
On the Enumeration of Permutominoes

Ana Paula Tomás(B)

DCC & CMUP, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
apt@dcc.fc.up.pt

Abstract. Although the exact counting and enumeration of polyomi-
noes remain challenging open problems, several positive results were
achieved for special classes of polyominoes. We give an algorithm for
direct enumeration of permutominoes [13] by size, or, equivalently, for the
enumeration of grid orthogonal polygons [23]. We show how the construc-
tion technique allows us to derive a simple characterization of the class
of convex permutominoes, which has been extensively investigated [5].
The approach extends to other classes, such as the row convex and the
directed convex permutominoes.

1 Introduction

The generation of geometric objects has applications to the experimental eval-
uation and testing of geometric algorithms. No polynomial time algorithm is
known for generating polygons uniformly on a given set of vertices. Some gen-
erators employ heuristics [1,7] or restrict to certain classes of polygons, e.g.,
monotone, convex or star-shaped polygons [22,24]. Numerous related problems
have also been extensively investigated, as the exact counting or enumeration
of polyominoes [10]. These remain challenging open problems in computational
geometry and enumerative combinatorics. A polyomino is an edge-connected
set of unit squares on a regular square lattice (grid). Polyominoes are defined
up to translations. In this paper, we give an algorithm for the enumeration of
permutominoes by size, or, equivalently, for the enumeration of grid orthogo-
nal polygons by the number of vertices [23]. Research on permutominoes has
focused the enumeration of some subclasses of permutominoes according to the
size and the charaterization of pairs of permutations defining various classes of
permutominoes [20]. Polyominoes are usually enumerated by area (i.e., number
of cells). The direct enumeration of polyominoes is a computational problem of
exponential complexity. An overview of the main developments concerning direct
and indirect approaches is given in [3]. Jensen’s transfer-matrix algorithm [14] –
an indirect method – is currently the most powerful algorithm for counting
fixed polyominoes. Exact counts are known for polyominoes that have up to
56 cells [3,15]. As far as we can see, Jensen’s algorithm cannot be adapted for

Partially supported by CMUP (UID/MAT/00144/2013), which is funded by FCT
(Portugal) with national (MEC) and European structural funds through the pro-
grams FEDER, under the partnership agreement PT2020.

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 41–52, 2015.
DOI: 10.1007/978-3-319-22177-9 4



42 A.P. Tomás

counting permutominoes. Our algorithm for direct enumeration of permutomi-
noes is based on Inflate-Paste, a construction technique we developed in [23].

The rest of the paper is organized as follows. Sections 2 and 3 introduce fun-
damental background, in particular, the Inflate-Paste technique. Section 4
describes our enumeration algorithm for generic permutominoes. In Sect. 5, we
see how to tailor the approach to count some specific classes (or to create
instances in such sets), such as the convex and the row-convex permutominoes.
Section 6 concludes the paper.

2 Preliminaries

A polygon is called orthogonal if its edges meet at right angles (of 3π/2 radi-
ans at reflex vertices and π/2 at convex vertices). If r is the number of reflex
vertices of an n-vertex orthogonal polygon, then n = 2r + 4 (e.g. [19]). The
grid orthogonal polygons (grid ogons) were introduced in [23] as a relevant class
for generation. A grid ogon is an orthogonal polygon without collinear edges,
embedded in a regular square grid and that has exactly one edge in each line
of its minimal bounding square. The grid ogons correspond to the permutomi-
noes introduced in [5,9,13]. A permutomino is a polyomino that is given by two
suitable permutations of {1, 2, . . . , r + 2}, for r ≥ 0, which define the sequences
of the x and y coordinates of its vertices. Its size is r + 1 and represents the
width of its minimal bounding square. We adopt the notion of size given in [9],
which is slightly different from [5] (where it is defined as one plus the width of
the minimal bounding square). The topological border of a permutomino of size
r + 1 is a grid ogon with r reflex vertices, and so, it has 2r + 4 vertices in total.
Conversely, the region delimited by a n-vertex grid ogon is a permutomino of
size r + 1. All polyominoes we consider are simply-connected and, similarly, all
polygons are simple and without holes.

