig. 2. Computing a stabbing horizontal strip. (a) Result after classifying st and sb.
(b) Result after cascading; the red region has grown, and only one segment remains
unclassified. In both figures, segments of U are shown dotted, those of W are dashed,
and those of C are depicted with a solid line.

Lemma 2. If the cascading procedure finds no contradiction, each remaining
segment in U has an endpoint in each of the connected components of the gray
region.

Proof. By definition, when cascading procedure finishes, all segments still in U
must have both endpoints in the gray region. Assume, for the sake of contra-
diction, that there exists a segment si ∈ U whose both endpoints lie in the
same gray component, say, the lower one. Recall that, by construction, the red
region contains the interval [yb, yt]. In particular, we have y(pi) < yt, giving a
contradiction with the definition of yt. �	
Corollary 1. A horizontal stabbing strip exists for S if and only if the cascading
procedure finishes without finding a contradiction.

Theorem 1. Determining whether a horizontal stabbing strip exists for a set of
n segments can be done in O(n log n) time and O(n) space.

Reporting All Horizontal Stabbing Strips. The above algorithm can be modi-
fied to report all combinatorially different horizontal stabbing strips without an
increase in the running time.

Once the cascading procedure has finished, we define τ as the index of the
segment of U whose upper endpoint is lowest (i.e., for any index i such that
si ∈ U , it holds that y(pi) ≥ y(pτ )). Likewise, we define β as the index whose
lower endpoint is highest. Any stabbing strip will either contain: (i) all points in
the upper component of the gray region, (ii) all points in the lower component
of the gray region, or (iii) both pτ and qβ . The first two can be reported in
constant time, and for the third case, it suffices to classify the two segments,
cascade, and repeat the previous steps.

Theorem 2. All the combinatorially different horizontal stabbing strips of a set
of n segments can be computed in O(n log n) time.
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2.3 Stabbing Quadrants

We now extend this approach for stabbing quadrants. There are four types of
quadrants; without loss of generality, we concentrate on the bottom-right type.
Thus throughout this section, the term quadrant refers to a bottom-right one.
Other types can be handled analogously.

For a segment s = (p, q), let Q(s) denote its bottom-right quadrant ; that is,
the quadrant with apex at (max{x(p), x(q)},min{y(p), y(q)}). See Fig. 3(a).

Observation 3. Any quadrant classifying a segment s ∈ S must contain Q(s).

Given the segment set S, the bottom-right quadrant of S, denoted by Q(S),
is the (inclusion-wise) smallest quadrant that contains ∪s∈SQ(s); see Fig. 3(b).
We now need the equivalent of Lemma 1 to create the initial partition of the
plane into red, blue, and gray regions.

Corollary 2. Any stabbing quadrant of S must contain Q(S).

Fig. 3. (a) A set S of five segments and their individual bottom-right quadrants.
(b) Bottom-right quadrant Q(S) of the set of segments S. (c) Initial classification
given by Q(S), and the red, blue, and gray regions. Note that there is a region (white
in the figure) that cannot contain endpoints of S.

Regions. Partition is as follows: the red region R is always defined as the inclu-
sionwise smallest quadrant that contains all classified points and Q(S). At any
point in the execution, let a = (xR, yR) denote the apex of R. Any blue point
b of a classified segment forbids the stabber to include b or any point above
and to the left of b (i.e., in the top-left quadrant of b). Moreover, if b satisfies
y(b) ≤ yR or x(b) ≥ xR, a whole halfplane will be forbidden. Thus, the union
of such regions is bounded by a staircase polygonal line (see Fig. 3(c)). Initially,
we take the blue region B defined by a point at (−∞,∞). We say that a point
p = (x, y) is in the gray region if it is not in the red or blue region, and sat-
isfies either x > xR or y < yR (see Fig. 3(c)). As in Sect. 2.2, observe that the
gray region is the union of two connected components (which we call right, and
down components). Note that, in this case, there is a region, which we call white,
that is not contained in either the red, blue, or gray regions. However, our first
observation is that no endpoint of an unclassified segment can lie in the white
region.
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Observation 4. A segment s ∈ S containing an endpoint in the white region
must contain its other endpoint in the red region.

