
Longest α-Gapped Repeat and Palindrome

Pawe�l Gawrychowski1 and Florin Manea2(B)

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
gawry@mimuw.edu.pl

2 Department of Computer Science, Kiel University, Kiel, Germany
flm@informatik.uni-kiel.de

Abstract. We propose an efficient algorithm finding, for a word w and
an integer α > 0, the longest word u such that w has a factor uvu, with
|uv| ≤ α|u| (i.e., the longest α-gapped repeat of w). Our algorithm runs
in O(αn) time. Moreover, it can be easily adapted to find the longest
u such that w has a factor uRvu, with |uv| ≤ α|u| (i.e., the longest
α-gapped palindrome), again in O(αn) time.

1 Introduction

Gapped repeats and palindromes have been investigated for a long time (see, e.g.,
[2,4,6,8,12–14] and the references therein), with motivation coming especially
from the analysis of DNA and RNA structures, where tandem and interspersed
repeats as well as hairpin structures play important roles in revealing structural
and functional information of the analysed genetic sequence (see, e.g., [2,8,12]
and the references therein).

Following [12,13], we analyse gapped repeats uvu or palindromes uRvu where
the length of the gap v is upper bounded by the length of the arm u multiplied
by some factor. More precisely, in [13], the authors investigate α-gapped repeats:
words uvu with |uv| ≤ α|u|. Similarly, [12] deals with α-gapped palindromes, i.e.,
words uRvu with |uv| ≤ α|u|. For α = 2, these structures are called long armed
repeats (or pairs) and palindromes, respectively; for α = 1, they are squares and
palindromes of even length, respectively. Intuitively, one is interested in repeats
or palindromes whose arms are roughly close one to the other; therefore, the
study of α-gapped repeats and palindromes was rather focused on the cases with
small α. Here, we address the general case, of searching in a word w α-gapped
repeats or palindromes for α ≤ |w|.

In [12] the authors propose an algorithm that, given a word of length n, finds
the set S of all its factors which are maximal α-gapped palindromes (i.e., the
arms cannot be extended to the right or to the left) in O(α2n + |S|) time. No
upper bound on the possible size of the set S was given in [12], but, following
the ideas of [13], we conjecture it is O(α2n).

The algorithms of [2] can be directly used to find in O(n log n+ |S|) time the
set S of all the factors of a word of length n which are maximal α-gapped repeats.

The work of Florin Manea was supported by the DFG grant 596676.

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 27–40, 2015.
DOI: 10.1007/978-3-319-22177-9 3

28 P. Gawrychowski and F. Manea

Note that all the square factors of a word are maximal α-gapped repeats, with
empty gap; thus, there are words for which |S| is Ω(n log n) (see, e.g., [3]). In [13]
the size of the set of maximal α-gapped repeats with non-empty gap is shown
to be O(α2n), and can be computed in O(α2n) time for integer alphabets.

A classical problem for palindromes asks to find the longest palindromic
factor of a word [15]. Inspired by this, we address the following problems.

Problem 1. Given a word w and α ≤ |w|, find the longest word u such that w
has a factor uvu with |uv| ≤ α|u| (the longest α-gapped repeat of w).

Problem 2. Given a word w and α ≤ |w|, find the longest word u such that w
has a factor uRvu with |uv| ≤ α|u| (the longest α-gapped palindrome of w).

In this paper, we present a solution of Problem1, working in O(αn) time, and
explain briefly how our algorithms can be adapted to solve Problem2 within the
same time complexity Our approach is more efficient than producing first the list
of all maximal α-gapped repeats or palindromes and then returning the one with
the longest arms; the algorithms of [13] (for repeats) and [12] (for palindromes),
which produce such lists, are slower by an α factor than ours. Our solutions are
based on a careful combinatorial analysis (e.g., in each solution we find separately
the repeats or palindromes with periodic arms and those with aperiodic arms,
respectively) as well as on the usage of several word-processing data-structures
(e.g., suffix arrays, dictionary of basic factors). They are essentially different
from the approaches of [2] (which is based on an efficient processing of the suffix
tree of the input word) and from those in [12–14] (which have as crucial idea the
construction and analysis of the LZ-factorisation of the word).

This extended abstract is structured as follows. After giving a series of basic
facts regarding combinatorics on words and data structures, we develop the tools
we need in our solutions. We then give a solution for Problem1 and briefly point
how it can be adapted to solve Problem2.

2 Preliminaries

Definitions. The computational model we use to design and analyse our algo-
rithms is the standard unit-cost RAM (Random Access Machine) with loga-
rithmic word size, which is generally used in the analysis of algorithms. In
the upcoming algorithmic problems, we assume that the words we process are
sequences of integers (called letters, for simplicity). In general, if the input word
has length n then we assume its letters are in {1, . . . , n}, so each letter fits in a
single memory-word. This is a common assumption in stringology (see, e.g., the
discussion in [9]). Also, all logarithms appearing here are in base 2; we denote by
log n the value �log2 n�. While we do not assume to be able to compute the value
of log x in constant time, for some x ≤ n, we note that one can compute in O(n)
time all the values log x with x ≤ n; therefore, we assume that in the algo-
rithms addressed by Remark 2, or Lemmas 6 and 7, on an input of length n, we
implicitly compute all the values log x with x ≤ n.

