
Adrian Kosowski
Igor Walukiewicz (Eds.)

 123

LN
CS

 9
21

0

20th International Symposium, FCT 2015
Gdańsk, Poland, August 17–19, 2015
Proceedings

Fundamentals
of Computation Theory

Lecture Notes in Computer Science 9210

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Adrian Kosowski • Igor Walukiewicz (Eds.)

Fundamentals
of Computation Theory
20th International Symposium, FCT 2015
Gdańsk, Poland, August 17–19, 2015
Proceedings

123

Editors
Adrian Kosowski
Université Paris Diderot
Paris
France

Igor Walukiewicz
Université Bordeaux 1
Talence
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-22176-2 ISBN 978-3-319-22177-9 (eBook)
DOI 10.1007/978-3-319-22177-9

Library of Congress Control Number: 2015944500

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The Program Committee also conferred a special Test-of-Time Award to the FCT 1991
paper Lattice basis reduction: Improved practical algorithms and solving subset sum
problems, co-authored by Claus-Peter Schnorr and Martin Euchner. This volume
contains the papers presented at FCT 2015: The 20th International Symposium on
Fundamentals of Computation Theory, which was held during August 17–19, 2015, in
Gdańsk, Poland. The Symposium on Fundamentals of Computation Theory was
established in 1977 for researchers interested in all aspects of theoretical computer
science, in particular in algorithms, complexity, and formal and logical methods. It is a
biennial conference, which has previously been held in Poznań (1977), Wendisch-Rietz
(1979), Szeged (1981), Borgholm (1983), Cottbus (1985), Kazan (1987), Szeged
(1989), Gosen-Berlin (1991), Szeged (1993), Dresden (1995), Kraków (1997), Iasi
(1999), Riga (2001), Malmö (2003), Lübeck (2005), Budapest (2007), Wrocław
(2009), Oslo (2011), and Liverpool (2013). The suggested topics of FCT 2015 included
three main areas:

– Algorithms (algorithm design and optimization; approximation, randomized, and
heuristic methods; circuits and Boolean functions; combinatorics and analysis of
algorithms; computational algebra; computational complexity; computational
geometry; online algorithms; streaming algorithms; distributed and parallel
computing)

– Formal methods (algebraic and categorical methods; automata and formal lan-
guages; computability and nonstandard computing models; database theory; foun-
dations of concurrency and distributed systems; logics and model checking; models
of reactive, hybrid, and stochastic systems; principles of programming languages;
program analysis and transformation; specification, refinement, and verification;
security; type systems)

– Emerging fields (ad hoc, dynamic, and evolving systems; algorithmic game theory;
computational biology; foundations of cloud computing and ubiquitous systems;
quantum information and quantum computing)

This year we received 60 submissions in response to the call for papers, of which 27
were accepted by the Program Committee after a careful review and discussion process.
The conference program included three invited talks, by Marek Karpinski (University
of Bonn), Antonín Kučera (Masaryk University), and Peter Widmayer (ETH Zürich),
as well as a special session devoted to some of the most influential papers presented at
FCT in the 40 years of the history of the conference. This volume contains the accepted
papers and abstracts of the invited talks.

We would like to thank the members of the Program Committee for the evaluation
of the submissions and the additional reviewers for their excellent cooperation in this
work. We are grateful to all the contributors of the conference, in particular to the
invited speakers for their willingness to share their insights on interesting new

developments. Furthermore, we thank the Organizing Committee chaired by Paweł
Żyliński and Łukasz Kuszner for their invaluable help.

We are especially grateful to the sponsors of the conference: the Mayor of the City
of Gdańsk, the University of Gdańsk, the Gdańsk University of Technology, and
Springer, for their financial support. Finally, we acknowledge the use of the EasyChair
system in managing paper submissions, the refereeing process, and preparation of the
conference proceedings.

August 2015 Adrian Kosowski
Igor Walukiewicz

VI Preface

Conference Organization

Program Committee

Per Austrin KTH Royal Institute of Technology, Stockholm,
Sweden

Christel Baier Technische Universität Dresden, Germany
Marcin Bieńkowski University of Wrocław, Poland
Tomás Bráždil Masaryk University, Brno, Czech Republic
Luis Caires Universidade Nova de Lisboa, Portugal
Thomas Colcombet CNRS and Université Paris Diderot, France
Marek Cygan University of Warsaw, Poland
Stéphane Demri CNRS and ENS Cachan, France
Dariusz Dereniowski Gdańsk University of Technology, Poland
Konstantinos Georgiou University of Waterloo, Canada
Radu Grosu Vienna University of Technology, Austria
Rolf Klein University of Bonn, Germany
Barbara König University of Duisburg-Essen, Germany
Adrian Kosowski Inria and Université Paris Diderot, France
Dan Král University of Warwick, UK
Leonid Libkin University of Edinburgh, UK
Andrzej Murawski University of Warwick, UK
Jelani Nelson Harvard University, USA
Gennaro Parlato University of Southampton, UK
Andrzej Pelc Université du Québec en Outaouais, Canada
Guido Proietti University of L’Aquila, Italy
Andrzej Proskurowski University of Oregon, USA
Stanisław Radziszowski Rochester Institute of Technology, USA
Davide Sangiorgi Inria and University of Bologna, Italy
Thomas Sauerwald University of Cambridge, UK
Pawel Sobocinski University of Southampton, UK
Andrzej Szepietowski University of Gdańsk, Poland
Wojciech Szpankowski Purdue University, USA
Igor Walukiewicz CNRS and Université de Bordeaux, France
Paweł Żyliński University of Gdańsk, Poland

Steering Committee

Bogdan Chlebus University of Colorado, USA
Zoltan Esik University of Szeged, Hungary
Marek Karpinski University of Bonn, Germany

Andrzej Lingas Lund University, Sweden
Miklos Santha CNRS and Université Paris Diderot, France
Eli Upfal Brown University, USA

Additional Reviewers

Bauwens, Bruno
Bezakova, Ivona
Bhattacharya, Binay
Bilò, Davide
Blasiok, Jaroslaw
Blum, Norbert
Borowiecki, Piotr
Choi, Yongwook
Curticapean, Radu
Damaschke, Peter
Downey, Rod
Dueck, Gerhard
Dybizbanski, Janusz
Elbassioni, Khaled
Enea, Constantin
Farley, Arthur
Fijalkow, Nathanaël
Fitzsimmons, Zack
Gajarský, Jakub
Gleich, David
Golovach, Petr
Gualà, Luciano
Gurvich, Vladimir

Habermehl, Peter
Horn, Florian
Jeż, Łukasz
Jurdzinski, Tomasz
Kaminsky, Alan
Knop, Dusan
Knorr, Matthias
Kolpakov, Roman
Kretinsky, Jan
Krzywkowski, Marcin
Kucera, Petr
La Torre, Salvatore
Laskoś-Grabowski, Paweł
Lonati, Violetta
Magner, Abram
Mamede, Margarida
Marcinkowski, Jan
Mikkelsen, Jesper W.
Narvaez, David
Nickovic, Dejan
Obdrzalek, Jan
Ordyniak, Sebastian
Pajak, Dominik

Place, Thomas
Prusinkiewicz,

Przemyslaw
Radoszewski, Jakub
Raman, Venkatesh
Rauf, Imran
Sauerhoff, Martin
Saurabh, Saket
Scheffel, Torben
Schlipf, Lena
Schmitz, Sylvain
Silberstein, Natalia
Skrzypczak, Michal
Souto, André
Spyra, Aleksandra
Sreejith, A.V.
Truthe, Bianca
Volec, Jan
Wilson, Christopher
Wood, Christopher
Zenil, Hector
Zhang, Yu
Ziemann, Radosław

Institutional Organizers

University of Gdańsk
Gdańsk University of Technology

Honorary Patronage

Mayor of the City of Gdańsk
Committee on Informatics, Polish Academy of Sciences

Cooperating Institution

Sphere Research Labs Sp. z o.o.

VIII Conference Organization

Organizing Committee

Piotr Borowiecki
Zuzanna Kosowska-Stamirowska
Adrian Kosowski
Łukasz Kuszner
Paweł Żyliński

Conference Organization IX

Invited Talks

It is Better to be Vaguely Right Than
Exactly Wrong*

Peter Widmayer

Institute of Theoretical Computer Science, ETH Zürich, Switzerland
widmayer@inf.ethz.ch

Abstract. In the past few years, more and more attention has been paid
to the annoying difference between abstract algorithmic problems and
their messy origins in the real world. While algorithms theory is highly
developed for a large variety of clean, combinatorial optimization
problems, their practical counterparts cannot always be solved by well
understood theoretical methods, for a variety of reasons: Practical inputs
suffer from uncertainties and inaccuracies, like noisy data, or algorithmic
outputs cannot be realized exactly, due to physical inaccuracies. We aim
at a better theoretical understanding of how to cope with uncertain input
data for real problems. We propose a general approach that tends to lead
to substantial algorithmic challenges and inefficiencies on the one hand,
but promises on the other hand to deliver good results for practical
problems as varied as robust trip planning in public transportation and
robust de novo peptide sequencing in computational biology.

This talk is about joint work with Katerina Böhmova, Joachim
Buhmann, Matus Mihalak, Tobias Pröger, and Rasto Sramek.

* A quote going back to Carveth Read, but incorrectly attributed to John Maynard Keynes after his
death as “It is better to be roughly right than precisely wrong”.

Towards Better Inapproximability Bounds
for TSP: A Challenge of Global Dependencies

Marek Karpinski

Department of Computer Science and the Hausdorff Center for Mathematics,
University of Bonn, Bonn, Germany

marek@cs.uni-bonn.de

Abstract. We present in this paper some of the recent techniques and methods
for proving best up to now explicit approximation hardness bounds for metric
symmetric and asymmetric Traveling Salesman Problem (TSP) as well as
related problems of Shortest Superstring and Maximum Compression. We
attempt to shed some light on the underlying paradigms and insights which lead
to the recent improvements as well as some inherent obstacles for further pro-
gress on those problems.

Marek Karpinski—Research supported by DFG grants and the Hausdorff grant EXC59-1.

On the Existence and Computability
of Long-Run Average Properties in

Probabilistic VASS

Antonín Kučera

Faculty of Informatics, Masaryk University, Brno, Czech Republic
kucera@fi.muni.cz

Abstract. We present recent results about the long-run average properties of
probabilistic vector additions systems with states (pVASS). Interestingly, for
probabilistic pVASS with two or more counters, long-run average properties
may take several different values with positive probability even if the underlying
state space is strongly connected. This contradicts the previous results about
stochastic Petri nets established in 80s. For pVASS with three or more counters,
it may even happen that the long-run average properties are undefined (i.e., the
corresponding limits do not exist) for almost all runs, and this phenomenon is
stable under small perturbations in transition probabilities. On the other hand,
one can effectively approximate eligible values of long-run average properties
and the corresponding probabilities for some sublasses of pVASS. These results
are based on new exponential tail bounds achieved by designing and analyzing
appropriate martingales. The paper focuses on explaining the main underlying
ideas.

Based on a joint work with Tomáš Brázdil, Joost-Pieter Katoen, Stefan Kiefer, and Petr Novotný. The
author is supported by the Czech Science Foundation, grant No. 15-17564S.

Contents

Invited Talks

Towards Better Inapproximability Bounds for TSP: A Challenge
of Global Dependencies . 3

Marek Karpinski

On the Existence and Computability of Long-Run Average Properties
in Probabilistic VASS . 12

Antonín Kučera

Geometry, Combinatorics, Text Algorithms

Longest a-Gapped Repeat and Palindrome . 27
Paweł Gawrychowski and Florin Manea

On the Enumeration of Permutominoes . 41
Ana Paula Tomás

Stabbing Segments with Rectilinear Objects . 53
Mercè Claverol, Delia Garijo, Matias Korman, Carlos Seara,
and Rodrigo I. Silveira

b-skeletons for a Set of Line Segments in R2 . 65
Mirosław Kowaluk and Gabriela Majewska

Complexity and Boolean Functions

Depth, Highness and DNR Degrees. 81
Philippe Moser and Frank Stephan

On the Expressive Power of Read-Once Determinants 95
N.R. Aravind and Pushkar S. Joglekar

Constructive Relationships Between Algebraic Thickness and Normality 106
Joan Boyar and Magnus Gausdal Find

On the Structure of Solution-Graphs for Boolean Formulas 118
Patrick Scharpfenecker

Languages

Interprocedural Reachability for Flat Integer Programs 133
Pierre Ganty and Radu Iosif

http://dx.doi.org/10.1007/978-3-319-22177-9_1
http://dx.doi.org/10.1007/978-3-319-22177-9_1
http://dx.doi.org/10.1007/978-3-319-22177-9_2
http://dx.doi.org/10.1007/978-3-319-22177-9_2
http://dx.doi.org/10.1007/978-3-319-22177-9_3
http://dx.doi.org/10.1007/978-3-319-22177-9_3
http://dx.doi.org/10.1007/978-3-319-22177-9_4
http://dx.doi.org/10.1007/978-3-319-22177-9_5
http://dx.doi.org/10.1007/978-3-319-22177-9_6
http://dx.doi.org/10.1007/978-3-319-22177-9_7
http://dx.doi.org/10.1007/978-3-319-22177-9_8
http://dx.doi.org/10.1007/978-3-319-22177-9_9
http://dx.doi.org/10.1007/978-3-319-22177-9_10
http://dx.doi.org/10.1007/978-3-319-22177-9_11

Complexity of Suffix-Free Regular Languages . 146
Janusz Brzozowski and Marek Szykuła

Alternation Hierarchies of First Order Logic with Regular Predicates. 160
Luc Dartois and Charles Paperman

A Note on Decidable Separability by Piecewise Testable Languages 173
Wojciech Czerwiński, Wim Martens, Lorijn van Rooijen,
and Marc Zeitoun

Set Algorithms, Covering, and Traversal

Multidimensional Binary Vector Assignment Problem: Standard,
Structural and Above Guarantee Parameterizations 189

Marin Bougeret, Guillerme Duvillié, Rodolphe Giroudeau,
and Rémi Watrigant

Incremental Complexity of a Bi-objective Hypergraph Transversal Problem 202
Ricardo Andrade, Etienne Birmelé, Arnaud Mary, Thomas Picchetti,
and Marie-France Sagot

Pairs Covered by a Sequence of Sets . 214
Peter Damaschke

Recurring Comparison Faults: Sorting and Finding the Minimum 227
Barbara Geissmann, Matúš Mihalák, and Peter Widmayer

Graph Algorithms and Networking Applications

Minimal Disconnected Cuts in Planar Graphs . 243
Marcin Kamiński, Daniël Paulusma, Anthony Stewart,
and Dimitrios M. Thilikos

�-Almost Selectors and Their Applications . 255
Annalisa De Bonis and Ugo Vaccaro

Derandomized Construction of Combinatorial Batch Codes 269
Srimanta Bhattacharya

On the Mathematics of Data Centre Network Topologies 283
Iain A. Stewart

Anonymity and Indistinguishability

Privacy in Elections: k-Anonymizing Preference Orders 299
Nimrod Talmon

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-22177-9_12
http://dx.doi.org/10.1007/978-3-319-22177-9_13
http://dx.doi.org/10.1007/978-3-319-22177-9_14
http://dx.doi.org/10.1007/978-3-319-22177-9_15
http://dx.doi.org/10.1007/978-3-319-22177-9_15
http://dx.doi.org/10.1007/978-3-319-22177-9_16
http://dx.doi.org/10.1007/978-3-319-22177-9_17
http://dx.doi.org/10.1007/978-3-319-22177-9_18
http://dx.doi.org/10.1007/978-3-319-22177-9_19
http://dx.doi.org/10.1007/978-3-319-22177-9_20
http://dx.doi.org/10.1007/978-3-319-22177-9_21
http://dx.doi.org/10.1007/978-3-319-22177-9_22
http://dx.doi.org/10.1007/978-3-319-22177-9_23

On Equivalences, Metrics, and Polynomial Time. 311
Alberto Cappai and Ugo Dal Lago

Graphs, Automata, and Dynamics

Conjunctive Visibly-Pushdown Path Queries . 327
Martin Lange and Etienne Lozes

On the Power of Color Refinement . 339
V. Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky

Block Representation of Reversible Causal Graph Dynamics 351
Pablo Arrighi, Simon Martiel, and Simon Perdrix

Logic and Games

Reasoning with Global Assumptions in Arithmetic Modal Logics 367
Clemens Kupke, Dirk Pattinson, and Lutz Schröder

Nearest Fixed Points and Concurrent Priority Games 381
Bruno Karelovic and Wiesław Zielonka

Author Index . 395

Contents XIX

http://dx.doi.org/10.1007/978-3-319-22177-9_24
http://dx.doi.org/10.1007/978-3-319-22177-9_25
http://dx.doi.org/10.1007/978-3-319-22177-9_26
http://dx.doi.org/10.1007/978-3-319-22177-9_27
http://dx.doi.org/10.1007/978-3-319-22177-9_28
http://dx.doi.org/10.1007/978-3-319-22177-9_29

Invited talks

Towards Better Inapproximability Bounds
for TSP: A Challenge of Global Dependencies

Marek Karpinski(B)

Department of Computer Science and the Hausdorff Center for Mathematics,
University of Bonn, Bonn, Germany

marek@cs.uni-bonn.de

Abstract. We present in this paper some of the recent techniques and
methods for proving best up to now explicit approximation hardness
bounds for metric symmetric and asymmetric Traveling Salesman Prob-
lem (TSP) as well as related problems of Shortest Superstring and Max-
imum Compression. We attempt to shed some light on the underlying
paradigms and insights which lead to the recent improvements as well as
some inherent obstacles for further progress on those problems.

1 Introduction

The metric Traveling Salesman Problem (TSP) is one of the best known and
broadly studied combinatorial optimization problems. Nevertheless its approx-
imation status remained surprisingly elusive and very resistant for any new
insights even after several decades of research. Basically, there were no improve-
ments of the approximation algorithm of Christofides [C76] for the general
metric TSP, and also a very slow improvement of the explicit inapproximabil-
ity bounds for that problem [PY93,E03,EK06,PV06,L12,KS12,KS13a,KS13b,
KLS13,AT15]. The attainable values of the explicit inapproximability bounds,
and especially the methods for proving them, could give valuable insights into
the algorithmic nature of the problem at hand. Unfortunately, there is still a
huge gap between upper and lower approximation bounds for TSP. The best
upper bound stands at the moment still firmly at 50% (approximation ratio
1.5). There were however several improvements of underlying approximation
ratios for special cases of metric TSP like (1, 2)-metric [BK06] and the Graphic
TSP [MS11,SV14]. Also the corresponding inapproximability bounds for those
special instances were established in [E03,EK06,KS13a,KS13b].

We discuss also some new results on related problems of the Shortest
Superstring, Maximum Asymmetric TSP and Maximum Compression Problem
(cf. [KS13a]).

In this paper we introduce an essentially different method from the earlier
work of [PV06] to attack the general problem. This method uses some new
ideas on small occurrence optimization. The inspiration for it came from the
constructions used for restricted cases of TSP in [E03] and [EK06].

M. Karpinski—Research supported by DFG grants and the Hausdorff grant EXC59-1.

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 3–11, 2015.
DOI: 10.1007/978-3-319-22177-9 1

4 M. Karpinski

2 Underlying Idea

The general idea is to use somehow instances of metric TSP to solve approxi-
mately another instance of optimization problems with provable inapproxima-
bility bounds. Thus, establishing the possible approximation hardness barriers
for the TSP-solver itself. The reduction must be approximation preserving, i.e.
validate goodness of feasible solutions of a given problem and also validating
goodness of a corresponding tour. The direction from the tour to a feasible solu-
tion would be crucial for that method. To give a simple illustration, we start
from that optimization problem and construct an instance of the TSP. We have
to establish now the correspondence between the solutions of the problem and
the tours of TSP. That correspondence must satisfy the crucial property that
the problem has a good solution if and only if TSP has a short tour. The sec-
ond direction from TSP to the optimization problem seems conceptually at the
first glance more difficult. That intuition is correct and the main effort has been
devoted to that issue. The suitable optimization problem will be a specially
tailored bounded occurrence optimization problem of Sects. 4, 5 and 6.

3 TSP and Related Problems

We are going to define now main optimization problems of the paper.

– Metric TSP (here TSP for short): Given a metric space (V, d) (usually given
by a complete weighted graph or a connected weighted graph). Construct a
shortest tour visiting every vertex exactly once.

– Asymmetric Metric TSP (ATSP): Given an asymmetric metric space (V, d),
d may be asymmetric. Construct a shortest tour visiting every vertex exactly
once.

– Graphic TSP: Given a connected graph G = (V,E). Construct a shortest
tour in the shortest path metric completion of G or equivalently construct a
smallest Eulerian spanning multi-subgraph of G.

– Shortest Superstring Problem (SSP): Given a finite set of strings S. Construct
a shortest superstring such that every string in S is a substring of it.

– Maximum Compression Problem (MCP): Given a finite set of strings S. Con-
struct a superstring of S with maximum compression which is the difference
between the sum of the lengths of the strings in S and the length of the
superstring.

– Maximum Asymmetric Traveling Salesman Problem (MAX-ATSP): Given a
complete directed graph with nonnegative weights. Construct a tour of max-
imum weight visiting every vertex exactly once.

4 Bounded Occurrence Optimization Problems

We introduce here a notion of bounded occurrence optimization playing impor-
tant roles in our construction.

Towards Better Inapproximability Bounds for TSP 5

– MAX-E3-LIN2: Given a set of equations mod 2 with exactly 3 variables per
equation. Construct an assignment maximizing the number of equations sat-
isfied.

– 3-Occ-MAX-HYBRID-LIN2: Given a set of equations mod 2 with exactly 2
or 3 variables per equation and the number of occurrences of each variable
being bounded by 3.

The approximation hardness of 3-Occ-MAX-HYBRID-LIN2 problem was
proven for the first time by Berman and Karpinski [BK99] (see also [K01,BK03])
by randomized reduction f from MAX-E3-LIN2 and the result of H̊astad [H01]
on that problem, f : MAX-E3-LIN2 → 3-Occ-MAX-HYBRID-LIN2.

Theorem 1 ([BK99]). For every 0 < ε < 1
2 , it is NP-hard to decide whether an

instance of f(MAX-E3-LIN2) ∈ 3-Occ-MAX-HYBRID-LIN2 with 60n equations
with exactly two variables and 2n equations with exactly three variables has its
optimum value above (62 − ε)n or below (61 + ε)n.

The above result will be used in the simulational approximation reduction
g : 3-Occ-MAX-HYBRID-LIN2 → TSP to the instances of the metric TSP.

5 Bi-wheel Amplifier Graphs

We shortly describe here one of the main concepts of our construction and proofs,
that is a concept of a bi-wheel amplifier introduced in [KLS13].

The construction extends the notion of a wheel amplifier of [BK99,BK01]
(we refer to [BK99] for the notions of contact and checker vertices).

A bi-wheel amplifier with 2n contact vertices is constructed in the following
way. First we construct two disjoint cycles with each 7n vertices and we number
the vertices by 0, 1, . . . 7n−1. The contacts will be the vertices with the numbers
being a multiple of 7, while the remaining vertices will be checkers. We complete
the construction by selecting at random a perfect matching from the checkers of
one cycle to the checkers of the other cycle (see Fig. 1).

We use a bi-wheel amplifier in a similar way to the standard wheel ampli-
fier. The crucial difference is that the cycle edges will correspond to the equality
constraints, and matching edges will correspond to inequality constraints. The
contacts of one cycle will represent the positive appearance of the original vari-
able, and the contacts of the others the negative ones. The main reason is that
encoding inequality constraints will be more efficient then encoding equalities
with TSP gadgets.

We can prove the following crucial result on bi-wheels.

Lemma 1 ([KLS13]). With high probability, a bi-wheel is a 3-regular amplifier.

We are going to apply Lemma 1 in the next section.

6 M. Karpinski

Fig. 1. A bi-wheel amplifier with n = 2. The vertices denote checkers and the
vertices denote contacts.

6 Preparation Lemma

We need the following preparation lemma to simplify our constructions.
We will call in the sequel the problem 3-Occ-MAX-HYBRID-LIN2 simply

the HYBRID problem. Lemma 1 will be used now to prove the following lemma.

Lemma 2 ([KLS13]). For any constant ε > 0 and b ∈ {0, 1}, there exists an
instance I of the HYBRID problem with all variables occurring exactly three
times and having 21m equations of the form x⊕y = 0, 9m equations of the form
x ⊕ y = 1 and m equations of the form x ⊕ y ⊕ z = b, such that it is NP-hard
to decide whether there is an assignment to variables which leaves at most ε · m
equations unsatisfied, or every assignment to variables leaves at least (0.5 − ε)m
equations unsatisfied.

Because of the above lemma we can assume, among other things, that equa-
tions with three variables in I are of the form, say, x⊕y⊕z = 0. For explicit con-
structions of simulating gadgets especially the bi-wheel amplifiers and improved
gadgets for size-three equations we refer to [KLS13].

7 Instances of Metric TSP

We describe first an underlying idea of the construction of g. We start with
instances of the HYBRID problem by constructing a graph with special gadgets
structures representing equations. Here we use a new tool of bi-wheel amplifier
graphs [KLS13], sketched shortly in Sect. 5.

Given an instance I of the HYBRID problem. Let us denote the correspond-
ing graph by GS . We analyse first the process of constructing a tour in GS for
a given assignment a to the variables of a HYBRID instance I.

Lemma 3 ([KLS13]). If there is an assignment to the variables of an instance
I of the HYBRID problem with 31m equations and ν bi-wheels which makes k
equations unsatisfied, then there exists a tour in GS which costs at most 61m +
2ν + k + 2.

Towards Better Inapproximability Bounds for TSP 7

We have to prove also corresponding bounds for the opposite direction. Given
a tour in GS , we construct an assignment to the variables of the associated
instance of the HYBRID problem.

Lemma 4 ([KLS13]). If there exists a tour in GS with cost 61m+k −2, then
there exists an assignment to the variables of the corresponding instance of the
HYBRID problem which makes at most k equations unsatisfied.

Lemmas 3 and 4 entail now straightforwardly our main result.

Theorem 2 ([KLS13]). The TSP problem is NP-hard to approximate to within
any approximation ratio less than 123/122.

On the upper approximation bound of this problem, the best approximation
algorithm after more than three decades research is still Christofides [C76] algo-
rithm with approximation ratio 1.50. This leaves a curious huge gap between
upper bound 50% and lower bound of about 1% wide open.

8 Instances of Asymmetric TSP (ATSP)

We consider now asymmetric metric instances of TSP. There is no polyno-
mial time constant approximation ratio algorithm known for that problem.
The best known approximation algorithm achieves an approximation ratio of
O(log n/ log log n) [AGM+10]. It motivates a strong interest on inapproximabil-
ity bounds for this problem. We establish here the best-of-now explicit inapprox-
imability bounds, still constant and very far from the best upper approximation
bound.

The plan of our attack is similar to the case of symmetric TSP. We con-
struct here for an instance I of the HYBRID problem a directed, for this case,
graph GA using the constructions of bi-directed edges. The corresponding lem-
mas describe the opposite directions of the reductions: assignment to tour and
tour to assignment.

Lemma 5 ([KLS13]). Given an assignment to the variables of an instance I of
the HYBRID problem with ν bi-wheels which makes k equations of I unsatisfied,
then there exists a tour in GA which costs at most 37m + 5ν + 2mλ + 2νλ + k
for a fixed constant λ > 0.

Lemma 6 ([KLS13]). If there exists a tour in GA with cost 37m + k + 2λm,
then there exists an assignment to the variables of the corresponding instance of
the HYBRID problem which leaves at most k equations unsatisfied.

Lemmas 5 and 6 entail now our main result of this section.

Theorem 3 ([KLS13]). The ATSP problem is NP-hard to approximate to
within any approximation ratio less than 75/74.

8 M. Karpinski

9 A Role of Weights

A natural question arises about the role of the magnitudes of weights necessary to
carry good approximation reductions from the HYBRID problem. The bounded
metric situations were studied for the first time in [EK06]. We define (1, B)-
TSP ((1, B)-ATSP) as the TSP (ATSP) problem taking values from the set of
integers {1, . . . , B}. The case of (1, 2)-TSP is important for its connection to the
Graphic TSP. Using a specialization of the methods of Sects. 7 and 8 we obtain
the following explicit inapproximability bounds.

Theorem 4 ([KS12]). It is NP-hard to approximate

(1) the (1, 2)-TSP to within any factor less than 535/534;
(2) the (1, 4)-TSP to within any factor less than 337/336;
(3) the (1, 2)-ATSP to within any factor less than 207/206;
(4) the (1, 4)-ATSP to within any factor less than 141/140.

For the most restrictive case of (1, 2)-TSP, there are better algorithms known
[BK06] than the Christofides algorithm.

10 Graphic TSP

We consider now another restricted case of TSP called the Graphic TSP and an
interesting for generic reasons case of Graphic TSP on cubic graphs. There was a
significant progress recently in designing improved approximation algorithms for
the above problems, cf. [MS11,SV14]. Taking an inspiration from the technique
on bounded metric TSP, we prove the following

Theorem 5 ([KS13b]). The Graphic TSP is NP-hard to approximate to within
any factor less than 535/534.

Theorem 6 ([KS13b]). The Graphic TSP on cubic graphs is NP-hard to
approximate to within any factor less than 1153/1152.

The result of Theorem 6 is also the first inapproximability result for the cubic
graph instances (cf. [BSS+11]).

11 Some Applications

As a further application of our method, we prove new explicit inapproximability
bounds for the Shortest Superstring Problem (SSP) and Maximum Compres-
sion Problem (MCP) improving the previous bounds by an order of magnitude
[KS13a].

Theorem 7 ([KS13a]). The SSP is NP-hard to approximate to within any
factor less than 333/332.

Towards Better Inapproximability Bounds for TSP 9

Theorem 8 ([KS13a]). The MCP is NP-hard to approximate to within any
factor less than 204/203.

The best approximation algorithm for MCP reduces that problem to MAX-
ATSP (cf., e.g. [KLS+05]). On the other hand, MCP can be seen as a restricted
version of the MAX-ATSP. This entails the NP-hardness of approximating MAX-
ATSP to within any factor less than 204/203.

12 Summary of Main Results

We summarize here the best known explicit inapproximability results on the
TSP problems (Table 1) and the applications (Table 2).

Table 1. Inapproximability results on the TSP problems

Problem Approximation hardness bound

TSP 123/122 [KLS13]

Asymmetric TSP 75/74 [KLS13]

Graphic TSP 535/534 [KS13b]

Graphic TSP on cubic graphs 1153/1152 [KS13b]

(1, 2)-TSP 535/534 [KS12]

(1, 4)-TSP 337/336 [KS12]

(1, 2)-ATSP 207/206 [KS12]

(1, 4)-ATSP 141/140 [KS12]

Table 2. Inapproximability results on the related problems

Problem Approximation hardness bound

SSP 333/332 [KS13a]

MCP 204/203 [KS13a]

MAX-ATSP 204/203 [KS13a]

13 Further Research

We presented a method for improving the best known explicit inapproximability
bounds for TSP and some related problems. The method depends essentially on
a new construction of bounded degree amplifiers. It is still a sensible direction to
go for improving design of our new amplifiers and perhaps discovering new proof
methods. Also, improving an explicit lower bound for the HYBRID problem
would have immediate consequences toward inapproximability bound of the TSP.

10 M. Karpinski

Here again the best upper approximation bounds are much higher (but within
a couple of percentage points) from the currently provable lower approximation
bounds. The TSP problem lacks good definability properties and is definitionally
globally dependent on all its variables. Our methods used in the proofs were
however local in that sense.

In order to get essentially better lower approximation bounds (if such are
in fact possible) one should perhaps try to design some more global and per-
haps some more weight dependent methods. One possible way would be perhaps
to design directly a new global PCP construction for the TSP. This seems for
the moment to be a very difficult undertaking because of the before mentioned
definability properties of the problem.

References

[AT15] Approximation Taxonomy of Metric TSP (2015). http://theory.cs.
uni-bonn.de/info5/tsp

[AGM+10] Asadpour, A., Goemans, M., M ↪adry, A., Gharan, S., Saberi, A.: An
O(log n/ log log n)-approximation algorithm for the asymmetric traveling
salesman problem. In: Proceedings of the 21st SODA, pp. 379–389 (2010)

[BK99] Berman, P., Karpinski, M.: On some tighter inapproximability results. In:
Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999.
LNCS, vol. 1644, p. 200. Springer, Heidelberg (1999)

[BK01] Berman, P., Karpinski, M.: Efficient amplifiers and bounded degree opti-
mization. ECCC TR01-053 (2001)

[BK03] Berman, P., Karpinski, M.: Improved approximation lower bounds on small
occurrence optimization. ECCC TR03-008 (2003)

[BK06] Berman, P., Karpinski, M.: 8/7-approximation algorithm for (1, 2)-TSP.
In: Proceedings of the 17th SODA, pp. 641–648 (2006)

[BSS+11] Boyd, S., Sitters, R., van der Ster, S., Stougie, L.: TSP on cubic and
subcubic graphs. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS,
vol. 6655, pp. 65–77. Springer, Heidelberg (2011)

[C76] Christofides, N.: Worst-Case Analysis of a New Heuristic for the Traveling
Salesman Problem, Technical Report CS-93-13. Carnegie Mellon Univer-
sity, Pittsburgh (1976)

[E03] Engebretsen, L.: An explicit lower bound for TSP with distances one and
two. Algorithmica 35, 301–318 (2003)

[EK06] Engebretsen, L., Karpinski, M.: TSP with bounded metrics. J. Comput.
Syst. Sci. 72, 509–546 (2006)

[H01] H̊astad, J.: Some optimal inapproximability results. J. ACM 48, 798–859
(2001)

[KLS+05] Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation
algorithms for asymmetric TSP by decomposing directed regular multi-
graphs. J. ACM 52, 602–626 (2005)

[K01] Karpinski, M.: Approximating bounded degree instances of NP-hard prob-
lems. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, p. 24. Springer,
Heidelberg (2001)

[KLS13] Karpinski, M., Lampis, M., Schmied, R.: New inapproximability bounds
for TSP. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and
Computation. LNCS, vol. 8283, pp. 568–578. Springer, Heidelberg (2013)

http://theory.cs.uni-bonn.de/info5/tsp
http://theory.cs.uni-bonn.de/info5/tsp

Towards Better Inapproximability Bounds for TSP 11

[KS12] Karpinski, M., Schmied, R.: On approximation lower bounds for TSP with
bounded metrics. CoRR abs/1201.5821 (2012)

[KS13a] Karpinski, M., Schmied, R.: Improved lower bounds for the shortest super-
string and related problems. In: Proceedings 19th CATS, CRPIT 141,
pp. 27–36 (2013)

[KS13b] Karpinski, M., Schmied, R.: Approximation hardness of graphic TSP
on cubic graphs, CoRR abs/1304.6800, 2013. Journal version RAIRO-
Operations Research 49, pp. 651–668 (2015)

[L12] Lampis, M.: Improved inapproximability for TSP. In: Gupta, A., Jansen,
K., Rolim, J., Servedio, R. (eds.) APPROX 2012 and RANDOM 2012.
LNCS, vol. 7408, pp. 243–253. Springer, Heidelberg (2012)

[MS11] Mömke, T., Svensson, O.: Approximating graphic TSP by matchings.
In: Proceedings of the IEEE 52nd FOCS, pp. 560–569 (2011)

[PV06] Papadimitriou, C., Vempala, S.: On the approximability of the traveling
salesman problem. Combinatorica 26, 101–120 (2006)

[PY93] Papadimitriou, C., Yannakakis, M.: The traveling salesman problem with
distances one and two. Math. Oper. Res. 18, 1–11 (1993)

[SV14] Sebő, A., Vygen, J.: Shorter tours by nicer ears: 7/5-approximation for
the Graph-TSP, 3/2 for the Path Version, and 4/3 for two-edge-connected
subgraphs. Combinatorica 34, 1–34 (2014)

On the Existence and Computability
of Long-Run Average Properties

in Probabilistic VASS

Antońın Kučera(B)

Faculty of Informatics, Masaryk University, Brno, Czech Republic
kucera@fi.muni.cz

Abstract. We present recent results about the long-run average proper-
ties of probabilistic vector additions systems with states (pVASS). Inter-
estingly, for probabilistic pVASS with two or more counters, long-run
average properties may take several different values with positive prob-
ability even if the underlying state space is strongly connected. This
contradicts the previous results about stochastic Petri nets established
in 80s. For pVASS with three or more counters, it may even happen that
the long-run average properties are undefined (i.e., the corresponding
limits do not exist) for almost all runs, and this phenomenon is sta-
ble under small perturbations in transition probabilities. On the other
hand, one can effectively approximate eligible values of long-run aver-
age properties and the corresponding probabilities for some sublasses of
pVASS. These results are based on new exponential tail bounds achieved
by designing and analyzing appropriate martingales. The paper focuses
on explaining the main underlying ideas.

1 Introduction

Probabilistic vector addition systems with states (pVASS) are a stochastic exten-
sion of ordinary VASS obtained by assigning a positive integer weight to every
rule. Every pVASS determines an infinite-state Markov chain where the states
are pVASS configurations and the probability of a transition generated by a rule
with weight � is equal to �/T , where T is the total weight of all enabled rules.
A closely related model of stochastic Petri nets (SPN) has been studied since
early 80s [2,10] and the discrete-time variant of SPN is expressively equivalent
to pVASS.

In this paper we give a summary of recent results about the long-run average
properties of runs in pVASS achieved in [4,5]. We show that long-run average
properties may take several different values with positive probability even if
the state-space of a given pVASS is strongly connected. It may even happen
that these properties are undefined (i.e., the corresponding limits do not exist)

A. Kučera—Based on a joint work with Tomáš Brázdil, Joost-Pieter Katoen, Stefan
Kiefer, and Petr Novotný. The author is supported by the Czech Science Foundation,
grant No. 15-17564S.

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 12–24, 2015.
DOI: 10.1007/978-3-319-22177-9 2

On the Existence and Computability of Long-Run Average Properties 13

p

q r

(1, 1), 1 (0, 1), 1

(1, 0), 1

(−1, 0), 2

(1, 1), 3 (1,−1), 2

Fig. 1. An example of a two-dimensional pVASS.

for almost all runs. These results contradict the corresponding claims about
SPNs published in 80s (see Sect. 2 for more comments). On the other hand, we
show that long-run average properties of runs in one-counter pVASS are defined
almost surely and can be approximated up to an arbitrarily small relative error
in polynomial time. This result is obtained by applying several deep observations
about one-counter probabilistic automata that were achieved only recently. Fur-
ther, we show that long-run average properties of runs in two-counter pVASS
can also be effectively approximated under some technical (and effectively check-
able) assumption about the underlying pVASS which prohibits some phenomena
related to (possible) null-recurrency of the analyzed Markov chains.

2 Preliminaries

We use Z, N, N+, and R to denote the set of all integers, non-negative integers,
positive integers, and real numbers, respectively. We assume familiarity with
basic notions of probability theory (probability space, random variable, expected
value, etc.). In particular, Markov chains are formally understood as pairs of
the form M = (S, →), where S is a finite or countably infinite set of states
and→ ⊆ S × (0, 1] × S is a transition relation such that for every s ∈ S we
have that

∑
s

x→t
x is equal to one. Every state s ∈ S determines the associated

probability space over all runs (infinite paths) initiated in s in the standard way.

2.1 Probabilistic Vector Addition Systems with States

A probabilistic Vector Addition System with States (pVASS) with d ≥ 1 counters
is a finite directed graph whose edges are labeled by pairs κ, �, where κ ∈ Z

d is
a vector of counter updates and � ∈ N is a weight. A simple example of a two-
counter pVASS is shown in Fig. 1. Formally, a pVASS is a triple A = (Q, γ,W),
where Q is a finite set of control states, γ ⊆ Q × Z

d × Q is a set of rules, and
W : γ → N

+ is a weight assignment. In the following, we write p
κ→ q to denote

that (p, κ, q) ∈ γ, and p
κ,�−→ q to denote that (p, κ, q) ∈ γ and W ((p, κ, q)) = �.

A configuration of a pVASS A is a pair pv where p ∈ Q is the current control
state and v ∈ N

d is the vector of current counter values. A rule p
κ→ q is enabled

in a configuration pv iff v + κ ∈ N
d, i.e., the counters remain non-negative

when applying the counter change κ to v . The semantics of A is defined by its

14 A. Kučera

associated infinite-state Markov chain MA whose states are the configurations
of A and pv

x→ qu if there is a rule p
κ→ q with weight � enabled in pv such that

u = v + κ and x = �/T , where T is the total weight of all rules enabled in
pv . If there is no rule enabled in pv , then pv has only one outgoing transition
pv

1→ pv . For example, if A is the pVASS of Fig. 1, then r(3, 0) 1/3−→ p(3, 1).

2.2 Patterns and Pattern Frequencies

Let A = (Q, γ,W) be a pVASS, and let PatA be the set of all patterns of A, i.e.,
pairs of the form pα where p ∈ Q and α ∈ {0,+}d. To every configuration pv
we associate the pattern pα such that αi = + iff v i > 0. Thus, every run w =
p0v0, p1v1, p2v2, . . . in the Markov chain MA determines the unique sequence
of patterns p0α0, p1α1, p2α2, . . . For every n ≥ 1, let Fn(w) : PatA → R be
the pattern frequency vector computed for the first n configurations of w, i.e.,
Fn(w)(pα) = #n

pα(w)/n, where #n
pα(w) is the total number of all 0 ≤ j < n such

that pjαj = pα. The limit pattern frequency vector, denoted by F(w), is defined
by F(w) = limn→∞ Fn(w). If this limit does not exist, we put F(w) = ⊥.

Note that F is a random variable over Run(pv). The very basic questions
about F include the following:

– Do we have that P[F=⊥] = 0 ?
– Is F a discrete random variable?
– If so, is the set of values taken by F with positive probability finite?
– Can we compute these values and the associated probabilities?

Since the set of rules enabled in a configuration pv is fully determined by the
associated pattern pα, the frequency of patterns also determines the frequency
of rules. More precisely, almost all runs that share the same pattern frequency
also share the same frequency of rules performed along these runs, and the rule
frequency is easily computable from the pattern frequency.

The above problems have been studied already in 80 s for a closely related
model of stochastic Petri nets (SPN). In [8], Sect. 4.B, is stated that if the
state-space of a given SPN (with arbitrarily many unbounded places) is strongly
connected, then the firing process is ergodic. In the setting of discrete-time prob-
abilistic Petri nets, this means that for almost all runs, the limit frequency of
transitions performed along a run is defined and takes the same value. This result
is closely related to the questions formulated above. Unfortunately, this claim is
invalid. In Fig. 2, there is an example of a SPN (with weighted transitions) with
two counters (places) and strongly connected state space where the limit fre-
quency of transitions takes two eligible values (each with probability 1/2). Intu-
itively, if both places/counters are positive, then both of them have a tendency
to decrease, i.e., a configuration where one of the counters is empty is reached
almost surely. When we reach a configuration where, e.g., the first place/counter
is zero and the second place/counter is positive, then the second place/counter
starts to increase, i.e., it never becomes zero again with some positive proba-
bility. The first place/counter stays zero for most of the time, because when it

On the Existence and Computability of Long-Run Average Properties 15

100

1 1

10 10

t1 t2

Fig. 2. A discrete-time SPN N .

becomes positive, it is immediately emptied with a very large probability. This
means that the frequency of firing t2 will be much higher than the frequency of
firing t1. When we reach a configuration where the first place/counter is positive
and the second place/counter is zero, the situation is symmetric, i.e., the fre-
quency of firing t1 becomes much higher than the frequency of firing t2. Further,
almost every run eventually behaves according to one of these two scenarios, and
therefore there are two limit frequencies of transitions, each of which is taken
with probability 1/2. This possibility of reversing the “global” trend of the coun-
ters after hitting zero in some counter was not considered in [8]. Further, there
exists a three-counter pVASS A with strongly connected state-space where the
limit frequency of transitions is undefined for almost all runs, and this property
is preserved for all ε-perturbations in transition weights for some fixed ε > 0
(see [4]). So, we must unfortunately conclude that the results of [8] are invalid
for fundamental reasons.

In the next sections, we briefly summarize the results of [4] about pattern fre-
quency vector in pVASS of dimension one and two. From now on, we assume that

– every counter is changed at most by one when performing a single rule, i.e.,
the vector of counter updates ranges over {−1, 0, 1}d;

– for every pair of control states p, q, there is at most one rule of the form p
κ→ q.

These assumptions are not restrictive, but they have some impact on complexity,
particularly when the counter updates are encoded in binary.

3 Pattern Frequency in One-Counter pVASS

For one-counter pVASS, we have the following result [4]:

Theorem 1. Let p(1) be an initial configuration of a one-counter pVASS A.
Then

– P[F=⊥] = 0;
– F is a discrete random variable;
– there are at most 2|Q|−1 pairwise different vectors F such that P(F=F) > 0;
– these vectors and the associated probabilities can be approximated up to an

arbitrarily small relative error ε > 0 in polynomial time.

16 A. Kučera

Since pattern frequencies and the associated probabilities may take irrational
values, they cannot be computed precisely in general; in this sense, Theorem 1
is the best result achievable.

A proof of Theorem 1 is not too complicated, but it builds on several deep
results that have been established only recently. As a running example, consider
the simple one-counter pVASS of Fig. 3 (top), where p(1) is the initial configu-
ration. The first important step in the proof of Theorem 1 is to classify the runs
initiated in p(1) according to their footprints. A footprint of a run w initiated in
p(1) is obtained from w by deleting all intermediate configurations in all maxi-
mal subpaths that start in a configuration with counter equal to one, end in a
configuration with counter equal to zero, and the counter stays positive in all
intermediate configurations (here, the first/last configurations of a finite path
are not considered as intermediate). For example, let w be a run of the form

p(1), p(2), r(2), r(1), s(1), s(0), r(0), s(0), s(1), r(1), s(1), r(1), r(0), . . .

Then the footprint of w starts with the underlined configurations

p(1), s(0), r(0), s(0), s(1), r(0), . . .

Note that a configuration q(�), where � > 1, is preserved in the footprint of
w iff all configurations after q(�) have positive counter value. Further, for all
p, q ∈ Q, let

– [p↓q] be the probability of all runs that start with a finite path from p(1) to
q(0) where the counter stays positive in all intermediate configurations;

– [p↑] = 1 − ∑
q∈Q[p↓q].

Almost every footprint can be seen as a run in a finite-state Markov chain XA
where the set of states is {q0, q1, q↑ | q ∈ Q} and the transitions are determined
as follows:

– p0
x→ q� in XA if x > 0 and p(0) x→ q(�) in MA;

– p1
x→ q0 in XA if x = [p↓q] > 0;

– p1
x→ p↑ in XA if x = [p↑] > 0;

– p↑
1→ p↑.

The structure of XA for the one-counter pVASS of Fig. 3 (top) is shown in
Fig. 3 (down). In particular, note that since r↑ = s↑ = 0, there are no transitions
r1 → r↑ and s1 → s↑ in XA.

For almost all runs w initiated in p(1), the footprint of w determines a
run in XA initiated in p1 in the natural way. In particular, if w contains only
finitely many configurations with zero counter, then the footprint of w takes
the form u, s(0), r(1), v, where s(0) is the last configuration of w with zero
counter and r(1), v is an infinite suffix of w. This footprint corresponds to a
run u, s(0), r(1), r↑, r↑, . . . of XA. In general, it may also happen that the foot-
print of w cannot be interpreted as a run in XA, but the total probability of all
such w is equal to zero. As a concrete example, consider the run

p(1), r(1), s(0), s(1), s(2), s(3), s(4), . . .

On the Existence and Computability of Long-Run Average Properties 17

q p r s

+1; 10 +1; 6 +1; 2

−1; 2 −1; 3 −1; 6

−1; 2 0; 2
0; 2

0; 2

q↑

q1

q0

1

p↑

p1

p0

1

r↑

r1

r0

1

s↑

s1

s0

1

[q↑] [p↑]

1 [q↓q]

[p↓q]

[p↓s]

[p↓r]

[r↓r]

[r↓s] [s↓r]

[s↓s]
0.5

0.25

0.75

1

0.5

Fig. 3. A one-counter pVASS A (top) and its associated finite-state Markov chain XA
(down).

in MA where the counter never reaches zero after the third configuration. The
footprint of this run cannot be seen as a run in XA (note that the infinite
sequence p1, s0, s1, s↑, s↑, s↑, . . . is not a run in XA).

Since almost every run in MA initiated in p(1) determines a run in XA (via
its footprint), we obtain that almost every run in MA initiated in p(1) visits
a bottom strongly connected component (BSCC) of XA. Formally, for every
BSCC B of XA we define Run(p(1), B) as the set of all runs w in MA initiated
in p(1) such that the footprint of w determines a run in XA that visits B. One is
tempted to expect that almost all runs of Run(p(1), B) share the same pattern
frequency vector. This is true if (the underlying graph of) A has at most one
diverging BSCC. To explain this, let us fix a BSCC D of A and define a Markov
chain D = (D, →) such that s

x→ t in D iff s
κ,�−→ t and x = �/Ts, where Ts is the

sum of the weights of all outgoing rules of s in A. Further, we define the trend
of D as follows:

td =
∑

s∈D

μD(s) ·
∑

s
κ,�−→t

�/Ts · κ (1)

Here, μD is the invariant distribution of D. Intuitively, the trend tD corresponds
to the expected change of the counter value per transition (mean payoff) in D
when the counter updates are interpreted as payoffs. If tD is positive/negative,
then the counter has a tendency to increase/decrease. If tD = 0, the situation
is more subtle. One possibility is that the counter can never be emptied to zero

18 A. Kučera

when it reaches a sufficiently high value (in this case, we say that D is bounded).
The other possibility is that the counter can always be emptied, but then the
frequency of visits to a configuration with zero counter is equal to zero almost
surely. We say that D is diverging if either tD > 0, or tD = 0 and D is bounded.
For the one-counter pVASS of Fig. 3, we have that the BSCC {q} is diverging,
because its trend is positive. The other BSCC {r, s} is not diverging, because its
trend is negative.

Let us suppose that A has at most one diverging BSCC, and let B be a BSCC
of XA. If B = {q↑} for some q ∈ Q, then almost all runs of Run(p(1), {q↑}) share
the same pattern frequency vector F where F (s(+)) = μD(s) for all s ∈ D, and
F (pat) = 0 for all of the remaining patterns pat . In the example of Fig. 3, we
have that almost all runs of Run(p(1), {q↑}) and Run(p(1), {p↑}) share the same
pattern frequency vector F such that F (q(+)) = 1. Now let B be a BSCC of
XA which is not of the form {q↑}. As an example, consider the following BSCC
of the chain XA given in Fig. 3:

r1

r0

s1

s0

[r↓r]

[r↓s] [s↓r]

[s↓s]
0.5

1

0.5

For all r1, s0 ∈ B and all t ∈ S, let

– E〈r↓s〉 be the conditional expected length of a path from r(1) to s(0) under
the condition that s(0) is reached from r(1) via a finite path where the counter
stays positive in all configurations preceding s(0);

– E#t
〈r↓s〉 be the conditional expected number of visits to a configuration with

control state t along a path from r(1) to s(0) (where the visit to s(0) does
not count) under the condition that s(0) is reached from r(1) via a finite path
where the counter stays positive in all configurations preceding s(0);

If some E〈r↓s〉 is infinite, then the frequency of visits to configurations with zero
counter is equal to zero for almost all runs of Run(p(1), B). Further, there is a
non-bounded BSCC D of A with zero trend such that r ∈ D, and one can easily
show that almost all runs of Run(p(1), B) share the same pattern frequency
vector F where F (s(+)) = μD(s) for all s ∈ D, and F (pat) = 0 for all of the
remaining patterns pat .

Now suppose that all E〈r↓s〉 are finite (which implies that all E#t
〈r↓s〉 are

also finite). Recall that every transition of XA represents a finite subpath of a
run in MA. The expected length of a subpath represented by a transition of B
is given by

E[L] =
∑

s0∈B

μB(s0) · 1 +
∑

r1∈B

μB(r1) ·
∑

r1
x→s0

x · E〈r↓s〉

On the Existence and Computability of Long-Run Average Properties 19

where μB is the invariant distribution of B. Similarly, we can define the expected
number of visits to a configuration t(k), where k > 0, along a subpath represented
by a transition of B by

E[t(+)] =
∑

r1∈B

μ(r1) ·
∑

r1
x→s0

x · E#t
〈r↓s〉 .

The expected number of visits to a configuration t(0) along a subpath represented
by a transition of B (where the last configuration of a subpath does not count)
is given by E[t(0)] = μB(t0). It follows that almost all runs of Run(p(1), B)
share the same pattern frequency vector F where

F (t(+)) =
E[t(+)]
E[L]

, F (t(0)) =
E[t(0)]
E[L]

for all t ∈ S.
To sum up, for each BSCC B of XA we need to approximate the probability of

Run(p(1), B) and the associated pattern frequency vector up to a given relative
error ε > 0. To achieve that, we need to approximate the following numbers
up to a sufficient relative precision, which is determined by a straightforward
error propagation analysis:

– the probabilities of the form [p↓q] and [p↑];
– the conditional expectations E〈r↓s〉 and E#t

〈r↓s〉
The algorithms that approximate the above values are non-trivial and have been
obtained only recently. More detailed comments are given in the next subsec-
tions.

Finally, let us note that the general case when A has more than one diverging
BSCC does not cause any major difficulties; for each diverging BSCC D, we
construct a one-counter pVASS AD where the other diverging BSCCs of A are
modified so that their trend becomes negative. The analysis of A is thus reduced
to the analysis of several one-counter pVASS where the above discussed method
applies.

3.1 Approximating [p↓q] and [p↑]
In this subsection we briefly indicate how to approximate the probabilities of
the form [p↓q] and [p↑] up to a given relative error ε > 0.

Let xmin be the least positive transition probability in MA. It is easy to show
that if [p↓q] > 0, then [p↓q] > x

|Q|3
min (one can easily bound the length of a path

from p(1) to q(0)). Hence, it suffices to show how to approximate [p↓q] up to a
given absolute error ε > 0.

The vector of all probabilities of the form [p↓q] is the least solution (in
[0, 1]|Q|2) of a simple system of recursive non-linear equations constructed as
follows:

[p↓q] =
∑

p(1)
x→q(0)

x +
∑

p(1)
x→t(1)

x · [t↓q] +
∑

p(1)
x→t(2)

x ·
∑

s

[t↓s] · [s↓r]

20 A. Kučera

These equations are intuitive, and can be seen as a special case of the equations
designed for a more general model of probabilistic pushdown automata [6,7].
A solution to this system (even for pPDA) can be approximated by a decom-
posed Newton method [7] which produces one bit of precision per iteration after
exponentially many initial iterations [9]. For one-counter pVASS, this method
produces one bit of precision per iteration after polynomially many iterations.
By implementing a careful rounding, a polynomial time approximation algorithm
for [p↓q] was designed in [11].

Since [p↑] = 1−∑
q∈Q[p↓q], we can easily approximate [p↑] up to an arbitrar-

ily small absolute error in polynomial time. To approximate [p↑] up to a given
relative error, we need to establish a reasonably large lower bound for a positive
[p↑]. Such a bound was obtained in [3] by designing and analyzing an appropriate
martingale. More precisely, in [3] it was shown that if [p↑] > 0, then one of the
following possibilities holds:

– There is q ∈ Q such that [q↑] = 1 and p(1) can reach a configuration q(k) for
some k > 0. In this case, [p↑] ≥ x

|Q|2
min .

– There is a BSCC D of A such that tD > 0 and

[p↑] ≥ x
4|Q|2
min · t3D

7000 · |Q|3 .

3.2 Approximating E〈R↓s〉 and E#t
〈r↓s〉

The conditional expectations of the form E〈r↓s〉 satisfy a simple system of linear
recursive equations constructed in the following way:

E〈q↓r〉 =
∑

q(1)
x→r(0)

x

[q↓r]
+

∑

q(1)
x→t(1)

x · [t↓r]
[q↓r]

· (1 + E〈t↓r〉)

+
∑

q(1)
x→t(2)

x ·
∑

s

[t↓s] · [s↓r]
[q↓r]

· (1 + E〈t↓s〉 + E〈s↓r〉)

The only problem is that the coefficients are fractions of probabilities of the
form [p↓q], which may take irrational values and cannot be computed precisely
in general. Still, we can approximate these coefficients up to an arbitrarily small
relative error in polynomial time by applying the results of the previous subsec-
tion. Hence, the very core of the problem is to determine a sufficient precision
for these coefficients such that the approximated linear system still has a unique
solution which approximates the vector of conditional expectations up to a given
relative error. This was achieved in [3] by developing an upper bound on E〈r↓s〉,
which was then used to analyze the condition number of the matrix of the linear
system.

The same method is applicable also to E#t
〈r↓s〉 (the system of linear equa-

tion presented above must be slightly modified).

On the Existence and Computability of Long-Run Average Properties 21

4 Pattern Frequency in Two-Counter pVASS

The analysis of pattern frequencies in two-counter pVASS imposes new difficul-
ties that cannot be solved by the methods presented in Sect. 3. Still, the results
achieved for one-counter pVASS are indispensable, because in certain situations,
one of the two counters becomes “irrelevant”, and then we proceed by construct-
ing and analyzing an appropriate one-counter pVASS.

The results achieved in [4] for two-counter pVASS are formulated in the next
theorem.

Theorem 2. Let pv be an initial configuration of a stable two-counter
pVASS A. Then

– P[F=⊥] = 0;
– F is a discrete random variable;
– there are only finitely many vectors F such that P(F=F) > 0;
– these vectors and the associated probabilities can be effectively approximated

up to an arbitrarily small absolute/relative error ε > 0.

The condition of stability (explained below) can be checked in exponential time
and guarantees that certain infinite-state Markov chains that are used to analyze
the pattern frequencies of A are not null-recurrent.

Let p(1, 1) be an initial configuration of A, and let A1 and A2 be one-counter
pVASS obtained from A by preserving the first and the second counter, and
abstracting the other counter into a payoff which is assigned to the respective
rule of A1 and A2, respectively. The analysis of runs initiated in p(1, 1) must
take into account the cases when one or both counters become bounded, one
or both counters cannot be emptied to zero anymore, etc. For simplicity, let us
assume that

(1) the set of all configurations reachable from p(1, 1) is a strongly connected
component of MA, and for every k ∈ N there is a configuration reachable
from p(1, 1) where both counters are larger than k;

(2) the set of all configuration reachable from p(1) in A1 and A2 is infinite and
forms a strongly connected component of MA1 and MA2 , respectively.

Note that Assumption (1) implies that the graph of A is strongly connected. An
example of a two-counter pVASS satisfying these assumptions is given in Fig. 4.
Now we define

– the global trend t = (t1, t2), where ti is the trend of Ai as defined by Eq. (1)
where D = Q (recall that the graph of Ai is strongly connected);

– the expected payoff τi of a run initiated in a configuration of Ai reachable
from p(1). Since the set of all configurations reachable from p(1) in Ai is
strongly connected, it is not hard to show that τi is independent of the initial
configuration and the mean payoff of a given run is equal to τi almost surely.

Intuitively, the global trend t specifies the average change of the counter values
per transition if both counters are abstracted into payoffs. Note that if t is pos-
itive in both components, then almost all runs initiated in p(1, 1) “diverge”,

22 A. Kučera

p

q r

(+1,+1), 1(0, 0), 1

(0, 0), 1

(−1, 0), 2

(−1,−1), 5

(+1,+1), 3 (+1,−1), 2

Fig. 4. A two-counter pVASS A.

i.e., both counters remain positive from certain point on (here we need Assump-
tion (1)). This means that almost all runs initiated in p(1, 1) share the same
pattern frequency vector F where F (q(+,+)) = μA and F (pat) = 0 for all of
the remaining patterns pat (here μA is the invariant distribution of A; see the
definition of μD in Eq. (1) and recall that A is strongly connected).

Now suppose that t2 is negative, and consider a configuration q(k, 0) reach-
able from p(1, 1), where k is “large”. Obviously, a run initiated in q(k, 0) hits a
configuration of the form q′(k′, 0) without visiting a configuration with zero in
the first counter with very high probability. Further, if τ2 > 0, then k′ is larger
than k “on average”. Hence, the runs initiated in q(k, 0) will have a tendency
to “diverge along the x-axis”. If τ2 < 0, then k′ is smaller than k on average,
and the runs initiated in q(k, 0) will be moving towards the y-axis. A symmet-
ric observation can be made when t1 is negative. Hence, if both t1 and t2 are
negative, we can distinguish three possibilities:

– τ1 > 0 and τ2 > 0. Then, almost all runs initiated in p(1, 1) will eventually
diverge either along the x-axis or along the y-axis. That is, one of the counters
eventually becomes irrelevant almost surely, and the pattern frequencies for
A can be determined from the ones for A1 and A2 (since A1 and A2 are
one-counter pVASS, we can apply the results of Sect. 3). The SPN of Fig. 2 is
one concrete example of this scenario.

– τ1 < 0 and τ2 > 0. Then almost all runs initiated in p(1, 1) will eventually
diverge along the x-axis. The case when τ1 > 0 and τ2 < 0 is symmetric.

– τ1 < 0 and τ2 < 0. In this case, there is a computable m such that the set of
all configurations of the form q(k, 0) and q(0, k), where q ∈ Q and k ≤ m, is
a finite eager attractor. That is, this set of configurations is visited infinitely
often by almost all runs initiated in p(1, 1), and the probability of revisiting
this set in � transitions decays (sub)exponentially in �. The pattern frequencies
for the runs initiated in p(1, 1) can be analyzed be generic methods for systems
with a finite eager attractor developed in [1].

The cases when t1, t2, τ1, or τ2 is equal to zero are disregarded in [4], because
the behaviour of A , A1, or A2 can then exhibit strange effects caused by (pos-
sible) null recurrency of the underlying Markov chains, which requires different

On the Existence and Computability of Long-Run Average Properties 23

analytical methods (the stability condition in Theorem 2 requires that t1, t2, τ1,
and τ2 are non-zero). We have not discussed the case when t1 is negative and
t2 positive (or vice versa), because the underlying analysis is similar to the one
presented above.

To capture the above explained intuition precisely, we need to develop an
explicit lower bound for the probability of “diverging along the x-axis from a
configuration q(k, 0)” when τ2 > 0, examine the expected value of the second
counter when hitting the y-axis by a run initiated in q(k, 0) when τ2 < 0, etc.
These bounds are established in [4] by generalizing the martingales designed in
[3] for one-counter pVASS.

5 Future Research

One open problem is to extend Theorem 2 so that it also covers two-counter
pVASS that are not necessarily stable. Since one can easily construct a (non-
stable) two-counter pVASS such that P(F=F) > 0 for infinitely many pairwise
different vectors F , and there even exists a (non-stable) two-counter pVASS such
that P(F=⊥) = 1, this task does not seem trivial.

Another challenge is to design algorithms for the analysis of long-run aver-
age properties in reasonably large subclasses of multi-dimensional pVASS. Such
algorithms might be obtained by generalizing the ideas used for two-counter
pVASS.

References

1. Abdulla, P., Henda, N.B., Mayr, R., Sandberg, S.: Limiting behavior of Markov
chains with eager attractors. In: Proceedings of 3rd International Conference on
Quantitative Evaluation of Systems (QEST 2006), pp. 253–264. IEEE Computer
Society Press (2006)

2. Marsan, M.A., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets
for the performance evaluation of multiprocessor systems. ACM Trans. Comput.
Syst. 2(2), 93–122 (1984)

3. Brázdil, T., Kiefer, S., Kučera, A.: Efficient analysis of probabilistic programs with
an unbounded counter. J. ACM 61(6), 41:1–41:35 (2014)

4. Brázdil, T., Kiefer, S., Kučera, A., Novotný, P.: Long-run average behaviour of
probabilistic vector addition systems. In: Proceedings of LICS 2015 (2015)

5. Brázdil, T., Kiefer, S., Kučera, A., Novotný, P., Katoen, J.-P.: Zero-reachability
in probabilistic multi-counter automata. In: Proceedings of CSL-LICS 2014, pp.
22:1–22:10. ACM Press (2014)

6. Esparza, J., Kučera, A., Mayr, R.: Model-checking probabilistic pushdown
automata. In: Proceedings of LICS 2004, pp. 12–21. IEEE Computer Society Press
(2004)

7. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and
monotone systems of nonlinear equations. J. ACM 56(1), 1–66 (2009)

8. Florin, G., Natkin, S.: Necessary and sufficient ergodicity condition for open syn-
chronized queueing networks. IEEE Trans. Softw. Eng. 15(4), 367–380 (1989)

24 A. Kučera

9. Kiefer, S., Luttenberger, M., Esparza, J.: On the convergence of Newton’s method
for monotone systems of polynomial equations. In: Proceedings of STOC 2007, pp.
217–226. ACM Press (2007)

10. Molloy, M.K.: Performance analysis using stochastic Petri nets. IEEE Trans. Com-
put. 31(9), 913–917 (1982)

11. Stewart, A., Etessami, K., Yannakakis, M.: Upper bounds for newton’s method
on monotone polynomial systems, and P-time model checking of probabilistic one-
counter automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 495–510. Springer, Heidelberg (2013)

Geometry, Combinatorics,
Text Algorithms

Longest α-Gapped Repeat and Palindrome

Pawe�l Gawrychowski1 and Florin Manea2(B)

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
gawry@mimuw.edu.pl

2 Department of Computer Science, Kiel University, Kiel, Germany
flm@informatik.uni-kiel.de

Abstract. We propose an efficient algorithm finding, for a word w and
an integer α > 0, the longest word u such that w has a factor uvu, with
|uv| ≤ α|u| (i.e., the longest α-gapped repeat of w). Our algorithm runs
in O(αn) time. Moreover, it can be easily adapted to find the longest
u such that w has a factor uRvu, with |uv| ≤ α|u| (i.e., the longest
α-gapped palindrome), again in O(αn) time.

1 Introduction

Gapped repeats and palindromes have been investigated for a long time (see, e.g.,
[2,4,6,8,12–14] and the references therein), with motivation coming especially
from the analysis of DNA and RNA structures, where tandem and interspersed
repeats as well as hairpin structures play important roles in revealing structural
and functional information of the analysed genetic sequence (see, e.g., [2,8,12]
and the references therein).

Following [12,13], we analyse gapped repeats uvu or palindromes uRvu where
the length of the gap v is upper bounded by the length of the arm u multiplied
by some factor. More precisely, in [13], the authors investigate α-gapped repeats:
words uvu with |uv| ≤ α|u|. Similarly, [12] deals with α-gapped palindromes, i.e.,
words uRvu with |uv| ≤ α|u|. For α = 2, these structures are called long armed
repeats (or pairs) and palindromes, respectively; for α = 1, they are squares and
palindromes of even length, respectively. Intuitively, one is interested in repeats
or palindromes whose arms are roughly close one to the other; therefore, the
study of α-gapped repeats and palindromes was rather focused on the cases with
small α. Here, we address the general case, of searching in a word w α-gapped
repeats or palindromes for α ≤ |w|.

In [12] the authors propose an algorithm that, given a word of length n, finds
the set S of all its factors which are maximal α-gapped palindromes (i.e., the
arms cannot be extended to the right or to the left) in O(α2n + |S|) time. No
upper bound on the possible size of the set S was given in [12], but, following
the ideas of [13], we conjecture it is O(α2n).

The algorithms of [2] can be directly used to find in O(n log n+ |S|) time the
set S of all the factors of a word of length n which are maximal α-gapped repeats.

The work of Florin Manea was supported by the DFG grant 596676.

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 27–40, 2015.
DOI: 10.1007/978-3-319-22177-9 3

28 P. Gawrychowski and F. Manea

Note that all the square factors of a word are maximal α-gapped repeats, with
empty gap; thus, there are words for which |S| is Ω(n log n) (see, e.g., [3]). In [13]
the size of the set of maximal α-gapped repeats with non-empty gap is shown
to be O(α2n), and can be computed in O(α2n) time for integer alphabets.

A classical problem for palindromes asks to find the longest palindromic
factor of a word [15]. Inspired by this, we address the following problems.

Problem 1. Given a word w and α ≤ |w|, find the longest word u such that w
has a factor uvu with |uv| ≤ α|u| (the longest α-gapped repeat of w).

Problem 2. Given a word w and α ≤ |w|, find the longest word u such that w
has a factor uRvu with |uv| ≤ α|u| (the longest α-gapped palindrome of w).

In this paper, we present a solution of Problem1, working in O(αn) time, and
explain briefly how our algorithms can be adapted to solve Problem2 within the
same time complexity Our approach is more efficient than producing first the list
of all maximal α-gapped repeats or palindromes and then returning the one with
the longest arms; the algorithms of [13] (for repeats) and [12] (for palindromes),
which produce such lists, are slower by an α factor than ours. Our solutions are
based on a careful combinatorial analysis (e.g., in each solution we find separately
the repeats or palindromes with periodic arms and those with aperiodic arms,
respectively) as well as on the usage of several word-processing data-structures
(e.g., suffix arrays, dictionary of basic factors). They are essentially different
from the approaches of [2] (which is based on an efficient processing of the suffix
tree of the input word) and from those in [12–14] (which have as crucial idea the
construction and analysis of the LZ-factorisation of the word).

This extended abstract is structured as follows. After giving a series of basic
facts regarding combinatorics on words and data structures, we develop the tools
we need in our solutions. We then give a solution for Problem1 and briefly point
how it can be adapted to solve Problem2.

2 Preliminaries

Definitions. The computational model we use to design and analyse our algo-
rithms is the standard unit-cost RAM (Random Access Machine) with loga-
rithmic word size, which is generally used in the analysis of algorithms. In
the upcoming algorithmic problems, we assume that the words we process are
sequences of integers (called letters, for simplicity). In general, if the input word
has length n then we assume its letters are in {1, . . . , n}, so each letter fits in a
single memory-word. This is a common assumption in stringology (see, e.g., the
discussion in [9]). Also, all logarithms appearing here are in base 2; we denote by
log n the value �log2 n�. While we do not assume to be able to compute the value
of log x in constant time, for some x ≤ n, we note that one can compute in O(n)
time all the values log x with x ≤ n; therefore, we assume that in the algo-
rithms addressed by Remark 2, or Lemmas 6 and 7, on an input of length n, we
implicitly compute all the values log x with x ≤ n.

Longest α-Gapped Repeat and Palindrome 29

Let V be a finite alphabet; V ∗ is the set of all finite words over V . The length
of a word w ∈ V ∗ is denoted by |w|. The empty word is denoted by λ. A word
u ∈ V ∗ is a factor of v ∈ V ∗ if v = xuy, for some x, y ∈ V ∗; we say that u is a
prefix of v, if x = λ, and a suffix of v, if y = λ. We denote by w[i] the symbol at
position i in w, and by w[i..j] the factor of w starting at position i and ending
at position j, consisting of the catenation of the symbols w[i], . . . , w[j], where
1 ≤ i ≤ j ≤ n; we define w[i..j] = λ if i > j. The powers of a word w are defined
recursively by w0 = λ and wn = wwn−1 for n ≥ 1. If w cannot be expressed as a
nontrivial power (i.e., w is not a repetition) of another word, then w is primitive.
A period of a word w over V is a positive integer p such that w[i] = w[j] for all
i and j with i ≡ j (mod p); if p is a period of w, then w is called p-periodic.
Let per(w) be the smallest period of w. A word w with per(w) ≤ |w|

2 is called
run; a run w[i..j] (so, p = per(w[i..j]) ≤ j−i+1

2) is maximal if and only if it
cannot be extended to the left or right to get a word with period p, i.e., i = 1
or w[i − 1] �= w[i + p − 1], and, j = n or w[j + 1] �= w[j − p + 1]. In [11] it is
shown that the number of maximal runs of a word is linear and their list (with a
run w[i..j] represented as the triple (i, j, per(w[i..j])) can be computed in linear
time (see [1] for an algorithm constructing all maximal runs of a word, without
producing its LZ-factorisation).

We now give the basic definitions of the data structures we use. For a word
u, |u| = n, over V ⊆ {1, . . . , n} we build in O(n) time its suffix tree and suffix
array, as well as LCP -data structures, allowing us to retrieve in constant time
the length of the longest common prefix of any two suffixes u[i..n] and u[j..n]
of u, denoted LCPu(i, j) (the subscript u is omitted when there is no danger of
confusion). See, e.g., [8,9], and the references therein.

Note that, given a word w of length n and � < n we can use one LCP query
to compute the longest prefix w′of w which is �-periodic: |w′| = �+LCP(1, �+1).
In our solution for Problem2, we construct LCP data structures for the word
v = wwR; this takes O(|w|) time. To check whether w[i..j] occurs at position � in
w (respectively, w[i..j]R occurs at position � in w) we check whether �+(j−i) ≤ n
and LCP (i, �) ≥ j − i + 1 (respectively, LCP(�, 2|w| − j + 1) ≥ j − i + 1).

Given a word w, its dictionary of basic factors (introduced in [5]) is a structure
that labels the factors of the form w[i..i+2k −1] (called basic factors), for k ≥ 0
and 1 ≤ i ≤ n−2k +1, such that every two equal basic factors get the same label
and the label of a basic factor can be retrieved in O(1) time. The dictionary of
basic factors of a word of length n is constructed in O(n log n) time.

Preliminary Results and Basic Tools. In the following we introduce our
basic tools, of both algorithmic and combinatorial nature.

The first lemma concerns overlapping maximal runs in a word.

Lemma 1. The overlap of two maximal runs u and u′ with the same period
(i.e., per(u)=per(u’)) is shorter than the period.

A consequence of this lemma is that no position of w is contained in more than
two maximal runs having the same period. Also, for �, p ≥ 1, a factor of length
�p of w contains at most � − 1 maximal runs of period p; this holds because

30 P. Gawrychowski and F. Manea

the overlap of each two consecutive (when ordered w.r.t. their starting position)
runs of that factor is shorter than p − 1.

The following lemma can be shown using standard tools.

Lemma 2. Let w be a word of length n. We can preprocess the word w in
O(n log n) time to construct data structures that allow us to answer in O(log n)
time queries asking for the length of the period of the factors of w.

For a word u, let lper(u) be the lexicographically minimal factor x of u of length
equal to per(u); clearly, lper(u) is primitive for all u. For a word w and a factor x
of w, let Lx be the list of the maximal runs v = w[i..j] of w such that lper(v) = x,
ordered with respect to the starting positions of these runs.

Lemma 3. Let w be a word of length n. We can compute in O(n) time the lists
Lx for all x ∈ Hw, where Hw is the set of the factors x of w with Lx �= ∅.
During the computation of the lists Lx we can also compute for each v ∈ Lx

the position where x occurs firstly in v. Accordingly, each list Lx is stored in a
structure where it is identified by the starting position of the first occurrence of
x in the first run of Lx and by |x|. However, for simplicity, we keep writing Lx.

Remark 1. Assume that w is a word and let v be a factor of w with per(v) =
p ≤ |v|

2 . Let z be a factor of length �|v| of w. Each occurrence of v in z is part of
a maximal run of period p; moreover, if v occurs in a maximal run of period p at
the position i of that run, it will also occur at positions i− p and i+ p, provided
that i−p and i+p+ |v|−1 fall inside the run, respectively. So, we can represent
succinctly the occurrences of v in z by returning succinct representations of the
maximal runs u contained in z, of length at least |v|, with lper(v) = lper(u); for
each of these runs we also store the first occurrence of v in the run. Finally, note
that there are at most 2� − 1 such runs contained in z.

Similarly, for a word w of length n, we note that a basic factor w[i..i + 2k − 1]
occurs either at most twice in a factor w[j..j + 2k+1 − 1] or its occurrences are
part of a run of period per(w[i..i + 2k − 1]) ≤ 2k−1 (so, the positions where
w[i..i + 2k − 1] occurs in w[j..j + 2k+1 − 1] form an arithmetic progression of
ratio per(w[i..i + 2k − 1]), see [10]). Hence, the occurrences of w[i..i + 2k − 1] in
w[j..j+2k+1−1] can be represented in a compact manner, just like before. To the
same end, for an integer c ≥ 2, the occurrences of the basic factor w[i..i+2k −1]
in w[j..j + c2k − 1] can be presented in a compact manner: the positions (at
most c) of the separate occurrences of w[i..i + 2k − 1] (that is, occurrences that
do not form a run) and/or at most c maximal runs determined by the overlapping
occurrences of w[i..i + 2k − 1]. We can show the following result.

Lemma 4. Given a word w of length n and a number c ≥ 2, we can preprocess
w in time O(n log n) such that given any basic factor y = w[i..i + 2k − 1] and
any factor z = w[j..j + c2k − 1], with k ≥ 0, we can compute in O(log log n + c)
time a succinct representation of all the occurrences of y in z.

The following results are shown using tools developed in [7].

Longest α-Gapped Repeat and Palindrome 31

Lemma 5. Given a word v, |v| = α log n, we can process v in time O(α log n)
time such that given any basic factor y = v[j · 2k + 1..(j + 1)2k], with j, k ≥ 0
and j2k +1 > (α−1) log n, we can find in O(α) time O(α) bit sets, each storing
O(log n) bits, characterising all the occurrences of y in v.

Note that each of the bit sets produced in the above lemma can be stored in
a constant number of memory words in our model of computation. Essentially,
this lemma states that we can obtain in O(α log n) time a representation of size
O(α) of all the occurrences of y in v.

Remark 2. By the previous lemma, given a word v, |v| = α log n, and a basic
factor y = v[j · 2k + 1..(j + 1)2k], with j, k ≥ 0 and j2k + 1 > (α − 1) log n, we
can produce O(α) bit sets, each containing exactly O(log n) bits, characterising
all the occurrences of y in v. Let us also assume that we have access to all values
log x with x ≤ n. Now, using the bit-sets encoding the occurrences of y in v
and given a factor z of v, |z| = c|y| for some c ≥ 1, we can obtain in O(c) time
the occurrences of y in z: the positions (at most c) where y occurs outside a
run and/or at most c maximal runs containing the occurrences of y. Indeed, the
main idea is to select by bitwise operations on the bit-sets encoding the factors
of v that overlap z the positions where y occurs (so the positions with an 1). For
each two consecutive such occurrences of y we detect whether they are part of a
run in v (by LCP -queries on v) and then skip over all the occurrences of y from
that run (and the corresponding parts of the bit-sets) before looking again for
the 1-bits in the bit-sets.

3 Our Solution

We now give the solution to Problem1. Our solution has two major steps. In the
first one, described in Lemma 6, we compute the longest α-gapped repeat uvu

with u periodic, i.e., per(u) ≤ |u|
2 . In the second one, described in Lemma 7, we

compute the longest α-gapped repeat uvu with u aperiodic, i.e., per(u) > |u|
2 .

Then, we return the one repeat of these two that has the longest arms.
We first show how to find the longest α-gapped uvu repeat with u periodic.

Lemma 6. Given a word w of length n and α ≤ n, the longest α-gapped repeat
uvu with u periodic contained in w can be found in O(αn) time.

Proof. For the simplicity of the exposure, let c = α−1. We want to find a repeat
u1vu2 = uvu with u1 = u2 = u periodic and |v| ≤ c|u|. As u is periodic, both its
occurrences u1 and u2 must be contained in maximal runs of w having the same
lper. Accordingly, let y1 and y2 denote the maximal runs containing u1 and u2;
we have, lper(y1) = lper(y2) = x.

The outline of our algorithm is the following. For each x, we have three cases
to analyse. In the first y1 and y2 denote the same run, and in the second y1
and y2 are overlapping runs with the same period. In both cases, we can easily
find the α-gapped repeat u1vu2 with u1 contained in y1 and u2 contained in y2.

32 P. Gawrychowski and F. Manea

The last case occurs when y1 and y2 do not overlap. Then, it is harder to find
the repeat u1vu2 we look for. In this case, we try each possibility for y2 and, at
a very intuitive level, the restriction on the gap suggests that we do not have to
look for y1 among too many runs occurring to the left of y2, and having the same
lper as y2: either they are not long enough to be worth considering as a possible
place for the left arm of the longest α-gapped repeat with the right arm in y2 or
the gap between them and y2 is too large. We exploit this and are able to find
efficiently the repeat u1vu2 with the longest arms. With care, the analysis of the
first two cases takes constant time per run, respectively, per pair of overlapping
runs, while in the last case, for each run y2 we can check whether it is the place
of the right arm of the repeat we look for in amortised O(c) time. This adds
up to O(cn) = O(αn) time. We now give more details for each case.

In the first case (see Fig. 1), u1 and u2 occur in the same run, so y1 = y2 = y.
Let us first assume that in u1vu2 we have v �= λ. Then u1 must be a prefix of y
and u2 a suffix of y. Otherwise, we could extend both u1 and u2 with at least
one symbol to get an α-gapped repeat with longer arm. For instance, when u1 is
not a prefix of y, then we extend both u1 and u2 with a letter to the left, the last
letter of v becoming now part of the new u2. This contradicts the fact that u1vu2

was the longest α-gapped repeat. Now, if y = t�t′ is the maximal run, we get
that u = t�

′
t′ where �′ =

⌊
�−1
2

⌋
. Further, assume that v = λ, so u1vu2 is in fact a

square uu. Like before, we have that uu is either the longest square prefix of y or
its longest square suffix; these can be immediately computed, and we just return
the longest of them. This way, we can compute the longest α-gapped repeat uvu
with both occurrences of u contained in the same maximal run y of w.

x x x x x x x x

u1 = uu 2 = uv

x

Fig. 1. An α-gapped repeat u1vu2 = uvu inside a run xkx′.

In the second case (see Fig. 2), y1 and y2 are distinct runs that overlap. By
Lemma 1, the length of the overlap between these two runs is at most |x|; also,
y1 and y2 should occur on consecutive positions in the list Lx. We first assume
that v �= λ. If u1 is not a prefix of y1, then u2 should be a prefix of y2, or we
could extend both u1 and u2 to the left and get a longer α-gapped repeat (with
a shorter gap v). So assume that u2 is a prefix of y2, and let x′ be the prefix
of length |x| of y2. It is clear that u2 is obtained by taking the longest word of
period |x| that starts with x′ occurring both in y2 and in y1, such that it ends in
y1 before the position where y2 starts. From the computation of Lx we have the
first occurrence of x in both y1 and y2, so we can also obtain the first occurrence
of x′ in y1; consequently, we can also compute the aforementioned longest word.
This concludes the case when u1 is not a prefix of y1. The case when u1 is a
prefix of y1 can be treated in a very similar fashion. This way, we get the longest

Longest α-Gapped Repeat and Palindrome 33

α-gapped repeat u1vu2 with u1 contained in y1, u2 contained in y2, and v �= λ.
Further, we consider the case when v = λ, so u1u2 = uu is a square. If neither u1

nor u2 is a prefix of y1 and y2, respectively, then we can shift the entire square
u1u2 to the left with one symbol, to get a new square with the same length of
the arm. We can repeat this process until one of u1 or u2 becomes a prefix of its
corresponding maximal run. Now, just like before, we can determine the longest
square uu such that either uu starts on the same position as y1 or the second u
starts on the same position as y2, and this gives us one of the longest squares uu
such that the first u is contained in y1 and the second in y2. Hence, we obtained
the longest α-gapped repeat u1u2 with u1 contained in y1 and u2 in y2, where
y1 and y2 overlap.

x

x x x x x x

x x x x x

u1 = uu 2 = uv

x

Fig. 2. An α-gapped repeat u1vu2 = uvu with u1 in y1 = x′′xk1x′, u2 in y2 = xk2 , and
y1 and y2 overlap.

In the final case (see Fig. 3), the runs y1 and y2 do not overlap. We first
analyse the ways the arms of the longest α-gapped repeat uvu, namely u1 and
u2, may occur in the runs y1 and y2, respectively.

x

x x x x x x x

x x

x x

x x x x x x x

u1 = u v u2 = u

x x

Fig. 3. An α-gapped repeat u1vu2 = uvu with u1 in y1 = xk1 and u2 in y2 = x′′xk2x′.
Between y1 and y2 there are some runs with the same lper: y3 = x2x′, y4 = x2.

Firstly, assume that y1 equals some factor of y2. Then, either u1 = y1(= u2)
or u1 is a suffix of y1 and u2 is a prefix of y2. Indeed, if we cannot construct
an α-gapped repeat u1vu2 with u1 = u2 = y1 because the gap is too long, then
any repeat u1vu2 with u1 prefix of y1 and u2 suffix of y2 is not α-gapped either.
Moreover, unless u1 = y1, then u1 should be a suffix of y1 and u2 a prefix of y2;
otherwise, a longer repeat could be constructed. Finally, if y1 equals a factor of y2
but we cannot construct an α-gapped repeat u1vu2 as above with u1 = u2 = y1,
then we will not be able to construct an α-gapped repeat u1vu2 with u1 being
the run y1 and u2 contained in some run occurring to the right of y2.

34 P. Gawrychowski and F. Manea

Secondly, the case when y2 equals a factor of y1 is similar. Either u1 = u2 = y2
or u1 is a suffix of y1 and u2 is a prefix of y2. Moreover, if y2 is contained in y1
but we cannot construct an α-gapped repeat u1vu2 as above with u1 = u2 = y2,
then we will not be able to construct an α-gapped repeat u′

1vu2 with u2 being
part of the run y2 and u′

1 = y2 contained in any run occurring to the left of y1.
Finally, assume that neither y1 equals a factor of y2, nor y2 a factor of y1.

This means that the difference between the |y1| and |y2| is rather small; anyway,
smaller than |x|. Now, there are two possibilities. The first one is when u1 is a
prefix of y1 with |y1| − |u1| < |x| and u2 a suffix of y2 with |y2| − |u2| < |x|. The
second one is when u1 is a suffix of y1 with |y1| − |u1| < |x| and u2 a prefix of
y2 with |y2| − |u2| < |x|. In both cases, we get max{|y1|, |y2|} ≤ |u| + |x| and
min{|y1|, |y2|} ≥ |u|.

Now we can describe how to compute the longest α-gapped repeat u1vu2,
with u1 and u2 occurring in non-overlapping runs. Unlike the previous case, here
it may be the case that y1 and y2 are not consecutive runs of Lx. So, we consider
each run y2 ∈ Lx at a time. For the current y2 we maintain a set M of possible
runs that may contain the left arm u1 of the longest α-gapped repeat. The main
point of our solution is that, at each step, the current M (corresponding to the
current run y2) is computed efficiently from the set M corresponding to the run
of Lx previously considered in the role of y2. Then, we use M to find the longest
α-gapped repeat we can construct with the right arm in y2, and, finally, eliminate
from M the runs that are useless for the rest of the computation. That is, when
we reached y2, we know already that some of the runs occurring before it are
too short to be able to contain the left arm of the longest α-gapped repeat; also,
some runs may not be too short to produce the repeat with the longest arms,
but are not long enough to ensure that any repeat with its left arm in them and
the right arm in one of the runs occurring to the right of y2 would be α-gapped.
These runs should not be considered further in the computation, so they are
discarded. We execute this process for all y2 ∈ Lx.