3 The Inflate-Paste Technique

The Inflate-Paste technique1 was proposed in [23] for creating n-vertex grid
ogons (i.e., permutominoes), at random, as sketched in Fig. 1.

The algorithm yields an n-vertex grid ogon in O(n2) time. It exploits the fact
that every n-vertex grid ogon results from a unit square by applying Inflate-
Paste r = (n − 4)/2 times. Inflate-Paste glues a new rectangle to a grid
ogon to obtain a new one with 1 more reflex vertex. The rectangle is glued
by Paste to an horizontal edge incident to a convex vertex v, is fixed at v
and must be in a region that we called the free neighbourhood of v (Fig. 2b)).
This region is denoted by FSN(v) and consists of the external points that are
rectangularly visible from v in the quadrant with origin v that contains the
horizontal edge eH(v) and the inversion of the vertical edge eV (v), incident to v.
Here, the inversion of eV (v) is its reflection with respect to v. Two points z

1 Demos at http://www.dcc.fc.up.pt/∼apt/genpoly.

http://www.dcc.fc.up.pt/~apt/genpoly


On the Enumeration of Permutominoes 43

Fig. 1. Using Inflate-Paste to create a permutomino with 3 reflex vertices (size 4).

Fig. 2. Inflate-Paste: (a) gluing a rectangle to v (b) FSN(v) is the dark shaded
region (c) the rectangle is defined by v and the center of a cell of FSN(v).

and w are rectangularly visible if the axis-aligned rectangle that has z and w
as opposite corners does not intersect the interior of the polygon [18]. At each
step, the algorithm selects a convex vertex v and a cell c in FSN(v). The center
of c and v define the rectangle that is glued, but the cell is inflated first. The
Inflate operation keeps the grid regular: the grid lines are shifted to insert two
new lines – one horizontal and one vertical line – for the new edges, that will
meet at the center of c. We assume that the starting unit square is inside a 3×3
square, whose boundary contains no edges of P (see Fig. 1). The boundary is
kept free along the method. In this way, FSN(v) is always a bounded region
and a Ferrers diagram, with origin at v. Hence it can be defined by a sequence
of integers, representing the number of cells that form each row of the diagram.
Any cell in FSN(v) can be used for growing the polygon using v. Hence, for the
instance shown in Fig. 2c), we can make 9 + 7 + 6 + 4 + 4 + 3 + 2 = 35 distinct
grid ogons using the selected vertex v.

4 Direct Enumeration of Permutominoes

ECO was introduced in [2] as a construction paradigm for the enumeration of
combinatorial objects of a given class, by performing local transformations that
increase a certain parameter (the size) of the objects. In this section we propose
a direct enumeration procedure for the grid ogons (i.e., permutominoes) using
Inflate-Paste. The enumeration algorithm is as follows.



44 A.P. Tomás

PermutominoEnum(P ,S,G,n0,r)
if r = 0 then return fi
MakeEmptyStack(T )
while not IsEmpty(S) do

v := Pop(S) /* v has coordinates (vx, vy) */
eH(v) := the horizontal edge of P that contains v
if IsConvex(v,P ) then

for C in FreeNeighbourhood(v, P,G) do
(p, q) := the southwest corner of C
InflateGrid(p,q,G)
w1 := NewVertex(p + 1,vy)
w2 := NewVertex(p + 1,q + 1)
w3 := NewVertex(vx,q + 1)
PasteRectangle(v, [w1, w2, w3], P )
PushConvex([w1, w2, w3],eH(v),S,P )
OutputPolygon(P ,n0 + 2) /* or increment a counter */
PermutominoEnum(P ,S,G,n0 + 2,r − 1)
CutRectangle(v, [w1, w2, w3], P )
PopConvex([w1, w2, w3],eH(v),S,P )
DeflateGrid(p + 1,q + 1,G)