We initially classify all segments that have one endpoint inside Q(S) in W
(and all the rest in U). As before, we apply the cascading procedure until a
contradiction is found (in which case we conclude that a stabbing quadrant does
not exist), or set W eventually becomes empty. In this case we have a very strong
characterization of the remaining unclassified segments.

Lemma 3. If the cascading procedure finishes without finding a contradiction,
each remaining segment in U has an endpoint in each of the gray components.

Thus, if no contradiction is found we can extend R until it contains one
of the two gray components to obtain a stabber. This can be done because,
by construction, each of the connected components of the gray region forms a
bottomless rectangle (i.e., the intersection of three axis aligned halfplanes) that
shares a corner with the apex of R. As in the strip case, we can use this app-
roach to report all combinatorially different quadrants in an analogous fashion
to Theorem 1: any stabbing quadrant will either completely contain one of the
two gray components, or it will contain at least a segment of each of the two
components.

Theorem 3. All the combinatorially different stabbing quadrants of a set of n
segments can be computed in O(n log n) time.

3 Stabbing with Three Halfplanes

We now consider the case in which the stabber is defined as the intersection of
three halfplanes. As in the quadrant case, it suffices to consider those of fixed
orientation. Thus, throughout this section, a 3-rectangle refers to a rectangle
that is missing the lower boundary edge, and that extends infinitely towards the
negative y-axis (also called bottomless rectangle). Without loss of generality, we
may assume that S cannot be stabbed with a halfplane, strip, or quadrant (since
any of those regions can be transformed into a bottomless rectangle). As in the
previous cases, we solve the problem by partitioning the plane into red-blue-gray
regions. However, to generate all stabbing 3-rectangles we need a more involved
sweeping phase that is combined with further cascading iterations.

3.1 Number of Different Stabbing 3-Rectangles

First we analyze the number of combinatorially different stabbing 3-rectangles
that a set of n segments may have. This analysis will lead to an efficient algorithm
to compute them. We start by defining a region that must be included in any
stabbing 3-rectangle. Recall that sb is the segment of S with highest bottom
endpoint, and qb is its bottom endpoint. Analogously, we define sr and s� as the
segments with leftmost right endpoint and rightmost left endpoint, respectively.
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Fig. 4. (a) Example with points qb, pr, and p� highlighted as squares. (b) Red and
blue regions after the initial cascading procedure has finished, and partition of the
gray region into subregions A, B, C, D, E (Color figure online).

Their corresponding right and left endpoints are denoted by pr and p�. See Fig. 4.
Finally, we define lines L�, Lr as the vertical lines passing through p� and pr,
respectively; analogously, Lb is the horizontal line passing through qb.

Lemma 4. Any non-trivial stabbing 3-rectangle R must contain the intersection
points of lines L�, Lr and Lb.

The above result allows us to initialize the red region and start the usual cas-
cading procedure. If no contradictions are found, the classified segments define
a red and a blue region which must be avoided and included in any solution,
respectively. Specifically, the red region is the inclusionwise smallest 3-rectangle
that contains all points classified as red. The blue region is the set of points
whose inclusion would force a 3-rectangle to contain some point that has already
been classified as blue. Finally, the area that is neither red nor blue is called gray
region. Once the cascading procedure has finished, all remaining unclassified seg-
ments must have both of their endpoints in the gray region. It will be convenient
to distinguish between different parts of the gray region, depending on their posi-
tion with respect to the red region. We differentiate between five regions, named
A, B, C, D, E, as depicted in Fig. 4(b). These five regions are obtained by draw-
ing horizontal and vertical lines through the two corners of the red region. We
say that the type of a segment s is XY, for X,Y ∈ {A,B,C,D,E} if s has one
endpoint in region X and the other endpoint in region Y. The next lemma shows
that, after a cascading, there are only a few possible types.