Longest α-Gapped Repeat and Palindrome 29

Let V be a finite alphabet; V ∗ is the set of all finite words over V . The length
of a word w ∈ V ∗ is denoted by |w|. The empty word is denoted by λ. A word
u ∈ V ∗ is a factor of v ∈ V ∗ if v = xuy, for some x, y ∈ V ∗; we say that u is a
prefix of v, if x = λ, and a suffix of v, if y = λ. We denote by w[i] the symbol at
position i in w, and by w[i..j] the factor of w starting at position i and ending
at position j, consisting of the catenation of the symbols w[i], . . . , w[j], where
1 ≤ i ≤ j ≤ n; we define w[i..j] = λ if i > j. The powers of a word w are defined
recursively by w0 = λ and wn = wwn−1 for n ≥ 1. If w cannot be expressed as a
nontrivial power (i.e., w is not a repetition) of another word, then w is primitive.
A period of a word w over V is a positive integer p such that w[i] = w[j] for all
i and j with i ≡ j (mod p); if p is a period of w, then w is called p-periodic.
Let per(w) be the smallest period of w. A word w with per(w) ≤ |w|

2 is called
run; a run w[i..j] (so, p = per(w[i..j]) ≤ j−i+1

2) is maximal if and only if it
cannot be extended to the left or right to get a word with period p, i.e., i = 1
or w[i − 1] �= w[i + p − 1], and, j = n or w[j + 1] �= w[j − p + 1]. In [11] it is
shown that the number of maximal runs of a word is linear and their list (with a
run w[i..j] represented as the triple (i, j, per(w[i..j])) can be computed in linear
time (see [1] for an algorithm constructing all maximal runs of a word, without
producing its LZ-factorisation).

We now give the basic definitions of the data structures we use. For a word
u, |u| = n, over V ⊆ {1, . . . , n} we build in O(n) time its suffix tree and suffix
array, as well as LCP -data structures, allowing us to retrieve in constant time
the length of the longest common prefix of any two suffixes u[i..n] and u[j..n]
of u, denoted LCPu(i, j) (the subscript u is omitted when there is no danger of
confusion). See, e.g., [8,9], and the references therein.

Note that, given a word w of length n and � < n we can use one LCP query
to compute the longest prefix w′of w which is �-periodic: |w′| = �+LCP(1, �+1).
In our solution for Problem2, we construct LCP data structures for the word
v = wwR; this takes O(|w|) time. To check whether w[i..j] occurs at position � in
w (respectively, w[i..j]R occurs at position � in w) we check whether �+(j−i) ≤ n
and LCP (i, �) ≥ j − i + 1 (respectively, LCP(�, 2|w| − j + 1) ≥ j − i + 1).

Given a word w, its dictionary of basic factors (introduced in [5]) is a structure
that labels the factors of the form w[i..i+2k −1] (called basic factors), for k ≥ 0
and 1 ≤ i ≤ n−2k +1, such that every two equal basic factors get the same label
and the label of a basic factor can be retrieved in O(1) time. The dictionary of
basic factors of a word of length n is constructed in O(n log n) time.

Preliminary Results and Basic Tools. In the following we introduce our
basic tools, of both algorithmic and combinatorial nature.

The first lemma concerns overlapping maximal runs in a word.

Lemma 1. The overlap of two maximal runs u and u′ with the same period
(i.e., per(u)=per(u’)) is shorter than the period.

A consequence of this lemma is that no position of w is contained in more than
two maximal runs having the same period. Also, for �, p ≥ 1, a factor of length
�p of w contains at most � − 1 maximal runs of period p; this holds because

30 P. Gawrychowski and F. Manea

the overlap of each two consecutive (when ordered w.r.t. their starting position)
runs of that factor is shorter than p − 1.

The following lemma can be shown using standard tools.

Lemma 2. Let w be a word of length n. We can preprocess the word w in
O(n log n) time to construct data structures that allow us to answer in O(log n)
time queries asking for the length of the period of the factors of w.

For a word u, let lper(u) be the lexicographically minimal factor x of u of length
equal to per(u); clearly, lper(u) is primitive for all u. For a word w and a factor x
of w, let Lx be the list of the maximal runs v = w[i..j] of w such that lper(v) = x,
ordered with respect to the starting positions of these runs.

Lemma 3. Let w be a word of length n. We can compute in O(n) time the lists
Lx for all x ∈ Hw, where Hw is the set of the factors x of w with Lx �= ∅.
During the computation of the lists Lx we can also compute for each v ∈ Lx

the position where x occurs firstly in v. Accordingly, each list Lx is stored in a
structure where it is identified by the starting position of the first occurrence of
x in the first run of Lx and by |x|. However, for simplicity, we keep writing Lx.

Remark 1. Assume that w is a word and let v be a factor of w with per(v) =
p ≤ |v|

2 . Let z be a factor of length �|v| of w. Each occurrence of v in z is part of
a maximal run of period p; moreover, if v occurs in a maximal run of period p at
the position i of that run, it will also occur at positions i− p and i+ p, provided
that i−p and i+p+ |v|−1 fall inside the run, respectively. So, we can represent
succinctly the occurrences of v in z by returning succinct representations of the
maximal runs u contained in z, of length at least |v|, with lper(v) = lper(u); for
each of these runs we also store the first occurrence of v in the run. Finally, note
that there are at most 2� − 1 such runs contained in z.