More precisely, our algorithm runs as follows. We assume that before
analysing y2 ∈ Lx we found the longest α-gapped repeat u1vu2, with both u1

and u2 contained in two non-overlapping runs which occur before y2 in Lx, so
we processed them already. Let � = |u1| and k =

⌊
�

|x|
⌋
. We now consider the

run y2 ∈ Lx, and assume that |y2| > �; clearly, shorter runs could not contain
the right arm of a repeat with arms longer than u1. By the same reason, we do
not have to consider any run that contains at most k − 2 full occurrences of x
as a place for the left arm of the repeat: the length of this arm would be less
than k|x| ≤ �. Also, we do not have to consider a run y1 with at most k + 1
occurrences of x as a possible place for the left arm of the repeat unless it is one
of the rightmost 6c runs occurring in Lx that end before y2 begins and have at
least k − 1 occurrences of x. Indeed, if y1 is not one of these 6c runs, then the
gap between the end of y1 and the start of y2 would be, if k ≥ 3, longer than
6c(k−2)|x|, or, if k = 2, longer than 6c|x|. This is greater than (k+3)c|x| ≥ c|y1|.
Therefore, any repeat with the left arm in such a run y1 and right arm in the
considered run y2 would not be α-gapped.

Longest α-Gapped Repeat and Palindrome 35

So, we only need to consider for some y2 the rightmost 6c runs of Lx which
end before y2 and have at least k−1 occurrences of x as well as the runs occurring
before (i.e., to the left of) these 6c runs, that contain at least k + 2 occurrences
of x. These runs are stored in the structure M . First, we check which is the
α-gapped repeat with longest arm that can be constructed with the left arm in
one of the aforementioned 6c runs and the right one in y2. Then we try to do
the same thing for the other runs of M . Let y1 be a run with at least k + 2
occurrences of x.

It might be the case that y1 equals a factor of y2. We produce the longest
α-gapped repeat with left arm in y1 and right arm in y2. In the case when this
repeat is y1vy1, we store it if its arm y1 is longer than the arm of the current
longest α-gapped repeat, and then discard y1: we already obtained the longest
repeat whose left arm could be in y1, so it bears no importance for the rest of
the computation. We then check the next run that occurs to the left of y1 and is
contained in M , and so on. If we cannot obtain y1vy1, we discard y1 because it
will never lead to another α-gapped repeat again, as explained in the discussion
on how an α-gapped repeat with arms in non-overlapping runs may be placed
inside these runs, and, again, continue our search. If y2 is contained in y1, we
either obtain the α-gapped repeat y2vy2 and stop analysing y2, as it already
produced the longest α-gapped repeat it can ever produce, or we obtain only a
shorter α-gapped repeat and we stop analysing y2 because it will never produce
another α-gapped repeat with a run occurring to the left of y1: the rest of the
runs in M are simply to far away from y2.

If neither y1 equals a factor of y2 nor y2 equals a factor of y1, we proceed as
follows. Let u1vu2 be the longest α-gapped repeat with the arms contained in y1

and y2, respectively. Assume that
⌈

|u|
|x|

⌉
= m; then max{|y1|, |y2|} ≤ (m + 1)|x|

and min{|y1|, |y2|} ≥ (m−1)|x|. It follows that we do not have to consider many
more runs to the left of y1 as a possible place for the left arm of the longest α-
gapped repeat with the right arm in y2. Indeed, it is enough to consider, besides
y1, the next (rightmost) 8c runs occurring to the left of y1 in Lx and having at
least m − 2 occurrences of x. All the other runs we meet while traversing Lx to
select these 8c runs are discarded: they are too short to produce a repeat with a
longer arm than what we already have found. The runs occurring to the left of
these 8c runs could not produce an α-gapped repeat with the right arm in y2,
as the gap between them and y2 would too long. Indeed, the gap between any of
them and y2 is at least 8c(m − 3)|x| + 6c|x|, if m ≥ 4, or 14c|x|, otherwise; this
is, anyway, greater than c|y2|. Therefore, after checking the selected 8c runs as
a possible place for the left arm of the longest α-gapped repeat, we are sure to
have obtained the longest α-gapped repeat with the right arm in y2.

Further, we have to update M so that it becomes ready to be used when
considering a new run of Lx in the role of y2. Assume the current longest
α-gapped repeat has the arm length �′ and let k′ =

⌊
�′
|x|

⌋
. From the runs of

M (so, excluding the ones we already discarded), we first store the rightmost 6c
runs with at least k′ − 1 occurrences of x. Then we also discard from the rest of
M all the runs with at most k′ +1 occurrences of x, occurring to the right of the

36 P. Gawrychowski and F. Manea

leftmost run of Lx considered in our search. Once M is cleaned up like this, if
the next run we need to consider in the role of y2 (so, which has length greater
than �′) is y′, we add to M , in the order of their starting positions, the runs with
at least k′ − 1 occurrences of x and ending between the starting position of y2
and the starting position of y′. These runs are added one by one, such that the
set of the rightmost 6c runs of M with at least k′ −1 occurrences of x is correctly
maintained. When a run with at most k′ +1 occurrences of x is no longer among
the last 6c runs of M , we just discard it. We then process the updated M with
y′ in the role of y2.

In this way, we compute for each x the longest α-gapped repeat u1vu2 with
u1 = u2 periodic, contained in non-overlapping runs with lper = x. We do this
for all possible values of x, and, alongside the analysis from the cases discussed
at the beginning of this proof, we get the longest α-gapped repeat u1vu2 with
u1 = u2 periodic.

The complexity of this algorithm is O(αn). Indeed, in the first case we spend
constant time per each run. In the second case we need constant time to analyse
each pair of consecutive runs from the list Lx, for each x. This adds up to O(n)
as the number of runs in a word is linear. In the last case, the time needed to
process a run y2 ∈ Lx is proportional to the number of elements discarded from
the structure M during this processing plus the number of elements inserted in
M before considering the next run of Lx, to which we add an extra O(c) = O(α)
processing time. As each run of Lx is added at most once in M , and then removed
once, the total number of deletions and insertions we make is O(n). In total, the
analysis of the third case takes, as claimed, O(αn). This concludes our proof. ��
Next we show how to find the longest α-gapped repeats uvu with u aperiodic.

Lemma 7. Given a word w of length n and an integer α ≤ n, the longest
α-gapped repeat uvu with u aperiodic, contained in w, can be found in O(αn)
time.

Proof. Here we cannot use the runs structure of the input word to guide our
search for the arms of the longest α-gapped repeat. So we need a new approach.

Informally, this new approach works as follows (see also Fig. 4). For each k,
we try to find the longest α-gapped repeat u1vu2 = uvu, with u1 = u2 = u
aperiodic, and 2k+1 log n ≤ |u| ≤ 2k+2 log n. In each such repeat, the right arm
u2 must contain a factor (called k-block) z, of length 2k log n, starting on a
position of the form j2k log n + 1. So, we try each such factor z, fixing in this
way a range of the input word where u2 could appear. Now, u1 must also contain
a copy of z. However, it is not mandatory that this copy of z occurs nicely aligned
to its original occurrence; from our point of view, this means the copy of z does
not necessarily occur on a position of the form i log n + 1. But, it is not hard to
see that z has a factor y of length 2k−1 log n, starting in its first log n positions
and whose corresponding occurrence in u1 should start on a position of the
form i log n + 1. Further, we can use the fact that u1vu2 is α-gapped and apply
Lemma 4 to a suitable encoding of the input word to locate in constant time for
each y starting in the first log n positions of z all possible occurrences of y on

Longest α-Gapped Repeat and Palindrome 37

a position of the form i log n + 1, occurring not more than (8α + 2)|y| positions
to the left of z. Intuitively, each occurrence of y found in this way fixes a range
where u1 might occur in w, such that u1vu2 is α-gapped. So, around each such
occurrence of y (supposedly, in the range corresponding to u1) and around the
y from the original occurrence of z we try to effectively construct the arms u1

and u2, respectively, and see if we get the α-gapped repeat. In the end, we just
return the longest repeat we obtained, going through all the possible choices
for z and the corresponding y’s. We describe in the following an O(αn) time
implementation of this approach.

y

y

y

y z

uu v

Fig. 4. Segment of w, split into blocks of length log n. In this segment, z is a k-block
of length 2k log n. For each factor y, of length 2k−1 log n, occurring in the first log n
symbols of z (not necessarily a sequence of blocks), we find the occurrences of y that
correspond to sequences of 2k−1 blocks, and start at most (8α+2)|y| = (4α+1)·2k log n
symbols (or, alternatively, (4α + 1) · 2k blocks) to the left of the considered z. These y
factors may appear as runs or as separate occurrences. Some of them can be extended
to form an α-gapped repeat u1vu2 = uvu such that the respective occurrence of y has
the same offset in u1 as the initial y in u2.

The first step of the algorithm is to construct a word w′, of length n
log n ,

whose symbols, called blocks, encode log n consecutive symbols of w grouped
together. Basically, now we have two versions of the word w: the original one,
and the one where it is split in blocks. Clearly, the blocks can be encoded into
numbers between 1 and n in linear time, so we can construct in O(n) time the
suffix arrays and LCP -data structures for both w and w′. We can also build in
O(n) time the data structures of Lemma 4 for the word w′.

Now, we try to find the longest α-gapped repeat u1vu2 = uvu of w, with
u1 = u2 = u aperiodic, and 2k+1 log n ≤ |u| ≤ 2k+2 log n, for each k ≥ 1 if
α > log log n or k ≥ log log n, otherwise. Let us consider now one such k. We
split again the word w, this time in factors of length 2k log n, called k-blocks. For
simplicity, assume that each split is exact.

Clearly, if an α-gapped repeat u1vu2 like above exists, then u2 contains at
least one of the k-blocks. Consider such a k-block z and assume it is the leftmost
k-block of u2. On the other hand, u1 contains at least 2k+1 − 1 consecutive
blocks from w′, so there should be a factor y of w corresponding to 2k−1 of these
(2k+1 − 1) blocks which is also a factor of z, and starts on one of the first log n
positions of z. Now, for each k-block z and each y, with |y| = 2k−1 log n and
starting in its prefix of length log n, we check whether there are occurrences of
y in w ending before z that correspond to exactly 2k−1 consecutive blocks of

38 P. Gawrychowski and F. Manea

w′ (one of them should be the occurrence of y in u1); note that the occurrence
of y in z may not necessarily correspond to a group of 2k−1 consecutive blocks,
but the one from u1 should. As u1vu2 is α-gapped and |u1| ≤ 2k+2 log n, then
the occurrence of y from u1 starts at most (4α + 1)2k log n symbols before z
(as |u1v| ≤ α|u2| ≤ α2k+2 log n, and z occurs with an offset of at most 2k log n
symbols in u2). So, the block-encoding of the occurrence of the factor y from the
left arm u1 should occur in a factor of (4α + 1)2k blocks of w′, to the left of the
blocks corresponding to z.

For the current z and an y as above, we check whether there exists a factor
y′ of w′ whose blocks correspond to y, by binary searching the suffix array of w′

(using LCP -queries on w to compare the factors of log n symbols of y and the
blocks of w′, at each step of the search). If not, we try another possible y. If yes,
using Lemma 4 for w′, we retrieve (in O(log log |w′| + α) time) a representation
of the occurrences of y′ in the range of (4α + 1)2k blocks of w′ occurring before
the blocks of z; this range corresponds to a range of length (4α+1)2k log n of w.

If y′ is aperiodic then there are only O(α) such occurrences. Each factor of w
corresponding to one of these occurrences might be the occurrence of y from u1,
so we try to extend both the factor corresponding to the respective occurrence
of y′ from w′ and the factor y from z in a similar way to the left and right
to see whether we obtain the longest α-gapped repeat. If y′ is periodic (so, y
is periodic as well), Remark 1 shows that the representation of its occurrences
consists of O(α) separate occurrences and O(α) runs in which y′ occurs. The
separate occurrences are treated as above. Each run r′ of w′ where y′ occurs is
treated differently, depending on whether its corresponding run r from w (made
of the blocks corresponding to r′) supposedly starts inside u1, ends inside u1, or
both starts and ends inside u1. We can check each of these three cases separately,
each time trying to establish a correspondence between r and the run containing
the occurrence of y from z, which should also start, end, or both start or end
inside u2, respectively. Then we define u1 and u2 as the longest equal factors
containing these matching runs on matching positions. Hence, for each separate
occurrence of y′ or run of such occurrences, we may find an α-gapped repeat in
w; we just store the longest. This whole process takes O(α) time.

If α > log log n, we run this algorithm for all k ≥ 1 and find the longest
α-gapped repeat uvu, with u aperiodic, and 4 log n ≤ |u|, in O(αn) time.

If α ≤ log log n, we run this algorithm for all k ≥ log log n and find the longest
α-gapped repeat uvu, with u aperiodic, and 2log log n+1 log n ≤ |u|, in O(αn) time.
If our algorithm did not find such a repeat, we should look for α-gapped repeats
with shorter arm. Now, |u| is upper bounded by 2log log n+1 log n = 2(log n)2,
so |uvu| ≤ �0, for �0 = α · 2(log n)2 + 2(log n)2 = (2α + 2)(log n)2. Such an
α-gapped repeat uvu is, thus, contained in (at least) one factor of length 2�0
of w, starting on a position of the form 1 + m�0 for m ≥ 0. So, we take the
factors w[1 + m�0..(m + 2)�0] of w, for m ≥ 0, and apply for each such factor,
separately, the same strategy as above. The total time needed to do that is
O

(
α�0

n
�0

)
= O(αn). Hence, we found the longest α-gapped repeats uvu, with

u aperiodic, and 2log log(2�0)+1 log(2�0) ≤ |u|. If our search was still fruitless, we

Longest α-Gapped Repeat and Palindrome 39

need to search α-gapped repeats with |u| ≤ 2log log(2�0)+1 log(2�0) ≤ 16 log n (a
rough estimation, based on the fact that α ≤ log log n).

So, in both cases, α > log log n or α ≤ log log n, it is enough to find the
longest α-gapped repeats with |u| ≤ 16 log n. The right arm u2 of such a repeat is
contained in a factor w[m log n+1..(m+17) log n] of w, while u1 surely occurs in a
factor x = w[m log n−16α log n+1..(m+17) log n] (or, if m log n−16α log n+1 ≤
0, then in a factor x = w[1..(m + 17) log n]); in total, there are O(n/ log n) such
x factors. In each of these factors, we look for α-gapped repeats u1vu2 = uvu
with 2k+1 ≤ |u| ≤ 2k+2, where 0 ≤ k ≤ log log n + 2 (the case |u| < 2 is trivial),
and u2 occurs in the suffix of length 17 log n of this factor. Moreover, u2 contains
a factor y of the form x[j2k + 1..(j + 1)2k]. Using Lemma 5 and Remark 2, for
each such possible y occurring in the suffix of length 17 log n of x, we assume
it is the one contained in u2 and we produce in O(α) time a representation of
the O(α) occurrences of y in the factor of length (4α + 1)|y| preceding y. One
of these should be the occurrence of y from u1. Similarly to the previous cases,
we check in O(α) time which is the longest α-gapped repeat obtained by pairing
one of these occurrences to y, and extending them similarly to the left and right.
The time needed for this is O(α log n) per each of the O(n

log n) factors x defined
above. This adds up to an overall complexity of O(αn), again.

This was the last case we needed to consider. In conclusion, we can find the
longest α-gapped repeat uvu, with u aperiodic, in O(αn) time. ��
Lemmas 6 and 7 lead to the following theorem.

Theorem 1. Problem 1 can be solved in O(αn) time.

To solve Problem 2 we construct LCP -structures for wwR (allowing us to test
efficiently whether a factor w[i..j]R occurs at some position � in w) and a mapping
connecting the lists Lx, of maximal runs y with lper(y) = x, to the lists L′

x of
maximal runs y in wR with lper(y) = x. Using the same strategy as in the case
of repeats we can solve Problem 2 in O(αn) time.

We first look for α-gapped palindromes with periodic arm, and then for such
palindromes with aperiodic arms. The main difference is that, when looking for
α-gapped palindrome uRvu with u contained in or containing a part of a run
from Lx, for some x, we get that uR is in contained in or contains part of a run
from L′

x, respectively.
Basically, when we search uRvu with the longest periodic u and |uv| ≤ α|u|,

we choose a maximal run y, with lper(y) = x, as the possible place for the
right arm of the gapped palindrome; then, we only have to check (counting in
an amortised setting) the rightmost O(α) runs of L′

x that end before y as the
possible place of uR. When we search the longest α-gapped palindrome uRvu
with u aperiodic, we split again w in blocks and k-blocks, for each k ≤ log |w|,
to check in whether there exists such an uRvu with 2k ≤ |u| ≤ 2k+1. This search
is conducted pretty much as in the case of repeats, only that now when we fix
some factor y of u, we have to look for the occurrences of yR in the factor of
length O(α|y|) preceding it; the LCP -structures for wwR are useful for this. The
following results follows.

40 P. Gawrychowski and F. Manea

Theorem 2. Problem 2 can be solved in O(αn) time.

References

1. Bannai, H., Tomohiro, I., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.:
A new characterization of maximal repetitions by lyndon trees. In: Proceedings of
the SODA, pp. 562–571 (2015)

2. Brodal, G.S., Lyngsø, R.B., Pedersen, C.N.S., Stoye, J.: Finding maximal pairs
with bounded gap. In: Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS,
vol. 1645, pp. 134–149. Springer, Heidelberg (1999)

3. Crochemore, M.: An optimal algorithm for computing the repetitions in a word.
Inf. Process. Lett. 12(5), 244–250 (1981)

4. Crochemore, M., Iliopoulos, C.S., Kubica, M., Rytter, W., Waleń, T.: Efficient
algorithms for two extensions of LPF table: the power of suffix arrays. In: van
Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM
2010. LNCS, vol. 5901, pp. 296–307. Springer, Heidelberg (2010)

5. Crochemore, M., Rytter, W.: Usefulness of the Karp-Miller-Rosenberg algorithm
in parallel computations on strings and arrays. Theoret. Comput. Sci. 88(1), 59–82
(1991). http://dx.doi.org/10.1016/0304-3975(91)90073-B

6. Crochemore, M., Tischler, G.: Computing longest previous non-overlapping factors.
Inf. Process. Lett. 111(6), 291–295 (2011)

7. Gawrychowski, P.: Pattern matching in Lempel-Ziv compressed strings: fast, sim-
ple, and deterministic. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011.
LNCS, vol. 6942, pp. 421–432. Springer, Heidelberg (2011)

8. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, New York (1997)

9. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53, 918–936 (2006)

10. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Efficient data structures
for the factor periodicity problem. In: Calderón-Benavides, L., González-Caro, C.,
Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 284–294. Springer,
Heidelberg (2012)

11. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.
In: Proceedings of the FOCS, pp. 596–604 (1999)

12. Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theor. Comput.
Sci. 410(51), 5365–5373 (2009)

13. Kolpakov, R., Podolskiy, M., Posypkin, M., Khrapov, N.: Searching of gapped
repeats and subrepetitions in a word. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner,
P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 212–221. Springer, Heidelberg (2014)

14. Kolpakov, R.M., Kucherov, G.: Finding repeats with fixed gap. In: Proceedings of
the SPIRE, pp. 162–168 (2000)

15. Manacher, G.K.: A new linear-time on-line algorithm for finding the smallest initial
palindrome of a string. J. ACM 22(3), 346–351 (1975)

http://dx.doi.org/10.1016/0304-3975(91)90073-B

On the Enumeration of Permutominoes

Ana Paula Tomás(B)

DCC & CMUP, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
apt@dcc.fc.up.pt

Abstract. Although the exact counting and enumeration of polyomi-
noes remain challenging open problems, several positive results were
achieved for special classes of polyominoes. We give an algorithm for
direct enumeration of permutominoes [13] by size, or, equivalently, for the
enumeration of grid orthogonal polygons [23]. We show how the construc-
tion technique allows us to derive a simple characterization of the class
of convex permutominoes, which has been extensively investigated [5].
The approach extends to other classes, such as the row convex and the
directed convex permutominoes.

1 Introduction

The generation of geometric objects has applications to the experimental eval-
uation and testing of geometric algorithms. No polynomial time algorithm is
known for generating polygons uniformly on a given set of vertices. Some gen-
erators employ heuristics [1,7] or restrict to certain classes of polygons, e.g.,
monotone, convex or star-shaped polygons [22,24]. Numerous related problems
have also been extensively investigated, as the exact counting or enumeration
of polyominoes [10]. These remain challenging open problems in computational
geometry and enumerative combinatorics. A polyomino is an edge-connected
set of unit squares on a regular square lattice (grid). Polyominoes are defined
up to translations. In this paper, we give an algorithm for the enumeration of
permutominoes by size, or, equivalently, for the enumeration of grid orthogo-
nal polygons by the number of vertices [23]. Research on permutominoes has
focused the enumeration of some subclasses of permutominoes according to the
size and the charaterization of pairs of permutations defining various classes of
permutominoes [20]. Polyominoes are usually enumerated by area (i.e., number
of cells). The direct enumeration of polyominoes is a computational problem of
exponential complexity. An overview of the main developments concerning direct
and indirect approaches is given in [3]. Jensen’s transfer-matrix algorithm [14] –
an indirect method – is currently the most powerful algorithm for counting
fixed polyominoes. Exact counts are known for polyominoes that have up to
56 cells [3,15]. As far as we can see, Jensen’s algorithm cannot be adapted for

Partially supported by CMUP (UID/MAT/00144/2013), which is funded by FCT
(Portugal) with national (MEC) and European structural funds through the pro-
grams FEDER, under the partnership agreement PT2020.

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 41–52, 2015.
DOI: 10.1007/978-3-319-22177-9 4

42 A.P. Tomás

counting permutominoes. Our algorithm for direct enumeration of permutomi-
noes is based on Inflate-Paste, a construction technique we developed in [23].

The rest of the paper is organized as follows. Sections 2 and 3 introduce fun-
damental background, in particular, the Inflate-Paste technique. Section 4
describes our enumeration algorithm for generic permutominoes. In Sect. 5, we
see how to tailor the approach to count some specific classes (or to create
instances in such sets), such as the convex and the row-convex permutominoes.
Section 6 concludes the paper.

2 Preliminaries

A polygon is called orthogonal if its edges meet at right angles (of 3π/2 radi-
ans at reflex vertices and π/2 at convex vertices). If r is the number of reflex
vertices of an n-vertex orthogonal polygon, then n = 2r + 4 (e.g. [19]). The
grid orthogonal polygons (grid ogons) were introduced in [23] as a relevant class
for generation. A grid ogon is an orthogonal polygon without collinear edges,
embedded in a regular square grid and that has exactly one edge in each line
of its minimal bounding square. The grid ogons correspond to the permutomi-
noes introduced in [5,9,13]. A permutomino is a polyomino that is given by two
suitable permutations of {1, 2, . . . , r + 2}, for r ≥ 0, which define the sequences
of the x and y coordinates of its vertices. Its size is r + 1 and represents the
width of its minimal bounding square. We adopt the notion of size given in [9],
which is slightly different from [5] (where it is defined as one plus the width of
the minimal bounding square). The topological border of a permutomino of size
r + 1 is a grid ogon with r reflex vertices, and so, it has 2r + 4 vertices in total.
Conversely, the region delimited by a n-vertex grid ogon is a permutomino of
size r + 1. All polyominoes we consider are simply-connected and, similarly, all
polygons are simple and without holes.

3 The Inflate-Paste Technique

The Inflate-Paste technique1 was proposed in [23] for creating n-vertex grid
ogons (i.e., permutominoes), at random, as sketched in Fig. 1.

The algorithm yields an n-vertex grid ogon in O(n2) time. It exploits the fact
that every n-vertex grid ogon results from a unit square by applying Inflate-
Paste r = (n − 4)/2 times. Inflate-Paste glues a new rectangle to a grid
ogon to obtain a new one with 1 more reflex vertex. The rectangle is glued
by Paste to an horizontal edge incident to a convex vertex v, is fixed at v
and must be in a region that we called the free neighbourhood of v (Fig. 2b)).
This region is denoted by FSN(v) and consists of the external points that are
rectangularly visible from v in the quadrant with origin v that contains the
horizontal edge eH(v) and the inversion of the vertical edge eV (v), incident to v.
Here, the inversion of eV (v) is its reflection with respect to v. Two points z

1 Demos at http://www.dcc.fc.up.pt/∼apt/genpoly.

http://www.dcc.fc.up.pt/~apt/genpoly

On the Enumeration of Permutominoes 43

Fig. 1. Using Inflate-Paste to create a permutomino with 3 reflex vertices (size 4).

Fig. 2. Inflate-Paste: (a) gluing a rectangle to v (b) FSN(v) is the dark shaded
region (c) the rectangle is defined by v and the center of a cell of FSN(v).

and w are rectangularly visible if the axis-aligned rectangle that has z and w
as opposite corners does not intersect the interior of the polygon [18]. At each
step, the algorithm selects a convex vertex v and a cell c in FSN(v). The center
of c and v define the rectangle that is glued, but the cell is inflated first. The
Inflate operation keeps the grid regular: the grid lines are shifted to insert two
new lines – one horizontal and one vertical line – for the new edges, that will
meet at the center of c. We assume that the starting unit square is inside a 3×3
square, whose boundary contains no edges of P (see Fig. 1). The boundary is
kept free along the method. In this way, FSN(v) is always a bounded region
and a Ferrers diagram, with origin at v. Hence it can be defined by a sequence
of integers, representing the number of cells that form each row of the diagram.
Any cell in FSN(v) can be used for growing the polygon using v. Hence, for the
instance shown in Fig. 2c), we can make 9 + 7 + 6 + 4 + 4 + 3 + 2 = 35 distinct
grid ogons using the selected vertex v.

4 Direct Enumeration of Permutominoes

ECO was introduced in [2] as a construction paradigm for the enumeration of
combinatorial objects of a given class, by performing local transformations that
increase a certain parameter (the size) of the objects. In this section we propose
a direct enumeration procedure for the grid ogons (i.e., permutominoes) using
Inflate-Paste. The enumeration algorithm is as follows.

44 A.P. Tomás

PermutominoEnum(P ,S,G,n0,r)
if r = 0 then return fi
MakeEmptyStack(T)
while not IsEmpty(S) do

v := Pop(S) /* v has coordinates (vx, vy) */
eH(v) := the horizontal edge of P that contains v
if IsConvex(v,P) then

for C in FreeNeighbourhood(v, P,G) do
(p, q) := the southwest corner of C
InflateGrid(p,q,G)
w1 := NewVertex(p + 1,vy)
w2 := NewVertex(p + 1,q + 1)
w3 := NewVertex(vx,q + 1)
PasteRectangle(v, [w1, w2, w3], P)
PushConvex([w1, w2, w3],eH(v),S,P)
OutputPolygon(P ,n0 + 2) /* or increment a counter */
PermutominoEnum(P ,S,G,n0 + 2,r − 1)
CutRectangle(v, [w1, w2, w3], P)
PopConvex([w1, w2, w3],eH(v),S,P)
DeflateGrid(p + 1,q + 1,G)

done
fi
Push(v,T);

done
while not IsEmpty(T) do

Push(Pop(T),S)
done

Here, P is the initial polygon, G a representation of the grid lines, S a
stack that contains the convex vertices of P that are available for expansion,
n0 the number of vertices of P and r the maximum number of reflex vertices
of the polygons. PermutominoEnum enumerates recursively all descendants
of P that have up to n0 +2r vertices. If initially P := {(1, 1), (2, 1), (2, 2), (1, 2)}
(w.r.t. the standard 2D cartesian coordinate system and given in CCW-order),
S := {(1, 2), (2, 2)}, and n0 = 4, then the algorithm will enumerate (or count)
all grid ogons that have up to 2r + 4 vertices. Nevertheless, in our description
of the algorithm in pseudocode, we assume that P is represented by a doubly-
linked circular list and that the vertices are linked by pointers to the grid lines
that contain them (do not keep their coordinates explicitly). In the same way,
the stack S contains pointers to the vertices that are in the stack and the new
vertices w1, w2 and w3 keep a similar representation. This means that, in the
pseudocode, p, q, p + 1, vy, q + 1, vx refer to the pointers to the corresponding
horizontal and vertical grid lines (not simple coordinates). InflateGrid(p,q,G)
shifts the vertical grid lines x > p, one position to the right and the horizontal
grid lines y > q one position upwards, and inserts two new lines x = p + 1 and
y = q + 1. DeflateGrid(p + 1,q + 1,G) does the reverse operation, removing
the lines x = p+1 and y = q+1 from the grid. This implies that the coordinates
of the vertices of P change accordingly. A trail-stack T is used to restore the

On the Enumeration of Permutominoes 45

contents of the stack S in the end of the function (we can make a copy of S at
start and use it, instead). This is important for exploring the higher branches
of the enumeration search tree. The call to PushConvex puts the new convex
vertices on the top of the stack: w2 and w3 are convex vertices always and w1

is convex if it does not lie in the interior of eH(v). For the correctness of the
enumeration algorithm, it does not matter how the algorithm sorts these new
vertices to push them onto the stack, but we can adopt a particular order, as we
discuss below. After the recursive call to PermutominoEnum, we restore the
polygon, the stack and grid before we proceed to the next cell in FSN(v). This is
done by the calls to CutRectangle, PopConvex and DeflateGrid. During
the enumeration procedure, the bottom horizontal edge cannot move upwards,
which is ensured by placing the initial unit square in a 2 × 3 grid.

The correctness and completeness of the Inflate-Paste construction are
proved in [23] and follow from the analysis of the horizontal partition of orthog-
onal polygons (see Fig. 3). The horizontal partition of an n-vertex grid ogon P
consists of r + 1 rectangles and is obtained by adding all horizontal chords inci-
dent to the reflex vertices of P . Each face of the horizontal partition, which is
a rectangle, gives a node of its dual graph and two nodes are connected by an
edge in the graph if the two corresponding rectangles are adjacent. Now, our
enumeration procedure is based on the existence of a unique depth-first gener-
ating tree for each polygon P , once we fix an order for visiting the dual graph of
its horizontal partition. One possibility is to define the order as the one induced
by a clockwise walk around the polygon, starting at the lowest rectangle, from
its SW-vertex. In Fig. 3, we used numbers to indicate the order in which the
rectangles (i.e., the nodes of the dual graph) are found.

Figure 4 shows all permutominoes with at most 8 vertices and their construc-
tion using the enumeration algorithm. In the figure, we used crosses to indicate
convex vertices that can no longer be used for expanding a polygon (to ensure

Fig. 3. The horizontal partition of a grid ogon and the unique tree induced by a depth-
first visit of its dual graph, if we start from the SW-vertex and walk around the polygon
in clockwise order. If we fix this order, only the vertices with labels 1, 2, 3, and 4 remain
active for expansion of this instance in our method (with 1 on the top of the stack).
The bottom horizontal edge never moves.

46 A.P. Tomás

Fig. 4. Permutominoes of size 1, 2, and 3 (i.e., with 4, 6, and 8 vertices) and their
horizontal partitions. In each instance, an arrow is attached to the vertex v used in the
last step to create the instance (v is no longer a vertex of the polygon).

uniqueness). They will not be in the stack at that stage if the enumeration algo-
rithm proceeds to expand such instance. Since the enumeration is in depth-first,
IsConvex checks if a vertex is still active, as Paste can render one vertex reflex.

In contrast to other existing methods for the enumeration of polyominoes,
PermutominoEnum, for permutominoes, does not need to keep an exponen-
tial number of state configurations in order to count them correctly. Each per-
mutomino is generated exactly once and, hence, there is no need to check for
repetitions. Nevertheless, the running time of the algorithm is dominated by the
number of permutominoes generated (and thus it is exponential).

By restricting the set of convex vertices that are active for expansion and
the notion of free neighbourhood we can design enumerators for particular sub-
classes, based on the Inflate-Paste construction. In particular, for the con-
vex permutominoes [5,11], the directed convex permutominoes, the row-convex
permutominoes, which, by π/2-rotation, yield the column-convex permutomi-
noes [4], as well as, for the thin, spiral, and min-area permutominoes [17].

Indeed, an algorithm for enumerating the convex permutominoes by size was
published in [11]. Its running cost is proportional to the number of permutomi-
noes generated. It is quite easy to design a specialized version of our algorithm
for enumerating convex permutominoes with identical complexity. Actually, as
we will see, for convex permutominoes the free neighbourhoods are linear (rec-
tangles of width 1) and only the two topmost convex vertices can be active.

5 Tailoring the Algorithm to Specific Subclasses

Although the exact counting and enumeration of polyominoes remain challeng-
ing open problems, several positive results were achieved for special classes of
polyominoes [6,8,16], namely for the class of convex polyominoes and some

On the Enumeration of Permutominoes 47

of its subfamilies (e.g., directed-convex polyominoes, parallelogram polyomi-
noes, stack polyominoes, and Ferrers diagrams). The larger class of row-convex
(resp. column-convex) polyominoes was considered also [12]. A polyomino is
said to be row-convex (resp. column-convex) if all its rows (resp. columns) are
connected, i.e., the associated orthogonal polygon is y-monotone (x-monotone).
A polyomino is convex if it is both row-convex and column-convex (see Fig. 5).

Fig. 5. A row-convex and a convex permutomino.

These classes, which satisfy convexity and/or directness conditions, have been
studied using different approaches and are fairly well characterized, for some
parameters, e.g., area and perimeter [6]. The corresponding classes of permu-
tominoes have been addressed too [4,5,9].

5.1 Convex Permutominoes

The analysis of the transformations performed by Inflate-Paste during the
application of PermutominoEnum allow us to derive simple characteriza-
tions and exact countings for such classes of permutominoes. Figure 6 shows
all n-vertex convex permutominoes for n = 4, 6, 8, each one embedded on a grid.
Only the two topmost convex vertices can be active for Inflate-Paste (so,
L and R stand for left or right). Crossed vertices are inactive in the following
transformation steps: “u” means that the vertex would be discarded in Permu-
tominoEnum as well (due to uniqueness conditions) and “c” means that the
resulting permutomino would not be convex. The sequence of {0, 1, 2}� displayed
on the grid top row is the expansion key of the corresponding permutomino. Each
element of the key gives the number of active convex vertices that see a certain
grid cell (in Fig. 6, each counter is in its cell). Here, see means that the cell
belongs to the free neighborhood of the vertex, already restricted to account
for the convexity condition. For all the remaining empty cells, the counter is 0
and, thus, we omitted it. If we add up the elements of the expansion key of a
given convex permutomino, we get the number of convex permutominoes that
it yields immediately in PermutominoEnum. In this way, the expansion keys
provide an exact encoding of the structural features that are relevant for count-
ing convex permutominoes according to the number of vertices. Actually, it is
the key as a whole that matters but not the particular cells associated to each
counter. By analysing Inflate-Paste in the scope of PermutominoEnum, we

48 A.P. Tomás

Fig. 6. Enumerating convex permutominoes by size.

may conclude that the expansion key of any convex permutomino with r ≥ 0
reflex vertices must be of one of the following forms:

1 2r+1 1
1 2j 0, for 1 ≤ j ≤ r−1,
0 2j 1, for 1 ≤ j ≤ r−1, and
0 2j 0, for 1 ≤ j ≤ r−2.

Inflate-Paste operations acting on convex permutominoes can be seen as
rewrite rules. Each rule rewrites the key of a convex permutomino with r − 1
reflex vertices to the key of one of the convex permutominoes derived from it,
having one more reflex vertex, for r ≥ 1. The rewrite rules are:

12r1 →L,R 12r+11
12r1 →L 12j0, for 1 ≤ j ≤ r
12r1 →R 02j1, for 1 ≤ j ≤ r

12j′
0 →L 12j0, for 1 ≤ j ≤ j′ ≤ r−1

12j′
0 →R 12j′+10, for 1 ≤ j′ ≤ r−1

12j′
0 →R 02j0, for 1 ≤ j ≤ j′ ≤ r−1

02j′
1 →R 02j1, for 1 ≤ j ≤ j′ ≤ r−1

02j′
1 →L 02j′+11, for 1 ≤ j′ ≤ r−1

02j′
1 →L 02j0, for 1 ≤ j ≤ j′ ≤ r−1

02j′
0 →L,R 02j0, for 1 ≤ j ≤ j′ ≤ r−2

where L (left) and R (right) identify the topmost vertex selected. For rules with
annotation “L,R”, both vertices can be selected, one at a time. Figures 7, 8 and
9 illustrate the idea underlying these rules. The correctness and completeness of
this rewrite system can be checked easily by case-analysis, taking into account
the conditions on convexity.

On the Enumeration of Permutominoes 49

Fig. 7. Rewriting 12r1 using the rewrite rules 12r1 →L 12r+11 and 12r1 →R 12r+11.

Fig. 8. Rewriting 12j
′
0 using (a) 12j

′
0 →R 12j

′+10 and (b) a rule 12j
′
0 →R 02j0,

for 1 ≤ j ≤ j′.

Fig. 9. Rewriting 02j
′
0 using (a) 02j

′
0 →L 02j0 and (b) 02j

′
0 →R 02j0, for some

1 ≤ j ≤ j′.

Proposition 1. Let C
(r)
α,j,β be the number of convex permutominoes of the class

α 2j β with r reflex vertices, for α, β ∈ {0, 1}, 1 ≤ j ≤ r + 1 and r ≥ 0. Then,
C

(r)
0,j,1 = C

(r)
1,j,0, for all r and j (symmetry by reflection w.r.t. V -axis) and C

(r)
α,j,β

is inductively defined as follows.

C
(0)
1,1,1 = 1

C
(r)
1,r+1,1 = 2C

(r−1)
1,r,1 , for r ≥ 1

C
(r)
1,j,0 = C

(r−1)
1,r,1 +

r−1∑

j′=max(1,j−1)

C
(r−1)
1,j′,0 , for 1 ≤ j ≤ r

C
(r)
0,j,0 = 2

r−1∑

j′=j

C
(r−1)
1,j′,0 + 2

r−2∑

j′=j

C
(r−1)
0,j′,0 , for 1 ≤ j ≤ r−1

The number of convex permutominoes with r reflex vertices (size r + 1) is
given by C(r) = C

(r)
1,r+1,1 + 2

∑r
j=1 C

(r)
1,j,0 +

∑r−1
j=1 C

(r)
0,j,0, for r ≥ 0.

Therefore, using this recurrence, C(r) can be evaluated efficiently using
dynamic programming, at least for small values of r, since C(r) grows expo-
nentially. Even for very small values of r, we need to handle big integers (either
explicitly or by means of some clever representation). Nevertheless, from [5,9],
we know the following closed form for C(r).

C(r) = 2(r + 4)4r−1 − r + 1
2

(
2(r + 1)
r + 1

)

50 A.P. Tomás

The first terms of the sequence are listed in [21] (ref. A126020): 1, 4, 18, 84,
394, 1836, 8468, 38632, 174426, 780156, . . . In a similar way, we can deduce a
recurrence for counting the row-convex permutominoes. In both case, the rewrite
rules were useful for deducing the recurrences for counting the polygons.

5.2 Row-Convex Permutominoes

The possible forms of the expansion keys of row-convex permutominoes with r
reflex vertices are 1a2b1c, with a + b + c = r + 3, and a, b, c ≥ 1 (see Fig. 10).

Fig. 10. Creating row-convex permutominoes. To focus on the distinguishing features,
for polygons resulting from 1221 and 1211, only the two top rows are shown.

Each rule rewrites the key of a row-convex permutomino with r − 1 reflex
vertices to the key of one of the row-convex permutominoes derived from it,
having one more reflex vertex, for r ≥ 1. The rewrite rules are:

1a2b1c →L 1a2b′
1c′

1c2b1a →R 1c′
2b′

1a

for all a, b, c ≥ 1, such that a + b + c = r + 2, and for all b′, c′ ≥ 1 such that
a + b′ + c′ = r + 3.

Let Br,p,k be the number of row-convex permutominoes with r reflex vertices
and expansion key 1p2r+3−(p+k)1k, for p, k ≥ 1, p + k ≤ r + 2. By symmetry,
we have Br,p,k = Br,k,p. For the recurrence, it interesting to aggregate further.
Let Rr,p =

∑r+1
k=1 Br,p,k count the instances whose expansion key starts by 1p.

Then, R0,1 = 1 and, for r ≥ 1, and we have

Rr,p = (r + 2 − p)Rr−1,p +
r+2−p∑

k=1

Rr−1,k

On the Enumeration of Permutominoes 51

with Rr−1,r+1 = 0. The first term results from the L-rule and the second from
the R-rule (exploiting symmetry). The number of row-convex permutominoes
with r vertices is R(r) =

∑r+1
p=1 Rr,p, for r ≥ 1, with R(0) = 1. It is not difficult

to see that

R(r) = 4R(r − 1) + 2
r−1∑

k=1

(r − k)Rr−1,k.

Again, we can use these recurrences to compute R(r), by dynamic programming
(with big integers), for small values of r. In [4], the authors conjecture that R(r)
can be defined asymptotically by R(r) ∼ k(r + 2)!hr+1, with k = 0.3419111 and
h = 1.385933, but the conjecture remains open.

6 Conclusion

In this paper we proposed a direct enumeration algorithm for generic permu-
tominoes, based on the Inflate-Paste construction [23]. We developed tailored
versions of the method to generate convex and row-convex permutominoes, from
which we derived simple recurrences for counting these subclasses. It is worth
noting that some of the constructions proposed by other authors for convex
and row-convex permutominoes can be seen as instances of the Inflate-Paste
method.

Acknowledgments. This paper is an extended version of the work presented at the
XV Spanish Meeting on Computational Geometry (EGC 2013). The author would like
to thank anonymous reviewers for insightful comments.

References

1. Auer, T., Held, M.: Heuristics for the generation of random polygons. In: Proeed-
ings CCCG 1996, pp. 38–43 (1996)

2. Barcucci, E., Del Lungo, A., Pergola, E., Pinzani, R.: ECO: a methodology for the
enumeration of combinatorial objects. J. Differ. Equ. Appl. 5, 435–490 (1999)

3. Barequet, G., Moffie, M.: On the complexity of Jensen’s algorithm for counting
fixed polyominoes. J. Discrete Algorithms 5, 348–355 (2007)

4. Beaton, N., Disanto, F., Guttmann, A.J., Rinaldi, S.: On the enumeration of
column-convex permutominoes. In: Proceedings of FPSAC 2011, Iceland (2011)

5. Boldi, B., Lonati, V., Radicioni, R., Santini, M.: The number of convex permu-
tominoes. Inf. Comput. 206, 1074–1083 (2008)

6. Bousquet-Mélou, M.: Bijection of convex polyominoes and equations for enumer-
ating them according to area. Discrete Appl. Math. 48, 21–43 (1994)

7. Damian, M., Flatland, R., ORourke, J., Ramaswami, S.: Connecting polygoniza-
tions via stretches and twangs. Theor. Comp. Syst. 47, 674–695 (2010)

8. Deutsch, E.: Enumerating symmetric directed convex polyominoes. Discrete Math.
280, 225–231 (2004)

9. Disanto, F., Frosini, A., Pinzani, R., Rinaldi, S.: A closed formula for the number
of convex permutominoes. Electron. J. Combin. 14, R57 (2007)

52 A.P. Tomás

10. Golomb, S.: Polyominoes. Princeton U. Press, Princeton (1994)
11. Grazzini, E., Pergola, E., Poneti, M.: On the exhaustive generation of convex per-

mutominoes. Pure Math. Appl. 19, 93–104 (2008)
12. Hickerson, D.: Counting horizontally convex polyominoes. J. Integer Sequences 2,

Article 99.1.8 (1999)
13. Insitti, F.: Permutation diagrams, fixed points and Kazhdan-Lusztig R-

polynomials. Ann. Comb. 10, 369–387 (2006)
14. Jensen, I.: Enumerations of lattice animals and trees. J. Stat. Phys. 102, 865–881

(2001)
15. Jensen, I.: Counting polyominoes: a parallel implementation for cluster computing.

In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J.,
Zomaya, A.Y. (eds.) ICCS 2003, Part III. LNCS, vol. 2659, pp. 203–212. Springer,
Heidelberg (2003)

16. Del Lungo, A., Duchi, E., Frosini, A., Rinaldi, S.: On the generation and enu-
meration of some classes of convex polyominoes. Electron. J. Combin. 11, R60
(2004)

17. Martins, A.M., Bajuelos, A.: Vertex guards in a subclass of orthogonal polygons.
Int. J. Comput. Sci. Netw. Secur. 6, 102–108 (2006)

18. Overmars, M., Wood, D.: On rectangular visibility. J. Algorithms 9(3), 372–390
(1998)

19. O’Rourke, J.: An alternate proof of the rectilinear art gallery theorem. J. Geom.
21, 118–130 (1983)

20. Rinaldi, S., Socci, S.: About half permutations. Electr. J. Comb. 21(1), P1.35
(2014)

21. Sloane, N.J.A.: The On-Line encyclopedia of integer sequences. OEIS Foundation.
http://oeis.org/

22. Sohler, C.: Generating random star-shaped polygons. In: Proceedings CCCG 1999
(1999)

23. Tomás, A.P., Bajuelos, A.: Quadratic-time linear-space algorithms for generating
orthogonal polygons with a given number of vertices. In: Laganá, A., Gavrilova,
M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol.
3045, pp. 117–126. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24767-8 13

24. Zhu, C., Sundaram, G., Snoeyink, J., Mitchell, J.S.B.: Generating random polygons
with given vertices. Comput. Geom. 6, 277–290 (1996)

http://oeis.org/
http://dx.doi.org/10.1007/978-3-540-24767-8_13

Stabbing Segments with Rectilinear Objects

Mercè Claverol1, Delia Garijo2, Matias Korman3,4, Carlos Seara1,
and Rodrigo I. Silveira1(B)

1 Universitat Politècnica de Catalunya, Barcelona, Spain
rodrigo.silveira@upc.edu

2 Universidad de Sevilla, Seville, Spain
3 National Institute of Informatics, Tokyo, Japan

4 JST, ERATO, Kawarabayashi Large Graph Project, Tokyo, Japan

Abstract. We consider stabbing regions for a set S of n line segments in
the plane, that is, regions in the plane that contain exactly one endpoint
of each segment of S. Concretely, we provide efficient algorithms for
reporting all combinatorially different stabbing regions for S for regions
that can be described as the intersection of axis-parallel halfplanes; these
are halfplanes, strips, quadrants, 3-sided rectangles, and rectangles. The
running times are O(n) (for the halfplane case), O(n log n) (for strips,
quadrants, and 3-sided rectangles), and O(n2 logn) (for rectangles).

1 Introduction

Let S be a set of n line segments in the plane. We say that a region R ⊆ R
2 is a

stabbing region for S if R contains exactly one endpoint of each segment of S; see
Fig. 1(a). Depending on the segment configuration, a stabbing region of a certain
shape may not exist, as shown in Fig. 1(b). Our aim in this paper is to compute
efficiently all stabbing regions R for a given set of segments S, for regions R that
can be described as the intersection of axis-parallel (i.e., horizontal or vertical)
halfplanes. Thus, the shapes here considered are halfplanes, strips, quadrants,
3-sided rectangles, and rectangles. This problem fits into the general framework
of classification or separability problems, since any stabbing region implicitly
classifies all endpoints of S into two sets: the ones inside R (including those on its
boundary) are the red points, and the ones outside R are the blue points. Thus,
we focus on computing the combinatorially different stabbing regions for S,
which are those that provide a different classification of the endpoints of the
segments in S.

Separability and classification problems have been widely investigated and
arise in many diverse problems in computational geometry. In our context, per-
haps the simplest stabbing region one can consider is a halfplane, whose bound-
ary is defined by a line, and so it is equivalent to a line that intersects all
segments (thus classifying their endpoints). Edelsbrunner et al. [13] presented
an O(n log n) time algorithm for solving the problem of constructing a represen-
tation of all stabbing lines (with any orientation) of a set S of n line segments.

When no stabbing halfplane exists, it is natural to ask for other types
of stabbing regions. Claverol et al. [10] studied the problem of reporting all
c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 53–64, 2015.
DOI: 10.1007/978-3-319-22177-9 5

54 M. Claverol et al.

Fig. 1. (a) A set of segments that has a stabbing rectangle. (b) A set of segments for
which no stabbing rectangle exists.

combinatorially different stabbing wedges (i.e., the stabbing region defined by
the intersection of two halfplanes) for a set S of n segments; see also [9]. Their
algorithm runs in O(n3 log n) time and uses O(n2) space. They also studied some
other stabbers such as double-wedges and zigzags (see [10] for a table comparing
the time and space complexities for these stabbers).

Results. Following this line of research, we introduce new shapes of stabbing
regions and exploit their geometric structure to obtain efficient algorithms. Con-
cretely, in Sect. 2, we study the case in which the stabbing region is formed by
at most two halfplanes, that is, halfplanes, strips, and quadrants. Our approach
partitions the plane into three regions: a red one that must be contained in any
stabbing region, a blue one that must be avoided by any stabbing region, and a
gray region for which we do not have enough information yet. The algorithms are
based on iteratively classifying segments and updating the boundaries of these
regions, a process that we call cascading. The running times obtained are O(n)
(for the halfplane case), and O(n log n) (for strips and quadrants). In Sect. 3 we
show that the cascading approach can be extended to 3-sided rectangles, and
that the number of combinatorially different solutions is still O(n), resulting in
an O(n log n) algorithm. Finally, we focus on stabbing rectangles in Sect. 4, for
which our algorithm runs in O(n2 log n) time. This is close to being worst-case
optimal, since there can be Θ(n2) combinatorially different solutions.

Note that even though we present our algorithms for stabbing regions defined
by axis-parallel halfplanes, they extend to any two fixed orientations by making
an appropriate affine transformation.

Other Related Work. Dı́az-Báñez et al. [12] considered a similar stabbing con-
cept: a region R stabs a collection of segments if at least one endpoint of each
segment is in R. In this setting, the endpoints of the segments are not necessarily
classified. Moreover, existence of a stabber is always guaranteed (one can always
find a large enough region that contains all segments). Thus, all studied prob-
lem focus on optimization. For instance, they search for a polygonal stabber with
minimum perimeter or area. In their work, they show that the general problem
is NP-hard and provide polynomial-time algorithms for some particular cases,
like disjoint segments. Other relevant references on stabbing problems that focus

Stabbing Segments with Rectilinear Objects 55

on optimization problems in two dimensions are [3,6,7,15,17–20,22]. Variants of
these problems have also been studied in three dimensions (e.g. [4,8,14,16,21]).

A more general formulation for the above-mentioned problems is using color-
spanning objects. In this case, the input is a set of n colored points, with c
colors, and the goal is to find an object (rectangle, circle, etc.) that contains at
least (or exactly) k points of each color. Our setting is the particular case in
which c = n/2 and we want to contain exactly one point of each color class.
The color-spanning objects (for the at least objective) that have been studied in
the literature are strips, axis-parallel rectangles [1,11], and circles [2]. All cases
can be solved in roughly O(n2 log c) time. Less research has been done for the
exact objective. Among others, we highlight the research of Barba et al. [5]. In
this work they give algorithms that, in O(n2c) time, compute disks, squares,
and axis-aligned rectangles that contain exactly one element of each of the c
color classes. The algorithm that we present in Sect. 4 (axis-aligned rectangle
stabber) improves the result of [5] for the particular case in which c = n/2 and
one looks for an axis-aligned color spanning rectangle. Our algorithm is almost
a linear factor faster, and also allows to report all possible solutions (whereas
their algorithm only reports one region).

Some Notation. The input consists of a set S = {s1, . . . , sn} of n segments. For
simplicity, we assume that there is no horizontal or vertical segment in S, and
that all segments have non-zero length. The modifications needed to make our
algorithms handle these special cases are straightforward, albeit rather tedious.
For any 1 ≤ i ≤ n, let pi and qi denote the upper and lower endpoint of si,
respectively. Given a point p ∈ R

2, we write x(p) (resp. y(p)) for its x- (resp.
y-) coordinate. Let yb = maxsi∈S{y(qi)} and yt = minsi∈S{y(pi)}; these values
correspond to the y-coordinates of the highest bottom endpoint and the lowest
top endpoint, respectively, of the segments in S. The segments attaining those
values are denoted by sb and st, respectively (i.e., y(qb) = yb and y(pt) = yt).

2 Stabbing with One or Two Halfplanes

This section deals with stabbing regions that can be described as the intersection
of at most two halfplanes. That is, our aim is to obtain a halfplane, strip, or
quadrant that contains exactly one endpoint of each segment of S. Note that
such stabbing objects do not always exist.

2.1 Stabbing Halfplane

For completeness (since it will be used in the upcoming sections), we explain
a straightforward algorithm for determining if a horizontal stabbing halfplane
exists. That is, a horizontal line such that one of the (closed) halfplanes defined
by the line contains exactly one endpoint of each segment. Observe that such
a stabbing halfplane can be perturbed so that it has no endpoint of a segment
on its boundary. In this case, the complement of a stabbing halfplane is also a

56 M. Claverol et al.

stabber. Thus, we are effectively looking for a horizontal line that intersects the
interior of all segments. As we are dealing with horizontal stabbers, the problem
becomes essentially one-dimensional, and it will ease our presentation to state
the problem in that way.

All segments can be projected onto the y-axis, becoming intervals. Consid-
ering the set S = {s1, . . . , sn} of projected segments, the question is simply
whether all the intervals in S have a point in common. Clearly, any horizontal
line y := u stabbing S must have its y-coordinate between the values yb and yt,
namely yb ≤ u ≤ yt. Therefore, such a line exists if and only if yb ≤ yt. Moreover,
whenever this condition happens, both the upper and lower halfplanes will be
stabbing halfplanes (and any other horizontal halfplane will be equivalent to one
of the two). This simple observation directly leads to a linear-time algorithm.

Observation 1. All axis-aligned stabbing halfplanes of a set of n segments can
be found in O(n) time.

2.2 Stabbing Strips

We now consider the case in which the stabbing region is a horizontal strip.
Note that the existence of stabbing halfplanes directly implies the existence of
stabbing strips, but the reverse is not true. Thus, our aim is to compute all non-
trivial stabbing strips; intuitively speaking, we are not interested in stabbing
strips that can be extended to stabbing halfplanes. More formally, we say that
a stabbing region R is non-trivial if there is no stabbing region described as
the intersection of fewer halfplanes that is combinatorially equivalent to R (i.e.,
gives the same classification of the endpoints of the segments in S).

As in Sect. 2.1, we can ignore the x-coordinates of the endpoints, project the
points onto the y-axis, and work with the set S instead. The endpoints of the
classified segments can be seen in the projection onto the y-axis as a set of blue
and red points. It follows that there is a separating horizontal strip for them if
and only if the red points appear contiguously on the y-axis. More precisely, the
points must appear on the y-axis in three contiguous groups, from top to bottom,
first a blue group, then a red group, and then another blue group. We refer to
the two groups of blue points as the top and bottom blue points, respectively. We
denote the intervals of the y-axis spanned by them by Bt and Bb, respectively.
The interval of the y-axis spanned by the group of red points is denoted by R.
Since all points above Bt and below Bb must be necessarily blue, we extend Bt

and Bb from +∞ and until −∞, respectively. Thus, the y-axis is partitioned into
three colored intervals and two uncolored (gray) intervals separating them. See
Fig. 2(a).

Observation 2. Let si and sj be two segments in S such that si is above sj (in
particular, this implies that the projected segments si and sj are disjoint). Then,
any horizontal stabbing strip must contain qi and pj.

Lemma 1. Any non-trivial horizontal stabbing strip for S contains points qb

and pt.

Stabbing Segments with Rectilinear Objects 57

With the previous observations in place, we can present our algorithm. We
give an intuitive idea in rather general terms because it will also be used in
the upcoming sections. Our algorithm starts by classifying a few segments of S
using some geometric observations (say, Lemma 1). As soon as some points are
classified, we partition the plane into three regions: the red region (a portion of
the plane that must be contained by any stabber), the blue region (a portion
of the plane that cannot be contained in any stabber) and the gray region (the
complement of the union of the two other regions; that is, regions of the plane
for which we still do not know). If a segment of S has an endpoint in either the
blue or red regions we can classify it (that is, if an endpoint is in a red region,
that endpoint must be red, and its opposite endpoint blue). This coloring may
enlarge either the red or blue regions, which may further allow us to classify
other segments of S, and so on. We call this process the cascading procedure.
This approach will continue until either we find a contradiction (say, the red
and blue regions overlap), or we have classified all segments of S (and thus we
have found a stabber). Thus, at any instant of time we partition S into three
sets C, W , and U . A segment is in C if it has been already classified, in W if it is
waiting for being classified (there is enough information to classify it, but it has
not been done yet), or in U if its classification is still unknown. The algorithm
is initialized with C = W = ∅, and U = S.

Regions. In addition to the three sets of segments, the algorithm maintains red
and blue candidate regions that are guaranteed to be contained or avoided in any
solution, respectively. When we are looking for a horizontal strip, these regions
will also be horizontal strips. Thus, it suffices to maintain the projection of the
regions on the y-axis. The blue and red regions are represented by the intervals
Bt, Bb and R: the blue region is Bt∪Bb, and the red region is R. The complement
of Bt ∪ Bb ∪ R is called the gray region. Note that the gray region, like the blue
one, consists of two disjoint components. During the execution of the algorithm
the regions will be updated as new segments become classified. See Fig. 2(a).

The algorithm starts by computing sb and st. If a stabbing halfplane exists,
one can find a stabbing strip and report it. Otherwise, by Lemma 1, we know
how to classify both segments (i.e., qb and pt are classified as red, and pb and qt

as blue). Thus, we move them from U to W . See Fig. 2.

Cascading Procedure. The procedure iteratively classifies segments in W based
on the red and blue regions. This is an iterative process in the sense that the
classification of one segment can make the blue or red region grow, making other
segments move from U to W .

As long as W is not empty, we pick any segment s ∈ W , assign the corre-
sponding colors to its endpoints, and move s from W to C. If a newly assigned
endpoint lies outside its corresponding zone, the red or blue area must grow to
contain that point. Note that after the red or blue region grows, other segments
can change from U to W . The process continues classifying segments of W until
either: (i) a contradiction is found (the red region is forced to overlap with the
blue region), or (ii) set W becomes empty.

58 M. Claverol et al.

Fig. 2. Computing a stabbing horizontal strip. (a) Result after classifying st and sb.
(b) Result after cascading; the red region has grown, and only one segment remains
unclassified. In both figures, segments of U are shown dotted, those of W are dashed,
and those of C are depicted with a solid line.

Lemma 2. If the cascading procedure finds no contradiction, each remaining
segment in U has an endpoint in each of the connected components of the gray
region.

Proof. By definition, when cascading procedure finishes, all segments still in U
must have both endpoints in the gray region. Assume, for the sake of contra-
diction, that there exists a segment si ∈ U whose both endpoints lie in the
same gray component, say, the lower one. Recall that, by construction, the red
region contains the interval [yb, yt]. In particular, we have y(pi) < yt, giving a
contradiction with the definition of yt. �	
Corollary 1. A horizontal stabbing strip exists for S if and only if the cascading
procedure finishes without finding a contradiction.

Theorem 1. Determining whether a horizontal stabbing strip exists for a set of
n segments can be done in O(n log n) time and O(n) space.

Reporting All Horizontal Stabbing Strips. The above algorithm can be modi-
fied to report all combinatorially different horizontal stabbing strips without an
increase in the running time.

Once the cascading procedure has finished, we define τ as the index of the
segment of U whose upper endpoint is lowest (i.e., for any index i such that
si ∈ U , it holds that y(pi) ≥ y(pτ)). Likewise, we define β as the index whose
lower endpoint is highest. Any stabbing strip will either contain: (i) all points in
the upper component of the gray region, (ii) all points in the lower component
of the gray region, or (iii) both pτ and qβ . The first two can be reported in
constant time, and for the third case, it suffices to classify the two segments,
cascade, and repeat the previous steps.

Theorem 2. All the combinatorially different horizontal stabbing strips of a set
of n segments can be computed in O(n log n) time.

Stabbing Segments with Rectilinear Objects 59

2.3 Stabbing Quadrants

We now extend this approach for stabbing quadrants. There are four types of
quadrants; without loss of generality, we concentrate on the bottom-right type.
Thus throughout this section, the term quadrant refers to a bottom-right one.
Other types can be handled analogously.

For a segment s = (p, q), let Q(s) denote its bottom-right quadrant ; that is,
the quadrant with apex at (max{x(p), x(q)},min{y(p), y(q)}). See Fig. 3(a).

Observation 3. Any quadrant classifying a segment s ∈ S must contain Q(s).

Given the segment set S, the bottom-right quadrant of S, denoted by Q(S),
is the (inclusion-wise) smallest quadrant that contains ∪s∈SQ(s); see Fig. 3(b).
We now need the equivalent of Lemma 1 to create the initial partition of the
plane into red, blue, and gray regions.

Corollary 2. Any stabbing quadrant of S must contain Q(S).

Fig. 3. (a) A set S of five segments and their individual bottom-right quadrants.
(b) Bottom-right quadrant Q(S) of the set of segments S. (c) Initial classification
given by Q(S), and the red, blue, and gray regions. Note that there is a region (white
in the figure) that cannot contain endpoints of S.

Regions. Partition is as follows: the red region R is always defined as the inclu-
sionwise smallest quadrant that contains all classified points and Q(S). At any
point in the execution, let a = (xR, yR) denote the apex of R. Any blue point
b of a classified segment forbids the stabber to include b or any point above
and to the left of b (i.e., in the top-left quadrant of b). Moreover, if b satisfies
y(b) ≤ yR or x(b) ≥ xR, a whole halfplane will be forbidden. Thus, the union
of such regions is bounded by a staircase polygonal line (see Fig. 3(c)). Initially,
we take the blue region B defined by a point at (−∞,∞). We say that a point
p = (x, y) is in the gray region if it is not in the red or blue region, and sat-
isfies either x > xR or y < yR (see Fig. 3(c)). As in Sect. 2.2, observe that the
gray region is the union of two connected components (which we call right, and
down components). Note that, in this case, there is a region, which we call white,
that is not contained in either the red, blue, or gray regions. However, our first
observation is that no endpoint of an unclassified segment can lie in the white
region.

60 M. Claverol et al.

Observation 4. A segment s ∈ S containing an endpoint in the white region
must contain its other endpoint in the red region.

We initially classify all segments that have one endpoint inside Q(S) in W
(and all the rest in U). As before, we apply the cascading procedure until a
contradiction is found (in which case we conclude that a stabbing quadrant does
not exist), or set W eventually becomes empty. In this case we have a very strong
characterization of the remaining unclassified segments.

Lemma 3. If the cascading procedure finishes without finding a contradiction,
each remaining segment in U has an endpoint in each of the gray components.

Thus, if no contradiction is found we can extend R until it contains one
of the two gray components to obtain a stabber. This can be done because,
by construction, each of the connected components of the gray region forms a
bottomless rectangle (i.e., the intersection of three axis aligned halfplanes) that
shares a corner with the apex of R. As in the strip case, we can use this app-
roach to report all combinatorially different quadrants in an analogous fashion
to Theorem 1: any stabbing quadrant will either completely contain one of the
two gray components, or it will contain at least a segment of each of the two
components.

Theorem 3. All the combinatorially different stabbing quadrants of a set of n
segments can be computed in O(n log n) time.

3 Stabbing with Three Halfplanes

We now consider the case in which the stabber is defined as the intersection of
three halfplanes. As in the quadrant case, it suffices to consider those of fixed
orientation. Thus, throughout this section, a 3-rectangle refers to a rectangle
that is missing the lower boundary edge, and that extends infinitely towards the
negative y-axis (also called bottomless rectangle). Without loss of generality, we
may assume that S cannot be stabbed with a halfplane, strip, or quadrant (since
any of those regions can be transformed into a bottomless rectangle). As in the
previous cases, we solve the problem by partitioning the plane into red-blue-gray
regions. However, to generate all stabbing 3-rectangles we need a more involved
sweeping phase that is combined with further cascading iterations.

3.1 Number of Different Stabbing 3-Rectangles

First we analyze the number of combinatorially different stabbing 3-rectangles
that a set of n segments may have. This analysis will lead to an efficient algorithm
to compute them. We start by defining a region that must be included in any
stabbing 3-rectangle. Recall that sb is the segment of S with highest bottom
endpoint, and qb is its bottom endpoint. Analogously, we define sr and s� as the
segments with leftmost right endpoint and rightmost left endpoint, respectively.

Stabbing Segments with Rectilinear Objects 61

Fig. 4. (a) Example with points qb, pr, and p� highlighted as squares. (b) Red and
blue regions after the initial cascading procedure has finished, and partition of the
gray region into subregions A, B, C, D, E (Color figure online).

Their corresponding right and left endpoints are denoted by pr and p�. See Fig. 4.
Finally, we define lines L�, Lr as the vertical lines passing through p� and pr,
respectively; analogously, Lb is the horizontal line passing through qb.

Lemma 4. Any non-trivial stabbing 3-rectangle R must contain the intersection
points of lines L�, Lr and Lb.

The above result allows us to initialize the red region and start the usual cas-
cading procedure. If no contradictions are found, the classified segments define
a red and a blue region which must be avoided and included in any solution,
respectively. Specifically, the red region is the inclusionwise smallest 3-rectangle
that contains all points classified as red. The blue region is the set of points
whose inclusion would force a 3-rectangle to contain some point that has already
been classified as blue. Finally, the area that is neither red nor blue is called gray
region. Once the cascading procedure has finished, all remaining unclassified seg-
ments must have both of their endpoints in the gray region. It will be convenient
to distinguish between different parts of the gray region, depending on their posi-
tion with respect to the red region. We differentiate between five regions, named
A, B, C, D, E, as depicted in Fig. 4(b). These five regions are obtained by draw-
ing horizontal and vertical lines through the two corners of the red region. We
say that the type of a segment s is XY, for X,Y ∈ {A,B,C,D,E} if s has one
endpoint in region X and the other endpoint in region Y. The next lemma shows
that, after a cascading, there are only a few possible types.

Lemma 5. Any unclassified segment after the cascading procedure is of type
AC, AD, AE, BE, or CE.

Now, consider the red and blue regions obtained after a cascading. Let
p1, . . . , pk be the endpoints of segments of S inside region A. In addition, we
define p0 as the blue point defining the blue boundary of region A, and pk+1 as
the red point defining the red boundary of region A. See Fig. 5(a). Let Gi, for
1 ≤ i ≤ k +1, be the gray region obtained after classifying points p1, . . . , pi−1 as
blue, pi, . . . , pk as red, and performing a cascading procedure (see Fig. 5(b-d)).
If any of those cascading operations results in a contradiction being found, we

62 M. Claverol et al.

simply set the corresponding Gi to be empty. Observe that, if for some i, the
region Gi is not empty, any unclassified segment must be of type BE or CE. We
say that a classification of the remaining segments is compatible with Gi if it is
compatible with the classification of just classified segments. Next we bound the
maximum number of combinatorially different solutions compatible with Gi.

Fig. 5. (a) Initial situation; region A contains points {p1, p2}. (b)-(d): sequence of gray
regions G1, G2, G3 (Color figure online).

Lemma 6. Let Gi be defined as above for some 1 ≤ i ≤ k +1 such that Gi �= ∅,
and let ni be the number of unclassified segments in Gi, i.e., segments with both
endpoints in Gi. Then there are at most ni combinatorially different solutions
compatible with Gi.

Lemma 7. For any set S of n segments there are O(n) combinatorially different
stabbing 3-rectangles.

3.2 Algorithm

The previous results give rise to a natural algorithm to generate all combinato-
rially different stabbing 3-rectangles. The algorithm has two phases:

Initial Cascading. We initialize the red region with Lemma 4 and launch
the usual cascading procedure. If this cascading finishes without finding a
contradiction, we obtain a red and a blue region that must be included and
avoided by any stabbing 3-rectangle, respectively.

Plane Sweep of Region A. We sweep the points in region A from left to
right. In the i-th step of the sweep, we classify points p1, . . . , pi−1 as blue,
and points pi, . . . , pk as red. After each such step, we perform a cascading
procedure. If the cascading gives no contradiction, we are left with a gray
region Gi and a number of unclassified segments that must be of type BE
or CE. Then we sweep the endpoints of the unclassified segments in region
E from left to right (we call this the secondary sweep). At each step of the
sweep, we fix those to the left of the sweep line as red, and those to the
right of the sweep line as blue, and perform a cascading procedure. From
the proof of Lemma 6, we know that each step of this second sweep, after
the corresponding cascading procedure, can produce at most one different
solution.

Theorem 4. All combinatorially different stabbing 3-rectangles of a set of n
segments can be computed in O(n log n) time.

Stabbing Segments with Rectilinear Objects 63

4 Stabbing Rectangles

Applying the cascading approach of the previous sections to rectangles results
in a rather involved case distinction, since segments with both endpoints in gray
regions can have many different interdependences. Instead, we can use a simple
approach based on the algorithm for 3-rectangles, which results in a running
time that is close to optimal in the worst case (since it is easy to see that there
can be Θ(n2) combinatorially different stabbing rectangles).

Any inclusionwise smallest stabbing rectangle R must contain one endpoint
on each side, and in particular, an endpoint v of a segment in S must be on
its lower boundary segment (otherwise, we could shrink it further). The key
observation is that if we fix v (or equivalently, the lower side of a candidate
stabbing rectangle), then we can reduce the problem to that of finding a 3-sided
rectangle. In particular, by fixing the lower side of the rectangle we are forcing all
points below it to be blue, and the point through the fixed side to be red. After
a successful cascading procedure, we end up with a certain initial classification
that can be completed to a solution to the rectangle if and only if a compatible
stabbing 3-sided rectangle exists. Since there are 2n candidates for v (each of
the endpoints of the segments of S), we have O(n) different instances that are
solved independently using Theorem 4.

Theorem 5. All the combinatorially different stabbing rectangles of a given set
S of n segments can be computed in O(n2 log n) time.

Acknowledgments. M. C., C. S., and R.S were partially supported by projects
MINECO MTM2012-30951 and Gen. Cat. DGR2014SGR46. D. G. was supported by
project PAI FQM-0164. R.S. was partially funded by the Ramón y Cajal program
(MINECO).

References

1. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B.,
Sacristán, V.: Smallest color-spanning objects. In: Meyer auf der Heide, F. (ed.)
ESA 2001. LNCS, vol. 2161, pp. 278–292. Springer, Heidelberg (2001)

2. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop,
B., Sacristán, V.: The farthest color Voronoi diagram and related problems. In:
Proceedings of the 17th European Workshop on Computational Geometry, pp.
113–116 (2001)

3. Atallah, M., Bajaj, C.: Efficient algorithms for common transversal. Inf. Process.
Lett. 25, 87–91 (1987)

4. Avis, D., Wenger, R.: Polyhedral line transversals in space. Discrete Comput.
Geom. 3, 257–265 (1988)

5. Barba, L., Durocher, S., Fraser, R., Hurtado, F., Mehrabi, S., Mondal, D.,
Morrison, J., Skala, M., Wahid, M.A.: On k-enclosing objects in a coloured point
set. In: Proc. of the 25th Canadian Conference on Computational Geometry, pp.
229–234 (2013)

64 M. Claverol et al.

6. Bhattacharya, B.K., Czyzowicz, J., Egyed, P., Toussaint, G., Stojmenovic, I.,
Urrutia, J.: Computing shortest transversals of sets. In: Proceedings of the 7th
Annual Symposium on Computational Geometry, pp. 71–80 (1991)

7. Bhattacharya, B., Kumar, C., Mukhopadhyay, A.: Computing an area-optimal con-
vex polygonal stabber of a set of parallel line segments. In: Proceedings of the 5th
Canadian Conference on Computational Geometry, pp. 169–174 (1993)

8. Brönnimann, H., Everett, H., Lazard, S., Sottile, F., Whitesides, S.: Transversals
to line segments in three-dimensional space. Discrete Comput. Geom. 34, 381–390
(2005)

9. Claverol, M.: Problemas geométricos en morfoloǵıa computacional. Ph.D. thesis,
Universitat Politècnica de Catalunya (2004)

10. Claverol, M., Garijo, D., Grima, C.I., Márquez, A., Seara, C.: Stabbers of line
segments in the plane. Comput. Geom. Theor. Appl. 44(5), 303–318 (2011)

11. Das, S., Goswami, P.P., Nandy, S.C.: Smallest color-spanning objects revisited. Int.
J. Comput. Geom. Appl. 19(5), 457–478 (2009)

12. Dı́az-Báñez, J.M., Korman, M., Pérez-Lantero, P., Pilz, A., Seara, C., Silveira,
R.I.: New results on stabbing segments with a polygon. Comput. Geom. Theor.
Appl. 48(1), 14–29 (2015)

13. Edelsbrunner, H., Maurer, H.A., Preparata, F.P., Rosenberg, A.L., Welzl, E.,
Wood, D.: Stabbing line segments. BIT 22, 274–281 (1982)

14. Fogel, E., Hemmer, M., Porat, A., Halperin, D.: Lines through segments in three
dimensional space. In: Proceedings of the 29th European Workshop on Computa-
tional Geometry, Assisi, Italy, pp. 113–116 (2012)

15. Goodrich, M.T., Snoeyink, J.S.: Stabbing parallel segments with a convex polygon.
In: Proceedings 1st Workshop Algorithms and Data Structures, pp. 231–242 (1989)

16. Kaplan, H., Rubin, N., Sharir, M.: Line transversal of convex polyhedra in R
3.

SIAM J. Comput. 39(7), 3283–3310 (2010)
17. Lyons, K.A., Meijer, H., Rappaport, D.: Minimum polygon stabbers of isothetic

line segments. Dept. of Computing and Information Science, Queen’s University,
Canada (1990)

18. Mukhopadhyay, A., Kumar, C., Greene, E., Bhattacharya, B.: On intersecting a
set of parallel line segments with a convex polygon of minimum area. Inf. Process.
Lett. 105, 58–64 (2008)

19. Mukhopadhyay, A., Greene, E., Rao, S.V.: On intersecting a set of isothetic line
segments with a convex polygon of minimum area. Int. J. Comput. Geom. Appl.
19(6), 557–577 (2009)

20. O’Rourke, J.: An on-line algorithm for fitting straight lines between data ranges.
Commun. ACM 24, 574–578 (1981)

21. Pellegrini, M.: Lower bounds on stabbing lines in 3-space. Comput. Geom. Theory
Appl. 3, 53–58 (1993)

22. Rappaport, D.: Minimum polygon transversals of line segments. Int. J. Comput.
Geom. Appl. 5(3), 243–256 (1995)

β-skeletons for a Set of Line Segments in R2

Miros�law Kowaluk and Gabriela Majewska(B)

Institute of Informatics, University of Warsaw, Warsaw, Poland
kowaluk@mimuw.edu.pl, gm248309@students.mimuw.edu.pl

Abstract. β-skeletons are well-known neighborhood graphs for a set of
points. We extend this notion to sets of line segments in the Euclidean
plane and present algorithms computing such skeletons for the entire
range of β values. The main reason of such extension is the possibility
to study β-skeletons for points moving along given line segments. We
show that relations between β-skeletons for β > 1, 1-skeleton (Gabriel
Graph), and the Delaunay triangulation for sets of points hold also for
sets of segments. We present algorithms for computing circle-based and
lune-based β-skeletons. We describe an algorithm that for β ≥ 1 com-
putes the β-skeleton for a set S of n segments in the Euclidean plane in
O(n2α(n) logn) time in the circle-based case and in O(n2λ4(n)) in the
lune-based one, where the construction relies on the Delaunay triangu-
lation for S, α is a functional inverse of Ackermann function and λ4(n)
denotes the maximum possible length of a (n, 4) Davenport-Schinzel
sequence. When 0 < β < 1, the β-skeleton can be constructed in a
O(n3λ4(n)) time. In the special case of β = 1, which is a generalization
of Gabriel Graph, the construction can be carried out in a O(n logn)
time.

1 Introduction

β-skeletons in R
2 belong to the family of proximity graphs, geometric graphs

in which an edge between two vertices (points) exists if and only if they satisfy
particular geometric requirements. In this paper we use the following definitions
of the β-skeletons for sets of points in the Euclidean space (β-skeletons are also
defined for β ∈ {0,∞} but those cases have no significant influence on our
considerations) :

Definition 1. For a given set of points V = {v1, v2, . . . , vn} in R
2, a distance

function d and a parameter 0 < β < ∞ we define a graph

– Gβ(V) – called a lune-based β-skeleton [11] – as follows: two points v′, v′′ ∈ V
are connected with an edge if and only if no point from V \ {v′, v′′} belongs to
the set N(v′, v′′, β) (neighborhood, see Fig. 1) where:
1. for 0 < β < 1, N(v′, v′′, β) is the intersection of two discs, each with radius

d(v′,v′′)
2β and having the segment v′v′′ as a chord,

This research is supported by the ESF EUROCORES program EUROGIGA, CRP
VORONOI.

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 65–78, 2015.
DOI: 10.1007/978-3-319-22177-9 6

66 M. Kowaluk and G. Majewska

2. for 1 ≤ β < ∞, N(v′, v′′, β) is the intersection of two discs, each with
radius βd(v′,v′′)

2 , whose centers are in points (β
2)v′ + (1 − β

2)v′′ and in (1 −
β
2)v′ + (β

2)v′′, respectively;
– Gc

β(V) – called a circle-based β-skeleton [5] – as follows: two points v′, v′′ are
connected with an edge if and only if no point from V \ {v′, v′′} belongs to the
set N c(v′, v′′, β) (neighborhood, see Fig. 1) where:
1. for 0 < β < 1 there is N c(v′, v′′, β) = N(v′, v′′, β),
2. for 1 ≤ β the set N c(v′, v′′, β) is a union of two discs, each with radius

βd(v′,v′′)
2 and having the segment v′v′′ as a chord.

Fig. 1. Neighborhoods of the β-skeleton: (a) for 0 < β ≤ 1 , (b) the lune-based skeleton
and (c) the circle-based skeleton for 1 < β < ∞. The relation between neighborhoods:
(d) N(v′, v′′, β) ⊆ Nc(v′, v′′, β).

Points v′, v′′ ∈ V are called generators of the neighborhood N(v′, v′′, β)
(N c(v′, v′′, β), respectively). The neighborhood N(v′, v′′, β) is called a lune. It
follows from the definition that N(v′, v′′, 1) = N c(v′, v′′, 1).

β-skeletons are both important and popular because of many practical appli-
cations which span a spectrum of areas from geographic information systems
to wireless ad hoc networks and machine learning. For example, they allow us
to reconstruct a shape of a two-dimensional object from a given set of sample
points and they are also helpful in finding the minimum weight triangulation of
a point set.

Hurtado, Liotta and Meijer [9] presented an O(n2) algorithm for the
β-skeleton when β < 1. Matula and Sokal [14] showed that the lune-based
1-skeleton (Gabriel Graph GG) can be computed from the Delaunay triangu-
lation in a linear time. Supowit [16] described how to construct the lune-based
2-skeleton (Relative Neighborhood Graph RNG) of a set of n points in O(n log n)
time. Jaromczyk and Kowaluk [10] showed how to construct the RNG from
the Delaunay triangulation DT for the Lp metric (1 < p < ∞) in O(nα(n))
time. This result was further improved to O(n) time [13] for β-skeletons where
1 ≤ β ≤ 2. For β > 1, the circle-based β-skeletons can be constructed in
O(n log n) time from the Delaunay triangulation DT with a simple test to filter

β-skeletons for a Set of Line Segments in R2 67

edges of the DT [5]. On the other hand, so far the fastest algorithm for comput-
ing the lune-based β-skeletons for β > 2 runs in O(n

3
2 log

1
2 n) time [12].

Let us consider the case when we compute the β-skeleton for a set of n
points V where every point v ∈ V is allowed to move along a straight-line
segment sv. Let S = {sv|v ∈ V }. For each pair of segments sv1 , sv2 containing
points v1, v2 ∈ V , respectively, we want to find such positions of points v1 and
v2 that sv ∩ N(v1, v2, β) = ∅ for any sv ∈ S \ {s1, s2}. We will attempt to solve
this problem by defining a β-skeleton for the set of line segments S as follows.

Definition 2. Gβ(S) (Gc
β(S), respectively) is a graph with n vertices such that

there exists a bijection between the set of vertices and the set of segments S,
and for s′, s′′ ∈ S an edge s′s′′ exists if there are points v′ ∈ s′ and v′′ ∈ s′′

such that (
⋃

s∈S\{s′,s′′} s)∩N(v′, v′′, β) = ∅ ((
⋃

s∈S\{s′,s′′} s)∩N c(v′, v′′, β) = ∅,
respectively).

Note that when segments degenerate to points, we have the standard
β-skeleton for a point set.

Geometric structures concerning a set of line segments, e.g. the Voronoi dia-
gram [3,15] or the straight skeleton [1] are well-studied in the literature.

Chew and Kedem [4] defined the Delaunay triangulation for line segments.
Their definition was generalized by Brévilliers et al. [2].

However, β-skeletons for a set of line segments were completely unexplored.
This paper makes an initial effort to fill this gap.

The paper is organized as follows. In the next section we present some basic
facts and we prove that the definition of β-skeletons for a set of line segments
preserves inclusions from the theorem of Kirkpatrick and Radke [11] formulated
for a set of points. In Sect. 3 we show a general algorithm computing β-skeletons
for a set of line segments in Euclidean plane when 0 < β < 1. In Sect. 4 we
present a similar algorithm for β ≥ 1 in both cases of lune-based and circle-
based β-skeletons. In Sect. 5 we consider an algorithm for Gabriel Graph. The
last section contains open problems and conclusions.

2 Preliminaries

Let us consider a two-dimensional plane R
2 with the Euclidean metric and a

distance function d.
Let S be a finite set of disjoint closed line segments in the plane. Elements of

S are called sites. A circle is tangent to a site s if s intersects the circle but not
its interior. We assume that the sites of S are in general position, i.e., no three
segment endpoints are collinear and no circle is tangent to four sites.

The Delaunay triangulation for the set of line segments S is defined as follows.

Definition 3. [2] The segment triangulation P of S is a partition of the convex
hull conv(S) of S in disjoint sites, edges and faces such that:

– Every face of P is an open triangle whose vertices belong to three distinct sites
of S and whose open edges do not intersect S,

68 M. Kowaluk and G. Majewska

– No face can be added without intersecting another one,
– The edges of P are the (possibly two-dimensional) connected components of

conv(S) \ (F ∪ S), where F is the set of faces of P .

The segment triangulation P such that the interior of the circumcircle of each
triangle does not intersect S is called the segment Delaunay triangulation.

In this paper we will consider a planar graph (a planar multigraph, respec-
tively) DT(S) corresponding to the segment Delaunay triangulation P and its
relations with β-skeletons. This graph has a linear number of edges and is dual
to the Voronoi Diagram graph for S. It is also possible to study properties of
plane partitions generated by β-skeletons for line segments. We will discuss this
problem in the last section of this paper.

We can consider open (closed, respectively) neighborhoods N(v′, v′′, β) that
lead to open (closed, respectively) β-skeletons. For example, the Gabriel Graph
GG [7] is the closed 1-skeleton and the Relative Neighborhood Graph RNG [17]
is the open 2-skeleton.

Kirkpatrick and Radke [11] showed a following important inclusions connect-
ing β-skeletons for a set of points V with the Delaunay triangulation DT(V) of
V : Gβ′(V) ⊆ Gβ(V) ⊆ GG(V) ⊆ DT(V), where β′ > β > 1.

We show that definitions of the β-skeleton and the Delaunay triangulation
for a set of line segments S preserve those inclusions. We define GG(S) as a
1-skeleton.

Theorem 1. Let us assume that line segments in S are in general position and
let Gβ(S) (Gc

β(S), respectively) denote the lune-based (circle-based, respectively)
β -skeleton for the set S. For 1 ≤ β < β′ following inclusions hold true: Gβ′(S) ⊆
Gβ(S) ⊆ GG(S) ⊆ DT(S) (Gc

β′(S) ⊆ Gc
β(S) ⊆ GG(S) ⊆ DT(S), respectively).

Proof. First we prove that GG(S) ⊆ DT(S). Let v1 ∈ s1, v2 ∈ s2 be such a
pair of points that there exists a disc D with diameter v1v2 containing no points
belonging to segments from S \ {s1, s2} inside of it. We transform D under a
homothety with respect to v1 so that its image D′ is tangent to s2 in the point t.
Then we transform D′ under a homothety with respect to t so that its image
D′′ is tangent to s1 (see Fig. 2). The disc D′′ lies inside of D, i.e., it does not
intersect segments from S \ {s1, s2}, and it is tangent to s1 and s2, so the center
of D′′ lies on the Voronoi Diagram V D(S) edge. Hence, if the edge s1s2 belongs
to GG(S) then it also belongs to DT(S).

The last inclusion is based on a fact that for 1 ≤ β < β′ and for any two
points v1, v2 it is true that N(v1, v2, β) ⊆ N(v1, v2, β′) (see [11]).

The sequence of inclusions for circle-based β-skeletons is a straightforward
consequence of the fact that two different circles intersect in at most two points.

3 Algorithm for Computing β-skeletons for 0 < β < 1

Let us consider a set S of n disjoint line segments in the Euclidean plane. First
we show a few geometrical facts concerning β-skeletons Gβ(S).

β-skeletons for a Set of Line Segments in R2 69

Fig. 2. GG(S) ⊆ DT(S). The dotted line marks a fragment of Voronoi Diagram for
the given edges.

The following remark is a straightforward consequence of the inscribed angle
theorem.

Remark 1. For a given parameter 0 < β ≤ 1 if v is a point on the boundary
of N(v1, v2, β), different from v1 and v2, then an angle ∠v1vv2 has a constant
measure which depends only on β.

Let us consider a set of parametrized lines containing given segments. A line
P (si) contains a segment si ∈ S and has a parametrization qi(ti) = (xi

1, y
i
1) +

ti · [xi
2 − xi

1, y
i
2 − yi

1], where (xi
1, y

i
1) and (xi

2, y
i
2) are ends of the segment si and

ti ∈ R.
Let respective points from segments s1 and s2 be generators of a lune and let

an inscribed angle determining a lune for a given value of β be equal to δ. The
main idea of the algorithm is as follows. For any point v1 ∈ P (s1) we compute
points v2 ∈ P (s2) for which there exists a point v ∈ P (s), where s ∈ S \{s1, s2},
such that δ ≤ ∠v1vv2 ≤ 2π − δ, i.e., v ∈ N(v1, v2, β) (see Fig. 3). Then we
analyze a union of pairs of neighborhoods generators for all s ∈ S \ {s1, s2}. If
this union contains all pairs of points (v1, v2), where v1 ∈ s1 and v2 ∈ s2, then
(s1, s2) /∈ Gβ(S).