Lemma 5. Any unclassified segment after the cascading procedure is of type
AC, AD, AE, BE, or CE.

Now, consider the red and blue regions obtained after a cascading. Let
p1, . . . , pk be the endpoints of segments of S inside region A. In addition, we
define p0 as the blue point defining the blue boundary of region A, and pk+1 as
the red point defining the red boundary of region A. See Fig. 5(a). Let Gi, for
1 ≤ i ≤ k +1, be the gray region obtained after classifying points p1, . . . , pi−1 as
blue, pi, . . . , pk as red, and performing a cascading procedure (see Fig. 5(b-d)).
If any of those cascading operations results in a contradiction being found, we
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simply set the corresponding Gi to be empty. Observe that, if for some i, the
region Gi is not empty, any unclassified segment must be of type BE or CE. We
say that a classification of the remaining segments is compatible with Gi if it is
compatible with the classification of just classified segments. Next we bound the
maximum number of combinatorially different solutions compatible with Gi.

Fig. 5. (a) Initial situation; region A contains points {p1, p2}. (b)-(d): sequence of gray
regions G1, G2, G3 (Color figure online).

Lemma 6. Let Gi be defined as above for some 1 ≤ i ≤ k +1 such that Gi �= ∅,
and let ni be the number of unclassified segments in Gi, i.e., segments with both
endpoints in Gi. Then there are at most ni combinatorially different solutions
compatible with Gi.

Lemma 7. For any set S of n segments there are O(n) combinatorially different
stabbing 3-rectangles.

3.2 Algorithm

The previous results give rise to a natural algorithm to generate all combinato-
rially different stabbing 3-rectangles. The algorithm has two phases:

Initial Cascading. We initialize the red region with Lemma 4 and launch
the usual cascading procedure. If this cascading finishes without finding a
contradiction, we obtain a red and a blue region that must be included and
avoided by any stabbing 3-rectangle, respectively.

Plane Sweep of Region A. We sweep the points in region A from left to
right. In the i-th step of the sweep, we classify points p1, . . . , pi−1 as blue,
and points pi, . . . , pk as red. After each such step, we perform a cascading
procedure. If the cascading gives no contradiction, we are left with a gray
region Gi and a number of unclassified segments that must be of type BE
or CE. Then we sweep the endpoints of the unclassified segments in region
E from left to right (we call this the secondary sweep). At each step of the
sweep, we fix those to the left of the sweep line as red, and those to the
right of the sweep line as blue, and perform a cascading procedure. From
the proof of Lemma 6, we know that each step of this second sweep, after
the corresponding cascading procedure, can produce at most one different
solution.

Theorem 4. All combinatorially different stabbing 3-rectangles of a set of n
segments can be computed in O(n log n) time.
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4 Stabbing Rectangles

Applying the cascading approach of the previous sections to rectangles results
in a rather involved case distinction, since segments with both endpoints in gray
regions can have many different interdependences. Instead, we can use a simple
approach based on the algorithm for 3-rectangles, which results in a running
time that is close to optimal in the worst case (since it is easy to see that there
can be Θ(n2) combinatorially different stabbing rectangles).

Any inclusionwise smallest stabbing rectangle R must contain one endpoint
on each side, and in particular, an endpoint v of a segment in S must be on
its lower boundary segment (otherwise, we could shrink it further). The key
observation is that if we fix v (or equivalently, the lower side of a candidate
stabbing rectangle), then we can reduce the problem to that of finding a 3-sided
rectangle. In particular, by fixing the lower side of the rectangle we are forcing all
points below it to be blue, and the point through the fixed side to be red. After
a successful cascading procedure, we end up with a certain initial classification
that can be completed to a solution to the rectangle if and only if a compatible
stabbing 3-sided rectangle exists. Since there are 2n candidates for v (each of
the endpoints of the segments of S), we have O(n) different instances that are
solved independently using Theorem 4.

Theorem 5. All the combinatorially different stabbing rectangles of a given set
S of n segments can be computed in O(n2 log n) time.
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