done
fi
Push(v,T );

done
while not IsEmpty(T ) do

Push(Pop(T ),S)
done

Here, P is the initial polygon, G a representation of the grid lines, S a
stack that contains the convex vertices of P that are available for expansion,
n0 the number of vertices of P and r the maximum number of reflex vertices
of the polygons. PermutominoEnum enumerates recursively all descendants
of P that have up to n0 +2r vertices. If initially P := {(1, 1), (2, 1), (2, 2), (1, 2)}
(w.r.t. the standard 2D cartesian coordinate system and given in CCW-order),
S := {(1, 2), (2, 2)}, and n0 = 4, then the algorithm will enumerate (or count)
all grid ogons that have up to 2r + 4 vertices. Nevertheless, in our description
of the algorithm in pseudocode, we assume that P is represented by a doubly-
linked circular list and that the vertices are linked by pointers to the grid lines
that contain them (do not keep their coordinates explicitly). In the same way,
the stack S contains pointers to the vertices that are in the stack and the new
vertices w1, w2 and w3 keep a similar representation. This means that, in the
pseudocode, p, q, p + 1, vy, q + 1, vx refer to the pointers to the corresponding
horizontal and vertical grid lines (not simple coordinates). InflateGrid(p,q,G)
shifts the vertical grid lines x > p, one position to the right and the horizontal
grid lines y > q one position upwards, and inserts two new lines x = p + 1 and
y = q + 1. DeflateGrid(p + 1,q + 1,G) does the reverse operation, removing
the lines x = p+1 and y = q+1 from the grid. This implies that the coordinates
of the vertices of P change accordingly. A trail-stack T is used to restore the



On the Enumeration of Permutominoes 45

contents of the stack S in the end of the function (we can make a copy of S at
start and use it, instead). This is important for exploring the higher branches
of the enumeration search tree. The call to PushConvex puts the new convex
vertices on the top of the stack: w2 and w3 are convex vertices always and w1

is convex if it does not lie in the interior of eH(v). For the correctness of the
enumeration algorithm, it does not matter how the algorithm sorts these new
vertices to push them onto the stack, but we can adopt a particular order, as we
discuss below. After the recursive call to PermutominoEnum, we restore the
polygon, the stack and grid before we proceed to the next cell in FSN(v). This is
done by the calls to CutRectangle, PopConvex and DeflateGrid. During
the enumeration procedure, the bottom horizontal edge cannot move upwards,
which is ensured by placing the initial unit square in a 2 × 3 grid.

The correctness and completeness of the Inflate-Paste construction are
proved in [23] and follow from the analysis of the horizontal partition of orthog-
onal polygons (see Fig. 3). The horizontal partition of an n-vertex grid ogon P
consists of r + 1 rectangles and is obtained by adding all horizontal chords inci-
dent to the reflex vertices of P . Each face of the horizontal partition, which is
a rectangle, gives a node of its dual graph and two nodes are connected by an
edge in the graph if the two corresponding rectangles are adjacent. Now, our
enumeration procedure is based on the existence of a unique depth-first gener-
ating tree for each polygon P , once we fix an order for visiting the dual graph of
its horizontal partition. One possibility is to define the order as the one induced
by a clockwise walk around the polygon, starting at the lowest rectangle, from
its SW-vertex. In Fig. 3, we used numbers to indicate the order in which the
rectangles (i.e., the nodes of the dual graph) are found.

Figure 4 shows all permutominoes with at most 8 vertices and their construc-
tion using the enumeration algorithm. In the figure, we used crosses to indicate
convex vertices that can no longer be used for expanding a polygon (to ensure

Fig. 3. The horizontal partition of a grid ogon and the unique tree induced by a depth-
first visit of its dual graph, if we start from the SW-vertex and walk around the polygon
in clockwise order. If we fix this order, only the vertices with labels 1, 2, 3, and 4 remain
active for expansion of this instance in our method (with 1 on the top of the stack).
The bottom horizontal edge never moves.