For a given t1 ∈ R and a segment s ∈ S \ {s1, s2} we shoot rays from a point
v1 = q1(t1) ∈ P (s1) towards P (s). Let us assume that a given ray intersects P (s)
in a point v = q(t) = (x1, y1) + t · [x2 − x1, y2 − y1] for some value of t ∈ R. Let
w(t) = −→v1v be the vector between points v1 and v. Then w(t) = [A1t + B1t1 +
C1, A2t + B2t1 + C2] where coefficients Ai, Bi, Ci for i = 1, 2 depend only on
endpoints coordinates of segments s1 and s. The ray refracts in v from P (s) in
such a way that the angle between directions of incidence and refraction of the ray
is equal to δ. The parametrized equation of the refracted ray is r(z, t) = v + z ·
Rδw(t) for z ≥ 0 (or r(z, t) = v + z · R′

δw(t) for z ≥ 0, respectively) where Rδ

(R′
δ, respectively) denotes a rotation matrix for a clockwise (counter-clockwise,

respectively) angle δ. If refracted ray r(z, t) intersects line P (s2) in a point q2(t2) =
r(z, t) (it is not always possible - see Fig. 3) then we compare the x-coordinates of
q2(t2) and r(z, t). As a result we obtain a function containing only parameters t1
and t2: z = J·t2+K·t1+L

D·t+E·t1+F , where coefficients J = −(x2 − x1),K = x2
2 − x2

1, L =
x2
1−x1,D = A1 cos δ+A2 sin δ, E = B1 cos δ+B2 sin δ, F = C1 cos δ+C2 sin δ are

70 M. Kowaluk and G. Majewska

fixed. Since y-coordinates of q2(t2) and r(z, t) are also equal we obtain t2(t) =
M ·t2+p1(t1)·t+p2(t1)

N ·t+p3(t1)
, where p1, p2 and p3 are (at most quadratic) polynomials of

variable t1 and M,N are fixed (the exact description of those polynomials and
variables is much more complex than the description of the coefficients in the
previous step and it is omitted here).

Let lδt1(t) denote a value of the parameter t2 of the intersection point of the
line P (s2) and the line containing the ray that starts in q1(t1) and refracts in
q(t) creating an angle δ. Let kδ

t1 = lδt1 |I , where I is a set of values of t such that
the ray refracted in q(t) intersects P (s2). The function lδt1 is a hyperbola and
the function kδ

t1 is a part of it (see Fig. 3).

Fig. 3. Examples of correlation between parameters t and t2 (for a fixed t1) for a
presented composition of segments and (a) a refraction angle near π (dotted lines
show refracted rays that are analyzed) and (b) near π

2
. The value c corresponds to

the intersection point of lines P (s) and P (s2). Dotted curves show a case when a line
containing a refracted ray intersects P (s2) but the ray itself does not.

Note that for a given angle δ (2π − δ, respectively) extreme points of the
function kδ

t1 (k2π−δ
t1 , respectively) do not have to belong to the set {0, 1}. We can

find them by computing a derivative dt2
dt = MN ·t2+2Mp3(t1)·t+p1(t1)p3(t1)−Np2(t1)

(N ·t+p3(t1))2
.

Then we can compute the corresponding values of the parameter t2. This
way we obtain the pair (t1, t2) such that the segment q1(t1)q2(t2) is a chord of a
circle that is tangent to the analyzed segment s in q(t) and ∠q1(t1)q(t)q2(t2) = δ
(∠q1(t1)q(t)q2(t2) = 2π − δ, respectively).

Let T (t1, s, s2) =
⋃

γ∈[δ,2π−δ],t∈[0,1] k
γ
t1(t), i.e., this is a set of all t2 such that

points q1(t1) and q2(t2) generate a lune intersected by the analyzed segment
s. Let F (s1, s, s2) =

⋃
t1∈R,x∈T (t1,s,s2)

(t1, x) be a set of pairs of parameters
(t1, t2) such that the segment s intersects a lune generated by points q1(t1)
and q2(t2). The set F (s1, s, s2) is an area limited by O(1) algebraic curves of
degree at most 3. The curves correspond to the set of values of the parameter t2
corresponding to extreme points of kδ

t1 (k2π−δ
t1 , respectively). In particular there

are hyperbolas for angles δ and 2π − δ corresponding to rays refracted in the
ends of the segment s (for parameters t = 0 and t = 1) - see Fig. 4. In fact, the
curves that form the border of the set F (s1, s, s2) intersect each other pairwise
in at most 4 points, so the length of the Davenport-Schinzel sequence for those
curves is λ4(n) = O(n2α(n)).

β-skeletons for a Set of Line Segments in R2 71

Fig. 4. Examples of sets F (s1, s, s2) for β near (a) 0 and (b) 1 (the shape of F (s1, s, s2)
also depends on the position of the segment s with respect to s1 and s2). Dotted
(dashed, respectively) curves limit the area corresponding to rays refracted through
the segment s and creating the angle δ (2π − δ, respectively).

Lemma 1. The edge s1, s2 belongs to the β-skeleton Gβ(S) if and only if [0, 1]×
[0, 1] \ ⋃

s∈S\{s1,s2} F (s1, s, s2) �= ∅.

Proof. If [0, 1] × [0, 1] \ ⋃
s∈S\{s1,s2} F (s1, s, s2) �= ∅ then there exists a pair of

parameters (t1, t2) ∈ [0, 1]×[0, 1] such that a lune generated by points q1(t1) ∈ s1
and q2(t2) ∈ s2 is not intersected by any segment s ∈ S \ {s1, s2}, i.e., (s1, s2) ∈
Gβ(S). The opposite implication can be proved in the same way.

Theorem 2. For 0 < β < 1 the β-skeleton Gβ(S) can be found in O(n3λ4(n))
time.

Proof. We analyze O(n2) pairs of line segments. For each pair of segments s1, s2
we compute

⋃
s∈S\{s1,s2} F (s1, s, s2). For each s ∈ S \ {s1, s2} we find a set of

pairs of parameters t1, t2 such that N(q1(t1), q2(t2), β)∩s �= ∅. The arrangement
of n − 2 curves in total can be found in O(nλ4(n)) time [6]. Then the difference
[0, 1]× [0, 1]\⋃

s∈S\{s1,s2} F (s1, s, s2) can be found in O(nλ4(n)) time. Therefore
we can verify which edges belong to Gβ(S) in O(n3λ4(n)) time.

4 Finding β-skeletons for 1 ≤ β

Let us first consider the circle-based β-skeletons. According to Theorem 1 for
1 ≤ β there are only O(n) edges which can belong to the β-skeleton for a given
set of line segments. We will use this property to compute β-skeletons faster
than in the previous section.

Lemma 2. For 1 ≤ β and the set S of n line segments the number of connected
components of the set [0, 1]× [0, 1]\⋃

s∈S\{s1,s2} F (s1, s, s2) is O(n) for any pair
s1, s2 ∈ S.

Proof. According to Theorem by Kirkpatrick and Radke [11] for 1 ≤ β < β′ the
following inclusion holds Gβ′(v) ⊆ Gβ(V). Therefore any neighborhood for β′ is
included in some neighborhood for β with the same pair of generators. On the
other hand, for a given parameter β and a given connected component of the

72 M. Kowaluk and G. Majewska

set [0, 1] × [0, 1] \ ⋃
s∈S\{s1,s2} F (s1, s, s2) there exists a sufficiently big β′ such

that for β′ the component contains only one point (we increase an arbitrary
neighborhood corresponding to the connected component for a given β). Hence,
the number of one point components (for all values of β) estimates the number of
connected components for a given β. But in this case at least one disc forming the
neighborhood is tangent to two segments different than s1 and s2 or at least one
generator of the neighborhood is at the end of s1 or s2. In the first case the two
segments tangent to the disc and segments s1, s2 are the the closest ones to the
center of the disc. Therefore the complexity of the set of such components does
not exceed the complexity of the 4-order Voronoi diagram for S, i.e., it is O(n)
[15]. In the second case there is a constant number of additional components.

Lemma 3. For any t1 ∈ R and s1, s2 ∈ S there is at most one connected
component of the set [0, 1] × [0, 1] \ ⋃

s∈S\{s1,s2} F (s1, s, s2) that contains points
with the same t1 coordinate.

Proof. Let the inscribed angle corresponding to N c(s1, s2, β) be equal to δ. Let
a = q1(t1) and b ∈ P (s2) (b′ ∈ P (s2), respectively) be points such that the
angle between ab (ab′, respectively) and P (s2) is equal to δ (for δ = π

2 we have
b = b′), see Fig. 5. Boundaries of all neighborhoods N c(s1, s2, β) generated by
a and a point in s2 contain either b or b′. There exists the leftmost (rightmost,
respectively) position (might be in infinity) of the second neighborhood generator
with respect to the direction of t2. Between those positions no neighborhood
intersects segments from S \ {s1, s2}. Hence, points corresponding to positions
of such generators belong to the same connected component of [0, 1] × [0, 1] \⋃

s∈S\{s1,s2} F (s1, s, s2).

Fig. 5. Neighborhoods that have one common generator.

The algorithm for computing circle-based β-skeletons for β ≥ 1 is almost the
same as the algorithm for β < 1.

Theorem 3. For β ≥ 1 the circle-based β-skeleton Gc
β(S) can be found in

O(n2α(n) log n) time.

Proof. Due to Theorem 1 we have to analyze O(n) edges of DT (S). For β ≥ 1 and
for the given segments s1, s2 ∈ S each set F (s1, s, s2) can be divided in two sets

β-skeletons for a Set of Line Segments in R2 73

with respect to the variable t1. For each t1 the first set contains part of F (s1, s, s2)
that is unbound from above with respect to t2 and the second one contains part
of F (s1, s, s2) unbound from below (see Fig. 6). The part that contains pairs
(t1, t2) such that the set of values of t2 is R can be divided arbitrarily. We use
Hershberger’s algorithm [8] to compute unions of sets for s ∈ S \ {s1, s2} in
each group separately. Then, according to Lemma 3 we find an intersection of
complements of computed unions. It needs O(nα(n) log n) time. Hence, the total
time complexity of the algorithm is O(n2α(n) log n).

Fig. 6. An example of (a) refracted rays and (b) correlations between variables t1 and
t2 for circle-based β-skeletons, where β ≥ 1. (the shape of F (s1, s, s2) depends on the
position of the segment s with respect to s1 and s2)

Let us consider the lune-based β-skeletons now. Unfortunately, Lemma 3
does not hold in this case.

According to Theorem 1, in this case we have to consider only O(n) pairs of
line segments in S (the pairs corresponding to edges of DT (S)). We will analyze
pairs of points belonging to given segments s1, s2 ∈ S which generate discs such
that each of them is intersected by any segment s ∈ S \{s1, s2}. We will consider
β-skeletons for β > 1 (a 1-skeleton is the same in the circle-based and lune-based
case). Let q1(t1) ∈ s1 and q2(t2) ∈ s2 be generators of a lune N(q1(t1), q2(t2), β)
and let C1(q1(t1), q2(t2), β) be a circle creating a part of its boundary containing
point q1(t1).

We will shoot a ray from a lune generator and we will compute a possible
position of the second generator when the refraction point belongs to the lune.
Let an angle between a shot ray and a refracted ray be equal to π

2 and let q(t) ∈
s ∩ C1(q1(t1), q2(t2), β). Unfortunately, the ray shot from q1(t1) and refracted
in q(t) does not intersect the segment s2 in q2(t2). However, we can define a
segment s′ such that the ray shot from q1(t1) refracts in q(t) if and only if the
same ray refracted in a point of s′ passes through q2(t2) (see Fig. 7).

Lemma 4. Assume that β ≥ 1, q1(t1) ∈ P (s1) and q2(t2) ∈ P (s2), where s1, s2 ∈
S. Let a point q(t) ∈ P (s), where s ∈ S \ {s1, s2}, belong to C1(q1(t1), q2(t2), β).
Let l be a line perpendicular to the segment (q1(t1), q(t)), passing through q2(t2)
and crossing (q1(t1), q(t)) in a point w. Then d(q1(t1),w)

d(q1(t1),q(t))
= 1

β .

74 M. Kowaluk and G. Majewska

Fig. 7. The auxiliary segment s′ and rays refracted in q(t) and w.

Proof. Let x be an opposite to q1(t1) end of the diameter of C1(q1(t1), q2(t2), β).
Then d(q1(t1), x) = 2d(q1(t1), c), where c is the center of C1(q1(t1), q2(t2), β).
From the definition of the β-skeleton follows that d(q1(t1),q2(t2))

d(q1(t1),x)
= d(q1(t1),q2(t2))

2d(q1(t1),c)
·

2d(q1(t1),q2(t2))
2βd(q1(t1),q2(t2))

= 1
β . According to Thales’ theorem d(q1(t1),w)

d(q1(t1),q(t))
=

d(q1(t1),q2(t2))
d(q1(t1),x)

= 1
β (see Fig. 7).

The algorithm computing a lune-based β-skeleton for β ≥ 1 is similar to

the previous one. Let P (s′) = h
1
β

q1(t1)
(P (s)), where h

1
β

q1(t1)
is a homothety with

respect to a point q1(t1) and a ratio 1
β . Like in the case of circle-based β-skeletons

we compute pairs of parameters t1, t2 such that the ray shot from q1(t1) refracts
in a point of s′ and intersects the segment s2 in q2(t2), i.e., an analyzed segment
s intersects a disc limited by the circle C1(q1(t1), q2(t2), β).

However, in the case of lune-based β-skeletons we analyze only one hyper-
bola (functions for clockwise and counterclockwise refractions are the same).
Moreover, sets F (s1, s, s2) and F (s2, s, s1) are different. They contain pairs of
parameters t1, t2 corresponding to points generating discs such that each of them
separately is intersected by the segment s. Therefore, we have to intersect those
sets to obtain a set of pairs of parameters corresponding to points generating
lunes intersected by s (see Fig. 8).

Theorem 4. For β ≥ 1 the lune-based β-skeleton Gβ(S) can be found in
O(n2λ4(n)) time.

Proof. β-skeletons for β ≥ 1 satisfy the inclusions from Theorem 1. Hence, the
number of tested edges is linear. For each such pair of segments s1, s2 we compute
the corresponding sets of pairs of points generating lunes that do not intersect
segments from S \ {s1, s2}. Similarly as in Theorem 2 we can do it in O(nλ4(n))

β-skeletons for a Set of Line Segments in R2 75

Fig. 8. An example of (a) a composition of three segments s1, s2, s, (b) correlations
between variables t and t2 (parametrizing s and s2, respectively), (c) the set F (s1, s, s2)
and (d) the intersection F (s1, s, s2) ∩ F (s2, s, s1), where β > 1.

time. Therefore, the total time complexity of the algorithm (after analysis of
O(n) pairs of segments) is O(n2λ4(n)).

5 Computing Gabriel Graph for Segments

In the previous sections we constructed sets of all pairs of points generating
neighborhoods that do not intersect segments other than the segments containing
generators. Now we want to find only O(n) pairs of generators (one pair for
each edge of a β-skeleton) that define the graph. Let 2 − V R(s1, s2) denote a
region of the 2-order Voronoi diagram for the set S corresponding to s1, s2 and
3 − V R(s1, s2, s) denote a region of the 3-order Voronoi diagram for the set S
corresponding to s1, s2, s. If an edge s1s2, where s1, s2 ∈ S belongs to the Gabriel
Graph then there exists a disc D(p, r) centered in p, which does not contain
points from S \{s1, s2} and its diameter is v1v2, where v1 ∈ s1, v2 ∈ s2 and 2r =
d(v1, v2). The disc center p belongs to the set (2−V R(s1, s2))∩(3−V R(s1, s2, s))
for some s ∈ S \ {s1, s2}.

First, for segments s1, s2 ∈ S we define a set of all middle points of segments
with one endpoint on s1 and one on s2. This set is a quadrilateral Q(s1, s2) (or

a segment if s1 ‖ s2) with vertices in points (x1
i ,y1

i)+(x2
j ,y2

j)

2 , where (xk
i , yk

i) for
i = 1, 2 are endpoints of the segments sk for k = 1, 2 (boundaries of the set are
determined by the images of s1 and s2 under four homotheties with respect to
the ends of those segments and a ratio 1

2).
Let us analyze a position of a middle point of a segment l whose ends slide

along the segments s1, s2 ∈ S. Let the length of l be 2r. We rotate the plane so
that segment s1 lies in the negative part of x-axis and the point of intersection
of lines containing segments s1 and s2 (if there exists) is (0, 0). Let the segment
s2 lie on the line parametrized by u · [x1, y1] for 0 ≥ x1, 0 ≤ y1, 0 ≤ u. Then the
middle point of l is (x, y), where x = −|√r2 − (uy1

2)2| + u · x1, y = uy1
2 .

Since (x − 2x1
y1

y)2 + (y)2 = r2 − (uy1
2)2 + (uy1

2)2 = r2, then we have x2 +
y2(1 + 4(x1

y1
)2) − 4x1

y1
xy = r2, so all points (x, y) for a given r lie on an ellipse -

see Fig. 9.
We want to find a point p ∈ 3 − V R(s1, s2, s) which is a center of a segment

v1v2, where v1 ∈ s1 and v2 ∈ s2, and d(p, s) > d(v1,v2)
2 . Then the disc with

76 M. Kowaluk and G. Majewska

Fig. 9. (a)The set of middle points of segments v1v2,where v1 ∈ s1 and v2 ∈ s2 and
(b) the curve c such that the distance between a point on the curve p and the segment
s is equal to the length of the radius of a corresponding disc centered in p.

the center in p and the radius d(v1,v2)
2 intersects only segments s1, s2, i.e., there

exists an edge of GG(S) between s1 and s2.
We need to examine two cases. First, we consider the situation when the

closest to p point of a segment s belongs to the interior of s. Let P (s) be the
line that contains segment s, which endpoints are (xs

1, y
s
1) and (xs

2, y
s
2), and let

q(ts) = (xs
1, y

s
1)+ts·[xs

2−xs
1, y

s
2−ys

1] be the parametrization of P (s). Let L(s, r) be
a line parallel to P (s) with parametrization l(tL) = (xL

1 , yL
1)+tL ·[xs

2−xs
1, y

s
2−ys

1]
such that the distance between P (s) and L(s, r) is equal to r. We compute the
intersection of the ellipse x2 + y2(1 + 4(x1

y1
)2) − 4x1

y1
xy = r2 and the line L(s, r).

The result is [xL
1 + tL(xs

2 − xs
1)]

2 + [yL
1 + tL(ys

2 − ys
1)]

2 − −4x1
y1

[xL
1 + tL(xs

2 −
xs
1)][y

L
1 + tL(ys

2 −ys
1)] = r2, so tL satisfies an equation At2L +BtL +C = r2 where

coefficients A,B,C are fixed and depend on x1, y1, x
s
i , x

L
i , ys

i , y
L
i for i = 1, 2. This

equation defines a curve c (see Fig. 9) which intersects corresponding ellipses.
A point p which belongs to a part of the ellipse that lies on the opposite side of
the curve c than the segment s is a center of a disc which has a diameter v1v2,
where v1 ∈ S1, v2 ∈ S2, and does not intersect segment s.

In the second case one of the endpoints of the segment s is the nearest point to
p (among the points from s). Let D1(r) and D2(r) be discs with diameter r and
with centers in corresponding ends of the segment s. We compute the intersection
of D1(r) = {(x, y) : (xs

1−x)2+(ys
1−y)2 = r2} (D2(r) = {(x, y) : (xs

2−x)2+(ys
2−

y)2 = r2}, respectively) and ellipse x2 + y2(1+4(x1
y1

)2)− 4x1
y1

xy = r2. We obtain

xs
1(x

s
1 − 2x) + ys

1(y
s
1 − 2y) − y2(x1

y1
)2 + 4(x1

y1
)xy = 0, so x = N1y2+N2y+N3

N4y+N5
and y

satisfies an equation M1y
4 + M2y

3 + M3y
2 + M4y + M5 = 0 where coefficients

Ni and Mj for i, j = 1, . . . , 5 depend on xs
1, y

s
1, x1, y1, r (or on xs

2, y
s
2, x1, y1, r,

respectively). If there exists a point p /∈ D1(r)∪D2(r) that belongs to the part of
the ellipse between the segments s1, s2, then there also exists a disc with center
in p and a diameter d(v1, v2) = 2r, where v1 ∈ s1 and v2 ∈ s2, which does not
contain ends of the segment s.

In both cases we obtain a curve c(r) dependent on the parameter r - see
Fig. 9. We check if a set Q(s1, s2) ∩ (2 − V R(s1, s2)) ∩ (3 − V R(s1, s2, s)) and
the segment s are on the same side of the curve c. Otherwise, the segment s1s2

β-skeletons for a Set of Line Segments in R2 77

belongs to the Gabriel Graph for the set S (i.e., there exists a point p which is
the center of a segment v1v2, where v1 ∈ s1, v2 ∈ s2, and d(p, s) > d(v1,v2)

2 for
all s ∈ S \ {s1, s2}).

Theorem 5. For a set of n segments S the Gabriel Graph GG(S) can be com-
puted in O(n log n) time.

Proof. The 2-order Voronoi diagram and the 3-order Voronoi diagram can be
found in O(n log n) time [15]. The number of triples of segments we need to test
is linear. For each such triple we can check if there exists an empty 1-skeleton lune
in time proportional to the complexity of the set Q(s1, s2)∩(2−V R(s1, s2))∩(3−
V R(s1, s2, s)). The total complexity of those sets is O(n). Hence, the complexity
of the algorithm is O(n) + O(n log n) = O(n log n).

6 Conclusions

The running time of the presented algorithms for β-skeletons for sets of n line seg-
ment ranges between O(n log n), O(n2α(n) log n) and O(n3λ4(n)) and depends
on the value of β. For 0 < β < 1 the β-skeleton is not related to the Delaunay
triangulation of the underlying set of segments. The existence of a relatively effi-
cient algorithm for the Gabriel Graph suggests that it may be possible to find a
faster way to compute β-skeletons for other values of β, especially for 1 ≤ β ≤ 2.

The edges of the Delaunay triangulation for line segments can be repre-
sented in the form described in this paper as rectangles contained in [0, 1]× [0, 1]
square in the t1, t2-coordinate system. If for each pair of β-skeleton edges the
intersection of the corresponding sets for the β-skeleton and the Delaunay tri-
angulation is not empty then there exist a plane partition generated by some
pairs of generators of β-skeleton neighborhoods. Unfortunately, it is not always
possible. The algorithms shown in this work for each pair of segments find such
a position of generators that the corresponding lune does not intersect any other
segment. We could consider a problem in which the number of used generators of
neighborhoods is n (one generator per each edge). Then the method described
in the paper can also be used. We analyze a n-dimensional space and test if
[0, 1]n \ ⋃

si,sj∈S,s∈S\{si,sj} F (si, s, sj) × Rn−2 �= ∅, where i and j also define
corresponding coordinates in Rn. Unfortunately, such an algorithm is expensive.
However, in this case a β-skeleton already generates a plane partition.

The total kinetic problem that can be solved in similar way is a construc-
tion β-skeletons for points moving rectilinear but without limitations concern-
ing intersections of neighborhoods with lines defined by the moving points. In
this case the form of sets F (si, s, sj) changes and the solution is much more
complicated.

Are there any more effective algorithms for those problems?
Additional interesting questions about β-skeletons are related to their con-

nections with k-order Voronoi diagrams for line segments.

Acknowledgments. The authors would like to thank Jerzy W. Jaromczyk for impor-
tant comments.

78 M. Kowaluk and G. Majewska

References

1. Aichholzer, O., Aurenhammer, F.: Straight skeletons for general polygonal figures
in the plane. In: Cai, J.-Y., Wong, C.K. (eds.) COCOON 1996. LNCS, vol. 1090,
pp. 117–126. Springer, Heidelberg (1996)

2. Brévilliers, M., Chevallier, N., Schmitt, D.: Triangulations of line segment sets in
the plane. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp.
388–399. Springer, Heidelberg (2007)

3. Burnikel, C., Mehlhorn, K., Schirra, S.: How to compute the voronoi diagram of
line segments: theoretical and experimental results. In: van Leeuwen, J. (ed.) ESA
1994. LNCS, vol. 855, pp. 227–239. Springer, Heidelberg (1994)

4. Chew, L.P., Kedem, K.: Placing the largest similar copy of a convex polygon among
polygonal obstacles. In: Proceedings of the 5th Annual ACM Symposium on Com-
putational Geometry, pp. 167–174 (1989)

5. Eppstein, D.: β-skeletons have unbounded dilation. Comput. Geom. 23, 43–52
(2002)

6. Goodman, J.E., O’Rourke, J.: Handbook of Discrete and Computational Geometry.
Chapman & Hall/CRC, New York (2004)

7. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation
analysis. Syst. Zool. 18, 259–278 (1969)

8. Hershberger, J.: Finding the upper envelope of n line segments in O(n log n) time.
Inf. Process. Lett. 33(4), 169–174 (1989)

9. Hurtado, F., Liotta, G., Meijer, H.: Optimal and suboptimal robust algorithms for
proximity graphs. Comput. Geom. Theory Appl. 25(1–2), 35–49 (2003)

10. Jaromczyk, J.W., Kowaluk, M.: A note on relative neighborhood graphs. In: Pro-
ceedings of the 3rd Annual Symposium on Computational Geometry, Canada,
Waterloo, pp. 233–241. ACM Press (1987)

11. Kirkpatrick, D.G., Radke, J.D.: A framework for computational morphology. In:
Computational Geometry, pp. 217–248. North Holland, Amsterdam (1985)

12. Kowaluk, M.: Planar β-skeleton via point location in monotone subdivision of
subset of lunes. In: EuroCG, Italy. Assisi 2012, pp. 225–227 (2012)

13. Lingas, A.: A linear-time construction of the relative neighborhood graph from the
Delaunay triangulation. Comput. Geom. 4, 199–208 (1994)

14. Matula, D.W., Sokal, R.R.: Properties of Gabriel graphs relevant to geographical
variation research and the clustering of points in plane. Geog. Anal. 12, 205–222
(1984)

15. Papadopoulou, E., Zavershynskyi, M.: A Sweepline Algorithm for Higher Order
Voronoi Diagrams, In: Proceedings of 10th International Symposium on Voronoi
Diagrams in Science and Engineering (ISVD), pp. 16–22 (2013)

16. Supowit, K.J.: The relative neighborhood graph, with an application to minimum
spanning trees. J. ACM 30(3), 428–448 (1983)

17. Toussaint, G.T.: The relative neighborhood graph of a finite planar set. Pattern
Recognit. 12, 261–268 (1980)

Complexity and Boolean Functions

Depth, Highness and DNR Degrees

Philippe Moser1(B) and Frank Stephan2

1 Department of Computer Science, National University of Ireland,
Maynooth, Co Kildare, Ireland

pmoser@cs.nuim.ie
2 Department of Mathematics, The National University of Singapore,

10 Lower Kent Ridge Drive, S17, Singapore 119076,
Republic of Singapore

fstephan@comp.nus.edu.sg

Abstract. We study Bennett deep sequences in the context of recur-
sion theory; in particular we investigate the notions of O(1)-deepK ,
O(1)-deepC , order-deepK and order-deepC sequences. Our main results
are that Martin-Löf random sets are not order-deepC , that every many-
one degree contains a set which is not O(1)-deepC , that O(1)-deepC sets
and order-deepK sets have high or DNR Turing degree and that no K-
trival set is O(1)-deepK .

1 Introduction

The concept of logical depth was introduced by C. Bennett [6] to differentiate
useful information (such as DNA) from the rest, with the key observation that
non-useful information pertains in both very simple structures (for example, a
crystal) and completely unstructured data (for example, a random sequence,
a gas). Bennett calls data containing useful information logically deep data,
whereas both trivial structures and fully random data are called shallow.

The notion of useful information (as defined by logical depth) strongly con-
trasts with classical information theory, which views random data as having
high information content. I.e., according to classical information theory, a ran-
dom noise signal contains maximal information, whereas from the logical depth
point of view, such a signal contains very little useful information.

Bennett’s logical depth notion is based on Kolmogorov complexity. Intuitively
a logically deep sequence (or equivalently a set) is one for which the more time a
compressor is given, the better it can compress the sequence. For example, both
on trivial and random sequences, even when given more time, a compressor
cannot achieve a better compression ratio. Hence trivial and random sequences
are not logically deep.

Several variants of logical depth have been studied in the past [2,9,16,17,20].
As shown in [20], all depth notions proposed so far can be interpreted in the com-
pression framework which says a sequence is deep if given (arbitrarily)more than

P. Moser was on Sabbatical Leave to the National University of Singapore, supported
in part by SFI Stokes Professorship and Lectureship Programme. F. Stephan was
supported in part by NUS grants R146-000-181-112 and R146-000-184-112.

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 81–94, 2015.
DOI: 10.1007/978-3-319-22177-9 7

82 P. Moser and F. Stephan

t(n) time steps, a compressor can compress the sequence r(n) more bits than if
given at most t(n) time steps only. By considering different time bound families
for t(n) (e.g. recursive, polynomial time etc.) and the magnitude of compression
improvement r(n) - for short: the depth magnitude - (e.g. O(1), O(log n)) one can
capture all existing depth notions [2,9,16,17,20] in the compression framework
[20]. E.g. Bennett’s notion is obtained by considering all recursive time bounds t
and a constant depth magnitude, i.e., r(n) = O(1). Several authors studied vari-
ants of Bennett’s notion, by considering different time bounds and/or different
depth magnitude from Bennett’s original notion [2,3,9,16,20].

In this paper, we study the consequences these changes of different parame-
ters in Bennett’s depth notion entail, by investigating the computational power
of the deep sets yielded by each of these depth variants.

– We found out that the choice of the depth magnitude has consequences on the
computational power of the corresponding deep sets. The fact that computa-
tional power implies Bennett depth was noticed in [16], where it was shown
that every high degree contains a Bennett deep set (a set is high if, when given
as an oracle, its halting problem is at least as powerful as the halting problem
relative to the halting problem: A is high iff A′ ≥T ∅′′). We show that the
converse also holds, i.e., that depth implies computational power, by proving
that if the depth magnitude is chosen to be “large” (i.e., r(n) = εn), then
depth coincides with highness (on the Turing degrees), i.e., a Turing degree is
high iff it contains a deep set of magnitude r(n) = εn.

– For smaller choices of r, for example, if r is any recursive order function, depth
still retains some computational power: we show that depth implies either
highness or diagonally-non-recursiveness, denoted DNR (a total function is
DNR if its image on input e is different from the output of the e-th Turing
machine on input e). This implies that if we restrict ourselves to left-r.e. sets,
recursive order depth already implies highness. We also show that highness
is not necessary by constructing a low order-deep set (a set is low if it is not
powerful when given as an oracle).

– As a corollary, our results imply that weakly-useful sets introduced in [16] are
either high or DNR (set S is weakly-useful if the class of sets reducible to it
within a fixed time bound s does not have measure zero within the class of
recursive sets).

– Bennett’s depth [6] is defined using prefix-free Kolmogorov complexity. Two
key properties of Bennett’s notion are the so-called slow growth law, which
stipulates that no shallow set can quickly (truth-table) compute a deep set,
and the fact that neither Martin-Löf random nor recursive sets are deep. It is
natural to ask whether replacing prefix-free with plain complexity in Bennett’s
formulation yields a meaningful depth notion. We call this notion plain-depth.
We show that the random is not deep paradigm also holds in the setting of
plain-depth. On the other hand we show that the slow growth law fails for
plain-depth: every many-one degree contains a set which is not plain-deep of
magnitude O(1).

– A key property of depth is that “easy” sets should not be deep. Bennett [6]
showed that no recursive set is deep. We give an improvement to this result

Depth, Highness and DNR Degrees 83

by observing that no K-trivial set is deep (a set is K-trivial if the complexity
of its prefixes is as low as possible). Our result is close to optimal, since there
exist deep ultracompressible sets [17].

– In most depth notions, the depth magnitude has to be achieved almost every-
where on the set. Some feasible depth notions also considered an infinitely
often version [9]. Bennett noticed in [6] that infinitely often depth is meaning-
less because every recursive set is infinitely often deep. We propose an alter-
native infinitely often depth notion that doesn’t suffer this limitation (called
i.o. depth). We show that little computational power is needed to compute i.o.
depth, i.e., every hyperimmune degree contains an i.o. deep set of magnitude
εn (a degree is hyperimmune if it computes a function that is not bounded
almost everywhere by any recursive function), and construct a Π0

1 -class where
every member is an i.o. deep set of magnitude εn.

In summary, our results show that the choice of the magnitude for logical depth
has consequences on the computational power of the corresponding deep sets, and
that larger depth magnitude is not necessarily preferable over smaller magnitude.
We conclude with a few open questions regarding the constant magnitude case.
Due to lack of space, some proofs are ommitted and will appear in the journal
version of this paper.

2 Preliminaries

We use standard computability/algorithmic randomness theory notations see
[11,21,23]. We use ≤+ to denote less or equal up to a constant term. We fix a
recursive 1-1 pairing function 〈·〉 : N×N → N. We use sets and their characteristic
sequences interchangeably, we denote the binary strings of length n by 2n, and
2ω denotes the set of all infinite binary sequences. The join of two sets A,B is
the set A ⊕ B whose characteristic sequence is A(0)B(0)A(1)B(1) . . ., that is,
(A ⊕ B)(2n) = A(n) and (A ⊕ B)(2n + 1) = B(n) for all n. An order function
is an unbounded non-decreasing function from N to N. A time bound function
is a recursive order t such that there exists a Turing machine Φ such that for
every n, Φ(n)[t(n)] ↓= t(n), i.e., Φ(n) outputs the value t(n) within t(n) steps
of computation. Set A is left-r.e. iff the set of dyadic rationals strictly below the
real number 0.A (a.k.a. the left-cut of A denoted L(A)) is recursively enumerable
(r.e.), i.e., there is a recursive sequence of non-decreasing rationals whose limit
is 0.A. All r.e. sets are left-r.e., but the converse fails.

We consider standard Turing reductions ≤T , truth-table reductions ≤tt

(where all queries are made in advance and the reduction is total on all oracles)
and many-one reductions ≤m. Two sets A,B are Turing equivalent (A ≡T B)
if A ≤T B and B ≤T A. The Turing degree of a set A is the set of sets Tur-
ing equivalent to A. Fix a standard enumeration of all oracle Turing machines
Φ1, Φ2, The jump A′ of a set A is the halting problem relative to A, i.e.,
A′ = {e : ΦA

e (e) ↓}. The halting problem is denoted ∅′. A set A is high (that
is, has high Turing degree) if its halting problem is as powerful as the halting

84 P. Moser and F. Stephan

problem of the halting problem, i.e., ∅′′ ≤T A′. High sets are equivalent to sets
that compute dominating functions (i.e., sets A such that there is a function f
with f ≤T A such that for every computable function g and for almost every n,
f(n) ≥ g(n)), i.e., a set is high iff it computes a dominating function [23]. A set
A is low if its halting problem is not more powerful than the halting problem of
a recursive set, i.e., A′ ≤T ∅′. Note that ∅′ is high relative to every low set.

If one weakens the dominating property of high sets to an infinitely often
condition, one obtains hyperimmune degrees. A set is of hyperimmune degree
if it computes a function that dominates every recursive function on infinitely
many inputs. Otherwise the set is called of hyperimmune-free degree.

Another characterization of computational power used in computability the-
ory is the concept of diagonally non-recursive function (DNR). A total function
g is DNR if for every e, g(e) �= Φe(e), i.e., g can avoid the output of every Turing
machine on at least one specified input. A set is of DNR degree, if it computes
a DNR function. It is known that every r.e. DNR degree is high, actually even
Turing equivalent to ∅′ [1].

If one requires a DNR function to be Boolean, one obtains the PA-complete
degrees: A degree is PA-complete iff it computes a Boolean DNR function. It is
known that there exists low PA-complete degrees [23].

Fix a universal prefix free Turing machine U , i.e., such that no halting pro-
gram of U is a prefix of another halting program. The prefix-free Kolmogorov
complexity of string x, denoted K(x), is the length of the length-lexicographically
first program x∗ such that U on input x∗ outputs x. It can be shown that the
value of K(x) does not depend on the choice of U up to an additive constant.
K(x, y) is the length of a shortest program that outputs the pair (x, y), and
K(x|y) is the length of a shortest program such that U outputs x when given y
as an advice. We also consider standard time bounded Kolmogorov complexity.
Given time bound t (resp. s ∈ N), Kt(x) (resp. Ks(x)) denotes the length of
the shortest prefix free program p such that U(p) outputs x within t(|x|) (resp.
s) steps. Replacing U above with a plain (i.e., non prefix-free) universal Turing
machine yields the notion of plain Kolmogorov complexity, and is denoted C(x).
We need the following counting theorem.

Theorem 1 (Chaitin [7]). There exists c ∈ N such that for every r, n ∈ N,
|{σ ∈ 2n : K(σ) ≤ n + K(n) − r}| ≤ 2n−r+c.

A set A is Martin-Löf random (MLR) if none of its prefixes are compressible
by more than a constant term, i.e., ∀n K(A � n) ≥ n − c for some constant c,
where A � n denotes the first n bits of the characteristic function of A. A set A is
K-trivial if its complexity is as low as possible, i.e., ∀n K(A � n) ≤ K(n)+O(1).
See [11,21] for more on C and K-complexity, MLR and trivial sets.

Effective closed sets are captured by Π0
1 -classes. A Π0

1 -class P is a class
of sequences such that there is a computable relation R such that P = {S ∈
2ω| ∀n R(S � n)}.

Definition 2 (Bennett [6]). Let g(n) ≤ n be an order. A set S is g-deepK if
for every recursive time bound t and for almost all n ∈ N, Kt(S � n) − K(S �
n) ≥ g(n).

Depth, Highness and DNR Degrees 85

A set S is O(1)-deepK (resp. order-deepK) if it is c-deepK (resp. g-deepK) for
every c ∈ N (resp. for some recursive order g). A set is said Bennett deep if it
is O(1)-deepK . We denote by g-deepC the above notions with K replaced with
C. It is easy to see that for every two orders f, g such that ∀n ∈ N f(n) ≤ g(n),
every g-deepK set is also f -deepK .

Bennett’s slow growth law (SGL) states that creating depth requires time
beyond a “recursive amount”, i.e., no shallow set quickly computes a deep one.

Lemma 3 (Bennett [6]; Juedes, Lathrop and Lutz [16]). Let h be a
recursive order, and A ≤tt B be two sets. If A is h-deepK (resp. O(1)-deepK)
then B is h′-deepK (resp. O(1)-deepK) for some recursive order h′. Furthermore
given indices for the truth-table reduction and for h, one can effectively compute
an index for h′.

The symmetry of information holds in the resource bounded case.

Lemma 4 (Li and Vitányi [18]). For every time bound t, there is a time
bound t′ such that for all strings x, y with |y| ≤ t(|x|), we have Ct(x, y) ≥
Ct′

(x) + Ct′
(y | x) − O(log Ct′

(x, y)). Furthermore given an index for t one can
effectively compute an index for t′.

Corollary 5. Let t be a time bound and x, a be strings. Then there exists a time
bound t′ such that for every prefix y of x we have Ct(y | a) ≥+ Ct′

(x | a) −
|x| + |y| − O(log Ct(y | a)). Furthermore given an index for t one can effectively
compute an index for t′.

3 C-Depth

Bennett’s original formulation [6] is based on K-complexity. In this section we
investigate the depth notion obtained by replacing K with C, which we call plain
depth. We study the interactions of plain depth with the notions of Martin-Löf
random sets, many-one degrees and the Turing degrees of deep sets.

3.1 MLR is not Order-deepC

The following result is the plain complexity version of Bennett’s result that no
MLR sets are Bennett deep. Due to lack of space, the proof will appear in the
journal version of this paper.

Theorem 6. For every MLR A and for every recursive order h, A is not
h-deepC .

Sequences that are MLR relative to the halting problem are called 2-random.
Equivalently a sequence A is 2-random iff there is a constant c such that C(A �
n) ≥ n − c for infinitely many n [19,22]. Since there is a constant c′ such that
n+ c′ is a trivial upper bound on the plain Kolmogorov complexity of any string
of length n, it is clear that no 2-random sequence can be O(1)-deepC . Thus most
MLR sequences are not O(1)-deepC .

86 P. Moser and F. Stephan

3.2 The SGL Fails for C-depth

The following result shows that the Slow Growth Law fails for plain depth. Due
to lack of space, the proof will appear in the journal version of this paper.

Theorem 7. Every many-one degree contains a set which is not O(1)-deepC .

Note that this result shows that order-deepK does not imply order-deepC : all
the sets in the truth-table degree of any order-deepK set are all order-deepK (by
the SGL), but this degree contains a non order-deepC set by the previous result.

3.3 Depth Implies Highness or DNR

The following result shows that being constant deep for C implies computational
power.

Theorem 8. Let A be a O(1)-deepC set. Then A is high or DNR.

Proof. We prove the contrapositive. Suppose that A is neither DNR nor high.
Let f(m) be (a coding of) A � 2m+1. Because f ≤tt A, there are infinitely many
m where Φm(m) is defined and equal to f(m). Hence there is an A-recursive
increasing function g such that, for almost every m, g(m) is the time to find an
m′ ≥ m with A(0)A(1) . . . A(2m′+1) = Φm′(m′) and to evaluate the expression
Φm′(m′) to verify the finding. As A is not high, there is a recursive increasing
function h with h(m) ≥ g(m) for infinitely many m. Now consider any m where
h(m) ≥ g(m). Then for the m′ found for this m, it holds that h(m′) ≥ h(m) and
h(m′) is also larger than the time to evaluate Φm′(m′). Hence h(m) is larger than
the time to evaluate Φm(m) for infinitely many m where Φm(m) codes A � 2m+1.

For each such m, let n be a number with 2m ≤ n ≤ 2m+1 and C(n) ≥ m.
Starting with a binary description of such an n, one can compute m from n and
run Φm(m) for h(m) steps and, in the case that this terminates with a string
σ of length 2m+1, output σ � n. It follows from this algorithm that there is a
resource-bounded approximation to C such that there exist infinitely many n
such that, on one hand C(A � n) ≥ log(n) while on the other hand A � n can be
described in log(n) + c bits using this resource bounded description. Hence A is
not O(1)-deepC . ��
Since there are incomplete r.e. Turing degrees which are high, these are also
not DNR and, by Theorem 10, they contain sets which are 0.9-deepC . Thus
the preceeding theorem cannot be improved to show that “O(1)-deepC sets are
DNR”.

Theorem 9. There exists a set A such that A is (1−ε)n-deepC (for any ε > 0)
but A is not DNR.

4 K-Depth

Bennett’s original depth notion is based on prefix free complexity. He made
important connections between depth and truth-table degrees; In particular he

Depth, Highness and DNR Degrees 87

proved that the O(1)-deepK sets are closed upward under truth-table reducibil-
ity, which he called the slow growth law. In the following section we pursue
Bennett’s investigation by studying the Turing degrees of deep sets. In the first
subsection, we investigate the connections between linear depth and high Turing
degrees. We then look at the opposite end by studying the interactions of various
lowness notions with logical depth.

4.1 Highness and Depth Coincide

The following result shows that at depth magnitude εn, depth and highness
coincide on the Turing degrees. The result holds for both K and C depth.

Theorem 10. For every set A the following statements are equivalent:

1. The degree of A is εn-deepC for some ε > 0.
2. The degree of A is (1 − ε)n-deepC for every ε > 0.
3. A is high.

Proof. We prove (1) ⇒ (3) using the contrapositive: Let ε > 0 and l ∈ N such
that δ < ε/3 with δ := 1/l. Let k be the limit inferior of the set {0, 1, . . . , l} such
that there are infinitely many n with C(A � n) ≤ n · k · δ. Now one can define,
relative to A, an A-recursive function g such that for each n there is an m with
n ≤ m ≤ g(n) and Cg(n)(A � m) ≤ m ·k · δ. As A is not high, there is a recursive
function h with h(n) > g(n) for infinitely many n; furthermore, h(n) ≤ h(n + 1)
for all n. It follows that there are infinitely many n with Ch(n)(A � n) ≤ n · k · δ
which is also at most n ·δ away from the optimal value, hence A is not ε ·n deep,
which ends this direction’s proof.

Let us show (3) ⇒ (2). Let ε > 0, A be high, and let g ≤T A be dominating.
We construct B ≡T A such that B is (1 − ε)n-deepC .

By definition, if t is a time bound and i an index of t then for every m ∈ N

Φi(m)[t(m)] ↓= t(m). Since g is dominating, we have for almost every m ∈ N,
t(m) = Φi(m)[g(m)] ↓.

We can thus use g to encode all time bounds that are total on all strings of
length less than a certain bound into a set H, where

H(〈i, j〉) = 1 iff Φi(m)[g(2j)] ↓ for all m ∈ {1, 2, . . . , 2j}.

Thus t is a (total) time bound iff for almost every j, H(〈i, j〉) = 1 (where i is an
index for t).

We have H ≤T A and we choose the pairing function 〈·〉 such that H � n2+1
encodes the values

{H(〈i, j〉) : i, j ≤ n}.

Let n ∈ N and suppose B � 2n is already constructed. Given A � n + 1 and
H � n2 + 1, we construct B � 2n+1. From H � n2 + 1, we can compute the set
Ln = {i ≤ n : H(〈i, n〉) = 1}, i.e., a list eventually containing all time bounds
that are total on strings of lengths less or equal to 2n. Let

Tn := max{Φi(m) : i ∈ Ln,m ≤ 2n}.

88 P. Moser and F. Stephan

Find the lex first string xn of length 2n − 1 such that

CTn
(xn | (B � 2n)A(n)) ≥ 2n.

Let B � [2n, 2n+1 − 1] := A(n)xn. By construction we have B ≡T A. Also,
C(B � 2n+1 | H � n2 + 1, A � n + 1) ≤+ C(n), i.e., C(B � 2n+1) ≤ 2n2.

Let us prove B is 2
3n-deepC ; we then extend the argument to show B is

(1−ε)n-deepC . Let t be a time bound. Let n be large enough such that t1, t2, t3 ∈
Ln−2 and t′1, t

′
2, t

′
3, t

′
4 ∈ Ln where the ti’s are derived from t as described below.

Let j be such that 2n < j ≤ 2n+1 and j′ = j − (2n − 1), i.e., B � j ends with
the first j′ − 2 bits of xn (One bit is “lost” due to the first bit used to encode
A(n)).

We consider two cases, first suppose j′ < log n. Let t1 be a time bound
(obtained from t) such that Ct(B � j) ≥+ Ct1(xn−1, B � 2n−1), where neither
the constant nor t1 depends on j, n. Let t2 be derived from t1 using Lemma 4.
We have

Ct1(xn−1, B � 2n−1)

≥ Ct2(B � 2n−1) + Ct2(xn−1 | B � 2n−1) − O(log 2n)

≥ Ct2(B � 2n−1) + CTn−1(xn−1 | B � 2n−1) − O(n) because t2 ∈ Ln−1

≥ Ct2(B � 2n−1) + 2n−1 − O(n) by definition of xn−1

≥ 2n−1 + 2n−2 + Ct3(B � 2n−2) − O(n) reapplying the argument above

≥ 3
4
2n − O(n) >

2
3
(2n + j′ + 1) =

2
3
j.

For the second case, suppose j′ > log n. We have

Ct(B � j) ≥ Ct′
1(xn � j′, B � 2n)

≥ Ct′
2(xn � j′ | B � 2n) + Ct′

2(B � 2n) − O(n) By Lemma 4

≥ Ct′
3(xn| B � 2n) − 2n + j′ + Ct′

2(B � 2n) − O(n) by Corollary 5

≥ CTn
(xn | B � 2n) − 2n + j′ + Ct′

2(B � 2n) − O(n) because t′3 ∈ Ln

≥ 2n − 2n + j′ + Ct′
2(B � 2n) − O(n) by definition of xn

≥ j′ + Ct′
4(xn−1, B � 2n−1) − O(n) same as in the first case

≥ j′ +
3
4
2n − O(n) >

2
3
j same as in the first case

Note that each iteration of the argument above yields a 2n−k term (k = 1, 2, 3, . . .),
therefore for any ε > 0, there is a number I of iterations, such that B can be shown
(1 − ε)n-deepC , for all n large enough such that t1, t2, . . . , t3I ∈ Ln. ��
Corollary 11. Theorem 10 also holds for K-depth.

4.2 Depth Implies Highness or DNR

An analogue of Theorem 8 holds for K.

Depth, Highness and DNR Degrees 89

Theorem 12. Let A be a h-deepK set for some recursive order h. Then A is
high or DNR.

As a corollary, we show that in the left-r.e. case, depth always implies highness.

Corollary 13. If A is left-r.e. and h-deepK (for some recursive order h) then
A is high.

As a second corollary, we prove that every weakly-useful set is either high or
DNR. A set A is weakly-useful if there is a time-bound s such that the class of
all sets truth-table reducible to A with this time bound s is not small, i.e., does
not have measure zero within the class of recursive sets; see [16] for a precise
definition. In [16], it was shown that every weakly-useful set is O(1)-deepK (even
order-deepK as observed in [3]) thus generalising the fact that ∅′ is O(1)-deepK ,
since ∅′ is weakly-useful.

Theorem 14 (Antunes, Matos, Souto and Vitányi [3]; Juedes, Lathrop
and Lutz [16]). Every weakly-useful set is order-deepK .

It is shown in [16] that every high degree contains a weakly-useful set. Our results
show some type of converse to this fact.

Theorem 15. Every weakly-useful set is either high or DNR.

4.3 A Low Deep Set

We showed in Theorem 10 that every εn-deepK set is high. Also Theorem 12
shows that every order-deepK set is either high or DNR. Thus one might wonder
whether there exists any non-high order-deepK set. We answer this question
affirmatively by showing there exist low order-deepK sets.

Theorem 16. If A has PA-complete degree, then there exists a weakly-useful
set B ≡T A.

Proof. Let f ≤T A be a Boolean DNR function and let g(n) := 1 − f(n). It
follows that if Φe is Boolean and total, then g(e) = Φe(e). One can thus encode
g into a set B ≤T A such that for every e such that Φe is Boolean and total
and for every x, B(〈e + 1, x〉) = Φe(x). One can also encode A into B (for
example, B(〈0, x〉) = A(x)) so that A ≡T B. Thus for every recursive set L
there exists e such that for every string x, we have L(x) = B(re(x)), where
re(x) = 〈e, x〉 is computable within s(n) = n2 steps (by using a lookup table
on small inputs). It follows that every recursive set is truth-table reducible to B
within time s(n) = n2. Because the class of recursive sets does not have measure
zero within the class of recursive sets [16], it follows that B is weakly-useful. ��
Corollary 17. If A has PA-complete degree, then there exists an order-deepK

set B ≡T A. Furthermore, there is a Π0
1 -class only consisting of order-deepK

sets. For each of the properties low, superlow, low for Ω and hyperimmune-free,
there exists an order-deepK set which also has this respective property.

90 P. Moser and F. Stephan

Here recall that a set A is said low for Ω iff Chaitin’s Ω is Martin-Löf random
relative to A; a set A has superlow degree if its jump A′ is truth-table reducible
to the halting problem. This corollary follows from Theorems 14 and 16 as well as
from the well-known basis theorems for Π0

1 -classes [10,15]. The reason one uses
PA-complete sets instead of merely Martin-Löf random sets (which also satisfy
all basis theorems), is that Martin-Löf random sets are not weakly-useful; indeed,
it is known that they are not even O(1)-deepK . This stands in contrast to the
following result.

Corollary 18. There are two Martin-Löf random sets A and B such that A⊕B
is order-deepK .

Proof. Barmpalias, Lewis and Ng [5] showed that every PA-complete degree is
the join of two Martin-Löf random degrees; hence there are Martin-Löf random
sets A,B such that A ⊕ B is a hyperimmune-free PA-complete set. Thus, by
Theorem 16 there is a weakly-useful set Turing reducible to A⊕B which, due to
the hyperimmune-freeness, is indeed truth-table reducible to A ⊕ B. It follows
that A ⊕ B is itself weakly-useful and therefore order-deepK by Theorem 14. ��

4.4 No K-Trivial is O(1)-deepK

A key property of depth is that “easy” sets should not be deep. Bennett [6]
showed that no recursive set is deep. Here we improve this result by observing
that no K-trivial set is deep. As we will see this result is close to optimal.

Theorem 19. No K-trivial set is O(1)-deepK .

Call a set A ultracompressible if for every recursive order g and all n, K(A �
n) ≤+ K(n) + g(n). The following theorem shows that our result is close to
optimal.

Theorem 20 (Lathrop and Lutz [17]). There is an ultracompressible set A
which is O(1)-deepK .

Theorem 21 (Herbert [13]). There is a set A which is not K-trivial but which
satisfies that for every Δ0

2 order g and all n, K(A � n) ≤+ K(n) + g(n).

It would be interesting to know whether such sets as found by Herbert can be
O(1)-deepK . The result of Herbert is optimal, Csima and Montalbán [8] showed
that such sets do not exist when using Δ0

4 orders and Baartse and Barmpalias
[4] improved this non-existence to the level Δ0

3. We also point to related work of
Hirschfeldt and Weber [14].

Theorem 22 (Baartse and Barmpalias [4]). There is a Δ0
3 order g such

that a set A is K-trivial iff K(A � n) ≤+ K(n) + g(n) for all n.

Depth, Highness and DNR Degrees 91

5 Infinitely Often Depth and Conditional Depth

Bennett observed in [6] that being infinitely often Bennett deep is meaningless,
because all recursive sets are infinitely often deep. A possibility for a more mean-
ingful notion of infinitely often depth, is to consider a depth notion where the
length of the input is given as an advice. We call this notion i.o. depth.

Definition 23. A set A is i.o. O(1)-deepK if for every c ∈ N and for every time
bound t there are infinitely many n satisfying Kt(A � n | n) − K(A � n | n) ≥ c.

If we replace K with C in the above definition, we call the corresponding notion
i.o. O(1)-deepC .

Lemma 24. Let A be recursive. Then A is neither i.o. O(1)-deepC nor i.o.
O(1)-deepK .

Proof. Let A be recursive and t be a time bound. Wlog A is recursive in time
t, i.e., for every n ∈ N we have Ct(A � n | n) ≤ c for some constant c, thus
∀n Ct(A � n | n) − C(A � n | n) < c. The K case is similar. ��
The following shows that very little computational power is needed to compute
an i.o. deep set.

Theorem 25. 1. There is a Π0
1 -class such that every member is i.o. εn-deepC

for all ε < 1. In particular there is such a set of hyperimmune-free degree.
Furthermore, every hyperimmune Turing degree contains such a set.

2. Every nonrecursive many-one degree contains an i.o. O(1)-deepC set.
3. If A is not recursive, not DNR and hyperimmune-free, then A is i.o.

O(1)-deepC .

Proof. This result is obtained by splitting the natural numbers recursively into
intervals In = {an, . . . , bn} such that bn = (2 + an)2. Now one defines the
Π0

1 -class such that for each n = 〈e, k〉 where t = Φe is defined up to bn, a
string τ ∈ {0, 1}bn−an+1 is selected such that for all σ ∈ {0, 1}an , Ct(στ) ≥
bn − 2an − 2 and then it is fixed that all members A of the Π0

1 -class have to
satisfy A(x) = τ(x − an) for all x ∈ In. Since there are 2bn−an+1 strings τ and
for each program of size below bn − 2an − 2 can witness that only 2an many τ
are violating Ct(στ) ≥ |τ | − |σ| for some σ ∈ {0, 1}an , there will be less than
2bn−an+1 − 2bn−an many τ that get disqualified and so the search finds such
a τ whenever Φe is defined up to bn. Hence, for every total t = Φe, there are
infinitely many intervals In with n of the form 〈e, k〉 such that on these In,
Ct(A(0)A(1) . . . A(bn) |n) ≥ Ct(A(0)A(1) . . . A(bn)) − log(n) ≥ bn − 3an and
C(A(0)A(1) . . . A(bn)|n) ≤ an + c for a constant c, as the program only needs
to know how A behaves below an and can fill in the values of τ on In. So
the complexity improves after time t(bn) from bn − 3an to an and, to absorb
constants, one can conservatively estimate the improvement by bn −5an. By the
choice of an, bn, the ratio (bn − 5an)/bn tends to 1 and therefore every A in the

92 P. Moser and F. Stephan

Π0
1 -class is εn-deepC for every ε < 1. Note that there are hyperimmune-free sets

inside this Π0
1 -class, as it has only nonrecursive members.

Furthermore, one can see that the proof also can be adjusted to constructing
a single set in a hyperimmune Turing degree rather than constructing a full
Π0

1 -class. In that case one takes some function f in this degree which is not
dominated by any recursive function and then one permits for each n = 〈e, k〉
the time Φe(bn) in the case that Φe(bn) < f(k) and chooses τ accordingly and
one takes τ = 0bn−an+1 in the case that Φe does not converge on all values below
bn within time f(k) otherwise. This construction is recursive in the given degree
and a slight modification of this construction would permit to code the degree
into the set A.

For the second item, consider a set A ⊆ {4n : n ∈ N}. Every many-one degree
contains such a set. For each binary string σ, let

Sσ = {τ ∈ {0, 1}∗ : 4|σ|−1 < |τ | ≤ 4|σ| and τ(4n) = σ(n) for all n < |σ|
and τ(n) = 0 for all n < |τ | which are not a power of 4}.

In other word, for every A ⊆ {4n : n ∈ N}, SA(1)A(4)A(16)...A(4n) contains those
τ which are a prefix of A and for which τ(4n) is defined but not τ(4n+1). For
each e, k, n where Φe is a total function t, we now try to find inductively for
m = 4n + 1, 4n + 2, . . . , 4n+1 strings σm ∈ {0, 1}n+1 such that whenever σm is
found then it is different from all those σm′ which have been found for some
m′ < m and the unique τ ∈ Sσm

∩{0, 1}m satisfies Ct(τ |m) ≥ e+3k. Note that
due to the resource-bound on Ct one can for each m′ < m check whether σm′

exists and take this information into account when trying to find σm. Therefore,
for those m where σm exists, the τ ∈ Sσm

∩ {0, 1}m can be computed from m,
e and k and hence C(τ |m) ≤ e + k + c for some constant c independent of
e, k, n,m.

Now assume that A is not infinitely often O(1)-deepC . Then there is a total
function t = Φe and a k > c such that C(τ | |τ |) ≥ Ct(τ | |τ |) − k for all prefixes
τ of A. It follows that in particular never a σm with Sσm

consisting of prefixes
of A is selected in the above algorithm using e, k. This then implies that for
almost all n and the majority of the m in the interval from 4n to 4n+1 (which
are those for which σm does not get defined) it holds that Ct(τ |m) ≤ e + 3k
for the unique τ ∈ SA(1)A(4)A(16)...A(4n) ∩ {0, 1}m. There are at most 2e+3k+2

many strings σ ∈ {0, 1}n+1 such that at least half of the members τ of Sσ satisfy
that C(τ | |τ |) ≤ e + 3k and there is a constant c′ such that for almost all n the
corresponding σ satisfy C(σ|n) ≤ e+3k+c′. It follows that C(τ | |τ |) ≤ e+3k+c′′

for some constant c′′ and almost all n and all τ ∈ SA(1)A(4)A(16)...A(4n); in other
words, C(τ | |τ |) ≤ e + 3k + c′′ for some constant c′′ and almost all prefixes τ of
A. Hence A is recursive [18, Exercise 2.3.4 on page 131].

For the third item, let A be as above, and let t be a time bound. Let h̃(n) =
minm>n{Ct(A � m | m) > n}. Since h̃ ≤T A and A is hyperimmune-free, there
exists a recursive h such that ∀n ∈ N h(n) > h̃(n). Wlog we can choose h such
that ∀n ∈ N h(n + 1) > h̃(h(n)). Let g ≤T A be defined by g(n) = A � h(n + 1).
Because A is not DNR, we have ∃∞n Φn(n) = A � h(n + 1). Thus, ∀n∃m
h(n) ≤ m < h(n + 1) and Ct(A � m | m) ≥ h(n).

Depth, Highness and DNR Degrees 93

Let e be an index of a program such that Φe(m) = Φn(n) � m with n
satisfying h(n) ≤ m < h(n + 1). Thus ∃∞n∃m h(n) ≤ m < h(n + 1) and
Ct(A � m | m) ≥ h(n) and C(A � m | m) ≤ O(1), i.e., A is i.o. O(1)-deepC . ��
Franklin and Stephan [12] showed that for every Schnorr trivial set and every
order h it holds that A is not i.o. h-deepC . Thus, the second and third points
cannot be generalised to order-deepC . Also, there are high truth-table degrees
and hyperimmune-free Turing degrees which do not contain any order-deepC

set. Examples for Schnorr trivial sets are all maximal sets and, for every partial
{0, 1}-valued function ψ whose domain is a maximal set, all sets A with ψ(x) ↓⇒
A(x) = ψ(x).

6 Conclusion

We conclude that the choice of the depth magnitude has consequences on the
computational power of the corresponding deep sets, and that larger magnitudes
is not necessarily preferable over smaller magnitudes. Therefore choosing the
appropriate depth magnitude for one’s purpose is delicate, as the corresponding
depth notions might be very different. When the depth magnitude is large, we
proved that depth and highness coincide. We showed that this is not the case
for smaller depth magnitude by constructing a low order deep set, but the set is
not r.e. We therefore ask whether there is a low O(1)-deepK r.e. set.

From our results, for magnitudes of order O(1), K-depth behaves better than
C-depth. To further strengthen that observation we ask whether there is an MLR
O(1)-deepC set.

References

1. Arslanov, M.M.: Degree structures in local degree theory. Complexity Logic, Recur-
sion Theor. 187, 49–74 (1997)

2. Antunes, L.F.C., Fortnow, L., van Melkebeek, D., Vinodchandran, N.V.: Compu-
tational depth. Theor. Comput. Sci. 354, 391–404 (2006)

3. Antunes, L.F.C., Matos, A., Souto, A., Paul, M.B.P.: Depth as randomness defi-
ciency. Theor. Comput. Sys. 45(4), 724–739 (2009)

4. Baartse, M., Barmpalias, G.: On the gap between trivial and nontrivial initial
segment prefix-free complexity. Theor. Comput. Sys. 52(1), 28–47 (2013)

5. Barmpalias, G., Lewis, A.E.M.: The importance of Π0
1 -classes in effective random-

ness. J. Symbolic Logic 75(1), 387–400 (2010)
6. Bennett, C.H.: Logical Depth and Physical Complexity. The Universal Turing

Machine. A Half-Century Survey. Oxford University Press, New York (1988)
7. Chaitin, G.J.: A theory of program size formally identical to information theory.

J. Assoc. Comput. Mach. 22, 329–340 (1975)
8. Csima, B.F., Montalbán, A.: A minimal pair of K-degrees. Proc. Am. Math. soc.

134, 1499–1502 (2006)
9. Doty, D., Moser, P.: Feasible depth. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.)

CiE 2007. LNCS, vol. 4497, pp. 228–237. Springer, Heidelberg (2007)

94 P. Moser and F. Stephan

10. Downey, R.G., Hirschfeldt, D.R., Miller, J.S., Nies, A.: Relativizing chaitin’s halt-
ing probability. J. Math. Logic 5, 167–192 (2005)

11. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity.
Springer, Heidelberg (2010)

12. Franklin, J., Stephan, F.: Schnorr trivial sets and truth-table reducibility. J. Sym-
bolic Logic 75, 501–521 (2010)

13. Herbert, I.: Weak Lowness Notions for Kolmogorov Complexity. University of Cal-
ifornia, Berkeley (2013)

14. Hirschfeldt, D., Weber, R.: Finite Self-Information. Computability 1(1), 85–98
(2012). Manuscript

15. Jockusch, C.G., Soare, R.I.: Π0
1 classes and degrees of theories. Trans. Am. Math.

Soc. 173, 33–56 (1972)
16. Juedes, D.W., Lathrop, J.I., Lutz, J.H.: Computational depth and reducibility.

Theoret. Comput. Sci. 132, 37–70 (1994)
17. Lathrop, J.I., Lutz, J.H.: Recursive computational depth. Inf. Comput. 153(1),

139–172 (1999)
18. Paul, M.L., Vityányi, M.B.: An Introduction to Kolmogorov Complexity and its

Applications. Springer Verlag, New York (2008)
19. Miller, J.S.: Every 2-random real is Kolmogorov random. J. Symbolic Logic 69(3),

907–913 (2004)
20. Moser, P.: On the polynomial depth of various sets of random strings. Theoret.

Comput. Sci. 477, 96–108 (2013)
21. Nies, A.: Computability and Randomness. Oxford University Press, New York

(2009)
22. Nies, A., Terwijn, S.A., Stephan, F.: Randomness, relativization and Turing degree.

J. Symbolic Logic 70(2), 515–535 (2005)
23. Odifreddi, P.: Classical Recursion Theory: The Theory of Functions and Sets of

Natural Numbers, vol. 1. Elsevier, The Netherlands (1989)

On the Expressive Power of Read-Once
Determinants

N.R. Aravind1(B) and Pushkar S. Joglekar2

1 Indian Institute of Technology, Hyderabad, India
aravind@iith.ac.in

2 Vishwakarma Institute of Technology, Pune, India
joglekar.pushkar@gmail.com

Abstract. We introduce and study the notion of read-k projections of
the determinant: a polynomial f ∈ F[x1, . . . , xn] is called a read-k projec-
tion of determinant if f = det(M), where entries of matrix M are either
field elements or variables such that each variable appears at most k times
in M . A monomial set S is said to be expressible as read-k projection of
determinant if there is a read-k projection of determinant f such that the
monomial set of f is equal to S. We obtain basic results relating read-
k determinantal projections to the well-studied notion of determinantal
complexity. We show that for sufficiently large n, the n × n permanent
polynomial Permn and the elementary symmetric polynomials of degree
d on n variables Sd

n for 2 ≤ d ≤ n − 2 are not expressible as read-
once projection of determinant, whereas mon(Permn) and mon(Sd

n) are
expressible as read-once projections of determinant. We also give exam-
ples of monomial sets which are not expressible as read-once projections
of determinant.

1 Introduction

In a seminal work [13], Valiant introduced the notion of the determinan-
tal complexity of multivariate polynomials and proved that any polynomial
f ∈ F[x1, . . . , xn] can be expressed as f = det(Mm×m), where the entries of
M are affine linear forms in the variables {x1, x2, . . . , xn}. The smallest value of
m for which f = det(Mm×m) holds is called the determinantal complexity of f
and denoted by dc(f). Let Permn denote the permanent polynomial:

Permn(x11, . . . , xnn) =
∑

σ∈Sn

n∏

i=1

xi,σ(i)

Valiant postulated that the determinantal complexity of Permn is not polyno-
mially bounded - i.e. dc(Permn) = nω(1). This is one of the most important con-
jectures in complexity theory. So far the best known lower bound on dc(Permn)
is n2

2 , known from [1,9].
Another related notion considered in [13] is projections of polynomials: A

polynomial f ∈ F[x1, . . . , xn] is said to be a projection of g ∈ F[y1, . . . , ym],m ≥
c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 95–105, 2015.
DOI: 10.1007/978-3-319-22177-9 8

96 N.R. Aravind and P.S. Joglekar

n if f is obtained from g by substituting each variable yi by some variable in
{x1, x2, . . . , xn} or by an element of field F. Valiant’s postulate implies that if
Permn is projection of the Determinant polynomial Detm then m is nω(1). We
refer to the expository article by von-zur Gathen on Valiant’s result [2].

We define the notion of read-k projection of determinant, which is a natural
restriction of the notion of projection of determinant. Let X = {x1, . . . , xn} be
a set of variables and let F be a field.

Definition 1. We say that a matrix Mm×m is a read-k matrix over X ∪ F if
the entries of M are from X ∪ F and for every x ∈ X, there are at most k
pairs of indices (i, j) such that Mi,j = x. We say that a polynomial f ∈ F[X] is
read-k projection of Detm if there exists a read-k matrix Mm×m over X such
that f = det(M).

Remark: We use the phrase a polynomial is expressible as read-once determinant
in place of “a polynomial is read-1 projection of determinant” in some places. Note
that only a multilinear polynomial can be expressible as a read-once determinant.

The following upper bound on determinantal complexity, proved in Sect. 2,
is one of the motivations for studying this model.

Theorem 2. Let f ∈ F[x1, . . . , xn]. If f is a read-k projection of determinant,
then dc(f) ≤ nk.

The above theorem immediately shows that read-k projections of determinant
are not universal for any constant k; indeed in the case of finite fields, by simple
counting arguments, we can show that most polynomials are not read-k express-
ible for k = 2o(n).

Ryser’s formula for the permanent expresses the permanent polynomial
Permn as a read-2n−1 projection of determinant. In contrast, it follows from
Theorem 2 that Valiant’s hypothesis implies the following: Permn �= det(Mm×m)
for a read-nO(1) matrix M of any size. So the expressibility question is more rel-
evant in the context of read-k determinant model rather than the size lower
bound question. In this paper, we obtain the following results for the simplest
case k = 1.

Theorem 3. For n > 5, the n×n permanent polynomial Permn is not express-
ible as a read-once determinant over the field of reals and over finite fields in
which −3 is a quadratic non-residue.

We prove Theorem 3 in Sect. 3 as a consequence of non-expressibility of elemen-
tary symmetric polynomials as read-once determinants.

Our interest in this model also stems from the following reason. Most of the
existing lower-bound techniques for various models, including monotone circuits,
depth-3 circuits, non-commutative ABPs etc., are not sensitive to the coeffi-
cients of the monomials of the polynomial for which the lower-bound is proved.
For example, the monotone circuit lower-bound for permanent polynomial by
Jerrum and Snir [8], carries over to any polynomial with same monomial set as

On the Expressive Power of Read-Once Determinants 97

permanent. The same applies to Nisan’s rank argument [10] or the various lower
bound results based on the partial derivative techniques (see e.g. [4,11]).

On the other hand, for proving lower bounds on the determinantal complexity
of the permanent, one must use some properties of the permanent polynomial
which are not shared by the determinant polynomial. A natural question is
whether there are models more restrictive than determinantal complexity (so
that proving lower bounds may be easier) and which are coefficient-sensitive.
Read-k determinants appear to be a good choice for such a model.

In light of the above discussion and to formally distinguish the complexity
of a polynomial and that of its monomial set, we have the following definition.

Definition 4. For f ∈ F [X], we denote by mon(f) the set of all monomials
with non-zero coefficient in f . We say that a set S of monomials is expressible
as read-k determinant if there exists a polynomial f ∈ F[X] such that f is a
read-k projection of determinant and S = mon(f).

Let Sd
n denote the elementary symmetric polynomial of degree d:

Sd
n(x1, x2, . . . , xn) =

∑

A⊆{1,2,...,n},|A|=d

∏

i∈A

xi

In Sect. 3, we prove the non-expressibility of elementary symmetric polynomials
as read-once determinants; a contrasting result also proved in the same section
is the following:

Theorem 5. For all n ≥ d ≥ 1 and |F| ≥ n, the monomial set of Sd
n is express-

ible as projection of read-once determinant.

The organization of the paper is as follows. In Sect. 2, we prove Theorem 2 and
make several basic observations about read-once determinants. In Sect. 3, as our
main result, we show the non-expressibility of the elementary symmetric polyno-
mials as read-once determinants and as a consequence deduce non-expressibility
of the permanent (Theorem 3). We also prove that the monomial set of any
elementary symmetric polynomial is expressible as a read-once determinant
(Theorem 5). In Sect. 4, we give examples of monomial sets which are not express-
ible as read-once determinants.

2 Basic Observations

First we note that read-once determinants are strictly more expressive than
occurrence-one algebraic branching programs which in turn are strictly more
expressive than read-once formulas. By occurrence-one ABP we mean an alge-
braic branching program in which each variable is allowed to repeat at most once
[7]. (We are using the term occurrence-one ABPs rather than read-once ABPs to
avoid confusion, as the latter term is sometimes used in the literature to mean
an ABP in which any variable can appear at most once on any source to sink
path in the ABP).

In the following simple lemma, we compare read-once determinants with
read-once formulas and occurrence-one ABPs.

98 N.R. Aravind and P.S. Joglekar

Lemma 6. Any polynomial computed by a read-once formula can be computed
by an occurrence-one ABP, and any polynomial computed by an occurrence-one
ABP can be computed by a read-once determinant. Moreover there is a polyno-
mial which can be computed by read-once determinant but can’t be computed by
occurrence-one ABPs.

Proof. Let f ∈ F[X] be a polynomial computed by a read-once formula or an
occurrence-one ABP. Using Valiant’s construction [13], we can find a matrix
M whose entries are in X ∪ F such that f = det(M). We observe that if we
start with a read-once formula or an occurrence-one ABP then for the matrix
M obtained using Valiant’s construction, every variable repeats at most once
in M . This proves that f can be computed by read-once determinants. To see
the other part, consider the elementary symmetric polynomial of degree two over
{x1, x2, x3}:S2

3(x1, x2, x3) = x1x2+x1x3+x2x3. It is proved in ([7] Appendix-B)
that S2

3 cannot be computed by an occurrence-one ABP. From the discussion
in the beginning of Sect. 3.1 it follows that S2

3 can be computed by a read-once
determinant.

Let X = {x1, x2, . . . , xn}. Let S = {i1, i2, . . . , ik} ⊆ [n], let XS denote the set of
variables {xi1 , xi2 , . . . , xik}. We define ∂f

∂XS
a partial derivative of f with respect

to XS as ∂f
∂XS

= ∂kf
∂xi1∂xi2 ...∂xik

. For a vector a = (a1, . . . , ak) with ai ∈ F let
f |S=a denote polynomial g over variables X \ XS which is obtained from f by
substituting variable xij = aj .

We define the set ROD to be the set of all polynomials in F[X] that are
expressible as read-once projection of determinant. The following simple propo-
sition shows that the set ROD has nice closure properties.

Proposition 7. Let f be a polynomial over X such that f ∈ ROD and S ⊆ X,
|S| = k. Let a ∈ F

k. Then f |S=a, ∂f
∂XS

∈ ROD. For any polynomial g ∈ ROD
such that fg is a multilinear polynomial, we have fg ∈ ROD.

We use the notation M ∼ N to mean that det(M) = det(N).

Proof-of Theorem2. Let f = det(M) for a read-k matrix M . Without loss of
generality, we can assume that for some m ≤ kn, the principal m by m submatrix
of M contains all the variables. Let Q denote this submatrix and let R denote the
submatrix formed by the remaining columns of the first m rows. Suppose that
the number of remaining rows of M is equal to p. Let T denote the submatrix
formed by these rows. We note that M has full rank, and hence the row-rank
and column-rank of T are both equal to p.

Consider a set of p linearly independent columns in T and let T1 be the sub-
matrix formed by these columns; let T2 denote the remaining m columns of T .
Further, let Q1 and R1 denote the columns of Q and R respectively, correspond-
ing to the columns of T1 and similarly, let Q2 and R2 denote the columns of Q
and R, corresponding to the columns of T2. In other words, the columns of M
can be permuted to obtain M ′ ∼ M :

M ′ =
(

Q1|R1 Q2|R2

T1 T2

)

.

On the Expressive Power of Read-Once Determinants 99

Let g denote the unique linear transformation such that [T2 + g(T1)] = [0].
Applying g to the last m columns of M ′, we obtain a matrix N ∼ M ′ such

that

N =
(

Q1|R1 Q2|R2 + g(Q1|R1)
T1 0

)

.

Let det(T1) = c ∈ F; clearly c �= 0. Let N ′ be a matrix obtained by multiplying
some row of [Q2|R2] + g([Q1|R1]) by c. The entries of N ′ are affine linear forms,
det(N ′) = f and the dimension of N ′ is m ≤ kn. This proves Theorem 2. 	

In the next lemma we show that if f ∈ F[x1, . . . , xn] such that f = det(Mm×m)
for a read-once matrix M , then we can without loss of generality assume that
m ≤ 3n. The proof is on similar lines as that of Theorem 2.

Lemma 8. Let f ∈ F[x1, . . . , xn] be expressible as read-once determinant. Then
there is a read-once matrix M of size at most 3n such that f = det(M).

3 Elementary Symmetric Polynomials and Permanent

In this section we will prove our main result: the elementary symmetric polyno-
mials Sd

n for 2 ≤ n ≤ n−2 and the permanent Permn are not expressible as read-
once determinants for sufficiently large n. We will first prove that S2

4 �∈ ROD
and use it to prove non-expressibility of Permn and Sd

n.
We begin with following simple observation based on the closure properties

of ROD. We skip the proof due to lack of space.

Lemma 9. 1. If Sk
m �∈ ROD then Sd

n �∈ ROD for d ≥ k and n ≥ m + d − k.
2. If Permm �∈ ROD then Permn �∈ ROD for n ≥ m.

From the above lemma, it is clear that, if the polynomials Permn or Sd
n are

expressible as read-once determinants for some n then these polynomials will be
expressible as read-once determinants for some constant value of n = O(1).

3.1 Elementary Symmetric Polynomials

For d = 1 or n, the elementary symmetric polynomial Sd
n can be computed by

a O(n) size read-once formula so by lemma 6 we can express Sd
n as a read-once

determinant. We observe that Sn−1
n ∈ ROD over any field as Sn−1

n = det

(
D A
C 0

)

Where D is n × n diagonal matrix with (i, i)th entry xi for i = 1 to n. C and
A are 1 × n and n × 1 matrices such that all entries of C are 1 and all entries
of A are −1. So Sd

n ∈ ROD for d = 1, n − 1, n. In this section, we show that
Sd

n /∈ ROD for every other choice of d in the case of field of reals or finite fields
in which −3 is quadratic non-residue.

First we consider the case of field of real numbers. Let S2
4(x1, x2, x3, x4) =

c′ ·det(M) for a read-once matrix M and a non-zero c′ ∈ R. Rearranging rows and
columns of M or taking out a scalar common from either row or column of M will

100 N.R. Aravind and P.S. Joglekar

change the value of det(M) only by a scalar, so pertaining to the expressibility
question, we can do these operations freely (we will get different scalar than
c as a multiplier but that is not a problem). For any i, j ∈ {1, 2, 3, 4}, i �= j,
xixj ∈ mon(S2

4). So clearly ∂S2
4

∂xi∂xj
�= 0 which implies that the determinant of

the minor obtained by removing the rows and the columns corresponding to
the variables xi, xj is non-zero. So for any i, j ∈ {1, 2, 3, 4}, i �= j, xi and xj

appear in different rows and columns in M . By suitably permuting rows and
columns of M we can assume that S2

4 = c · det(N) for a non zero real c and
read-once matrix N such that (i, i)th entry of N is variable xi for i = 1 to 4.

So N =

⎛

⎜
⎜
⎜
⎜
⎝

x1 − − − β1

− x2 − − β2

− − x3 − β3

− − − x4 β4

α1 α2 α3 α4 L

⎞

⎟
⎟
⎟
⎟
⎠

Here L is a m − 4 × m − 4 matrix, and αi, βi are

column and row vectors of size m − 4 for i = 1 to 4 and − represents arbitrary
scalar entry. Let p = m− 4. Index the columns and the rows of the matrix using
numbers 1, 2, . . . , m. Let S denote a set of column and row indices corresponding
to submatrix L. For any set {a1, a2, . . . , ak} ⊂ {1, 2, 3, 4}, let Na1,a2,...,ak

denote
a minor of N obtained by removing rows and columns corresponding to indices
{1, 2, 3, 4} \ {a1, . . . , ak} from N .

Definition 10. Let X = {x1, . . . , xn} and M be a matrix with entries from
X ∪ F. For a = (a1, a2, . . . , an) ∈ F

n let Ma be the matrix obtained from M by
substituting xi = ai for i = 1 to n. Let maxrank(M)(respect. minrank(M))
denote the maximum(respect. minimum) rank of matrix Ma for a ∈ F

n.

Now we make some observations regarding ranks of various minors of N .

Lemma 11. For i, j ∈ {1, 2, 3, 4}, i �= j we have

1. maxrank(Ni,j)=minrank(Ni,j)=p + 2
2. maxrank(Ni)=minrank(Ni)=p
3. rank(L) ∈ {p − 1, p − 2}
Proof. Let {k, l} = {1, 2, 3, 4} \ {i, j}. Monomial xkxl ∈ mon(S2

4), so the matrix
obtained from Ni,j by any scalar substitution for xi and xj has full rank. So
we have minrank(Ni,j) = p + 2. Since Ni,j is a (p + 2) × (p + 2) matrix with
minrank p + 2, clearly maxrank(Ni,j) = minrank(Ni,j) = p + 2. To prove the
second part, note that the matrix Ni can be obtained by removing a row and a
column from the matrix Ni,j . So clearly minrank(Ni) ≥ minrank(Ni,j)−2 = p.
As S2

4 doesn’t contain any degree 3 monomial we have maxrank(Ni) ≤ p. Hence
minrank(Ni) = maxrank(Ni) = p.

The matrix Ni can be obtained from L by adding a row and a column so
rank(L) ≥ minrank(Ni) − 2 = p − 2. Since monomial x1x2x3x4 �∈ mon(S2

4), L
can not be full-rank matrix so rank(L) ≤ p − 1. Thus proving the lemma.

Suppose rank(L) = p − 1. By cspan(L), rspan(L) we denote the space spanned
by the columns and the rows of L respectively. Next we argue that for any
i ∈ {1, 2, 3, 4}, αi ∈ cspan(L) iff βi �∈ rspan(L). To show that we need to rule
out following two possibilities

On the Expressive Power of Read-Once Determinants 101

1. αi �∈ cspan(L) and βi �∈ rspan(L). In this case clearly minrank(Ni) =
rank(L) + 2 = p + 1, a contradiction since minrank(Ni) = p by lemma 11.

2. αi ∈ cspan(L) and βi ∈ rspan(L). As βi ∈ rspan(L) we can use a suitable
scalar value for xi so that vector [xi βi] is in the row span of the matrix [αi L].
Moreover rank([αi L]) = p−1 as αi ∈ cspan(L). So we have minrank(Ni) =
rank([αi L]) = rank(L) = p − 1. But we know that minrank(Ni) is p.

So we have αi ∈ cspan(L) iff βi �∈ rspan(L). From this it follows immedi-
ately that either there exist at least two αi’s ∈ cspan(L) or there exists atleast
two βi’s ∈ rspan(L). So w.l.o.g. assume that for i �= j, αi, αj ∈ cspan(L), So
rank[αi αj L] = rank(L) = p − 1. Matrix Ni,j can be obtained from [αi αj L]
by adding two new rows, so maxrank(Ni,j) ≤ rank([αi αj L]) + 2 = p + 1, a
contradiction. This proves that rank(L) can not be p − 1.

Now we consider the other case. Let rank(L) = p − 2. By applying row and
column operation on N we can reduce block L to a diagonal matrix D with all
non zero entries 1. Further applying row and column transformations we can
drive entries in the vectors αi’s and βi’s corresponding to nonzero part of D to
zero. Note that now we can remove all non-zero rows and columns of matrix D
still keeping the determinant same. As a result we have S2

4 = c1 · det(N ′) where
N ′ has following structure

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

x1 + a1 β1,1 β1,2

x2 + a2 β2,1 β2,2

x3 + a3 β3,1 β3,2

x4 + a4 β4,1 β4,2

α1,1 α2,1 α3,1 α4,1 0 0
α1,2 α2,2 α3,2 α4,2 0 0

Note that the coefficient of the monomial xixj in N ′ is the determinant of
the minor obtained by removing rows and columns corresponding to xi and
xj from N ′. It is equal to (αk,1αl,2 −αk,2αl,1).(βk,1βl,2 −βk,2βl,1) where {k, l} =
{1, 2, 3, 4} \ {i, j}. It is easy to see that in fact without loss of generality we
can assume that α1,1 = β1,1 = α2,2 = β2,2 = 1 and α1,2 = β1,2 = α2,1 =
β2,1 = 0 (again by doing column and row transformations). So finally we have
S2
4 = c · det(N) where c is a non zero scalar, N is a matrix as shown below, and

a1, . . . , a4 are real numbers.

S2
4(x1, x2, x3, x4) = c · det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

x1 + a1 1 0
x2 + a2 0 1

x3 + a3 p′ r′

x4 + a4 q′ s′

1 0 p q 0 0
0 1 r s 0 0

102 N.R. Aravind and P.S. Joglekar

Comparing coefficients of monomials xixj for i �= j in S2
4 and the determinant

of corresponding minors of matrix N , we get following system of equations c =
1, p.p′ = q.q′ = r.r′ = s.s′ = 1 and (ps − rq)(p′s′ − r′q′) = 1. Substituting
p′ = 1/p, q′ = 1/q etc. in the equation above, we have (ps−rq)(1/ps−1/rq) = 1
which imply (ps − rq)2 = −(ps)(rq) i.e. (ps)2 + (rq)2 = (ps)(rq) which is clearly
false for non-zero real numbers p, q, r, s (as (ps)2 +(rq)2 ≥ 2(ps)(rq)).(Note that
we need p, q, r, s to be non zero since we have pp′ = qq′ = rr′ = ss′ = 1.) This
proves that S2

4 �∈ ROD over R.
In the case of finite fields F in which −3 is a quadratic non-residue the

argument is as follows. We have the equation (ps − rq)2 = −(ps)(rq) as above.
Let x = ps and y = rq, so we have y2 − xy + x2 = 0. Considering this as a
quadratic equation in variable y, the equation has a solution in the concerned
field iff the discriminant Δ = −3x2 is a perfect square, that happens only when
−3 is a quadratic residue. So if −3 is a quadratic non residue, the above equation
doesn’t have a solution, leading to a contradiction. So we have the following
theorem.

Theorem 12. The polynomial S2
4 is not expressible as a read-once determinant

over the field of reals and over finite fields in which −3 is a quadratic non-residue.

We note that we can express S2
4 as a read-once determinant over C or e.g. over

F3 by solving the quadratic equation in the proof of Theorem12.

S2
4(x1, x2, x3, x4) = det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

x1 0 0 0 1 0
0 x2 0 0 0 1
0 0 x3 0 1 r−1

0 0 0 x4 1 1
1 0 1 1 0 0
0 1 r 1 0 0

In the case F = C choose r = 1+
√
3i

2 and in case of F3 choose r = 2 (mod 3).

Remark 13. We speculate that it should be possible to prove S2
6 �∈ ROD over

any field using similar technique as in the proof of Theorem 12 and that would
immediately give us (slightly weaker) non-expressibility results for the general
elementary symmetric polynomials and the permanent polynomial as compared
to the Theorems 3 and 14. But we haven’t worked out the details in the current
work.

Theorem 12 together with Lemma 9 proves the desired non-expressibility result
for elementary symmetric polynomials.

Theorem 14. The polynomial Sd
n ∈ F[x1, x2, . . . , xn] is not expressible as a

read-once determinant for n ≥ 4 and 2 ≤ d ≤ n − 2 when the field F is either
the field of real numbers or a finite field in which −3 is a quadratic non-residue.

In contrast, we show that the monomial set of Sd
n is expressible as a read-once

determinant.