Similarly, for a word w of length n, we note that a basic factor w[i..i + 2k − 1]
occurs either at most twice in a factor w[j..j + 2k+1 − 1] or its occurrences are
part of a run of period per(w[i..i + 2k − 1]) ≤ 2k−1 (so, the positions where
w[i..i + 2k − 1] occurs in w[j..j + 2k+1 − 1] form an arithmetic progression of
ratio per(w[i..i + 2k − 1]), see [10]). Hence, the occurrences of w[i..i + 2k − 1] in
w[j..j+2k+1−1] can be represented in a compact manner, just like before. To the
same end, for an integer c ≥ 2, the occurrences of the basic factor w[i..i+2k −1]
in w[j..j + c2k − 1] can be presented in a compact manner: the positions (at
most c) of the separate occurrences of w[i..i + 2k − 1] (that is, occurrences that
do not form a run) and/or at most c maximal runs determined by the overlapping
occurrences of w[i..i + 2k − 1]. We can show the following result.

Lemma 4. Given a word w of length n and a number c ≥ 2, we can preprocess
w in time O(n log n) such that given any basic factor y = w[i..i + 2k − 1] and
any factor z = w[j..j + c2k − 1], with k ≥ 0, we can compute in O(log log n + c)
time a succinct representation of all the occurrences of y in z.

The following results are shown using tools developed in [7].

Longest α-Gapped Repeat and Palindrome 31

Lemma 5. Given a word v, |v| = α log n, we can process v in time O(α log n)
time such that given any basic factor y = v[j · 2k + 1..(j + 1)2k], with j, k ≥ 0
and j2k +1 > (α−1) log n, we can find in O(α) time O(α) bit sets, each storing
O(log n) bits, characterising all the occurrences of y in v.

Note that each of the bit sets produced in the above lemma can be stored in
a constant number of memory words in our model of computation. Essentially,
this lemma states that we can obtain in O(α log n) time a representation of size
O(α) of all the occurrences of y in v.

Remark 2. By the previous lemma, given a word v, |v| = α log n, and a basic
factor y = v[j · 2k + 1..(j + 1)2k], with j, k ≥ 0 and j2k + 1 > (α − 1) log n, we
can produce O(α) bit sets, each containing exactly O(log n) bits, characterising
all the occurrences of y in v. Let us also assume that we have access to all values
log x with x ≤ n. Now, using the bit-sets encoding the occurrences of y in v
and given a factor z of v, |z| = c|y| for some c ≥ 1, we can obtain in O(c) time
the occurrences of y in z: the positions (at most c) where y occurs outside a
run and/or at most c maximal runs containing the occurrences of y. Indeed, the
main idea is to select by bitwise operations on the bit-sets encoding the factors
of v that overlap z the positions where y occurs (so the positions with an 1). For
each two consecutive such occurrences of y we detect whether they are part of a
run in v (by LCP -queries on v) and then skip over all the occurrences of y from
that run (and the corresponding parts of the bit-sets) before looking again for
the 1-bits in the bit-sets.

3 Our Solution

We now give the solution to Problem1. Our solution has two major steps. In the
first one, described in Lemma 6, we compute the longest α-gapped repeat uvu

with u periodic, i.e., per(u) ≤ |u|
2 . In the second one, described in Lemma 7, we

compute the longest α-gapped repeat uvu with u aperiodic, i.e., per(u) > |u|
2 .

Then, we return the one repeat of these two that has the longest arms.
We first show how to find the longest α-gapped uvu repeat with u periodic.

Lemma 6. Given a word w of length n and α ≤ n, the longest α-gapped repeat
uvu with u periodic contained in w can be found in O(αn) time.

Proof. For the simplicity of the exposure, let c = α−1. We want to find a repeat
u1vu2 = uvu with u1 = u2 = u periodic and |v| ≤ c|u|. As u is periodic, both its
occurrences u1 and u2 must be contained in maximal runs of w having the same
lper. Accordingly, let y1 and y2 denote the maximal runs containing u1 and u2;
we have, lper(y1) = lper(y2) = x.

The outline of our algorithm is the following. For each x, we have three cases
to analyse. In the first y1 and y2 denote the same run, and in the second y1
and y2 are overlapping runs with the same period. In both cases, we can easily
find the α-gapped repeat u1vu2 with u1 contained in y1 and u2 contained in y2.

32 P. Gawrychowski and F. Manea

The last case occurs when y1 and y2 do not overlap. Then, it is harder to find
the repeat u1vu2 we look for. In this case, we try each possibility for y2 and, at
a very intuitive level, the restriction on the gap suggests that we do not have to
look for y1 among too many runs occurring to the left of y2, and having the same
lper as y2: either they are not long enough to be worth considering as a possible
place for the left arm of the longest α-gapped repeat with the right arm in y2 or
the gap between them and y2 is too large. We exploit this and are able to find
efficiently the repeat u1vu2 with the longest arms. With care, the analysis of the
first two cases takes constant time per run, respectively, per pair of overlapping
runs, while in the last case, for each run y2 we can check whether it is the place
of the right arm of the repeat we look for in amortised O(c) time. This adds
up to O(cn) = O(αn) time. We now give more details for each case.