46 A.P. Tomás

Fig. 4. Permutominoes of size 1, 2, and 3 (i.e., with 4, 6, and 8 vertices) and their
horizontal partitions. In each instance, an arrow is attached to the vertex v used in the
last step to create the instance (v is no longer a vertex of the polygon).

uniqueness). They will not be in the stack at that stage if the enumeration algo-
rithm proceeds to expand such instance. Since the enumeration is in depth-first,
IsConvex checks if a vertex is still active, as Paste can render one vertex reflex.

In contrast to other existing methods for the enumeration of polyominoes,
PermutominoEnum, for permutominoes, does not need to keep an exponen-
tial number of state configurations in order to count them correctly. Each per-
mutomino is generated exactly once and, hence, there is no need to check for
repetitions. Nevertheless, the running time of the algorithm is dominated by the
number of permutominoes generated (and thus it is exponential).

By restricting the set of convex vertices that are active for expansion and
the notion of free neighbourhood we can design enumerators for particular sub-
classes, based on the Inflate-Paste construction. In particular, for the con-
vex permutominoes [5,11], the directed convex permutominoes, the row-convex
permutominoes, which, by π/2-rotation, yield the column-convex permutomi-
noes [4], as well as, for the thin, spiral, and min-area permutominoes [17].

Indeed, an algorithm for enumerating the convex permutominoes by size was
published in [11]. Its running cost is proportional to the number of permutomi-
noes generated. It is quite easy to design a specialized version of our algorithm
for enumerating convex permutominoes with identical complexity. Actually, as
we will see, for convex permutominoes the free neighbourhoods are linear (rec-
tangles of width 1) and only the two topmost convex vertices can be active.

5 Tailoring the Algorithm to Specific Subclasses

Although the exact counting and enumeration of polyominoes remain challeng-
ing open problems, several positive results were achieved for special classes of
polyominoes [6,8,16], namely for the class of convex polyominoes and some



On the Enumeration of Permutominoes 47

of its subfamilies (e.g., directed-convex polyominoes, parallelogram polyomi-
noes, stack polyominoes, and Ferrers diagrams). The larger class of row-convex
(resp. column-convex) polyominoes was considered also [12]. A polyomino is
said to be row-convex (resp. column-convex) if all its rows (resp. columns) are
connected, i.e., the associated orthogonal polygon is y-monotone (x-monotone).
A polyomino is convex if it is both row-convex and column-convex (see Fig. 5).

Fig. 5. A row-convex and a convex permutomino.

These classes, which satisfy convexity and/or directness conditions, have been
studied using different approaches and are fairly well characterized, for some
parameters, e.g., area and perimeter [6]. The corresponding classes of permu-
tominoes have been addressed too [4,5,9].

5.1 Convex Permutominoes

The analysis of the transformations performed by Inflate-Paste during the
application of PermutominoEnum allow us to derive simple characteriza-
tions and exact countings for such classes of permutominoes. Figure 6 shows
all n-vertex convex permutominoes for n = 4, 6, 8, each one embedded on a grid.
Only the two topmost convex vertices can be active for Inflate-Paste (so,
L and R stand for left or right). Crossed vertices are inactive in the following
transformation steps: “u” means that the vertex would be discarded in Permu-
tominoEnum as well (due to uniqueness conditions) and “c” means that the
resulting permutomino would not be convex. The sequence of {0, 1, 2}� displayed
on the grid top row is the expansion key of the corresponding permutomino. Each
element of the key gives the number of active convex vertices that see a certain
grid cell (in Fig. 6, each counter is in its cell). Here, see means that the cell
belongs to the free neighborhood of the vertex, already restricted to account
for the convexity condition. For all the remaining empty cells, the counter is 0
and, thus, we omitted it. If we add up the elements of the expansion key of a
given convex permutomino, we get the number of convex permutominoes that
it yields immediately in PermutominoEnum. In this way, the expansion keys
provide an exact encoding of the structural features that are relevant for count-
ing convex permutominoes according to the number of vertices. Actually, it is
the key as a whole that matters but not the particular cells associated to each
counter. By analysing Inflate-Paste in the scope of PermutominoEnum, we