On the Expressive Power of Read-Once Determinants 103

Proof-of Theorem 5. Let k = n − d and t = k + 1.
Let D be a n × n diagonal matrix with (i, i)th entry xi for i = 1 to n. and M =(

D A
C B

)

, where A, B, C are constant block matrices of dimensions n×t, t×t and

t×n, respectively. We shall choose A,B,C such that mon(det(M)) = mon(Sd
n).

Let B = Jt×t be the matrix with all 1 entries. Let C be such that rank(C) = k,
rank(CB) = t and such that any k vectors in Col(C) are linearly independent,
where Col(C) denotes set of column vectors of C. For example, we can let the ith

column vector of C be (1, ai, a
2
i , . . . , a

k−1
i , 0)T for distinct values of ai. Finally,

let A = CT .
It is clear that det(M) is symmetric in the xi’s; thus it suffices to prove that

x1x2 . . . xi is a monomial of det(M) if and only if i = d. For 1 ≤ i ≤ n, consider
the submatrix Mi of M obtained by removing the first i rows and first i columns.
We observe that det(Mi) = xi+1det(Mi+1). Let r denote the minimum value of
i such that det(Mi) �= 0. Then it can be seen that x1x2 . . . xi is a monomial of
det(M) if and only if i = r.

We now prove that det(Mi) = 0 if and only if i > d. Let Ni denote the matrix
formed by the last t rows of Mi. Then det(Mi) = 0 if and only if rank(Ni) < t.
But rank(Ni) = rank(Col(Ni)) and by construction, rank(Col(Ni)) < k if and
only if n − i < k, i.e. if i > n − k = d. This completes the proof of Theorem 5. 	

3.2 Non-expressibility of Permanent as ROD

Now we prove the non-expressibility result for Permn (Theorem 3).

Proof-of Theorem3. We observe below that the elementary symmetric poly-
nomial S2

4 is a projection of the read-once 6 × 6 Permanent over reals.

4S2
4(x1, x2, x3, x4) = Perm

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

x1 0 0 0 1 1
0 x2 0 0 1 1
0 0 x3 0 1 1
0 0 0 x4 1 1
1 1 1 1 0 0
1 1 1 1 0 0

So clearly if Perm6 is a read-once

projection of determinant then S2
4 also is a read-once projection of determinant.

But by Theorem 12 we know that S2
4 �∈ ROD. So we get Perm6 �∈ ROD. From

lemma 9 it follows that Permn �∈ ROD for any n > 5. 	

4 Non-expressible Monomial Sets

We have seen that the elementary symmetric polynomials and the Permanent
polynomial can not be expressed as read-once determinants but their monomial
sets are expressible as ROD. In this section we will give examples of monomial
sets which can not be expressed as read-once determinant. Let f ∈ F[x1, . . . , xn].
We say that f is k-full if f contains every monomial of degree k and we say that
f is k-empty if f contains no monomial of degree k.

104 N.R. Aravind and P.S. Joglekar

Theorem 15. Let f ∈ F[x1, . . . , xn] and f ∈ ROD be such that f is n-full,
(n − 1)-empty and (n − 2)-empty. Then f can not be k-full for any k such that
�n−1

2 ≤ k < n.

Proof. Let f = det(Mm×m) for a read-once matrix M . As x1x2 . . . xn ∈ mon(f),
without loss of generality assume that the (i, i)th entry of M is xi for i = 1 to
n. Since minor corresponding to x1x2 . . . xn is invertible we can use elementary
row and column operations on M to get a matrix Nn×n such that f = detN
and the (i, i)th entry of N is aixi + bi for ai, bi ∈ F and ai �= 0. All the other
entries of N are scalars. The assumption that f is (n − 1)-empty implies that
bi = 0 for i = 1 to n. Since f is (n − 2)-empty, we also have N(i, j)N(j, i) = 0
for all i �= j, 1 ≤ i, j ≤ n. So at least

(
n
2

)
entries of N are zero. So there is a row

of N which contains at least �n−1
2 � zeros. Let i be the index of that row. For

l ≥ �n−1
2 �, let a1, a2, . . . , al be the column indices such that N(i, ai) = 0. Note

that i �∈ {a1, . . . , al}. We want to prove that f is not k-full for �n−1
2 ≤ k < n.

Let S be a subset of {a1, . . . , al} of size n − k − 1. Note that we can pick such
a set since l ≥ �n−1

2 �. Let T = S ∪ {i}. Let m =
∏

j �∈T xj . Let N ′ be the
minor obtained by removing all the rows and columns in {1, 2, . . . , n} \ T from
N . Clearly m �∈ mon(f) iff the constant term in the determinant of N ′ is zero.
Note that N ′ contains a row with one entry xi and the remaining entries in the
row are zero. So clearly the constant term in the determinant of N ′ is zero. This
shows that degree k monomial m �∈ mon(f). This proves the Theorem.

Let f = x1 + x2 + x3 + x4 + x1x2x3x4. f is 4-full, 3-empty, 2-empty and 1-
full. Applying above theorem for n = 4, we deduce that the set mon(f) =
{x1x2x3x4, x1, x2, x3, x4} is not expressible as a read-once determinant.

5 Discussion and Open Problems

Under Valiant’s hypothesis we know that Permn cannot be expressed as a read-
nO(1) determinant. Proving non-expressibility of Permn as a read-k determinant
for k > 1 unconditionally, is an interesting problem. In fact even the simplest
case k = 2 might be challenging. The corresponding PIT question of checking
whether the determinant of a read-2 matrix is identically zero or not, is also
open [3].

For the elementary symmetric polynomial of degree d on n variables, Shpilka
and Wigderson gave an O(nd3 log d) arithmetic formula [12]. Using universal-
ity of determinant, we get an O(nd3 log d) upper bound on dc(Sd

n), in fact for
non constant d this is the best known upper bound on dc(Sd

n) as noted in [6].
Answering the following question in either direction is interesting: Is Sd

n express-
ible as read-k determinant for k > 1? If the answer is NO, it is a nontrivial
non-expressibility result and if the answer is YES, for say k = O(n2), it gives an
O(n3) upper bound on dc(Sd

n), which is asymptotically better than O(nd3 log d)
for d = n

2 .
Another possible generalization of read-once determinants is the following.

Let X = {xi,j |1 ≤ i, j ≤ n} and consider the matrix Mm×m whose entries

On the Expressive Power of Read-Once Determinants 105

are affine linear forms over X such that the coefficient matrix induced by each
variable has rank one. That is if we express M as B0 +

∑
1≤i,j≤n xi,jBi,j then

rank(Bi,j) = 1 for 1 ≤ i, j ≤ n. B0 can have arbitrary rank. The question
we ask is: can we express Permn as the determinant of such a matrix M?
This model is clearly a generalization of read-once determinants and has been
considered by Ivanyos, Karpinski and Saxena [5], where they give a deterministic
polynomial time algorithm to test whether the determinant of such a matrix is
identically zero. It would be interesting to address the question of expressibility
of permanent in this model.

References

1. Cai, J.-Y., Chen, X., Li, D.: A quadratic lower bound for the permanent and deter-
minant problem over any characteristic �= 2. In: 40th Annual ACM Symposium on
Theory of computing, pp. 491–498 (2008)

2. von zur Gathen, J.: Feasible arithmetic computations: valiant’s hypothesis. J. Sym-
bolic Comput. 4, 137–172 (1987)

3. James, F.: Geelen an algebraic matching algorithm. Combinatorica 20(1), 61–70
(2000)

4. Grigoriev, D., Razborov, A.A.: Exponential lower bounds for depth 3 arithmetic
circuits in algebras of functions over finite fields. Appl. Algebra Eng. Commun.
Comput. 10(6), 465–487 (2000)

5. Ivanyos, G., Karpinski, M., Saxena, N.: Deterministic polynomial time algorithms
for matrix completion problems. SIAM J. Comput. 39(8), 3736–3751 (2010)

6. Jansen, M.: Lower bounds for the determinantal complexity of explicit low degree
polynomials. In: Frid, A., Morozov, A., Rybalchenko, A., Wagner, K.W. (eds.) CSR
2009. LNCS, vol. 5675, pp. 167–178. Springer, Heidelberg (2009)

7. Jansen, M.J., Qiao, Y., Sarma, J.: Deterministic identity testing of read-once alge-
braic branching programs, Electron. Colloquium Comput. Complexity (ECCC),
17:84 (2010)

8. Jerrum, M., Snir, M.: Some exact complexity results for straight-line computations
over semirings. J. ACM 29(3), 874–897 (1982)

9. Mignon, T., Ressayre, N.: A quadratic bound for the determinant and permanent
problem. Int. Math. Res. Not. 2004, 4241–4253 (2004)

10. Nisan, N.: Lower bounds for noncommutative computation. In: Proceedings of 23rd
ACM Symposium on Theory of Computing, pp. 410–418 (1991)

11. Nisan, N., Wigderson, A.: Lower bounds on arithmetic circuits via partial deriva-
tives. Comput. Complexity 6(3), 217–234 (1997)

12. Shpilka, A., Wigderson, A.: Depth-3 arithmetic formulae over fiel ds of charac-
teristic zero. J. Comput. Complexity 10(1), 1–27 (2001)

13. Valiant, L.: Completeness classes in algebra. In: Technical report CSR-40-79,
Department of Computer Science, University of Edinburgh, April 1979

Constructive Relationships Between Algebraic
Thickness and Normality

Joan Boyar1 and Magnus Gausdal Find2(B)

1 Department of Mathematics of Computer Science,
University of Southern Denmark, Odense, Denmark

joan@imada.sdu.dk
2 Information Technology Laboratory, National Institute of Standards

and Technology, Gaithersburg, USA
magnus.find@nist.gov

Abstract. We study the relationship between two measures of Boolean
functions; algebraic thickness and normality. For a function f , the alge-
braic thickness is a variant of the sparsity, the number of nonzero coeffi-
cients in the unique F2 polynomial representing f , and the normality is
the largest dimension of an affine subspace on which f is constant. We
show that for 0 < ε < 2, any function with algebraic thickness n3−ε is

constant on some affine subspace of dimension Ω
(
n

ε
2

)
. Furthermore, we

give an algorithm for finding such a subspace. We show that this is at
most a factor of Θ(

√
n) from the best guaranteed, and when restricted to

the technique used, is at most a factor of Θ(
√

log n) from the best guar-
anteed. We also show that a concrete function, majority, has algebraic

thickness Ω
(
2n1/6

)
.

1 Introduction and Known Results

Boolean functions play an important role in many areas of computer science. In
cryptology, Boolean functions are sometimes classified according to some mea-
sure of complexity (also called cryptographic complexity [7], nonlinearity criteria
[17] or nonlinearity measures [1]). Examples of such measures are nonlinearity,
algebraic degree, normality, algebraic thickness and multiplicative complexity, and
there are a number of results showing that functions that are simple according to
a certain measure are vulnerable to a certain attack (see [8] for a good survey).

A significant amount of work in this area presents explicit functions that
achieve high (or low) values according to some measure. For the nonlinearity
measure this was settled by showing the existence of bent functions [21], for
algebraic degree the problem is trivial, for multiplicative complexity this is a
well studied problem in circuit complexity [3], for normality this is exactly the

Contribution of the National Institute of Standards and Technology. The rights of this
work are transferred to the extent transferable according to title 17 § 105 U.S.C.
Partially supported by the Danish Council for Independent Research, Natural
Sciences.
M.G. Find—Most of this work was done while at the University of Southern Denmark.

c© Springer International Publishing Switzerland 2015 (outside the US)
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 106–117, 2015.
DOI: 10.1007/978-3-319-22177-9 9

Constructive Relationships Between Algebraic Thickness and Normality 107

problem of finding good affine dispersers [22]. The first result in this paper is
that the majority function has exponential algebraic thickness.

Another line of work has been to establish relationships between these mea-
sures, e.g. considering questions of the form “if a function f is simple (or com-
plex) according to one measure, what does that say about f according to some
other measure”, see e.g. [1,4,8] and the references therein. In this paper we focus
on the relationship between algebraic thickness and normality. Intuitively, these
measures capture, each in their own way, how “far” functions are from being
linear [6,7]. In fact, these two measures have been studied together previously
(see e.g. [5,6]). The relationship between these measures was considered in the
work of Cohen and Tal in [10], where they show that functions with a certain
algebraic thickness have a certain normality. For relatively small values of alge-
braic thickness, we tighten their bounds and present an algorithm to witness this
normality. The question of giving a constructive proof of normality is not just a
theoretical one. Recently a generic attack on stream ciphers with high normality
was successfully mounted in the work [19]. If it is possible to constructively com-
pute a witness of normality given a function with low algebraic thickness, this
implies that any function with low algebraic thickness is likely to be vulnerable
to the attack in [19], as well as any other attack based on normality. This work
suggests that this is indeed possible for functions with small algebraic thickness.

2 Preliminaries and Known Results

Let F2 be the field of order 2, Fn
2 the n-dimensional vector space over F2, and

[n] = {1, . . . , n}. A mapping from F
n
2 to F2 is called a Boolean function. It is

a well known fact that any Boolean function f in the variables x1, . . . , xn can
be expressed uniquely as a multilinear polynomial over F2 called the algebraic
normal form (ANF) or the Zhegalkin polynomial. That is, there exist unique
constants c∅, . . . , c{1,...,n} over {0, 1}, such that

f(x1, . . . , xn) =
∑

S⊆[n]

cS

∏

j∈S

xj ,

where arithmetic is in F2. In the rest of this paper, most arithmetic will be in F2,
although we still need arithmetic in R. If nothing is mentioned it should be clear
from the context what field is referred to. The largest |S| such that cS = 1 is
called the (algebraic) degree of f , and functions with degree 2 are called quadratic
functions. We let log(·) be the logarithm base two, ln(·) the natural logarithm,
and exp(·) the natural exponential function with base e.

Algebraic Thickness. For a Boolean function, f , let ‖f‖ =
∑

S⊆[n] cS , with
arithmetic in R. This measure is sometimes called the sparsity of f (e.g. [10]). The
algebraic thickness [4,6] of f , denoted T (f) is defined as the smallest sparsity
after any affine bijection has been applied to the inputs of f . More precisely,
letting An denote the set of affine, bijective operators on F

n
2 ,

T (f) = min
A∈An

‖f ◦ A‖. (1)

108 J. Boyar and M.G. Find

Algebraic thickness was introduced and first studied by Carlet in [4–6]. Affine
functions have algebraic thickness at most 1, and Carlet showed that for any
constant c >

√
ln 2, for sufficiently large n there exist functions with algebraic

thickness
2n−1 − cn2

n−1
2 ,

and that a random Boolean function will have such high algebraic thickness
with high probability. Furthermore no function has algebraic thickness larger
than 2

32n. Carlet observes that algebraic thickness was also implicitly mentioned
in [18, Page 208] and related to the so called “higher order differential attack”
due to Knudsen [15] and Lai [16] in that they are dependent on the degree as
well as the number of terms in the ANF of the function used.

Normality. A k-dimensional flat is an affine (sub)space of Fn
2 with dimension

k. A function is k-normal if there exists a k-dimensional flat E such that f is
constant on E [4,9]. For simplicity define the normality of a function f , which we
denote N (f), as the largest k such that f is k-normal. We recall that affine func-
tions have normality at least n−1 (which is the largest possible for non-constant
functions), while for any c > 1, a random Boolean function has normality less
than c log n with high probability.

Functions with normality smaller than k are often called affine dispersers
of dimension k, and a great deal of work has been put into explicit construc-
tions of functions with low normality. Currently the asymptotically best known
deterministic function, due to Shaltiel, has normality less than 2log

0.9 n [22].
Notice the asymmetry in the definitions: linear functions have very low alge-

braic thickness (0 or 1) but very high normality (n or n − 1), whereas random
functions, with high probability, have very high algebraic thickness (at least
2n−1 − 0.92 · n · 2

n−1
2) but low normality (less than 1.01 log n) [5].

Remark on Computational Efficiency. In this paper, we say that something
is efficiently computable if it is computable in time polynomially bounded in the
size of the input. Algorithms in this paper will have a Boolean function with a
certain algebraic thickness as input. We assume that the function is represented
by the ANF of the function witnessing this small algebraic thickness along with
the bijection. That is, if a function f with algebraic thickness T (f) = T is the
input to the algorithm, we assume that it is represented by a function g and an
affine bijection A such that g = f ◦ A and ‖g‖ = T . In this setting, representing
a function f uses poly(T (f) + n2) bits.

Quadratic Functions. The normality and algebraic thickness of quadratic
functions are well understood due to the following theorem due to Dickson [11]
(see also [8] for a proof).

Theorem 1 (Dickson). Let f : Fn
2 �→ F2 be quadratic. Then there exist an

invertible n × n matrix A, a vector b ∈ F
n
2 , t ≤ n

2 , and c ∈ F2 such that for
y = Ax + b one of the following two equations holds:

Constructive Relationships Between Algebraic Thickness and Normality 109

f(x) = y1y2 + y3y4 + . . . yt−1yt + c, or f(x) = y1y2 + y3y4 + . . . yt−1yt + yt+1.

Furthermore A, b and c can be found efficiently.

That is, any quadratic function is affine equivalent to some inner product func-
tion. We highlight a simple but useful consequence of Theorem 1. Simply by
setting one variable in each of the degree two terms to zero, one gets:

Proposition 1. Let f : Fn
2 → F2 be quadratic. Then N (f) ≥ ⌊

n
2

⌋
. Furthermore

a flat witnessing the normality of f can be found efficiently.

Some Relationships. It was shown in [6] that normality and algebraic thick-
ness are logically independent of (that is, not subsumed by) each other. Several
other results relating algebraic thickness and normality to other cryptographic
measures are given in [6]. We mention a few relations to other measures.

Clearly, functions with degree d have algebraic thickness O(nd), so having
superpolynomial algebraic thickness requires superconstant degree. The fact that
there exist functions with low degree and low normality has been established in
[4] and [10] independently. In the following, by a random degree three polynomial,
we mean a function where each term of degree three is included in the ANF
independently with probability 1

2 . No other terms are included in the ANF.

Theorem 2 ([4,10]1). Let f on n variables be a random degree three poly-
nomial. Then with high probability, f remains nonconstant on any subspace of
dimension 6.12

√
n.

In fact, as mentioned in [10] it is not hard to generalize this to the fact that
for any constant d, a random degree d polynomial has normality O

(
n1/(d−1)

)
.

Perhaps surprisingly, this is tight. More precisely the authors give an elegant
proof showing that any function with degree d has N (f) ∈ Ω

(
n1/(d−1)

)
. This

result implies the following relation between algebraic thickness and normality.

Theorem 3 (Cohen and Tal [10]). Let c be an integer and let f have T (f) ≤
nc. Then N (f) ∈ Ω

(
n1/(4c)

)
.

The proof of this has two steps: First they show by probabilistic methods that
f has a restriction with a certain number of free variables and a certain degree,
and after this they appeal to a relation between degree and normality. Although
the authors do study the algorithmic question of finding such a subspace, they
do not propose an efficient algorithm for finding a subspace of such dimension.
We will pay special attention to the following type of restrictions of Boolean
functions.

Definition 1. Let f : Fn
2 → F2. Setting k < n of the bits to 0 results in a new

function f ′ on n − k variables. We say that f ′ is a 0-restriction of f .
1 The constant 6.12 does not appear explicitly in these articles, however it can be

derived using similar calculations as in the cited papers. This also follows from
Theorem 6 later in this paper. We remark that 6.12 is not optimal.

110 J. Boyar and M.G. Find

By inspecting the proof in the next section and the proof of Theorem 3, one
can see that most of the restrictions performed are in fact setting variables to
0. Furthermore, by inspecting the flat used for the attack performed in [19]
(Sect. 5.3), one can see that it is of this form as well. Determining whether a
given function represented by its ANF admits a 0-restriction f ′ on n−k variables
with f ′ constant corresponds exactly to the hitting set problem, and this is well
known to be NP complete [12]. Furthermore it remains NP complete even when
restricted to quadratic functions (corresponding to the vertex cover problem).

This stands in contrast to Proposition 1; for quadratic functions and general
flats (as opposed to just 0-restrictions) the problem is polynomial time solvable.
To the best of our knowledge, the computational complexity of the following
problem is open (see also [10]): Given a function, represented by its ANF, find
a large(st) flat on which the function is constant.

3 Majority Has High Algebraic Thickness

For many functions, it is trivial to see that the ANF contains many terms, e.g.
the function

f(x) = (1 + x1)(1 + x2) · · · (1 + xn),

which is 1 if and only if all the inputs are 0, contains all the possible 2n terms in
its ANF. However, we are not aware of any explicit function along with a proof
of a strong (e.g. exponential) lower bound on the algebraic thickness. Using a
result from circuit complexity [20], it is straightforward to show that the majority
function, MAJn has exponential algebraic thickness. MAJn is 1 if and only if
at least half of the n inputs are 1. In the following, an AC0[⊕] circuit of depth d
is a circuit with inputs x1, x2, . . . , xn, (1⊕x1), (1⊕x2), . . . , (1⊕xn). The circuit
contains ∧,∨,⊕ (AND, OR, XOR) gates of unbounded fan-in, and every directed
path contains at most d edges. First we need the following simple proposition:

Proposition 2. Let f : Fn
2 → F2 have T (f) ≤ T . Then f can be computed by

an AC0[⊕] circuit of depth 3 with at most n + T + 1 gates.

Proof. Suppose f = g ◦ A for some affine bijective mapping A. In the first layer
(the layer closest to the inputs) one can compute A using n XOR gates of fan-
in at most n. Then by computing all the monomials independently, g can be
computed by an AC0[⊕] circuit of depth 2 using T AND gates with fan-in at
most n and 1 XOR gate of fan-in T . �
Now we recall a result due to Razborov [20], see also [14, 12.24]

Theorem 4 (Razborov). Every unbounded fan-in depth-d circuit over {∧,∨,⊕}
computing MAJn requires 2Ω(n1/(2d)) gates.

Combining these two results, we immediately have the following result that the
majority function MAJn has high algebraic thickness.

Proposition 3. T (MAJn) ≥ 2Ω(n1/6).

Constructive Relationships Between Algebraic Thickness and Normality 111

4 Algebraic Thickness and Normality

This section is devoted to showing that functions with algebraic thickness at most
n3−ε are constant on flats of somewhat large dimensions. Furthermore our proof
reveals a polynomial time algorithm to find such a subspace. In the following, a
term of degree at least 3 will be called a crucial term, and for a function f , the
number of crucial terms will be denoted T ≥3(f).

Our approach can be divided into two steps: First it uses 0-restrictions to
obtain a quadratic function, and after this we can use Proposition 1. As implied
by the relation between 0-restrictions and the hitting set problem, finding the
optimal 0-restrictions is indeed a computationally hard task. Nevertheless, as
we shall show in this section, the following greedy algorithm gives reasonable
guarantees.

The greedy algorithm simply works by continually finding the variable that is
contained in the most crucial terms, and sets this variable to 0. It finishes when
there are no crucial terms. We show that when the greedy algorithm finishes,
the number of variables left, n′, is relatively large as a function of n (for a more
precise statement, see Theorem 5). Notice that we are only interested in the
behavior of n′ as a function of n, and that this is not necessarily related to the
approximation ratio of the greedy algorithm, which is known to be Θ(log n) [13].

We begin with a simple proposition about the greedy algorithm that will be
useful throughout the section, and it gives a tight bound.

Proposition 4. Let g : Fn
2 → F2 have T ≥3(g) ≥ m. Then some variable xj is

contained in at least
⌈
3m

n

⌉
crucial terms.

Proof. We can assume that no variable occurs twice in the same term. Hence
the total number of variable occurrences in crucial terms is at least 3m. By the
pigeon hole principle, some variable is contained in at least

⌈
3m

n

⌉
terms. �

The following lemma is a special case where a tight result can be obtained. It
is included here because the result is tight, and it gives a better constant in
Theorem 5 than one would get by simply removing terms one at a time. The
result applies to functions with relatively small thickness, and a later lemma
reduces functions with somewhat larger thickness to this case.

Lemma 1. Let c ≤ 2
3 and let f : Fn

2 → F2 have T ≥3(f) ≤ cn. Then f has a
0-restriction f ′ on n′ = n − ⌈

3c−1
5 n

⌉
variables with T ≥3(f ′) ≤ n′

3 .

Proof. Let the greedy algorithm run until a function f ′ on n′ variables with
T ≥3(f ′) ≤ n′

3 is obtained. By Proposition 4 we eliminate at least 2 terms in
each step. The number of algorithm iterations is at most

⌈
3c−1
5 n

⌉
. Indeed, let⌈

3c−1
5 n

⌉
= 3c−1

5 n + δ for some 0 ≤ δ < 1. After this number of iterations the
number of variables left is

n′ = n − 3c − 1
5

n − δ =
6 − 3c

5
n − δ

and the number of critical terms is at most

112 J. Boyar and M.G. Find

cn − 2
(

3c − 1
5

n − δ

)

=
2 − c

5
n − 2δ.

In particular n′
3 ≥ 2−c

5 n − 2δ. �
Lemma 1 is essentially tight.

Proposition 5. Let 1
3 < c ≤ 2

3 be arbitrary but rational. Then for infinitely
many values of n, there exists a function on n variables with T ≥3(f) = cn such
that every 0-restriction f ′ on n′ > n − ⌈

3c−1
5 n

⌉
variables has T ≥3(f) > n′

3 .

Proof. Let 1
3 < c ≤ 2

3 be fixed and consider the function on 6 variables:

f(x) = x1x2x3 + x1x4x5 + x2x4x6 + x3x5x6.

The greedy algorithm sets this functions to 0 by killing two variables, and this
is optimal. Furthermore setting any one variable to 0 kills exactly two terms.
Now consider the following function defined on n = 30m variables and having
20m terms. For convenience we index the variables by xi,j for 1 ≤ i ≤ 5m,
1 ≤ j ≤ 6. Let

g(x) =
5m∑

i=1

f(xi,1, xi,2, xi,3, xi,4, xi,5, xi,6).

Again here the greedy algorithm is optimal, and setting 6m variables to zero
leaves n′ = 24m variables and 8m terms remaining. Thus, the bound from
Lemma 1 is met with equality for c = 2

3 .
To see that it is tight for c < 2

3 , consider the function, f̃ on n variables, where
n is a multiple of 30 such that c 4

3
n

2−c is an integer. Run the greedy algorithm
until the number of variables is ñ and T ≥3(f̃) = cñ (assuming cñ is an integer).
At this point ñ = 4

3
n

2−c and the number of terms left is cñ. Again, by the
structure of the function, setting any number, t, of the variables to 0 results in
a function with ñ − t variables and at least cñ − 2t terms. When t < (3c−1)ñ

5 , we
have cñ − 2t > ñ−t

3 . �
An immediate corollary to Lemma 1 is the following.

Corollary 1. Let f : Fn
2 → F2 have T ≥3(f) ≤ 2

3n. Then it is constant on a flat

of dimension n′ ≥
⌊

2
3� 4

5n�
2

⌋

≥ 4
15n − 2. Furthermore, such a flat can be found

efficiently.

Proof. First apply Lemma 1 to obtain a function on n′ =
⌊
4
5n

⌋
variables with

at most n′
3 crucial terms. Now set one variable in each crucial term to 0, so

after this we have at least 2
3

⌊
4
5n

⌋
variables left and the remaining function is

quadratic. Applying Theorem1 gives the result. �
The following lemma generalizes the lemma above to the case with more terms.
The analysis of the greedy algorithm uses ideas similar to those used in certain
formula lower bound proofs, see e.g. [23] or [14, Section 6.3].

Constructive Relationships Between Algebraic Thickness and Normality 113

Lemma 2. Let f : Fn
2 → F2 with T ≥3(f) ≤ n3−ε, for 0 < ε < 2. Then there

exists a 0-restriction f ′ on n′ =
⌊√

2
3nε

⌋
variables with T ≥3(f ′) ≤ 2

3n′.

Proof. Let T ≥3(f) = T . Then, by Proposition 4. Setting the variable contained
in the largest number of terms to 0, the number of crucial terms left is at most

T − 3T

n
= T ·

(

1 − 3
n

)

≤ T ·
(

n − 1
n

)3

.

Applying this inequality n−n′ times yields that after n−n′ iterations the number
of crucial terms left is at most

T ·
(

n − 1
n

)3 (
n − 2
n − 1

)3

· · ·
(

n′

n′ + 1

)3

= T ·
(

n′

n

)3

.

When n′ =
√

2
3nε and T = n3−ε, this is at most 2

3n′. �

Remark: A previous version of this paper [2], contained a version of the lemma
with a proof substantially more complicated. We thank anonymous reviewers for
suggesting this simpler proof.

It should be noted that Lemma 2 cannot be improved to the case where
ε = 0, no matter what algorithm is used to choose the 0-restriction. To see this
consider the function containing all degree three terms. For this function, any
0-restriction (or 1-restriction) leaving n′ variables will have at least

(
n′

3

)
crucial

terms. On the other hand, restricting with x1 + x2 = 0 results in all crucial
terms with both x1 and x2 having lower degree and all crucial terms with just
one of them cancelling out. This suggests that for handling functions with larger
algebraic thickness, one should use restrictions other than just 0-restrictions.

Combining Lemma 2 with Corollary 1, we get the following theorem.

Theorem 5. Let T (f) = n3−ε for 0 < ε < 2. Then there exists a flat of dimen-

sion at least 4
15

√
2
3nε − 3, such that when restricted to this flat, f is constant.

Furthermore this flat can be found efficiently.

This improves on Theorem 3 for functions with algebraic thickness ns for
1 ≤ s ≤ 2.82, and the smaller s, the bigger the improvement, e.g. for T (f) ≤ n2,
our bound guarantees N (f) ∈ Ω(n1/2), compared to Ω(n1/8).

4.1 Normal Functions with Low Sparsity

How good are the guarantees given in the previous section? The purpose of
this section is first to show that the result from Theorem 5 is at most a factor
of Θ(

√
n) from being tight. More precisely, we show that for any 2 < s ≤ 3

there exist functions with thickness at most ns that are nonconstant on flats of
dimension O(n2− s

2). Notice that this contains Theorem 2 as a special case where
s = 3.

114 J. Boyar and M.G. Find

Theorem 6. For any 2 < s ≤ 3, for sufficiently large n, there exist functions
with degree 3 and algebraic thickness at most ns that remain nonconstant on all
flats of dimension 6.12n2− s

2 .

Proof. The proof uses the probabilistic method. We endow the set of all Boolean
functions of degree 3 with a probability distribution D, and show that under this
distribution a function has the promised normality with high probability.

The proof is divided into the following steps: First we describe the probability
distribution D. Then, we fix an arbitrary k-dimensional flat E, and bound the
probability that a random f chosen according to D is constant on E. We show
that for k = Cn2−s/2, where the constant C is determined later, this probability
is sufficiently small that a union bound over all possible choices of E gives the
desired result.

We define D by describing the probability distribution on the ANF. We let
each possible degree 3 term be included with probability 1

2n3−s . The expected
number of terms is thus 1

2ns−3
(
n
3

) ≤ ns/12, and the probability of having more
than ns terms is less than 0.001 for large n. Now let E be an arbitrary but fixed
k-dimensional flat.

One way to think of a function restricted to a k-dimensional flat is that
it can be obtained by a sequence of n − k affine variable substitutions of the
form xi :=

∑
j∈S xj + c. This changes the ANF of the function since xi is no

longer a “free” variable. Assume without loss of generality that we substitute
for the variables xn, . . . , xk+1 in that order. Initially we start with the function
f given by

f(x) =
∑

{a,b,c}⊆[n]

Iabcxaxbxc,

where Iabc is the indicator random variable, indicating whether the xaxbxc is
contained in the ANF. Suppose we perform the n−k restrictions and obtain the
function f̃ . The ANF of f̃ is given by

f(x) =
∑

{a,b,c}⊆[k]

(

Iabc +
∑

s∈Sabc

Is

)

xaxbxc,

where Sabc is some set of indicator random variables depending on the restric-
tions performed. It is important that Iabc, the indicator random variable cor-
responding to xaxbxc, for {a, b, c} ⊆ [k] is only occurring at xaxbxc. Hence we
conclude that independently of the outcome of all the indicator random variables
Ia′b′c′ with {a′, b′, c′} �⊆ [k], we have that the marginal probability for any Iabc

with {a, b, c} ⊆ [k] occurring remains at least 1
2n3−s .

Define t =
(
k
3

)
random variables, Z1, . . . , Zt, one for each potential term in

the ANF of f̃ , such that Zj = 1 if and only if the corresponding term is present
in the ANF, and 0 otherwise. The obtained function is only constant if there are
no degree 3 terms, so the probability of f̃ being constant is thus at most

Constructive Relationships Between Algebraic Thickness and Normality 115

P [Z1 = . . . = Zt = 0] ≤
(

1 − 1
2n3−s

)(k
3)

≤
(

1 − 1
2n3−s

)C3
27 (n6−3s/2)

=

((

1 − 1
2n3−s

)2n3−s)C3
54 (n3−s/2)

≤ exp
(

−C3

54
n3−s/2

)

.

The number of choices for E is at most 2n(k+1), so the probability that f becomes
constant on some affine flat of dimension k is at most

exp
(

−C3

54
n3−s/2 + C ln(2)n3−s/2 + n)

)

.

Now if C >
√

54 ln(2) ≈ 6.11.., this quantity tends to 0. We conclude that with
high probability the function obtained has algebraic thickness at most ns and
normality at most 6.12n2− s

2 . �
There is factor of Θ(

√
n) between the existence guaranteed by Theorems 5 and

6 and we leave it as an interesting problem to close this gap.
The algorithm studied in this paper works by setting variables to 0 until all

remaining terms have degree at most 2, and after that appealing to Theorem1.
A proof similar to the previous shows that among such algorithms, the bound
from Theorem 5 is very close to being asymptotically tight.

Theorem 7. For any 2 < s < 3, there exist functions with degree 3 and alge-
braic thickness at most ns that have degree 3 on any 0-restriction of dimension
3
√

ln nn
3−s
2 .

Proof. We use the same proof strategy as in the proof of Theorem6. Endow the
set of all Boolean functions of degree 3 with the same probability distribution
D. For large n, the number of terms is larger than ns with probability at most
0.001. Now we set all but C

√
ln nn

3−s
2 of the variables to 0, and consider the

probability of the function being constant under this fixed 0-restriction. We will
show that this probability is so small that a union bound over all such choices
gives that with high probability the function is nonconstant under any such

restriction. We will see that setting C = 3 will suffice. There are
(
C

√
lnnn

3−s
2

3

)

possible degree 3 terms on these remaining variables, and we let each one be
included with probability 1

n3−s . The probability that none of these degree three
terms are included is

116 J. Boyar and M.G. Find

(

1 − 1
n3−s

)(C
√

ln nn
3−s
2

3)
≤

(

1 − 1
n3−s

)C3
27 (

√
lnn)3n

9−3s
2

=

((

1 − 1
n3−s

)n3−s)n
3−s
2 (lnn)3/2 C3

27

≤ exp
(

−C3

27
n

3−s
2 (ln n)3/2

)

,

and the number of 0-restrictions with all but C
√

ln nn
3−s
2 variables fixed is

(
n

C
√

ln nn
3−s
2

)

≤ nC
√
lnnn

3−s
2

(C
√

ln nn
3−s
2)!

= exp(ln nC
√

ln nn
3−s
2 − ln((C

√
ln nn

3−s
2)!))

≤ exp
(
ln3/2(n)Cn

3−s
2 − .99C

√
ln nn

3−s
2 ln

(
C

√
ln nn

3−s
2

))

≤ exp
(

(ln n)3/2Cn
3−s
2 − 3 − s

2
.98C(ln n)3/2n

3−s
2

)

= exp
(

(ln n)3/2Cn
3−s
2

(

1 − 0.98
3 − s

2

))

,

where the last two inequalities hold for sufficiently large n. Again, by the union
bound, the probability that there exists such a choice on which there are no
terms of degree three left is at most

exp
(

−C3

27
n

3−s
2 (ln n)3/2

)

exp
(

(ln n)3/2Cn
3−s
2

(

1 − 0.98
3 − s

2

))

.

For C ≥ 3 this probability tends to zero, hence we have that with high
probability the function does not have a 0-restriction on 3

√
ln nn

3−s
2 variables

of degree smaller than 3. �

References

1. Boyar, J., Find, M., Peralta, R.: Four measures of nonlinearity. In: Spirakis, P.G.,
Serna, M.J. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 61–72. Springer, Heidelberg
(2013)

2. Boyar, J., Find, M.G.: Constructive relationships between algebraic thickness and
normality. CoRR abs/1410.1318 (2014)

3. Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of boolean
functions over the basis (∧, ⊕, 1). Theor. Comput. Sci. 235(1), 43–57 (2000)

4. Carlet, C.: On cryptographic complexity of boolean functions. In: Mullen, G.,
Stichtenoth, H., Tapia-Recillas, H. (eds.) Finite Fields with Applications to Coding
Theory, Cryptography and Related Areas, pp. 53–69. Springer, Berlin (2002)

5. Carlet, C.: On the algebraic thickness and non-normality of boolean functions. In:
Information Theory Workshop, pp. 147–150. IEEE (2003)

Constructive Relationships Between Algebraic Thickness and Normality 117

6. Carlet, C.: On the degree, nonlinearity, algebraic thickness, and nonnormality of
boolean functions, with developments on symmetric functions. IEEE Trans. Inf.
Theor. 50(9), 2178–2185 (2004)

7. Carlet, C.: The complexity of boolean functions from cryptographic viewpoint.
In: Krause, M., Pudlàk, P., Reischuk, R., van Melkebeek, D. (eds.) Complexity of
Boolean Functions. Dagstuhl Seminar Proceedings, vol. 06111. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, Germany (2006)

8. Carlet, C.: Boolean functions for cryptography and error correcting codes. In:
Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics,
Computer Science, and Engineering, pp. 257–397. Cambridge University Press,
Cambridge (2010)

9. Charpin, P.: Normal boolean functions. J. Complexity 20(2–3), 245–265 (2004)
10. Cohen, G., Tal, A.: Two structural results for low degree polynomials and appli-

cations. CoRR abs/1404.0654 (2014)
11. Dickson, L.E.: Linear Groups with an Exposition of the Galois Field Theory.

Teubner’s Sammlung von Lehrbuchern auf dem Gebiete der matematischen Wis-
senschaften VL, x+312 (1901)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

13. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9(3), 256–278 (1974)

14. Jukna, S.: Boolean Function Complexity - Advances and Frontiers. Algorithms and
combinatorics, vol. 27. Springer, Heidelberg (2012)

15. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) Fast
Software Encryption. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

16. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello Jr., D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryp-
tography. The Springer International Series in Engineering and Computer Science,
vol. 276, pp. 227–233. Springer, US (1994)

17. Meier, W., Staffelbach, O.: Nonlinearity criteria for cryptographic functions. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
549–562. Springer, Heidelberg (1990)

18. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996)

19. Mihaljevic, M.J., Gangopadhyay, S., Paul, G., Imai, H.: Generic cryptographic
weakness of k-normal boolean functions in certain stream ciphers and cryptanalysis
of grain-128. Periodica Mathematica Hungarica 65(2), 205–227 (2012)

20. Razborov, A.A.: Lower bounds on the size of bounded depth circuits over a com-
plete basis with logical addition. Math. Notes 41(4), 333–338 (1987)

21. Rothaus, O.S.: On “bent” functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976)
22. Shaltiel, R.: Dispersers for affine sources with sub-polynomial entropy. In: Ostro-

vsky, R. (ed.) FOCS. pp. 247–256. IEEE (2011)
23. Subbotovskaya, B.A.: Realizations of linear functions by formulas using +,*,-.

Math. Dokl. 2(3), 110–112 (1961)

On the Structure of Solution-Graphs
for Boolean Formulas

Patrick Scharpfenecker(B)

Institute of Theoretical Computer Science, University of Ulm, Ulm, Germany
patrick.scharpfenecker@uni-ulm.de

Abstract. In this work we extend the study of solution graphs and
prove that for boolean formulas in a class called CPSS, all connected
components are partial cubes of small dimension, a statement which was
proved only for some cases in [16]. In contrast, we show that general
Schaefer formulas are powerful enough to encode graphs of exponential
isometric dimension and graphs which are not even partial cubes.

Our techniques shed light on the detailed structure of st-connectivity
for Schaefer and connectivity for CPSS formulas, problems which were
already known to be solvable in polynomial time. We refine this classi-
fication and show that the problems in these cases are equivalent to the
satisfiability problem of related formulas by giving mutual reductions
between (st-)connectivity and satisfiability. An immediate consequence
is that st-connectivity in (undirected) solution graphs of Horn-formulas
is P-complete while for 2SAT formulas st-connectivity is NL-complete.

Keywords: Partial cube · Succinct · Embedding · st-Connectivity ·
Connectivity · Satisfiability

1 Introduction

The work of Schaefer [15] first introduced a dichotomy for the complexity of
satisfiability on different classes of boolean formulas. The author proved that
for specific boolean formulas (now called Schaefer formulas), satisfiability is in
P while for all other classes, satisfiability is NP-complete. Surprisingly, there are
no formulas of intermediate complexity. Recently, the work of Gopalan et al.
and Schwerdtfeger [8,16] uncovered a similar behavior for several problems on
solution graphs of boolean formulas. A solution graph is a subgraph of the n-
dimensional hypercube induced by all satisfying assignments, see Definition 1.
Therefore boolean formulas can be seen as a succinct encoding of a solution
graph.

Definition 1. Let F (x1, . . . , xn) be an arbitrary boolean formula. Then the solu-
tion graph GF is the subgraph of the n-dimensional hypercube Hn induced by all
satisfying solutions x of F .

P. Scharpfenecker—Supported by DFG grant TO 200/3-1.

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 118–130, 2015.
DOI: 10.1007/978-3-319-22177-9 10

On the Structure of Solution-Graphs for Boolean Formulas 119

These works focused on classifying the complexity of the connectivity and st-
connectivity problem on solution graphs for given classes of formulas. While
st-connectivity is the problem to determine for a given graph and two nodes if
there is a path between these nodes, connectivity asks if a given graph consists
only of a single connected component.

Usually, succinct encodings provide a complexity blow-up compared to non-
succinct encodings (see for example [3,5,14,17,18]). Therefore the question arises
to what extent the complexity for st-connectivity and connectivity change in the
case of solution graphs in relation to the power of the encoding formulas.

For this, Gopalan et al. [8] introduced a new class of boolean formulas they
call “tight” which lies between Schaefer formulas and general formulas. Their
classification shows that for tight formulas, st-connectivity is in P while for gen-
eral formulas it is PSPACE-complete. Similar, for the connectivity problem, they
achieve a coNP-algorithm for Schaefer formulas, coNP-completeness for tight for-
mulas and PSPACE-completeness for general formulas and conjecture that this
is actually a trichotomy: they suspected connectivity for Schaefer formulas to be
in P. More recently, [16] proved a trichotomy by introducing a fourth class of
formulas (besides Schaefer, tight and general formulas) the authors call CPSS
(constraint-projection separating Schaefer) which is even more restrictive than
Schaefer formulas and by modifying the definition of tight formulas to “safely
tight” formulas. Figure 1 summarizes the results of [16] and [8].

Function Set R Conn(R) stConn(R) Diameter

CPSS P P O(n)

Schaefer, not CPSS coNP-complete P O(n)

safely tight, not Schaefer coNP-complete P O(n)

not safely tight PSPACE-complete PSPACE-complete 2Ω(
√

n)

Fig. 1. Classification of connectivity problems.

We refine the P-algorithms for st-connectivity of tight formulas (which con-
tains all safely tight formulas) and show a close relation to satisfiability of such
formulas by an improved analysis of the structure of solution graphs. For all
tight formulas, st-connectivity reduces to satisfiability of a related formula. So
for example, st-connectivity on 2SAT and Horn formulas can be reduced to
satisfiability of the same type. Therefore in the first case, st-connectivity is in
NL while for the second case, the P-algorithm seems tight. In addition, for 2SAT
and Horn-formulas, the reverse holds too, that is, satisfiability for these formu-
las is reducible to st-connectivity and connectivity in the solution graph of the
same type of formulas. So stConn(2SAT) is NL-complete and stConn(Horn3) is
P-complete.

While [8] proved that for all tight formulas the diameter of connected com-
ponents is linearly bounded in the number of variables and [16] improved this
by showing that bijunctive formulas are even partial cubes, there is still room
for improvements. Thereby a partial cube is an induced graph of the hypercube

120 P. Scharpfenecker

which preserves distances. So if two nodes are connected, their distance in the
partial cube has to be the same as in the original hypercube. In our work we
study the structure of connected components in solution graphs of Schaefer for-
mulas. For CPSS formulas we show that every connected component is a partial
cube of small dimension1 while general Schaefer formulas are powerful enough
to encode partial cubes of exponential dimension or even graphs which are not
partial cubes at all. Yet these graphs have still diameter bounded by O(n).

We note that the work of Ekin [6] discusses similar properties like connect-
edness and geodesy based on the structure of a given DNF formula. The authors
discuss recognition of these properties and give a hierarchy of boolean functions
which admit these properties. While co-geodetic functions are connected par-
tial cubes, their approach requires the input formula to be a DNF or CNF. In
contrast, the work of [8,16] can use arbitrary boolean formulas as clauses.

Another related topic is the so called phase-transition for random kSAT
formulas and the clustering of the solution space. The works of [10–12] shed
light on the behaviour of random formulas by providing a threshold αc implying
that random kSAT with less than αc · n clauses on n variables are most likely
satisfiable while more than αc · n clauses imply that the formula is most likely
unsatisfiable. Further, the authors of [12] showed that there is another threshold
αd ≤ αc such that formulas with density lower than αd mainly encode single
connected components while formulas with density between αd and αc encode
many connected components, called clusters. The work of [8,16] and our work
can be seen as stepping stones to a better understanding of the structure of
solution graphs which may help analyzing the structure of solution graphs of
random kSAT formulas.

The rest of this paper is organized as follows. In Sect. 2 we briefly introduce
our notation and basic definitions. Section 3 will cover the characterization of
CPSS solution graphs as collections of partial cubes. In contrast, Sect. 4 will
show that general Schaefer-formulas are powerful enough to encode partial cubes
of exponential dimension and even graphs which are not partial cubes at all.
Finally, in Sect. 5, we establish reductions from connectivity and st-connectivity
problems of solution graphs to the satisfiability problem on related formulas and
thereby refine the previous P characterization. We complete the classification of
these problems by giving matching lower bounds.

2 Preliminaries

To compare two words x, y ∈ {0, 1}n, we use the lexicographic order. For x, y ∈
{0, 1}n, Δ(x, y) denotes the Hamming-distance between x and y and Δ(x) :=
Δ(x, 0|x|) denotes the Hamming-weight of x. We associate words in {0, 1}n with
subsets of [n] = {1, . . . , n} in the standard way. We use graphs G = (V,E) with
nodes V = [n] and edge set E ⊆ V 2 without self-loops.

1 This was proved for bijunctive formulas in [16], we prove the remaining cases of Horn
and dual-Horn formulas.

On the Structure of Solution-Graphs for Boolean Formulas 121

With P we denote the set of decision problems which can be solved in
polynomial-time while L (NL) problems can be solved in (non-deterministic)
logarithmic-space. With ≤L

T , ≤L
m and ≤P

m we denote logarithmic-space Turing
and logarithmic-space as well as polynomial-time many-one reductions.

We recall Definition 1 and note that we talk of solution graphs with the
Hamming-distance, implying that two satisfying solutions are connected by an
edge iff they differ in exactly one variable. Given a graph G and two nodes u, v,
d(u, v) is the length of the shortest path between u and v in G or ∞ if there is
no such path.

Definition 2. An induced subgraph G of Hn is a partial cube iff for all x, y ∈ G,
d(x, y) = Δ(x, y). We call such an induced subgraph “isometric”.

For a 2SAT formula F (x1, . . . , xn) we define the implication graph I(F) = (V,E)
on nodes V = {x1, . . . , xn, x1, . . . , xn} such that (k → l) ∈ E with k, l ∈ V iff
F |= (k → l).

For all boolean functions F : {0, 1}n → {0, 1} we can represent F with
the subset of all its satisfying assignments in {0, 1}n. Then a boolean func-
tion F ⊆ {0, 1}n is closed under a ternary operation � : {0, 1}3 → {0, 1} iff
∀x, y, z ∈ F : �(x, y, z) := (�(x1, y1, z1), . . . ,�(xn, yn, zn)) ∈ F . Note that we
extend the notation of a ternary operation to an operation on three bit-vectors by
applying the operation bitwise on the three vectors. We can define a similar clo-
sure for binary operations. For R a finite set of boolean functions with arbitrary
arities (for example R = {(x∨y), (x⊕y), (x⊕y⊕z)}, we define SAT (R) to be the
satisfiability problem for all boolean formulas which are conjunctions of instanti-
ations of functions in R. For the given example R, F (x, y, z) = (z∨y)∧(x⊕y) is a
formula in which every clause is an instantiation of an R-function. With Conn(R)
we denote the connectivity problem, given a conjunction F of R-functions, is the
solution graph connected? Similarly, stConn(R) is the st-connectivity problem,
given a conjunction F of R-functions and s, t, is there a path from s to t in the
solution graph? We mostly use F for boolean formulas/functions and R,S for
finite sets of functions.

Note that r ∈ R can be an arbitrary boolean function as for example r =
(x ⊕ y) or r = (x ∨ y ∨ z) ∧ (x ∨ z). With 2SAT we denote the set of all CNF-
clauses with two variables and with Hornn we define the set of all Horn-clauses
of size up to n. The ternary majority function maj : {0, 1}3 → {0, 1} is defined
as maj(a, b, c) = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c).

In Definitions 3 to 5 we recall some terms which were partially introduced by
[16] and [8].

Definition 3. A boolean function F is

– bijunctive, iff it is closed under maj(a, b, c).
– affine, iff it is closed under a ⊕ b ⊕ c.
– Horn, iff it is closed under a ∧ b.
– dual-Horn, iff it is closed under a ∨ b.
– IHSB−, iff it is closed under a ∧ (b ∨ c).
– IHSB+, iff it is closed under a ∨ (b ∧ c).

122 P. Scharpfenecker

A function has such a property componentwise, iff every connected component
in the solution graph is closed under the corresponding operation. A function F
has the additional property “safely”, iff the property still holds for every function
F ′ obtained by identification of variables2.

In the case of Horn-formulas, the usual definition (the conjunction of Horn-
clauses, which is a conjunction of literals such that no two literals occur positive)
implies that the represented functions are Horn.

Definition 4. A set of functions R is Schaefer (CPSS) if at least one of the
following conditions holds:

– every function in R is bijunctive.
– every function in R is Horn (and safely componentwise IHSB−).
– every function in R is dual-Horn (and safely componentwise IHSB+).
– every function in R is affine.

If we have a boolean formula F which is build from a set of CPSS functions
R we say that F is CPSS. Clearly, every CPSS formula is Schaefer. We later use
a bigger class of functions which we call tight. This class properly contains all
Schaefer sets of functions.

Definition 5. A set R of functions is tight if at least one of the following con-
ditions holds:

– every function in R is componentwise bijunctive.
– every function in R is OR-free.
– every function in R is NAND-free.

A function is OR-free if we can not derive (x ∨ y) by fixing variables. Similar, a
function is NAND-free if we can not derive (x ∨ y) by fixing variables.

3 Structure of CPSS-Formulas

We now study and refine the properties of connected components in formulas
F on n variables which are CPSS. We are going to prove that such connected
components are always partial cubes of isometric dimension at most n. Hereby
the isometric dimension is the smallest n such that the graph can be isometrically
embedded into the hypercube Hn. For this, [8] gives some useful basic properties
for bijunctive and affine functions:

Lemma 6 ([8]). If a boolean function F is bijunctive or affine then it is com-
ponentwise bijunctive.

Lemma 7 ([8]). Let F be a componentwise bijunctive function. Then the dis-
tance of all solutions x and y in the same connected component is exactly Δ(x, y).

2 Identifying two variables corresponds to replacing one of them with the other
variable.

On the Structure of Solution-Graphs for Boolean Formulas 123

Lemma 8 ([8]). Let R be a set of Horn-functions and let F be built from R-
functions. Then every connected component in F has a unique minimal solution
x∗ and every other solution in this component is connected to x∗ with a monotone
path with respect to the Hamming distance.

We can now prove our first statement:

Lemma 9. Given a CPSS formula F , for two satisfying assignments s and t.
Either d(s, t) = Δ(s, t) or d(s, t) = ∞.

Proof. If F is bijunctive or affine the statements follows by Lemmas 6 and 7.
Now suppose F is Horn and componentwise IHSB− (the last case is dual).

Therefore every connected component in F is closed under x ∧ (y ∨ z). We only
show that for all x, y with y ≤ x in the same component there is a path of length
Δ(x, y). Obviously there can not be a shorter path. With this, the statement
holds for all a, b: We just use c = a ∧ b as intermediate step and c is in the same
connected component: By Lemma 8, we know that every component in a Horn
formula has a unique minimal solution x∗. Then a ∧ (b ∨ x∗) = a ∧ b = c is in
the same component as a and b.

Suppose by contradiction there is no such path from x to y. Then we know
that y can not be the unique minimal solution x∗. But then there is a monotone
decreasing path from x to x∗ which has to bypass y and decrease at least one
variable i ∈ x \ y. Let a be the first such node below x which decreases exactly
one i ∈ x\y. For all other decreased bits we know that yj = 1. Then x∧(a∨y) =
x \ {i} = x′ and d(x′, y) = d(x, y)− 1. An induction over the distance proofs our
statement. �
Corollary 10. Given a CPSS formula F (x1, . . . , xn), every connected compo-
nent of F is a partial cube of isometric dimension at most n.

4 Structure of General Schaefer-Formulas

Previously we looked at properties of solution graphs of Schaefer functions which
are in addition CPSS. If a given formula F on n variables is CPSS, every con-
nected component is a partial cube of small isometric dimension. If it is Schaefer
but not CPSS, the diameter is still linear in n and due to [8], st-connectivity
is in P. We now prove that there are Schaefer formulas which encode a partial
cube of exponential isometric dimension or even a graph which is not a partial
cube at all.

To achieve this, we first create some tools using matrices and their rank.
We only use the rank of a matrix with respect to Z. A metric space is a set of
elements R equipped with a distance function d : R × R → N. We say a matrix
M ∈ N

I×I with index-set I embeds into a metric space if there is a mapping
π : I → R such that for all i, j ∈ I Mi,j = d(π(i), π(j)). An example for such
a metric space is the k dimensional integer grid equipped with the L1-norm
(sometimes called Manhattan-norm).

124 P. Scharpfenecker

Lemma 11. The matrix M = (mi,j)i,j∈{0,1}n with mi,j = Δ(i, j) + 2 if i �= j
and mi,i = 0 has rank at least 2n − n − 1.

Proof. We decompose M as M = M1 + M2 with M1 = (Δ(i, j))i,j∈{0,1}n and
M2 = M−M1. It can be verified that rank(M2) = 2n and rank(M1) = n+1. For
the latter, a complete basis consists of all the row-vectors of bit-strings w with
Δ(w) ≤ 1. We denote these vectors as w0 for the string of weight 0 and wi the
vector for the string setting bit i to 1. Then a row vector of an arbitrary string
a can be computed as (

∑
i∈[n] ai · wi) − (Δ(a) − 1) · w0. For a given column b,

every ai �= 0 adds Δ(b)−1 iff bi = 1 and Δ(b)+1 otherwise. The sum adds up to
Δ(a)Δ(b) + Δ(a \ b) − Δ(a ∩ b). As w0[b] = Δ(b), we subtract (Δ(a) − 1)Δ(b).
So the result is Δ(b) + Δ(a \ b) − Δ(a ∩ b) = Δ(a \ b) + Δ(b \ a) = Δ(a, b).

We know that rank(−M1) = rank(M1), and by subadditivity rank(M2) ≤
rank(M) + rank(−M1). Then 2n ≤ rank(M) + n + 1 and rank(M) ≥
2n − n − 1. �
Lemma 12. If a given point set P with distances M ∈ N

P 2
can be mapped into

the metric space R = {0, 1}m with L1 as distance-norm, then rank(M) ≤ 2m.

Proof. For a given P we look at the labeling π : P → R. Then d(u, v) =
∑

i∈[m] |π(u)i − π(v)i|. So basically M =
∑

i∈[m] Mi with Mi = (mj,k
i) and

mj,k
i = |π(j)i − π(k)i|. So all Mi are 0, 1 block matrices. They define sets

A,B ⊆ P such that all entries (a, b) ∈ A × B are assigned to 1 and every-
thing else is 0. As Mi is symmetric, we can split Mi into two matrices of rank 1:
The first one contains all non-negative entries (a, b) ∈ A×B and the second one
all (b, a) ∈ B × A. This implies that M is the sum of 2m rank 1 matrices and
therefore rank(M) ≤ 2m. �
Corollary 13. The matrix M = (mi,j)i,j∈{0,1}n

with mi,j = Δ(i, j) + 2 if i �= j
and mi,i = 0 can not be embedded into the metric space R = {0, 1}m for all
m < 2n−n−1

2 with L1 as distance-norm.

Note that another intuitive argument for this statement is that the second part
of the sum basically implies that the embedding contains a part which assigns
to all 2n bit-strings points such that their mutual distance is 2. This is called
an equilateral embedding. Moreover, for a given metric space of dimension k
the equilateral dimension is the maximal number of points which can be of
mutually the same distance. [1] proved that for the integer lattice with L1 norm,
the equilateral dimension is O(k log k). Therefore the dimension in which this
distance matrix can be embedded can not be much smaller than 2n.

These tools are enough to provide a lower bound for the isometric dimension
of Horn-encoded graphs.

Lemma 14. For every n there is an induced graph G of the hypercube H2n+1 of
size 2n + 22n with isometric dimension between 2n−n−1

2 and 2n + 2n which can
be encoded in a Horn3 formula of size poly(n).

On the Structure of Solution-Graphs for Boolean Formulas 125

Proof. Consider the formula F (x1, x
′
1, . . . , xn, x′

n) =
∧

i∈[n](xi ↔ x′
i) and F ′ =

y → F with a new variable y. Obviously F ′ ∈ Horn3, F has a solution graph
with 2n isolated vertices and G = GF ′ is only a single connected component of
size 2n + 22n. But by fixing y to 1 we get the original formula with 2n isolated
vertices u. All these vertices u agree on y but for u �= u′, their distance in G is
Δ(u, u′) + 2. For all vertices u, u′ with y = 0, their distance is Δ(u, u′).

So an isometric embedding for G implies an embedding for all u with the
variable y set to 1. But by Corollary 13 we know that such an embedding needs
at least 2n−n−1

2 bits. This proves our lower bound.
For an upper bound we replace y with 2n bits and every node u of G which

is isolated in GF sets a different bit to 1. Every other node sets all new bits to 0.
This is a correct partial cube embedding for F ′ of dimension 2n + 2n. �
For Horn-encoded graphs which are not even partial cubes, we provide an
example:

Lemma 15. There is a Horn4 formula encoding a single connected component
which is not a partial cube.

Proof. Consider the formula F (w, x, y, z) = (y → z)∧ ((w∧x) → (y ↔ z)). This
clearly is a Horn4 formula and the encoded graph is depicted in Fig. 2.

To see this, we note that a classical characterization of partial cubes is that an
undirected graph G = (V,E) is a partial cube iff it is bipartite and the relation Θ
on the edge set is transitive. Hereby Θ is defined as {u, v} Θ {x, y} ↔ d(u, x) +
d(v, y) �= d(u, y) + d(v, x) for {u, v}, {x, y} ∈ E (see for example [13]). It is easy
to see that in the given example e Θ f and f Θ g but e �Θ g. Therefore the graph
encoded by F is not a partial cube (no matter the isometric dimension). �
We briefly mention an observation for length-bounded st-connectivity (l-
stConn(S)). This problem is, given a formula F built from S, s, t |= F and l ∈ N,
is there a path of length at most l from s to t? Clearly, if F is CPSS, then either
d(s, t) = Δ(s, t) or d(s, t) = ∞. So l-stConn(CPSS) reduces to counting differ-
ent bits and checking if there is a path at all. So for CPSS, this problem can be
solved in P. In contrast, if F is Schaefer but not CPSS, this problem seems harder
although the solution graph still has a small diameter. For l-stConn(Horn3), [4]
proved W [2]-hardness.

Theorem 16 ([4]). l-stConn(Horn3) is W [2]-hard when parameterized by l′ =
l − Δ(s, t).

Fig. 2. Induced subgraph of the hypercube which is not a partial cube.

126 P. Scharpfenecker

5 Improved Algorithms for Connectivity
and st-connectivity

In [16], the author gives a polynomial-time algorithm for connectivity on CPSS-
formulas. But as this algorithm is basically a logspace-reduction to the satisfiabil-
ity problem, we can refine this statement for more restricted classes of formulas.
We restate this result and prove our corollary.

Theorem 17 [16]. Given a CPSS set S and a formula F (x1, . . . , xn) over S, the
following polynomial-time algorithm decides whether F is connected: For every
constraint Ci of F , obtain the projection Fi of F to the variables xi occurring in
Ci by checking for every assignment a of xi whether F [xi/a] is satisfiable. Then
F is connected iff no Fi is disconnected.3

Corollary 18. For CPSS sets S, Conn(S) ≤L
T Sat(S).

Lemma 19. Conn(2SAT) ∈ NL.

Proof. It is easy to see that the solution graph of a satisfiable 2SAT formula is
disconnected iff the implication graph contains a cycle. The proof of Lemma22
gives more details on this statement. While checking for a cycle is in NL = coNL,
checking if a solution graph is disconnected therefore is in coNL. It follows that
Conn(2SAT) ∈ NL. �
Now as Corollary 18 is a direct result of [16] in the case of Conn, the remaining
part of this section will derive a similar statement for stConn. In addition, our
following work will show that Conn(2SAT) is NL-complete and Conn(Horn3)
is P-complete.

In [8] the authors proved that st-connectivity is in P for all tight sets of
functions by showing that the diameter in connected components is bounded by
a linear function. We now show that even for tight formulas, st-connectivity can
be reduced to a satisfiability problem.

Theorem 20. Given a tight formula F (x1, . . . , xn) and s, t ∈ {0, 1}n. Then
stConn(F,s,t) ≤L

m Sat(F ∪ {(x ∨ y)}).

Proof. Given F as well as solutions s, t, we perform a walk on the solution graph
starting at s by constructing a formula F ′ which is satisfiable iff there is a path
from s to t in F .

We create a formula F ′ such that a satisfying assignment describes a walk
from s to t in the solution graph. Various copies of the variables x = (x1, . . . , xn)
of F simulate steps on the solution graphs. The first copy x0 gets fixed to s. The
additional copies can always only vary from the preceding copy in a specific
variable and have to satisfy F . If the distance of consecutive copies xi and xi+1

is at most one and the last copy is equal to t, then there is a path from s to
3 Note that as S is finite, every constraint has finite arity and therefore a solution

graph of constant size.

On the Structure of Solution-Graphs for Boolean Formulas 127

t in F . If we know that s and t have distance at most d, we take dn steps by
using d copies of the following construction. The set of variables x1 is allowed
to differ from x0 only in the variable x1. The next set of variables, x2 can only
differ from x1 in x2. After n such steps and d copies of this construction, we fix
the last set of variables to t and know that the formula is satisfiable iff there is
a path from s to t.

Note that in each step we only offer the new variable-set to flip a variable.
We therefore fix all other variables to the previous value with clauses indicating
equivalence and omit such clauses for the variable which is allowed to change. �
Corollary 21. stConn(2SAT) ∈ NL. stConn(S) ∈ P for S a set of Schaefer
functions.

In addition, we prove the completeness results for st-connectivity problems on
solution graphs of 2SAT - and Horn-formulas.

Lemma 22. stConn(2SAT) is NL-complete.

Proof. We reduce the complement of the NL-complete problem of acyclic
directed connectivity (see for example [2]) to stConn(2SAT). The proof follows
as NL = coNL.

Suppose we are given an acyclic directed graph G = (V,E) and two nodes
s, t. We now create G′ by adding to G the edge (t, s). Clearly, there is a cycle
in G′ iff there is an s, t path in G. We now interpret G′ as implication graph of
a 2SAT formula F and state that there is a path from 0n to 1n in the solution
graph GF iff there is no cycle in G′.

Suppose there is no cycle. We describe a path from 0n to 1n. Every satisfying
assignment coincides with a 0, 1 labeling of G′. If a variable xi is set to 0, then
the node xi ∈ G′ is labeled with 0. An assignment x is satisfying F as long as
there is no edge (xi, xj) with xi = 1 and xj = 0. We therefore move from 0n to
1n by flipping the last bits of all longest path in G′. If all such bits were flipped,
we delete the corresponding nodes and repeat until the graph is empty and we
reach 1n.

For the other direction, suppose there is a cycle. Then obviously we can not
reach 1n from 0n. At one point we have to flip a single variable in this cycle.
But then we would have to flip all variables in this cycle at the same time or
else there would be an implication 1 → 0. So the graph is disconnected. �
Corollary 23. Conn(2SAT) is NL-complete.

Proof. This follows by the observation that in the previous reduction, the con-
structed solution graph is connected iff there is no cycle in the graph. As 2SAT
is closed under complementation, our statement follows. �
It would be interesting to give a direct NL algorithm for stConn(2SAT) using
properties of the solution graph instead of just reducing to the satisfiability
problem. This is still open. The main difference to the connectivity for CPSS
formulas is that in the case of 2SAT formulas, the connected components are

128 P. Scharpfenecker

median graphs, a subclass of all partial cubes, while formulas which are CPSS
consist of partial cubes of dimension n. Interestingly, the st-connectivity on
Horn3 formulas is complete for P while finding a shortest path is hard for W [2]
as explained in the next section.

Lemma 24. stConn(Horn3) is P-complete.

Proof. We use a similar method as in Lemma 22 and reduce the monotone circuit
value problem to stConn(Horn3). As the monotone circuit value problem is
known to be P-complete [7], the hardness result follows.

So given a monotone circuit C with n inputs and bounded in-degree 2, m
inner gates and an x ∈ {0, 1}n, we first create a hypergraph G such that the
marking algorithm4 on hypergraphs reaches the root node iff C(x) = 1. G =
(V,E) with V is the set of gates in C and for a gate u with inputs v, w we add
the edges

1. ((v, w) → u) iff u is labeled with ∧
2. and (v → u) and (w → u) iff u is labeled with ∨.

It is easy to see that if we mark all input nodes xi = 1, the marking algorithm
reaches the root z iff C(x) = 1. Note that the marking algorithm proceeds as
follows: if there is an edge ((u1, . . . , ul) → u) and all ui are marked, we can
mark u. We add some additional edges (z, xi) for every xi = 1. So the marking
algorithm can perform a cycle in G iff C(x) = 1.

We now interpret this hypergraph as a Horn-formula F with n+m variables
and prove that the solution graph of F has a path from 1n+m = x∗ to 0n+m

iff C(x) = 0. Suppose first that C(x) = 0. We therefore know that the marking
algorithm, starting with marked xi for all xi = 1 never reaches the root node
z. Let A(x) be the set of nodes this algorithm marks when starting with all 1
bits in x including exactly the variables which are initially set to 1. Then for
all u �∈ A(x) without any predecessor in G, it is safe to flip x∗[u] to 0. This
corresponds to every input gate of C which is not set to 1. In a second round we
flip all nodes with at least one predecessor which was already flipped (and where
the premise is therefore false) to 0 and continue this process level by level until
we reach the root z. Note that we never violate any clause of F . If we would
violate a clause ((u, v) → w) by setting the premise of the clause to 1 but the
conclusion to 0, then w ∈ A(x) which is a contradiction to the way we chose the
variables.

We finish this process by reaching the root z. Now, in a second step, we can
flip the input variables xi ∈ A(x) and perform the same process with all nodes
in A(x). This again does not violate any clauses and, in the end, x∗ = 0n+m.

Now suppose C(x) = 1 and x∗ = 1n. We just note there is no path in the
solution graph of F to reach 0n. We know that |A(x)| ≥ 2 and for every single
4 This algorithm starts with a directed hypergraph and an initially marked set of

nodes. If there is a hyperedge such that all source-nodes are marked but not all target
nodes, we mark all target nodes. The algorithm finishes if there is no hyperedge which
would mark a new node.

On the Structure of Solution-Graphs for Boolean Formulas 129

u ∈ A(x), flipping u to 0 violates a clause in F . Any u ∈ A(x) is the conclusion
of a clause in F with the premise set to 1. So flipping any single variable in A(x)
violates F and there can not be a path from 1n+m to 0n+m. Note that this case
did not occur for C(x) = 0 because we set z to 0 and then A(x) had elements
without predecessors in A(x) (at first the inputs xi). This finishes our proof. �
Corollary 25. Conn(Horn3) is P-complete.

Proof. This follows by the observation that in the previous reduction, the con-
structed solution graph is connected iff the marking algorithm does not reach
the root node. As P is closed under complementation, our statement follows. �
A reduction from satisfiability of tight formulas to st-connectivity of tight for-
mulas is not possible unless P = NP. To see this, we note that the work of [9]
implies that satisfiability of tight formulas is NP-complete while st-connectivity
is in P, see [16].

6 Conclusions and Open Problems

We have studied solution graphs of different sets of boolean formulas introduced
by [8,16]. We showed that all solution graphs of CPSS formulas consist of partial
cubes of small isometric dimension and by going to general Schaefer formulas,
their dimension may increase exponentially or they may even loose the property
of being a partial cube. This gives a sharp separation between solution graphs
which behave nicely and solution graphs without any known structure. It would
be interesting to further analyze solution graphs of Horn formulas and either
show that they behave still nice in another way or if they are already complicated
enough for other problems to be much harder for these graphs. One of such
problems is the connectivity problem as shown by [8,16] which is coNP-complete.
It would be interesting to find more such problems and further understand the
origin of this complexity blow-up.

We introduced techniques to reduce connectivity and st-connectivity in CPSS
or tight formulas to their satisfiability problem. We even proved the equivalence
of these problems and satisfiability for related formulas. These results imply that
for solution graphs of 2SAT formulas, a collection of undirected partial cubes,
the st-connectivity problem is NL-complete while for Horn solution graphs it
is P-complete. An explanation for this difference could be the fact that 2SAT
formulas describe median graphs which are a proper subset of partial cubes. We
would like to see an NL-algorithm for stConn(2SAT) which directly exploits this
property. A similar statement holds for connectivity.

Simultaneously our results imply that length-bounded st-connectivity is easy
for CPSS formulas while a result of Bonsma et al. [4] implied W [2]-hardness for
general Schaefer-formulas. This implies that there is probably no polynomial-
time reduction from stConn(Horn) to stConn(CPSS) which preserves distances.

130 P. Scharpfenecker

References

1. Alon, N., Pudlák, P.: Equilateral sets in lnp . Geom. Funct. Anal. 13(3), 467–482
(2003)

2. Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st edn.
Cambridge University Press, New York (2009)

3. Balcázar, J.L., Lozano, A., Torán, J.: The complexity of algorithmic problems
on succinct instances. In: Baeza-Yates, R., Manber, U. (eds.) Computer Science,
Research and Applications. Springer, New York (1992)

4. Bonsma, P., Mouawad, A.E., Nishimura, N., Raman, V.: The complexity of
bounded length graph recoloring and CSP reconfiguration. In: Cygan, M., Heg-
gernes, P. (eds.) IPEC 2014. LNCS, vol. 8894, pp. 110–121. Springer, Heidelberg
(2014)

5. Das, B., Scharpfenecker, P., Torán, J.: Succinct encodings of graph isomorphism.
In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA
2014. LNCS, vol. 8370, pp. 285–296. Springer, Heidelberg (2014)

6. Ekin, O., Hammer, P.L., Kogan, A.: On connected Boolean functions. Discrete
Appl. Math. 96–97, 337–362 (1999)

7. Goldschlager, L.M.: The monotone and planar circuit value problems are log space
complete for p. SIGACT News 9(2), 25–29 (1977)

8. Gopalan, P., Kolaitis, P.G., Maneva, E., Papadimitriou, C.H.: The connectivity of
boolean satisfiability: computational and structural dichotomies. SIAM J. Comput.
38(6), 2330–2355 (2009)

9. Juban, L.: Dichotomy theorem for the generalized unique satisfiability problem. In:
Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 327–337. Springer,
Heidelberg (1999)

10. Maneva, E., Mossel, E., Wainwright, M.J.: A new look at survey propagation and
its generalizations. J. ACM 54(4), 1–41 (2007)

11. Mézard, M., Zecchina, R.: Random k-satisfiability problem: From an analytic solu-
tion to an efficient algorithm. Phys. Rev. E 66, 056126 (2002)

12. Mézard, M., Ricci-Tersenghi, F., Zecchina, R.: Two solutions to diluted p-spin
models and xorsat problems. J. Stat. Phys. 111(3–4), 505–533 (2003)

13. Ovchinnikov, S.: Graphs and Cubes. Universitext. Springer, New York (2011)
14. Papadimitriou, C.H., Yannakakis, M.: A note on succinct representations of graphs.

Inf. Control 71(3), 181–185 (1986)
15. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the

Tenth Annual ACM Symposium on Theory of Computing - STOC 1978, pp. 216–
226. ACM Press, New York, May 1978

16. Schwerdtfeger, K.W.: A Computational Trichotomy for Connectivity of Boolean
Satisfiability, p. 24, December 2013. http://arxiv.org/abs/1312.4524

17. Veith, H.: Languages represented by Boolean formulas. Inf. Process. Lett. 63(5),
251–256 (1997)

18. Veith, H.: How to encode a logical structure by an OBDD. In: Proceedings of the
13th IEEE Conference on Computational Complexity, pp. 122–131. IEEE Com-
puter Society (1998)

http://arxiv.org/abs/1312.4524

Languages

Interprocedural Reachability for Flat
Integer Programs

Pierre Ganty1(B) and Radu Iosif2

1 IMDEA Software Institute, Madrid, Spain
pierre.ganty@imdea.org

2 CNRS/VERIMAG, Grenoble, France
radu.iosif@imag.fr

Abstract. We study programs with integer data, procedure calls and
arbitrary call graphs. We show that, whenever the guards and updates
are given by octagonal relations, the reachability problem along con-
trol flow paths within some language w∗

1 . . . w∗
d over program statements

is decidable in Nexptime. To achieve this upper bound, we combine a
program transformation into the same class of programs but without pro-
cedures, with an Np-completeness result for the reachability problem of
procedure-less programs. Besides the program, the expression w∗

1 . . . w∗
d

is also mapped onto an expression of a similar form but this time over the
transformed program statements. Several arguments involving context-
free grammars and their generative process enable us to give tight bounds
on the size of the resulting expression. The currently existing gap between
Np-hard and Nexptime can be closed to Np-complete when a certain
parameter of the analysis is assumed to be constant.

1 Introduction

This paper studies the complexity of the reachability problem for a class of
programs featuring procedures and local/global variables ranging over integers.
In general, the reachability problem for this class is undecidable [21]. Thus,
we focus on a special case of the reachability problem which restricts both the
class of input programs and the set of executions considered. The class of input
programs is restricted by considering that all updates to the integer variables
x are defined by octagonal constraints, that are conjunctions of atoms of the
form ±x ± y � c, with x, y ∈ x ∪ x′, where x′ denote the future values of the
program variables. The reachability problem is restricted by limiting the search
to program executions conforming to a regular expression of the form w∗

1 . . . w∗
d

where the wi’s are finite sequences of program statements.
We call this problem flat-octagonal reachability (fo-reachability, for short).

Concretely, given: (i) a program P with procedures and local/global variables,

P. Ganty—Supported by the EU FP7 2007–2013 program under agreement 610686
POLCA and from the Madrid Regional Government under CM project S2013/ICE-
2731 (N-Greens).

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 133–145, 2015.
DOI: 10.1007/978-3-319-22177-9 11

134 P. Ganty and R. Iosif

whose statements are specified by octagonal constraints, and (ii) a bounded
expression b = w∗

1 . . . w∗
d, where wi’s are sequences of statements of P, the

fo-reachability problem REACHfo(P,b) asks: can P run to completion by exe-
cuting a sequence of program statements w ∈ b ? Studying the complexity
of this problem provides the theoretical foundations for implementing efficient
decision procedures, of practical interest in areas of software verification, such
as bug-finding [9], or counterexample-guided abstraction refinement [14,15].

Our starting point is the decidability of the fo-reachability problem in the
absence of procedures. Recently, the precise complexity of this problem was
coined to Np-complete [6]. However, this result leaves open the problem of deal-
ing with procedures and local variables, let alone when the graph of procedure
calls has cycles, such as in the example of Fig. 1 (a). Pinning down the complex-
ity of the fo-reachability problem in presence of (possibly recursive) procedures,
with local variables ranging over integers, is the challenge we address here.

The decision procedure we propose in this paper reduces REACHfo(P,b),
from a program P with arbitrary call graphs, to procedure-less programs as
follows:

1. we apply a source-to-source transformation returning a procedure-less pro-
gram Q, with statements also defined by octagonal relations, such that
REACHfo(P,b) is equivalent to the unrestricted reachability problem for
Q, when no particular bounded expression is supplied.

2. we compute a bounded expression Γb over the statements of Q, such that
REACHfo(P,b) is equivalent to REACHfo(Q, Γb).

The above reduction allows us to conclude that the fo-reachability problem
for programs with arbitrary call graphs is decidable and in Nexptime. Naturally,
the Np-hard lower bound [6] for the fo-reachability problem of procedure-less
programs holds in our setting as well. Despite our best efforts, we did not close
the complexity gap yet. However we pinned down a natural parameter, called
index, related to programs with arbitrary call graphs, such that, when setting this
parameter to a fixed constant (like 3 in 3-SAT), the complexity of the result-
ing fo-reachability problem for programs with arbitrary call graphs becomes
Np-complete. Indeed, when the index is fixed, the aforementioned reduction
computing REACHfo(Q, Γb) runs in polynomial time. Then the Np decision
procedure for the fo-reachability of procedure-less programs [6] shows the rest.

The index parameter is better understood in the context of formal languages.
The control flow of procedural programs is captured precisely by the language of
a context-free grammar. A k-index (k > 0) underapproximation of this language
is obtained by filtering out the derivations containing a sentential form with
k+1 occurrences of nonterminals. The key to our results is a toolbox of language
theoretic constructions of independent interest that enables to reason about the
structure of context-free derivations generating words into b = w∗

1 . . . w∗
d, that

is, words of the form wi1
1 . . . wid

d for some integers i1, . . . , id � 0.
To properly introduce the reader to our result, we briefly recall the important

features of our source-to-source transformation through an illustrative exam-
ple. We apply first our program transformation [11] to the program P shown

Interprocedural Reachability for Flat Integer Programs 135

Fig. 1. xI = {xI , zI} (xO = {xO, zO}) are for the input (output) values of x and z,
respectively. xJ,K,L provide extra copies. havoc(y) stands for

∧
x∈xI,O,J,K,L\y x′ = x,

and x′
α = xβ for

∧
x∈x x′

α = xβ .

in Fig. 1 (a). The call graph of this program consists of a single state P with
a self-loop. The output program Q given Fig. 1 (e), has no procedures and it
can thus be analyzed using any existing intra-procedural tool [4,5]. The relation
between the variables x and z of the input program can be inferred from the
analysis of the output program. For instance, the input-output relation of the
program P is defined by z′ = 2x, which matches the precondition zO = 2xI of
the program Q. Consequently, any assertion such as “there exists a value n > 0
such that P(n) < n” can be phrased as: “there exist values n < m such that
Q(n,m) reaches its final state”. While the former can be encoded by a reacha-
bility problem on P, by adding an extra conditional statement, the latter is an
equivalent reachability problem for Q.

For the sake of clarity, we give several representations of the input program
P that we assume the reader is familiar with including the text of the program
in Fig. 1 (a) and the corresponding control flow graph in Fig. 1 (b).

In this paper, the formal model we use for programs is based on context-
free grammars. The grammar for P is given at Fig. 1 (c). The rôle of the
grammar is to define the set of interprocedurally valid paths in the control-
flow graph of the program P. Every edge in the control-flow graph matches
one or two symbols from the finite alphabet {t1, 〈t2, t2〉, t3, t4}, where 〈t2
and t2〉 denote the call and return, respectively. The set of nonterminals is
{X1,X2,X3,X4}. Each edge in the graph translates to a production rule in the
grammar, labeled p1 to p4. For instance, the call edge X2

t2−→ X3 becomes X2 →
〈t2X1t2〉X3. The language of the grammar of Fig. 1 (c) (with axiom X1) is the set

136 P. Ganty and R. Iosif

L = {(t1〈t2)n t4 (t2〉t3)n | n ∈ N} of interprocedurally valid paths in the control-
flow graph. Observe that L is included in the language of the regular expression
b = (t1〈t2)∗ t4∗ (t2〉t3)∗.

Our program transformation is based on the observation that the semantics
of P can be precisely defined on the set of derivations of the associated grammar.
In principle, one can always represent this set of derivations as a possibly infinite
automaton (Fig. 1 (d)), whose states are sequences of nonterminals annotated
with priorities (called ranks)1, and whose transitions are labeled with production
rules. Each finite path in this automaton, starting from X

〈0〉
1 , defines a valid pre-

fix of a derivation. Since L ⊆ b, Luker [18] shows that it is sufficient, to generate
L, to restrict derivations to those accepted by a finite sub-automaton. Referring
to our example, it consists of the sub-automaton enclosed with a dashed box in
Fig. 1 (d), in which each state consists of a at most 2 ranked nonterminals.

Finally, we label the edges of this finite automaton with octagonal con-
straints that capture the semantics of the relations labeling the control-flow
graph from Fig. 1 (b). We give here a brief explanation for the labeling of the
finite automaton in Fig. 1 (e), in other words, the output program Q (see [11]
for more details). The idea is to compute, for each production rule pi, a relation
ρi(xI ,xO), based on the constraints associated with the symbols occurring in
pi (labels from Fig. 1 (b)). For instance, in the transition X

〈0〉
2

p2−→ X
〈0〉
1 X

〈0〉
3 ,

the auxiliary variables store intermediate results of the computation of p2 as
follows: [xI] 〈t2 [xJ] X1 [xK] t2〉 [xL] X3 [xO]. The guard of the transition can
be understood by noticing that 〈t2 gives rise to the constraint xJ = xI −1, t2〉 to
zL = zK , xI = xL corresponds to the frame condition of the call, and havoc()
copies all current values of xI,J,K,L,O to the future ones. It is worth pointing out
that the constraints labeling the transitions of the program Q are necessarily
octagonal if the statements of P are defined by octagonal constraints.

An intra-procedural analysis of the program Q in Fig. 1 (e) infers the pre-
condition xI � 0 ∧ zO = 2xI which coincides with the input/output relation
of the recursive program P in Fig. 1 (a), i.e. x � 0 ∧ z′ = 2x. The original
query ∃n > 0 : P(n) < n translates thus into the satisfiability of the formula
xI > 0 ∧ zO = 2xI ∧ xI < zO, which is clearly false.

The paper is organised as follows: basic definitions are given Sects. 2 and 3
defines the fo-reachability problem, Sect. 4 presents an alternative program
semantics based on derivations and introduces subsets of derivations which are
sufficient to decide reachability, Sect. 5 starts with on overview of our decision
procedure and our main complexity results and continues with the key steps of
our algorithms. A companion technical report [10] contains the missing details.

2 Preliminaries

Let Σ be a finite nonempty set of symbols, called an alphabet. We denote by Σ∗

the set of finite words over Σ which includes ε, the empty word. The concate-
nation of two words u, v ∈ Σ∗ is denoted by u · v or u v. Given a word w ∈ Σ∗,
1 The precise definition and use of ranks will be explained in Sect. 4.

Interprocedural Reachability for Flat Integer Programs 137

let |w| denote its length and let (w)i with 1 � i � |w| be the ith symbol of w.
Given w ∈ Σ∗ and Θ ⊆ Σ, we write w↓Θ for the word obtained by deleting
from w all symbols not in Θ, and sometimes we write w↓a for w↓{a}. A bounded
expression b over alphabet Σ is a regular expression of the form w∗

1 . . . w∗
d, where

w1, . . . , wd ∈ Σ∗ are nonempty words and its size is given by |b| =
∑d

i=1 |wi|.
We use b to denote both the bounded expression and its language. We call a
language L bounded when L ⊆ b for some bounded expression b.

A grammar is a tuple G = 〈Ξ,Σ,Δ〉 where Ξ is a finite nonempty set
of nonterminals, Σ is an alphabet of terminals, such that Ξ ∩ Σ = ∅, and
Δ ⊆ Ξ × (Σ ∪ Ξ)∗ is a finite set of productions. For a production (X,w) ∈ Δ,
often conveniently noted X → w, we define its size as |(X,w)| = |w| + 1, and
|G| =

∑
p∈Δ |p| defines the size of G.

Given two words u, v ∈ (Σ ∪ Ξ)∗, a production (X,w) ∈ Δ and a posi-
tion 1 � j � |u|, we define a step u

(X,w)/j====⇒G v if and only if (u)j = X
and v = (u)1 · · · (u)j−1 w (u)j+1 · · · (u)|u|. We omit (X,w) or j above the arrow
when clear from the context. A control word is a finite word γ ∈ Δ∗ over the
alphabet of productions. A step sequence u

γ=⇒G v is a sequence u = w0
(γ)1==⇒G

w1 . . . wn−1
(γ)n==⇒G wn = v where n = |γ|. If u ∈ Ξ is a nonterminal and v ∈ Σ∗

is a word without nonterminals, we call the step sequence u
γ=⇒G v a derivation.

When the control word γ is not important, we write u ⇒∗
G v instead of u

γ=⇒G v,
and we chose to omit the grammar G when clear from the context.

Given a nonterminal X ∈ Ξ and Y ∈ Ξ ∪ {ε}, i.e. Y is either a nonterminal
or the empty word, we define the set LX,Y (G) = {u v ∈ Σ∗ | X ⇒∗ u Y v}. The
set LX,ε(G) is called the language of G produced by X, and is denoted LX(G)
in the following. For a set Γ ⊆ Δ∗ of control words (also called a control set),
we denote by L̂X,Y (Γ,G) = {u v ∈ Σ∗ | ∃γ ∈ Γ : X

γ
=⇒ u Y v} the language

generated by G using only control words from Γ . We also write L̂X(Γ,G) for
L̂X,ε(Γ,G).