In the first case (see Fig. 1), u1 and u2 occur in the same run, so y1 = y2 = y.
Let us first assume that in u1vu2 we have v �= λ. Then u1 must be a prefix of y
and u2 a suffix of y. Otherwise, we could extend both u1 and u2 with at least
one symbol to get an α-gapped repeat with longer arm. For instance, when u1 is
not a prefix of y, then we extend both u1 and u2 with a letter to the left, the last
letter of v becoming now part of the new u2. This contradicts the fact that u1vu2

was the longest α-gapped repeat. Now, if y = t�t′ is the maximal run, we get
that u = t�

′
t′ where �′ =

⌊
�−1
2

⌋
. Further, assume that v = λ, so u1vu2 is in fact a

square uu. Like before, we have that uu is either the longest square prefix of y or
its longest square suffix; these can be immediately computed, and we just return
the longest of them. This way, we can compute the longest α-gapped repeat uvu
with both occurrences of u contained in the same maximal run y of w.

x x x x x x x x

u1 = uu 2 = uv

x

Fig. 1. An α-gapped repeat u1vu2 = uvu inside a run xkx′.

In the second case (see Fig. 2), y1 and y2 are distinct runs that overlap. By
Lemma 1, the length of the overlap between these two runs is at most |x|; also,
y1 and y2 should occur on consecutive positions in the list Lx. We first assume
that v �= λ. If u1 is not a prefix of y1, then u2 should be a prefix of y2, or we
could extend both u1 and u2 to the left and get a longer α-gapped repeat (with
a shorter gap v). So assume that u2 is a prefix of y2, and let x′ be the prefix
of length |x| of y2. It is clear that u2 is obtained by taking the longest word of
period |x| that starts with x′ occurring both in y2 and in y1, such that it ends in
y1 before the position where y2 starts. From the computation of Lx we have the
first occurrence of x in both y1 and y2, so we can also obtain the first occurrence
of x′ in y1; consequently, we can also compute the aforementioned longest word.
This concludes the case when u1 is not a prefix of y1. The case when u1 is a
prefix of y1 can be treated in a very similar fashion. This way, we get the longest

Longest α-Gapped Repeat and Palindrome 33

α-gapped repeat u1vu2 with u1 contained in y1, u2 contained in y2, and v �= λ.
Further, we consider the case when v = λ, so u1u2 = uu is a square. If neither u1

nor u2 is a prefix of y1 and y2, respectively, then we can shift the entire square
u1u2 to the left with one symbol, to get a new square with the same length of
the arm. We can repeat this process until one of u1 or u2 becomes a prefix of its
corresponding maximal run. Now, just like before, we can determine the longest
square uu such that either uu starts on the same position as y1 or the second u
starts on the same position as y2, and this gives us one of the longest squares uu
such that the first u is contained in y1 and the second in y2. Hence, we obtained
the longest α-gapped repeat u1u2 with u1 contained in y1 and u2 in y2, where
y1 and y2 overlap.

x

x x x x x x

x x x x x

u1 = uu 2 = uv

x

Fig. 2. An α-gapped repeat u1vu2 = uvu with u1 in y1 = x′′xk1x′, u2 in y2 = xk2 , and
y1 and y2 overlap.

In the final case (see Fig. 3), the runs y1 and y2 do not overlap. We first
analyse the ways the arms of the longest α-gapped repeat uvu, namely u1 and
u2, may occur in the runs y1 and y2, respectively.

x

x x x x x x x

x x

x x

x x x x x x x

u1 = u v u2 = u

x x

Fig. 3. An α-gapped repeat u1vu2 = uvu with u1 in y1 = xk1 and u2 in y2 = x′′xk2x′.
Between y1 and y2 there are some runs with the same lper: y3 = x2x′, y4 = x2.

Firstly, assume that y1 equals some factor of y2. Then, either u1 = y1(= u2)
or u1 is a suffix of y1 and u2 is a prefix of y2. Indeed, if we cannot construct
an α-gapped repeat u1vu2 with u1 = u2 = y1 because the gap is too long, then
any repeat u1vu2 with u1 prefix of y1 and u2 suffix of y2 is not α-gapped either.
Moreover, unless u1 = y1, then u1 should be a suffix of y1 and u2 a prefix of y2;
otherwise, a longer repeat could be constructed. Finally, if y1 equals a factor of y2
but we cannot construct an α-gapped repeat u1vu2 as above with u1 = u2 = y1,
then we will not be able to construct an α-gapped repeat u1vu2 with u1 being
the run y1 and u2 contained in some run occurring to the right of y2.

34 P. Gawrychowski and F. Manea

Secondly, the case when y2 equals a factor of y1 is similar. Either u1 = u2 = y2
or u1 is a suffix of y1 and u2 is a prefix of y2. Moreover, if y2 is contained in y1
but we cannot construct an α-gapped repeat u1vu2 as above with u1 = u2 = y2,
then we will not be able to construct an α-gapped repeat u′

1vu2 with u2 being
part of the run y2 and u′

1 = y2 contained in any run occurring to the left of y1.
Finally, assume that neither y1 equals a factor of y2, nor y2 a factor of y1.

This means that the difference between the |y1| and |y2| is rather small; anyway,
smaller than |x|. Now, there are two possibilities. The first one is when u1 is a
prefix of y1 with |y1| − |u1| < |x| and u2 a suffix of y2 with |y2| − |u2| < |x|. The
second one is when u1 is a suffix of y1 with |y1| − |u1| < |x| and u2 a prefix of
y2 with |y2| − |u2| < |x|. In both cases, we get max{|y1|, |y2|} ≤ |u| + |x| and
min{|y1|, |y2|} ≥ |u|.