48 A.P. Tomás

Fig. 6. Enumerating convex permutominoes by size.

may conclude that the expansion key of any convex permutomino with r ≥ 0
reflex vertices must be of one of the following forms:

1 2r+1 1
1 2j 0, for 1 ≤ j ≤ r−1,
0 2j 1, for 1 ≤ j ≤ r−1, and
0 2j 0, for 1 ≤ j ≤ r−2.

Inflate-Paste operations acting on convex permutominoes can be seen as
rewrite rules. Each rule rewrites the key of a convex permutomino with r − 1
reflex vertices to the key of one of the convex permutominoes derived from it,
having one more reflex vertex, for r ≥ 1. The rewrite rules are:

12r1 →L,R 12r+11
12r1 →L 12j0, for 1 ≤ j ≤ r
12r1 →R 02j1, for 1 ≤ j ≤ r

12j′
0 →L 12j0, for 1 ≤ j ≤ j′ ≤ r−1

12j′
0 →R 12j′+10, for 1 ≤ j′ ≤ r−1

12j′
0 →R 02j0, for 1 ≤ j ≤ j′ ≤ r−1

02j′
1 →R 02j1, for 1 ≤ j ≤ j′ ≤ r−1

02j′
1 →L 02j′+11, for 1 ≤ j′ ≤ r−1

02j′
1 →L 02j0, for 1 ≤ j ≤ j′ ≤ r−1

02j′
0 →L,R 02j0, for 1 ≤ j ≤ j′ ≤ r−2

where L (left) and R (right) identify the topmost vertex selected. For rules with
annotation “L,R”, both vertices can be selected, one at a time. Figures 7, 8 and
9 illustrate the idea underlying these rules. The correctness and completeness of
this rewrite system can be checked easily by case-analysis, taking into account
the conditions on convexity.



On the Enumeration of Permutominoes 49

Fig. 7. Rewriting 12r1 using the rewrite rules 12r1 →L 12r+11 and 12r1 →R 12r+11.

Fig. 8. Rewriting 12j
′
0 using (a) 12j

′
0 →R 12j

′+10 and (b) a rule 12j
′
0 →R 02j0,

for 1 ≤ j ≤ j′.

Fig. 9. Rewriting 02j
′
0 using (a) 02j

′
0 →L 02j0 and (b) 02j

′
0 →R 02j0, for some

1 ≤ j ≤ j′.

Proposition 1. Let C
(r)
α,j,β be the number of convex permutominoes of the class

α 2j β with r reflex vertices, for α, β ∈ {0, 1}, 1 ≤ j ≤ r + 1 and r ≥ 0. Then,
C

(r)
0,j,1 = C

(r)
1,j,0, for all r and j (symmetry by reflection w.r.t. V -axis) and C

(r)
α,j,β

is inductively defined as follows.

C
(0)
1,1,1 = 1

C
(r)
1,r+1,1 = 2C

(r−1)
1,r,1 , for r ≥ 1

C
(r)
1,j,0 = C

(r−1)
1,r,1 +

r−1∑

j′=max(1,j−1)

C
(r−1)
1,j′,0 , for 1 ≤ j ≤ r

C
(r)
0,j,0 = 2

r−1∑

j′=j

C
(r−1)
1,j′,0 + 2

r−2∑

j′=j

C
(r−1)
0,j′,0 , for 1 ≤ j ≤ r−1

The number of convex permutominoes with r reflex vertices (size r + 1) is
given by C(r) = C

(r)
1,r+1,1 + 2

∑r
j=1 C

(r)
1,j,0 +

∑r−1
j=1 C

(r)
0,j,0, for r ≥ 0.