Let x denote a nonempty finite set of integer variables, and x′ = {x′ | x ∈
x}. A valuation of x is a function ν : x −→ Z. The set of all such valuations is
denoted by Z

x. A formula φ(x,x′) is evaluated with respect to two valuations
ν, ν′ ∈ Z

x, by replacing each occurrence of x ∈ x with ν(x) and each occurrence
of x′ ∈ x′ with ν′(x). We write (ν, ν′) |= φ when the formula obtained from
these replacements is valid. A formula φR(x,x′) defines a relation R ⊆ Z

x × Z
x

whenever for all ν, ν′ ∈ Z
x, we have (ν, ν′) ∈ R iff (ν, ν′) |= φR. The composition

of two relations R1, R2 ⊆ Z
x × Z

x defined by formulae ϕ1(x,x′) and ϕ2(x,x′),
respectively, is the relation R1◦R2 ⊆ Z

x×Z
x, defined by ∃y . ϕ1(x,y)∧ϕ2(y,x′).

For a finite set S, we denote its cardinality by ||S||.

3 Interprocedural Flat Octogonal Reachability

In this section we define formally the class of programs and reachability problems
considered. An octagonal relation R ⊆ Z

x × Z
x is a relation definedby a finite

138 P. Ganty and R. Iosif

conjunction of constraints of the form ±x ± y � c, where x, y ∈ x ∪ x′ and
c ∈ Z. The set of octagonal relations over the variables in x and x′ is denoted
as Oct(x,x′). The size of an octagonal relation R, denoted |R| is the size of the
binary encoding of the smallest octagonal constraint defining R.

An octagonal program is a tuple P = 〈G, I, [[.]]〉, where G is a grammar G =
〈Ξ,Σ,Δ〉, I ∈ Ξ is an initial location, and [[.]] : LI(G) → Oct(x,x′) is a mapping
of the words produced by the grammar G, starting with the initial location I,
to octagonal relations. The alphabet Σ contains a symbol t for each internal
program statement (that is not a call to a procedure) and two symbols 〈t, t〉 for
each call statement t. The grammar G has three kinds of productions: (i) (X, t)
if t is a statement leading from X to a return location, (ii) (X, t Y) if t leads from
X to Y , and (iii) (X, 〈t Y t〉Z) if t is a call statement, Y is the initial location
of the callee, and Z is the continuation of the call. Each edge t that is not a
call has an associated octagonal relation ρt ∈ Oct(x,x′) and each matching pair
〈t, t〉 has an associated frame condition φt ∈ Oct(x,x′), which equates the values
of the local variables, that are not updated by the call, to their future values.
The size of an octagonal program P = 〈G, I, [[.]]〉, with G = 〈Ξ,Σ,Δ〉, is the sum
of the sizes of all octagonal relations labeling the productions of G, formally
|P| =

∑
(X, t)∈Δ |ρt| +

∑
(X, tY)∈Δ |ρt| +

∑
(X, 〈t Y t〉 Z)∈Δ(|ρ〈t| + |ρt〉| + |φt|).

For example, the program in Fig. 1 (a,b) is represented by the grammar
in Fig. 1 (c). The terminals are mapped to octagonal relations as: ρt1 ≡ x >
0 ∧ x′ = x, ρ〈t2 ≡ x′ = x − 1, ρt2〉 ≡ z′ = z, ρt3 ≡ x′ = x ∧ z′ = z + 2 and
ρt4 ≡ x = 0 ∧ z′ = 0. The frame condition is φt2 ≡ x′ = x, as only z is updated
by the call z′ = P(x − 1).

Word-Based Semantics. For each word w ∈ LI(G), each occurrence of a ter-
minal 〈t in w is matched by an occurrence of t〉, and the matching positions
are nested2. The semantics of the word [[w]] is an octagonal relation defined
inductively3 on the structure of w: (i) [[t]] = ρt, (ii) [[t · v]] = ρt ◦ [[v]], and (iii)
[[〈t · u · t〉 · v]] =

((
ρ〈t ◦ [[u]] ◦ ρt〉

) ∩ φt

) ◦ [[v]], for all t, 〈t, t〉 ∈ Σ such that 〈t and t〉
match. For instance, the semantics of the word w = t1〈t2t4t2〉t3 ∈ LX1(G), for
the grammar G given in Fig. 1 (c), is [[w]] ≡ x = 1 ∧ z′ = 2. Observe that this
word defines the effect of an execution of the program in Fig. 1 (a) where the
function P is called twice—the first call is a top-level call, and the second is a
recursive call (line 3).

Reachability Problem. The semantics of a program P = 〈G, I, [[.]]〉 is defined
as [[P]] =

⋃
w∈LI(G) [[w]]. Consider, in addition, a bounded expression b, we define

[[P]]b =
⋃

w∈LI(G)∩b [[w]]. The problem asking whether [[P]]b �= ∅ for a pair P,b is
called the flat-octagonal reachability problem. We use REACHfo(P,b) to denote
a particular instance.

2 A relation � ⊆ {1, . . . , |w|} × {1, . . . , |w|} is said to be nested [2] when no two pairs
i � j and i′ � j′ cross each other, as in i < i′ � j < j′.

3 Octagonal relations are closed under intersections and compositions [20].

Interprocedural Reachability for Flat Integer Programs 139

4 Index-Bounded Depth-First Derivations

In this section, we give an alternate but equivalent program semantics based
on derivations. Although simple, the word semantics is defined using a nest-
ing relation that pairs the positions of a word labeled with matching symbols
〈t and t〉. In contrast, the derivation-based semantics just needs the control word.

To define our derivation based semantics, we first define structured subsets
of derivations namely the depth-first and bounded-index derivations. The rea-
son is two-fold: (a) the correctness proof of our program transformation [11]
returning the procedure-less program Q depends on bounded-index depth-first
derivations, and (b) in the reduction of the REACHfo(P,b) problem to that of
REACHfo(Q, Γb), the computation of Γb depends on the fact that the control
structure of Q stems from a finite automaton recognizing bounded-index depth-
first derivations. Key results for our decision procedure are those of Luker [18,19]
who, intuitively, shows that if LX(G) ⊆ b then it is sufficient to consider depth-
first derivations in which no step contains more than k simultaneous occurrences
of nonterminals, for some k > 0 (Theorem 1).

Depth-First Derivations. It is well-known that a derivation can be associated
a unique parse tree. A derivation is said to be depth-first if it corresponds to a
depth-first traversal of the corresponding parse tree. More precisely, given a step
sequence w0

(X0,v0)/j0======⇒ w1 . . . wn−1
(Xn−1,vn−1)/jn−1===========⇒ wn, and two integers m and

i such that 0 � m < n and 1 � i � |wm| define fm(i) to be the index of the
first word w� of the step sequence in which the particular occurrence of (wm)i

appears. A step sequence is depth-first [19] iff for all m, 0 � m < n:

fm(jm) = max{fm(i) | 1 � i � |wm| and (wm)i ∈ Ξ}.

For example, X
(X,Y Y)/1=====⇒ Y Y

(Y,Z)/2====⇒ Y Z
(Z,a)/2====⇒ Y a is depth-first, whereas

X
(X,Y Y)/1=====⇒ Y Y

(Y,Z)/2====⇒ Y Z
(Y,Z)/1====⇒ ZZ is not. We have f2(1) = 1 because

(w2)1 = Y first appeared at w1, f2(2) = 2 because (w2)2 = Z first appeared at
w2, j2 = 1 and f2(2) � f2(j2) since 2 � 1. We denote by u

γ=⇒
df

w a depth-first
step sequence and call it depth-first derivation when u ∈ Ξ and w ∈ Σ∗.

Depth-First Derivation-Based Semantics. In previous work [11], we defined
the semantics of a procedural program based on the control word of the deriva-
tion instead of the produced words. We briefly recall this definition here. Given
a depth-first derivation X

γ=⇒
df

w, the relation [[γ]] ⊆ Z
x ×Z

x is defined inductively

on γ as follows: (i) [[(X, t)]] = ρt, (ii) [[(X, t Y) · γ′]] = ρt ◦ [[γ′]] where Y
γ′
=⇒
df

w′, and

(iii) [[(X, 〈t Y t〉Z) · γ′ · γ′′]] = [[(X, 〈t Y t〉Z) · γ′′ · γ′]] =
((

ρ〈t ◦ [[γ′]] ◦ ρt〉
) ∩ φt

) ◦ [[γ′′]]

where Y
γ′
=⇒
df

w′ and Z
γ′′
=⇒
df

w′′. We showed [11, Lemma 2] that, whenever X
γ=⇒
df

w,

we have [[w]] �= ∅ iff [[γ]] �= ∅.

Index-Bounded Derivations. A step u ⇒ v is said to be k-index (k > 0) iff
neither u nor v contains k + 1 occurrences of nonterminals, i.e. |u↓Ξ | � k and

140 P. Ganty and R. Iosif

|v↓Ξ | � k. We denote by u
γ=⇒

(k)
v a k-index step sequence and by u

γ==⇒
df(k)

v a step

sequence which is both depth-first and k-index. For X ∈ Ξ, Y ∈ Ξ ∪ {ε} and
k > 0, we define the k-index language L

(k)
X,Y (G) = {u v ∈ Σ∗ | ∃γ ∈ Δ∗ : X

γ=⇒
(k)

u Y v}, the k-index depth-first control set Γ df(k)

X,Y (G) = {γ ∈ Δ∗ | ∃u, v ∈ Σ∗ :

X
γ==⇒

df(k)
u Y v}. We write L

(k)
X (G) and Γ df(k)

X (G) when Y = ε, and drop G from

the previous notations, when the grammar is clear from the context. For instance,
for the grammar in Fig. 1 (c), we have L

(2)
X1

(G) = {(t1〈t2)n t4 (t2〉t3)n | n ∈ N} =
LX1(G) and Γ df(2)

X1
= (p1p2p3)∗ (p4 ∪ p1p2p4p3).

Theorem 1 (Lemma 2 [19], Theorem 1 [18]). Given a grammar G =
〈Ξ,Σ,Δ〉 and X ∈ Ξ:

– for all w ∈ Σ∗, X =⇒
(k)

∗ w if and only if X ==⇒
df(k)

∗ w;

– if LX(G) ⊆ b for a bounded expression b over Σ then LX(G) = L
(K)
X (G)

where K = O(|G|).
The introduction of the notion of index naturally calls for an index depen-
dent semantics and an index dependent reachability problem. As we will see
later, we have tight complexity results when it comes to the index depen-
dent reachability problem. Given k > 0, let [[P]](k) =

⋃
w∈L

(k)
I (G)

[[w]] and let

[[P]](k)b =
⋃

w∈L
(k)
I (G)∩b

[[w]]. Thus we define, for a constant k not part of the input,

the problem REACH(k)
fo (P,b), which asks whether [[P]](k)b �= ∅.

Finite Representations of Bounded-Index Depth-First Control Sets.
It is known that the set of k-index depth-first derivations of a grammar G is
recognizable by a finite automaton [19, Lemma 5]. Below we give a formal defi-
nition of this automaton, that will be used to produce bounded control sets for
covering (in the sense of generating a superset) the language of G. Moreover, we
provide an upper bound on its size, which will be used to prove an upper bound
for the time to compute this set (Sect. 5).

Given k > 0 and a grammar G = 〈Ξ,Σ,Δ〉, we define a labeled graph Adf(k)

G

such that its paths defines the set of k-index depth-first step sequences of G. To
define the vertices and edges of this graph, we introduce the notion of ranked
words, where the rank plays the same rôle as the value fm(i) defined previously.
The advantage of ranks is that only k of them are needed for k-index depth-first
derivations whereas the set of fm(i) values grows with the length of derivations.
Since we restrict ourselves to k-index depth-first derivations, we thus only need
k ranks, from 0 to k −1. The rank based definition of depth-first derivations can
be found in the technical report [10].

For a d-dimensional vector v ∈ N
d, we write (v)i for its ith element (1 � i �

d). A vector v ∈ N
d is said to be contiguous if {(v)1, . . . , (v)d} = {0, . . . , k}, for

some k � 0. Given an alphabet Σ define the ranked alphabet ΣN to be the set
{σ〈i〉 | σ ∈ Σ, i ∈ N}. A ranked word is a word over a ranked alphabet. Given a
word w of length n and an n-dimensional vector α ∈ N

n, the ranked word wα is

Interprocedural Reachability for Flat Integer Programs 141

the sequence (w)1
〈(α)1〉

. . . (w)n
〈(α)n〉, in which the ith element of α annotates

the ith symbol of w. We also denote w〈〈c〉〉 = (w)1
〈c〉

. . . (w)|w|
〈c〉 as a shorthand.

Let Adf(k)

G = 〈Q,Δ,→〉 be the following labeled graph, where:

Q = {wα | w ∈ Ξ∗, |w| � k,α ∈ N
|w| is contiguous, (α)1 � · · · � (α)|w|}

is the set of vertices, the edges are labeled by the set Δ of productions of G, and
the edge relation is defined next. For all vertices q, q′ ∈ Q and labels (X,w) ∈ Δ,

we have q
(X,w)−−−−→ q′ if and only if

– q = u X〈i〉 v for some u, v, where i is the maximum rank in q, and

– q′ = u v (w↓Ξ)〈〈i′〉〉, where |u v (w↓Ξ)〈〈i′〉〉| � k and i′ =
{

0 if u v = ε
i else if (u v)↓

Ξ〈i〉 = ε
i + 1 else

We denote by |Adf(k)

G | = ||Q|| the size (number of vertices) of Adf(k)

G . In the
following, we omit the subscript G from Adf(k)

G , when the grammar is clear from
the context. For example, the graph Adf(2) for the grammar from Fig. 1 (c), is
the subgraph of Fig. 1 (d) enclosed in a dashed line.

Lemma 1. Given G = 〈Ξ,Σ,Δ〉, and k > 0, for each X ∈ Ξ, Y ∈ Ξ ∪{ε} and
γ ∈ Δ∗, we have γ ∈ Γ df(k)

X,Y (G) if and only if X〈0〉 γ−→ Y 〈0〉 is a path in Adf(k)

G .

Moreover, we have |Adf(k)

G | = |G|O(k).

5 A Decision Procedure for REACHfo(P, b)

In this section we describe a decision procedure for the problem REACHfo(P,b)
where P = 〈G, I, [[.]]〉 is an octagonal program, whose underlying grammar is
G = 〈Ξ,Σ,Δ〉, and b = w∗

1 . . . w∗
d is a bounded expression over Σ. The procedure

follows the roadmap described next.
First, we compute, in time polynomial in the sizes of P and b, a set of pro-

grams {Pi = 〈G∩,Xi, [[.]]〉}�
i=1, such that LI(G) ∩ b =

⋃�
i=1 LXi

(G∩), which
implies [[P]]b =

⋃�
i=1 [[Pi]]. The grammar G∩ is an automata-theoretic prod-

uct between the grammar G and the bounded expression b. For space rea-
sons, the reader is referred to the technical report [10] for the formal definition
of G∩. We provide Example 1 which exposes the main intuitions of the con-
struction. Deciding REACHfo(P,b) reduces thus to deciding several instances
{REACHfo(Pi,b)}�

i=1 of the fo-reachability problem. By the definition of Pi, it
suffices to consider the unrestricted reachability in Pi which, abusing notations,
would be written REACHfo(Pi).

Example 1. Let us consider the bounded expression b = (ac)∗ (ab)∗ (db)∗. Con-
sider the grammar Gb with the following productions: q(1)

1 → aq
(1)
2 | ε, q(2)

1 → a

q
(2)
2 | ε, q

(3)
1 → dq

(3)
2 | ε, q

(1)
2 → cq

(1)
1 | cq

(2)
1 | cq

(3)
1 ,

q
(2)
2 → bq

(2)
1 | bq

(3)
1 , q

(3)
2 → bq

(3)
1 . It is easy to check that

b =
⋃3

i=1 L
q
(i)
1

(Gb). Let G = 〈{X,Y,Z, T}, {a, b, c, d},Δ〉 where Δ =

142 P. Ganty and R. Iosif

{X → aY, Y → Zb, Z → cT, Z → ε, T → Xd}, i.e. we have LX(G) =
{(ac)n ab (db)n | n ∈ N}. The following productions define a grammar G∩:

[q
(j)
1 Xq

(3)
1]

p1→ a [q
(j)
2 Y q

(3)
1] [q

(1)
2 Y q

(3)
1]

p2→ [q
(1)
2 Zq

(3)
2] b

[q
(1)
2 Zq

(3)
2]

p3→ c [q
(j)
1 Tq

(3)
2] [q

(2)
2 Zq

(2)
2]

p4→ ε

[q
(j)
1 Tq

(3)
2]

p5→ [q
(j)
1 Xq

(3)
1] d , for j = 1, 2 [q

(2)
1 Xq

(3)
1]

p6→ a [q
(2)
2 Y q

(3)
1]

[q
(2)
2 Y q

(3)
1]

p7→ [q
(2)
2 Zq

(2)
2] b

One can check LX(G) = LX(G) ∩ b = L
[q

(1)
1 Xq

(3)
1]

(G∩) ∪ L
[q

(2)
1 Xq

(3)
1]

(G∩). �

A bounded expression b = w∗
1 . . . w∗

d over alphabet Σ is said to be d-letter-
bounded (or simply letter-bounded, when d is not important) when |wi| = 1,
for all i = 1, . . . , d. A letter-bounded expression b̃ is strict if all its symbols are
distinct. A language L ⊆ Σ∗ is (strict, letter-) bounded iff L ⊆ b, for some
(strict, letter-) bounded expression b.

Second, we reduce the problem from b = w∗
1 . . . w∗

d to the strict letter-
bounded case b̃ = a∗

1 . . . a∗
d, by building a grammar G�	, with the same non-

terminals as G∩, such that, for each i = 1, . . . , (i) LXi
(G�) ⊆ b̃, (ii)

wi1
1 . . . wid

d ∈ L
(k)
Xi

(G∩) iff ai1
1 . . . aid

d ∈ L
(k)
Xi

(G�), for all k > 0 (iii) from each

control set Γ̃ that covers the language L
(k)
Xi

(G�) ⊆ L̂Xi
(Γ̃ , G�) for some k > 0,

one can compute, in polynomial time, a control set Γ that covers the language
L
(k)
Xi

(G∩) ⊆ L̂Xi
(Γ,G∩).

Example 2 (continued from Example 1). Let A = {a1, a2, a3}, b̃ = a∗
1a

∗
2a

∗
3 and

h : A → Σ∗ be the homomorphism given by h(a1) = ac, h(a2) = ab and h(a3) =
db. The grammar G�	 results from deleting a’s and d’s in G∩ and replacing b in p2
by a3, b in p7 by a2 and c by a1. Then, it is easy to check that h−1(LX(G))∩ b̃ =
L
[q

(1)
1 Xq

(3)
1]

(G�) ∪ L
[q

(2)
1 Xq

(3)
1]

(G�) = {an
1 a2 an

3 | n ∈ N}. �

Third, for the strict letter-bounded grammar G�	, we compute a control set Γ̃ ⊆
(Δ�)∗ using the result of Theorem 2, which yields a set of bounded expressions
S
˜b =

{
Γ̃i,1, . . . , Γ̃i,mi

}
, such that L

(k)
Xi

(G�) ⊆ ⋃mi

j=1 L̂Xi
(Γ̃i,j ∩ Γ df(k+1)

Xi
, G�).

By applying the aforementioned transformation (iii) from Γ̃ to Γ , we obtain
that L

(k)
Xi

(G∩) ⊆ ⋃mi

j=1 L̂Xi
(Γi,j ∩ Γ df(k+1)

Xi
, G∩). Theorem 1 allows to effectively

compute value K > 0 such that LXi
(G∩) = L

(K)
Xi

(G∩), for all i = 1, . . . , . Thus
we obtain4 LXi

(G∩) =
⋃mi

j=1 L̂Xi
(Γi,j ∩ Γ df(K+1)

Xi
, G∩), for all i = 1, . . . , .

Theorem 2. Given a grammar G = 〈Ξ,A,Δ〉, and X ∈ Ξ, such that LX(G) ⊆
b̃, where b̃ is the minimal strict d-letter bounded expression for LX(G), for each
k > 0, there exists a finite set of bounded expressions S

˜b over Δ such that
L
(k)
X (G) ⊆ L̂X(

⋃ S
˜b ∩ Γ df(k+1)

X , G). Moreover, S
˜b can be constructed in time

|G|O(k)+d and each Γ̃ ∈ S
˜b can be constructed in time |G|O(k).

4 Because LXi(G
∩) ⊆ L

(K)
Xi

(G∩) ⊆ ⋃mi
j=1 L̂Xi(Γi,j ∩ Γ df(K+1)

Xi
, G∩) ⊆ LXi(G

∩) .

Interprocedural Reachability for Flat Integer Programs 143

We now sketch the main proof ingredients of Theorem 2:

Constant Case. We solve the constant case computing a bounded control sets
for s-letter bounded languages, where s � 0 is a constant (in our case, at
most 2). The result is formalized as follows:

Lemma 2. Let G = 〈Ξ,A,Δ〉 be a grammar and a∗
1 . . . a∗

s is a strict s-letter-
bounded expression over A, where s � 0 is a constant. Then, for each k > 0 there
exists a bounded expression Γ over Δ such that, for all X ∈ Ξ and Y ∈ Ξ ∪{ε},
we have L

(k)
X,Y (G) = L̂X,Y (Γ ∩ Γ df(k)

X,Y , G), provided that LX,Y (G) ⊆ a∗
1 . . . a∗

s.

Moreover, Γ is computable in time |G|O(k).

The proof technique relies on the construction of a graph for which we need
to compute some cycles of bounded length. This is done by the construction of
another graph (basically its unwinding) and the use of Dijkstra’s single source
shortest path algorithm.

Decomposition Lemma. We lift the constant case to the general case by
mean of a decomposition lemma which precisely enables the generalization
from s-letter bounded languages where s is a constant to arbitrary letter
bounded languages. The lemma decomposes k-index depth-first derivations
into a prefix producing a word from the 2-letter bounded expression a∗

1a
∗
d,

and a suffix producing two words included in bounded expressions strictly
smaller than b̃. More precisely, for every k-index depth-first derivation with
control word γ, its productions can be rearranged into a (k+1)-index depth-
first derivation, consisting of (i) a prefix γ
 producing a word in a∗

1 a∗
d, then

(ii) a pivot production (Xi, w) followed by two words γ′ and γ′′ such that (iii)
γ′ and γ′′ produce words included in two bounded expressions a∗

� . . . a∗
m and

a∗
m . . . a∗

r , respectively, where max(m− , r −m) < d−1. This decomposition
is a generalization of a result of Ginsburg [12, Chapter 5.3, Lemma 5.3.3].
Because his decomposition is oblivious to the index or the depth-first policy,
it is too weak for our needs. Therefore, we give first a stronger decomposition
result for k-index depth-first derivations.

General Case. We compute the set of bounded expressions S
˜b inductively

by leveraging the decomposition. We use the result for the constant case
applied on the extremities of b̃ which returns a bounded control set for 2-
letter bounded languages. Then we inductively solve the case for the two
subexpressions a∗

� . . . a∗
m and a∗

m . . . a∗
r . The main algorithm returns a finite

set S
˜b of bounded expressions. The formal statement is given by Theorem2.

The time needed to build each bounded expression Γ̃ ∈ S
˜b is |G|O(k) and

does not depend of |b̃| = d, whereas the time needed to build the entire set S
˜b

is |G|O(k)+d. These arguments come in handy when deriving an upper bound
on the (non-deterministic) time complexity of the fo-reachability problem for
programs with arbitrary call graphs.

The next lemma shows that the exponential dependence on k in the bounds
of Theorem 2 is unavoidable.

144 P. Ganty and R. Iosif

Lemma 3. For every k > 0 there exists a grammar G = 〈Ξ,Σ,Δ〉 and X ∈ Ξ
such that |G| = O(k) and every bounded expression Γ , such that LX(G) =
L̂X(Γ ∩ Γ df(k+1)

X , G) has length |Γ | � 2k−1.

Finally, we turn back to the fo-reachability problem. To solve REACHfo(Pi,b),
the final step consists in building a finite automaton Adf(K+1) that recognizes
the control set Γ df(K+1)

Xi
(Lemma 1). This yields a procedure-less program Q,

whose control structure is given by Adf(K+1), and whose labels are given by the
semantics of control words. We recall that, for every word w ∈ LXi

(G∩) there
exists a control word γ ∈ Γ df(K+1)

Xi
such that [[w]] �= ∅ iff [[γ]] �= ∅. We have

thus reduced each of the instances {REACHfo(Pi,b)}�
i=1 of the fo-reachability

problem to a set of instances {REACHfo(Q, Γi,j) | 1 � i � , 1 � j � mi}.
The latter problem, for procedure-less programs, is decidable in Nptime [6].
A detailed proof of the main result, stated next, is given in the technical
report [10].

Theorem 3. Let P = 〈G, I, [[.]]〉 be an octagonal program, where G = 〈Ξ,Σ,Δ〉
is a grammar, and b is a bounded expression over Σ. Then the problem
REACHfo(P,b) is decidable in Nexptime, with a Np-hard lower bound. If,
moreover, k is a constant, REACH(k)

fo (P,b) is Np-complete.

6 Related Work

The programs we have studied feature unbounded control (the call stack) and
unbounded data (the integer variables). The decidability and complexity of
the reachability problem for such programs pose challenging research questions.
A long standing and still open one is the decidability of the reachability problem
for programs where variables behave like Petri net counters and control paths
are taken in a context-free language. A lower bound exists [16] but decidabil-
ity remains open. Atig and Ganty [3] showed decidability when the context-free
language is of bounded index. The complexity of reachability was settled for
branching VASS by Lazic and Schmitz [17]. When variables updates/guards are
given by gap-order constraints, reachability is decidable [1,22]. It is in PSPACE
when the set of control paths is regular [7]. More general updates and guard (like
octagons) immediately leads to undecidability. This explains the restriction to
bounded control sets. Demri et al. [8] studied the case of updates/guards of the
form

∑n
i=1 ai · xi + b � 0 ∧ x′ = x + c. They show that LTL is Np-complete on

for bounded regular control sets, hence reachability is in Np. Godoy and Tiwari
[13] studied the invariant checking problem for a class of procedural programs
where all executions conform to a bounded expression, among other restrictions.

References

1. Abdulla, P.A., Atig, M.F., Delzanno, G., Podelski, A.: Push-down automata with
gap-order constraints. In: Arbab, F., Sirjani, M. (eds.) FSEN 2013. LNCS, vol.
8161, pp. 199–216. Springer, Heidelberg (2013)

Interprocedural Reachability for Flat Integer Programs 145

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3),
16:1–16:43 (2009)

3. Atig, M.F., Ganty, P.: Approximating petri net reachability along context-free
traces. In: FSTTCS 2011, vol. 13. LIPIcs, pp. 152–163. Schloss Dagstuhl (2011)

4. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: Fast: fast acceleration of symbolic
transition systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol.
2725, pp. 118–121. Springer, Heidelberg (2003)

5. Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242.
Springer, Heidelberg (2010)

6. Bozga, M., Iosif, R., Konečný, F.: Safety problems are np-complete for flat integer
programs with octagonal loops. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014.
LNCS, vol. 8318, pp. 242–261. Springer, Heidelberg (2014)

7. Bozzelli, L., Pinchinat, S.: Verification of gap-order constraint abstractions of
counter systems. Theo. Comput. Sci. 523, 1–36 (2014)

8. Demri, S., Dhar, A.K., Sangnier, A.: Taming past ltl and flat counter systems.
In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp.
179–193. Springer, Heidelberg (2012)

9. Esparza, J., Ganty, P.: Complexity of pattern-based verification for multithreaded
programs. In: POPL 2011, pp. 499–510. ACM Press (2011)

10. Ganty, P., Iosif, R.: Interprocedural reachability for flat integer programs. CoRR,
abs/1405.3069v3 (2015)

11. Ganty, P., Iosif, R., Konečný, F.: Underapproximation of procedure summaries
for integer programs. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS
2013). LNCS, vol. 7795, pp. 245–259. Springer, Heidelberg (2013)

12. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill
Inc., New York (1966)

13. Godoy, G., Tiwari, A.: Invariant checking for programs with procedure calls. In:
Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 326–342. Springer,
Heidelberg (2009)

14. Hojjat, H., Iosif, R., Konečný, F., Kuncak, V., Rümmer, P.: Accelerating inter-
polants. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp.
187–202. Springer, Heidelberg (2012)

15. Kroening, D., Lewis, M., Weissenbacher, G.: Under-approximating loops in c pro-
grams for fast counterexample detection. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 381–396. Springer, Heidelberg (2013)

16. Lazic, R.: The reachability problem for vector addition systems with a stack is not
elementary. In: RP 2012 (2012)

17. Lazic, R., Schmitz, S.: Non-elementary complexities for branching VASS, MELL,
and extensions. In: CSL-LICS 2014. ACM (2014)

18. Luker, M.: A family of languages having only finite-index grammars. Inf. Control
39(1), 14–18 (1978)

19. Luker, M.: Control sets on grammars using depth-first derivations. Math. Syst.
Theo. 13, 349–359 (1980)

20. Miné, A.: The octagon abstract domain. Higher-Order Symbolic Comput. 19(1),
31–100 (2006)

21. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Upper
Saddle River (1967)

22. Revesz, P.Z.: A closed-form evaluation for datalog queries with integer (gap)-order
constraints. Theo. Comput. Sci. 116(1), 117–149 (1993)

Complexity of Suffix-Free Regular Languages

Janusz Brzozowski1(B) and Marek Szyku�la2

1 David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, ON N2L 3G1, Canada

brzozo@uwaterloo.ca
2 Institute of Computer Science, University of Wroc�law,

Joliot-Curie 15, 50-383 Wroc�law, Poland
msz@cs.uni.wroc.pl

Abstract. A sequence (Lk, Lk+1 . . .) of regular languages in some class
C, where n is the state complexity of Ln, is called a stream. A stream
is most complex in class C if its languages together with their dialects
(that is, languages that differ only very slightly from the languages in
the stream) meet the state complexity bounds for boolean operations,
product (concatenation), star, and reversal, have the largest syntactic
semigroups, and have the maximal numbers of atoms, each of which has
maximal state complexity. It is known that there exist such most com-
plex streams in the class of regular languages, and also in the classes of
right, left, and two-sided ideals. In contrast to this, we prove that there
does not exist a most complex stream in the class of suffix-free regular
languages. However, we do exhibit one ternary suffix-free stream that
meets the bound for product and whose restrictions to binary alpha-
bets meet the bounds for star and boolean operations. We also exhibit a
quinary stream that meets the bounds for boolean operations, reversal,
size of syntactic semigroup, and atom complexities. Moreover, we solve
an open problem about the bound for the product of two languages of
state complexities m and n in the binary case by showing that it can be
met for infinitely many m and n.

Two transition semigroups play an important role for suffix-free lan-
guages: semigroup T�5(n) is the largest suffix-free semigroup for n � 5,
while semigroup T�6(n) is largest for n = 2, 3 and n � 6. We prove that
all witnesses meeting the bounds for the star and the second witness in a
product must have transition semigroups in T�5(n). On the other hand,
witnesses meeting the bounds for reversal, size of syntactic semigroup
and the complexity of atoms must have semigroups in T�6(n).

Keywords: Most complex · Regular language · State complexity · Suffix-
free · Syntactic complexity · Transition semigroup

This work was supported by the Natural Sciences and Engineering Research
Council of Canada grant No. OGP000087, and by Polish NCN grant DEC-
2013/09/N/ST6/01194.

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 146–159, 2015.
DOI: 10.1007/978-3-319-22177-9 12

Complexity of Suffix-Free Regular Languages 147

1 Introduction

Suffix-Free Languages. A language is suffix-free if no word in the language is
a suffix of another word in the language. The languages ba∗, {anbn | n � 1}, and
Σn, where Σ is a finite alphabet and n is a positive integer, are all examples
of suffix-free languages. Every suffix-free language (except that consisting of the
empty word ε) is a suffix code. Suffix codes are an important subclass of general
codes, which have numerous applications in cryptography, data compression and
error correction. Codes have been studied extensively; see [2] for example. In
addition to being codes, suffix-free languages are also a special subclass of suffix-
convex languages [1], where a language is suffix-convex if, whenever a word w
and its suffix u are in the language, then so is every suffix of w that has u as a
suffix.

We study complexity properties of suffix-free regular languages.

Quotient Complexity. A basic complexity measure of a regular language L
over an alphabet Σ is the number n of distinct left quotients of L, where a (left)
quotient of L by a word w ∈ Σ∗ is w−1L = {x | wx ∈ L}. We denote the set of
quotients of L by K = {K0, . . . , Kn−1}, where K0 = L = ε−1L by convention.
Each quotient Ki can be represented also as w−1

i L, where wi ∈ Σ∗ is such
that w−1

i L = Ki. The number of quotients of L is its quotient complexity [3]
κ(L). A concept equivalent to quotient complexity is state complexity [23] of L,
which is the number of states in a minimal deterministic finite automaton (DFA)
recognizing L.

Let Ln be a regular language of quotient complexity n. The quotient com-
plexity of a unary operation ◦ on Ln is the maximum value of κ(L◦

n) as a func-
tion of n. To establish the quotient complexity of L◦

n, first we need to find an
upper bound on this complexity. For example, 2n is an upper bound on the
reversal operation on regular languages [20,22]. Second, we need a sequence
(Ln, n � k) = (Lk, Lk+1, . . .), called a stream, of languages that meet this
bound; here k is usually some small integer because the bound may not apply
for n < k. A language Ln that meets the bound κ(L◦

n) for the operation ◦ is a
witness (language) for that operation. A stream in which every language meets
the bound is called a witness (stream). The languages in a stream are normally
defined in the same way, differing only in the parameter n. For example, we might
have the stream (Ln = {w ∈ {a, b}∗ | the number of a’s is 0 modulon}, n � 2).

Similarly, κ(Km ◦ Ln) is the quotient complexity of a binary operation ◦ on
regular languages Km and Ln of complexities m and n, respectively. Again, we
need an upper bound on κ(Km ◦ Ln). For example, an upper bound on product
(concatenation) is (m − 1)2n + 2n−1 [19,22]. Then we have to find two streams
(Km,m � h) and (Ln, n � k) of languages meeting this bound. In general, the
two streams are different, but there are many examples where Kn “differs only
slightly” from Ln; such a language Kn has been called a dialect [4] of Ln. The
notion “differs only slightly” will be made precise below. A pair (Km, Ln) of
languages that meets the bound κ(Km ◦ Ln) for the operation ◦ is a witness
(pair) for that operation. A stream in which every pair of languages meets the
bound is called a witness (stream).

148 J. Brzozowski and M. Szyku�la

The quotient/state complexity of an operation gives a worst-case lower bound
on the time and space complexity of the operation. For this reason it has been
studied extensively; see [3,23] for additional references. The quotient complexity
of suffix-free languages was examined in [14,15,17].

We also extend the notions of maximal complexity, stream, and witness to
DFAs.

Syntactic Complexity. A second measure of complexity of a regular language
is its syntactic complexity. Let Σ+ be the set of non-empty words of Σ∗. The
syntactic semigroup of L is the set of equivalence classes of the Myhill congruence
≈L on Σ+ defined by x ≈L y if and only if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈ Σ∗.
The syntactic semigroup of L is isomorphic to the transition semigroup of a
minimal DFA D recognizing L [21], which is the semigroup of transformations of
the state set of D induced by non-empty words. The syntactic complexity of L is
the cardinality of its syntactic/transition semigroup. It was pointed out in [13]
that languages having the same quotient complexity can have vastly different
syntactic complexities. Thus syntactic complexity can be a finer measure of
complexity. Syntactic complexity of suffix-free languages was studied in [9,11].

Complexities of Atoms. A possible third measure of complexity of a regular
language L is the number and quotient complexities, which we call simply com-
plexities, of certain languages, called atoms, uniquely defined by L. Atoms arise
from an equivalence on Σ∗ which is a left congruence refined by the Myhill con-
gruence, where two words x and y are equivalent if ux ∈ L if and only if uy ∈ L
for all u ∈ Σ∗ [16]. Thus x and y are equivalent if x ∈ u−1L ⇔ y ∈ u−1L. An
equivalence class of this relation is called an atom [12] of L. It follows that an
atom is a non-empty intersection of complemented and uncomplemented quo-
tients of L. The quotients of a language are unions of its atoms.

Most Complex (Streams of) Languages. The concept of most complex lan-
guages in a class C of languages was introduced in [4]. Such languages, with some
of their dialects, must meet the bounds in the class C on the quotient complexi-
ties of the unary operations reversal and (Kleene) star, and on the product and
the binary boolean operations. Moreover, they must also have the largest possi-
ble syntactic semigroups and the most complex atoms. It is surprising that there
exists a single stream of languages that meets all these conditions for maximal
complexity [4]. Moreover, most complex right, left, and two-sided ideals also
exist [7]. We show in this paper, however, that this is not the case for suffix-free
languages.

Most complex languages are useful for testing the efficiency of systems. The
complexity of operations on languages gives a measure of time and space require-
ments for these operations. Hence to check the maximal size of the objects that
a system can handle, we can use most complex languages. It is certainly simpler
to have just one or two universal worst-case examples.

Terminology and Notation. A deterministic finite automaton (DFA) is a
quintuple D = (Q,Σ, δ, q0, F), where Q is a finite non-empty set of states, Σ is
a finite non-empty alphabet, δ : Q × Σ → Q is the transition function, q0 ∈ Q is

Complexity of Suffix-Free Regular Languages 149

the initial state, and F ⊆ Q is the set of final states. We extend δ to a function
δ : Q × Σ∗ → Q as usual. A DFA D accepts a word w ∈ Σ∗ if δ(q0, w) ∈ F . The
language accepted by D is denoted by L(D). If q is a state of D, then the language
Lq of q is the language accepted by the DFA (Q,Σ, δ, q, F). A state is empty if
its language is empty. Two states p and q of D are equivalent if Lp = Lq. A state
q is reachable if there exists w ∈ Σ∗ such that δ(q0, w) = q. A DFA is minimal
if all of its states are reachable and no two states are equivalent. Usually DFAs
are used to establish upper bounds on the quotient complexity of operations and
also as witnesses that meet these bounds.

A nondeterministic finite automaton (NFA) is a quintuple D = (Q,Σ, δ, I, F),
where Q, Σ and F are defined as in a DFA, δ : Q × Σ → 2Q is the transition
function, and I ⊆ Q is the set of initial states. An ε-NFA is an NFA in which
transitions under the empty word ε are also permitted.

The quotient DFA of a regular language L with n quotients is defined by
D = (K,Σ, δD,K0, FD), where δD(Ki, w) = Kj if and only if w−1Ki = Kj , and
FD = {Ki | ε ∈ Ki}. To simplify the notation, without loss of generality we use
the set Qn = {0, . . . , n − 1} of subscripts of quotients as the set of states of D;
then D is denoted by D = (Qn,Σ, δ, 0, F), where δ(p,w) = q if δD(Kp, w) = Kq,
and F is the set of subscripts of quotients in FD. The quotient DFA of L is
unique and it is isomorphic to each complete minimal DFA of L.

A transformation of Qn is a mapping t : Qn → Qn. The image of q ∈ Qn

under t is denoted by qt. The range of t is rng(t) = {q ∈ Qn | pt = q for some p ∈
Qn}. In any DFA, each letter a ∈ Σ induces a transformation δa of the set Qn

defined by qδa = δ(q, a); we denote this by a : δa. By a slight abuse of notation
we use the letter a to denote the transformation it induces; thus we write qa
instead of qδa. We also extend the notation to sets of states: if P ⊆ Qn, then
Pa = {pa | p ∈ P}. If s, t are transformations of Q, their composition is denoted
by s ◦ t and defined by q(s ◦ t) = (qs)t; the ◦ is usually omitted. Let TQn

be the
set of all nn transformations of Qn; then TQn

is a monoid under composition.
For k � 2, a transformation (permutation) t of a set P = {q0, q1, . . . , qk−1} ⊆

Q is a k-cycle if q0t = q1, q1t = q2, . . . , qk−2t = qk−1, qk−1t = q0. A k-cycle is
denoted by (q0, q1, . . . , qk−1). A 2-cycle (q0, q1) is called a transposition. A trans-
formation that changes only one state p to a state q �= p is denoted by (p → q).
A transformation mapping a subset P of Q to a single state and acting as the
identity on Q \ P is denoted by (P → q). We also denote by [q0, . . . , qn−1] the
transformation that maps p ∈ {0, . . . , n − 1} to qp.

In this paper we consider only three types of simple dialects of DFAs and
languages. Let Σ = {a1, . . . , ak}, and let π be a permutation of Σ:

1. DFA Dn(a1, . . . , ak) is permutationally equivalent to DFA D′
n(a1, . . . , ak) if

D′
n(a1, . . . , ak) = Dn(π(a1), . . . , π(ak)). In other words, the transformation

induced by ai in D′
n is the transformation induced by π(ai) in Dn.

2. Let Γ ⊆ Σ. DFA D′
n is the restriction of a DFA Dn to Γ if all the transitions

induced by letters in Σ\Γ are deleted from Dn. For example, Dn(−, b,−, d) is
the DFA Dn(a, b, c, d) restricted to the alphabet {b, d}. However, if the dashes
appear only at the end, they may be omitted.

150 J. Brzozowski and M. Szyku�la

3. DFA D′
n is the permutational restriction of a DFA Dn to Γ if the letters of

Σ are first permuted and then the letters in Σ \ Γ are deleted.

The same notational conventions are used for languages.

Contributions.

1. We prove that a most complex stream of suffix-free languages does not exist.
This is in contrast with the existence of streams of most complex regular
languages [4], right ideals [5,6], and left and two-sided ideals [6,7].

2. We exhibit a single ternary witness that meets the bounds for star, product,
and boolean operations.

3. We exhibit a single quinary witness that meets the bounds for boolean oper-
ations, reversal, number of atoms, syntactic complexity, and quotient com-
plexities of atoms.

4. We show that when m,n � 6 and m − 2 and n − 2 are relatively prime, there
are binary witnesses that meet the bound (m − 1)2n−2 + 1 for product.

5. We prove that any witness DFA for star and any second witness DFA for
product must have transition semigroups that are subsemigroups of the suffix-
free semigroup of transformations T�5(n) which is largest for n � 5; that the
witness DFAs for reversal, syntactic complexity and quotient complexities of
atoms must have transition semigroups that are subsemigroups of the suffix-
free semigroup of transformations T�6(n) which is largest for n = 2, 3 and
n � 6; and that the witness DFAs for boolean operations can have transition
semigroups that are subsemigroups of T�5 ∩ T�6.

The full version of this paper is available at [10].

2 Suffix-Free Transformations

In this section we discuss some properties of suffix-free languages with emphasis
on their syntactic semigroups as represented by the transition semigroups of their
quotient DFAs. We assume that our basic set is always Qn = {0, . . . , n − 1}.

Let Dn = (Qn,Σ, δ, 0, F) be the quotient DFA of a suffix-free language L, and
let Tn be its transition semigroup. For any transformation t of Qn, the sequence
(0, 0t, 0t2, . . .) is called the 0-path of t. Since Qn is finite, there exist i, j such
that 0, 0t, . . . , 0ti, 0ti+1, . . . , 0tj−1 are distinct but 0tj = 0ti. The integer j − i is
the period of t and if j − i = 1, t is initially aperiodic. The following properties
of suffix-free languages are known [9,15]:

Lemma 1. If L is a suffix-free language, then

1. There exists w ∈ Σ∗ such that w−1L = ∅; hence Dn has an empty state,
which is state n − 1 by convention.

2. For w, x ∈ Σ+, if w−1L �= ∅, then w−1L �= (xw)−1L.
3. If L �= ∅ and w−1L = L, then w = ε. This is known as the non-returning

property [15] and also as unique reachability [8].
4. For any t ∈ Tn, the 0-path of t in Dn is aperiodic and ends in n − 1.

Complexity of Suffix-Free Regular Languages 151

An (unordered) pair {i, j} of distinct states in Qn \ {0, n − 1} is colliding (or p
collides with q) in Tn if there is a transformation t ∈ Tn such that 0t = p and
rt = q for some r ∈ Qn\{0, n−1}. A pair of states is focused by a transformation
u of Qn if u maps both states of the pair to a single state r �∈ {0, n − 1}. We
then say that {p, q} is focused to state r. If L is a suffix-free language, then from
Lemma 1 (2) it follows that if {p, q} is colliding in Tn, there is no transformation
t′ ∈ Tn that focuses {p, q}. So colliding states can be mapped to a single state
by a transformation in Tn only if that state is the empty state n − 1.

Following [9], for n � 2, we let

B(n) = {t ∈ TQ | 0 �∈ rng(t), (n−1)t = n−1, and for all j � 1,

0tj = n − 1 or 0tj �= qtj , ∀q such that 0 < q < n − 1}.

Proposition 1 ([9]). If L is a regular language having quotient DFA Dn =
(Qn, Σ, δ, 0, F) and syntactic semigroup TL, then the following hold:

1. If L is suffix-free, then TL is a subset of B(n).
2. If L has the empty quotient, only one final quotient, and TL ⊆ B(n), then L

is suffix-free.

Since the transition semigroup of a minimal DFA of a suffix-free language must
be a subsemigroup of B(n), the cardinality of B(n) is an upper bound on the
syntactic complexity of suffix-free regular languages with quotient complexity n.
This upper bound, however, cannot be reached since B is not a semigroup for
n � 4: We have s = [1, 2, n − 1, . . . , n − 1] and t = [n − 1, 2, 2, . . . , 2, n − 1] in
B(n), but st = [2, 2, n − 1, . . . , n − 1] is not in B(n).

We now consider semigroups that are largest for n � 5. For n � 2, let
T�5(n) = {t ∈ B(n) | for all p, q ∈ Qn where p �= q, either pt = qt = n −
1 or pt �= qt}.

Proposition 2. For n � 4, semigroup T�5(n) is generated by the following set
H�5(n) of transformations of Q:

– a : (0 → n − 1)(1, . . . , n − 2),
– b : (0 → n − 1)(1, 2),
– for 1 � p � n − 2, cp : (p → n − 1)(0 → p).

For n = 4, a and b coincide, and so H�5(4) = {a, c1, c2}. Also, H�5(3) =
{a, c1} = {[2, 1, 2], [1, 2, 2]} and H�5(2) = {c1} = {[1, 1]}.
A DFA using these transformations is illustrated in Fig. 1 for n = 5.

Proposition 3. For n � 2, T�5(n) is the unique maximal semigroup of a suffix-
free language in which all possible pairs of states are colliding.

Proposition 4. For n � 5, the number n of generators of T�5(n) cannot be
reduced.

152 J. Brzozowski and M. Szyku�la

0 1 2 3

4

c1
a, b

c2, c3

b

c1, c3

a

b, c1, c2
c2 a

c3

a, b
c1 c2 c3

Σ

0 1 2 3

4

e
a, b

c

b

c, d

a

a, c

b, d

Σ \ {e}
d, e e e

Σ

Fig. 1. DFAs with T�5(5) (left) and T�6(5) (right) as their transition semigroups

Next, we present semigroups that are largest for n � 6. For n � 2, let

T�6(n) = {t ∈ B(n) | 0t = n − 1 or qt = n − 1, ∀ q such that 1 � q � n − 2}.

Proposition 5 ([11]). For n � 4, T�6(n) is a semigroup contained in B(n),
its cardinality is (n − 1)n−2 + (n − 2), and it is generated by the set G�6(n) of
the following transformations:

– a : (0 → n − 1)(1, . . . , n − 2);
– b : (0 → n − 1)(1, 2);
– c : (0 → n − 1)(n − 2 → 1);
– d : ({0, 1} → n − 1);
– e : (Q \ {0} → n − 1)(0 → 1).

For n = 4, a and b coincide, and so G�6(4) = {a, c, d, e}. Also G�6(3) =
{a, e} = {[2, 1, 2]}, {[1, 2, 2]} and G�6(2) = {e} = {[1, 1]}.
A DFA using the transformations of Proposition 5 is shown in Fig. 1 for n = 5.
Semigroups T�6(n) are the largest suffix-free semigroups for n � 6 [11].

3 Witnesses with Transition Semigroups in T�5(n)

In this section we consider DFA witnesses whose transition semigroups are sub-
semigroups of T�5(n). We show that there is one witness that satisfies the
bounds for star, product and boolean operations.

Definition 1. For n � 6, we define the DFA Dn = (Qn, Σ, δ, 0, {1}), where
Qn = {0, . . . , n − 1}, Σ = {a, b, c}, and δ is defined by the transformations

– a : (0 → n − 1)(1, 2, 3)(4, . . . , n − 2),
– b : (2 → n − 1)(1 → 2)(0 → 1)(3, 4),
– c : (0 → n − 1)(1, . . . , n − 2).

Complexity of Suffix-Free Regular Languages 153

Theorem 1 (Star, Product, Boolean Operations). Let Dn(a, b, c) be the
DFA of Definition 1, and let the language it accepts be Ln(a, b, c). For n � 6,
Ln and its dialects meet the bounds for star, product and boolean operations as
follows:

1. L∗
n(a, b,−) meets the bound 2n−2 + 1. [Cmorik and Jirásková [14]]

2. Lm(a, b, c) · Ln(b, c, a) meets the bound (m − 1)2n−2 + 1.
3. Lm(a, b,−) and Ln(c, b,−) meet the bounds mn − (m + n − 2) for union and

symmetric difference, mn−2(m+n−3) for intersection, and mn−(m+2n−4)
for difference.

The claim about the star operation was proved in [14]. We add a result about
the transition semigroup of the star witness and prove the remaining two claims.

In 2009 Han and Salomaa [15] showed that the language of a DFA over a four-
letter alphabet meets the bound 2n−2 + 1 for the star operation for n � 4. The
transition semigroup of this DFA is a subsemigroup of T�5(n). In 2012 Cmorik
and Jir’asková [14] showed that for n � 6 a binary alphabet {a, b} suffices. The
transition semigroup of this DFA is again a subsemigroup of T�5(n). We prove
that these are special cases of the following general result:

Theorem 2. For n � 4, the transition semigroup of the quotient DFA D of a
suffix-free language L that meets the bound 2n−2 + 1 for the star operation is a
subsemigroup of T�5(n) and is not a subsemigroup of T�6(n).

For the product, to avoid confusing the states of the two DFAs, we label the states
of the first DFA differently. Let D′

m = D′
m(a, b, c) = (Q′

m, Σ, δ′, 0′, {1′}), where
Q′

m = {0′, . . . , (m−1)′}, and δ′(q′, x) = p′ if δ(q, x) = p, and let Dn = Dn(b, c, a).
We use the standard construction of the ε-NFA N for the product: the final state
of D′

m becomes non-final, and an ε-transition is added from that state to the
initial state of Dn. This is illustrated in Fig. 2 for m = 9, n = 8.

Q9:

0 1 2 3 4 5 6 7

b b b

b a, b, c a, c b, c a, c a, c a, c

a b a

c
Q8:

0 1 2 3 4 5 6
c a, b, c a, b a, c a, b a, b

b c b

a

c c
ε

Fig. 2. The NFA N for product L′
9(a, b, c) · L8(b, c, a). The empty states 8′ and 7 and

the transitions to them are omitted

154 J. Brzozowski and M. Szyku�la

We use the subset construction to determinize N to get a DFA P for the
product. The states of P are subsets of Q′

m ∪ Qn and have one of three forms:
{0′}, {1′, 0} ∪ S or {p′} ∪ S, where p′ = 2′, . . . , (m − 1)′ and S ⊆ {1, . . . , n − 1}.

Note that for each x ∈ Σ every state q ∈ Qn \ {0, n − 1} has a unique
predecessor state p ∈ Qn \ {n − 1} such that px = q. For w ∈ Σ∗, the w-
predecessor of S ⊆ Qn \ {0, n − 1} is denoted by Sw−1.

Lemma 2. For each n � 6 and each q ∈ Qn there exists a word wq ∈ c{a, b}∗

such that 1′wq = 3′, 0wq = q, and each state of Qn \ {0, q, n − 1} has a unique
wq-predecessor in Qn \ {0, n − 1}.
Theorem 3 (Product: Ternary Case). For n � 6, the product L′

m(a, b, c) ·
Ln(b, c, a) meets the bound (m − 1)2n−2 + 1.

Cmorik and Jirásková [14, Theorem 5] also found binary witnesses that meet
the bound (m − 1)2n−2 in the case where m − 2 and n − 2 are relatively prime.
It remained unknown whether the bound (m − 1)2n−2 + 1 is reachable with a
binary alphabet. We show that a slightly modified first witness of [14] meets
the upper bound exactly. For m � 6, n � 3, let the first DFA be that of [14],
except that the set of final states is changed to {2′, 4′}; thus let Σ = {a, b},
D′

m(a, b) = (Q′
m, Σ, δ′, 0′, {2′, 4′}), and let Dn(a, b) = (Qn, Σ, δ, 0, {1}) be the

second DFA [14]. Let L′
m(a, b) and Ln(a, b) be the corresponding languages.

Theorem 4 (Product: Binary Case). For m,n � 6, L′
m(a, b) is suffix-free

and L′
m(a, b) · Ln(a, b) meets the bound (m − 1)2n−2 + 1 when m − 2 and n − 2

are relatively prime.

Theorem 5. Suppose m,n � 4 and L′
mLn meets the bound 2n−2 + 1. Then

the transition semigroup Tn of a minimal DFA Dn of Ln is a subsemigroup of
T�5(n) and is not a subsemigroup of T�6.

For boolean operations we use the witnesses L′
m(a, b,−) and Ln(c, b,−) and

relabel them as L′
m(a, b) and Ln(a, b). See Fig. 3.

Theorem 6. For m,n � 6, L′
m(a, b) and Ln(a, b) meet the bounds for boolean

operations.

4 Witnesses with Semigroups in T�6(n)

We now turn to the operations which cannot have witnesses with transition
semigroups in T�5.

Definition 2. For n � 4, we define the DFA Dn(a, b, c, d, e) = (Qn, Σ, δ, 0, F),
where Qn = {0, . . . , n−1}, Σ = {a, b, c, d, e}, δ is defined by the transformations
of Proposition 5, and F = {q ∈ Qn \ {0, n − 1} | q is odd}. For n = 4, a and
b coincide, and we can use Σ = {b, c, d, e}. The structure of D5(a, b, c, d, e) is
illustrated in Fig. 1.

Our main result in this section is the following theorem:

Complexity of Suffix-Free Regular Languages 155

Q9:

0 1 2 3 4 5 6 7

b b b

b a, b a b a a a

a b a

Q8:

0 1 2 3 4 5 6
b a, b a a, b a a

b

a

b b

Fig. 3. Witnesses D′
9(a, b) and D8(a, b) for boolean operations. The empty states 8′

and 7 and the transitions to them are omitted figure moved

Theorem 7 (Boolean Operations, Reversal, Number and Complexi-
ties of Atoms, Syntactic Complexity). Let Dn(a, b, c, d, e) be the DFA of
Definition 2, and let the language it accepts be Ln(a, b, c, d, e). Then Ln(a, b, c, d, e)
meets the following bounds:

1. For n,m � 4, Lm(a, b,−, d, e) and Ln(b, a,−, d, e) (Fig. 4) meet the bounds
mn− (m+n− 2) for union and symmetric difference, mn− 2(m+n− 3) for
intersection, and mn − (m + 2n − 4) for difference.

2. For n � 4, Ln(a,−, c,−, e) meets the bound 2n−2 +1 for reversal and number
of atoms.

3. For n � 6, Lm(a, b, c, d, e) meets the bound (n − 1)n−2 + n − 2 for syntactic
complexity, and the bounds on the quotient complexities of atoms.

The claim about syntactic complexity is known from [11]. It was shown in [12]
that the number of atoms of a regular language L is equal to the quotient com-
plexity of LR. In the next subsections we prove the claim about boolean opera-
tions, reversal, and atom complexities. First we state some properties of Dn.

Proposition 6. For n � 4 the DFA of Definition 2 is minimal, accepts a suffix-
free language, and its transition semigroup Tn has cardinality (n−1)n−2 +n−2.
In particular, Tn contains (a) all (n − 1)n−2 transformations that send 0 and
n−1 to n−1 and map Q\{0, n−1} to Q\{0}, and (b) all n−2 transformations
that send 0 to a state in Q \ {0, n − 1} and map all the other states to n − 1.
Also, Tn is generated by {a, b, c, d, e} and cannot be generated by a smaller set
of transformations.

We now show that witness DFAs for boolean operations may have transition
semigroups in T�6.

Theorem 8. For n,m � 4, Lm(a, b,−, d, e) and Ln(b, a,−, d, e) meet the bounds
for boolean operations.

156 J. Brzozowski and M. Szyku�la

Since td = tc1tc1 and te = tc1tc2 · · · tcn−1 , where the ci are from Proposition 2,
the semigroup of Dn(a, b,−, d, e) is in T�5(n) ∩ T�6(n). In fact, one can verify
that the semigroup of Dn(a, b,−, d, e) is T�5(n) ∩ T�6(n).

Q8(a, b,−, d, e):

0 1 2 3 4 5 6

d b, d b, d b, d b, d

e a, b a a a a
b

a

Q7(b, a,−, d, e):

0 1 2 3 4 5
e a, b b b b

a

b

d a, d a, d a, d

Fig. 4. The DFAs D′
8 and D7 for boolean operations; empty states omitted

Han and Salomaa [15] showed that to meet the bound for reversal one can
use the binary DFA of Leiss [18] and add a third input to get a suffix-free DFA.
Cmorik and Jirásková [14] showed that a binary alphabet will not suffice. We
show a different ternary witness below, and prove that any witness must have
its transition semigroup in T�6.

Theorem 9 (Semigroup of Reversal Witness). For n � 4, the transition
semigroup of a minimal DFA of a suffix-free language Ln that meets the bound
2n−2 + 1 for reversal is a subsemigroup of T�6(n) but not of T�5(n).

Theorem 10 (Reversal Complexity). If n � 4, then Ln(a,−, c,−, e) of
Definition 2 meets the bound 2n−2 + 1 for reversal.

Although Ln(a,−, c,−, e) meets the bound for the number of atoms, it does
not meet the bounds on the quotient complexities of atoms; we now show that
Ln(a, b, c, d, e) does.

Let Qn = {0, . . . , n − 1} and let L be a non-empty regular language with
quotients K = {K0, . . . , Kn−1}. Let D = (Qn, Σ, δ, 0, F) be the minimal DFA of
L in which the language of state q is Kq.

Denote the complement of a language L by L = Σ∗ \L. Each subset S of Qn

defines an atomic intersection AS =
⋂

i∈S Ki ∩ ⋂
i∈S Ki, where S = Qn \ S. An

atom of L is a non-empty atomic intersection. Since atoms are pairwise disjoint,
every atom AS has a unique atomic intersection associated with it, and this
atomic intersection has a unique subset S of K associated with it.

Let AS =
⋂

i∈S Ki ∩ ⋂
i∈S Ki be an atom. For any w ∈ Σ∗ we have

w−1AS =
⋂

i∈S

w−1Ki ∩
⋂

i∈S

w−1Ki.

Complexity of Suffix-Free Regular Languages 157

Since a quotient of a quotient of L is also a quotient of L, w−1AS has the form:

w−1AS =
⋂

i∈X

Ki ∩
⋂

i∈Y

Ki,

where |X| � |S| and |Y | � n − |S|, X,Y ⊆ Qn.

Proposition 7. Suppose L is a suffix-free language with n � 4 quotients. Then
L has at most 2n−2 + 1 atoms. Also, the complexity κ(AS) of atom AS satisfies

κ(AS)

⎧
⎪⎨

⎪⎩

� 2n−2 + 1, if S = ∅;
= n, if S = {0};
� 1 +

∑|S|
x=1

∑n−2−|S|
y=0

(
n−2
x

)(
n−2−x

y

)
, ∅ �= S ⊆ {1, . . . , n − 2}.

(1)

Following Iván [16] we define a DFA for each atom:

Definition 3. Suppose D = (Q,Σ, δ, q0, F) is a DFA and let S ⊆ Q. Define the
DFA DS = (QS , Σ,Δ, (S, S), FS), where

– QS = {(X,Y) | X,Y ⊆ Q,X ∩ Y = ∅} ∪ {⊥}.
– For all a ∈ Σ, (X,Y)a = (Xa, Y, a) if Xa ∩ Y a = ∅, and (X,Y)a = ⊥

otherwise; and ⊥a = ⊥.
– FS = {(X,Y) | X ⊆ F, Y ⊆ F}.
DFA DS recognizes the atomic intersection AS of L. If DS recognizes a non-
empty language, then AS is an atom.

Theorem 11. For n � 4, the language Ln(D(a, b, c, d, e)) of Definition 2 meets
the bounds of Proposition 7 for the atoms.

Remark 1. The complexity of atoms in left ideals [6] is

κ(AS)

⎧
⎪⎨

⎪⎩

= n, if S = Qn;
� 2n−1, if S = ∅;
� 1 +

∑|S|
x=1

∑n−|S|
y=1

(
n−1
x

)(
n−1−x
y−1

)
, otherwise.

(2)

The formula for S �∈ {∅, Qn} evaluated for n−1 and S ⊆ {1, . . . , n−2} becomes
1 +

∑|S|
x=1

∑n−2−|S|
y=1

(
n−2
x

)(
n−2−x
y−1

)
, which is precisely the formula for suffix-free

languages. �

5 Conclusions

It may appear that semigroup T�5(n) should not be of great importance, since
it exceeds T�6(n) only for n = 4 and n = 5, and therefore should not matter
when n is large. However, our results show that this is not the case. We conclude
with our result about the non-existence of single universal suffix-free witness.

158 J. Brzozowski and M. Szyku�la

Theorem 12. There does not exist a most complex stream in the class of suffix-
free languages.

The first four studies of most complex languages were done for the classes of
regular languages [4], right ideals [5,6], left ideals [6,7], and two-sided ideals [6,7].
In those cases there exists a single witness stream of languages over a minimal
alphabet which, together with their dialects, cover all the complexity measures.
In the case of suffix-free languages such a stream does not exist. Our study
is an example of a general problem: Given a class of regular languages, find
the smallest number of streams over minimal alphabets that together cover all
the measures. The witness of Definition 1 is conjectured to be over a minimal
alphabet, unless the bound for product can be met by binary DFAs for every
n,m > c, for some c; this is an open problem. The witness of Definition 2 is
over a minimal alphabet, since five letters are required to meet then bound for
syntactic complexity.

References

1. Ang, T., Brzozowski, J.: Languages convex with respect to binary relations, and
their closure properties. Acta Cybernet. 19(2), 445–464 (2009)

2. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press, Cambridge (2009)

3. Brzozowski, J.: Quotient complexity of regular languages. J. Autom. Lang. Comb.
15(1/2), 71–89 (2010)

4. Brzozowski, J.: In search of the most complex regular languages. Int. J. Found.
Comput. Sc. 24(6), 691–708 (2013)

5. Brzozowski, J., Davies, G.: Most complex regular right-ideal languages. In:
Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614,
pp. 90–101. Springer, Heidelberg (2014)

6. Brzozowski, J., Davies, S.: Quotient complexities of atoms in regular ideal lan-
guages (2015). http://arxiv.org/abs/1503.02208

7. Brzozowski, J., Davies, S., Liu, B.Y.V.: Most complex regular ideals (2015). (in
preparation)

8. Brzozowski, J., Jirásková, G., Li, B., Smith, J.: Quotient complexity of bifix-,
factor-, and subword-free regular languages. Acta Cybernet. 21, 507–527 (2014)

9. Brzozowski, J., Li, B., Ye, Y.: Syntactic complexity of prefix-, suffix-, bifix-, and
factor-free regular languages. Theoret. Comput. Sci. 449, 37–53 (2012)

10. Brzozowski, J., Szyku�la, M.: Complexity of suffix-free regular languages (2015).
http://arxiv.org/abs/1504.05159

11. Brzozowski, J., Szyku�la, M.: Upper bound for syntactic complexity of suffix-free
languages. In: Okhotin, A., Shallit, J. (eds.) DCFS 2015. LNCS, vol. 9118, pp.
33–45. Springer, Heidelberg (2015). http://arxiv.org/abs/1412.2281

12. Brzozowski, J., Tamm, H.: Theory of átomata. Theoret. Comput. Sci. 539, 13–27
(2014)

13. Brzozowski, J., Ye, Y.: Syntactic complexity of ideal and closed languages. In:
Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 117–128. Springer,
Heidelberg (2011)

http://arxiv.org/abs/1503.02208
http://arxiv.org/abs/1504.05159
http://arxiv.org/abs/1412.2281

Complexity of Suffix-Free Regular Languages 159

14. Cmorik, R., Jirásková, G.: Basic operations on binary suffix-free languages. In:
Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.)
MEMICS 2011. LNCS, vol. 7119, pp. 94–102. Springer, Heidelberg (2012)

15. Han, Y.S., Salomaa, K.: State complexity of basic operations on suffix-free regular
languages. Theoret. Comput. Sci. 410(27–29), 2537–2548 (2009)

16. Iván, S.: Complexity of atoms, combinatorially (2015). http://arxiv.org/abs/
1404.6632

17. Jirásková, G., Olejár, P.: State complexity of union and intersection of binary
suffix-free languages. In: Bordihn, H., et al. (eds.) NMCA, pp. 151–166. Austrian
Computer Society, Wien (2009)

18. Leiss, E.: Succinct representation of regular languages by boolean automata. The-
oret. Comput. Sci. 13, 323–330 (2009)

19. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.
Nauk SSSR 194, 1266–1268 (1970). (Russian): English translation: Soviet Math.
Dokl. 11, 1373–1375 (1970)

20. Mirkin, B.G.: On dual automata. Kibernetika (Kiev) 2, 7–10 (1966). (Russian):
English translation: Cybernetics 2, 6–9 (1966)

21. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of Formal Languages, pp. 679–746. Springer, New York (1997)

22. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

23. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234
(2001)

http://arxiv.org/abs/1404.6632
http://arxiv.org/abs/1404.6632

Alternation Hierarchies of First Order Logic
with Regular Predicates

Luc Dartois2,3 and Charles Paperman1(B)

1 University of Warsaw, Warsaw, Poland
charles.paperman@gmail.com

2 École Centrale Marseille, Marseille, France
luc.dartois@lif.univ-mrs.fr

3 LIF, UMR7279, Aix-Marseille Université and CNRS,
Marseille, France

Abstract. We investigate the decidability of the definability problem
for fragments of first order logic over finite words enriched with regular
numerical predicates. In this paper, we focus on the quantifier alternation
hierarchies of first order logic. We obtain that deciding this problem for
each level of the alternation hierarchy of both first order logic and its two-
variable fragment when equipped with all regular numerical predicates
is not harder than deciding it for the corresponding level equipped with
only the linear order.

Relying on some recent results, this proves the decidability for each
level of the alternation hierarchy of the two-variable first order fragment
while in the case of the first order logic the question remains open for
levels greater than two.

The main ingredients of the proofs are syntactic transformations of
first-order formulas as well as the infinitely testable property, a new
algebraic notion on varieties that we define.

1 Introduction

The equivalence between regular languages and automata as well as monadic
second order logic [3] and finite monoids [14] was the start of a domain of research
that is still active today. In this article, we are interested in the logic on finite
words, and more precisely the question we address is the definability problem for
fragments of logic. Fragments of logic are defined as sets of monadic second order
formulas satisfying some restrictions, and are equipped with a set of predicates
called a signature. Then the definability problem of a fragment of logic F consists
in deciding if a regular language can be defined by a formula of F.

This question has already been considered and solved in many cases where the
signature contains only the predicate <, which denotes the linear order over the
positions of the word. For instance, a celebrated result by Schützenberger [19]
and McNaughton and Papert [13] gave an effective algebraic characterization
of languages definable by first order formulas. The decidability has often been
achieved through algebraic means, showing a deep connection between algebraic
c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 160–172, 2015.
DOI: 10.1007/978-3-319-22177-9 13

Alternation Hierarchies of First Order Logic 161

and logical properties of a given regular language. In this article, we follow
this approach.

We investigate the question of the behaviour of the decidability of some
fragments when their signature is enriched with regular numerical predicates.
These predicates are exactly the formulas of monadic second order logic without
letter predicates. Intuitively they correspond to the maximal class of numerical
predicates that can enrich the signature of a fragment of MSO, while keeping
the definable languages regular. This question was already considered in the case
of first order logic (FO) in [2] and one of its fragments: the formulas without
quantifier alternation in [15].

The enrichment by regular numerical predicates arose in the context of
the Straubing’s conjectures [23]. Roughly speaking, these conjectures state that
deciding the definability of a regular language to a fragment of enriched logic
corresponds to deciding its circuit complexity. It is known [15,23] that an enrich-
ment of the classical fragments by regular numerical predicates is equivalent to an
enrichment by the signature [<,+1,MOD], where +1 denotes the local predicates
and MOD the modular predicates. A first step toward the study of fragments of
logic with these predicates was initiated by Straubing [22]. He obtained that
adding the local predicates preserves the decidability for a large number of frag-
ments. As a corollary of this work, Straubing obtained that the decidability of the
alternation hierarchy of first order logic (BΣk) equipped with [<,+1] reduces to
the decidability of the simpler one [<]. More recently, Kufleitner and Lauser [11]
proved the decidability of the alternation hierarchy of the two-variable first order
fragment (FO2

k) equipped with [<,+1] by using the recent results [10,12] on the
decidability of this hierarchy with [<].

In this context, the case of modular predicates is poorly understood. The
study of this enrichment was first considered for first order logic in [2], and had
been extended to the first level of its alternation hierarchy with the successor
predicate in [15], and later without it in [4]. The enrichment by a finite set of
modular predicate was considered in [8]. Finally, the authors provided a charac-
terization of the two-variable first order logic over the signature [<,MOD] in [6].

In this paper, we focus on the enrichment by all regular predicates and let
aside the question of the signature [<,MOD], which surprisingly turns out to be
more intricate. The fragments we consider here are the quantifier alternations
hierarchy of the first order logic and its two-variable counterpart. Our main result
states that for both of these hierarchies, the decidability of each level equipped
with regular numerical predicates reduces to decidability of the same level with
the signature [<,+1]. Then by using the recent decidability result of Kufleitner
and Lauser [11], as well as the decidability of BΣ2[<] by Place and Zeitoun [18],
we deduce that the fragments FO2

k[Reg], for any positive k, and BΣ2[Reg] are
decidable. Our main contributions are summarized in the next table.

Proofs Methods. The proofs of the main results can be decomposed in two major
steps. The first part is rather classical and shows that in the cases we consider,
adding a finite number of modular predicates does not affect the decidability.
The second part is dedicated to finding a systematic way to select, for a given

162 L. Dartois and C. Paperman

BΣ1 = FO2
1 FO2

k FO2 BΣ2 BΣk FO

[<] Decidable Decidable Decidable Decidable Open Decidable

[20,26] [10,12] [25] [18] [13,19]

[<,+1] Decidable Decidable Decidable Decidable Reduces to [<] Decidable

[9] [11] [1,25] [18,22] [22] [13,19]

[Reg] Decidable Decidable Decidable Decidable Reduces to [<,+1] Decidable

[16] New result New result New result New result [2]

regular language and a fragment, a finite number of modular predicates that
can serve as witness of its definability. This is done through a heavy use of the
algebraic framework of varieties of semigroups. We introduce a new notion for
varieties of semigroups that we call the infinitely testable property and show
that this property is satisfied by the considered fragments. We then conclude
by proving that this property allows us to find such a witness set for modular
predicates that only depends on the input language.

Generalizations. While we are focused in this article on the levels of the quan-
tifier alternation hierarchies, our approach can be generalized to other frag-
ments under certain conditions. The generality of our results are discussed in
Remarks 4, 6, 10 and 12.

Organization of the Paper. Section 2 defines the logical and algebraic notions
that will be used in the paper. The main results of the paper are presented in
Sect. 3. The Sects. 4 and 5 are then dedicated to the proofs. Section 4 first dis-
cusses adding a finite number of predicates and reduces our decidability problems
to a delay question, which can be summarized as being able to choose the proper
finite set of modular predicates. Then Sect. 5 defines a new notion, the infi-
nitely testable property, which is satisfied by the fragments that we consider and
whereby gives a delay. Finally, we discuss in Sect. 5 some other results that can
be directly obtained from our approach, as well as a related algebraic character-
ization of the two-variable first order logic with the regular numerical signature.

2 Preliminaries

Logic. We consider the monadic second order logic on finite words MSO[<] as
usual (see [23] for example). We denote by A an alphabet and by a a letter of A.
A word u over an alphabet A is a set of labelled positions ordered from 0 to
|u| − 1. The set of words over A is denoted A∗ and a subset L of A∗ is called a
language. We also denote by A+ the set of non-empty words. A language is said
to be defined by a formula if it corresponds exactly to the set of words that satisfy
this formula. It is said to be regular if it is defined by a MSO[<] formula. When
syntactic restrictions are applied to MSO[<], one defines fragments of logic that
characterize subclasses of regular languages. The most well-known fragment is
probably the first order logic, whose expressive power was characterized thanks
to the results of [13,19]. The first order logic itself gave birth to its own zoo

Alternation Hierarchies of First Order Logic 163

of fragments. These were defined using syntactical restrictions such as limiting
the number of variables, or by enrichment of its signature. A fragment F with
signature σ will be denoted F[σ] and will refer to the formulas as well as the
class of languages it defines.

We first define the different signatures that will appear through this paper,
and then formally define the fragments that are considered here: the quantifier
alternation hierarchies.

Signatures. We are interested in regular numerical predicates, which are numer-
ical predicates that can only define regular languages. Simultaneously, Straub-
ing [23] and Péladeau [15] defined three sets of regular numerical predicates that
can be used as a base for all the regular numerical predicates. The first set is
the singleton order {<} which is a binary predicate corresponding to the natural
order on the positions of the input word. The second set is {min,max,S} and
is called the local predicates. It is usually denoted +1. The predicates min and
max are unary predicates that are satisfied respectively on the first and last
positions. The predicate S, the successor, is a binary predicate satisfied if the
second variable quantifies the successor of the first one.

Finally, we define, for each positive integer d, the modular predicates on d,
denoted MODd, as the set, for i < d, of predicates MODd

i (x) which are unary
predicates satisfied if the position quantified by x is congruent to i modulo d, and
the predicates Dd

i which are constants holding if the length of the input word is
congruent to i mod d. We denote by MOD the union of the classes MODd, for
any positive d.

Example 1. The language (A2)∗aA∗ is defined by the formula: ∃x a(x) ∧
MOD2

0(x).

The signatures that we will consider for our fragments are unions of these three
sets of regular numerical predicate, and will always contain the letter predicates.
Abusing notations, we will also write Reg = {<} ∪ +1 ∪ MOD.

Fragments and Alternation Hierarchies. While MSO[Reg] = MSO[<], the
equality does not hold for subclasses of MSO. For a signature σ, we denote by
FO[σ] the class of first order formulas whose predicates belong to σ. Since the
local predicates can be expressed in FO[<], the fragments FO[<] and FO[<,+1]
define the same classes of languages, called the Star-Free languages [13]. On the
other hand the fragment FO[<,MOD] is strictly more expressive [2].

The fragment FO2 is the subclass of formulas of FO using only two symbols of
variables which can be reused (see Example 2). Here, the class of languages defined
by FO2[<] is strictly contained in FO2[<,+1] and FO2[<,MOD] (see [6,25]).

Example 2. The language A∗aA∗bA∗aA∗ can be described by the first order
formula ∃x∃y∃z x < y < z ∧a(x)∧b(y)∧a(z). This formula uses three variables
x, y and z. However, by reusing x we get an equivalent formula that uses only
two variables:

∃x a(x) ∧
(
∃y x < y ∧ b(y) ∧ (∃x y < x ∧ a(x)

))
. (a)

164 L. Dartois and C. Paperman

Now given a first order formula, one can compute a prenex normal form using
the De Morgan’s laws. We define the quantifier alternation of a formula as the
number of blocks of quantifiers ∀ and ∃ in its prenex normal form. For example,
the formula ∃x∃y∀z x<z<y∧a(x)∧a(y)∧c(z) has a quantifier alternation of 2.
It describes the language A∗ac∗aA∗. Then given a signature σ and a positive
integer k, we denote by BΣk[σ] the set of prenex normal formulas of FO[σ]
whose quantifier alternation is smaller or equal to k. They form the levels of the
quantifier alternation hierarchy over FO[σ].

When σ is reduced to {<}, this hierarchy is called the Straubing-Thérien
hierarchy [21,24]. Only the first [20] and second [18] levels are known to be decid-
able. For σ = {<} ∪ +1, this hierarchy is called the Dot-Depth hierarchy [5]. The
decidability of each level reduces to the decidability of the corresponding level of
the Straubing-Thérien hierarchy [22]. In both cases, the hierarchies are known
to be strict, and cover all Star-Free languages. In this article, we also consider
the alternation hierarchy of FO2. To define formally the number of alternations
of a formula, we cannot rely on the prenex normal form since the construction
increases the number of variables. In particular, remark that FO2[<] is equiva-
lent to Σ2[<] ∩ Π2[<] which is a subclass of BΣ2[<] [7]. That said, the number
of alternations is still a relevant parameter that could be defined as follows:
Consider the parse tree naturally associated to a formula. For instance, (a) has
∃ as a root and the atomic formulas as the leaves. In a two-variable first order
formula we count the maximal number of alternations appearing on a branch,
i.e. between the root and a leaf, once the negations have been pushed on to the
leaves. A more precise definition can be found in [28]. We denote by FO2

k[σ] the
formulas of FO2[σ] that have at most k − 1 quantifier alternations. The hierar-
chy induced by FO2

k[<] is known to be strict [28] and its definability problem
is decidable [10,12]. Note that the hierarchy FO2

k[<,+1] is also known to be
decidable [11].

Algebra. We quickly present here the fundamental notions used by the proofs of
the article (mainly Sect. 5) and refer the reader to [17] for a detailed approach.
A (finite) semigroup is a finite set equipped with an associative internal law.
A semigroup with a neutral element for this law is called a monoid. Recall that
a semigroup S divides another semigroup T if S is a quotient of a subsemigroup
of T . This defines a partial order on finite semigroups. Given a finite semigroup
S, an element e of S is idempotent if ee = e. We denote by E(S) the set of
idempotents of S. For any element x of S, there exists a positive integer n such
that xn is idempotent. We call this element the idempotent power of x and denote
it by xω. One can check that the application x → xω is well defined.

A semigroup S recognizes a language L over an alphabet A via a morphism
η : A+ → S. Given a regular language L, we can compute its syntactic semigroup
as the smallest semigroup that recognizes L, in the sense of division. For a
morphism η : A+ → S, the set η(A) is an element of the powerset semigroup
of S. As such it has an idempotent power. The stability index of a morphism
η is then defined as the smallest positive integer s such that η(As) = η(A2s).

Alternation Hierarchies of First Order Logic 165

Remark that η(As) forms a subsemigroup of S, that we call the stable semigroup.
A subset T of S is an ideal if the sets TS and ST are both included in T .
A (pseudo-)variety of semigroups is a non empty class of finite semigroups closed
under division and finite product.

A fragment of logic is characterized by a variety if they recognize the same
languages. By extension, a variety V will also refers to the class of languages it
recognizes. The most famous example is the equality FO[<] = A [13,19], where
A denotes the class of aperiodic semigroups, which are finite semigroups that
are not divided by any group. As for FO[<], the definability problem for a
fragment of logic has often been solved thanks to an algebraic characterization
([20,24,25] for example). This decidability is sometimes obtained through profi-
nite equations. For example, the variety of aperiodic semigroups A is defined by
the equation xω+1 = xω.

3 Main Results

We present here the main results of this paper, which are reductions of decid-
ability from any level of the first order hierarchies equipped with the regular
complete signature to the corresponding level whose signature is reduced to the
order. As the decidability of each level of the two-variable hierarchy is known, we
get a decidability result. But as the decidability of both the Straubing-Thérien
hierarchy, and consequently the Dot-Depth hierarchy as well as their decidability
are equivalent, is still open for any level greater than 2, we only get a transfer
result.

Theorem 3. Let k be a positive integer.

1. The fragment BΣk[Reg] is decidable if BΣk[<] is decidable.
2. The fragment FO2

k[Reg] is decidable.

Let us remark first that this theorem implies that both hierarchies are strict,
which is a new result. The recent result of Place and Zeitoun [18] allows us to
state as a direct corollary that BΣ2[Reg] is decidable.

Remark 4. This approach could be applied to any abstract fragment character-
ized by a variety and expressive enough to contain the languages (ab)+ and
A∗a. At this level of abstraction, the operation of adding modular predicates
corresponds to a wreath product by modular morphisms. However, for the sake
of concise presentation, we focus on what we assume to be the most interest-
ing corollaries of this approach: the alternation hierarchies with successor. This
method can also be generalized to varieties that do not contain (ab)+ and is
therefore not dependant on the presence of the successor relation. However, this
requires to introduce the more involved framework of finite categories [27]. In
this context, the infinitely testable property of a variety of semigroups, which is
the key ingredient of the proof, lifts to the associated variety of semigroupoids.

166 L. Dartois and C. Paperman

Proof Scheme. First, we reduce the decidability of BΣk[Reg] and FO2
k[Reg] to

the decidability of BΣk[<,+1] and FO2
k[<,+1], respectively. Then we conclude

by using the result of Straubing [22], that reduces the decidability of BΣk[<,+1]
to the decidability of BΣk[<], and the result of Kufleitner and Lauser [11] that
prove the decidability of FO2

k[<,+1]. The main issue is therefore to prove the
first reduction. In order to obtain it, we decompose the proof in two important
steps. The first one proves that adding a finite number of modular predicates is
decidable, while the second one allows us to compute such a finite set that serves
as a witness for a language to belong to the fragment. If the first step is quite
standard, the second introduces a new notion, the infinitely testable property,
which allows us to solve the delay question for the fragments we consider.

4 The Delay Question

The objective of this section is to reduce the decidability question to another
question, the delay. Informally, the delay question is: which modular predicates
would be used by a formula of the fragment to describe the input language.
Firstly, we deal with adding the modular predicates ranging over one specific
congruence. The idea is to reduce the decidability of a partially enriched fragment
to the one of the input fragment. As in [6], this is done by transferring the
modular information to an enriched alphabet. For any positive integer d, we
denote by Ad = A × Zd the enriched alphabet of A and by πd : A+

d → A+

the projection on the first component. To link this enrichment to the modular
information, we also define the well-formed words Kd as the language of words
(a0, i0) . . . (an, in) such that for any 0 � j � n ij = j mod d. Finally, given
a language L, we denote by Ld = π−1

d (L) ∩ Kd. The following theorem proves
the reduction from the partially enriched fragment to the initial one by deriving
formulas for one language to a formula to the other.

Proposition 5. Let F[σ] be one of the fragments BΣk[<,+1] or FO2
k[<,+1]

for k � 1. Then, for any regular language L and any d > 0, L ∈ F[σ,MODd] if,
and only if, Ld ∈ F[σ].

Remark that since one can compute the well-formed enrichment of given a regular
language, we obtain as a direct consequence that if F[σ] is one of the fragments
BΣk[<,+1] or FO2

k[<,+1] for k � 1, the fragment F[σ] is decidable if, and only
if, F[σ,MODd] is decidable.

Remark 6. Even if the previous proposition is only stated for the fragments con-
sidered in this article, its applications range over many more fragments. Indeed,
it would hold for any expressive enough fragment, i.e. any fragment that can
define the set of well-formed words over the enriched alphabet and that satisfies
some closure properties.

Now that we proved that adding predicates according to one congruence we
make the following easy remark. Let F[σ] be one of the fragments BΣk[<,+1]

Alternation Hierarchies of First Order Logic 167

or FO2
k[<,+1] and d, p be two positive integers. Then F[σ,MODd,MODp] ⊆

F[σ,MODdp]. Then as a formula can only use a finite number of modular pred-
icates, for any language of F [σ,MOD], there exists an integer d such that it
belongs to F [σ,MODd]. In fact, there exists an infinite number of such witnesses.
Thanks to Proposition 5, the decidability of the fragments we study reduces to
the following question:

The Delay Question: Given a regular language L, is it possible to compute
an integer dL such that L belongs to F [σ,MOD] if, and only if, it belongs to
F [σ,MODdL]?

The denomination stems from the Delay Theorem of [22] that solves a similar
question for the enrichment by the successor predicate.

5 The Infinitely Testable Property

In this Section, we conclude the proof of the main theorem by solving the delay
question for the fragments considered. We actually solve the delay question for
the fragments we consider via an algebraic property on varieties satisfied by their
characterization. This property, which we call the infinitely testable property, is
a new notion that we introduce and which is defined below. Informally, a variety
is infinitely testable if the membership of a language to the variety only depends
on words long enough.

Definition. Given a semigroup S, the idempotents’ ideal of S, denoted IE(S),
is the ideal of S generated by its idempotents. We have then IE(S) = SE(S)S,
where E(S) denotes the set of idempotents of S. Note also that given a morphism
η : A+ → S, it is the semigroup of all elements of S having an infinite number of
preimages by η. An aware reader could notice that IE(S) is the set of all elements
of S that are J -below an idempotent. A variety of semigroups V is said to be
infinitely testable if the membership of a semigroup to V is equivalent to the
membership of its idempotents’ ideal. Informally, a variety is infinitely testable
if its membership can be reduced to an algebraic condition on the idempotents’
ideal. By extension, we say that a fragment of logic is infinitely testable if it is
characterized by an infinitely testable variety.

Example 7. The fragment FO[=] is equivalent to the aperiodic and commuta-
tive variety ACom. This fragment is also described by the equations xy = yx
and xω+1 = xω. This fragment is not infinitely testable. For instance the lan-
guage equal to the singleton {ab} has a trivial idempotents’ ideal while it is not
definable in FO[=].

Example 8. The fragment FO[+1] is equivalent to the languages whose syntac-
tic semigroup belongs to the variety: ACom ∗ LI [23, Theorem VI.3.1]. This
fragment is also described by the profinite equation

xωuyωvxωwyω = xωwyωvxωuyω. (b)

168 L. Dartois and C. Paperman

We now show that it is an infinitely testable fragment. Let L be a regular
language and S its syntactic semigroup. We simply prove that if the Eq. (b)
is not satisfied by S, then it is not satisfied by IE(S). Suppose that there
exists x, y, u, v, w ∈ S such that the Eq. (b) is not satisfied. Then by setting:
x′ = xω, y′ = yω, u′ = xωuyω, v′ = yωvxω, w′ = xωwyω. All new variables
belong to IE(S) and they also fail to satisfy (b).

Infinitely Testable Fragments. The infinitely testable property of levels
of the FO2[<,+1] hierarchy is proved using the equational characterization
obtained in [11], following Example 8. Because of the lack of equational descrip-
tion for BΣk[<,+1], we use a more involved algebraic argument for this lat-
ter case.

Proposition 9. Let k be a positive integer. The fragments FO2
k[<,+1] and

BΣk[<,+1] are infinitely testable.

Remark 10. The infinitely testable property of BΣk[<,+1] can be stated in a
more general framework. Indeed, in the article of Tilson [27], a version of the
delay theorem states that a semigroup belongs to V ∗ LI if, and only if, the
idempotents’ category belongs to the variety of finite categories generated by V.
In this framework of finite categories, the idempotents categories is defined as
the semigroup SE by removing the absorbing element 0. Therefore, one could
argue that all varieties of semigroups of the form V ∗ LI have the property to
be infinitely testable.