Now we can describe how to compute the longest α-gapped repeat u1vu2,
with u1 and u2 occurring in non-overlapping runs. Unlike the previous case, here
it may be the case that y1 and y2 are not consecutive runs of Lx. So, we consider
each run y2 ∈ Lx at a time. For the current y2 we maintain a set M of possible
runs that may contain the left arm u1 of the longest α-gapped repeat. The main
point of our solution is that, at each step, the current M (corresponding to the
current run y2) is computed efficiently from the set M corresponding to the run
of Lx previously considered in the role of y2. Then, we use M to find the longest
α-gapped repeat we can construct with the right arm in y2, and, finally, eliminate
from M the runs that are useless for the rest of the computation. That is, when
we reached y2, we know already that some of the runs occurring before it are
too short to be able to contain the left arm of the longest α-gapped repeat; also,
some runs may not be too short to produce the repeat with the longest arms,
but are not long enough to ensure that any repeat with its left arm in them and
the right arm in one of the runs occurring to the right of y2 would be α-gapped.
These runs should not be considered further in the computation, so they are
discarded. We execute this process for all y2 ∈ Lx.

More precisely, our algorithm runs as follows. We assume that before
analysing y2 ∈ Lx we found the longest α-gapped repeat u1vu2, with both u1

and u2 contained in two non-overlapping runs which occur before y2 in Lx, so
we processed them already. Let � = |u1| and k =

⌊
�

|x|
⌋
. We now consider the

run y2 ∈ Lx, and assume that |y2| > �; clearly, shorter runs could not contain
the right arm of a repeat with arms longer than u1. By the same reason, we do
not have to consider any run that contains at most k − 2 full occurrences of x
as a place for the left arm of the repeat: the length of this arm would be less
than k|x| ≤ �. Also, we do not have to consider a run y1 with at most k + 1
occurrences of x as a possible place for the left arm of the repeat unless it is one
of the rightmost 6c runs occurring in Lx that end before y2 begins and have at
least k − 1 occurrences of x. Indeed, if y1 is not one of these 6c runs, then the
gap between the end of y1 and the start of y2 would be, if k ≥ 3, longer than
6c(k−2)|x|, or, if k = 2, longer than 6c|x|. This is greater than (k+3)c|x| ≥ c|y1|.
Therefore, any repeat with the left arm in such a run y1 and right arm in the
considered run y2 would not be α-gapped.

Longest α-Gapped Repeat and Palindrome 35

So, we only need to consider for some y2 the rightmost 6c runs of Lx which
end before y2 and have at least k−1 occurrences of x as well as the runs occurring
before (i.e., to the left of) these 6c runs, that contain at least k + 2 occurrences
of x. These runs are stored in the structure M . First, we check which is the
α-gapped repeat with longest arm that can be constructed with the left arm in
one of the aforementioned 6c runs and the right one in y2. Then we try to do
the same thing for the other runs of M . Let y1 be a run with at least k + 2
occurrences of x.

It might be the case that y1 equals a factor of y2. We produce the longest
α-gapped repeat with left arm in y1 and right arm in y2. In the case when this
repeat is y1vy1, we store it if its arm y1 is longer than the arm of the current
longest α-gapped repeat, and then discard y1: we already obtained the longest
repeat whose left arm could be in y1, so it bears no importance for the rest of
the computation. We then check the next run that occurs to the left of y1 and is
contained in M , and so on. If we cannot obtain y1vy1, we discard y1 because it
will never lead to another α-gapped repeat again, as explained in the discussion
on how an α-gapped repeat with arms in non-overlapping runs may be placed
inside these runs, and, again, continue our search. If y2 is contained in y1, we
either obtain the α-gapped repeat y2vy2 and stop analysing y2, as it already
produced the longest α-gapped repeat it can ever produce, or we obtain only a
shorter α-gapped repeat and we stop analysing y2 because it will never produce
another α-gapped repeat with a run occurring to the left of y1: the rest of the
runs in M are simply to far away from y2.

If neither y1 equals a factor of y2 nor y2 equals a factor of y1, we proceed as
follows. Let u1vu2 be the longest α-gapped repeat with the arms contained in y1

and y2, respectively. Assume that
⌈

|u|
|x|

⌉
= m; then max{|y1|, |y2|} ≤ (m + 1)|x|

and min{|y1|, |y2|} ≥ (m−1)|x|. It follows that we do not have to consider many
more runs to the left of y1 as a possible place for the left arm of the longest α-
gapped repeat with the right arm in y2. Indeed, it is enough to consider, besides
y1, the next (rightmost) 8c runs occurring to the left of y1 in Lx and having at
least m − 2 occurrences of x. All the other runs we meet while traversing Lx to
select these 8c runs are discarded: they are too short to produce a repeat with a
longer arm than what we already have found. The runs occurring to the left of
these 8c runs could not produce an α-gapped repeat with the right arm in y2,
as the gap between them and y2 would too long. Indeed, the gap between any of
them and y2 is at least 8c(m − 3)|x| + 6c|x|, if m ≥ 4, or 14c|x|, otherwise; this
is, anyway, greater than c|y2|. Therefore, after checking the selected 8c runs as
a possible place for the left arm of the longest α-gapped repeat, we are sure to
have obtained the longest α-gapped repeat with the right arm in y2.