Therefore, using this recurrence, C(r) can be evaluated efficiently using
dynamic programming, at least for small values of r, since C(r) grows expo-
nentially. Even for very small values of r, we need to handle big integers (either
explicitly or by means of some clever representation). Nevertheless, from [5,9],
we know the following closed form for C(r).

C(r) = 2(r + 4)4r−1 − r + 1
2

(
2(r + 1)
r + 1

)



50 A.P. Tomás

The first terms of the sequence are listed in [21] (ref. A126020): 1, 4, 18, 84,
394, 1836, 8468, 38632, 174426, 780156, . . . In a similar way, we can deduce a
recurrence for counting the row-convex permutominoes. In both case, the rewrite
rules were useful for deducing the recurrences for counting the polygons.

5.2 Row-Convex Permutominoes

The possible forms of the expansion keys of row-convex permutominoes with r
reflex vertices are 1a2b1c, with a + b + c = r + 3, and a, b, c ≥ 1 (see Fig. 10).

Fig. 10. Creating row-convex permutominoes. To focus on the distinguishing features,
for polygons resulting from 1221 and 1211, only the two top rows are shown.

Each rule rewrites the key of a row-convex permutomino with r − 1 reflex
vertices to the key of one of the row-convex permutominoes derived from it,
having one more reflex vertex, for r ≥ 1. The rewrite rules are:

1a2b1c →L 1a2b′
1c′

1c2b1a →R 1c′
2b′

1a

for all a, b, c ≥ 1, such that a + b + c = r + 2, and for all b′, c′ ≥ 1 such that
a + b′ + c′ = r + 3.

Let Br,p,k be the number of row-convex permutominoes with r reflex vertices
and expansion key 1p2r+3−(p+k)1k, for p, k ≥ 1, p + k ≤ r + 2. By symmetry,
we have Br,p,k = Br,k,p. For the recurrence, it interesting to aggregate further.
Let Rr,p =

∑r+1
k=1 Br,p,k count the instances whose expansion key starts by 1p.

Then, R0,1 = 1 and, for r ≥ 1, and we have

Rr,p = (r + 2 − p)Rr−1,p +
r+2−p∑

k=1

Rr−1,k



On the Enumeration of Permutominoes 51

with Rr−1,r+1 = 0. The first term results from the L-rule and the second from
the R-rule (exploiting symmetry). The number of row-convex permutominoes
with r vertices is R(r) =

∑r+1
p=1 Rr,p, for r ≥ 1, with R(0) = 1. It is not difficult

to see that

R(r) = 4R(r − 1) + 2
r−1∑

k=1

(r − k)Rr−1,k.

Again, we can use these recurrences to compute R(r), by dynamic programming
(with big integers), for small values of r. In [4], the authors conjecture that R(r)
can be defined asymptotically by R(r) ∼ k(r + 2)!hr+1, with k = 0.3419111 and
h = 1.385933, but the conjecture remains open.

6 Conclusion

In this paper we proposed a direct enumeration algorithm for generic permu-
tominoes, based on the Inflate-Paste construction [23]. We developed tailored
versions of the method to generate convex and row-convex permutominoes, from
which we derived simple recurrences for counting these subclasses. It is worth
noting that some of the constructions proposed by other authors for convex
and row-convex permutominoes can be seen as instances of the Inflate-Paste
method.

Acknowledgments. This paper is an extended version of the work presented at the
XV Spanish Meeting on Computational Geometry (EGC 2013). The author would like
to thank anonymous reviewers for insightful comments.