Delay Theorem for Quantifier Hierarchies. We reach the key theorem of
our presentation. It proves a delay for each levels of the quantifier hierarchies
over the first order logic and its two-variable counterpart. The delay we obtain
here is the stability index.

Theorem 11. Let F[σ] be one of the fragments BΣk[<,+1] or FO2
k[<,+1] and

L a regular language of stability index s. Then L belongs to F [σ,MOD] if, and
only if, L belongs to F [σ,MODs].

Proof. We denote by V the infinitely testable variety of semigroups equivalent
to F [σ]. Consider a regular language L that belongs to F [σ,MOD]. Then as
there exists an integer d such that L belongs to F [σ,MODd], it is sufficient to
show that if there exists d > 0 such that if L belongs to F [σ,MODds], then it
belongs to F [σ,MODs]. Thus, by Proposition 5, it suffices to prove that if Lds is
definable in F [σ], then Ls is in F [σ] as well. We recall that Ld = π−1

d (L)∩Kd for
any d > 0. We set ηs : A+

s → Ss and ηds : A+
ds → Sds the syntactic morphisms

of Ls and Lds respectively.

Claim. The semigroup IE(Ss) divides IE(Sds).
Before proving this claim, let us remark that since a variety of semigroups is

closed by division, this claim ends the proof. Since if L belongs to F [σ,MODds]

Alternation Hierarchies of First Order Logic 169

then Sds belongs to V and therefore IE(Sds) belongs to V as well. By division,
IE(Ss) belongs to V, and thanks to the infinitely testable hypothesis, we have
that Ss belongs to V. Finally, we deduce that Ls belongs to F[σ]. We now aim to
construct a division from IE(Ss) to IE(Sds). This is done through the enriched
alphabet. We introduce the following projection

h :
{

A+
ds → A+

s

(a, i) �→ (a, i mods)

and Fd the language of well-formed factors, which is the set of well-formed
words that do not necessarily start by a letter of the form (a, 0). Note that
Lds = h−1(Ls) ∩ Ks. Let us remark also that the image a word not in Fs (resp.
Fds) by ηs (resp. ηds) has an absorbing zero as image by ηs (resp. ηds). This zero
being idempotent, it belongs to IE(Ss) (resp. IE(Sds)). Finally, if two words of
Fs have the same image by ηs, then they have the same length modulo s and
their first (and consequently last) letters have the same enrichment.

Consider then x a non-zero element of IE(Ss). We show that

h−1(η−1
s (x)) ∩ η−1

ds (IE(Sds)) �= ∅.

Since x belongs to IE(Ss), there exists a word u of A+
s of length greater than s

in the preimage of x. And since ηs(As
s) = ηs(A2s

s) by definition of the stability
index, for any k > 0 there exists a word vk of A+

s of length greater than ks such
that u ≡L vk and |u| = |vk| mod s, since ηs(u) = ηs(vk). Then for k sufficiently
large, there exists a word w in h−1(vk), such that ηds(w) belongs to IE(Sds).
Note that by taking k as a multiple of d, we obtain a word w such that |u|
mod s = |w| mod ds. Thus for each element x ∈ IE(Ss), we can choose such an
element, that we denote wx. This justifies the definition of the following function:

f :

⎧
⎨

⎩

IE(Ss) → IE(Sds)
x �→ ηds(wx) if x �= 0
0 �→ 0 otherwise.

We conclude by proving that f is an injective morphism, and thus IE(Ss) is a
subsemigroup of IE(Sds).

The Application f Is a Morphism. Let x, y ∈ IE(Ss). We show that f(xy) =
f(x)f(y). First, we can assume without loss of generality that x �= 0 and y �= 0.
We remark that since |wx| mod ds = |h(wx)| mod s, the concatenated word
wxwy is well-formed if, and only if, h(wx)h(wy) is well-formed too. If xy �=
0.Then, xy have a well-formed preimage and wxwy is well-formed. Then as wxy

and wxwy are syntactically equivalent with respect to both Fds and h−1(Ls),
ηds(wxy) = ηds(wxwy) = ηds(wx)ηds(wy), meaning that f(xy) = f(x)f(y).

Now if xy = 0, then either xy has no well-formed preimage or xy is a zero for
π−1

s (L). In the latter case, then f(x)f(y) = 0 according to the previous point. If
xy has no well-formed preimage, then wxwy is not well-formed and consequently
f(x)f(y) = 0.

170 L. Dartois and C. Paperman

The Application f Is Injective. Let x, y ∈ IE(Ss) be such that x �= y.
Without loss of generality, we assume that x �= 0. Necessarily, there exist p, q ∈
Ss such that pxq ∈ ηs(Ls) if, and only if, pyq �∈ ηs(Ls). Let u and v be words
from the preimage of p and q respectively. Then there exists two words u′ ∈
h−1(u) ∩ Fds and v′ ∈ h−1(v) ∩ Fds such that u′wxv′ ∈ Lds if, and only if,
u′wyv′ �∈ Lds. Therefore, we have f(x) �= f(y) and f is injective.

Remark 12. Theorem 11 is only stated for the levels of the quantifier alternation
hierarchies that we consider. The main reason for that is that it makes use of
Proposition 5 which was also stated for these fragments. Actually, the theorem
would hold for any infinitely testable fragment for which we can obtain a result
similar to Proposition 5 (see Remark 6).

Discussion. The main result gives the decidability of the alternation hierarchy
of FO2[Reg]. However, the decidability of this fragment is still an open prob-
lem. But one can notice that Proposition 9 proves that FO2[<,+1] is infinitely
testable, and that Proposition 5 holds. Therefore, Theorem11 gives the decidabil-
ity of FO2[Reg] as well. However, we prefer to give an elegant algebraic charac-
terization of this fragment that one could transfer into an equational description.
This characterization draws a parallel with the characterization FO[Reg] = QA
obtained in [2] and extends the characterization FO2[<,MOD] = QDA obtained
by the authors in [6]. A language L belongs to LDA if for any idempotent e of
SL, the monoid eSLe belongs to DA. It belongs to QLDA if its stable semigroup
belongs to LDA.

Theorem 13. FO2[Reg] = QLDA.

Conclusion. In this paper, we proved that regarding the quantifier alternation
hierarchy of the first order and its two-variable counterpart, dealing with all the
regular numerical predicates is as difficult as dealing with the order predicate
only. We chose a generic algebraic approach which introduced a new notion, the
infinitely testable property, and proved that for fragments that are expressive
enough, the decidability with enriched signature reduces to the simpler one.

While mainly applied to the levels of the quantifier alternation hierarchies,
this approach can be used on other fragments that satisfy the same hypotheses,
as the fragment FO[+1]. This approach appears in fact to be a part of some
more generic results that could also be applied to less expressive fragments. These
results stem from the more intricate framework of varieties of finite categories, as
considered in [4]. In this case, if the delay question is solved, then the decidability
of the modular enriched fragment reduces to the decidability of the global of the
initial variety. It is possible to adapt the definition of the infinitely testable
property for varieties of categories, and extend the equational proofs like the
one proposed in Example 8 to prove that this property holds. This generalized
approach might provide the decidability of the hierarchy FO2

k[<,MOD], which
is not covered by our results.

Alternation Hierarchies of First Order Logic 171

An interesting fact is that despite the different methods used to obtain a
delay when adding modular predicates, it was always revealed that the stability
index is a delay, even in cases not covered by the approach mentioned above. The
question of solving the adding of modular predicate in a general setting seems
then achievable, but one has first to solve many questions, like for example what
is a good notion of fragment of logic. Surprisingly, a good case of study would
be the quite simple fragment FO[=]. Indeed, the global of this fragment is not
infinitely testable, and it is unknown if it accepts the stability index as a delay.

References

1. Almeida, J.: A syntactical proof of locality of DA. Internat. J. Algebra Comput.
6(2), 165–177 (1996)

2. Barrington, D.A.M., Compton, K., Straubing, H., Thérien, D.: Regular languages
in NC1. J. Comput. System Sci. 44(3), 478–499 (1992)

3. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundlagen Math. 6, 66–92 (1960)

4. Chaubard, L., Pin, J.-É., Straubing, H.: First order formulas with modular predi-
cates. In: LICS, pp. 211–220. IEEE (2006)

5. Cohen, R.S., Brzozowski, J.A.: Dot-depth of star-free events. J. Comput. Syst. Sci.
5(1), 1–16 (1971)

6. Dartois, L., Paperman, C.: Two-variable first order logic with modular predicates
over words. In: Portier, N., Wilke, T. (eds.) STACS, pp. 329–340. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, Dagstuhl (2013)

7. Diekert, V., Gastin, P., Kufleitner, M.: A survey on small fragments of first-order
logic over finite words. Internat. J. Found. Comput. Sci. 19(3), 513–548 (2008)

8. Ésik, Z., Ito, M.: Temporal logic with cyclic counting and the degree of aperiodicity
of finite automata. Acta Cybernet. 16(1), 1–28 (2003)

9. Knast, R.: A semigroup characterization of dot-depth one languages. RAIRO
Inform. Théor. 17(4), 321–330 (1983)

10. Krebs, A., Straubing, H.: An effective characterization of the alternation hierarchy
in two-variable logic. In: FSTTCS, pp. 86–98 (2012)

11. Kufleitner, M., Lauser, A.: Quantifier alternation in two-variable first-order logic
with successor is decidable. In: STACS, pp. 305–316 (2013)

12. Kufleitner, M., Weil, P.: The FO2 alternation hierarchy is decidable. In: Computer
Science Logic 2012, Volume 16 of LIPIcs. Leibniz Int. Proc. Inform., pp. 426–439.
Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2012)

13. McNaughton, R., Papert, S.: Counter-free Automata. The M.I.T. Press, Cambridge
(1971)

14. Nerode, A.: Linear automaton transformation. Proc. AMS 9, 541–544 (1958)
15. Péladeau, P.: Logically defined subsets of Nk. Theoret. Comput. Sci. 93(2), 169–

183 (1992)
16. Perrin, D., Pin, J.É.: First-order logic and star-free sets. J. Comput. System Sci.

32(3), 393–406 (1986)
17. Pin, J.-É.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook

of Formal Languages, vol. 1, pp. 679–746. Springer, Heidelberg (1997)
18. Place, T., Zeitoun, M.: Going higher in the first-order quantifier alternation hierar-

chy on words. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014, Part II. LNCS, vol. 8573, pp. 342–353. Springer, Heidelberg (2014)

172 L. Dartois and C. Paperman

19. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control
8, 190–194 (1965)

20. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) Automata Theory and
Formal Languages (Second GI Conference Kaiserslautern, 1975). LNCS, vol. 33,
pp. 214–222. Springer, Heidelberg (1975)

21. Straubing, H.: A generalization of the Schützenberger product of finite monoids.
Theoret. Comput. Sci. 13(2), 137–150 (1981)

22. Straubing, H.: Finite semigroup varieties of the form V ∗D. J. Pure Appl. Algebra
36(1), 53–94 (1985)

23. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser
Boston Inc., Boston (1994)

24. Thérien, D.: Classification of finite monoids: the language approach. Theoret. Com-
put. Sci. 14(2), 195–208 (1981)

25. Thérien, D., Wilke, T.: Over words, two variables are as powerful as one quantifier
alternation. In: STOC 1998 (Dallas. TX), pp. 234–240. ACM, New York (1999)

26. Thomas, W.: Classifying regular events in symbolic logic. J. Comput. System Sci.
25(3), 360–376 (1982)

27. Tilson, B.: Categories as algebra: an essential ingredient in the theory of monoids.
J. Pure Appl. Algebra 48(1–2), 83–198 (1987)

28. Weis, P., Immerman, N.: Structure theorem and strict alternation hierarchy for
FO2 on words. Log. Methods Comput. Sci. 5(3:3:4), 23 (2009)

A Note on Decidable Separability by Piecewise
Testable Languages

Wojciech Czerwiński1, Wim Martens2(B), Lorijn van Rooijen3,
and Marc Zeitoun3

1 University of Warsaw, Warsaw, Poland
2 University of Bayreuth, Bayreuth, Germany

wim.martens@uni-bayreuth.de
3 Bordeaux University, Talence, France

Abstract. The separability problem for word languages of a class C
by languages of a class S asks, for two given languages I and E from C,
whether there exists a language S from S that includes I and excludes E,
that is, I ⊆ S and S∩E = ∅. It is known that separability for context-free
languages by any class containing all definite languages (such as regular
languages) is undecidable. We show that separability of context-free lan-
guages by piecewise testable languages is decidable. This contrasts with
the fact that testing if a context-free language is piecewise testable is
undecidable. We generalize this decidability result by showing that, for
every full trio (a class of languages that is closed under rather weak opera-
tions) which has decidable diagonal problem, separability with respect to
piecewise testable languages is decidable. Examples of such classes are
the languages defined by labeled vector addition systems and the lan-
guages accepted by higher order pushdown automata of order two. The
proof goes through a result which is of independent interest and shows
that, for any kind of languages I and E, separability can be decided by
testing the existence of common patterns in I and E.

1 Introduction

We say that language I can be separated from E by language S if S includes I
and excludes E, that is, I ⊆ S and S ∩E = ∅. In this case, we call S a separator.
We study the separability problem of classes C by classes S:

Given: Two languages I and E from a class C
Question: Can I and E be separated by some language from S?

Separability is a classical problem in mathematics and computer science that
recently found much new interest. For example, recent work investigated the
separability problem of regular languages by piecewise testable languages [10,26],
locally testable and locally threshold testable languages [25] or by first order

This work was supported by DFG grant MA 4938/2-1, by Poland’s National Sci-
ence Centre grant no. UMO-2013/11/D/ST6/03075, and Agence Nationale de la
Recherche ANR 2010 BLAN 0202 01 FREC.

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 173–185, 2015.
DOI: 10.1007/978-3-319-22177-9 14

174 W. Czerwiński et al.

definable languages [28]. Another recent example, which uses separation and goes
beyond regularity, is the proof of Leroux [19] for the decidability of reachability
for vector addition systems or Petri nets. It greatly simplifies earlier proofs by
Mayr [21] and Kosaraju [18].

In this paper we focus on the theoretical underpinnings of separation by piece-
wise testable languages. Our interest in piecewise testable languages is mainly
because of the following two reasons. First, it was shown recently [10,26] that
separability of regular languages (given by their non-deterministic automata)
by piecewise testable languages is in PTIME. We found the tractability of this
problem to be rather surprising.

Second, piecewise testable languages form a very natural class in the sense
that they only reason about the order of symbols. More precisely, they are finite
Boolean combinations of regular languages of the form A∗a1A

∗a2A
∗ · · · A∗anA∗

in which ai ∈ A for every i = 1, . . . , n [30]. We are investigating to which extent
piecewise testable languages and fragments thereof can be used for computing
simple explanations for the behavior of complex systems [15].

Separation and Characterization. For classes C effectively closed under com-
plement, separation of C by S is a natural generalization of the characterization
problem of C by S, which is defined as follows. For a given language L ∈ C decide
whether L is in S. Indeed, L is in S if and only if L can be separated from its
complement by a language from S. The characterization problem is well studied.
The starting points were famous works of Schützenberger [29] and Simon [30],
who solved it for the regular languages by the first-order definable languages
and piecewise testable languages, respectively. There were many more results
showing that, for regular languages and a subclass thereof (often characterized
by a given logic), the problem is decidable, see for example [4,22,24,27,32,34].
Similar problems have been considered for trees [3,5,7,8].

Decidability. To the best of our knowledge, all the above work and in general
all the decidable characterizations were obtained in cases where C is the class of
regular languages, or a subclass of it. This could be due to several negative results
which may seem to form a barrier for any nontrivial decidability beyond regular
languages. For a context-free language (given by a grammar or a pushdown
automaton) it is undecidable to determine whether it is a regular language,
by Greibach’s theorem [14]. Furthermore, it is also undecidable to determine
whether a given context-free language is piecewise testable.

Concerning context-free languages, there is a strong connection between the
intersection emptiness problem and separability. Trivially, testing intersection
emptiness of two given context-free languages is the same as deciding if they can
be separated by some context-free language. However, in general, the negative
result is even more overwhelming. Szymanski and Williams [33] proved that
separability of context-free languages by regular languages is undecidable. This
was then generalized by Hunt [16], who proved that separability of context-
free languages by any class containing all the definite languages is undecidable.
A language L is definite if it can be written as L = F1A

∗ ∪ F2, where F1 and F2

are finite languages over alphabet A. As such, for definite languages, it can be

A Note on Decidable Separability by Piecewise Testable Languages 175

decided whether a given word w belongs to L by looking at the prefix of w of a
given fixed length. (The same statement holds for reverse definite languages, in
which we are looking at suffixes.) Containing all the definite, or reverse definite,
languages is a very weak condition. Note that if a logic can test what is the i-th
letter of a word and is closed under boolean combinations, it already can define
all the definite languages. In his paper, Hunt makes an explicit link between
intersection emptiness and separability. Hunt writes: “We show that separability
is undecidable in general for the same reason that the emptiness-of-intersection
problem is undecidable. Therefore, it is unlikely that separability can be used to
circumvent the undecidability of the emptiness-of-intersection problem.”

Our Contribution. In this paper, we show that the above mentioned quote does
not apply for separability by piecewise testable languages (PTLs): we show that
it can be decided whether two given context-free languages are separable by a
PTL. This may come as a surprise in the light of the undecidability results we
already discussed.

In fact, we prove a stronger result that implies that separability by PTLs is
also decidable for some rather expressive classes such as Petri net languages (also
known as labeled vector addition system languages). This result is an equivalence
between decidability of separability by PTLs and decidability of a problem that
we call diagonal problem. One direction of the equivalence is proved here: First
we show that (arbitrary) languages I and E are not separable by PTL if and
only if they possess a certain common pattern. Then, we use this fact to reduce
to the diagonal problem. The other direction of the equivalence is due to Georg
Zetzsche [35].

A curiosity of this work is perhaps the absence of algebraic methods. Most
decidability results we are aware of have considered syntactic monoids of regular
languages and investigated properties thereof. The exceptions are the recent
studies of separability of regular languages by piecewise testable languages (e.g.,
[10,26]). However, since the algebraic framework for regular languages is so rich,
some may not find it clear whether [10,26] do or do not rely on algebraic methods;
perhaps simply in a rephrased way. Here, the situation is different in the sense
that for context-free languages the syntactic monoid is infinite and it is difficult
to design any algebraic framework for them. So the work shows that it is not
always necessary to use algebraic techniques to prove separability questions.

2 Preliminaries

The set of all integers and nonnegative integers are denoted by Z and N respec-
tively. A word is a concatenation w = a1 · · · an of symbols ai that come from a
finite alphabet A. The length of w is n, the number of its symbols. The alphabet
of w is the set {a1, . . . , an} and is denoted alph(w). For a subalphabet B ⊆ A,
a word v ∈ A∗ is a B-subsequence of w, denoted v �B w, if v = b1 · · · bm
and w ∈ B∗b1B∗ · · · B∗bmB∗. (We do not require that {b1, . . . , bm} ⊆ B or
B ⊆ {b1, . . . , bm}.) We refer to the relation �A as the subsequence relation and

176 W. Czerwiński et al.

denote it by �. A regular word language over alphabet A is a piece language if
it is of the form A∗a1A

∗ · · · A∗anA∗ for some a1, . . . , an ∈ A, that is, it is the
set of words having a1 · · · an as a subsequence. A regular language is a piecewise
testable language if it is a (finite) boolean combination of piece languages. The
class of all piecewise testable languages is denoted PTL.

Separability and Common Patterns. The first main result of the paper
proves that two (not necessarily regular) languages are not separable by PTL if
and only if they have a common subpattern. We now make this more precise.

A factorization pattern is an element of (A∗)p+1 × (2A \ ∅)p for some p ≥ 0.
In other terms, if (−→u ,

−→
B) is such a factorization pattern, there exist words

u0, . . . , up ∈ A∗ and nonempty alphabets B1, . . . , Bp ⊆ A such that −→u =
(u0, . . . , up) and

−→
B = (B1, . . . , Bp). For B ⊆ A, we denote by B� the set of

words with alphabet exactly B, that is, B� = {w ∈ B∗ | alph(w) = B}. Given a
factorization pattern (−→u ,

−→
B), with −→u = (u0, . . . , up) and

−→
B = (B1, . . . , Bp), let

L(−→u ,
−→
B,n) = u0(B�

1)nu1 · · · up−1(B�
p)nup.

In other terms, in a word of L(−→u ,
−→
B,n), the infix between uk−1 and uk is required

to be the concatenation of n words, each containing all letters of Bk (for each
1 ≤ k ≤ p). A sequence (wn)n is said (−→u ,

−→
B)-adequate if

∀n ∈ N, wn ∈ L(−→u ,
−→
B,n).

Finally, language L contains the pattern (−→u ,
−→
B) if there exists an infinite sequence

of words (wn)n in L that is (−→u ,
−→
B)-adequate. We prove the following Theorem

in Sect. 3:

Theorem 1. Two word languages I and E are not separable by PTL if and
only if they contain a common pattern (−→u ,

−→
B).

A Characterization for Decidable Separability. The second main result is
an algorithm that decides separability for full trios that have a decidable diagonal
problem. Full trios, also called cones, are language classes that are closed under
rather weak operations [6,12].

Fix a language L over alphabet A. For an alphabet B, the B-projection of a
word is its longest subsequence consisting of symbols from B. The B-projection
of a language L is the set of all B-projections of words belonging to L. Therefore,
the B-projection of L is a language over alphabet A ∩ B. The B-upward closure
of a language L is the set of all words that have a B-subsequence in L, i.e.,

{
w ∈ (A ∪ B)∗ | ∃v ∈ L such that v �B w

}
.

In other words, the B-upward closure of L consists of all words that can be
obtained from taking a word in L and padding it with symbols from B.

A Note on Decidable Separability by Piecewise Testable Languages 177

A class of languages C is closed under an operation op if L ∈ C implies that
op(L) ∈ C. We use term effectively closed if, furthermore, the representation of
op(L) can be effectively computed from the representation of L.

A nonempty class C of languages is a full trio if it is effectively closed under:

1. B-projection for every finite alphabet B,
2. B-upward closure for every finite alphabet B, and
3. intersection with regular languages.

We note that full trios are usually defined differently (through closures under
homomorphisms or rational transductions [6,12]) but we use the above men-
tioned properties in the proofs and they are easily seen to be equivalent.

The problem that we will require to be decidable is the diagonal problem,
which we explain next. Let A = {a1, . . . , an}. For a symbol a ∈ A and a word
w ∈ A∗, let #a(w) denote the number of occurrences of a in w. The Parikh image
of a word w is the n-tuple (#a1(w), . . . ,#an

(w)). The Parikh image of a language
L is the set of all Parikh images of words from L. A tuple (m1, . . . , mn) ∈ N

n

is dominated by a tuple (d1, . . . , dn) ∈ N
n if di ≥ mi for every i = 1, . . . , n. The

diagonal problem for language L asks whether there exist infinitely many m ∈ N

such that the tuple (m, . . . , m) is dominated by some tuple in the Parikh image
of L. We are now ready to state the second main result:

Theorem 2. For each full trio C, the diagonal problem for C is decidable if and
only if separability of C by PTL is decidable.

In Sect. 4 we present an algorithm to decide separability for full trios that have
a decidable diagonal problem, showing one direction of the equivalence. The
algorithm does not rely on semilinearity of Parikh images. For example, in Sect. 5
we apply the lemma to Vector Addition System languages, which do not have a
semilinear Parikh image. Very recently, we were informed by Georg Zetzsche [35]
that the other implication also holds and that, therefore, there actually is an
equivalence.

3 Common Patterns

In this section we prove Theorem 1. We say that a sequence is adequate if it
is (−→u ,

−→
B)-adequate for some factorization pattern. The following statement can

be shown using Simon’s Factorization Forest Theorem [31].

Lemma 3. Every sequence (wn)n of words admits an adequate subsequence.

For a word w, denote its first (resp., last) letter by first(w), (resp., last(w)).
We call a factorization pattern (−→u ,

−→
B) = ((u0, . . . , up), (B1, . . . , Bp)) proper if

(i) for all i, last(ui) /∈ Bi+1 and first(ui) /∈ Bi, and (ii) for all i, ui = ε ⇒ (
Bi �

Bi+1 and Bi+1 � Bi

)
.

178 W. Czerwiński et al.

Note that if a sequence (wn)n is adequate, then there exists a proper factor-
ization pattern (−→u ,

−→
B) such that (wn)n is (−→u ,

−→
B)-adequate. This is easily seen

from the following observations and their symmetric counterparts:

u = a1 · · · ak and ak ∈ B ⇒ a1 · · · ak(B�)n ⊆ a1 · · · ak−1(B�)n,
Bi−1 ⊆ Bi ⇒ (Bi−1

�)n(Bi
�)n ⊆ (Bi

�)n.

The following lemma gives a condition under which two sequences share a
factorization pattern and is very similar to [2, Theorem 8.2.6]. In its statement,
we write v ∼n w for two words v and w if they have the same subsequences
up to length n, that is, for every word u of length at most n, u � v iff u � w.

Lemma 4. Let (−→u ,
−→
B) and (

−→
t ,

−→
C) be proper factorization patterns. Let (vn)n

and (wn)n be two sequences of words such that

– (vn)n is (−→u ,
−→
B)-adequate

– (wn)n is (
−→
t ,

−→
C)-adequate

– vn ∼n wn for every n ≥ 0.

Then, −→u =
−→
t and

−→
B =

−→
C .

Now we are equipped to prove Theorem 1. We only show the “only if” direction
here, due to space restrictions.

Proof (of Theorem 1, “only-if”). It is not difficult to see that I and E are not
PTL-separable iff for every n ∈ N, there exist vn ∈ I and wn ∈ E such that
vn ∼n wn. This defines an infinite sequence of pairs (vn, wn)n, from which we will
iteratively extract infinite subsequences to obtain additional properties, while
keeping ∼n-equivalence.

By Lemma 3, one can extract from (vn, wn)n a subsequence whose first
component forms an adequate sequence. From this subsequence of pairs, using
Lemma 3 again, we extract a subsequence whose second component is also ade-
quate (note that the first component remains adequate). Therefore, one can
assume that both (vn)n and (wn)n are themselves adequate. This means there
exist proper factorization patterns for which (vn)n resp. (wn)n are adequate.
Lemma 4 shows that one can choose the same proper factorization pattern
(−→u ,

−→
B) such that both (vn)n and (wn)n are (−→u ,

−→
B)-adequate. This means that

I and E contain a common pattern (−→u ,
−→
B). �

4 The Algorithm for Separability

We prove one direction of Theorem 2 by showing that, for full trios with decidable
diagonal problem, we can decide separability by PTL. Fix two languages I and
E from a full trio C which has decidable diagonal problem.

To test whether I is separable from E by a piecewise testable language S,
we run two semi-procedures in parallel. The positive one looks for a witness that

A Note on Decidable Separability by Piecewise Testable Languages 179

I and E are separable by PTL, whereas the negative one looks for a witness
that they are not separable by a PTL. Since one of the semi-procedures always
terminates, we have an effective algorithm that decides separability. It remains
to describe the two semi-procedures.

Positive Semi-procedure. We first note that, when a full trio has decidable
diagonal problem, it also has decidable emptiness1. The positive semi-procedure
enumerates all PTLs over the union of the alphabets of I and E. For every
PTL S it checks whether S is a separator, so if I ⊆ S and E ∩ S = ∅. The first
test is equivalent to I ∩ (A∗ \ S) = ∅. Thus both tests boil down to checking
whether the intersection of a language from the class C (I or E, respectively)
and a regular language (S and A∗ \ S, respectively) is empty. This is decidable,
as C is effectively closed under taking intersections with regular languages and
has decidable emptiness problem.

Negative Semi-procedure. Theorem 1 shows that there is always a finite wit-
ness for inseparability: a pattern (−→u ,

−→
B). The negative semi-procedure enumer-

ates all possible patterns and for each one, checks the condition of Theorem 1. We
now show how to test this condition, i.e., for a pattern (−→u ,

−→
B) test whether for

all n ∈ N the intersection of L(−→u ,
−→
B,n) with both I and E is nonempty. Check-

ing the condition. Here we show for an arbitrary language from C how to check
whether for all n ∈ N its intersection with the language L(−→u ,

−→
B,n) is nonempty.

Fix L ∈ C over an alphabet A and a pattern (−→u ,
−→
B), where −→u = (u0, . . . , uk)

and
−→
B = (B1, . . . , Bk). Intuitively, we just consider a diagonal problem with

some artifacts: we are counting the number of occurrences of alphabets Bi and
checking whether those numbers can simultaneously become arbitrarily big.

We show decidability of the non-separability problem by a formal reduction
to the diagonal problem. We perform a sequence of steps. In every step we
will slightly modify the considered language L and appropriately customize the
condition to be checked. Using the closure properties of the class C we will assure
that the investigated language still belongs to C.

First we add special symbols $i, for i ∈ {1, . . . , k}, which do not occur in A.
These symbols are meant to count how many times alphabet Bi is “fully occur-
ring” in the word. Then we will assure that words are of the form

u0 (B1 ∪ {$1})∗ u1 · · · uk−1 (Bk ∪ {$k})∗ uk,

which already is close to what we need for the pattern. Then we will check
that between every two symbols $i (with the same i), every symbol from Bi

occurs, so that the $i are indeed counting the number of iterations through
the entire alphabet Bi. Finally we will remove all the symbols except those
1 Emptiness of L over alphabet A can be decided by taking the {x}-upward closure

of L, where x /∈ A, intersecting the resulting language with the regular language
(A∪{x})∗A(A∪{x})∗, and then taking the {x}-projection. In the resulting language,
the diagonal problem returns true iff L is nonempty [36].

180 W. Czerwiński et al.

from {$1, . . . , $k}. The resulting language will contain only words of the form
$∗
1$

∗
2 · · · $∗

k and the condition to be checked will be exactly the diagonal problem.
More formally, let L0 := L. We modify iteratively L0, resulting in L1, L2, L3,

and L4. Each of them will be in C and we describe them next.
Language L1 is the {$1, . . . , $k}-upward closure of L0. Thus, L1 contains, in

particular, all words where the $i are placed “correctly”, i.e., in between two
$i-symbols the whole alphabet Bi should occur. However at this moment we do
not check it. By closure under B-upward closures, language L1 belongs to C.

Note that L1 also contains words in which the $i-symbols are placed totally
arbitrary. In particular, they can occur in the wrong order. The idea behind L2

is to consider only those words in which the $i-symbols were guessed at least in
the good areas. Concretely, L2 is an intersection of L1 with the language

u0 (B1 ∪ {$1})∗ u1 · · · uk−1 (Bk ∪ {$k})∗ uk.

By the closure under intersection with regular languages, L2 belongs to C.
Language L2 still may contain words, such that in between two $i-symbols

not all the symbols from Bi occur. We get rid of these by intersecting L2 with

u0($1B�
1)∗$1u1 · · · uk−1($kB�

k)∗$kuk.

As such, we obtain L3 which, again by closure under intersection with regular
languages, belongs to C.2

Note that intersection of L = L0 with the language L(−→u ,
−→
B,n) is nonempty

if and only if L3 contains a word with precisely n + 1 symbols $i for every i ∈
{1, . . . , k}. Indeed, L3 just contains the (slightly modified versions of) words from
L0 which fit into the pattern and in which the symbols $i “count” occurrences
of B�

i . Furthermore, for every word in L3, the word obtained by removing some
occurrences of some $i is in L3 as well. It is thus enough to focus on the $i-
symbols. Language L4 is therefore the {$1, . . . , $k}-projection of L3. By the
closure under projections, language L4 belongs to C. The words contained in L4

are therefore of the form
$a1
1 · · · $ak

k ,

such that there exists w ∈ L with at least ai − 1 occurrences of B�
i . Therefore

intersection of L with L(−→u ,
−→
B,n) is nonempty for all n ≥ 0 if and only if the

tuple (n, . . . , n) belongs to the Parikh image of L4 for infinitely many n ≥ 0.
This is precisely the diagonal problem, which we know to be decidable for C.

5 Decidable Classes

In this section we show that separability by piecewise testable languages is decid-
able for a wide range of classes, by proving that they meet the conditions of
Theorem 2. In particular, we show this for context-free languages, languages of
2 Of course, one could also immediately obtain L3 from L1 by performing a single

intersection with a regular language.

A Note on Decidable Separability by Piecewise Testable Languages 181

labeled vector addition systems (which are the same as languages of labeled Petri
nets). We comment also on other natural classes of languages containing all the
regular languages.

Theorem 5. Separability by piecewise testable languages is decidable for

1. context-free languages; and for
2. languages of labeled vector addition systems.

Our approach also allows to mix the above scenarios. That is, separability of a
context-free language from the language of a labeled vector addition system is
also decidable. In the remainder of this section, we prove the theorem.

Context-Free Languages. Context-free languages are well-known to be a full
trio. The only nontrivial condition is deciding the diagonal problem. A set S ⊆
N

k is linear if it is of the form

S = {v + n1v1 + . . . + nmvm | n1, . . . , nm ∈ N}

for some base vector v ∈ N
k and period vectors v1, . . . , vm ∈ N

k. A semilinear
set is a finite union of linear sets. Parikh’s theorem [23] states that the Parikh
image of a context-free language is semilinear, moreover the computation of its
description as a (finite) union of linear sets if effective3. It is enough to check
whether for infinitely many n ≥ 0 the mentioned semilinear set contains a tuple
that dominates (n, . . . , n).

Semilinear sets are exactly these, which can be defined by Presburger logic.
Moreover, the translation can be done effectively. Assume that |A| = k, so the
Parikh image P of the considered language is a subset of N

k and φ is a Presburger
formula describing P having exactly k free variables. Then

ψ = ∀n∈N ∃x1,x2,...,xk

(∧

i∈{1,...,k}
(xi ≥ n)

) ∧ φ(x1, x2, . . . , xk)

is true if and only if the diagonal problem for the considered language is answered
positively. Decidability of the Presburger logic finishes the proof of decidability
of the diagonal problem for context-free languages. We refer for the details of
semilinear sets and Presburger logic to [13]. Finally, by Theorem 2, separability
for context-free languages by piecewise testable languages is decidable.

Languages of Labeled Vector Addition Systems and Petri Nets. A
k-dimensional labeled vector addition system, or labeled VAS M = (A, T, �, s, t)
over alphabet A consists of a set of transitions T ⊆ Z

k, a labeling � : T → A∪{ε},
where ε stands for the empty word and source and target vectors s, t ∈ N

k.
A labeled VAS defines a transition relation on the set N

k of markings. For two
markings u, v ∈ N

k we write u
a−→ v if there is r ∈ T such that u + r = v

and �(r) = a, where the addition of vectors is defined as an addition on every

3 A simple proof of this fact can be found in [11].

182 W. Czerwiński et al.

coordinate. For two markings u, v ∈ N
k we say that u reaches v via a word

w if there is a sequence of markings u0 = u, u1, . . . , un−1, un = v such that
ui

ai−→ ui+1 for all i ∈ {0, . . . , n − 1} and w = a0 · · · an−1. For a given labeled
VAS M the language of M , denoted L(M), is the set of all words w ∈ A∗ such
that source reaches target via w. We note that languages of labeled VASs are
the same as languages of labeled Petri nets.

Since labeled VAS languages are known to be a full trio [17], we only need to
prove decidability of the diagonal problem. First we will show that it is enough
to consider VASs in which the target marking equals (0, . . . , 0). To this end,
let M be a k-dimensional labeled VAS with source vector s = (s1, . . . , sk) and
target vector t = (t1, . . . , tk). We transform M to a new VAS M ′ in which we
add two auxiliary coordinates, called life coordinates. The source coordinate is
enriched by 0 on one life coordinate and by 1 on the other one, so it is s′ =
(s1, . . . , sk, 0, 1) ∈ N

k+2. Every original transition has two copies. One of these
transitions subtracts one from the first life coordinate and adds one to the second
life coordinate, the second transition does the opposite. Note that nonemptiness
of life coordinates serve just as a necessary condition for firing any transition,
as every transition subtracts one from one of these coordinates. Therefore, the
original source marking s reaches the original target marking t via the same set
of words by which the new source marking s′ reaches either (t1, . . . , tk, 0, 1) or
(t1, . . . , tk, 1, 0). We add also two final transitions, which subtract the original
target vector, subtract one from one of the life coordinates and are labeled ε.
Therefore, s can reach t by a word w in M if and only if s′ can reach 0k+2 by
w in M ′. Indeed, the implication from left to right is immediate. On the other
hand, in order to reach the marking 0k+2 in M ′, the last transition has to be the
final transition, so implication from right to left also holds. Thus it is enough to
solve the diagonal problem for VASs in which the target marking is (0, . . . , 0).

We will show that this diagonal problem is decidable by a reduction to the
place-boundedness problem for VASs with one zero test, which is decidable due to
Bonnet et al. [9]. We modify the considered VAS in the following way. For every
letter a ∈ A we add a new letter-coordinate, which is counting how many times
we read the letter a, that is, for every transition which is labeled by a ∈ A, we
add 1 in the letter-coordinate corresponding to a and 0 in the letter-coordinates
corresponding to other letters. The set of letter-coordinates computes the Parikh
image of a word. We also add one new minimum-coordinate and a new transi-
tion, labeled by ε, which subtracts one from all the letter-coordinates and adds
one to the minimum-coordinate. It is easy to see that minimum-coordinate can
maximally reach the minimum number from the Parikh image tuple. Addition-
ally, for every letter-coordinate we add a transition, labeled by ε, which can
decrease this coordinate by one. The diagonal problem for the original VAS is
equivalent to the question whether for infinitely many n ≥ 0 the source marking,
enriched by zeros in the new coordinates, reaches a marking (0, . . . , 0, n), with
zeros everywhere beside the minimum-coordinate with number n. This can be
easily reduced to the place-boundedness for a VAS with one zero test. We do
not show the details. Intuitively, the zero test checks whether there are zeros
everywhere else than the minimum-coordinate and we check whether under this

A Note on Decidable Separability by Piecewise Testable Languages 183

condition the minimum-coordinate can get unbounded. This finishes the proof
of decidability of the diagonal problem for labeled VASs.

Other Classes. Among another natural language classes extending regular lan-
guages one can think about context-sensitive languages. Unfortunately context-
sensitive languages do not meet the conditions of Theorem 2, as they are no full
trio, nor is their emptiness problem decidable.

Very recently, Zetzsche [36] showed that indexed languages [1] or, equiva-
lently, languages accepted by higher-order pushdown automata of order two [20]
fulfill the conditions of Theorem 2 and therefore have decidable separability by
PTL. His proof showing that indexed languages have a decidable diagonal prob-
lem is much more involved than the one for context-free languages we presented
here. This shows that separability of languages definable by pushdown automata
of order two by PTL is decidable as well. It would be interesting to know if it
is decidable for pushdown automata for even higher order as well.

6 Concluding Remarks

Since the decidability results we presented seem to be in strong contrast with the
remark of Hunt in the introduction, we briefly comment on this. What we essen-
tially do is show that undecidable emptiness-of-intersection for a class C does not
always imply undecidability for separability of C with respect to some nontrivial
class of languages. In the case of separability with respect to piecewise testable
languages, the main reason is basically that we only need to construct inter-
sections of languages from C with languages that are regular (or even piecewise
testable). Here, the fact that such intersections can be effectively constructed,
together with decidable emptiness and diagonal problems seem to be sufficient
for decidability.

Regarding future work, we see many interesting directions and new ques-
tions. Which language classes have a decidable diagonal problem? Which other
characterizations are there for decidable separability by PTL? Can Theorem 2
be extended to also give complexity guarantees? Can we find similar character-
izations for separability by subclasses of PTL, as considered in [15]?

Acknowledgments. We would like to thank Tomáš Masopust for pointing us to [16]
and Thomas Place for pointing out to us that determining if a given context-free
language is piecewise testable is undecidable. We are also grateful to the anonymous
reviewers for many helpful remarks that simplified proofs. We are much indebted to
Georg Zetzsche for many useful remarks and most of all for sending us a simple proof
that showed that, for full trios, separability by PTL implies decidability of the diagonal
problem, thereby turning Theorem 2 into an equivalence. We plan to incorporate his
proof in the full version of this paper.

References

1. Aho, A.V.: Indexed grammars – an extension of context-free grammars. J. ACM
15(4), 647–671 (1968)

184 W. Czerwiński et al.

2. Almeida, J.: Finite Semigroups and Universal Algebra, Volume 3 of Series in Alge-
bra. World Scientific Publishing Company, Singapore (1994)

3. Antonopoulos, T., Hovland, D., Martens, W., Neven, F.: Deciding twig-definability
of node selecting tree automata. In: ICDT, pp. 61–73 (2012)

4. Arfi, M.: Polynomial operations on rational languages. In: STACS, pp. 198–206
(1987)

5. Benedikt, M., Segoufin, L.: Regular tree languages definable in FO and in FOmod.
ACM Trans. Comput. Logi 11(1), 4:1–4:32 (2009)

6. Berstel, J.: Transductions and context-free languages. Teubner, Stuttgart (1979)
7. Bojańczyk, M., Idziaszek, T.: Algebra for infinite forests with an application to the

temporal logic EF. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS,
vol. 5710, pp. 131–145. Springer, Heidelberg (2009)

8. Bojanczyk, M., Segoufin, L., Straubing, H.: Piecewise testable tree languages.
LMCS 8(3), 1–20 (2012)

9. Bonnet, R., Finkel, A., Leroux, J., Zeitoun, M.: Model checking vector addition
systems with one zero-test. LMCS 8(2), 1–25 (2012)

10. Czerwiński, W., Martens, W., Masopust, T.: Efficient separability of regular lan-
guages by subsequences and suffixes. In: Fomin, F.V., Freivalds, R., Kwiatkowska,
M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 150–161. Springer,
Heidelberg (2013)

11. Esparza, J., Ganty, P., Kiefer, S., Luttenberger, M.: Parikh’s theorem: a simple
and direct automaton construction. Inf. Process. Lett. 111(12), 614–619 (2011)

12. Ginsburg, S., Greibach, S.A.: Abstract families of languages. In: SWAT / FOCS,
pp. 128–139 (1967)

13. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages.
Pacific J. Math. 16, 285–296 (1966)

14. Greibach, S.: A note on undecidable properties of formal languages. Math. Sys.
Theor. 2(1), 1–6 (1968)

15. Hofman, P., Martens, W.: Separability by short subsequences and subwords. In:
ICDT, pp. 230–246 (2015)

16. Hunt III, H.B.: On the decidability of grammar problems. J. ACM 29(2), 429–447
(1982)

17. Jantzen, M.: On the hierarchy of Petri net languages. RAIRO Informatique
Théorique 13(1), 19–30 (1979)

18. Kosaraju, S.R.: Decidability of reachability in vector addition systems (preliminary
version). In: STOC, pp. 267–281 (1982)

19. Leroux, J.: The general vector addition system reachability problem by Presburger
inductive invariants. LMCS 6(3), 1–25 (2010)

20. Maslov, A.N.: Multilevel stack automata. Probl. Inf. Transm. 12(1), 38–42 (1976)
21. Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM

J. Comput. 13(3), 441–460 (1984)
22. McNaughton, R.: Algebraic decision procedures for local testability. Math. Syst.

Theor. 8(1), 60–76 (1974)
23. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)
24. Pin, J.-E., Weil, P.: Polynomial closure and unambiguous product. Theory Comput.

Syst. 30(4), 383–422 (1997)
25. Place, T., van Rooijen, L., Zeitoun, M.: Separating regular languages by locally

testable and locally threshold testable languages. In: FSTTCS, pp. 363–375 (2013)
26. Place, T., van Rooijen, L., Zeitoun, M.: Separating regular languages by piecewise

testable and unambiguous languages. In: Chatterjee, K., Sgall, J. (eds.) MFCS
2013. LNCS, vol. 8087, pp. 729–740. Springer, Heidelberg (2013)

A Note on Decidable Separability by Piecewise Testable Languages 185

27. Place, T., Zeitoun, M.: Going higher in the first-order quantifier alternation hierar-
chy on words. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014, Part II. LNCS, vol. 8573, pp. 342–353. Springer, Heidelberg (2014)

28. Place, T., Zeitoun, M.: Separating regular languages with first-order logic. In: CSL-
LICS, pp. 75:1–75:10. ACM (2014)

29. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control
8(2), 190–194 (1965)

30. Simon, I.: Piecewise testable events. In: Simon, I. (ed.) Automata Theory and
Formal Languages. LNCS, pp. 214–222. springer, Heidelberg (1975)

31. Simon, I.: Factorization forests of finite height. Theor. Comput. Sci. 72(1), 65–94
(1990)

32. Straubing, H.: Semigroups and languages of dot-depth two. Theor. Comput. Sci.
58, 361–378 (1988)

33. Szymanski, T., Williams, J.: Noncanonical extensions of bottom-up parsing tech-
niques. SIAM J. Comput. 5(2), 231–250 (1976)

34. Zalcstein, Y.: Locally testable languages. J. Comput. Syst. Sci. 6(2), 151–167
(1972)

35. Zetzsche, G.: Personal communication
36. Zetzsche, G.: An approach to computing downward closures. In: ICALP (2015).

To appear, Accessed on http://arxiv.org/abs/1503.01068

http://arxiv.org/abs/1503.01068

Set Algorithms, Covering, and Traversal

Multidimensional Binary Vector Assignment
Problem: Standard, Structural and Above

Guarantee Parameterizations

Marin Bougeret1, Guillerme Duvillié1, Rodolphe Giroudeau1,
and Rémi Watrigant2(B)

1 LIRMM, Université Montpellier 2, Montpellier, France
{bougeret,duvillie,rgirou}@lirmm.fr

2 Computing Department, Hong Kong Polytechnic University,
Hong Kong, China

csrwatrigant@comp.polyu.edu.hk

Abstract. In this article we focus on the parameterized complexity of the
Multidimensional Binary Vector Assignment problem (called bMVA). An
input of this problem is defined by m disjoint sets V 1, V 2, . . . , V m, each
composed of n binary vectors of size p. An output is a set of n dis-
joint m-tuples of vectors, where each m-tuple is obtained by picking one
vector from each set V i. To each m-tuple we associate a p dimensional
vector by applying the bit-wise AND operation on the m vectors of the
tuple. The objective is to minimize the total number of zeros in these n
vectors. bMVA can be seen as a variant of multidimensional matching
where hyperedges are implicitly locally encoded via labels attached to
vertices, but was originally introduced in the context of integrated circuit
manufacturing.

We provide for this problem FPT algorithms and negative results
(ETH-based results, W [2]-hardness and a kernel lower bound) according
to several parameters: the standard parameter k (i.e. the total number
of zeros), as well as two parameters above some guaranteed values.

1 Introduction

1.1 Definition of the Problem

In this paper, we consider the parameterized version of the Multidimensional
Binary Vector Assignment problem (bMVA). An input of this problem
is described by m sets V 1, V 2, . . . , V m, each of these sets containing n p-
dimensional binary vectors. We note V i = {vi

1, . . . , v
i
n} for all i ∈ [m]1, and

for all j ∈ [n] and r ∈ [p], we denote by vi
j [r] ∈ {0, 1} the rth component of vi

j .
In order to define the output of the problem, we need to introduce the notion

of stack. A stack s = (vs
1, v

s
2, . . . , v

s
m) is an m-tuple of vectors such that ∀i ∈

[m], vs
i ∈ V i. The output of bMVA is a set S of n stacks such that for all

1 [m] stands for {1, . . . , m}.
c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 189–201, 2015.
DOI: 10.1007/978-3-319-22177-9 15

190 M. Bougeret et al.

i, j ∈ [m] × [n], vi
j belongs to only one stack (in that case, the stacks are said

disjoint). An example of an instance together with a solution is depicted in
Fig. 1.

We are now ready to define the objective function. We define the oper-
ator ∧ that, given two p-dimensional vectors u and v, computes the vector
w = (u[1] ∧ v[1], u[2] ∧ v[2], . . . , u[p] ∧ v[p]). We associate to any stack s a unique
vector vs =

∧
i∈[m] v

s
i .

We define the cost of a binary vector v as the number of zeros in it. More
formally, if v is p-dimensional, c(v) = p − ∑

r∈[p] v[r]. We extend this definition
to a set of stacks S = {s1, . . . , sn} as follows: c(S) =

∑
j∈[n] c(vsj

). Finally, the
objective of bMVA is to obtain a set S of n disjoint stacks while minimizing
c(S). In the decision version of the problem, we are given an integer k, and we
ask whether there exists a solution S of cost at most k. The problem is thus
defined formally as follows:

Problem 1. Multidimensional Binary Vector Assignment (bMVA)
Input: m sets of n binary p-dimensional vectors, an integer k
Question: Is there a set S of n disjoint stacks such that c(S) ≤ k ?

V 1 V 2 V 3 S

001101

110111

011101

111101

110010

010101

110011

010101

110110

010110

010011

001111

110010

000000

010001

000101

vs1

vs2

vs3

vs4

c(vs1) = 3

c(vs2) = 6

c(vs3) = 4

c(vs4) = 4

s1

s2

s3

s4

Fig. 1. Example of bMVA instance with m = 3, n = 4, p = 6 and of a feasible solution
S of cost c(S) = 17.

In order to avoid heavy notations throughout the paper, we will denote an
instance of bMVA only by I[m,n, p, k], the notations of the sets and vectors
being implicitly given as previously.

1.2 Application and Related Work

bMVA can be seen as a variant of multidimensional matching where hyperedges
are implicitly locally encoded via labels attached to vertices. However, this kind
of problem was originally introduced in [17] in the context of semiconductor
industry as the “yield maximization problem in wafer-to-wafer 3-D integration
technology”. In this context, each vector vi

j represents a wafer, which is seen as
a string of bad dies (0) and good dies (1). Integrating two wafers corresponds
to superimposing the two corresponding strings. In this operation, a position
in the merged string is “good” when the two corresponding dies are good, and
is “bad” otherwise. The objective of Wafer-to-Wafer Integration is to form n

Multidimensional Binary Vector Assignment Problem 191

stacks, while maximizing their overall quality, or equivalently, minimizing the
number of errors (depending on the objective function). In the following, we
will denote by max

∑
1-bMVA the dual version of bMVA where given the same

input and ouput, the objective is to maximize np − c(S), the total number of
ones.

The results obtained so far concerning these problems mainly concern their
approximability. The NP-hardness of bMVA is provided in [4] even when m = 3,
as well as a 4

3 -approximation (still for m = 3). We can also mention [5] which
provides a f(m)-approximation for general m, and an APX-hardness for m = 3.
The main related article is [8] where it is proved that max

∑
1-bMVA has no

O(p1−ε) nor O(m1−ε)-approximation for any ε > 0 unless P = NP (even when
n = 2), but admits a p

c -approximation algorithm for any constant c ∈ N, and is
FPT when parameterized by p (which also holds for bMVA). Notice that one
of the reductions provided in [8] is a parameter-preserving reduction from the
Clique problem to max

∑
1-bMVA, immediately proving W[1]-hardness for

max
∑

1-bMVA when parameterized by the objective function. This is why our
motivation in this paper is to consider the parameterized complexity of bMVA.
As we will see in the next section, we provide an analysis for several parameters
related to this problem.

For formal definitions and detailed concepts on Fixed-Parameter Tractability,
we refer to the monograph of Downey and Fellows [6]. Moreover, in order to define
lower bounds on the running time of parameterized algorithms, we will rely on
the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane [11],
stating that 3-Sat cannot be solved in O∗(2o(n)) where n is the number of
variables (O∗(.) hides polynomial terms). For more results about lower bounds
obtained under ETH, we refer the reader to the survey of [12].

1.3 Parameterizations

One of the main purposes of Fixed-Parameter Tractability is to obtain efficient
algorithms when the considered parameter is small in practice. When dealing
with the decision version of an optimization problem, the most natural para-
meter is perhaps the value of the desired solution (e.g. k for bMVA). Such a
parameter is often referred to in the literature as the “standard parameter” of
the problem. In some cases, this parameter might not be very interesting, either
because it usually takes high values in practice, or because FPT algorithms with
respect to this parameterization are trivial to find. When this happens, it is pos-
sible to obtain more interesting results by subtracting to the objective function
a known lower bound of it. For instance, if one can prove that any solution of a
given minimization problem is of cost at least B, then one can ask for a solution
of cost B + c and parameterize by c. This idea, called “above guarantee parame-
terization” was introduced by [15] and first applied to Max Sat and Max Cut
problems. It then became a fruitful line of research with similar results obtained
for many other problems (among others, see [3,9,10,16]).

192 M. Bougeret et al.

In this paper, we analyze the parameterized complexity of bMVA using three
types of parameters. Given an instance I[m,n, p, k] of our problem, we will
consider the following parameters:

– the standard parameter, k, the number of zeros to minimize in the
optimization version of the problem.

– three natural structural parameters: m, the number of sets of the input, n,
the number of vectors in each set, and p, the size of each vector.

As we said previously, it was already proved in [8] that bMVA is FPT parame-
terized by p. As we will notice in Lemma 2 that we can obtain an equivalent
instance with p ≤ k after a polynomial pre-processing step, this implies that
bMVA is also FPT with its standard parameter. Our idea here is to use this
previous inequality in order to obtain smaller parameters. Thus, we define our
first above guarantee parameter ζp = k − p.

Finally, in order to define our last parameter, we first need to describe the
corresponding lower bound B, that will represent the maximum, over all sets
of vectors, of the total number of zeros for each set. More formally, we define
B = maxi∈[m] c(V i) where c(V i) =

∑n
j=1 c(vi

j). Since we perform a bit-wise AND
over each m-tuple, it is easily seen that any solution will be of cost at least B.
Thus, we define our last parameter ζB = k − B.

1.4 Our Results

In the next section, we present some pre-processing rules leading to a kernel of
size O(k2m), and prove that even when m = 3 we cannot improve it to pO(1)

unless NP ⊆ coNP/poly (remember that bMVA is known to be FPT when
parameterized by p). Section 3 is mainly focused on results associated with para-
meter ζB: we prove that bMVA can be solved in O∗(4ζB log(n)), while it is W[2]-
hard when parameterized by ζB only, and cannot be solved in O∗(2o(ζB) log(n))
nor in O∗(2ζBo(log(n))) assuming ETH. In Sect. 4, we focus on the parameter-
ization by ζp: we show that when n = 2, the problem can be solved in single
exponential time with this parameter, but is not in XP for any fixed n ≥ 3
(unless P = NP). The reduction we use also shows that for fixed n ∈ N, the
problem cannot be solved in 2o(k) (and thus in 2o(ζB)) unless ETH fails, which
matches the upper bound obtained in Sect. 3. Due to space constraints, results
marked with a (�) are proven in the full version of the paper [2]. A summary of
our results is depicted in the following table.

2 First Remarks and Kernels

Let us start with two simple lemmas allowing us to bound the size of the input.
Notice first that it is not always safe to create a 1-stack (i.e. a stack with ones on
every component) when possible. Indeed, in instance V 1 = {〈111〉, 〈101〉, 〈011〉},

Multidimensional Binary Vector Assignment Problem 193

Positive results Negative results

O(k2m) kernel (Theorem1) no pO(1) kernel unless NP ⊆ coNP/poly (Theorem2)

O∗(4ζB log(n)) algorithm W[2]-hard for ζB only (Theorem4)

(Theorem3)

no 2o(ζB) log(n) nor 2ζBo(log(n)) under ETH (Theorem5)

no 2o(k) for fixed n under ETH (Theorem7)

O∗(dζp) algorithm NP-hard for ζp = 0 and fixed n ≥ 3 (Theorem7)

for n = 2 (Theorem6)

V 2 = {〈111〉, 〈101〉, 〈110〉}, V 3 = {〈111〉, 〈011〉, 〈110〉}, no optimal solution cre-
ates a 1-stack. However, as we will see in Lemma 1, creating 1-stacks becomes
safe if n > k.

Lemma 1 (�). There exists a polynomial algorithm which, given any instance
I[m,n, p, k] of bMVA, either detects that I is a negative instance, or outputs an
equivalent instance I ′[m,n′, p, k] such that n′ ≤ k.

Lemma 2 (�). There exists a polynomial algorithm which, given any instance
I[m,n, p, k] of bMVA, either detects that I is a negative instance, or outputs an
equivalent instance I ′[m,n, p′, k] such that p′ ≤ k.

Given the two previous lemmas, we can suppose from now on that for any
instance of bMVA we have n ≤ k and p ≤ k. This immediately implies a poly-
nomial kernel parameterized by k and m.

Theorem 1. bMVA admits a kernel with O(k2m) bits.

Let us now turn to the main result of this section. To complement Theorem 1,
we show that even when m = 3, we cannot obtain a polynomial kernel with
the smaller parameter p under some classical complexity assumptions (notice
however that the existence of a polynomial kernel in k is still open). Notice also
that as bMVA was known to be FPT when parameterized by p, it was a natural
question to ask for a polynomial kernel.

In order to establish kernel lower bounds, we use the concept of AND-cross-
composition of Bodlaender et al. [1], together with the recently proved AND-
conjecture of Drucker [7].

Theorem 2. Even for m = 3, bMVA parameterized by p does not admit a
polynomial kernel unless NP ⊆ coNP/poly.

Proof. The proof is an AND-cross-composition from a sequence of instances of 3-
dimensional perfect matching, inspired by the NP-hardness reduction for
bMVA provided in [4]. 3-dimensional perfect matching is formally defined
as follows:

194 M. Bougeret et al.

Problem 2. 3-Dimensional Perfect Matching
Input: Three sets X, Y and Z of size n, a set of hyperedges S ⊆ X × Y × Z
Question: Does there exist a subset S′ ⊆ S such that:

– for all e, e′ ∈ S′ with e = (x, y, z) and e′ = (x′, y′, z′), we have x �= x′,
y �= y′ and z �= z′ (that is, S′ is a matching)

– |S′| = n (that is, S′ is perfect)

Let (X1, Y1, Z1, S1), · · · , (Xt, Yt, Zt, St) be a sequence of t equivalent
instances of 3-DPM, with respect to the following polynomial equivalence rela-
tion: (X,Y,Z, S) and (X ′, Y ′, Z ′, S′) are equivalent if |X| = |X ′| (and thus
|Y | = |Y ′| = |Z| = |Z ′| = |X|), and |S| = |S′|. In the following we denote
by n the cardinality of the sets Xi (and equivalently the sets Yi and Zi),
and by m the cardinality of the sets Si. Moreover, for all i ∈ {1, · · · , t} we
define Xi = {xi,1, · · · , xi,n}, Yi = {yi,1, · · · , yi,n}, Zi = {zi,1, · · · , zi,n}, and
Si = {si,1, · · · , si,m}. We also assume that t = 2q for some q ∈ N (if it is
not the case, we add a sufficiently number of dummy yes-instances).

In the following we construct three sets (X∗, Y ∗, Z∗) of nt vectors each:
X∗ = {x∗

i,j}j=1,··· ,n
i=1,··· ,t , Y ∗ = {y∗

i,j}j=1,··· ,n
i=1,··· ,t and Z∗ = {z∗

i,j}j=1,··· ,n
i=1,··· ,t , where each

vector is composed of p∗ = m+2mq components. Let us first describe the first m
components of each vector. For all i ∈ {1, · · · , t}, j ∈ {1, ·, n} and k ∈ {1, · · · ,m}
we set:

x∗
i,j [k] =

{
1 if the hyperedge si,k contains xi,j

0 otherwise

y∗
i,j [k] =

{
1 if the hyperedge si,k contains yi,j

0 otherwise

z∗
i,j [k] =

{
1 if the hyperedge si,k contains zi,j

0 otherwise

Then, for all i ∈ {1, · · · , t}, we append two vectors bi and b̄i to all vectors
{x∗

i,j}j=1,··· ,n, {y∗
i,j}j=1,··· ,n and {z∗

i,j}j=1,··· ,n. The vector bi is composed of mq
coordinates, and is defined as the binary representation of the integer i, where
each bit is duplicated m times. Finally, b̄i is obtained by taking the complement
of bi (i.e. replacing all zeros by ones, and conversely). It is now clear that each
vector x∗

i,j (resp. y∗
i,j , z∗

i,j) is composed of p∗ = m + 2mq coordinates. Thus, the
parameter of the input instance is a polynomial in n,m and log t whereas the
total size of the instance is a polynomial in the size of the sequence of inputs,
as required in cross-compositions. It now remains to prove that (X∗, Y ∗, Z∗)
contains an assignment of cost k∗ = nt(mq + m − 1) if and only if for all i ∈
{1, · · · , t}, Si contains a perfect matching S′

i.

Multidimensional Binary Vector Assignment Problem 195

– Suppose that for all i ∈ {1, · · · , t} we have a perfect matching S′
i ⊆ Si.

W.l.o.g. suppose that S′
i = {si,1, · · · , si,n}. Then, for each j ∈ {1, · · · , n}, we

have si,j = (xi,j1 , yi,j2 , zi,j3) for some j1, j2, j3 ∈ {1, · · · , n}. We assign x∗
i,j1

with y∗
i,j2

and z∗
i,j3

. It is easy to see that the cost of this triple is m − 1 + mq.
Indeed, they all have a one at the jth coordinate, corresponding to the jth

hyperedge of Si (and this is the only shared one, since we can suppose that
all hyperedges are pairwise distinct), and they all contain the same vectors bi

and b̄i. Summing up for all instances, we get the desired solution value.
– Conversely, first remark that in any assignment, the cost of every triple

(x∗
i1,j1

, y∗
i2,j2

, z∗
i3,j3

) is at least m − 1 + mq, and let us prove that this bound
is tight when (1) all elements are chosen within the same instance, i.e.
i1 = i2 = i3 = i, and (2) this triple corresponds to an element of Si,
i.e. (xi,j1 , yi,j2 , zi,j3) ∈ Si. Indeed, suppose first that i1
= i2. Then, since
the binary representation of i1 and i2 differs on at least one bit, it is clear
that the resulting vector is of cost at least m(q + 1) > mq + m − 1. Now
if i1 = i2 = i3 = i, then the result is straightforward, since at most one
hyperedge of Si can contain x∗

i1,j1
, y∗

i2,j2
and z∗

i3,j3
. Finally, using the same

arguments as previously, we can easily deduce a perfect matching S′
i ⊆ Si for

each i ∈ {1, · · · , t}, and the result follows. ��

3 Parameterizing According to ζB

In this section, we present an FPT algorithm when parameterized by ζB and n
(recall that both ζB and n are smaller parameters than the standard one k, since
k = B + ζB and n ≤ k in any reduced instance). Notice first that it is easy to
get a O∗(2ζB(log(n)+log(p))) algorithm. Indeed, by considering a set i ∈ [m] where
c(V i) = B, and guessing the positions of the ζB new zeros (among np possible
positions) that will appear in an optimal solution, we can actually guess in
O∗((np)ζB) the vectors {vs∗

j
} of an optimal solution, and it remains to check in

polynomial time that every V j can be “matched” to {vs∗
j
}. Now we show how

to get rid of the log(p) term in the exponent.

Theorem 3. bMVA can be solved in O∗(4ζB log(n)).

Proof. Let I[m,n, p, k] be an instance of our problem and, w.l.o.g., suppose that
V 1 is a set whose number of zeros reaches the upper bound B, i.e. c(V 1) = B. The
algorithm consists in constructing a solution by finding an optimal assignment
between V 1 and V 2, . . . , V m, successively.

We first claim that we can decide in polynomial time whether there is an
assignment between V 1 and V 2 which does not create any additional zero.
To that end, we create a bipartite graph G with bipartization (A,B), A =
{a1, . . . , an}, B = {b1, . . . , bn}, and link aj1 and bj2 for all (j1, j2) ∈ [n] × [n] iff
assigning vector v1

j1
from V 1 and vector v2

j2
from V 2 does not create any addi-

tional zero in V 1 (v1
j1

∧ v2
j2

= v1
j1

). If a perfect maching can be found in G, then
we can safely delete the set V 2 and continue. In order to avoid heavy notations,

196 M. Bougeret et al.

we consider this first step as a polynomial pre-processing, and we re-label V i

into V i−1 for all i ∈ {3, . . . , m} (and m is implicitly decreased by one).
In the following, we suppose that the previous pre-processing step cannot

apply (i.e. there is no perfect matching in G). Intuitively, in this case any assign-
ment (including an optimal one) between V 1 and V 2 must lead to at least one
additional zero in V 1. In this case, we perform a branching to guess one couple of
vectors from V 1 × V 2 which will induce such an additional zero. More formally,
we branch on every couple (j1, j2) ∈ [n]×[n], and create a new instance as a copy
of I in which v1

j1
is replaced by v1

j1
∧ v2

j2
. This operation increases c(V 1) by at

least one, and thus B by at least one as well. If we denote by I ′ this new instance,
we can check that a solution of cost at most k for I ′ will immediately imply a
solution of cost at most k for I, as I ′ is constructed from I by adding some
zeros. The converse is also true as one assignment we enumerate corresponds to
one from an optimal solution.

As the value of B in this branching increases by at least one while we still
look for a solution of cost k, this implies that this branching will be applied at
most ζB times. Summing up, we have one polynomial pre-processing and one
branching of size n2 which will be applied at most ζB times. The total running
time of this algorithm is thus bounded by O∗(4ζB log(n)). ��
Despite its simplicity, we now show that, when considering each parameter (n and
ζB) separately, this algorithm is the best we can hope for (whereas the existence
of an O∗(2k) algorithm is still open). Indeed, we first show in Theorem 5 that
the linear dependence in ζB and log(n) in the exponent is necessary (unless ETH
fails), and also that we cannot hope for an FPT algorithm parameterized by ζB
only unless FPT = W[2] (Theorem 4). Finally, as we will see in the next section
(Theorem 7), this result is matched by a 2o(ζB) lower bound when n ∈ N is fixed.
We now present a reduction from the Hitting Set problem which produces an
instance of bMVA in which parameters ζB and n are preserved.

Problem 3. Hitting Set
Input: m subsets R1, ..., Rm of [n], and an integer k
Question: Is there a set R of k elements of [n] such that R ∩ Ri �= ∅ for any i ∈ [m]?

Lemma 3. There is a polynomial reduction from Hitting Set to bMVA that
given an instance composed of m subsets of [n] and an integer k, constructs an
instance of bMVA I[m′, n′, p′, k′] such that n′ = n and ζB = k.

Proof. Let R1, ..., Rm be subsets of [n], and k ∈ N. We construct m sets
V 1, ..., V m of n vectors each, where, for all i ∈ [m] we have V i = {vi

1, ..., v
i
n},

each vector being composed of n components. For all i ∈ [m] and all j ∈ [n],
if j ∈ Ri, then the vector vi

j is composed of ones everywhere except at the jth

component. If j /∈ Ri, then vi
j is a 0-vector (i.e. a vector with zero in every com-

ponent). We also add a set V ∗ composed of (n − 1) 0-vectors and one 1-vector.

Multidimensional Binary Vector Assignment Problem 197

For this constructed instance, it is clear that B = n(n − 1) because of the set
V ∗. In other words, any assignment will lead to a solution with (n−1) 0-vectors,
and thus with at least n(n − 1) zeros. We will actually show that this instance
has a solution with n(n − 1) + k zeros if and only if R1, ..., Rm has a hitting set
of size k. By the foregoing, we only need to focus on the only vector of each set
which is assigned to the 1-vector of V ∗.

⇒ Let J ⊆ [n] be a hitting set of size k. By the definition of a hitting set, for
all i ∈ [m], there exists ji ∈ J ∩Ri. Thus, for all i ∈ [m], we select the vector vi

ji

from the set V i to be assigned to the 1-vector of V ∗. By construction, this vector
has only one zero at the jth

i component, which implies that the conjunction of
all such vectors

∧m
i=1 vj

ji
will have a 1 everywhere except at the components

corresponding to J . We thus have the desired number of zeros in our solution.
⇐ Conversely, for each i ∈ [m], let ji ∈ [n] be the vector from V i which

is assigned to the 1-vector of V ∗. Since the resulting conjunction of all these
vectors has only k zeros, vi

ji
cannot be a 0-vector, and we thus have ji ∈ Ri.

Using the same arguments as previously, {uji}i∈[m] corresponds to a hitting set
of R1, ..., Rm of size k.

As we seen previously, B = n(n − 1) for the obtained instance, k′ = n(n −
1) + k, (which implies ζB = k), and the size of all sets is n, as desired. ��
As we can see, the reduction is parameter-preserving for ζB. From the W[2]-
hardness of Hitting Set [6], we have the following:

Theorem 4. bMVA is W[2]-hard when parameterized by ζB.

As said previously, we also use this reduction to show the following result:

Theorem 5. bMVA cannot be solved in O∗(2o(ζB) log(n)) nor O∗(2ζBo(log(n))),
unless ETH fails.

Proof. To show this, we use our previous hardness result, but using a constrained
version of the Hitting Set problem obtained by [13], where the element set is
[k] × [k] and can thus be seen as a table with k rows and k columns:

Problem 4. k × k Hitting Set
Input: An integer k, and R1, ..., Rt ⊆ [k] × [k]

Question:
Is there a set R containing exactly one element from each row such that
R ∩ Ri �= ∅ for any i ∈ [t]?

Authors of [13] show that assuming ETH this problem cannot be solved in
2o(k log(k))nO(1) (whereas a simple brute force solves it in O∗(2k log(k))). Notice
that we can modify the question of this problem by dropping the constraint
that S contains at least one element from each row. Indeed, let us add to the
instance a set of k sets {R′

1, . . . , R
′
k}, where R′

i contains all elements of row i for
i ∈ [k]. Now, finding a (classical) hitting set of size k on this modified instance

198 M. Bougeret et al.

is equivalent to finding a solution of size k for the original instance of k × k-
Hitting Set. Moreover, it is easy to check that a 2o(k log(k))nO(1) algorithm
for this relaxed problem would also contradict ETH. To summarize, we know
that unless ETH fails, there is no 2o(k log(k))nO(1) algorithm for the classical
Hitting Set problem, even when the ground set has size k2. This allows us
to perform the reduction of Lemma 3 on these special instances, leading to an
instance I[m′, n′, p′, k′] with associated parameter ζB such that ζB = k and
n′ = k2. Suppose now that there exists an algorithm for bMVA running in
2o(ζB) log(n)(k + m + n + p)O(1). Using the reduction above, we would be able
to solve the instance of k × k-Hitting Set in 2o(k) log(k2)nO(1), and thus in
2o(k log(k))nO(1), which would violate ETH. A similar idea also rules out any
algorithm running in 2ζBo(log(n)) under ETH. ��

4 Parameterizing According to ζp

We now consider the problem parameterized by ζp = k − p (recall that p ≤ k).
Notice that one motivation of this parameterization is the previous reduction
of Lemma 3 from Hitting Set. Indeed, when applied for n = 2, it reduces an
instance of Vertex Cover to an instance of bMVA with k = p+ ζp where ζp is
equal to the size of the vertex cover. Our intuition is confirmed by the following
result: we show that when parameterized by ζp, the problem is indeed FPT
when n = 2 (Theorem 6). We complement this by showing that for any n ≥ 3,
it becomes NP-hard even when ζp = 0 (Theorem 7), and is thus not in XP
(unless P = NP). The reduction we use even proves that for any fixed n ≥ 3,
the problem cannot be solved in 2o(k) (and thus in 2o(ζB)) unless ETH fails,
while the algorithm of Theorem 3 runs in O∗(2O(ζB)). In the following, n-bMVA
denotes the problem bMVA where the size of all sets is fixed to some constant
n ∈ N.

4.1 Positive Result for n = 2

In this subsection, we prove that 2-bMVA is FPT parameterized by ζp. To do so,
we reduce to the Odd Cycle Transversal problem (OCT for short), which
consists, given a graph G = (V,E) and an integer c ∈ N, to decide whether
there exists a partition (X,S1, S2) of V with |X| ≤ c such that S1 and S2 are
independent sets.

We first introduce a generalized version of OCT, called bip-OCT. In this
problem, we are given a set of vertices V , an integer c, and a set of m pairs
(A1, B1), ..., (Am, Bm) with Ai, Bi ⊆ V for all i ∈ [m] and Ai∩Bi = ∅. Informally,
each pair (Ai, Bi) can be seen as a complete bipartite subgraph. The output of
bip-OCT is described by a partition (X,S1, S2) of V such that for any i ∈ [m],
either (Ai \ X ⊆ S1 and Bi \ X ⊆ S2) or (Ai \ X ⊆ S2 and Bi \ X ⊆ S1). The
question is whether there exists such a partition with |X| ≤ c. As we can see, if
all Ai and Bi are singletons (and thus form edges), then bip-OCT corresponds
to OCT. Notice that in the following, the considered parameter of OCT and

Multidimensional Binary Vector Assignment Problem 199

bip-OCT will always be the standard parameter, i.e. c. We first show that
there is a linear parameter-preserving reduction from 2-bMVA parameterized
by ζp to bip-OCT, and then that there is also a linear parameter-preserving
transformation from bip-OCT to OCT.

Lemma 4 (�). There is a linear parameter-preserving reduction from 2-bMVA
parameterized by ζp to bip-OCT.

Lemma 5 (�). There is a linear parameterized reduction from bip-OCT
to OCT.

As Odd Cycle Transversal can be solved in O∗(2.3146c) [14], and since our
parameters are exactly preserved in our two reductions, we obtain the following
result:

Theorem 6. 2-bMVA can be solved in O∗(dζp) where d ≤ 2.3146 is such that
OCT can be solved in O∗(dc).

4.2 Negative Results for n ≥ 3

We now complement the previous result by proving that the problem is
intractable with respect to the parameter ζp for larger values of n.

Theorem 7. For any fixed n ≥ 3, n-bMVA is not in XPwhen parameterized by
ζp (unless P=NP), and cannot be solved in 2o(k) (unless ETH fails).

Proof. Let χ ≥ 3. We present a reduction from χ-Coloring, which consists in,
given a graph G = (V,E), to ask for a mapping f : V −→ [χ] such that for all
{u, v} ∈ E we have f(u)
= f(v). Let E = {e1, ..., emG

} and V = [nG]. Let us
construct an instance I of n-bMVA with n = χ, p = nG, m = mG and such that
G admits a χ-coloring iff I has a solution of cost p (i.e. ζp = 0). To each edge
ei = {u, v} ∈ E, i ∈ [mG], we associate a set V i with |V i| = χ, where:

– vi
1 represents the vertex u, that is vi

1[u] = 0 and vi
1[r] = 1 for any r ∈ [nG],

r
= u,
– vi

1 represents the vertex v, that is vi
2[v] = 0 and vi

2[r] = 1 for any r ∈ [nG],
r
= v,

– for all j ∈ {3, . . . , χ}, vi
j is a 1-vector, i.e. it has a 1 at every component.

Let us now prove that G admits a χ-coloring iff I has a solution of cost p = nG.
⇒ Let Sj ⊆ V , j ∈ [χ] be the χ color classes (notice that the Sj are pair-

wise disjoint, some of them may be empty, and
⋃

j∈[χ] Sj = V). To each Sj we
associate a stack sj such that vsj

[r] = 0 iff r ∈ Sj . It remains to prove that the
solution S = {s1, . . . , sχ} is feasible, as its cost is exactly p by construction. Let
us consider a set V i where vi

1 (resp. vi
2) represents a vertex u (resp. v). As {u, v}

is an edge of G, we know that u and v have two different colors, i.e. that u ∈ Sj

and v ∈ Sj′ , for some j, j′ ∈ [χ] with j
= j′. Thus, we can add vi
1 to stack sj , vi

2

to stack sj′ , and the χ − 2 other vi
j (j ≥ 3) in an arbitrary way. Since the only 0

200 M. Bougeret et al.

in vi
1 (resp. vi

2) is at the uth (resp. vth) component, we have vi
1 ∧ vsj

= vsj
(resp.

vi
2 ∧ vsj′ = vsj′), which proves that S is feasible.

⇐. Let S = {s1, . . . , sχ} be the stacks of an optimal solution. For j ∈ [χ], let
Sj = {r ∈ [p]|vsj

[r] = 0}. Notice that
⋃χ

j=1 Sj = V , and as I is of cost p, all the
Sj are pairwise disjoints and form a partition of V . Moreover, as for any i ∈ [m],
vi
1 and vi

2 have been assigned to different stacks, the corresponding vertices have
been assigned to different colors, and thus each Sj induces an independent set,
which completes the reduction.

It is known [11] that there is no 2o(|V |) algorithm for deciding whether a
graph G = (V,E) admits a χ-Coloring, for any χ ≥ 3 (under ETH). As we
can see, the value of the optimal solution for n-bMVA in the previous reduction
equals the number of vertices in the instance of χ-Coloring, which proves that
n-bMVA cannot be solved in 2o(k) for any n ≥ 3. ��
Finally, remark that as for the parameterization by p, one could ask if bMVA is
FPT when parameterized by the first lower bound B. However, we can see in
the previous reduction that we obtain a graph with B = 2, and thus the problem
is even not in XP unless P = NP.

5 Conclusion

In this article, we presented some negative and positive results for a multidi-
mensional binary vector assignment problem in the framework of parameterized
complexity. Notice that neither lower bounds of Theorem 5 nor Theorem 7 are
able to rule out an algorithm running in O∗(2k) (when n is part of the input),
hence the existence of such an algorithm seems a challenging open problem.
Another interesting question concerns the improvement of the O(k2m) kernel of
Theorem 1 by getting rid of the parameter m: does bMVA admit a polynomial
kernel when parameterized by k only?

References

1. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by
cross-composition. SIAM J. Discrete Math. 28(1), 277–305 (2014)

2. Bougeret, M., Duvillie, G., Giroudeau, R., Watrigant, R.: Multidimensional binary
vector assignment problem: standard, structural and above guarantee parameteri-
zations. CoRR, abs/1506.03282 (2015)

3. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On multiway cut para-
meterized above lower bounds. In: Proceedings of the 6th International Conference
on Parameterized and Exact Computation (IPEC2011), pp. 1–12, Springer-Verlag,
Heidelberg (2012)

4. Dokka, T., Bougeret, M., Boudet, V., Giroudeau, R., Spieksma, F.C.R.: Approx-
imation algorithms for the wafer to wafer integration problem. In: Erlebach,
T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846, pp. 286–297. Springer,
Heidelberg (2013)

5. Dokka, T., Crama, T.Y., Spieksma, F.C.R.: Multi-dimensional vector assignment.
Discrete Optim. 14, 111–125 (2014)

Multidimensional Binary Vector Assignment Problem 201

6. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, Hiedelberg (2013)

7. Drucker, A.: New limits to classical and quantum instance compression. In: FOCS,
pp. 609–618, (2012)

8. Duvillié, G., Bougeret, M., Boudet, V., Dokka, T., Giroudeau, R.: On the com-
plexity of wafer-to-wafer integration. In: Paschos, V.T., Widmayer, P. (eds.) CIAC
2015. LNCS, vol. 9079, pp. 208–220. Springer, Heidelberg (2015)

9. Gutin, G., Rafiey, A., Szeider, S., Yeo, A.: The linear arrangement problem para-
meterized above guaranteed value. In: Calamoneri, T., Finocchi, I., Italiano, G.F.
(eds.) CIAC 2006. LNCS, vol. 3998, pp. 356–367. Springer, Heidelberg (2006)

10. Gutin, G., Yeo, A.: Constraint satisfaction problems parameterized above or below
tight bounds: a survey. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D.
(eds.) Fellows Festschrift 2012. LNCS, vol. 7370, pp. 257–286. Springer, Heidelberg
(2012)

11. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Sys. Sci. 63(4), 512–530 (2001)

12. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential.
Bull. EATCS 105, 41–72 (2011)

13. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized
problems. In: Proceedings of the Twenty-second Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA2011), pp. 760–776. SIAM (2011)

14. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh,
S.: Faster parameterized algorithms using linear programming. ACM Trans. Algo-
rithms 11(2), 151–153 (2014)

15. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: Maxsat and
maxcut. J. Algorithms 31(2), 335–354 (1999)

16. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed
values. J. Comput. Sys. Sci. 75(2), 137–153 (2009)

17. Reda, S., Smith, G., Smith, L.: Maximizing the functional yield of wafer-to-wafer
3-d integration. IEEE Trans. Very Large Scale Integr. (VLSI) Sys. 17(9), 1357–
1362 (2009)

Incremental Complexity of a Bi-objective
Hypergraph Transversal Problem

Ricardo Andrade2,3,4,5, Etienne Birmelé1(B), Arnaud Mary2,3,4,5,
Thomas Picchetti1, and Marie-France Sagot2,3,4,5

1 MAP5, UMR CNRS 8145, Université Paris Descartes, Paris, France
etienne.birmele@parisdescartes.fr

2 Université de Lyon, 69000 Lyon, France
3 Université Lyon 1, Villeurbanne, France

4 CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive,
69622 Villeurbanne, France

5 INRIA Grenoble Rhône-Alpes - ERABLE, Lyon, France

Abstract. The hypergraph transversal problem has been intensively
studied, both from a theoretical and a practical point of view. In par-
ticular, its incremental complexity is known to be quasi-polynomial in
general and polynomial for bounded hypergraphs. Recent applications in
computational biology however require to solve a generalization of this
problem, that we call bi-objective transversal problem. The instance is
in this case composed of a pair of hypergraphs (A,B), and the aim is to
enumerate minimal sets which hit all the hyperedges of A while inter-
secting a minimal set of hyperedges of B. In this paper, we formalize
this problem and relate it to the enumeration of minimal hitting sets
of bundles. We show cases when under degree or dimension contraints
these problems remain NP-hard, and give a polynomial algorithm for the
case when A has bounded dimension, by building a hypergraph whose
transversals are exactly the hitting sets of bundles.

1 Introduction

Let A ⊆ 2V be a hypergraph on a finite set V . A transversal of A is any set
S ⊆ V intersecting all hyperedges of A. It is straightforward to see that being a
transversal is a monotone property on the subsets of V , so that the collection of
minimal transversals characterizes all of them. This collection is called the dual
or transversal hypergraph of A, and is denoted by tr(A).

The problem of computing the transversal hypergraph of any A is equivalent
to enumerating maximal independent sets in hypergraphs [4] or to solving the
Boolean function dualization problem [10]. Furthermore, it has many applica-
tions, for instance in artificial intelligence [8]. This problem thus received much
attention in the last decades, both from a theoretical and a practical point of
view (see [10] for a review).

R. Andrade—Financially supported by CNPq – Brazil.

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 202–213, 2015.
DOI: 10.1007/978-3-319-22177-9 16

Incremental Complexity of a Bi-objective Hypergraph Transversal Problem 203

The first method was proposed by Berge [2], who considered the hyperedges
iteratively, updating the partial solutions obtained at each step. This algorithm
may however have to store a high number of partial solutions, and no full solu-
tion will be available until the algorithm stops. More recent work thus focused
on methods that compute the minimal transversals incrementally, studying the
following problem [16]:

Problem 1 DUAL(A,X). Given a hypergraph A and a set X of minimal
transversals of A, decide whether tr(A) = X or find a new minimal transversal
in tr(A) \ X .

The complexity of this problem remains an open question. However, Fredman
and Khachiyan [11] showed that it is quasi-polynomial by proposing two algo-
rithms of respective complexities NO(log2 N) and No(logN), where N = |A|+ |X |
is the size of the input. We define the dimension dim(A) of a hypergraph A
as the size of its largest hyperedge, and the degree of a vertex as the num-
ber of hyperedges it belongs to, deg(A) being the maximum degree in A. For
hypergraphs of bounded dimension, the problem is polynomial [7]. It is also poly-
nomial for hypergraphs of bounded degree [9]. Moreover, the complexity class of
the problem does not change if multiple minimal transversals or partial minimal
transversals are required [5]. There are parallel algorithms for some classes of
hypergraphs. For bounded edge size hypergraphs the problem is known to be
in RNC [4] and a global parallel algorithm exists [17]. Also, there is a parallel
polylog algorithm [18] for uniformly sparse hypergraphs.

The performance of the algorithms in practice was also studied in several
publications. Khachiyan et al. [16] gave an algorithm with the same worst-case
complexity than the one of Fredman and Khachiyan but with a better perfor-
mance in practice. More recently, Toda [21] and Murakami and Uno [19] com-
pared the existing algorithms and proposed new ones which can deal with large
scale hypergraphs.

Our extension of the problem is motivated by several already studied or
potential applications in computational biology. It was for example proposed
for elaborating knock-out strategies in metabolic networks [14], the hyperedges
representing metabolic pathways whose activity should be suppressed. One may
also consider the vertices as genes and a hyperedge as the set of mutated genes in
a tumoral tissue. The transversal hypergraph then lists the collection of minimal
mutation sets hitting all the tumors. The mutation scenarios would be described
by sets of genes, rather than by a single ranking of the genes based on the p-value
of a statistical over-representation test.

However, due to the complexity of cellular mechanisms, in both previous cases
it appears there actually are two types of hyperedges, some of them having to be
intersected while others should be avoided. Indeed, if one wants to knock-out a
given set of metabolic pathways, one needs to maintain the biomass production of
the cell in order to avoid cellular death. Hädicke and Klamt [13] introduced thus
the notion of constrained minimal cut sets corresponding to vertex sets hitting
all target pathways while avoiding at least n pathways among a prescribed set.

204 R. Andrade et al.

An adaptation of the Berge algorithm was proposed and was compared to binary
integer programming on real data sets [15].

Coming back to the tumoral mutation example, a similar bi-objective prob-
lem appears. Mutations may indeed not be related to cancer, and the goal is
to discriminate driver mutations from so-called back-seat mutations. Bertrand
et al. [3] showed that this is equivalent to the minimal set cover and used a
greedy approximation algorithm to solve it. An alternative way to deal with the
problem would be to use other mutation data on similar but non tumoral tissues,
and to look for mutation collections covering all tumors while avoiding healthy
samples as much as possible.

We therefore propose to consider a bi-objective generalization of the hyper-
graph transversal problem, in which two distinct hypergraphs represent, respec-
tively, the sets of nodes to hit and those to avoid, and to search for the minimal
sets of vertices fulfilling both criteria.

In Sect. 2 we formalize the problem and relate it to the enumeration of hitting
sets of bundles. In Sect. 3 we show that both associated decision problems are
NP-hard, even under some degree or dimension restrictions. Finally in Sect. 4
we give a polynomial algorithm for the case where dim(A) is bounded by some
constant C.

2 The Bi-objective Transversal Problem

2.1 The Problem

We consider two hypergraphs on the same set of vertices V . The first hypergraph
A will be denoted as the red hypergraph and represents the sets of vertices that
have to be intersected. The second hypergraph B will be denoted as the blue
hypergraph and represents the sets of vertices which should not be intersected
if possible. We will represent such an instance as a tripartite graph, as shown in
Fig. 1.

Notation: for S ⊆ V , we define BS = {b ∈ B;S ∩ b �= ∅}, the blue neighbor-
hood of S.