Further, we have to update M so that it becomes ready to be used when
considering a new run of Lx in the role of y2. Assume the current longest
α-gapped repeat has the arm length �′ and let k′ =

⌊
�′
|x|

⌋
. From the runs of

M (so, excluding the ones we already discarded), we first store the rightmost 6c
runs with at least k′ − 1 occurrences of x. Then we also discard from the rest of
M all the runs with at most k′ +1 occurrences of x, occurring to the right of the

36 P. Gawrychowski and F. Manea

leftmost run of Lx considered in our search. Once M is cleaned up like this, if
the next run we need to consider in the role of y2 (so, which has length greater
than �′) is y′, we add to M , in the order of their starting positions, the runs with
at least k′ − 1 occurrences of x and ending between the starting position of y2
and the starting position of y′. These runs are added one by one, such that the
set of the rightmost 6c runs of M with at least k′ −1 occurrences of x is correctly
maintained. When a run with at most k′ +1 occurrences of x is no longer among
the last 6c runs of M , we just discard it. We then process the updated M with
y′ in the role of y2.

In this way, we compute for each x the longest α-gapped repeat u1vu2 with
u1 = u2 periodic, contained in non-overlapping runs with lper = x. We do this
for all possible values of x, and, alongside the analysis from the cases discussed
at the beginning of this proof, we get the longest α-gapped repeat u1vu2 with
u1 = u2 periodic.

The complexity of this algorithm is O(αn). Indeed, in the first case we spend
constant time per each run. In the second case we need constant time to analyse
each pair of consecutive runs from the list Lx, for each x. This adds up to O(n)
as the number of runs in a word is linear. In the last case, the time needed to
process a run y2 ∈ Lx is proportional to the number of elements discarded from
the structure M during this processing plus the number of elements inserted in
M before considering the next run of Lx, to which we add an extra O(c) = O(α)
processing time. As each run of Lx is added at most once in M , and then removed
once, the total number of deletions and insertions we make is O(n). In total, the
analysis of the third case takes, as claimed, O(αn). This concludes our proof. ��
Next we show how to find the longest α-gapped repeats uvu with u aperiodic.

Lemma 7. Given a word w of length n and an integer α ≤ n, the longest
α-gapped repeat uvu with u aperiodic, contained in w, can be found in O(αn)
time.

Proof. Here we cannot use the runs structure of the input word to guide our
search for the arms of the longest α-gapped repeat. So we need a new approach.

Informally, this new approach works as follows (see also Fig. 4). For each k,
we try to find the longest α-gapped repeat u1vu2 = uvu, with u1 = u2 = u
aperiodic, and 2k+1 log n ≤ |u| ≤ 2k+2 log n. In each such repeat, the right arm
u2 must contain a factor (called k-block) z, of length 2k log n, starting on a
position of the form j2k log n + 1. So, we try each such factor z, fixing in this
way a range of the input word where u2 could appear. Now, u1 must also contain
a copy of z. However, it is not mandatory that this copy of z occurs nicely aligned
to its original occurrence; from our point of view, this means the copy of z does
not necessarily occur on a position of the form i log n + 1. But, it is not hard to
see that z has a factor y of length 2k−1 log n, starting in its first log n positions
and whose corresponding occurrence in u1 should start on a position of the
form i log n + 1. Further, we can use the fact that u1vu2 is α-gapped and apply
Lemma 4 to a suitable encoding of the input word to locate in constant time for
each y starting in the first log n positions of z all possible occurrences of y on

Longest α-Gapped Repeat and Palindrome 37

a position of the form i log n + 1, occurring not more than (8α + 2)|y| positions
to the left of z. Intuitively, each occurrence of y found in this way fixes a range
where u1 might occur in w, such that u1vu2 is α-gapped. So, around each such
occurrence of y (supposedly, in the range corresponding to u1) and around the
y from the original occurrence of z we try to effectively construct the arms u1

and u2, respectively, and see if we get the α-gapped repeat. In the end, we just
return the longest repeat we obtained, going through all the possible choices
for z and the corresponding y’s. We describe in the following an O(αn) time
implementation of this approach.

y

y

y

y z

uu v

Fig. 4. Segment of w, split into blocks of length log n. In this segment, z is a k-block
of length 2k log n. For each factor y, of length 2k−1 log n, occurring in the first log n
symbols of z (not necessarily a sequence of blocks), we find the occurrences of y that
correspond to sequences of 2k−1 blocks, and start at most (8α+2)|y| = (4α+1)·2k log n
symbols (or, alternatively, (4α + 1) · 2k blocks) to the left of the considered z. These y
factors may appear as runs or as separate occurrences. Some of them can be extended
to form an α-gapped repeat u1vu2 = uvu such that the respective occurrence of y has
the same offset in u1 as the initial y in u2.

The first step of the algorithm is to construct a word w′, of length n
log n ,

whose symbols, called blocks, encode log n consecutive symbols of w grouped
together. Basically, now we have two versions of the word w: the original one,
and the one where it is split in blocks. Clearly, the blocks can be encoded into
numbers between 1 and n in linear time, so we can construct in O(n) time the
suffix arrays and LCP -data structures for both w and w′. We can also build in
O(n) time the data structures of Lemma 4 for the word w′.