References

1. Auer, T., Held, M.: Heuristics for the generation of random polygons. In: Proeed-
ings CCCG 1996, pp. 38–43 (1996)

2. Barcucci, E., Del Lungo, A., Pergola, E., Pinzani, R.: ECO: a methodology for the
enumeration of combinatorial objects. J. Differ. Equ. Appl. 5, 435–490 (1999)

3. Barequet, G., Moffie, M.: On the complexity of Jensen’s algorithm for counting
fixed polyominoes. J. Discrete Algorithms 5, 348–355 (2007)

4. Beaton, N., Disanto, F., Guttmann, A.J., Rinaldi, S.: On the enumeration of
column-convex permutominoes. In: Proceedings of FPSAC 2011, Iceland (2011)

5. Boldi, B., Lonati, V., Radicioni, R., Santini, M.: The number of convex permu-
tominoes. Inf. Comput. 206, 1074–1083 (2008)

6. Bousquet-Mélou, M.: Bijection of convex polyominoes and equations for enumer-
ating them according to area. Discrete Appl. Math. 48, 21–43 (1994)

7. Damian, M., Flatland, R., ORourke, J., Ramaswami, S.: Connecting polygoniza-
tions via stretches and twangs. Theor. Comp. Syst. 47, 674–695 (2010)

8. Deutsch, E.: Enumerating symmetric directed convex polyominoes. Discrete Math.
280, 225–231 (2004)

9. Disanto, F., Frosini, A., Pinzani, R., Rinaldi, S.: A closed formula for the number
of convex permutominoes. Electron. J. Combin. 14, R57 (2007)



52 A.P. Tomás

10. Golomb, S.: Polyominoes. Princeton U. Press, Princeton (1994)
11. Grazzini, E., Pergola, E., Poneti, M.: On the exhaustive generation of convex per-

mutominoes. Pure Math. Appl. 19, 93–104 (2008)
12. Hickerson, D.: Counting horizontally convex polyominoes. J. Integer Sequences 2,

Article 99.1.8 (1999)
13. Insitti, F.: Permutation diagrams, fixed points and Kazhdan-Lusztig R-

polynomials. Ann. Comb. 10, 369–387 (2006)
14. Jensen, I.: Enumerations of lattice animals and trees. J. Stat. Phys. 102, 865–881

(2001)
15. Jensen, I.: Counting polyominoes: a parallel implementation for cluster computing.

In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J.,
Zomaya, A.Y. (eds.) ICCS 2003, Part III. LNCS, vol. 2659, pp. 203–212. Springer,
Heidelberg (2003)

16. Del Lungo, A., Duchi, E., Frosini, A., Rinaldi, S.: On the generation and enu-
meration of some classes of convex polyominoes. Electron. J. Combin. 11, R60
(2004)

17. Martins, A.M., Bajuelos, A.: Vertex guards in a subclass of orthogonal polygons.
Int. J. Comput. Sci. Netw. Secur. 6, 102–108 (2006)

18. Overmars, M., Wood, D.: On rectangular visibility. J. Algorithms 9(3), 372–390
(1998)

19. O’Rourke, J.: An alternate proof of the rectilinear art gallery theorem. J. Geom.
21, 118–130 (1983)

20. Rinaldi, S., Socci, S.: About half permutations. Electr. J. Comb. 21(1), P1.35
(2014)

21. Sloane, N.J.A.: The On-Line encyclopedia of integer sequences. OEIS Foundation.
http://oeis.org/

22. Sohler, C.: Generating random star-shaped polygons. In: Proceedings CCCG 1999
(1999)

23. Tomás, A.P., Bajuelos, A.: Quadratic-time linear-space algorithms for generating
orthogonal polygons with a given number of vertices. In: Laganá, A., Gavrilova,
M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol.
3045, pp. 117–126. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24767-8 13

24. Zhu, C., Sundaram, G., Snoeyink, J., Mitchell, J.S.B.: Generating random polygons
with given vertices. Comput. Geom. 6, 277–290 (1996)

http://oeis.org/
http://dx.doi.org/10.1007/978-3-540-24767-8_13

	On the Enumeration of Permutominoes
	1 Introduction
	2 Preliminaries
	3 The Inflate-Paste Technique
	4 Direct Enumeration of Permutominoes
	5 Tailoring the Algorithm to Specific Subclasses
	5.1 Convex Permutominoes
	5.2 Row-Convex Permutominoes

	6 Conclusion
	References