Definition 1. A bi-objective minimal transversal of the couple (A,B) is a set
S ⊆ V such that:

1. S is a minimal transversal of A
2. there exists no S′ verifying condition 1 and such that BS′ � BS.

The collection of bi-objective minimal transversals of (A,B) is denoted by
btr(A,B).

Example: in Fig. 1, consider the sets S = {u, v} and T = {u,w}. Both are
minimal transversals of A. However S is not a bi-objective minimal transversal
as BT = {b1} is a strict subset of BS = {b1, b2}.

If a1, a2, a3 are tumoral samples, b1, b2, b3 healthy samples and u, v, w, x
mutations, then the set T is more likely linked to cancer than S because, while
both sets hit all tumors, T hits only a subset of the healthy samples hit by S.

The problem we introduce is:

Incremental Complexity of a Bi-objective Hypergraph Transversal Problem 205

u v w x

a1 a2 a3

b1 b2 b3

Fig. 1. Tripartite representation of an instance of the problem. The circled vertices are
the vertices of the hypergraphs. The squared (resp. diamond) vertices represent the
hyperedges of A (resp. B).

Problem 2 Bi-objective Hypergraph Transversal Problem. Given hyper-
graphs A and B on the same vertices, enumerate btr(A,B).

A first approach for this problem would be to enumerate all minimal transversals
of A and then to check for the minimality condition with respect to B. How-
ever, such a procedure may spend an exponential time on enumerating minimal
transversals of A which will be ruled out in the second step. Indeed, consider
a hypergraph A on a vertex set V such that A has an exponential number of
minimal transversals. Let S be one of them. Consider the hypergraph B having
V \S as unique hyperedge. S is then the unique bi-objective minimal transversal
of (A,B).

As the dual hypergraph problem corresponds to the special case B = ∅, we
propose to adopt the same strategy of an incremental search of the solutions.
We therefore introduce the following problem:

Problem 3 BIDUAL(A,B,X). Given hypergraphs A and B on the same ver-
tices and a set X of bi-objective minimal transversals of (A,B), decide whether
btr(A,B) = X or find a new minimal transversal in btr(A,B) \ X .

2.2 Another Enumeration Problem

We now link Problem 2 with another, pre-existing problem, which involves a
slight shift of perspective on the objects.

Definition 2. Let B be a set of nodes, and A a set of sets of bundles, each
bundle being a subset of B. A Hitting Set of Bundles (HSB) of (A,B) is a subset
B ⊆ B such that for each a ∈ A at least one bundle x ∈ a is contained in B.

If A and B are hypergraphs as before, we can talk about HSBs of (A,B) by
identifying every vertex x ∈ V with the bundle Bx.

206 R. Andrade et al.

In Fig. 1 for example, the base set contains b1, b2, b3, the bundles are Bu =
{b1}, Bv = {b1, b2}, Bw = {b1}, Bx = {b2, b3}, and the sets of bundles are a1 =
{Bu, Bx}, a2 = {Bu, Bv}, a3 = {Bv, Bw, Bx}. A HSB must contain one bundle
in a1, one bundle in a2, and one bundle in a3, e.g. {b1, b2} contains Bu ∈ a1,
Bv ∈ a2, and Bw ∈ a3.

Hitting sets of bundles were introduced in [1] as a more abstract formulation
of the Multiple Query Optimisation problem [20] and can model other interest-
ing problems [6]. Work on this subject focuses on finding or approximating the
minimum weight of a HSB [1,6], whereas we will be interested in minimality for
inclusion:

Problem 4. Given hypergraphs A and B on the same vertices, enumerate the
minimal (for inclusion) HSBs of (A,B).

Our interest in this problem comes from the following lemma and theorem:

Lemma 1. Let A and B be two hypergraphs on the same vertex set V . A mini-
mal transversal S of A is a bi-objective minimal transversal of (A,B) if and only
if BS is a minimal HSB of (A,B). Also, for every minimal HSB of (A,B) there
exists such a transversal.

Proof. The proof is a combination of the following simple facts:

– If S is a transversal of A, then BS is a HSB of (A,B).
– Conversely if B is a HSB of (A,B) there is a transversal S of A for which

BS ⊆ B.
– These two facts imply that if B is a HSB of (A,B), it is minimal if and only

if there is no transversal S such that BS � B.
– Using the fact that any transversal S of A contains a minimal transversal S′,

and that BS′ ⊆ BS , the claims are proved. �

Theorem 1. If Problem 4 can be solved in quasi-polynomial time in the com-
bined input and output size, then the same is true of Problem 2.

Proof. Thanks to the Lemma 1, this can be done by enumerating the minimal
HSBs and, for each B among them, enumerating the minimal transversals of
A such that BS = B. Notice that it can be done by computing the minimal
transversals of the hypergraph A restricted to the vertices whose corresponding
bundles are included in B.

The first part is done in quasi-polynomial time in the input and its own
output (the minimal HSBs), which, by the second claim of our lemma, means
quasi-polynomial time in the input and the final output (the bi-objective min-
imal transversals). The second part consists in computing as many transversal
hypergraphs as there are minimal HSBs: this is done in quasi-polynomial time
for each one, and again, by the second claim of the lemma, they are fewer than
the final output size.

Hence the whole process runs in quasi-polynomial time in the combined input
and output size. �

Incremental Complexity of a Bi-objective Hypergraph Transversal Problem 207

To study Problem 4, we consider again its incremental version:

Problem 5 mHSB(A,B,X). Given hypergraphs A and B on the same vertices
and a set X of minimal HSBs of (A,B), decide whether all the minimal HSBs
are in X or find a new one.

The traditional transversal hypergraph problem becomes polynomially solvable
when the degree is bounded in the hypergraph, or its dimension is bounded. We
will now study these situations for the problems BIDUAL and mHSB.

3 Situations in Which the Problems Remain Hard

3.1 Bounded Degree

Here we show that unlike the classical transversal hypergraph problem, the enu-
meration of minimal HSBs and of bi-objective minimal transversals remain hard
when both hypergraphs A and B have bounded degree.

x1 x2 x3x1 x2 x3 C1
1 C2

1 C3
1 C1

2 C2
2 C3

2 C1
3 C2

3 C3
3

a1 a2 a3

b0 bx1 bx1 bx2 bx2 bx3 bx3

Fig. 2. Instance for the reduction of Theorem 2. The considered clauses are C1 =
x1 ∨ x2 ∨ x3, C2 = x1 ∨ x2 and C3 = x3.

Theorem 2. Problems BIDUAL and mHSB are NP-complete, even restricted
to deg(A) = 1 and deg(B) ≤ 3.

Proof. This reduction is inspired by Theorem 4 in [12], although new arguments
were needed to prove the present theorem.

Let f(x1, . . . , xn) = C1 ∧ . . . ∧ Cm be a 3-CNF formula (without loss of
generality, we assume that all clauses are different). We polynomially construct
two hypergraphs A and B as follows (see Fig. 2):

208 R. Andrade et al.

– The vertex set V is composed of the 2n literals, and kn “clause” vertices Ci
k

for all 1 ≤ i ≤ n, 1 ≤ k ≤ m.
– For all 1 ≤ i ≤ n, a red hyperedge ai contains xi, xi, C

i
1, . . . , C

i
m.

– For every literal l, a blue hyperedge bl contains l and all the clauses in which
its negation appears.

– Finally, a blue hyperedge b0 contains all the literals.

Note that every vertex belongs to exactly one hyperedge in A (red), and at most
3 hyperedges in B (blue).

For all 1 ≤ k ≤ m, the set Sk = {Ci
k, 1 ≤ i ≤ n} is a bi-objective minimal

transversal of (A,B) and its blue neighborhood BSk
is a minimal HSB (note: BSk

consists in the negated literals of clause Ck. This is exactly the bundle associated
to Ci

k, for all i).
The result follows from the equivalence of these three conditions:

1. 3-SAT(f) has a positive answer.
2. mHSB(A,B, {BSk

, 1 ≤ k ≤ m}) does not have a positive answer.
3. BIDUAL(A,B, {Sk, 1 ≤ k ≤ m}) does not have a positive answer.

(1)⇒(2): Consider the set B containing the blue hyperedges associated to
the literals of a satisfying truth assignment, and also b0. B is a HSB since for
every 1 ≤ i ≤ n it contains the bundle associated to xi or to xi, thus hitting the
set of bundles ai.

It is also minimal. Indeed, removing any element b0, bxi
or bxi

would prevent
B from hitting the set of bundles ai, because B contains none of the bundles
associated with the Ci

k (since every clause in f is satisfied, the negations of the
literals in a clause can not all be in B).

Finally B is not one of the already provided minimal HSBs.
(2)⇒(3): By Lemma 1 there is a bi-objective minimal transversal S such that

BS = B, and this implies that S is not one of the already provided transversals.
(3)⇒(1): Let S be a new bi-objective minimal transversal of (A,B).
It can not contain a Ci

k, because then BS would contain strictly BSk
, con-

tradicting its minimality. The inclusion is clear since BSk
is exactly the blue

neighborhood of Ci
k. It is strict because by assumption, S can not be included

in Sk: it must contain a vertex not in Sk, either a literal or a Cj
h with h �= k.

In either case this means that BS contains a blue edge not in BSk
(indeed: all

literals are in b0, and we assumed that Ch is not a subset of Ck).
Since S contains noCi

k, it contains only literals. Being a minimal transversal of
A it must contain exactly one literal for each variable, i.e. represent a truth assign-
ment. Suppose this assignment does not satisfy some clause Ck: this means that
S contains the negations of all the literals in Ck, so BS contains BSk

. Again, since
BS also contains b0, the inclusion is strict, contradicting the minimality of BS . �

3.2 B of Bounded Dimension

We show a similar result for the case where dim(B) is restricted.

Theorem 3. Problems BIDUAL and mHSB are NP-complete, even restricted
to dim(B) ≤ 2.

Incremental Complexity of a Bi-objective Hypergraph Transversal Problem 209

Proof. Let us consider a 3-SAT instance f(x1, . . . , xn) = C1 ∧ . . . ∧Cm. We can
consider, without loss of generality, that there exists no i such that all clauses
contain either xi or xi (in that case the instance would easily be solved as two
instances of 2-SAT).

x1 x2 x3 x4 x1 x2 x3 x4y1 y2 y3 y4

a1 a2 a3

b1 b2 b3 b4 b1 b2 b3 b4

Fig. 3. Instance for the reduction of Theorem 3. The considered clauses are C1 =
x1 ∨ x2 ∨ x4, C2 = x1 ∨ x3 ∨ x4 and C3 = x2 ∨ x3 ∨ x4.

Construct the following hypergraphs (see Fig. 3):

1. Consider 3n vertices V = {x1, x1, . . . , xn, xn, y1, . . . , yn}.
2. For every 1 ≤ j ≤ m, define a red hyperedge aj including the xi’s and xi’s

defining Cj as well as {y1, . . . , yn}.
3. For every 1 ≤ i ≤ n, define a blue hyperedge bi = {xi, yi} and a blue hyper-

edge b′
i = {xi, yi}. Observe that B is of dimension 2.

For every 1 ≤ i ≤ n, consider Si = {yi}. It covers all the red hyperedges as
well as bi and b′

i. As neither xi nor xi is contained in all the clauses, it is a minimal
solution to the bi-objective problem and its blue neighborhood Bi = {bi, b′

i} is
a minimal HSB.

The theorem results from the equivalence of these conditions:

1. 3-SAT(f) has a positive answer.
2. mHSB(A,B, {Bi, . . . , Bn} does not have a positive answer
3. BIDUAL(A,B, {S1, . . . , Sn}) does not have a positive answer.

(1)⇒(2): Consider a satisfying truth assignment and let B contain bi when xi

is true in the assignment, and b′
i when xi is false in the assignment. B is visibly

a HSB and contains none of the Bi. It therefore contains a new minimal HSB.

210 R. Andrade et al.

(2)⇒(1): Let B be a new minimal HSB. For any 1 ≤ i ≤ n, it can not contain
{bi, b′

i}, hence B can be extended into a truth assignment. The fact that B hits
all hyperedges of A means that such a truth assignment must satisfy all the
clauses in f .

(2)⇒(3): Let B be a new minimal HSB. There exists a bi-objective minimal
transversal S such that BS = B. Since BS does not contain {bi, b′

i} for any i, S
does not contain any of the yi.

(3)⇒(2): Let S be a new minimal bi-objective transversal, Bs is a minimal
HSB. Let us prove that it does not belong to {{bi, b′

i}, 1 ≤ i ≤ n}. Suppose
Bs = {bi, b′

i}. Since S can not be a superset of {yi}, it is a subset of {xi, xi},
and the assumption we made earlier contradicts the fact that S is a transversal
of A (not all clauses contain either xi or xi). �

4 Bounding the Dimension of A
We show in this section that when dim(A) ≤ C for some constant C, one can
reduce both enumeration Problems 2 and 4 to the transversal hypergraph prob-
lem in a hypergraph of bounded dimension, and thus solve them in polynomial
time. To do this we build a hypergraph H whose transversals are exactly the
HSBs of (A,B) (this can be of interest in itself).

Theorem 4. mHSB can be solved in polynomial time if the dimension of A is
bounded by a constant C. As a consequence, Problem 2 can be solved in incre-
mental polynomial time, where the polynomial bounds depend on C.

When the dimension of A is bounded, given a set B ∈ B, the enumeration
of all minimal transversals whose blue neighborhood is B corresponds to the
enumeration of minimal transversals of a hypergraph of bounded dimension, and
therefore can be done in incremental polynomial time. To show that Problem 2
is polynomial, it is sufficient to show that Problem 4 is polynomial. Actually we
will show that Problem 4 can also be reduced to the enumeration of all minimal
transversals of a hypergraph of bounded dimension.

Definition 3. For a ∈ A, let us denote by Ha the hypergraph induced on B by
the bundles of a:

– V (Ha) =
⋃

x∈a
Bx

– E(Ha) = {Bx | x ∈ a}
The following proposition gives a characterisation of the subsets B of B that
contain a bundle of a given hyperedge a ∈ A. Given a ∈ A, by construction
of the hypergraph Ha, B contains a bundle of a if and only if B contains a
hyperedge of Ha.

For our purpose, we need to reformulate this simple fact. The formulation
given in Lemma 2 can be seen as a direct consequence of the following obser-
vation. A subset of vertices X of a hypergraph H contains a hyperedge if and

Incremental Complexity of a Bi-objective Hypergraph Transversal Problem 211

only if X is a transversal of the hypergraph tr(H). Indeed, by the duality prop-
erty between a hypergraph and its transversal hypergraph (see [2]), the minimal
transversals of tr(H) are exactly the minimal hyperedges of H. Thus, a subset of
vertices contains a hyperedge of H if and only if it contains a minimal transversal
of tr(H), i.e. if it is a transversal of tr(H).

Lemma 2. Let B ⊆ B and a ∈ A. B contains a bundle of a if and only if B is
a transversal of tr(Ha).

Proof. (⇒) Assume that B contains the bundle Bx for some x ∈ a. Let t ∈
tr(Ha). Since Bx is a hyperedge of Ha, t must intersect Bx and then t ∩B �= ∅.
We conclude that B is a transversal of tr(Ha).

(⇐) Assume now that B is a transversal of tr(Ha) and contains no bundle in a.
This means that for all x ∈ a, there exists bx ∈ Bx such that bx /∈ B. Let t ⊆ B
be the set formed by all bx for all x ∈ a i.e. t :=

⋃

x∈a
Bx \ B. Since for all x ∈ a,

Bx \ B �= ∅, t is a transversal of Ha and then contains a minimal transversal t′

of Ha. However by construction of t, we have t′ ∩ B = ∅, contradicting the fact
that B is a transversal of tr(Ha). �

Now since we require that B contains a bundle in every hyperedge of A, B must
be a transversal of Ha for every a ∈ A.

Proposition 1. The set of minimal HSBs of (A,B) is tr(
⋃

a∈A
tr(Ha)).

Proof. Let H =
⋃

a∈A
tr(Ha).

B ∈ HSB(A,B) ⇐⇒ ∀a ∈ A, B contains a bundle of a by definition.
⇐⇒ ∀a ∈ A, B is a transversal of tr(Ha) by Lemma 2.
⇐⇒ B is a transversal of H.

Thus, the HSBs of (A,B) are exactly the transversals of H. Therefore, the
set of minimal HSBs of (A,B) is tr(

⋃

a∈A
tr(Ha)). �

If dim(A) is bounded by C, for all a ∈ A, Ha has at most C hyperedges and
then each minimal transversal t of Ha is of size at most C. Then

⋃

a∈A
tr(Ha)) is

a hypergraph of dimension at most C having at most |A||B|C hyperedges. We
can then construct it in polynomial time and enumerate its minimal transversals
in incremental polynomial time as it is of bounded dimension [7].

This implies that if A is of bounded dimension, the minimal HSBs of (A,B)
can be enumerated in incremental polynomial time, thus proving Theorem 4.

Acknowledgements. We would like to thank the reviewers for their remarks which
helped us to make the paper clearer, and particularly for pointing out the pre-existing
notion of hitting sets of bundles.

212 R. Andrade et al.

References

1. Angel, E., Bampis, E., Gourvès, L.: On the minimum hitting set of bundles prob-
lem. Theoret. Comput. Sci. 410(45), 4534–4542 (2009)

2. Berge, C.: Hypergraphs: Combinatorics of Finite Sets. North-Holland, Amsterdam
(1989)

3. Bertrand, D., Chng, K.R., Sherbaf, F.G., Kiesel, A., Chia, B.K.H., Sia, Y.Y.,
Huang, S.K., Hoon, D.S.B., Liu, T., Hillmer, A., Hillmer, A., Nagarajan, N.:
Patient-specific driver gene prediction and risk assessment through integrated net-
work analysis of cancer omics profiles. Nucleic Acids Res. 43(3), 1332–1344 (2015)

4. Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L.: An efficient incremental
algorithm for generating all maximal independent sets in hypergraphs of bounded
dimension. Parallel Process. Lett. 10, 253–266 (2000)

5. Boros, E., Gurvich, V., Khachiyan, L., Makino, K.: Generating partial and multiple
transversals of a hypergraph. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.)
ICALP 2000. LNCS, vol. 1853, pp. 588–599. Springer, Heidelberg (2000)

6. Damaschke, P.: Parameterizations of hitting set of bundles and inverse scope. J.
Comb. Optim. 36(2012), 1–12 (2013)

7. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. SIAM J. Comput. 24(6), 1278–1304 (1995)

8. Eiter, T., Gottlob, G.: Hypergraph transversal computation and related problems
in logic and AI. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002.
LNCS (LNAI), vol. 2424, pp. 549–564. Springer, Heidelberg (2002)

9. Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and gen-
erating hypergraph transversals. SIAM J. Comput. 32(2), 514–537 (2003)

10. Eiter, T., Makino, K., Gottlob, G.: Computational aspects of monotone dualiza-
tion: a brief survey. Discrete Appl. Math. 156(11), 2035–2049 (2008)

11. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone
disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996)

12. Gurvich, V., Khachiyan, L.: On generating the irredundant conjunctive and dis-
junctive normal forms of monotone boolean functions. Discrete Appl. Math. 96–97,
363–373 (1999)

13. Hädicke, O., Klamt, S.: Computing complex metabolic intervention strategies using
constrained minimal cut sets. Metab. Eng. 13(2), 204–213 (2011)

14. Haus, U.-U., Klamt, S., Stephen, T.: Computing knock-out strategies in metabolic
networks. J. Comput. Biol. 15(3), 259–268 (2008)

15. Jungreuthmayer, C., Nair, G., Klamt, S., Zanghellini, J.: Comparison and improve-
ment of algorithms for computing minimal cut sets. BMC Bioinf. 14(1), 318 (2013)

16. Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V.: An efficient implementation
of a quasi-polynomial algorithm for generating hypergraph transversals and its
application in joint generation. Discrete Appl. Math. 154(16), 2350–2372 (2006)

17. Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V.: A global parallel algorithm
for the hypergraph transversal problem. Inf. Process. Lett. 101(4), 148–155 (2007)

18. Khachiyan, L., Boros, E., Gurvich, V., Elbassioni, K.: Computing many indepen-
dent sets for hypergraphs in parallel. Parallel Process. Lett. 17(02), 141–152 (2007)

19. Murakami, K., Uno, T.: Efficient algorithms for dualizing large-scale hypergraphs.
Discrete Appl. Math. 170, 83–94 (2014)

Incremental Complexity of a Bi-objective Hypergraph Transversal Problem 213

20. Sellis, T.K.: Multiple-query optimization. ACM Trans. Database Sys. 13(1), 23–52
(1988)

21. Toda, T.: Hypergraph transversal computation with binary decision diagrams. In:
Demetrescu, C., Marchetti-Spaccamela, A., Bonifaci, V. (eds.) SEA 2013. LNCS,
vol. 7933, pp. 91–102. Springer, Heidelberg (2013)

Pairs Covered by a Sequence of Sets

Peter Damaschke(B)

Department of Computer Science and Engineering,
Chalmers University, 41296 Göteborg, Sweden

ptr@chalmers.se

Abstract. Enumerating minimal new combinations of elements in a
sequence of sets is interesting, e.g., for novelty detection in a stream
of texts. The sets are the bags of words occuring in the texts. We focus
on new pairs of elements as they are abundant. By simple data struc-
tures we can enumerate them in quadratic time, in the size of the sets,
but large intersections with earlier sets rule out all pairs therein in lin-
ear time. The challenge is to use this observation efficiently. We give a
greedy heuristic based on the twin graph, a succinct description of the
pairs covered by a set family, and on finding good candidate sets by
random sampling. The heuristic is motivated and supported by several
related complexity results: sample size estimates, hardness of maximal
coverage of pairs, and approximation guarantees when a few sets cover
almost all pairs.

1 Introduction

1.1 Motivation and Aim

In a chronological sequence of texts about some topic, such as a news stream,
posts in social media, a timeline, etc., we may want to quickly understand what
is novel in each entry, or what caused peaks in the volume of news about a
topic. A simple approach is to determine new combinations of words. Ignoring
the order of words, grammar, etc., let us consider the data as a sequence of sets
(“bags of words”). The given bags may already be preprocessed: ignoring stop
words, stemming, identifying synonyms, etc.

Definition 1. Let B0, B1, B2, . . . , Bm−1 be a sequence of sets that we call bags.
For another bag B := Bm we call a subset X ⊆ B new at m, if X was not
already subset of an earlier bag: ∀i < m : X \ Bi �= ∅. Otherwise X ⊆ B is said
to be old at m. We call X ⊆ B minimal new at m, if X is new and also minimal
(with respect to inclusion) with this property.

For knowing all new sets it suffices to know the minimal new sets. In the case
of word sets, X can be a single new name or term, or a new pair, triple, etc., of old
words, indicating new connections. They often give a good intuitive description of
what is novel. Others can be understood only in context, or they are unrelated
and meet only by chance. But before judging the new sets semantically one
c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 214–226, 2015.
DOI: 10.1007/978-3-319-22177-9 17

Pairs Covered by a Sequence of Sets 215

needs to find them first. Examples as below suggest that minimal new pairs are
abundant, and minimal new sets of h > 2 words are rare. This is expected since
X can be minimal new only if all its subsets appeared earlier.

Example. In a timeline of major discoveries in physics we should find an
article about the first formulation of the law of conservation of energy. Then
{conservation, energy} is minimal new, as this combination is new, but the term
“energy” was coined earlier, and other conservation laws were formulated ear-
lier, e.g., conservation of matter. Other articles will deal with the prediction and
confirmation of electromagnetic waves. The pair {electromagentic, wave} is min-
imal new: They were totally unknown before, but physics had already dealt with
other waves (such as light waves, being unaware that they are electromagnetic,
too), and with other electromagnetic phenomena like induction.

Novelty mining and novelty detection in streams is extensively studied
[2,11,12]. The subject is also related to minimal infrequent itemsets and mining
emerging patterns [1,7,8]. However, in the present work we do not apply any
language processing or machine learning to extract news or to produce online
summaries, rather we explore the complexity of a combinatorial approach that
relies on a very simple idea but gives meaningful hints to novelty. We consider
the following problem, applied to sequences of texts like short articles.

Problem. Given a sequence of bags B0, B1, B2, . . ., enumerate the minimal new
subsets X in each bag.

X is minimal new at m if and only if X is a minimal hitting set in the family
of sets {B \ Bi | i < m}, that we call hyperedges. A set family is also called a
hypergraph, and a hitting set (or transversal) intersects all hyperedges.

Define n := max |Bi|, let m be the number of hyperedges (bags), and let c
denote the number of minimal hitting sets (new sets at index m). Note that c is
known only in hindsight, nevertheless one can express time bounds in terms of
c. We may also fix a small number h and enumerate only hitting sets of size at
most h. In particular, we focus on h = 2 due to the above motivation.

Algorithms for several parameterizations of minimal transversal enumeration
are given in [4]: One can enumerate them with O(n2m2em/e) delay, hence in
O(n2m2em/ec) time, or alternatively in O(n2c3ec/em) time. Actually one can
enumerate any number j ≤ c of minimal hitting sets in O(n2j3ej/em) time.)

A time bound is also provided in [4] for the case when the elements have
complementary degree at most q � m, that is, every element appears in all but
at most q hyperedges. (However, their result addresses only the verification of
a given enumeration of the minimal transversals, not the construction.) In our
application, the assumption means that words appear in at most q bags Bi, with
q � m. This is sensible, because more frequent words are common words or stop
words that are not informative and may be ignored.

1.2 Overview of Contributions

First we fill the mentioned gap in the parameterized complexity of transver-
sal enumeration, but then we focus on small transversal sizes h, due to our

216 P. Damaschke

motivation. The minimal new subsets of size h in each bag of size n in a sequence
can be enumerated in O(nh) time. The rest of the work deals with the most rele-
vant case h = 2, that is, new pairs. Note that we do not improve upon the O(n2)
worst-case time per bag, but we study heuristics to save time for special struc-
tures that are however likely to appear in streams of topic-wise related texts:
Large overlaps with earlier bags allow to recognize old pairs in (ideally) linear
time. Saving a factor up to n in the processing time is worthwhile. Twin graphs
give a succinct description of the pairs covered by a family of bags. We use
them within a simple greedy heuristic to cover many old pairs. The greedy app-
roach has known performance guarantees. We combine it with random sampling
to find good candidate bags fast enough. Several complexity results justify this
approach: We derive a logarithmic upper bound on the number of elements to be
sampled in order to find bags with nearly largest overlaps with a given bag. We
show that covering the exact maximum number of pairs by a prescribed number
r of bags is W [1]-hard. We also propose to build larger bags from the given ones
and show that some ternary set operation is sufficient for that. A final technical
section is devoted to approximation guarantees for the number of covered pairs,
if a few bags cover almost all pairs. We give a combinatorial approach to prove
such results, based on special minimal set families and symmetries in convex
optimization problems. Much of the latter parts is work in progress. We point
to several open problems, highlighted as “Research question”. The practical sce-
nario might also be turned suitably into online problems. Besides the complexity
aspects it would be interesting to test the approach on extensive data sets. – Due
to lack of space, several proofs and proof details are omitted in this version.

2 Finding Minimal New Sets

2.1 Transversals for Small Complementary Degree

Theorem 1 below might result from [4] by reductions, however we present a self-
contained algorithm description. Given a hitting set H and an element s ∈ H,
we call E a private hyperedge if s ∈ E and s is the only element of H ∩ E.
A hitting set H is minimal if and only if every s ∈ H has at least one private
hyperedge. We can assume that no hyperedge is subset of another one.

Theorem 1. In hypergraphs H with complementary degree at most q we can
enumerate all minimal hitting sets in O(n3mq2eq/ec) time.

Proof. Loop through the O(nm) pairs (s,E) of any element s and any hyperedge
E
 s and do the following from scratch. Delete all hyperedges F
 s (they are hit
by s) and all elements in E (in order to keep E private for s). At most q hyperedges
remain, from which the elements of E are deleted. No hyperedge becomes empty,
since no other hyperedge is a subset of E. In this “small” instance enumerate all
minimal hitting sets H. Every H∪{s} is a minimal hitting set of H: It intersects all
hyperedges, every element has a private hyperedge since H was minimal, and s has
the private hyperedge E. Conversely, all c minimal hitting sets of H are obtained

Pairs Covered by a Sequence of Sets 217

in this way. To avoid duplicates, first sort the elements arbitrarily, and demand
the above s to be the first element in the hitting sets, that is, delete also elements
before s. Now some pairs (s,E) yield no solution since some hyperedges lose all
their elements, but we recognize these cases instantly. The “small” instances are
solved by the O(n2m2em/e)-delay algorithm for hitting set enumeration from [4];
replace m with q. Some original edges may become identical due to deletions, which
does not affect the time bound. Finally note that every “small” instance is prepared
in O(nm) time. �

2.2 Enumerating the Minimal New Sets in a Sequence

Unlike the previous parameterizations, for the text stream applications we need
small transversal size h and time bounds that are polynomial in q and m and
also have a better dependency on n. Naive exhaustive search takes every X ⊆
Bm, |X| ≤ h, and checks in O(hq) time whether X intersects all hyperedges
Bm \ Bi. (For each element s we maintain the at most q indices with s ∈ Bi.
An s ∈ X misses at most q hyperedges, and we see whether the other elements
of X hit them.) This way we would need O(hqnh/h!) = O(hq(en/h)h) = O(nh ·
q · h(e/h)h) time to find all minimal new sets of size h in Bm. However we can
avoid checking all X ⊆ Bm against all previous Bm \ Bi (i < m): We generate
the candidate sets X with increasing sizes and, due to minimality, stop as soon
as all further X would be supersets of already detected minimal new sets at m.
More importantly, we can use information about the minimal new sets at earlier
i < m, as detailed below.

Let f(X) := min{i|X ⊆ Bi}, and let f(X) be undefined if no such i exists.
Note that f(X) = i if and only if X is new at i (but not necessarily minimal).
Furthermore, X is then old at any further index j > i. In the following we assume
for simplicity that a dictionary operation costs constant time per element. We
store some sets X along with f(X) in a dictionary. In particular, whenever a
set X is minimal new at i, we store “f(X) = i”. This is no extra work, since
our aim is to enumerate all minimal new sets. So suppose that we have already
determined all minimal new sets with at most h elements at all i < m. In
particular, every single element is new as soon as it appears for the first time.
Hence we can check every single element for being new, in O(nm) time in total.
After these precautions we get for B = Bm:

Theorem 2. The minimal new subsets of size at most h in a bag of n elements
can be enumerated in O(nh · 2h/h!) time.

Proof. Suppose that we have already determined all minimal new sets with fewer
than j elements. Consider any set X ⊆ Bm of j old elements, such that no Y ⊂ X
is new at m. In order to check whether X is new at m, thus minimal new, we
proceed as follows. If a value f(X) < m is stored, then X is old. Suppose that no
f(X) value is stored. Then we must figure out whether X ⊆ Bi for some i < m.
Assume that such an index exists, and let i be the smallest one. Since no f(X)
value is in place, X is not minimal new at i, and this is possible only if some

218 P. Damaschke

nonempty Y ⊂ X is minimal new at i, in particular, f(Y) = i has been stored.
Thus we must only look up the 2j − 2 values f(Y) and, if f(Y) is stored, check
whether X ⊆ Bf(Y). If we find such Y , then we conclude that X is old at m,
and we can also store f(X) which equals the smallest such f(Y). Otherwise we
conclude that X is minimal new at m, and we also store f(X) := m. Altogether
we can decide in O(2j) time whether a set X of size j is minimal new. The
number of sets X to check is at most

(
n
j

)
< nj/j!. The procedure is repeated for

increasing j up to h, and j = h dominates the time bound. �

3 A Heuristic for Minimal New Pairs

3.1 Below the Worst-Case Quadratic Time

The remainder of the paper deals with the case h = 2 only. As argued earlier,
minimal new pairs, i.e., new pairs of old elements, seem to be very good indicators
of novelty in text streams. (Also note that the case h = 1 is trivial.) Let Cj :=
Bj ∩ ⋃

i<j Bi denote the set of old elements in Bj . We define the index set of an
element s ∈ Cj as {i| i < j, s ∈ Bi}. While watching the sequence we can collect
the old elements and thus obtain the sets Cj in O(

∑
j |Bj |) overall time, and

maintain the index sets in O(
∑

j |Cj |) overall time. After this trivial auxiliary
processing, the problem for each bag can be stated as follows:

Problem. In a sequence of bags B0, B1, B2, . . . enumerate the new pairs in
C := Cm = Bm ∩ ⋃

j<m Bj , that is, pairs that are not covered by earlier Bj ,
j < m. Besides the Bj , the index sets of all elements in C are already given. Let
n := |C|. We also refer to the Bj ∩ C as bags, without risk of confusion.

By Theorem 2 we can recognize the new pairs in C in O(n2) time in the
worst case. The interesting matter is to enumerate them faster if only a minority
of pairs in C is new: Note that, once we detect a large bag Bj ∩ C, we can
immediately exclude the pairs therein as candidates for new pairs, in O(|Bj ∩C|)
time rather than O(|Bj ∩C|2). Large intersections are likely in streams of related
texts, as they tend to form topics clusters with similar word content.

Driving the idea one step further, we may select a number r of bags, exclude
all pairs covered by them, and test only the uncovered pairs for being new,
each in O(1) time. However the total time for finding such bags and listing the
uncovered pairs must be o(n2), therefore we will have to use, in general, some
r < m bags. In the following we elaborate on this idea.

3.2 The Twin Graph

Suppose that we have already selected r bags. The set of pairs (not) covered by
them is completely described by the following structure.

Definition 2. With respect to a set of r bags, any two elements of C with the
same index set (i.e., elements being in exactly the same bags) are called twins.
This yields an equivalence relation on C whose t equivalence classes are called

Pairs Covered by a Sequence of Sets 219

twin classes. The twin graph is the graph whose vertices are the twin classes,
and where any two vertices with disjoint index sets are joined by an edge.

Some properties of the twin graph are obvious: It has a self-loop only at the
vertex representing elements that are in no bag (if existing). The uncovered pairs
of elements are exactly those in any two adjacent twin classes. The twin graph
has t ≤ min(n, 2r) vertices and at most 1

2 min(t2, 3r) edges, since the r indices
can be partitioned in 1

2 · 3r ways in two disjoint index sets and the rest.

Proposition 1. The twin graph of r bags can be constructed iteratively, that is,
by inserting the bags one by one, in O(r · (min(t2, 3r) + n)) time.

Proof. Every bag may split some twin classes in two smaller ones. These split-
tings are done in O(n) time per bag, hence O(rn) time overall. Index sets are
stored as a tree in an obvious way. To obtain the edges we either check the O(t2)
pairs of twin classes for disjointness of their index sets in O(rt2) time, or we take
all O(3r) possible pairs of disjoint index sets and check their existence, which
can be done in O(r) time for each pair. �

3.3 Greedy Partial Set Cover of Pairs

We need to determine the bags to be inserted and to update their twin graph.
We can stop as soon as inserting another bag, that covers p new pairs, requires
O(p) time, i.e., the time needed to simply test these pairs individually for being
new, as in Theorem 2. As Proposition 1 indicates that the time to update the
twin graph can grow exponentially in the number r of bags, let us fix a number
r of bags (which may however depend on n, say, some r = o(log n)), and aim at
solving the following problem.

Partial Set Cover of Pairs. Given a family of bags and a number r, identify
r bags that together cover the maximum number of pairs.

Proposition 2. Partial Set Cover of Pairs is NP-complete, and also
W [1]-complete in the parameter r.

Proof. Reduction from Independent Set. Omitted due to space limits. �

Due to this negative observation we resort to a greedy approach: The Partial
Set Cover problem asks to cover a maximum number of elements by a pre-
scribed number r of bags. The greedy algorithm for (Partial) Set Cover
iteratively adds to the solution a bag with the largest number of yet uncov-
ered elements. The number of elements covered in r greedy steps is at least a
1− (1−1/b)r fraction of the optimum that could be covered by b bags. This was
shown in [5], generalizing an earlier result in [9,10] for r = b. This bound is also
tight for r = b [10], and the worst-case example for r = b also works in general.

Now let P be the set of the
(
n
2

)
pairs of elements in C, and let Pj be similarly

defined for each Bj ∩C. We refer to the Pj also as bags, without risk of confusion.
Since the Pj and P are made of pairs of other elements, Partial Set Cover

220 P. Damaschke

of Pairs is a special case of Partial Set Cover. Thus, the greedy algorithm
gives at least the same approximation guarantee.

Research Question. Figure out the approximation ratio for greedy Partial
Set Cover of Pairs. We conjecture that it is significantly better than for
Partial Set Cover. However, the case of pairs appears to be intrinsically
more difficult. While the proof in [5] is merely based on the pigeonhole principle,
we must also deal with the twin graph structure. (Section 5 will give a method
to obtain some results for the case when r bags cover almost all pairs.)

4 Supplementary Results

4.1 Sampling Large Intersections

Since o(n2) time is mandatory, implementation of the greedy heuristic needs
some care. Besides updating the twin graph we have to count in the time for
finding the next bag that covers as many further pairs as possible. As long as
m is small compared to n we can afford computing all intersections Bj ∩ C in
O(mn) time. For larger m we may sample some random elements or pairs from
C, use their index sets (of size at most q, typically much smaller than m) to
count their occurences in the given bags, and take the bags with most hits.

Theorem 3. Suppose that the largest bag has (1−x)n elements, and we sample
s random elements and return the bag with the largest number of hits. Then
we fail to find a bag with at least (1 − y)n elements with probability at most
2m · exp(−(y − x)2s/16y). In particular, we get a failure probability below any
prescribed constant by choosing s = Θ(log m · y/(y − x)2).

Proof. By Chernoff bounds. Omitted due to space limits. �

In particular, we need O((q log m)/y) time to find a bag whose size is at least
1 − y of the maximum size of a bag, where q denotes the maximum size of the
index sets. (Fix x in Theorem 3 and note that we must traverse the index set of
every sample.) While Theorem 3 was formulated for elements, it applies literally
to sampling of pairs, too, and can be used in each step of the greedy heuristic:
Some bags are already selected, and they form a twin graph with t vertices. Then
the uncovered pairs form the edge sets of O(t2) cliques and bicliques of known
sizes, thus one can easily sample random uncovered pairs from them.

4.2 Building Larger Bags

For a sequence of bags B0, B1, B2, . . . , Bm−1 consider the graph G whose vertices
are the elements, where two vertices u, v are adjacent if and only if u, v ∈ Bi for
some i. A clique edge cover in a graph is a set of cliques that cover all edges.
Hence the bags form a clique edge cover of G. However, G may contain further,
larger cliques, and using them besides the given bags within our heuristic is
beneficial, since they cover more of the old pairs. If we can quickly find and

Pairs Covered by a Sequence of Sets 221

build some of these larger cliques, we can use them later in the sequence and
make later steps more efficient. Bags with large intersections inside the current
bag Bm (that are anyway used to cover many old pairs in Bm) are likely to
have large intersections also outside Bm. We may apply the following ternary
set operation Δ on them: Δ(X,Y,Z) := (X ∩ Y) ∪ (X ∩ Z) ∪ (Y ∩ Z). Note
that each pair of elements in Δ(X,Y,Z) is also contained in some of X,Y,Z. In
particular, if X,Y,Z are any three cliques, then Δ(X,Y,Z) is a clique, too. A
neat fact is that all maximal cliques can be generated from any clique edge cover
using only the Δ operation. This supports the idea to apply Δ to bags that are
anyhow considered in a step of the heuristic.

Proposition 3. Given a graph along with a clique edge cover K, we can obtain
every maximal clique solely by repeated Δ operations applied to cliques of K.

Proof. By induction on the size. Omitted due to space limits. �

The sizes of bags produced by Δ can grow quickly, by a factor up to 3
2 (if

X = Y ′ ∪Z ′, Y = X ′ ∪Z ′, Z = X ′ ∪Y ′ for three disjoint sets X ′, Y ′, Z ′ of equal
size. On the combinatorial side it would be interesting to know what cliques size
are guaranteed to exist in a graph with few non-edges compared to

(
n
2

)
. Turán’s

theorem [13] states, informally, that a graph with few non-edges always has a
large clique. We would be interested in a generalization to unions of r cliques:

Research Question. Given r, n, u, what is the guaranteed number of edges
that can be covered by r cliques, in any graph of n vertices and

(
n
2

) − u edges?
While some ideas from the proof of Turán’s theorem generalize to a union of r
cliques, the extremal problem apparently becomes harder.

We remark that another conceivable approach for obtaining larger bags would
be to see if some r bags can be replaced with k < r new bags that cover the same
edges. This amounts to the Clique Edge Cover problem parameterized by k.
This NP-hard problem is fixed-parameter tractable in parameter k [6], however
with doubly exponential time bound, and non-existence of a polynomial kernel
[3] leaves little hope to reduce this asymptotic worst-case bound.

5 Approximations if a Few Bags Cover All Pairs

5.1 Setup and Preparations

Proposition 2 raises the question: What fraction of pairs in C can we cover within
some O(mO(1)n) time bound? Due to the context, we are interested in the case
that r bags exist that cover all pairs in C, subject to some small fraction. Note
that m may here denote the number of sampled candidate bags (having large
intersections with C) rather than the length of the entire sequence of sets.

More specifically, suppose that some r bags cover (1−δ)
(
n
2

)
pairs, where δ > 0

is a small number. Consider their twin graph (Definition 2), with t vertices. If two
adjacent twin classes have

√
δn elements each, then already δn2 pairs of elements

are uncovered, contradicting the assumption. Hence the twin graph has a vertex

222 P. Damaschke

cover of twin classes with fewer than
√

δn elements each. The complement of
this vertex cover is an independent set in the twin graph, thus representing a
subset C ′ of C with at least (1 − t

√
δ)n elements in which all pairs are covered.

(Actually the fraction is closer to 1; the given bound is coarse only due to the
general argument.) Thus we may clean up our question as follows:

Problem. In a family of m bags, suppose that r of them cover all pairs in C ′,
for some C ′ ⊂ C of size n′ := |C ′| > (1−ε)|C|. (But note that C ′ is not specified
in the input.) What number γ

(
n′

2

)
of pairs can we at least cover within some

O(mo(r)n) time bound? We call the fraction γ the coverage.

In the following we work with the complement of the twin graph restricted
to C ′, which is a clique of some t′ ≤ t vertices whose edges are covered by r
smaller cliques (bags). We suppose that r is minimal, that is, r − 1 of the bags
would not cover all pairs. Let A be the incidence matrix of these bags: A has
a row for every bag, a column for every twin class, and entries aij = 1 if bag
i contains the twin class j, and aij = 0 otherwise. Hence every column is the
characteristic vector of an index set. A pair of twin classes is private for a bag
if that bag covers that pair but none of the other r − 1 bags does. We establish
some properties of A. Since r is minimal, no row is contained in another row,
and since the bags cover all pairs, the columns pairwise intersect. In other words:

(1) For any two rows i and i′ there exists some columns j and j′ such that
aij = ai′j′ = 1 and aij′ = ai′j = 0.

(2) For any two columns j and j′ there exists some row i with aij = aij′ = 1.

Since we are only interested in worst-case approximation ratios, we can
assume further restrictions: Deletion of any twin class from any bag must destroy
some private pair, since otherwise there would exist a worse instance with smaller
bags, such that the coverage can only decrease. In other words, every twin class
in a bag belongs to some private pair of that bag. More formally:

(3) For each entry aij = 1 there exists a column j′ such that aij′ = 1, and
ai′j = 0 or ai′j′ = 0 holds for each row i′ �= i.

We remark that (3) implies (1). Another conclusion is that any two index
sets are incomparable, that is, not in subset relation:

(4) For any two columns j and j′ there exists some rows i and i′ such that
aij = ai′j′ = 1 and aij′ = ai′j = 0.

To show (4), let i′′ be some row according to (2): ai′′j = ai′′j′ = 1. There
must be some row i where aij �= aij′ , since equal columns would represent the
same twin class. Suppose aij = 1 and aij′ = 0. Due to (3), there exists a column
j′′ such that aij′′ = 1. Since the pair represented by aij = aij′′ = 1 is private
and ai′′j = 1, it also follows ai′′j′′ = 0. Condition (2) applied to j′ and j′′ yields
the existence of another row i′ with ai′j′ = ai′j′′ = 1. Finally, since the pair
represented by aij = aij′′ = 1 is private and ai′j′′ = 1, it follows ai′j = 0.

Pairs Covered by a Sequence of Sets 223

The following consideration of symmetries will help reduce case distinctions.
Automorphisms of an optimization problem are permutations of the variables
that leave the set of constraints invariant. An orbit of the automorphism group
is a set of variables mapped onto each other by automorphisms; clearly they
form equivalence classes. For convex minimization problems it is known that the
convex combination of any two minimal solutions is a minimal solution, too.
From this it follows: If we take any minimal solution, apply all automorphisms
to the variables, and take component-wise the average of all these solutions, we
obtain a minimal solution where all variables in each orbit have equal values.

Consider an optimization problem with variables x1, . . . , xt and y, with the
objective min y, and constraints gj(x1, . . . , xt) ≤ y and hj(x1, . . . , xt) ≤ 0, where
all gj and hj are convex functions. Such a problem is convex and can be rephrased
as min maxj gj(x1, . . . , xt) under the constraints hj(x1, . . . , xt) ≤ 0.

5.2 Illustration: Some Approximation Guarantees

Now we apply these tools to determine set families that minimize certain guar-
anteed approximation ratios. Since only o(n2) time bounds matter, the smallest
r are most relevant for us. To avoid technicalities we assume large enough n
such that we can neglect lower-order terms and the effects of rounding fractional
numbers to integers. The case of r ≤ 2 bags is trivial. Let O(mω) be a time
bound for multiplying m × m matrices.

Theorem 4. If r of m < n bags cover all pairs in C, we find r such bags in
O(mω−1n) = o(m2n) time if r ≤ 4, and in O(mr−2n + (2m)r) time if r > 4.

Proof. Let A again denote the 0, 1-incidence matrix whose rows represent bags.
First we exclude in O(mn) time the trivial case that some row has only 1s. We
call a set R of rows unsuitable if R has some all-0 column, and suitable otherwise.
Let J be the graph whose m vertices are the rows, with an edge in every suitable
pair. We compute J by switching 0s and 1s in A and multiplying this matrix
with its transpose in O((n/m)mω = O(mω−1n) time. Let R denote a set of r
rows (bags) or the corresponding r × n submatrix of A. For r = 3 we have: R
covers all pairs if and only if any pair of rows in R is suitable. For r ≥ 4 we
have: R covers all pairs if and only if R is not the union of two unsuitable sets
S, T with |S| + |T | = r and 2 ≤ |S| ≤ |T | ≤ r − 2. (Recall that the trivial case
was ruled out.) For r = 3 we need to find a triangle in J , which is well known
to work in time O(mω) = O(mω−1n), as m < n was assumed. For r = 4 we
also need to find a triangle plus any fourth vertex, or a star of three edges in J .
The latter is trivially done in O(m2) = O(mn) time. For r > 4 we determine all
unsuitable sets of at most r − 2 rows in O(mr−2n) time. The condition for each
R is then checked in O(2r) time. �

A slight relaxation of this algorithm handles the case when r bags cover all pairs
in C ′: Then we call a pair of rows suitable when at most εn columns lack a 1,
apply the arguments to C ′, and find r bags with coverage 1 − Θ(ε) in the same
time. – The following proofs show the existence of bags with certain minimum

224 P. Damaschke

numbers of elements in C ′, implying coverage values if we would choose these
bags. Actually we select bags of that size in C rather than in the unknown
C ′ ⊂ C, which can only increase the coverage due to smaller overlaps.

Proposition 4. If three out of m bags cover all pairs in C ′, then we can find
one bag with coverage 4/9 in O(mn) time, and two bags with coverage 7/9 exist.

Proof. We remark that the pigeonhole principle would only yield coverage 1/3
and 2/3, respectively. Any three bags satisfying conditions (1)–(4) have the form
T1 ∪ T2, T1 ∪ T3, T2 ∪ T3, with twin classes T1, T2, T3. From the m given bags
we take one bag, and a pair of bags, respectively, with the largest coverage.
Let xi := |Ti|. For a lower bound on the coverage we minimize the maximum
number of pairs covered by one or two of the considered bags. The numbers of
covered pairs are convex functions of the xi, the only orbit is {x1, x2, x3}, and
the constraints xi ≥ 0 and x1+x2+x3 = n′ are linear. Now the above symmetry
consideration yields that x1 = x2 = x3 = 1

3 is the minimal solution in both cases,
and finally, simple calculations yield the ratios. �

Two bags with coverage 7/9 could be found in O(m2n) time, but Theorem 4
achieves already more. We mention the coverage 7/9 only as a benchmark for
the next result that sacrifices some coverage for speed.

Proposition 5. If three out of m bags cover all pairs in C ′, then we can find
two bags with coverage 56/81 > 0.69 in O(mn) time.

Proof. A greedy strategy first takes a largest bag G and then adds a second bag
that covers a maximum number of further pairs. Three bags that minimally cover
all pairs have a structure as in Proposition 4, with each twin class further split in
two by G. This results in six twin classes T1, . . . , T6 such that G = T1 ∪ T2 ∪ T3,
and T1∪T2∪T4∪T5, T2∪T3∪T5∪T6, T1∪T3∪T4∪T6 are mentioned three bags.
Note that x1 +x2 +x3 ≥ 2

3n′, and the second greedy step can take some of these
three bags (or a better one). For a lower bound on the coverage we minimize
the maximum number of pairs covered by these three choices. The numbers
of covered pairs are convex functions of the xi, the orbits are {x1, x2, x3} and
{x4, x5, x6}, and the constraints xi ≥ 0, x1+x2+x3 ≥ 2

3n′ and x1+ · · ·+x6 = n′

are linear. Symmetry consideration yields the existence of a minimal solution
where x1 = x2 = x3 and x4 = x5 = x6. Moreover, x1 + x2 + x3 = 2

3n′ is the
worst case, and simple calculations yield the ratios. ��
Proposition 6. If four out of m bags cover all pairs in C ′, then we can find
one bag with coverage 9/25 in O(mn) time.

Proof. By case inspections, any four bags satisfying the conditions (1)–(4) have
the form T1 ∪ T2 ∪ T3, T1 ∪ T4, T2 ∪ T4, T3 ∪ T4, with twin classes T1, T2, T3, T4,
and then similar arguments as above apply, with orbits {x1, x2, x3} and {x4}. �

Research Question. Systematically explore the trade-off between time and
coverage for any r and number s of greedy bags. The numbers of pairs covered

Pairs Covered by a Sequence of Sets 225

by bags are sums of squares and products of the induced twin class sizes, thus
always convex. But with growing r and s the task becomes more challenging, as
we need to understand the combinatorics of the “minimal” coverings and their
binary incidence matrices that obey conditions (1)–(4). It might be possible to
combine the pigeonhole principle with our stronger method. Moreover, does the
relationship to matrix multiplication also yield lower time bounds (see [14])?

Acknowledgment. This work has been supported by the Swedish Foundation for
Strategic Research (SSF) through Grant IIS11-0089 for a data mining project entitled
“Data-driven secure business intelligence”. The author also wishes to thank the referees
for careful reading.

References

1. Boros, E., Gurvich, V., Khachiyan, L., Makino, K.: On Maximal Frequent and
Minimal Infrequent Sets in Binary Matrices. Ann. Math. Artif. Intell. 39, 211–221
(2003)

2. Ceci, M., Appice, A., Loglisci, C., Caruso, C., Fumarola, F., Valente, C., Malerba,
D.: Relational frequent patterns mining for novelty detection from data streams. In:
Perner, P. (ed.) MLDM 2009. LNCS, vol. 5632, pp. 427–439. Springer, Heidelberg
(2009)

3. Cygan, M., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, W.: Clique cover
and graph separation: new incompressibility results. ACM Trans. Comput. Theory
6, Article 6 (2014),

4. Elbassioni, K.M., Hagen, M., Rauf, I.: Some fixed-parameter tractable classes of
hypergraph duality and related problems. In: Grohe, M., Niedermeier, R. (eds.)
IWPEC 2008. LNCS, vol. 5018, pp. 91–102. Springer, Heidelberg (2008)

5. Elomaa, T., Kujala, J.: Covering analysis of the greedy algorithm for partial cover.
In: Elomaa, T., Mannila, H., Orponen, P. (eds.) Ukkonen Festschrift 2010. LNCS,
vol. 6060, pp. 102–113. Springer, Heidelberg (2010)

6. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Data Reduction and Exact
Algorithms for Clique Cover. ACM J. Exper. Algor. 13, Article No. 2 (2008)

7. Gupta, A., Mittal, A., Bhattacharya, A.: Minimally infrequent itemset mining
using pattern-growth paradigm and residual trees. In: Haritsa, J.R., Dayal, U.,
Deshpande, P.M., Sadaphal, V.P. (eds.) 17th International Conference on Man-
agement of Data, pp. 57–68. Allied Publishers, Bangalore (2011)

8. Haglin, D.J., Manning, A.M.: On minimal infrequent itemset mining. In: Stahlbock,
R., Crone, S.F., Lessmann, S. (eds.) DMIN 2007, pp. 141–147, CSREA Press (2007)

9. Hochbaum, D.S.: Approximating covering and packing problems: set cover, vertex
cover, independent set, and related problems. In: Hochbaum, D.S. (ed.) Approx-
imation Algorithms for NP-hard Problems, pp. 94–143. PSW Publishing, Boston
(1997)

10. Hochbaum, D.S., Pathria, A.: Analysis of the greedy approach of maximum k-
coverage. Naval Res. Q. 45, 615–627 (1998)

11. Karkali, M., Rousseau, F., Ntoulas, A., Vazirgiannis, M.: Efficient online novelty
detection in news streams. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang,
G. (eds.) WISE 2013, Part I. LNCS, vol. 8180, pp. 57–71. Springer, Heidelberg
(2013)

226 P. Damaschke

12. Karkali, M., Rousseau, F., Ntoulas, A., Vazirgiannis, M.: Using temporal IDF for
efficient novelty detection in text streams. CoRR abs/1401.1456 (2014)

13. Turán, P.: On an extremal problem in graph theory. Matematikai és Fizikai Lapok
48, 436–452 (1941)

14. Williams, V.V., Williams, R.: Subcubic equivalences between path, matrix and
triangle problems. In: FOCS 2010, pp. 645–654. IEEE Computer Society (2010)

Recurring Comparison Faults: Sorting
and Finding the Minimum

Barbara Geissmann1(B), Matúš Mihalák1,2, and Peter Widmayer1

1 Department of Computer Science, ETH Zurich,
Zurich, Switzerland

barbara.geissmann@inf.ethz.ch
2 Department of Knowledge Engineering, Maastricht University,

Maastricht, The Netherlands

Abstract. In a faulty environment, comparisons between two elements
with respect to an underlying linear order can come out right or go
wrong. A wrong comparison is a recurring comparison fault if comparing
the same two elements yields the very same result each time we compare
the elements. We examine the impact of such faults on the elementary
problems of sorting a set of distinct elements and finding a minimum
element in such a set. The more faults occur, the worse the approaches
to solve these problems can become and we parametrize our analysis by
an upper bound k on the number of faults.

We first explain that reconstructing the sorted order of the elements is
impossible in the presence of even one fault. Then, we focus on the maxi-
mum information content we get by performing all possible comparisons.
We consider two natural approaches for sorting the elements that involve
knowledge of the outcomes of all comparisons: the first approach finds a
permutation (compatible solution) that contradicts at most k times the
outcomes of comparisons, and the second approach sorts the elements
by the number of times an element is returned to be larger in the out-
comes of its comparisons with all other elements (score solution). In such
permutations the elements can be dislocated from their positions in the
linear order. We measure the quality of such permutations by three mea-
sures: the maximum dislocation of an element, the sum of dislocations
of all elements, and the Kemeny distance compared to the linear order.
We show for compatible solutions that the Kemeny distance is at most
2k, the sum of dislocations at most 4k, and the maximum dislocation
at most 2k. In score solutions the Kemeny distance is smaller than 4k,
the sum of dislocations smaller than 8k, and the maximum dislocation
at most k + 1. Our upper bounds are tight for compatible solutions, but
possibly not tight for score solutions. It turns out that none of the two
approaches is better than the other in all measures.

For the problem of finding a minimum element, we first observe that
there is no deterministic algorithm that guarantees to return one of the
smallest k+1 elements. This implies that computing the first element of a
score solution is optimum and we derive an algorithm that guarantees to

We gratefully acknowledge the support of the Swiss National Science Foundation in
the project Algorithm Design for Microrobots with Energy Constraints.

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 227–239, 2015.
DOI: 10.1007/978-3-319-22177-9 18

228 B. Geissmann et al.

find one of the k + 2 smallest elements in time O(
√
kn) making O(

√
kn)

comparisons, where n is the number of elements, and we generalize this
algorithm to find all elements of score at most a given target t.

1 Introduction

In standard algorithm design, one assumes that elementary operations on a set
of elements, such as the comparison of two elements, always work correctly. New
emerging alternative ways to CPU-design trade the correct, exact computation
for low power consumption. In such settings, elementary operations, such as
comparisons, may occasionally fail. Naturally, one asks for the consequences of
a failing comparison. Consider, for example, the problem of finding a minimum
element in an unsorted array. The standard algorithm for this problem iterates
linearly over all elements of the array, compares the currently considered element
with the so-far computed minimum, and adjusts this minimum if the considered
element is smaller. This algorithm can fail miserably, returning the maximum
instead of the targeted minimum, even if only one comparison fails: just make
the maximum appear last in the array, and let the very last comparison fail.
Thus, if comparisons can go wrong, standard algorithms may fail, and one needs
to develop new algorithms even maybe for the most elementary tasks.

Several computational models reflect comparison faults. They can be clas-
sified in two main groups: one group of models assumes independent faults, in
the sense that two comparisons of the same two elements can return different
results; the second group assumes recurring faults, in the sense that a comparison
between the same two elements will always lead to the same result, regardless
of when and how many times it is performed.

We study recurring comparison faults on a set of n distinct elements underly-
ing a strict linear order. Our comparison operation takes two elements as input
and outputs a claimed order of the two elements. We assume that the compar-
ison operation fails on at most k inputs, where k is a parameter of the model.
We concentrate on the following two elementary algorithmic questions: finding a
minimum element, and sorting the elements. We are interested in knowing what
guarantees can be achieved at all : Even with infinite computational power, one
cannot find a minimum, if a single fault can appear. Hence, we look for worst-case
differences between a computed solution and the linear order.

Related Work. There is a probabilistic model where every comparison can only
be made once and fails with a probability p. It is possible to find a permutation of
the elements in which each element is placed with high probability not more than
O(log n) positions away from its true position. This needs O(n log n) comparisons
and O(n3+24c) time, where c > 0 is a constant depending on p [5]. Also with high
probability, one can compute the minimum element with O(n2) comparisons and
O(n) time [12]. Searching for any element in a presorted array of elements with
unreliable comparisons or corrupted memory is studied in [6].

Recurring Comparison Faults: Sorting and Finding the Minimum 229

A different probabilistic model assumes independent comparison faults with
probability p, but allows the repetition of comparisons in order to boost the
probability of obtaining the correct result between two elements at the cost of
additional work [8,10]. If at most a fraction p < 1/2 of all comparisons made
so far might be wrong, a maximum (or minimum) element can be determined
making O((1

1−p)n) comparisons [1]. In the same model but with a fixed maximum
number k of faults an extremum is found with (k + 1)n − 1 comparisons [14].

Our Model Refined. We consider a set S of n distinct elements that possess a
strict linear order. We call the permutation π of the elements of S in which the
elements appear in their linear order the sorted order. We denote the position of
an element e in π by π(e), and call it the rank of e. The elements can be compared
by a comparison operation that takes two distinct elements a and b as input and
outputs a claim for their order, i.e., for the input {a, b} the output is either (a, b)
or (b, a). For at most k pairs of elements, the comparison operation may return
a result that differs from the sorted order π. We say that a is supposedly smaller
than b and b is supposedly larger than a if their comparison returns (a, b).

A claimed solution to the sorting problem is represented as a permutation
of the elements, where each element might be dislocated by several positions
when compared to its position in the sorted order. We measure the quality of a
permutation in three ways: the maximum dislocation is the maximum number
of positions any element is dislocated; the dislocation distance is the sum of
dislocations of all elements; the Kemeny distance is the number of inversions
between the computed permutation and the sorted order.

Our Results. We first focus on the sorting problem in Sect. 2. We are primarily
interested in what is possible, at all, using as much information as we can get,
and thus let the algorithm compare all

(
n
2

)
pairs of elements. We study two

approaches for sorting. The first one computes a permutation that disagrees with
at most k comparisons among the observed

(
n
2

)
comparisons. Such a permutation

exists since the sorted order has this property. We call such a permutation a
compatible solution. The second approach scores for every element the number of
comparisons in which the element was supposedly larger. We call a permutation
of the elements sorted by these scores a score solution. We study the quality of
the two sorting approaches. The Kemeny distance in any compatible solution is
at most 2k and in any score solution strictly smaller than 4k. The dislocation
distance is at most 4k in a compatible solution and smaller than 8k in a score
solution. Finally, the maximum dislocation of an element is at most 2k in a
compatible solution, whereas it is only at most k + 1 in a score solution. The
last result surprises at first sight, since a score solution uses less information
of the comparison outcomes than a compatible solution. In fact, there is no
deterministic way to sort the elements achieving a smaller maximum dislocation.

We study the problem of finding a minimum element in Sect. 3. Using the
bounds on the maximum dislocation we can conclude that the maximum rank
of an element placed first in a compatible solution is at most 2k + 1 and in a
score solution at most k+2. We show that computing an element with minimum

230 B. Geissmann et al.

score is optimum for the problem of minimum finding, but performing all com-
parisons and sorting all elements is an unnecessary overhead. Finally, we present
an algorithm that computes an element with minimum score in time O(

√
kn)

making O(
√

kn) comparisons.

2 Sorting

We have demonstrated in the introduction that no algorithm can compute the
sorted order π, even if at most one comparison can fail. We are interested to know
the limits of deterministic algorithms with respect to the quality of computed
solutions. We therefore allow the algorithms to make all

(
n
2

)
comparisons, and

focus on what we can deduce from the obtained information.
We can think of the

(
n
2

)
outcomes of all comparisons between any two ele-

ments in S as a complete directed graph (a tournament) with the vertex set S
such that there is an arc from u to v if and only if u is supposedly smaller than v.
We call this graph the comparison graph of S. Without any fault, the comparison
graph features a unique structure: For every i ∈ {0, . . . , n − 1}, there is exactly
one vertex with i incoming and n−1− i outgoing arcs. Such a comparison graph
contains no directed cycles and its vertices can be arranged on a line such that
all arcs point from left to right. We say that such an arrangement contains only
forward arcs and no backward arcs, and that the comparison graph is acyclic.

Proposition 1. A cyclic comparison graph implies that a fault happened.

2.1 Compatible Solutions

If we flip the direction of the arcs corresponding to failed comparisons, we get the
acyclic comparison graph that represents the sorted order π. This motivates the
following natural approach: After making all

(
n
2

)
comparisons and constructing

the comparison graph, flip some arcs so that the result is an acyclic graph.
If we know k, a natural aim is to flip at most k arcs to obtain an acyclic graph.

We call such an acyclic graph, and the underlying linear order, a compatible
solution. If we do not know k, a natural approach is to flip a minimum number
of arcs that result in an acyclic graph. We call such a solution a minimum
compatible solution.

Definition 1. A permutation σ for which |{{a, b} ⊂ S : σ(a) < σ(b)∧a � b}| ≤
k is called a compatible solution. A permutation σ that minimizes |{{a, b} ⊂
S : σ(a) < σ(b) ∧ a � b}| is called a minimum compatible solution.

Proposition 2. A compatible solution always exists.

A minimum compatible solution is not necessarily better than any other
compatible solution. For example, there are instances where exactly k compar-
isons fail, but a minimum compatible solution for the resulting comparison graph
flips strictly less than k arcs. Such an example is shown in Fig. 1.

Recurring Comparison Faults: Sorting and Finding the Minimum 231

Fig. 1. Let k = 3. There are three permutations with one inconsistency: (a, b, e, c, d),
(b, e, a, c, d), and (e, a, b, c, d). There are permutations with three inconsistencies, e.g.,
among others, (a, b, c, d, e), (e, c, a, b, d), and (e, b, c, a, d).

An equivalent way to flip arcs is to find a linear arrangement of the vertices
on a line such that there are at most k (or a minimum number of) backward arcs.
The MinimumFeedbackArcSet problem asks to delete a minimum number
of arcs of a directed graph such that the resulting graph is acyclic. Obviously,
the backward arcs of a compatible solution are a feedback arc set of size at
most k, since deleting the arcs also makes the original comparison graph acyclic.
Note that the other way round is not true, except for feedback arc sets that are
minimal, as reversing an arc instead of deleting it might lead to a directed cycle
(deleting any arc in an acyclic tournament will result in an acyclic graph, but
flipping some arc might create a cycle). Hence, finding a minimum feedback arc
set in a tournament is equivalent to finding a minimum compatible solution.

Note on the Complexity. MinimumFeedbackArcSet is NP-hard [9], even for
tournaments [2,3]. For tournaments, it was shown that there exists a PTAS [11],
and that it is fixed parameter tractable [4,7,13].

2.2 Score Solutions

The rank of an element e is equal to one plus the number of elements that are
smaller than e. In the comparison graph, each incoming arc to e comes from
an element that is supposedly smaller than e. Hence, one plus the number of
these arcs can be viewed as a claim for the rank of e, which we call the score of
e, and denote it by score(e). Instead of constructing the comparison graph and
counting arcs, we can directly compute the scores of the elements from all the(
n
2

)
comparisons, which is more space-effective.
A natural attempt to sorting is to simply order the elements in a non-

decreasing order of their scores. We call every such solution a score solution.

Definition 2. A permutation σ such that ∀a, b ∈ S : σ(a) < σ(b) ⇒ score(a) ≤
score(b) is called is a score solution.

Observe that knowing k is not needed for computing a score solution. Recall
that a cycle in the comparison graph gives evidence to the presence of a fault.
We observe that scores of the elements have the same revealing power.

Proposition 3. Elements have unique scores if and only if the comparison
graph is acyclic.

232 B. Geissmann et al.

2.3 Quality of Compatible Solutions and Score Solutions

We will compare a delivered solution permutation σ with the sorted order π
using the following three measures.

Definition 3. The Kemeny distance between two permutations σ and π is
dK(π, σ) := |{(i, j) : π(i) < π(j) ∧ σ(i) > σ(j)}|.
Definition 4. The dislocation distance between two permutations σ and π is
dL(π, σ) :=

∑n
i=1|π(i) − σ(i)|.

Definition 5. The maximum dislocation of any element between two permuta-
tions σ and π is dmax(π, σ) := maxn

i=1|π(i) − σ(i)|.
The scores of the elements reveal less information than the entire comparison

graph. As a result, there exist situations where a score solution is different from
any compatible solution. Figure 2 shows an example in which every permutation
is a score solution but only few permutations are compatible solutions. It may
seem that compatible solutions shall perform better than score solutions, which is
indeed the case for the Kemeny distance. However, as we will see, score solutions
have a better worst-case guarantee for the maximum dislocation of an element.

Fig. 2. Let k = 3. There are five compatible solutions: (a, b, c, d, e), (b, c, d, e, a),
(c, d, e, a, b), (d, e, a, b, c), and (e, a, b, c, d). And each permutation is a score solution.

Quality of Compatible Solutions. Recall that each permutation featuring
at most k inconsistencies with the outcomes of all comparisons is a compatible
solution. An inverse pair is a pair of elements whose order in the computed
permutation disagrees with the sorted order. We derive an upper bound on their
number in any compatible solution.

Theorem 1. For any compatible solution σ and the sorted order π it holds that
dK(π, σ) ≤ 2k. This bound is tight.

Proof. The comparison graph contains at most k wrong arcs, which are potential
inverse pairs. A compatible solution takes a comparison graph and flips at most
k arcs, possibly different ones. That is, in total, there are at most 2k wrong
arcs, and therefore at most 2k inverse pairs. Tightness: Assume faults between
elements of ranks i and i + 2, for i = 3, 6, . . . , 3k. Consider a permutation σ′

where elements from i to i + 2 appear in the order i + 1, i + 2, i, and all other
elements appear in their sorted order. Then, σ′ is a compatible solution and
there are two inverse pairs per fault, namely, (i + 1, i) and (i + 2, i).
�

Recurring Comparison Faults: Sorting and Finding the Minimum 233

We continue with upper bounds for the sum of dislocation of all elements and
the maximum dislocation of a single element.

Theorem 2. For any compatible solution σ and the sorted order π it holds that
dL(π, σ) ≤ 4k. This is tight.

Proof. Consider a sorting algorithm that only swaps adjacent elements, e.g., the
bubble sort. If applied to σ (and with no faults), the algorithm swaps exactly
the inverse pairs, and each exactly once. By Theorem 1, there are at most 2k
swaps. Observe that in a swap, the two elements are shifted by one position each.
Hence, the total dislocation is at most 4k. Tightness: Consider the example in
the proof for the Kemeny distance (Theorem 1). The elements with ranks i + 1
and i + 2 are dislocated each by one position, and elements with ranks i are
shifted by two positions.
�
Theorem 3. For any compatible solution σ and the sorted order π it holds that
dmax(π, σ) ≤ 2k. This is tight.

Proof. By Theorem 1, an element e forms an inverse pair with at most 2k ele-
ments. Each of these elements causes e to shift by one position in either direction.
Hence, e’s dislocation is at most 2k. Tightness: Consider k faults between the
element of rank 1, and the elements of ranks k + 2, . . . 2k + 1. Consider the
compatible solution σ′ described by the ranks (2, . . . , 2k + 1, 1, 2k + 2, . . . , n).
The dislocation of the element of rank 1 is exactly 2k.
�

Quality of Score Solutions. We now present upper bounds for the Kemeny
distance, dislocation distance, and maximum dislocation in score solutions. The
score of an element can differ from its rank. We call this difference the score
change of the element. The total number of score changes,

∑
e|π(e) − score(e)|,

is at most 2k, since every fault decreases the score of one and increases the score
of another element by one.

Theorem 4. Let C denote the number of elements in a score solution σ with
different scores and ranks. For σ and the sorted order π it is dK(π, σ) ≤ 4k−�C

2 .
This is a tight upper bound.

Proof. If no fault happens, the score of an element is its rank. Let us consider
for the moment that we can change the scores of the elements arbitrarily (not
only by faults) within a budget i ≥ 0: set score(e) = π(e) + i(e), −i ≤ i(e) ≤ i,
such that

∑
e |i(e)| ≤ i. Let I(i,m) denote the maximum number of inverse pairs

in any score sorted permutation ρ with a total of i score changes and with m
elements having scores different to their ranks. Obviously, the Kemeny distance
between π and σ is at most maxm I(2k,m). We now show by induction on i
that I(i,m) ≤ 2i − �m

2 , which proves the theorem. Base cases: For i = 0 we
necessarily have m = 0. Then, σ = π, and thus I(0, 0) = 0. For i = 1, we
always have m = 1, and therefore I(1, 1) = 1, since the score of a single element

234 B. Geissmann et al.

is increased or decreased by one. Hence, there are exactly two elements with
the same score, which can appear inversely in ρ. Step case: Assume that for all
j < i and for any score sorted permutation ρ′ with j score changes affecting m′

elements, S(j,m′) ≤ 2j − �m′
2 . Consider a permutation ρ with j score changes

where m elements changed their score. Take an element e in ρ with maximum
score change l = |π(e) − score(e)|. Assume π(e) < score(e) (the other case is
analogue). We decrease the score of e to fit its rank and upper bound the number
of inverse pairs that disappear. By the maximality of l, only inverse pairs formed
by e with elements of larger rank than π(e) can disappear. Such elements e′ can
form an inverse pair only if π(e′) − π(e) ≤ 2l. We distinguish two cases. Case 1:
element e′ with rank π(e)+2l is not inverse with e. Hence, the number of inverse
pairs that disappear is at most 2l−1. The total number of score changes decreased
from i to i − l. Therefore, I(i,m) ≤ 2l − 1 + I(i − l,m − 1). Case 2: element e′

with rank π(e)+2l is inverse with e. Hence, it has a decreasing score change of l.
We now increase the score of e′ such that it is equal to its rank. The elements
that are possibly inverse with e′ have ranks in [π(e), . . . , π(e)+2l−1]. Hence, the
maximum number of inverse pairs that disappear if we modify the score of both e
and e is 4l−1 (we can count the pair (e, e′) only once). The total number of score
changes decreased to i − 2l. Therefore, we get I(i,m) ≤ 4l − 1 + I(i − 2l,m − 2).
Obviously, the bound of case 2 is the larger of the two. Hence, we get I(i,m) ≤
4l − 1 + I(i − 2l,m − 2) ≤ 4l − 1 + 2(i − 2l) − �m−2

2 = 2i − �m
2 . Tightness: Let

k =
(
j+1
2

)
. Consider 2j+1 elements with consecutive ranks. Assume the smallest

has faults with the j largest elements, the second smallest with the j − 1 largest
elements, and so on. Finally the j-th smallest with the largest. Hence, all 2j + 1
elements have the same score, the number of score changes is exactly 2k, and the
number of elements with score changes is C = 2j. Since all elements have the
same score, they can appear in reverse rank order. Hence, the number of inverse
pairs is

(
2j+1
2

)
= 2j2 + j = 4

(
j+1
2

) − j = 4k − C
2 = 4k − �C

2 .
�
Theorem 5. The dislocation distance between any score solution σ and the
sorted order π is at most two times the Kemeny distance.

Proof. For each element e, let Xe be the set of elements e′ with π(e) < π(e′) and
σ(e) > σ(e′) and Ye the number of elements with π(e) > π(e′) and σ(e) < σ(e′).
Clearly, the Kemeny distance is 1

2

∑
e|Xe| + |Ye| and the dislocation distance is∑

e||Xe| − |Ye|| ≤ ∑
e|Xe| + |Ye|.
�

A lower bound on the worst-case dislocation distance in score solutions is 4k:
Consider k sets of three rank adjacent elements with a fault between the largest
and the smallest element. The three elements can appear in reversed rank order,
where the dislocation is zero for one element and two for the other elements.

Theorem 6. For any score solution σ and the sorted order π it is dmax(π, σ) ≤
k + 1. This is tight.

Proof. Consider an element e with score(e) ≥ σ(e) (the other case is analogous).
At least score(e) − σ(e) elements must increase their scores to at least score(e).

Recurring Comparison Faults: Sorting and Finding the Minimum 235

This requires at least
(
score(e)−σ(e)+1

2

)
faults. Element e has at most one fault

with each element, thus, at most score(e)−σ(e)+k−(
score(e)−σ(e)+1

2

)
faults. An

element with zero faults has the same rank and score. For every fault an element
can have we can increase this rank value by one. Hence, π(e) ≤ score(e) +
score(e) − σ(e) + k − (

score(e)−σ+1
2

)
. The dislocation is at most π(e) − σ(e) ≤

2(score(e)−σ(e))+k−(
score(e)−σ(e)+1

2

)
, which is maximum for score(e) = σ(e)+1

and score(e) = σ(e) + 2, where it equals k + 1.
�

3 Finding a Minimum Element

We have learned that we cannot reconstruct the sorted order of the elements in
the presence of faults. Obviously, finding a minimum element is impossible, as
well. We are thus interested in computing an element whose guaranteed worst-
case rank is as small as possible.

Sorting all elements gives an immediate way to find a minimum element:
Return the element that comes first in the solution. In Sect. 2 we have presented
two approaches to sorting: the compatible solution and the score solution. As a
corollary of Theorems 3 and 6, we obtain the following upper bounds on ranks
of the computed elements in the respective solutions.

Corollary 1. The rank of the first element in any score solution is at most
k +2. The rank of the first element in any compatible solution is at most 2k +1.

It follows that computing an element of minimum score (i.e., an element that
comes first in a score solution) gives the best guarantee on the rank.

Theorem 7. There is no deterministic algorithm that guarantees to find an
element of rank at most k + 1, even if an upper bound k > 0 on the number of
faults is known to the algorithm.

Proof. Consider the structure of the comparison graph G obtained if the com-
parison fails between the smallest and the third smallest element. The graph
has exactly one cycle between three vertices with in-degree one. All elements
in the graph can be arranged on a line such that these three elements are the
first elements, and there is only one backward arc. Let us call the vertices of
G by their index j in the linear arrangement. We show that for every vertex j
there exists a set of k arc flips (i.e., faults) that transform the acyclic graph G′

corresponding to the sorted order into graph G and where an element of rank at
least k + 2 becomes vertex j. Thus, if the algorithm returns vertex j, its rank is
at least k + 2 in the presented set of k faults. We distinguish three cases. Case
1: j ∈ {1, 2, 3}. Observe that k faults between the element of rank k + 2 with
elements of rank 1, 3, 4, . . . , k, k +1 result in comparison graph G where element
of rank k+2 is exactly the vertex j. Case 2: j ∈ {4, . . . , k+1}. One fault between
the elements of ranks 1 and 3, and k − 1 faults of the element of rank k + j − 1
with elements of rank j, j + 1, . . . , k + j − 2 result in comparison graph G where
vertex j is the element of rank k + j − 1. Case 3: j ∈ {k + 2, . . . , n}. Observe

236 B. Geissmann et al.

that a single fault between elements of rank 1 and 3 results in graph G where
vertex j is the element of rank j.
�
Making all

(
n
2

)
comparisons seems an unnecessary overhead, and in the following

we show how to compute a minimum-score element with less comparisons and
also in less than quadratic time. The idea of our algorithm is to iterate over
all elements, and to keep a buffer of a relatively small number of elements that
have a relatively small score with respect to the so-far inspected elements. To
describe the algorithm, we will need the following terminology and observations.
We refer to the largest possible minimum score that can be achieved with at
most k faults as the maxmin score. An element e with score(e) ≤ maxmin is
called a candidate for being a minimum-score element.

Theorem 8. For all k > 0, maxmin = � 1
2

(√
8k + 1 + 1

)�.
Proof. Let j be the minimum score of an element. Each element with a smaller
rank than j is involved in faults that increase its score: the rank 1 element in at
least j − 1 faults, the rank 2 element in at least j − 2 faults, and so on. For each
score increase, there needs to be at least one fault. Therefore, at least

(
j
2

)
faults

happen and maxmin = maxj{j | (
j
2

) ≤ k} = � 1
2

(√
8k + 1 + 1

)�.
�
Theorem 9. The number of candidates is at most 2 · maxmin − 1.

Proof. Let C be the set of all candidates. The comparison graph of C has |C|
vertices and

(|C|
2

)
directed arcs. Each arc points to one of the candidates and the

score of each candidate is at most maxmin. Thus, each candidate has at most
(maxmin−1) incoming arcs and the total number of arcs within C cannot exceed
|C| · (maxmin − 1), i.e.,

(|C|
2

) ≤ |C|(maxmin − 1). The claim follows trivially.
�
We cannot compute the exact scores of all elements, without making all

(
n
2

)

comparisons. Instead, we compute a score estimate, called the scan score, of
every element e by simply comparing e to a specific subset of elements of S, and
counting the comparisons in which e is supposedly larger. The scan score of e is
then 1 plus this count. Obviously, such a score estimate is a lower bound on the
actual score. We are now ready to present our buffer scan algorithm:

Use a buffer of size 2 · maxmin − 1 and iterate over all elements in any
order. For each element e do the following: Compare e with all elements
in the buffer and update the scan scores of e and the elements in the
buffer. If e’s scan score does not exceed maxmin, insert e into the buffer.
If the buffer is already full, delete the element with the largest scan score
to make room for the new element. After the iteration loop, compute the
score (not scan score) of all elements in the buffer by comparing them
to all elements in S and return an element with minimum score.

We need to ensure that throughout the scan each candidate is inserted in the
buffer and never deleted from the buffer. Insertion is trivial, since the scan score
is at most the score of an element. Showing the second requirement is slightly
more involved.

Recurring Comparison Faults: Sorting and Finding the Minimum 237

Lemma 1. The algorithm never removes a candidate from the buffer.

Proof. Each element in the buffer has been compared with all other elements
in the buffer and also with e. Since e is a candidate, its scan score is at most
maxmin, i.e., in at most maxmin − 1 comparisons is e supposedly larger. In
the comparison graph thus at least maxmin arcs point from e to an element in
the buffer. Together with all the arcs within the buffer, at least

(
2·maxmin−1

2

)
+

maxmin arcs point towards a buffer element. By pigeon hole principle, one of
these elements has at least maxmin incoming arcs, and thus a scan score of at
least maxmin + 1. The claim of the lemma trivially follows.
�
The space complexity of the algorithm is obviously O(n + maxmin). The time
complexity is O(n · maxmin). First, each element makes O(n · maxmin) compar-
isons with buffer elements. Second, computing the scores of all elements in the
buffer requires again O(n ·maxmin) comparisons. Furthermore, finding the max-
imum buffer score, replacing elements in the buffer and update the buffer scores
needs constant time for every element in the buffer, i.e., O(maxmin) in total per
one iteration.

Theorem 10. The buffer-scan algorithm finds a minimum-score element mak-
ing O(n · maxmin) comparisons and in time O(n · maxmin), where maxmin =
� 1
2 (

√
8k + 1 + 1)�.

The algorithm using a smaller buffer cannot guarantee to find a minimum-
score element any more. To see this, consider the following example. Let k = 5,
and let faults happen between the rank pairs (6, 1), (5, 1), (7, 2), (8, 2), and
(6, 3). Consider a buffer of size four, and let the algorithm scan through the
elements in the following rank order: 3, 4, 5, 6, 7, 8, 1, 2. When arriving at 1, the
elements 3, 4, 5, 6 are in the buffer. After the comparisons with 1, all elements
1, 3, 4, 5, 6 have buffer score maxmin – we cannot know which elements to keep
in the buffer, although 1 is the only minimum-score element. This example is
easily extendible for other values of k. Note that it would not help to consider
the induced comparison graph of the current element and the elements in the
buffer. In the above example, this graph would be totally symmetric.

We can generalize the algorithm to return all elements with a smaller score
than a given threshold t. Naturally, the criterion for a considered element e to be
inserted into the buffer is now whether its scan score is at most t. We also adapt
the size of the buffer: the size needs to be as large as the maximum number of
elements that can achieve a score of at most t.

Theorem 11. Using the generalized buffer scan algorithm, we find all elements
with a score of at most t in time O((t + maxmin) · n) and with a buffer of size
min{2t − 1, t + maxmin − 1}.
Proof. The number of elements with a score of at most t is at most 2t + 1.
This is tight for t ≤ maxmin. For larger t, the number of these elements is
t + maxmin − 1. Hence, the claim about the size of the buffer follows. The
runtime of the algorithm follows from the buffer size.
�

238 B. Geissmann et al.

4 Conclusion

The value of k might or might not be known to the algorithm designer. Without
knowledge of k, one cannot tell whether a permutation is a compatible solution,
except for minimum compatible solutions. However, also for minimum compati-
ble solutions the derived bounds on the quality measures are tight. It is easy to
retrace the examples used in the respective tightness proofs to check that they
involve minimum compatible solutions.

Computing a minimum compatible solution is NP-hard and in practice, one
could opt to use a PTAS for the MinimumFeedbackArcSet problem for tour-
naments [11]. Note that our upper bounds on the quality of compatible solutions
naturally extend. If (1+λ)k is the size of the found feedback arc set, the Kemeny
distance of a corresponding solution is at most (2+λ)k, the dislocation distance
at most (4 + 2λ)k, and the maximum dislocation at most (2 + λ)k.

We leave it as an open problem to provide a tight bound for the dislocation
distance in score solutions.

References

1. Aigner, M.: Finding the maximum and minimum. Dis. Appl. Math. 74(1), 1–12
(1997)

2. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Rank-
ing and clustering. J. ACM 55(5) (2008)

3. Alon, N.: Ranking tournaments. SIAM J. Discrete Math. 20(1), 137–142 (2006)
4. Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Automata, Languages and

Programming, 36th International Colloquium, ICALP 2009, Proceedings, Part I,
July 5–12, Rhodes, Greece, pp. 49–58 (2009)

5. Braverman, M., Mossel, E.: Noisy sorting without resampling. In: Proceedings of
the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2008, January 20–22, 2008, San Francisco, California, USA, pp. 268–276 (2008)

6. Cicalese, F.: Fault-tolerant search algorithms - reliable computation with unreliable
information. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2013)

7. Feige, U.: Faster fast (feedback arc set in tournaments). CoRR, abs/0911.5094
(2009)

8. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Computing with unreliable informa-
tion (preliminary version). In: Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing, May 13–17, 1990, Baltimore, Maryland, USA, pp. 128–
137 (1990)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

10. Karp, R.M., Kleinberg, R.: Noisy binary search and its applications. In: Proceed-
ings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2007, January 7–9, 2007, New Orleans, Louisiana, USA, pp. 881–890 (2007)

11. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: Proceedings of
the 39th Annual ACM Symposium on Theory of Computing, June 11–13, 2007,
San Diego, California, USA, pp. 95–103 (2007)

Recurring Comparison Faults: Sorting and Finding the Minimum 239

12. Klein, R., Penninger, R., Sohler, C., Woodruff, D.P.: Tolerant algorithms. In:
Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 736–747.
Springer, Heidelberg (2011)

13. Raman, V., Saurabh, S.: Parameterized algorithms for feedback set problems and
their duals in tournaments. Theor. Comput. Sci. 351(3), 446–458 (2006)

14. Ravikumar, B., Ganesan, K., Lakshmanan, K.B.: On selecting the largest element
in spite of erroneous information. In: STACS 1987, 4th Annual Symposium on The-
oretical Aspects of Computer Science, Proceedings, February 19–21, 1987, Passau,
Germany, pp. 88–99 (1987)

Graph Algorithms and Networking
Applications

Minimal Disconnected Cuts in Planar Graphs

Marcin Kamiński1, Daniël Paulusma2,
Anthony Stewart2(B), and Dimitrios M. Thilikos3,4,5

1 Institute of Computer Science, University of Warsaw, Warszawa, Poland
mjk@mimuw.edu.pl

2 School of Engineering and Computing Sciences, Durham University, Durham, UK
{daniel.paulusma,a.g.stewart}@durham.ac.uk

3 Computer Technology Institute and Press “Diophantus”, Patras, Greece
4 Department of Mathematics, University of Athens, Athens, Greece

5 AlGCo Project-team, CNRS, LIRMM, Montpellier, France
sedthilk@thilikos.info

Abstract. The problem of finding a disconnected cut in a graph is
NP-hard in general but polynomial-time solvable on planar graphs. The
problem of finding a minimal disconnected cut is also NP-hard but its
computational complexity is not known for planar graphs. We show that
it is polynomial-time solvable on 3-connected planar graphs but NP-
hard for 2-connected planar graphs. Our technique for the first result is
based on a structural characterization of minimal disconnected cuts in
3-connected K3,3-free-minor graphs and on solving a topological minor
problem in the dual. We show that the latter problem can be solved in
polynomial-time even on general graphs. In addition we show that the
problem of finding a minimal connected cut of size at least 3 is NP-hard
for 2-connected apex graphs.