Now, we try to find the longest α-gapped repeat u1vu2 = uvu of w, with
u1 = u2 = u aperiodic, and 2k+1 log n ≤ |u| ≤ 2k+2 log n, for each k ≥ 1 if
α > log log n or k ≥ log log n, otherwise. Let us consider now one such k. We
split again the word w, this time in factors of length 2k log n, called k-blocks. For
simplicity, assume that each split is exact.

Clearly, if an α-gapped repeat u1vu2 like above exists, then u2 contains at
least one of the k-blocks. Consider such a k-block z and assume it is the leftmost
k-block of u2. On the other hand, u1 contains at least 2k+1 − 1 consecutive
blocks from w′, so there should be a factor y of w corresponding to 2k−1 of these
(2k+1 − 1) blocks which is also a factor of z, and starts on one of the first log n
positions of z. Now, for each k-block z and each y, with |y| = 2k−1 log n and
starting in its prefix of length log n, we check whether there are occurrences of
y in w ending before z that correspond to exactly 2k−1 consecutive blocks of

38 P. Gawrychowski and F. Manea

w′ (one of them should be the occurrence of y in u1); note that the occurrence
of y in z may not necessarily correspond to a group of 2k−1 consecutive blocks,
but the one from u1 should. As u1vu2 is α-gapped and |u1| ≤ 2k+2 log n, then
the occurrence of y from u1 starts at most (4α + 1)2k log n symbols before z
(as |u1v| ≤ α|u2| ≤ α2k+2 log n, and z occurs with an offset of at most 2k log n
symbols in u2). So, the block-encoding of the occurrence of the factor y from the
left arm u1 should occur in a factor of (4α + 1)2k blocks of w′, to the left of the
blocks corresponding to z.

For the current z and an y as above, we check whether there exists a factor
y′ of w′ whose blocks correspond to y, by binary searching the suffix array of w′

(using LCP -queries on w to compare the factors of log n symbols of y and the
blocks of w′, at each step of the search). If not, we try another possible y. If yes,
using Lemma 4 for w′, we retrieve (in O(log log |w′| + α) time) a representation
of the occurrences of y′ in the range of (4α + 1)2k blocks of w′ occurring before
the blocks of z; this range corresponds to a range of length (4α+1)2k log n of w.

If y′ is aperiodic then there are only O(α) such occurrences. Each factor of w
corresponding to one of these occurrences might be the occurrence of y from u1,
so we try to extend both the factor corresponding to the respective occurrence
of y′ from w′ and the factor y from z in a similar way to the left and right
to see whether we obtain the longest α-gapped repeat. If y′ is periodic (so, y
is periodic as well), Remark 1 shows that the representation of its occurrences
consists of O(α) separate occurrences and O(α) runs in which y′ occurs. The
separate occurrences are treated as above. Each run r′ of w′ where y′ occurs is
treated differently, depending on whether its corresponding run r from w (made
of the blocks corresponding to r′) supposedly starts inside u1, ends inside u1, or
both starts and ends inside u1. We can check each of these three cases separately,
each time trying to establish a correspondence between r and the run containing
the occurrence of y from z, which should also start, end, or both start or end
inside u2, respectively. Then we define u1 and u2 as the longest equal factors
containing these matching runs on matching positions. Hence, for each separate
occurrence of y′ or run of such occurrences, we may find an α-gapped repeat in
w; we just store the longest. This whole process takes O(α) time.

If α > log log n, we run this algorithm for all k ≥ 1 and find the longest
α-gapped repeat uvu, with u aperiodic, and 4 log n ≤ |u|, in O(αn) time.

If α ≤ log log n, we run this algorithm for all k ≥ log log n and find the longest
α-gapped repeat uvu, with u aperiodic, and 2log log n+1 log n ≤ |u|, in O(αn) time.
If our algorithm did not find such a repeat, we should look for α-gapped repeats
with shorter arm. Now, |u| is upper bounded by 2log log n+1 log n = 2(log n)2,
so |uvu| ≤ �0, for �0 = α · 2(log n)2 + 2(log n)2 = (2α + 2)(log n)2. Such an
α-gapped repeat uvu is, thus, contained in (at least) one factor of length 2�0
of w, starting on a position of the form 1 + m�0 for m ≥ 0. So, we take the
factors w[1 + m�0..(m + 2)�0] of w, for m ≥ 0, and apply for each such factor,
separately, the same strategy as above. The total time needed to do that is
O

(
α�0

n
�0

)
= O(αn). Hence, we found the longest α-gapped repeats uvu, with

u aperiodic, and 2log log(2�0)+1 log(2�0) ≤ |u|. If our search was still fruitless, we

Longest α-Gapped Repeat and Palindrome 39

need to search α-gapped repeats with |u| ≤ 2log log(2�0)+1 log(2�0) ≤ 16 log n (a
rough estimation, based on the fact that α ≤ log log n).

So, in both cases, α > log log n or α ≤ log log n, it is enough to find the
longest α-gapped repeats with |u| ≤ 16 log n. The right arm u2 of such a repeat is
contained in a factor w[m log n+1..(m+17) log n] of w, while u1 surely occurs in a
factor x = w[m log n−16α log n+1..(m+17) log n] (or, if m log n−16α log n+1 ≤
0, then in a factor x = w[1..(m + 17) log n]); in total, there are O(n/ log n) such
x factors. In each of these factors, we look for α-gapped repeats u1vu2 = uvu
with 2k+1 ≤ |u| ≤ 2k+2, where 0 ≤ k ≤ log log n + 2 (the case |u| < 2 is trivial),
and u2 occurs in the suffix of length 17 log n of this factor. Moreover, u2 contains
a factor y of the form x[j2k + 1..(j + 1)2k]. Using Lemma 5 and Remark 2, for
each such possible y occurring in the suffix of length 17 log n of x, we assume
it is the one contained in u2 and we produce in O(α) time a representation of
the O(α) occurrences of y in the factor of length (4α + 1)|y| preceding y. One
of these should be the occurrence of y from u1. Similarly to the previous cases,
we check in O(α) time which is the longest α-gapped repeat obtained by pairing
one of these occurrences to y, and extending them similarly to the left and right.
The time needed for this is O(α log n) per each of the O(n

log n) factors x defined
above. This adds up to an overall complexity of O(αn), again.

This was the last case we needed to consider. In conclusion, we can find the
longest α-gapped repeat uvu, with u aperiodic, in O(αn) time. ��
Lemmas 6 and 7 lead to the following theorem.

Theorem 1. Problem 1 can be solved in O(αn) time.

To solve Problem 2 we construct LCP -structures for wwR (allowing us to test
efficiently whether a factor w[i..j]R occurs at some position � in w) and a mapping
connecting the lists Lx, of maximal runs y with lper(y) = x, to the lists L′

x of
maximal runs y in wR with lper(y) = x. Using the same strategy as in the case
of repeats we can solve Problem 2 in O(αn) time.

We first look for α-gapped palindromes with periodic arm, and then for such
palindromes with aperiodic arms. The main difference is that, when looking for
α-gapped palindrome uRvu with u contained in or containing a part of a run
from Lx, for some x, we get that uR is in contained in or contains part of a run
from L′

x, respectively.
Basically, when we search uRvu with the longest periodic u and |uv| ≤ α|u|,

we choose a maximal run y, with lper(y) = x, as the possible place for the
right arm of the gapped palindrome; then, we only have to check (counting in
an amortised setting) the rightmost O(α) runs of L′

x that end before y as the
possible place of uR. When we search the longest α-gapped palindrome uRvu
with u aperiodic, we split again w in blocks and k-blocks, for each k ≤ log |w|,
to check in whether there exists such an uRvu with 2k ≤ |u| ≤ 2k+1. This search
is conducted pretty much as in the case of repeats, only that now when we fix
some factor y of u, we have to look for the occurrences of yR in the factor of
length O(α|y|) preceding it; the LCP -structures for wwR are useful for this. The
following results follows.

40 P. Gawrychowski and F. Manea

Theorem 2. Problem 2 can be solved in O(αn) time.

References

1. Bannai, H., Tomohiro, I., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.:
A new characterization of maximal repetitions by lyndon trees. In: Proceedings of
the SODA, pp. 562–571 (2015)

2. Brodal, G.S., Lyngsø, R.B., Pedersen, C.N.S., Stoye, J.: Finding maximal pairs
with bounded gap. In: Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS,
vol. 1645, pp. 134–149. Springer, Heidelberg (1999)

3. Crochemore, M.: An optimal algorithm for computing the repetitions in a word.
Inf. Process. Lett. 12(5), 244–250 (1981)

4. Crochemore, M., Iliopoulos, C.S., Kubica, M., Rytter, W., Waleń, T.: Efficient
algorithms for two extensions of LPF table: the power of suffix arrays. In: van
Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM
2010. LNCS, vol. 5901, pp. 296–307. Springer, Heidelberg (2010)

5. Crochemore, M., Rytter, W.: Usefulness of the Karp-Miller-Rosenberg algorithm
in parallel computations on strings and arrays. Theoret. Comput. Sci. 88(1), 59–82
(1991). http://dx.doi.org/10.1016/0304-3975(91)90073-B

6. Crochemore, M., Tischler, G.: Computing longest previous non-overlapping factors.
Inf. Process. Lett. 111(6), 291–295 (2011)

7. Gawrychowski, P.: Pattern matching in Lempel-Ziv compressed strings: fast, sim-
ple, and deterministic. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011.
LNCS, vol. 6942, pp. 421–432. Springer, Heidelberg (2011)

8. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, New York (1997)

9. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53, 918–936 (2006)

10. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Efficient data structures
for the factor periodicity problem. In: Calderón-Benavides, L., González-Caro, C.,
Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 284–294. Springer,
Heidelberg (2012)

11. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.
In: Proceedings of the FOCS, pp. 596–604 (1999)

12. Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theor. Comput.
Sci. 410(51), 5365–5373 (2009)

13. Kolpakov, R., Podolskiy, M., Posypkin, M., Khrapov, N.: Searching of gapped
repeats and subrepetitions in a word. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner,
P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 212–221. Springer, Heidelberg (2014)

14. Kolpakov, R.M., Kucherov, G.: Finding repeats with fixed gap. In: Proceedings of
the SPIRE, pp. 162–168 (2000)

15. Manacher, G.K.: A new linear-time on-line algorithm for finding the smallest initial
palindrome of a string. J. ACM 22(3), 346–351 (1975)

http://dx.doi.org/10.1016/0304-3975(91)90073-B

	Longest -Gapped Repeat and Palindrome
	1 Introduction
	2 Preliminaries
	3 Our Solution
	References