1 Introduction

A cutset or cut in a connected graph is a subset of its vertices whose removal
disconnects the graph. The problem Stable Cut is that of testing whether a
connected graph has a cut that is an independent set. Le, Mosca, and Müller [12]
proved that this problem is NP-complete even for K4-free planar graphs with
maximum degree 5. A connected graph G = (V,E) is k-connected for some
integer k if |V | ≥ k+1 and every cut of G has size at least k. It is not hard to see
that if one can solve Stable Cut for 3-connected planar graphs in polynomial-
time then one can do so for all planar graphs (in particular the problem is trivial

The first author was supported by Foundation for Polish Science (HOMING
PLUS/2011-4/8) and National Science Center (SONATA 2012/07/D/ST6/02432).
The second author was supported by EPSRC Grant EP/K025090/1. The research of
the last author was co-financed by the European Union (European Social Fund ESF)
and Greek national funds through the Operational Program “Education and Life-
long Learning” of the National Strategic Reference Framework (NSRF) - Research
Funding Program: ARISTEIA II.

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 243–254, 2015.
DOI: 10.1007/978-3-319-22177-9 19

244 M. Kamiński et al.

if the graph has a cut-vertex or a cut set of two vertices that are non-adjacent).
Hence, the problem is NP-complete for 3-connected planar graphs.

Due to the above it is a natural question whether one can relax the condition
on the cut to be an independent set. This leads to the following notion. For a
connected graph G = (V,E), a subset U ⊆ V is called a disconnected cut if U
disconnects the graph and the subgraph induced by U is disconnected as well,
that is, has at least two (connected) components. This problem is NP-compete
in general [13] but polynomial-time solvable on planar graphs [8]. However, the
property of the cut being disconnected can be viewed to be somewhat artificial
if one considers the 4-vertex path P4 = p1p2p3p4, which has two disconnected
cuts, namely {p1, p3} and {p2, p4}. Both these cuts contain a vertex, namely
p1 and p4, respectively, such that putting this vertex out of the cut and back
into the graph keeps the graph disconnected. Therefore, Ito et al. [7] defined the
notion of a minimal disconnected cut of a connected graph G = (V,E), that is, a
disconnected cut U so that G[(V \U) ∪ {u}] is connected for every u ∈ U (more
generally, we call a cut that satisfies the later condition a minimal cut). Here,
the graph G[S] denotes the subgraph of G induced by S ⊆ V (G). We note that
every vertex of a minimal cut U of a connected graph G = (V,E) is adjacent to
every component of G[V \ U]. See Fig. 1 for an example of a planar graph with
a minimal disconnected cut.

The corresponding decision problem is defined as follows.

Minimal Disconnected Cut
Instance: a connected graph G.
Question: does G have a minimal disconnected cut?

S

Fig. 1. An example of a planar graph with a minimal disconnected cut, namely the
set S.

Ito et al. [7] showed that Minimal Disconnected Cut is NP-complete. How-
ever its computational complexity remains open for planar graphs. It can be
seen, via a straightforward reduction, that the problem of deciding whether a
graph has a minimal stable cut is NP-complete for any graph class (and thus
for the class of planar graphs) for which Stable Cut is NP-complete. More-
over, the problem of deciding whether a graph has a minimal cut (that may be
connected or disconnected) is polynomial-time solvable: given a vertex cut U we
can remove vertices from U one by one until the remaining vertices in U form a
minimal cut.

Our Results. As a start we observe that Minimal Disconnected Cut is
polynomial-time solvable for outerplanar graphs (as these graphs do not contain

Minimal Disconnected Cuts in Planar Graphs 245

K2,3 as a minor, any minimal cut has size at most 2). In Sect. 2 we prove that
Minimal Disconnected Cut is also polynomial-time solvable on 3-connected
planar graphs. The technique used by Ito et al. [8] for solving Disconnected
Cut in polynomial-time was based on the fact that a planar graph either has
its treewidth bounded by some constant or else contains a large grid as a
minor. However, grids (which are 3-connected planar graphs) do not have min-
imal disconnected cuts. Hence, we need to use a different approach, which we
describe below.

We first provide a structural characterization of minimal disconnected cuts
for the class of 3-connected K3,3-free-minor graphs, which contains the class of
planar graphs. In particular we show that any minimal disconnected cut of a
3-connected planar graph G has exactly two components and that these com-
ponents are paths. In order to find such a cut we prove that it suffices to test
whether G contains, for some fixed integer r, the biclique K2,r as a contrac-
tion. We show that G has such a contraction if and only if its dual contains for
some fixed r the multigraph Dr, which is obtained from the r-vertex cycle by
replacing each edge by two edges, as a subdivision (see also Fig. 2). We then
present a characterization of any graph that contains such a subdivision. Next
we use this characterization to prove that the corresponding decision problem is
polynomial-time solvable even on general graphs.

In Sect. 3 we give our second result, namely that Minimal Disconnected
Cut stays NP-complete for the class of 2-connected planar graphs. This proof
is based on a reduction from Stable Cut and as such different from the NP-
hardness proof for general graphs [7], the gadget of which contains large cliques.
In the same section we show that the problem of finding a minimal connected
cut of size at least 3 is NP-complete for 2-connected apex graphs (graphs that
can be made planar by removing one vertex); to the best of our knowledge the
computational complexity of this problem has not yet been determined even for
general graphs. We note that the problem of finding whether a graph contains
a (not necessarily minimal) connected cut of size at most k that separates two
given vertices s and t is linear-time FPT when parameterized by k [14].

We finish our paper with some further observations on related problems in
Sect. 4.

Related Work. Vertex cuts play an important role in graph connectivity. In
the literature various kinds of vertex cuts, besides stable cuts, have been studied
extensively and we briefly survey a number of results below.

A cut U of a graph G = (V,E) is a clique cut if G[U] is a clique, a k-
clique cut if G[U] has a spanning subgraph consisting of k complete graphs; a
strict k-clique cut if G[U] consists of k components that are complete graphs;
and a matching cut if EG[U] is a matching. It follows from a classical result of
Tarjan [17] that determining whether a graph has a clique cut is polynomial-
time solvable. Whitesides [18] and Cameron et al. [3] proved that the problem
of testing whether a graph has a k-clique cut is solvable in polynomial time for
k = 1 and k = 2, respectively. Cameron et al. [3] also proved that testing whether
a graph has a strict 2-clique cut can be solved in polynomial time. As mentioned

246 M. Kamiński et al.

the problem of testing whether a graph has a stable cut is NP-complete. This was
first shown for general graphs by Chvátal [4]. Also the problem of testing whether
a graph has a matching cut is NP-complete. This was shown by Brandstädt
et al. [2]. Bonsma [1] proved that this problem is NP-complete even for planar
graphs with girth 5 and for planar graphs with maximum degree 4.

The Skew Partition problem is that of testing whether a graph G = (V,E)
has a disconnected cut U so that V \ U induced a disconnected graph in the
complement of G. De Figueiredo, Klein and Reed [5] proved that even the list
version of this problem, where each vertex has been assigned a list of blocks in
which it must be placed, is polynomial-time solvable. Afterwards, Kennedy and
Reed [11] gave a faster polynomial-time algorithm for the non-list version.

Finally, for an integer k ≥ 1, a cut U of a connected graph G is a k-cut of G
if G[U] contains exactly k components. For k ≥ 1 and � ≥ 2, a k-cut U is a (k, �)-
cut of a graph G if G[V \U] consists of exactly � components. Ito et al. [8] proved
that testing if a graph has a k-cut is solvable in polynomial time for k = 1
and NP-complete for every fixed k ≥ 2. In addition they showed that testing
if a graph has a (k, �)-cut is polynomial-time solvable if k = 1, � ≥ 2 and NP-
complete otherwise [8]. The same authors show, by using the approach for solving
Disconnected Cut on planar graphs, that both problems are polynomial-time
solvable on planar graphs.

Terminology. Let G = (V,E) be a connected simple graph. A maximal con-
nected subgraph of G is called a component of G. Recall that, for a subset
S ⊆ V (G), we let G[S] denote the subgraph of G induced by S, which has vertex
set S and edge set {uv | u, v ∈ S, uv ∈ E(G)}. A vertex u ∈ V \ S is adjacent
to a set S ⊆ V \ {u} if u is adjacent to a vertex in S. We say that two disjoints
sets S ⊂ V and T ⊂ V are adjacent if S contains a vertex adjacent to T , or
equivalently if T contains a vertex adjacent to S.

Let G be a graph. We define the following operations. The contraction of
an edge uv removes u and v from G, and replaces them by a new vertex made
adjacent to precisely those vertices that were adjacent to u or v in G. Unless
we explicitly say otherwise we remove all self-loops and multiple edges so that
the resulting graph stays simple. The subdivision of an edge uv replaces uv by
a new vertex w with edges uw and vw. Let u ∈ V (G) be a vertex that has
exactly two neighbours v, w, and moreover let v and w be non-adjacent. The
vertex dissolution of u removes u and adds the edge vw.

A graph G contains a graph H as a minor if H can be obtained from G by a
sequence of vertex deletions, edge deletions and edge contractions. We say that
G contains H as a contraction, denoted by H ≤c G, if H can be obtained from
G by a sequence of edge contractions. Finally, G contains H as a subdivision
if H can be obtained from G by a sequence of vertex deletions, edge deletions
and vertex dissolutions, or equivalently, if G contains a subgraph H ′ that is a
subdivision of H, that is, H can be obtained from H ′ after applying zero or more
vertex dissolutions. We say that a vertex in H ′ is a subdivision vertex if we need
to dissolve it in order to obtain H; otherwise it is called a branch vertex (that
is, it corresponds to a vertex of H).

Minimal Disconnected Cuts in Planar Graphs 247

For some of our proofs the following global structure is useful. Let G and H be
two graphs. An H-witness structure W is a vertex partition of a (not necessarily
proper) subgraph of G into |V (H)| nonempty sets W (x) called (H-witness) bags,
such that

(i) each W (x) induces a connected subgraph of G,
(ii) for all x, y ∈ V (H) with x �= y, bags W (x) and W (y) are adjacent in G if x

and y are adjacent in H.

In addition, we may require the following additional conditions:

(iii) for all x, y ∈ V (H) with x �= y, bags W (x) and W (y) are adjacent in G
only if x and y are adjacent in H,

(iv) every vertex of G belongs to some bag.

By contracting all bags to singletons we observe that H is a minor or contraction
of G if and only if G has an H-witness structure such that conditions (i)-(ii) or
(i)-(iv) hold, respectively. We note that G may have more than one H-witness
structure with respect to the same containment relation.

We denote the complete graph on k vertices by Kk and the complete bipartite
graph with bipartition classes of size k and �, respectively, by Kk,�.

2 The Algorithm

We first present a necessary and sufficient condition for a 3-connected K3,3-minor-
free graph to have a minimal disconnected cut.

Theorem 1. A 3-connected K3,3-minor-free graph G has a minimal discon-
nected cut if and only if K2,r ≤c G for some r ≥ 2.

Proof. Let G = (V,E) be a 3-connected graph that has no K3,3 as a minor. First
suppose that G has a minimal disconnected cut U . Let p and q be the number
of components of G[U] and G[V \ U], respectively. Because U is a disconnected
cut, p ≥ 2 and q ≥ 2. By definition, every vertex of every component of G[U] is
adjacent to all components in G[V \U]. Hence, G contains Kp,q as a contraction.
Because G has no K3,3 as a minor, G has no K3,3 as a contraction. This means
that p ≤ 2 or q ≤ 2. Because p ≥ 2 and q ≥ 2 holds as well, we find that
K2,r ≤c G for some r ≥ 2.

Now suppose that K2,r ≤c G for some r ≥ 2. Throughout the remainder of
the proof we denote the partition classes of Kk,� by X = {x1, . . . , xk} and Y =
{y1, . . . , y�}. We refer to the bags in a Kk,�-witness structure of G corresponding
to the vertices in X and Y as x-bags and y-bags, respectively. Because K2,r ≤c G,
there exists a K2,r-witness structure W of G that satisfies conditions (i)-(iv).
Note that W (x1)∪W (x2) is a disconnected cut. However, it may not be minimal.

Suppose that W (x1) contains a vertex u that is adjacent to some but not
all y-bags, i.e., the number of y-bags to which u is adjacent is h for some 1 ≤
h < r. Then we move u to a y-bag that contains one of its neighbors unless

248 M. Kamiński et al.

W (x1) ∪ W (x2) no longer induce a disconnected graph (which will be the case
if u is the only vertex in W (x1)). We observe that G[W (x1) \ {u}] may be
disconnected, namely when u is a cut vertex in G[W (x1)]. We also observe that
u together with its adjacent y-bags induces a connected subgraph of G. Hence,
the resulting witness structure W ′ is a Kq,r′-witness structure of G with q ≥ 2
(as the resulting vertices in W (x1)∪W (x2) still induce a disconnected graph) and
r′ = r − (h− 1). Because 1 ≤ h < r, we find that 2 ≤ r′ ≤ r. We repeat this rule
as long as possible. During this process, W (x2) does not change, and afterwards,
we do the same for W (x2). Let W∗ denote the resulting witness structure that
is a Kq∗,r∗ -witness structure satisfying conditions (i)-(iv) for some q∗ ≥ 2 and
2 ≤ r∗ ≤ r.

We will now prove the following claim. Afterwards, we are done; due to this
claim and because there are at least two x-bags and at least two y-bags in W∗,
the x-bags of W∗ form a minimal disconnected cut U of G.

Claim 1. Every vertex of each x-bag of W∗ is adjacent to all y-bags.

We prove Claim 1 as follows. First suppose that there exists an x-bag of W∗,
say W ∗(x1), that contains a vertex u adjacent to some but not to all y-bags of
W∗, say u is not adjacent to W ∗(y1). By our procedure we would have moved u
to an adjacent y-bag unless that makes the disconnected cut connected. Hence
we find that there are exactly two witness bags W ∗(x1) and W ∗(x2) and that
W ∗(x1) = {u}. In our procedure we only moved vertices from x-bags to y-bags.
This means that u belonged to an x-bag of the original witness structure W.
This x-bag was adjacent to all y-bags of W (as W was a K2,r-witness structure).
As we only moved vertices from x-bags to y-bags, this means that there must
still exist a path from u to a vertex in W ∗(y1) that does not use any vertex of
W ∗(x2); a contradiction. Hence every x-bag of W∗ only contains vertices that
are either adjacent to all y-bags or to none of them.

Now, in order to obtain a contradiction, suppose that an x-bag, say W ∗(x1),
contains a vertex u not adjacent to any y-bag. Because G is 3-connected, G
contains three vertex-disjoints paths P1, P2, P3 from u to a vertex in W ∗(y1) (by
Menger’s Theorem). Each Pi contains a vertex vi in W ∗(x1) whose successor on
Pi is outside W ∗(x1). Hence, by our assumption, vi has a neighbour in every
y-bag (including W ∗(y1)). Recall that the number of y-bags is r∗ ≥ 2. Then
the subgraph induced by the vertices from W ∗(y1) and W ∗(y2) together with
the vertices on the three paths P1, P2, P3 form a K3,3-minor of G. This is not
possible. Hence, every vertex of each x-bag of W∗ is adjacent to all y-bags. This
completes the proof of Claim 1 and thus the proof of Theorem 1. 	

By Theorem 1 we may restrict ourselves to finding a K2,r-contraction for some
r ≥ 2 in a 3-connected planar graph. Below we state some additional terminology.

Recall that Dn is the multigraph obtained from the cycle on n ≥ 3 vertices
by doubling its edges. We let D2 be the multigraph that has two vertices with
four edges between them. The dual graph Gd of a plane graph G has a vertex
for each face of G, and there exist k edges between two vertices u and v in Gd if
and only if the two corresponding faces share k edges in G. Note that the dual

Minimal Disconnected Cuts in Planar Graphs 249

D2 D4C4 K2,4

Fig. 2. The graphs D2, C4, D2, K2,4. Note that the dual of C4 = K2,2 is D2, that D4

is obtained from C4 by duplicating each edge and that D4 is the dual of K2,4.

of a graph may be a multigraph. As 3-connected planar graphs have a unique
embedding (see e.g. Lemma 2.5.1, p. 39 of [16]) we can speak of the dual of a
3-connected planar graph. We need the following lemma. Its proof, which we
omit, follows from using a result from [9].

Lemma 1. Let G be a 3-connected planar graph. Then G contains K2,r as a
contraction for some r ≥ 2 if and only if the dual of G contains Dr as a subdi-
vision.

By Lemma 1 it suffices to check if the dual of the 3-connected planar input
graph contains Dr as a subdivision for some r ≥ 2. We show how to solve
this problem in polynomial time for general graphs. In order to do so we need
the next lemma which gives a necessary condition for a graph G to be a yes-
instance of this problem. In its proof we use the following notation. For a path
P = v1v2 . . . vp, we write viPvj to denote the subpath vivi+1 . . . vj or vjPvi if
we want to emphasize that the subpath is to be traversed from vj to vi.

Lemma 2. Let v, w be two distinct vertices of a multigraph G such that there
exist four edge-disjoint v-w-paths in G. Then G contains a subdivision of Dr for
some r ≥ 2.

Proof. We prove the lemma by induction on |V (G)| + |E(G)|. Then we can
assume that G is the union of the four edge-disjoint v-w-paths. Let us call these
paths P1, P2, P3, and P4. If these four paths are vertex-disjoint (apart from v
and w) then they form a subdivision of D2. Hence, we may assume that there
exists at least one vertex of G not equal to v or w that belongs to more than
one of the four paths.

First suppose that there exists a vertex u that belongs to all four paths P1,
P2, P3 and P4. Let G′ be the graph consisting of the vertices and edges of the
four subpaths vP1u, vP2u, vP3u and vP4u. As G′ does not contain w, it holds
that |V (G′)| + |E(G′)| < |V (G)| + |E(G)|. By the induction hypothesis, G′, and
thus G, contains a subdivision of Dr for some r ≥ 2.

Now suppose that there exists a vertex u that belong to only three of the four
paths, say to P1, P2, and P3. Let G′ be the graph that consists of the vertices
and edges of the four paths uP1w, uP2w, uP3w and uP1vP4w. As G′ does not
contain an edge of vP2u we find that |V (G′)| + |E(G′)| < |V (G)| + |E(G)|.
By the induction hypothesis, G′, and thus G, contains a subdivision of Dr for
some r ≥ 2.

250 M. Kamiński et al.

From now on assume that every inner vertex of every path Pi (i = 1, . . . , 4)
belongs to at most one other path Pj (j �= i). We say that two different paths
Pi and Pj cross in a vertex u if u is an inner vertex of both Pi and Pj . Suppose
Pi and Pj cross in some other vertex u′ as well. Then we say that u is crossed
before u′ by Pi and Pj if u is an inner vertex of both vPiu

′ and vPju
′.

We now prove the following claim.

Claim 1. If Pi and Pj (i �= j) cross in both u and u′ then we may assume without
loss of generality that either u is crossed before u′ or u′ is crossed before u.

We prove Claim 1 as follows. Suppose that u is not crossed before u′ by Pi and
Pj and similarly that u′ is not crossed before u by Pi and Pj . Then we may
assume without loss of generality that u is an inner vertex of vPiu

′ and that u′

is an inner vertex of vPju. See Fig. 3 for an example of this situation. However, in
that case we can replace Pi and Pj by the paths vPiuPjw and vPju

′Piw. These
two paths together with the two unused original paths form a subgraph G′ of G
with fewer edges than G (as for instance no edge on uPiu

′ belongs to G′). We
apply the induction hypothesis on G′. This completes the proof of Claim 1.

wv

u

u

Pi

Pj

Fig. 3. The paths Pi and Pj where u is not crossed before u′ by Pi and Pj and similarly
u′ is not crossed before u by Pj and Pi. Note that the paths Pi and Pj may have more
common vertices, but for clarify this is not been shown.

We need Claim 1 to prove the following claim, which is crucial for our proof.

Claim 2. We may assume without loss of generality that there exists a vertex
u /∈ {v, w} that is on two paths Pi and Pj (i �= j) so that every inner vertex of
vPiu and vPju has degree 2 in G.

We prove Claim 2 as follows. By our assumption there exists at least one vertex
in G that is on two paths. Let s /∈ {v, w} be such a vertex, say s belongs to P1

and P2. Assume without los of generality that every inner vertex of vP1s has
degree 2. Then, by Claim 1, we find that P1 and P2 do not cross in an inner
vertex of vP2s.

If every inner vertex of vP1s and vP2s has degree 2 in G then the claim has
been proven. Suppose otherwise, namely that there exists an inner vertex s′ of
vP1s or vP2s whose degree in G is larger than 2, say s′ belongs to vP2s. As P1

does not cross vP2s, we find that s′ must belong to P3 or to P4. Choose s′ in
such a way that every inner vertex of vP2s

′ has degree 2 in G. Assume without
loss of generality that s′ belongs to P3.

If every inner vertex of vP3s
′ has degree 2 then the claim has been proven

(as every inner vertex of vP2s
′ has degree 2 as well). Suppose otherwise, namely

Minimal Disconnected Cuts in Planar Graphs 251

that there exists an inner vertex s′′ of vP3s
′ whose degree in G is larger than 2.

Choose s′′ in such a way that every inner vertex of vP3s
′′ has degree 2 in G. By

Claim 1, no inner vertex of vP3s
′ belongs to P2, so s′′ does not lie on P2. This

means that s′′ belongs either to P1 or to P4.

wv

s

s

s

P1

P2

P3

Fig. 4. The paths P1, P2 and P3 where s belongs to P1 and P2, s
′ belongs to vP2s and

P3 and s′′ belongs to vP3s
′ and P1.

Suppose s′′ belongs to P1. See Fig. 4 for an example of this situation. As
every inner vertex of vP1s has degree 2, we find that s is an inner vertex of
vP1s

′′. However, we can now replace P1, P2 and P3 by the three paths vP1sP2w,
vP2s

′P3w and vP3s
′′P1w. These three paths form, together with P4, a subgraph

of G with fewer edges than G (for instance, no edge of sP1s
′′ belongs to G′).

We can apply the induction hypothesis on this subgraph. Hence we may assume
that s′′ does not belong to P1.

From the above we conclude that s′′ belongs to P4. See Fig. 5 for an example
of this situation. We consider the paths vP3s

′′ and vP4s
′′. If every inner vertex

of vP4s
′′ has degree 2 in G then we have proven Claim 2 (recall that every inner

vertex of vP3s
′′ has degree 2 in G as well). Suppose otherwise, namely that there

exists an inner vertex t of vP4s
′′ whose degree in G is larger than 2. Choose t in

such a way that every inner vertex of vP4t has degree 2 in G. By Claim 1 we find
that t is not on P3. If t is on P2 we can use a similar replacement of three paths
by three new paths as before that enables us to apply the induction hypothesis.
Hence, we find that t belongs to P1.

As every inner vertex of vP1s has degree 2 in G we find that s is an inner
vertex of vP1t. Then we take the four paths vP1sP2w, vP2s

′P3w, vP3s
′′P4w and

vP4tP1w. These four paths form a subgraph G′ of G with fewer edges than G
(as for instance G′ contains no edge from sP1t). We can apply the induction

wv

s

s

s

t

P1

P2

P3

P4

Fig. 5. The paths P1, P2, P3 and P4 where s belongs to P1 and P2, s
′ belongs to vP2s

and P3, s
′′ belongs to vP3s

′ and P4 and t belongs to vP4s
′′ and P1.

252 M. Kamiński et al.

hypothesis on G′. Hence we may assume that such a vertex t cannot exist. Thus
we have found the desired vertex and subpaths, namely s′′ with subpaths vP3s

′′

and vP4s
′′. This completes the proof of Claim 2.

By Claim 2 we may assume without loss of generality that there exists a vertex u
that belongs to P1 and P2 such that every inner vertex of vP1u and vP2u has
degree 2. Let G∗ be the graph obtained from G by contracting all edges of vP1u
and vP2u (recall that we remove loops and multiple edges). Let u∗ be the new
vertex to which all the edges were contracted. Notice that there are four edge-
disjoint u∗-w-paths in G∗. Then, by the induction hypothesis, G∗ contains a
subdivision H of Dr for some r ≥ 2. If u∗ does not belong to H, then G contains
H as well and we would have proven the lemma. Assume that u∗ belongs to H.

First suppose that u∗ is a subdivision vertex of H in G∗. Let u∗ have neigh-
bours s1 and s2 in H. Take a shortest path Q from s1 to s2 in the subgraph of G
induced by s1, s2 and the vertices of vP1u and vP2u. This results in a graph H ′,
which is a subgraph of G and which is a subdivision of Dr as well.

Now suppose that u∗ is a branch vertex of H in G∗, say u∗ corresponds
to z ∈ V (Dr). Note that any vertex in Dr has one neighbour if r = 2 and
two neighbours if r ≥ 3. We let s and t be the two branch vertices of H that
correspond to the neighbours of z in Dr (note that s = t if r = 2). Let s1 and
s2 be the neighbours of u∗ on the two paths from u∗ to s, respectively, in H.
Similarly, let t1 and t2 be the neighbours of u∗ on the two paths from u∗ to t,
respectively, in H. Note that, as G is a multigraph, it is possible that s1 = s2 = s
and t1 = t2 = t.

Recall that every internal vertex on vP1u and on vP2u has degree 2 in G. As
u is an inner vertex of P1 and P2 but not of P3 and P4, it has degree 4 in G. As
G is the union of P1, P2, P3 and P4, we find that v has degree 4 as well. Then,
after uncontracting u∗, we have without loss of generality one of the following
two situations in G. First, u is adjacent to s1 and s2 and v is adjacent to t1 and
t2. In that case u and v become branch vertices of a subdivision of Dr+1 in G (to
which the internal vertices on the paths uP1v and uP2v belong as well, namely
as subdivision vertices). Second, u is adjacent to s1 and t1, whereas v is adjacent
to s2 and t2. Then u and v become subdivision vertices of a subdivision of Dr in
G (and we do not use the internal vertices on the paths uP1v and uP2v). This
completes the proof of the lemma. 	

Lemma 2 gives us the following result.

Theorem 2. It is possible to find in O(mn2) time whether a graph G with n
vertices and m edges contains Dr as a subdivision for some r ≥ 2.

Proof. Let G be a graph with m edges. We check for every pair of vertices s and
t whether G contains four edge-disjoint paths between them. We can do this via
a standard reduction to the maximum flow problem. Replace each edge uv by
the arcs (u, v) and (v, u). Give each arc capacity 1. Introduce a new vertex s′

and an arc (s′, s) with capacity 4. Also introduce a new vertex t′ and an arc
(t, t′) with capacity 4. Check if there exists an (s′, t′)-flow of value 4 by using the

Minimal Disconnected Cuts in Planar Graphs 253

Ford-Fulkerson algorithm. As the maximum value of an (s′, t′)-flow is at most 4,
this costs O(m) time per pair, so O(mn2) time in total.

If there exists a pair s, t in G with four edge-disjoint paths between them then
G has a subdivision of Dr, for some r ≥ 2, by Lemma 2. If not then we find that
G has no subdivision of any Dr (r ≥ 2) as any subdivision of Dr immediately
yields four edge-disjoint paths between two vertices and our algorithm would
have detected this. 	

We are now ready to state our main result.

Theorem 3. Minimal Disconnected Cut can be solved in O(n3) time on
3-connected planar graphs with n vertices.

Proof. Let G be a 3-connected planar graph with n vertices. By Theorem 1 it
suffices to check whether K2,r ≤c G for some r ≥ 2. By Lemma 1, the latter is
equivalent to checking whether the dual of G, which we denote by G∗, contains
Dr as a subdivision for some r ≥ 2. To find G∗ we first embed G in the plane
using the linear-time algorithm from Mohar [15]. As the number of edges in a
planar graph is linear in the number of vertices, G∗ has O(n) vertices and O(n)
edges and can be constructed in O(n) time. We are left to apply Theorem 2. 	

3 Hardness

We show the following result, which complements Theorem 3. We omit its proof.

Theorem 4. Minimal Disconnected Cut is NP-complete for the class of
2-connected planar graphs.

A cut S in a graph G is a minimal connected cut if G[S] is connected and
for all u ∈ S we have that G[(V \ S) ∪ {u}] is connected. We call the problem of
testing whether a graph a minimal connected cut of size at least k the Minimal
Connected Cut(k) problem. By modifying the proof of Theorem 4 we obtain
the following result (proof omitted).

Theorem 5. Minimal Connected Cut(3) is NP-complete even for the class
of 2-connected apex graphs.

We cannot use the reduction in the proof of Theorem 5 to get NP-hardness for
Minimal Connected Cut(1), the reason being that the gadget graph con-
structed in our omitted proof contains minimal disconnected cuts of size 2.

4 Conclusions

We proved that Minimal Disconnected Cut is NP-complete for 2-connected
planar graphs and polynomial-time solve for planar graphs that are 3-connected.
Our proof technique for the latter result was based on translating the problem to
a dual problem, namely the existence of a subdivision of Dr for some r, for which

254 M. Kamiński et al.

we obtained a polynomial-time algorithm even for general graphs. One can also
solve the problem of determining whether a graph contains Dr as a subdivision
for some fixed integer r by using the algorithm of Grohe, Kawarabayashi, Marx,
and Wollan [6] which tests in cubic time, for any fixed graph H, whether a graph
contains H as a subdivision. However, when r is part of the input we can show
the following result via a reduction from Hamilton Cycle (proof omitted).

Theorem 6. The problem of deciding whether a graph contains the graph Dr

as a subdivision is NP-complete if r is part of the input.

References

1. Bonsma, P.S.: The complexity of the matching-cut problem for planar graphs and
other graph classes. J. Graph Theory 62, 109–126 (2009)

2. Brandstädt, A., Dragan, F.F., Le, V.B., Szymczak, T.: On stable cutsets in graphs.
Discrete Appl. Math. 105, 39–50 (2000)

3. Cameron, K., Eschen, E.M., Hoáng, C.T., Sritharan, R.: The complexity of the list
partition problem for graphs. SIAM J. Discrete Math. 21, 900–929 (2007)

4. Chvátal, V.: Recognizing decomposable graphs. J. Graph Theory 8, 51–53 (1984)
5. de Figueiredo, C.M.H., Klein, S., Reed, B.: Finding skew partitions efficiently. J.

Algorithms 37, 505–521 (2000)
6. Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological sub-

graphs is fixed-parameter tractable. In: Proceedings of the STOC 2011, pp. 479–488
(2011)

7. Ito, T., Kaminski, M., Paulusma, D., Thilikos, D.M.: On disconnected cuts and
separators. Discrete Appl. Math. 159, 1345–1351 (2011)

8. Ito, T., Kamiński, M., Paulusma, D., Thilikos, D.M.: Parameterizing cut sets in a
graph by the number of their components. Theor. Comput. Sci. 412, 6340–6350
(2011)

9. Kamiński, M., Paulusma, D., Thilikos, D.M.: Contractions of planar graphs in poly-
nomial time. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346,
pp. 122–133. Springer, Heidelberg (2010)

10. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103. Plenum, New York (1972)

11. Kennedy, W.S., Reed, B.: Fast skew partition recognition. In: Ito, H., Kano, M.,
Katoh, N., Uno, Y. (eds.) KyotoCGGT 2007. LNCS, vol. 4535, pp. 101–107.
Springer, Heidelberg (2008)

12. Le, V.B., Mosca, R., Müller, H.: On stable cutsets in claw-free graphs and planar
graphs. J. Discrete Algorithms 6, 256–276 (2008)

13. Martin, B., Paulusma, D.: The computational complexity of Disconnected Cut and
2K2-Partition. J. Comb. Theory, Series B 111, 17–37 (2015)

14. Marx, D., O’Sullivan, B., Razgon, I.: Finding small separators in linear time via
treewidth reduction. ACM Trans. Algorithms 9, 30 (2013)

15. Mohar, B.: A linear time algorithm for embedding graphs in an arbitrary surface.
SIAM J. Discrete Math. 12, 6–26 (1999)

16. Mohar, B., Thomassen, C.: Graphs on Surfaces. The Johns Hopkins University
Press, Baltimore (2001)

17. Tarjan, R.E.: Decomposition by clique separators. Discrete Math. 55, 221–232
(1985)

18. Whitesides, S.H.: An algorithm for finding clique cut-sets. Inf. Proces. Letters 12,
31–32 (1981)

ε-Almost Selectors and Their Applications

Annalisa De Bonis(B) and Ugo Vaccaro

Diparitmento di Informatica, Università di Salerno,
Fisciano, SA, Italy

debonis@dia.unisa.it, uvaccaro@unisa.it

Abstract. Consider a group of stations connected through a multiple-
access channel, with the constraint that if in a time instant exactly one
station transmits a message, then the message is successfully received by
any other station, whereas if two or more stations simultaneously trans-
mit their messages then a conflict occurs and all messages are lost. Let us
assume that n is the number of stations and that an (arbitrary) subset A
of them, |A| ≤ k ≤ n, is active, that is, there are at most k stations that
have a message to send over the channel. In the classical Conflict Reso-
lution Problem, the issue is to schedule the transmissions of each station
to let every active station use the channel alone (i.e., without conflict) at
least once, and this requirement must be satisfied whatever might be the
set of active stations A. The parameter to optimize is, usually, the worst
case number of transmissions that any station has to attempt before all
message transmissions are successful. In this paper we study the follow-
ing question: is it possible to obtain a significant improvement on the
protocols that solve the classical Conflict Resolution Problem if we allow
the protocols to fail over a “small” fraction of all possible subsets of
active stations? In other words, is it possible to significantly reduce the
number of transmissions that must be attempted? In this paper we will
show that this is indeed case. Our main technical tool is a generaliza-
tion of the selectors introduced in [9]. As it turned out for selectors, we
believe that our new combinatorial structures are likely to be useful also
outside the present context in which they are introduced.

1 The Communication Model

Our scenario consists of a multiaccess system where n stations have access to
the channel and at most a certain number k of stations might be active at
the same time, i.e., might transmit simultaneously over the channel. An active
station successfully transmits if and only if it transmits singly on the channel. We
assume that time is divided into time slots and that transmissions occur during
these time slots. We also assume that all stations have a global clock and that
active stations start transmitting at the same time slot. A scheduling algorithm
for such a multiaccess system is a protocol that schedules the transmissions of
the n stations over a certain number t of time slots (steps) identified by integers
1, 2, . . . , t. In a distributed model, a scheduling algorithm can be represented by
a set of n Boolean vectors of length t, identified by integers from 1 through n,
c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 255–268, 2015.
DOI: 10.1007/978-3-319-22177-9 20

256 A. De Bonis and U. Vaccaro

each of which corresponds to a distinct station, with the meaning that station j
is scheduled to transmit at step i if and only if the i-th entry of its associated
Boolean vector j is 1. In fact station j really transmits at step i if and only it is
an active station and is scheduled to transmit at that step.

A conflict resolution algorithm for the above described multiaccess system
is a scheduling protocol that allows active stations to transmit successfully.
A non adaptive conflict resolution algorithm is a protocol that schedules all
transmissions in advance, i.e., for each step i = 1, . . . , t establishes which stations
should transmit at step i without looking at what happened over the channel at
the previous steps. A non adaptive conflict resolution algorithm is conveniently
represented by the Boolean matrix having as columns the n Boolean vectors
associated with the scheduling of the transmissions of the n stations. Entry (i, j)
of such a matrix is 1 if and only is station j is scheduled to transmit at step i. The
parameter of interest to be minimized is the number of rows of the matrix which
represents the number of time slots over which the conflict resolution algorithm
schedules the transmissions of the n stations.

The Multiple-Access Channel Without Feedback. When stations receive
no feedback from the channel then the conflict resolution algorithm must schedule
transmissions in such a way that each active station transmits singly to the
channel at some step, i.e., in such a way that no other active station is scheduled
to transmit at that same step. In this case non adaptive algorithms are an
obliged choice since at each given step the conflict resolution algorithm has to
schedule transmissions without knowing which stations succeeded to transmit
their messages in the previous steps. A conflict resolution algorithm for this
model is represented by a Boolean matrix M with the property that for any k
columns of M and for any column c chosen among these k columns, there exists a
row in correspondence of which c has a 1-entry and the remaining k−1 columns
have 0-entries. In other words, for any choice of k out of n columns of M the
submatrix formed by these k columns contains all rows of the identity matrix Ik.
Matrices that satisfy this property have been very well studied in the literature
where are known under different names, such as superimposed codes [14], (k−1)-
cover free families [12], (k−1)-disjunct codes [10], and strongly selective families
[6,7]. The best constructions for these combinatorial structures [19] imply the
existence of conflict resolution algorithms that solve all conflicts among up to k
active stations in O(k2 log n) number of steps. Moreover, it is known that the
number of rows of these matrices is lower bounded by Ω

(
k2

log k log n
)

[11], and
therefore any conflict resolution algorithm for this model should use at least this
number of steps.

The authors of [9] introduced the following combinatorial structure that gene-
ralizes disjunct codes by introducing a parameter m which fixes the minimum
number of distinct rows of the identity matrix Ik that should appear in any
submatrix of k columns.

Definition 1 [9]. Given integers k, m, and n, with 1 ≤ m ≤ k ≤ n, we say
that a Boolean matrix M with t rows and n columns is a (k,m, n)-selector if

ε-Almost Selectors and Their Applications 257

for any choice of k out of n columns of M the submatrix formed by these k
columns contains m rows of the identity matrix Ik. The integer t is the size
of the (k,m, n)-selector. The minimum size of a (k,m, n)-selector is denoted by
ts(k,m, n).

A (k,m, n)-selector provides us with a non adaptive algorithm that allows at least
m out of exactly k active stations to transmit successfully. Protocols based on
(k,m, n)-selectors employ a number of steps which decreases with the maximum
number of active stations that might not succeed in transmitting their messages,
as shown by the following bound on the minimum number of rows of (k,m, n)-
selectors [9].

ts(k,m, n) =
ek2

k − m + 1
ln

(n

k

)
+

ek(2k − 1)
k − m + 1

. (1)

Notice that if there are less than k active stations then protocols based on
(k,m, n)-selectors guarantee a number of successful transmission smaller than m
since it might happen that some (eventually all) of the m out of k stations which
are scheduled to transmit singly to the channel are not active. In particular, if
there are j ≤ k active stations the protocol guarantees m−(k−j) active stations
to transmit successfully, and therefore, independently from the actual number
of active stations, such a protocol schedules transmissions so that at most k −m
active stations do not succeed to transmit their messages.

The Multiple-Access Channel with Feedback. In addition to the situation
when stations receive no feedback from the channel, we consider also a commu-
nication model in which any transmitting station receives feedback on whether
its transmission has been successful or not. In such a model an active station
has the capability to become inactive (i.e., to refrain from transmitting) after it
has transmitted successfully. As in the previous model, a non adaptive conflict
resolution algorithm should guarantee that for each active station there is a step
at which it transmits singly. However, in this scenario an active station trans-
mits singly to the channel also at time slots where it is scheduled to transmit
simultaneously with some of the other k stations that were initially active, pro-
vided that these stations transmitted successfully at one of the previous steps.
A Boolean matrix M represents a non adaptive conflict resolution algorithm for
this more relaxed model if and only if any subset S of k columns of M satisfies
the following property.

(*) There are k row indices i1, i2, . . . , ik, with i1 ≤ i2 ≤ . . . ≤ ik, and a permuta-
tion [j1, . . . , jk] of the indices of the columns in S, such that the submatrix of
M formed by rows with indices i1, . . . , ik, taken in this order, and columns
with indices j1, . . . , jk, taken in this order, form a k × k lower unitriangular
matrix, i.e., a k × k matrix in which all entries in the diagonal are 1 and all
those above the diagonal are 0.

We will refer to a matrix in which all subsets of k column indices satisfy
property (*) as a KG (k, n)-code and will denote the minimum length of KG

258 A. De Bonis and U. Vaccaro

(k, n)-codes by tKG(k, n). The name KG (k, n)-code comes from the initials of
Komlós and Greenberg [15] who were the first to prove the following upper bound
on the minimum length of KG (k, n)-codes.

tKG(k, n) = O(k log(n/k)) (2)

Interestingly, the above bound is tight with the Ω(k log(n/k)) lower bound
proved by the authors of [7,8] for a combinatorial structure satisfying a weaker
property than that of KG (k, n)-codes. The authors of [9,13] suggested a simpler
construction which achieves the same asymptotic efficiency as the protocols in
[15] and consists in concatenating (2i, 2i−1, n)-selectors starting from i = �log k�
through i = 1, i.e., with the rows of the (2�log k�, 2�log k�−1, n)-selector being
placed at the top of the matrix and those of the (2, 1, n)-selector being placed
at the bottom.

Our Results. In this paper we study non adaptive conflict resolution proto-
cols for both the two above described multiple-access models. Our goal is to
investigate what happens in terms of time efficiency if we allow the protocol to
(possibly) fail over a “small” fraction of all possible subsets of active stations. In
other words, we want to give an answer to the following question: is it possible to
significantly reduce the number of steps used by the conflict resolution protocol
if we tolerate that the protocol does not guarantee to behave correctly for a small
fraction of all possible subsets of active stations? In order to study this question,
we introduce two new combinatorial structures that consist in a generalization
of selectors and KG codes, respectively. In these matrices only a certain ratio
(1 − ε) of all k-column subsets is guaranteed to satisfy the desired properties,
and therefore the corresponding conflict resolution protocols are guaranteed to
work correctly only for (1 − ε)

(
n
k

)
subsets of active stations.

Our paper is organized as follows. In Sect. 2 we first introduce a new version
of (k,m, n)-selectors that correspond to protocols that schedule transmissions so
that, for at least a fraction (1 − ε) of all possible subsets of k active stations,
one has that at least m out of k stations are scheduled to transmit singly to
the channel. Then, we introduce a new version of KG (k, n)-codes that furnish
scheduling protocols for the multiple-access channel with feedback that allow to
solve all conflicts for at least a certain fraction (1 − ε) of all possible subsets
of k active stations. In Sect. 3, we recall the basic notion of hypergraph along
with the related concepts of cover and partial cover which are at the core of our
constructions. Our main technical results are contained in Sect. 4 where we give
our constructions for the combinatorial structures presented in Sect. 2 and derive
upper bounds on the number of time slots used by the corresponding conflict
resolution algorithms. Our main results are summarised by the following two
theorems1.

Theorem 1. Let k, m, and n be integers such that 1 ≤ m ≤ k ≤ n, and let ε be
a real number such that 0 ≤ ε ≤ 1. There exists a conflict resolution algorithm
for a multiple-access channel without feedback that schedules the transmissions of
1 However, see Sect. 4.1 for improvements.

ε-Almost Selectors and Their Applications 259

n stations in such a way that for at least a (1−ε) ratio of all possible subsets of k
active stations, one has that at least m out k active stations transmit successfully.
The number of time slots used by the resolution algorithm is

t ≤ ek

k − m + 1

(

1 + ln

(
k

k−m+1

)

ε

)

.

Theorem 2. Let k and n be integers such that 1 ≤ k ≤ n, and let ε be a real
number such that 0 ≤ ε ≤ 1. There exists a conflict resolution algorithm for
a multiple-access channel with feedback that schedules the transmissions of n
stations in such a way that for at least a (1 − ε) ratio of all possible subsets of k
stations, one has that if the set of (up to k) active stations is entirely contained in
one of those k-subsets then all active stations transmits successfully. The number
of time slots used by the conflict resolution algorithm is

t < 2e�log k�
(

1 + ln
(

log k

ε

))

+ O(k).

It should be remarked that our protocols, as well as those of [9,13], can
be made to work without any loss of efficiency also in the case in which the
parameter k is not known a priori. We will show this fact in the full version of
the paper.

2 Combinatorial Tools

For a positive integer n, we will denote by [n] the set {1, . . . , n} and by [n]k the
family of all k element subsets of [n]. The following definition introduces a new
notion of selectors in which only a certain fraction (1−ε) of all k-column subsets
is guaranteed to satisfy the condition described in Definition 1.

Definition 2. Given integers k, m, and n, with 1 ≤ m ≤ k ≤ n, and a real
number 0 ≤ ε ≤ 1, we say that a Boolean matrix M with t rows and n columns
is an ε-almost (k,m, n)-selector if at least (1 − ε)

(
n
k

)
distinct subsets of k out

of n columns of M are such that the k columns in each of those subsets form a
submatrix that contains m rows of the identity matrix Ik. The integer t is the
size of the ε-almost (k,m, n)-selector.

The ε-almost version of (k +1, k +1, n)-selectors are in fact the ε-almost version
of k-disjunct codes and correspond to the notion of type 2 (k − 1, ε)-disjunct
codes introduced in [17]. In the context of conflict resolution in the presence of a
multiple-access channel without feedback, an ε-almost (k,m, n)-selector furnishes
a protocol that schedules transmissions so that, for at least a certain fraction
(1 − ε) of all possible subsets of exactly k active stations, one has that at least
m active stations transmit singly to the channel. By the same argument used is
Sect. 1, one can see that if the actual number of active stations is smaller than k,
then the protocol allows a number of active stations possibly smaller than m to

260 A. De Bonis and U. Vaccaro

transmit singly to the channel. However, independently from the actual number
of active stations, there are at most k − m active stations that do not transmit
successfully, provided that the active stations are contained in some of the k-
station subsets corresponding to one of the k-column subsets that satisfy the
property of (k,m, n)-selectors, i.e., form a submatrix that contains m rows of the
identity matrix. We will use this observation later on in the proof of Theorem 5.
One is expected to trade off the weaker selection capacity of ε-almost (k,m, n)-
selectors for a better efficiency of conflict resolution algorithms. In fact, we will
show that, for enough large values of ε, there are ε-almost (k,m, n)-selectors with
a number of rows significantly smaller than that of their “exact” counterpart.

The following definition introduces the analogous notion of KG codes in which
only a certain fraction (1 − ε) of all k-column subsets is guaranteed to satisfy
property (*).

Definition 3. Given integers k and n, with 1 ≤ k ≤ n, and a real number
0 ≤ ε ≤ 1, we say that a Boolean matrix M with t rows and n columns is an
ε-almost KG (k, n)-code if property (*) is satisfied by at least (1−ε)

(
n
k

)
k-column

subsets S of M . The integer t is the length of the code.

In the context of conflict resolution for a multiple-access channel with feedback,
ε-almost KG (k, n)-codes are equivalent to conflict resolution algorithms that
guarantee all active stations to transmit successfully only in the presence of
some subsets of active stations, i.e., if and only if the subset of active stations
corresponds to a subset of one of the up to (1 − ε)

(
n
k

)
k-column subsets that

satisfy property (*).
Our results rely on the fact that an ε-almost (k,m, n)-selector can be seen

as a partial cover of a properly defined hypergraph.
In the following section, we briefly recall the definitions of hypergraph, cover

and partial cover of an hypergraph, along with the related terminology.

3 Hypergraphs and Covers

Given a finite set X and a family F of subsets of X, a hypergraph is a pair
H = (X,F). The set X will be denoted by V (H) and its elements will be called
vertices of H, while the family F will be denoted by E(H) and its elements will
be called hyperedges of H. A hypergraph is said to be uniform if all edges contain
the same number of vertices and it is said to be regular if all vertices have the
same degree, i.e., belong to the same number of edges. A vertex v ∈ V (H) is
said to cover an edge E ∈ E(H) if v ∈ E. A cover of H, also called integral
cover, is a subset T ⊆ V (H) such that for any hyperedge E ∈ E(H) we have
T ∩ E �= ∅, i.e., the vertices of T covers all edges in E(H). A fractional cover
of H is an assignment of vertex-weights {tv ≥ 0 : v ∈ V (H)} such that the
constraint

∑
v∈E tv ≥ 1 holds for all edges in E(H). The minimum sizes of a cover

and a fractional cover of H will be denoted by τ(H), and τ∗(H), respectively.
Notice that the assignment of vertex-weights {tv = 1

minE∈F |E| : v ∈ V (H)} is a
fractional cover of H. Therefore, one has

ε-Almost Selectors and Their Applications 261

τ∗(H) ≤ |V (H)|
minE∈F |E| . (3)

Below, we recall the notions of partial cover ((1 − ε)-cover) and fractional
partial cover (fractional (1 − ε)-cover). For 0 ≤ ε ≤ 1, a (1 − ε)-cover T of a
hypergraph H = (V (H), E(H)) is a collection of vertices which cover at least
(1− ε)|E(H)| edges, i.e., |{E ∈ E(H) : T ∩E �= ∅}| ≥ (1− ε)|E(H)|. A fractional
(1 − ε)-cover of a hypergraph H = (V (H), E(H)) is an assignment of vertex-
weights {tv ≥ 0 : v ∈ V (H)} such that the constraint

∑
v∈E tv ≥ 1, holds for at

least (1− ε)|E(H)| edges E ∈ E(H). The value of this partial cover is defined as∑
v∈V (H) tv. We denote by τε(H) and by τ∗

ε (H) the minimum sizes of the integral
(1−ε)-cover and the fractional (1−ε)-cover, respectively. The following theorem
[18] allows to limit from above the minimum sizes of integral (1 − ε)-covers of
regular and uniform hypergraphs.

Theorem 3 [18]. If H is a regular and uniform hypergraph then it holds that

τε(H) ≤ τ∗
ε (H)

(

1 + ln
(

1
ε

))

.

4 Constructing ε-almost (k, m, n)-Selectors via Partial
Coverings

We first give an upper bound on the length of ε-almost (k,m, n)-selectors and
then exploit this result to derive an upper bound on the length of ε-almost KG
(k, n)-codes. In the following, with a little abuse of notation, we will use the
same capital letter to denote both a set of columns and the set of the stations
associated with the columns in that set.

Theorem 4. Given integers k, m, and n, with 1 ≤ m ≤ k ≤ n, and a real
number 0 ≤ ε ≤ 1, there exists an ε-almost (k,m, n)-selector with size

t ≤ ek

k − m + 1

(

1 + ln

(
k

k−m+1

)

ε

)

.

Proof. We aim at constructing a hypergraph H in such a way that, for a given
0 ≤ ε′ ≤ 1, any (1− ε′)-partial cover of H is an ε-almost (k,m, n)-selector. Then,
we will exploit Theorem 3 to derive the desired upper bound on the minimum
selector size.

The hypergraph H is defined as in the proof of Theorem 1 of [9]. We denote
by X the set of all binary vectors x = (x1, . . . , xn) of length n containing n/k
1’s For any integer i, 1 ≤ i ≤ k, let ai be the binary vector of length k having
all components equal to zero but that in position i, that is, a1 = (1, 0, . . . , 0),
a2 = (0, 1, . . . , 0), . . . , ak = (0, 0, . . . , 1). Moreover, for any set of indices S =
{i1, . . . , ik}, with 1 ≤ i1 ≤ i2 < . . . < ik ≤ n, and for any binary vector
a = (a1, . . . , ak) ∈ {a1, . . . ,ak}, let Ea,S be the set of binary vectors Ea,S = {x =

262 A. De Bonis and U. Vaccaro

(x1, . . . , xn) ∈ X : xi1 = a1, . . . , xik
= ak}. For any set A ⊆ {a1, . . . ,ak} of size

r, r = 1, . . . , k, and any set S ⊆ {1, . . . , n}, with |S| = k, we define the hyperedge
EA,S =

⋃
a∈A Ea,S and, for any r = 1, . . . , k, we define the set of hyperedges

Fr = {EA,S : A ⊂ {a1, . . . ,ak}, |A| = r, and S ⊆ {1, . . . , n}, |S| = k} and the
hypergraph Hr = (X,Fr).

Let � = �(1 − ε)
(
n
k

)� and let ε′ be a real number such that 0 ≤ ε′ ≤ 1 and
⌈(

k

k − m + 1

)(
n

k

)

(1 − ε′)
⌉

≥
(

n

k

)[(
k

k − m + 1

)

− 1
]

+ �. (4)

We will prove that any (1 − ε′)-cover of Hk−m+1 T is an ε-almost (k,m, n)-
selector. Let T be any (1−ε′)-cover of Hk−m+1. First notice that |E(Hk−m+1)| =
|Fk−m+1| =

(
k

k−m+1

)(
n
k

)
, therefore inequality (4) implies that any (1−ε′)-cover of

Hk−m+1 covers at least
(
n
k

) [(
k

k−m+1

) − 1
]
+ � edges. Moreover, by construction,

for a fixed subset S ∈ [n]k there are exactly
(

k
k−m+1

)
edges EA,S in Hk−m+1,

each for any of the possible subsets A ⊆ {a1, . . . ,ak} of size k −m+1. It follows
that for at least � subsets S∗ ∈ [n]k, T covers all

(
k

k−m+1

)
edges EA,S∗ . Let us

denote by G ⊆ [n]k the set of these � subsets. It is possible to prove that the
submatrix of T formed by the columns in any subset S∗ ∈ G contains m rows of
the identity matrix Ik. Assume by contradiction that there exists a set of indices
S∗ = {i1, . . . , ik} ∈ G such that the submatrix of T obtained by considering only
the columns of T with indices i1, . . . , ik contains at most m − 1 distinct rows of
Ik. It follows that there exists a subset A of k−m+1 vectors of {a1, . . . ,ak} that
does not contain any of these m − 1 vectors, and consequently, EA,S∗ is not one
of the edges covered by T , i.e., T ∩ EA,S∗ = ∅. This contradicts the fact that for
any S∗ ∈ G and any subset A of k − m + 1 vectors of {a1, . . . ,ak}, T covers the
edge EA,S∗ . Since |G| = � ≥ (1 − ε)

(
n
k

)
then T is an ε-almost (k,m, n)-selector.

By Theorem 3 there exists a (1 − ε′)-cover of size

τε′(Hk−m+1) ≤ τ∗
ε′(Hk−m+1)

(

1 + ln
(

1
ε′

))

. (5)

One can see that if we choose

ε′ =
ε

(
k

k−m+1

) , (6)

then inequality (4) is satisfied with equality. To estimate the upper bound on
τε′(Hk−m+1) in (5), we need to compute the minimum size τ∗

ε′(Hk−m+1) of the
fractional (1 − ε′)-cover of Hk−m+1. Notice that it holds that τ∗

ε′(Hk−m+1) ≤
τ∗(Hk−m+1) and inequality (3) implies

τ∗(Hk−m+1) ≤ |X|
minE∈Fk−m+1 |E| =

(
n

n/k

)

(k − m + 1)
(

n−k
n/k−1

) .

As shown in the proof of Theorem 1 of [9], inequality (n
n/k)

(n−k
n/k−1)

≤ ek holds, from

which it follows

ε-Almost Selectors and Their Applications 263

τ∗
ε′(Hk−m+1) ≤ ek

k − m + 1
. (7)

The bound stated by the theorem follows from (5), (6) and (7). �
By setting m = k+1 in the upper bound on the length of ε-almost (k+1, k+1, n)-
selectors derived from Theorem 4, we obtain the following upper bound on the
minimum length of ε-almost k-disjunct codes of size n.

Corollary 1. Given integers k and n, with 1 ≤ k < n, and a real num-
ber 0 ≤ ε ≤ 1, there exists an ε-almost k-disjunct code with length t ≤
e(k + 1)

(
1 + ln (k+1)

ε

)
.

Remark 1. In [17] it has been presented a construction for ε-almost k-disjunct

codes with length O

(

(k − 1)3/2 lnn

√

ln(2k)
ε

ln(k−1)−ln ln 2k
ε +ln(4a)

)

for ε > 2ke−a(k−1)

and a being a constant larger than 1. This bound seems weak in several aspects.
First of all, the constraint that ε > 2ke−a(k−1) does not allow constructions
of ε-almost k-disjunct codes in which the number ε

(
n
k

)
of “bad” k-column sub-

sets is small enough, as in our constructions. In fact, ε > 2ke−a(k−1) implies
that ε

(
n
k

)
> 2kea

(
n

kea

)k. Moreover, for ε > 2ke−a(k−1) the bound of our
Corollary 1 is O(k2) which is at least as good as the bound in [17] when

ε ≤ c

(
lnn

√
ln(2k)√

k−1(ln(k−1)−ln ln 2k
ε +ln(4a))

)2

, for any positive constant c, that is almost

always the case.

Remark 2. It is interesting also to remark that for ε = 1

(n
k)

− δ, for any δ > 0,

the ε-almost disjunct codes reduce to the classical disjunct codes. Moreover,
the bound one obtains from our Corollary 1 with that value of ε reduces to
t = O(k2 log n

k), that corresponds to the best known upper bound on the length
of classical disjunct codes.

We now turn our attention to ε-almost KG (k, n)-codes.

Theorem 5. Given integers k and n, with 1 ≤ k ≤ n, and a real number
0 ≤ ε ≤ 1, there exists an ε-almost KG (k, n)-code with length

t < 2e�log k�
(

1 + ln
(�log k�

ε

))

+ O(k).

Proof. We will prove that there exists a n × t matrix M̃ , with t being upper
bounded as in the statement of the theorem, such that M̃ contains at least
(1 − ε)

(
n
k

)
subsets of k columns that satisfy property (*). This is equivalent

to prove that there are at least (1 − ε)
(
n
k

)
subsets S of k stations such that

the scheduling algorithm corresponding to M̃ allows all active stations in S to
transmit successfully. Let us recall that Theorem 4 implies that for any integer

264 A. De Bonis and U. Vaccaro

1 ≤ i ≤ �log k� and any real number εi with 0 ≤ εi ≤ 1, there exists an εi-almost
(2i, 2i−1, n)-selector of size

ti < 2e

(

1 + ln

(
2i

2i−1+1

)

εi

)

. (8)

Let us denote by M̃(εi,2i,n) such an εi-almost (2i, 2i−1, n)-selector, and let

εi =
ε

(
k
2i

)�log k� . (9)

We set M̃ to be the matrix obtained by concatenating the rows of matrices
M̃(εi,2i,n), for i = �log k�, . . . , 1, taken in this order, that is with the rows of
M̃(ε�log k�,2�log k�,n) being placed at the top of the matrix and those of M̃(ε1,2,n)

being placed at the bottom, and by appending the all-1 row at the bottom. We
will show that there are at least (1 − ε)

(
n
k

)
subsets S of k stations such that the

conflict resolution algorithm based on M̃ allows any subset of active stations in
S to transmit successfully, thus proving that M̃ is an ε-almost KG (k, n)-code.

For i = 1, . . . , �log k�, let us denote by Gi the family of the subsets of 2i

columns of M̃(εi,2i,n) that satisfy the property of (2i, 2i−1, n)-selectors, i.e., the
family of 2i-column subsets for which it holds that the submatrix of M̃(εi,2i,n)

formed by the 2i columns in any member of the family contains 2i−1 rows of the
identity matrix I2i . We will prove that the following claim holds.

Claim. Let S ∈ G�log k�. If, for i = 1, . . . , �log k�, it holds that each of the 2i-
column subsets of S are members of Gi, then M̃ allows any subset A of initially
active stations such that A ⊆ S to transmit successfully.

Assume that the hypothesis of the claim is true. In Sect. 2 we observed that
any protocol based on an ε-almost (k,m, n)-selector schedules transmissions in
such a way that at the end there are at most k − m active stations that did
not succeed to transmit their messages, provided that all active stations are
contained in one of the (1 − ε)

(
n
k

)
subsets of k stations corresponding to the

k-column subsets that satisfy the property of (k,m, n)-selectors. Consequently,
if the set A of active stations has size at most 2i and A is subset of some set
Si ∈ Gi, then the protocol based on M̃(εi,2i,n) schedules transmissions so that
at the end we are left with at most 2i−1 active stations. Recall, that an active
station becomes inactive immediately after it has transmitted successfully. Let
us consider the conflict resolution algorithm based on M̃ . Since we are assuming
that initially the number of active station is at most k ≤ 2�log k�, then, by the
above argument, one has that after the first t�log k� steps there are at most
2�log k�−1 active stations. The hypothesis of the claim implies that these up to
2�log k�−1 active stations are contained in some set S�log k�−1 ∈ G�log k�−1 and
therefore, there are at most 2�log k�−2 stations that are still active after the
next t�log k�−1 steps. Continuining in this way, one can see that, for each i =
1, . . . , �log k�, after the first t�log k� + t�log k�−1 + . . . + ti steps, the algorithm is

ε-Almost Selectors and Their Applications 265

left with at most 2�log k�−i active stations. At the end, after
∑�log k�

i=0 ti steps,
there is at most a single station which is still active. Obvioulsly, this last station
can transmit without conflict with other active stations. The all 1-entry row at
the bottom of the matrix takes care of this last active station. This concludes
the proof of the claim.

In the following, we will prove that the hypothesis of the claim holds for at
least (1 − ε)

(
n
k

)
members S of G�log k�, thus showing that M̃ is an ε-almost KG

(k, n)-code.
For i = 1, . . . , �log k�−1, any of the εi

(
n
2i

)
subsets of 2i columns not belonging

to Gi could be contained in up to
(
n−2i

k−2i

)
members of G�log k�. It follows that the

number of k-column subsets in G�log k� that do not satisfy the condition of the
claim is at most

�log k�−1∑

i=1

εi

(
n

2i

)(
n − 2i

k − 2i

)

=
�log k�−1∑

i=0

εi

(
k

2i

)(
n

k

)

. (10)

The total number of k-column subsets of G�log k� is at least (1 − ε�log k�)
(
n
k

)
and

inequality (10) implies that at most
∑�log k�−1

i=0 εi

(
k
2i

)(
n
k

)
of these subsets do not

satisfy the hypothesis of the claim. It follows that the number of members S of
G�log k� for which the claim holds is at least

(1 − ε�log k�)

(
n

k

)
−

�log k�−1∑
i=0

εi

(
k

2i

)(
n

k

)
=

(
n

k

)
−

�log k�−1∑
i=0

εi

(
k

2i

)(
n

k

)
− ε�log k�

(
n

k

)
.

Therefore, the total number of k-column subsets that do not satisfy property
(*) is at most

�log k�∑

i=0

εi

(
k

2i

)(
n

k

)

+ ε�log k�

(
n

k

)

.

By setting εi as in (9), we obtain that the above bound is equal to ε
(
n
k

)
thus

proving that M̃ is an ε-almost KG (k, n)-code.
Now we derive the claimed upper bound on the number of rows of M̃ . Upper

bound (8) and equation (9) imply that the length of M̃ is

t < 2e

�log k�∑

i=1

(

1 +ln

(
2i

2i−1+1

)

εi

)

+1=2e

�log k�∑

i=1

(

1 + ln

(
2i

2i−1+1

)(
k
2i

)�log k�
ε

)

+1. (11)

We upper bound the righthand side of (11) by noticing that
(

2i

2i−1+1

)
<

(
2i

2i−1

)

and applying the well known inequality
(
a
c

) ≤ (ea/c)c to
(

2i

2i−1

)
and

(
k
2i

)
, thus

obtaining

t < 2e�log k� + 2e

�log k�∑

i=1

(
ln

(
(2e)2

i−1
(ek/2i)2

i�log k�
ε

))
+ 1

266 A. De Bonis and U. Vaccaro

= 2e�log k�
(
1 + ln

(�log k�
ε

))
+ 2e

�log k�∑

i=1

2i
(
1

2
ln(2e) + ln e

)
+ 2e

�log k�∑

i=1

2i ln (k/2i) + 1

< 2e�log k�
(
1 + ln

(�log k�
ε

))
+ 2e(4k − 1) ln(e

√
2e) + 4ek

�log k�−1∑

i=0

1

2i
ln 2i + 1. (12)

By using the well known inequality
∑∞

i=0 ixi ≤ x
(1−x)2 , holding for

|x| < 1, to bound from above
∑�log k�−1

i=0
i
2i in (12), it follows t <

2e�log k�
(
1 + ln

(
�log k�

ε

))
+ 4e(2k − 1) ln(e

√
2e) + 8ek ln 2 + 1, that concludes

the proof of the theorem.

4.1 Improvements

A possible drawback of our solutions is that our scheduling algorithms do not
offer any guarantee for (at most) a fraction of ε of all

(
n
k

)
k-subsets of conflicting

stations. However, if one concatenates a (k,m, n)-selector to an ε-almost (k, k, n)-
selector, then one obtains a scheduling algorithm that allows at least m active
stations to transmit successfully even if the k-subset of active stations falls within
these ε

(
n
k

)
subsets. The following theorem follows from setting m = k in the

upper bound of Theorem 4 and from upper bound (1) on the size of (k,m, n)-
selectors.

Theorem 6. Given integers k, m, and n, with 1 ≤ m ≤ k ≤ n, and a real
number 0 ≤ ε ≤ 1, there exists an n-column matrix such that

1. each subset of k columns form a k×k submatrix that contains at least m rows
of the identity matrix Ik and

2. for at least (1 − ε)
(
n
k

)
subsets of k columns one has that each of these subsets

form a k × k submatrix that contains all rows of the identity matrix Ik

and has a number of rows

t ≤ ek

(

1 + ln
k

ε

)

+
ek2

k − m + 1
ln

(n

k

)
+

ek(2k − 1)
k − m + 1

.

For m = k+1− k ln(n/k)
c ln(k/ε) , where c is an arbitrary constant larger than or equal to 1,

the scheduling algorithm of Theorem 6 uses the same asymptotic number of time
slots as the algorithm based on ε-almost (k, k, n)-selectors. This is an immediate
consequence of the following result obtained by setting m = k + 1 − k ln(n/k)

c ln(k/ε) in
the statement of Theorem 6.

Corollary 2. Let k and n be integers such that 1 ≤ k ≤ n, and let ε be a real
number such that 0 ≤ ε ≤ 1. There exists a conflict resolution algorithm for a
multiple-access channel without feedback that schedules the transmissions of n
stations in such a way that for at least a (1 − ε) ratio of all possible subsets
of k active stations, the algorithm allows all k conflicting stations to transmit
successfully, whereas for the remaining subsets of k stations it allows at least

ε-Almost Selectors and Their Applications 267

k+1− k ln(n/k)
c ln(k/ε) stations to transmit successfully, where c is an arbitrary constant

larger than or equal to 1. The number of time slots used by the conflict resolution
algorithm is

t ≤ e(c + 1)k ln
(

k

ε

)

+ ec(2k − 1)
ln(k/ε)
ln(n/k)

+ ek.

The above corollary implies that for any ε ≤ k2

n and for any arbitrary constant
c ≥ 1, there exists a scheduling algorithm such that

– it uses t ≤ e(c + 1)k ln
(

k
ε

)
+ ec(2k − 1) ln(k/ε)

ln(n/k) + ek time slots, i.e., the same
asymptotic number of time slots as the scheduling algorithm based on ε-almost
(k, k, n)-selectors, and

– in addition to solving all conflicts among a ratio (1−ε) of all possible subsets of
k active stations, it allows at least k

(
c−1

c

)
+1 stations to transmit successfully

whichever the subset of k active stations is.

Notice that for ε = k2

n , the above scheduling algorithm uses t = O(k log(n/k))
time slots, i.e., the same asymptotic number of time slots used by the scheduling
algorithm based on (classical) KG (k, n)-codes, which, however, solves conflicts
only under the assumption that the stations receive feedback from the channel.

We can apply a similar idea to the multiple-access channel with feedback to
obtain a scheduling algorithm that solves all conflicts among (up to) k active
stations if the subset of active stations is contained in one of the (1 − ε)

(
n
k

)

“good” k-subsets, and among a smaller subset of active stations otherwise. The
idea is to concatenate ε-almost (2i, 2i−1, n)-selectors, as in the construction of
Theorem 5, for values of i larger than an appropriately chosen value i∗, and
(classical) (2i, 2i−1, n)-selectors for smaller i’s. By a suitable choice of i∗, we

obtain that for any ε ≤ (log k)
(

f(k)
n

) cf(k)
log k

, where f(k) is any non decreasing
function such that f(k) = O(k) and c is an arbitrary positive constant, there
exists a scheduling algorithm for the multiple-access channel with feedback such
that

– it uses t = O
(
(log k) ln

(
log k

ε

)
+ k

)
time slots, i.e., the same asymptotic

number of time slots of the scheduling algorithm based on ε-almost KG (k, n)-
codes, and

– it allows any subset of up to f(k) stations to transmit successfully, and for at
least a ratio (1 − ε) of all subsets of k stations, it solves all conflicts among
up to k active stations belonging to one of those k-subsets.

Notice that for ε = (log k)
(

f(k)
n

) cf(k)
log k

and f(k) = o(k), the above scheduling
algorithm uses t = O(f(k) log(n/f(k)) time slots, i.e., an asymptotic number of
time slots smaller than that used by the scheduling algorithm based on (classical)
KG (k, n)-codes.

268 A. De Bonis and U. Vaccaro

References

1. Alon, N., Fachini, E., Körner, J.: Locally thin set families. Comb., Prob. Comput.
9, 481–488 (2000)

2. Biglieri, E., Györfi, L.: Multiple Access Channels, NATO Security through Science
Series - D: Information and Communication Security 10 (2007)

3. Chlebus, B.S.: Randomized communication in radio networks. In: Pardalos, M.,
Rajasekaran, S., Reif, J.H., Rolim, J.D.P. (eds.) Handbook on Randomized Com-
puting, vol. I, pp. 401–456. Kluwer Academic Publishers, Dordrecht (2001)

4. Chlebus, B.S., Gasieniec, L., Kowalski, D.R., Shvartsman, A.: A robust randomized
algorithm to perform independent tasks. J. Discrete Algorithms 6(4), 651–665
(2008)

5. Chlebus, B.S., Kowalski, D.R., Pelc, A., Rokicki, M.A.: Efficient distributed com-
munication in ad-hoc radio networks. In: Aceto, L., Henzinger, M., Sgall, J. (eds.)
ICALP 2011, Part II. LNCS, vol. 6756, pp. 613–624. Springer, Heidelberg (2011)

6. Chrobak, M., Gasieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio
networks, In: Proceedings of 42nd IEEE Annual Symposium on Found. of Com-
puter Science (FOCS 2000), pp. 575–581 (2000)

7. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting on unknown radio networks, In: Proceedings of Symposium on
Discrete Algorithms (SODA 2001), pp. 709–718 (2001)

8. Csűrös, M., Ruszinkó, M.: Single-user tracing and disjointly superimposed codes.
IEEE Trans. Inf. Theory 51(4), 1606–1611 (2005)

9. De Bonis, A.: A, Gasieniec, U. Vaccaro: Optimal two-stage algorithms for group
testing problems. SIAM J. Comput. 34(5), 1253–1270 (2005)

10. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications. World
Scientific, River Edge (2000)

11. D’yachkov, A.G., Rykov, V.V.: Bounds on the length of disjunct codes. Problemy
Peredachi Informatsii 18(3), 7–13 (1982)

12. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered
by the union of r others. Israel J. of Math. 51, 75–89 (1985)

13. Kowalski, D.R.: On selection problem in radio networks. In: Proceedings of the
Twenty-Fourth Annual ACM Symposium on Principles of Distributed Computing
(PODC 2005), pp. 158–166. ACM Press (2005)

14. Kautz, W.H., Singleton, R.C.: Nonrandom binary superimposed codes. IEEE Trans
Inf. Theory 10, 363–377 (1964)

15. Komlós, J., Greenberg, A.G.: An asymptotically fast non-adaptive algorithm for
conflict resolution in multiple-access channels. IEEE Trans. Inform. Theory 31(2),
302–306 (1985)

16. Lovàsz, L.: On the ratio of optimal integral and fractional covers. Discrete Math.
13, 383–390 (1975)

17. Mazumdar, A.: On almost disjunct matrices for group testing. In: Chao, K.-M.,
Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 649–658. Springer,
Heidelberg (2012)

18. Sümer, Ö.: Partial covering of hypergraphs. In: SODA 2005, pp. 572–581 (2005)
19. Porat, E., Rothschild, A.: Explicit nonadaptive combinatorial group testing

schemes. IEEE Trans. Inf. Theory 57(12), 7982–7989 (2011)

Derandomized Construction of Combinatorial
Batch Codes

Srimanta Bhattacharya(B)

Centre of Excellence in Cryptology, Indian Statistical Institute,
Kolkata 700108, India

mail.srimanta@gmail.com

Abstract. Combinatorial Batch Codes (CBCs), replication-based vari-
ant of Batch Codes introduced by Ishai et al. in [IKOS04], abstracts the
following data distribution problem: n data items are to be replicated
among m servers in such a way that any k of the n data items can be
retrieved by reading at most one item from each server with the total
amount of storage over m servers restricted to N . Given parameters m, c,
and k, where c and k are constants, one of the challenging problems is
to construct c-uniform CBCs (CBCs where each data item is replicated
among exactly c servers) which maximizes the value of n.

In this work, we present explicit construction of c-uniform CBCs with

Ω(mc−1+ 1
k) data items. The construction has the property that the

servers are almost regular, i.e., number of data items stored in each server
is in the range [nc

m
−√n

2
ln(4m), nc

m
+
√

n
2

ln(4m)]. The construction is
obtained through better analysis and derandomization of the randomized
construction presented in [IKOS04]. Analysis reveals almost regularity of
the servers, an aspect that so far has not been addressed in the litera-
ture. The derandomization leads to explicit construction for a wide range
of values of c (for given m and k) where no other explicit construction

with similar parameters, i.e., with n = Ω(mc−1+ 1
k), is known. Finally,

we discuss possibility of parallel derandomization of the construction.

1 Introduction

1.1 Background

Batch Codes. An (n,N, k,m)-batch code (or (n,N, k,m, t = 1)-batch code)
abstracts the following data distribution problem: n data items are to be dis-
tributed among m servers in such a way that any k of the n items can be
retrieved by reading at most one item from each server and total amount of stor-
age required for this distribution is bounded by N .1 Batch codes were introduced

1 Parameter t represents the maximum number of data items that can be read from
each server during retrieval of any k items. In [IKOS04], batch codes were defined
for general t. In [BT12], CBCs were studied for general t. However, in this work, we
solely consider CBCs with t = 1 as it seems to capture the crux of the problem, and
also this is more common in the literature.

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 269–282, 2015.
DOI: 10.1007/978-3-319-22177-9 21

270 S. Bhattacharya

in [IKOS04], and their primary motivation was to amortize computational work
done by the servers during execution of private information retrieval protocol
by batching several queries together while limiting total storage (see [IKOS04]
for more details). It is also easy to see from the above description that these
codes can have potential application in a distributed database scenario where
the goal is to distribute load among the participating servers while optimizing
total storage.

On the theoretical side batch codes closely resemble several combinatorial
objects like expanders, locally decodable codes, etc., and there is also similarity
with Rabin’s information dispersal. However, there are fundamental differences
of batch codes with these objects, especially as far as setting of parameter values
are concerned, and it seems difficult to set up satisfactory correspondences with
these objects (see [IKOS04] for a discussion on this). This dichotomy makes
batch codes unique and very interesting objects.

Combinatorial Batch Codes (CBCs). These are replication based batch
codes; each of the N stored data items is a copy of one of the n input data
items. So, for CBCs, encoding is assignment (storage) of items to servers
and decoding is retrieval (reading) of items from servers. This requirement
makes CBCs purely combinatorial objects. As combinatorial objects CBCs are
quite interesting, they have received considerable attention in recent literature
([PSW09,BKMS10,BT11b,BT11a,BT15,SG14,BRR12,BB14]). Before proceed-
ing further, we introduce the formal framework for our study of CBCs.

We represent an (n,N, k,m)-CBC C as a bipartite graph GC = (L,R, E). Set
of left vertices L represents |L| = n data items with vertex ui ∈ L representing
data item xi, 1 ≤ i ≤ n, and set of right vertices R represents |R| = m servers
with vertex vj ∈ R representing server sj , 1 ≤ j ≤ m. Hence, (ui, vj) ∈ E is an
edge in GC if the data item xi is stored in server sj . Since the total storage is N , it
follows that

∑
u∈L deg(u) =

∑
v∈R deg(v) = |E| = N , where deg(.) is the degree

of a vertex in GC . Now, it can be observed that any subset {xi1 , . . . , xik} of k
distinct data items can be retrieved by reading one item from each of k distinct
servers si1 , . . . , sik iff there are distinct vi1 , . . . , vik ∈ R such that vij ∈ Γ(uij)
for all 1 ≤ j ≤ k, where Γ(ur), r ∈ {1, . . . , n}, is the neighbourhood of the vertex
ur ∈ L. 2 According to Hall’s theorem (cf. [Bol86], pp. 6) this is equivalent to the
condition that union of any j sets Γ(ui1), . . . Γ(uij), {ui1 . . . uij} ⊂ L, contains
at least j elements for 1 ≤ j ≤ k. These considerations lead naturally to the
following theorem of [PSW09] which can also be thought as definition of a CBC.

Theorem 1 ([PSW09]). A bipartite graph GC = (L,R, E) represents an
(n,N, k,m)-CBC if and only if |L| = n, |R| = m, |E| = N and union of every
collection of j sets Γ(ui1), . . . ,Γ(uij), {ui1 , . . . , uij} ⊂ L contains at least j ele-
ments for 1 ≤ j ≤ k.

2 For a vertex u ∈ L, its neighbourhood is Γ(u) = {v ∈ R, (u, v) ∈ E}. In the
sequel, we will require extension of the definition of neighbourhood of a vertex to
neighbourhood of a subset. More formally, given S ⊂ L, we denote by Γ(S) the set
{v ∈ R|∃u ∈ S, (u, v) ∈ E}.

Derandomized Construction of Combinatorial Batch Codes 271

Remark 1. Formal definition of general batch codes given in [IKOS04] also
involves decoding algorithm of the code. Here we consider CBCs, a purely com-
binatorial subclass of general batch codes, with our only focus on their construc-
tion, and the above definition is sufficient for our purpose.

From now on, we will identify the graph GC = (L,R, E) with an (n,N, k,m)-
CBC, and omit the subscript C as it will not cause any trouble. A CBC G =
(L,R, E) is called c-uniform if for each u ∈ L, deg(u) = c, and it is called
l-regular if for each v ∈ R, deg(v) = l.3 Two optimization problems related to
CBCs have been addressed in the literature: (i) given n,m, k find minimum value
of N attained by a CBC (not necessarily uniform or regular), and provide explicit
construction of corresponding extremal CBCs; (ii) given m, c, k, find maximum
value of n, denoted as n(m, c, k), attained by a c-uniform CBC (not necessarily
regular), and provide explicit construction of corresponding extremal CBCs. In
this work we will consider the latter problem in setting of parameters where c
and k are constants while m is variable.

At this point, it may be observed that though the definition and the consid-
ered problem draws some similarity with those of bipartite expanders, especially
the unbalanced expanders [GUV09], there are important differences between
these two cases as well. On the similarity side, both are bipartite graphs with
constant left-degree; in both the cases, it is required that every subset of vertices
L of up to a specified size should have neighbourhood of specified sizes, and it
is desirable that |L| >> |R|. However, in the case of unbalanced expanders, the
goal is to stretch the expansion of subsets4 (of specified sizes) of L as close to the
left-degree as possible. Whereas, in case of CBCs, expansion of 1 is sufficient and
it is more important to make |L| as large as possible with respect to |R|. Also
important is the fact that the parameter k is a constant in case of CBCs (within
our setting of parameters), whereas for expanders k varies with n. These differ-
ences make the (desirable) parameters in these two cases essentially unrelated.
So, it seems unlikely that the existing constructions of unbalanced expanders
can be immediately used for construction of CBCs where c and k are constants.

Before discussing existing results and our contribution we briefly mention the
notion of ‘explicit’ construction of a combinatorial object in general and CBCs
in particular as that will be crucial to our discussion and result.

Explicit Construction. Construction of a combinatorial object with desirable
properties is computation of a representation of the object and is tied with the
resources used for the computation. In the literature, those constructions which
require practically feasible amount of resources, such as polynomial time or loga-
rithmic space are termed explicit. This can be contrasted with exhaustive search
of a combinatorial object whose existence has been proven (e.g. by probabilistic
argument); the search is done in the space of the object and requires infeasible

3 Here the terminology is in keeping with the representation of a CBC as a set-system
in some of the previous works, where the set R is treated as ground set and the
multi-set {Γ(u1) . . . Γ(un)}, ui ∈ L is the collection of subsets.

4 For a set S, expansion of S is |Γ(S)|
|S| .

272 S. Bhattacharya

amount of resources (e.g. exponential time). The notion of explicitness we will
adhere to in this work is polynomial time constructibility, which requires that
the time required for the construction be bounded by a polynomial in the size
of the representation. Explicitness is further classified as following.5

Globally Explicit. In this case the whole object is constructed in time polynomial
in the size of the object. For example, a globally explicit construction of CBC
(L,R, E) would list all the members of E in poly(|E|) time.

Locally Explicit. In this case the idea is to have quick local access to the object.
More formally, for a desirable combinatorial object G, locally explicit con-
struction of G is an algorithm which given an index of size log(|G|), outputs
the member of G with the given index (or does some local computation
on the member) in time polylog(|G|). This is more specialized notion and
depends on the context. For example, a locally explicit construction of a
c-uniform CBC (L,R, E) would list the neighbourhood of a vertex v ∈ L in
time poly(log(|L|), c) given the index of v (which is of size |L|). It can be seen
that locally explicit construction is a stronger notion than globally explicit
construction and is always desirable as it is useful for algorithmic applica-
tions. In fact, common notion of construction of combinatorial objects (e.g.
using various algebraic structures) falls in this category.

Now, we state relevant existing results for CBCs and subsequently discuss our
contribution.

Existing Results

(i) In [IKOS04], the authors have shown, inter alia, that n(m, c, k) = Ω(mc−1);
this bound was obtained using probabilistic method.

(ii) In [PSW09], the authors have refined the above estimate using the method
of deletion (another probabilistic technique, see [AS92]) to n(m, c, k) =
Ω(m

ck
k−1−1). They have also shown through explicit construction that

n(m, k − 1, k) = (k − 1)
(

m
k−1

)
, and n(m, k − 2, k) =

(
m

k−2

)
.

(iii) In [BB14], it was shown that n(m, c, k) = O(mc− 1
2c−1) for 7 ≤ k, and

3 ≤ c ≤ k−�log k�−1. Also for k−�log k� ≤ c ≤ k−1, it was shown through
explicit construction that n(m, c, k) = Θ(mc). For c = 2 case, the lower
bound of (ii) from [PSW09] was improved (through explicit construction)
to n(m, 2, k) = Ω(m

k+1
k−1) for all k ≥ 8 and infinitely many values of n.

(iv) In [BT15], the authors improved the general upper bound to show that

n(m, c, k) = O(m
c−1+ 1

� k
c+1 �) for c ≤ k

2 − 1.

All the constructions mentioned above are locally explicit.6

5 Though the classification is with respect to polynomial time constructibility, it is
applicable for other feasible resource bounds as well.

6 In [SG14], constructions of CBCs are given for a setting of parameters where k and
c vary with m. Since in our setting we require k and c to be constants, we do not
discuss the results of [SG14].

Derandomized Construction of Combinatorial Batch Codes 273

Our Contribution. We address the question of explicit construction of uni-
form and regular CBCs. Here it is noteworthy that though uniform CBCs have
been studied in the literature, aspects of regularity and uniformity have not been
addressed together so far. While study of uniform and regular CBCs is theoreti-
cally interesting for its own sake, practical significance of regularity can be partly
argued from the fact that for regular CBCs, number of data items stored in each
server is same; this makes it simpler to allocate storage uniformly and optimally
accross different servers, especially under dynamic conditions where the data-
base (i.e., the set of distinct data items to be stored) changes with addition and
deletion of data items.

We construct c-uniform (n, cn, k,m)-CBCs that are almost regular in the
sense that for these CBCs number of data items stored in each server is nc

m +o(n)
(note that for regular CBCs with same parameters, this value is exactly nc

m); and
our construction is globally explicit. More precisely, our result is the following.

Theorem 2. Let c, k be positive constants. Then for all sufficiently large m,
there exists c-uniform (n, cn, k,m)-CBC, where n = Ω(mc−1+ 1

k), and number of
items in each server is in the range

[
nc
m − √

n
2 ln(4m), nc

m +
√

n
2 ln(4m)

]
. More-

over, the CBC can be globally constructed in poly(m) time.

We use the construction of [IKOS04] and derandomize it using the method of
conditional expectation (see [AS92]), and analyze it in greater detail. The analy-
sis shows almost regularity of the construction and also improves the exponent of
the lower bound (Ω(mc−1+ 1

k) as opposed to Ω(mc−1) of [IKOS04]). Though the
improved exponent is inferior to the one obtained in [PSW09] (Ω(mc−1+ c

k−1)),
the importance of the construction lies in its almost regularity and explicit-
ness which are not known for the construction of [PSW09]. In fact, apart from
the range k − �log k� ≤ c ≤ k, where n = Θ(mc) is achieved (see [PSW09]
for c = k − 1 and k − 2 and [BB14] for the remaining values), and for the
2-uniform case ([BB14]) there is no explicit construction in the literature. So,
our construction serves to fill the void to some extent.

To describe our construction, we give an algorithm which, for given positive
integers k, c, and sufficiently large m, runs in time poly(m) and outputs the edges

of a bipartite graph (L,R, E), with |R| = m, |L| = n = mc−1+ 1
k

4kc+1 , satisfying the
following conditions.

(a) Each left vertex in L has degree c and each vertex in R has degree in the
range

[
nc
m − √

n
2 ln(4m), nc

m +
√

n
2 ln(4m)

]
.

(b) Any subset of i, 1 ≤ i ≤ k, vertices in L has at least i neighbours in R.

Note that there is a trivial non-explicit algorithm to construct the required graph
which, given the input parameters, runs in time exponential in m; the algorithm
searches the space of all possible bipartite graphs (L,R, E), with |R| = m,

|L| = n = mc−1+ 1
k

4kc+1 , and outputs one that satisfies the above two conditions.
In the proof of Theorem 2, we will need the following version of Hoeffding’s

inequality.

274 S. Bhattacharya

Theorem 3 (Hoeffding’s Inequality [Hoe63]). Let X1,X2, . . . , Xn be inde-
pendent random variables taking their values in the interval [0, 1]. Let X =
∑

i Xi. Then for every real number a > 0, Pr{|X − E[X]| ≥ a} ≤ 2e
−2a2

n .

Also, given a set S and a positive integer c(≤ |S|), we will denote by
(S

c

)
, the

set of all c element subsets of S.

2 Proof of Theorem 2

Proof of Theorem 2 is split into two parts. In the first part, we give probabilis-
tic proof of existence (which essentially is also a randomized algorithm) of the
CBC. In the second part, we derandomize the construction using the method
of conditional expectation. This is a commonly used technique having its gen-
esis in [ES73] and was later on applied to prove many other derandomization
results (e.g. [Rag88,Spe94]). Informally, the method systematically performs a
binary (or more commonly a d-ary) search on the sample space from where the
randomized algorithm makes its choices and finally finds a good point.

Proof of Existence. We construct a bipartite graph G = (L,R, E), where L is
the set {u1, . . . , un} of n left vertices, R is the set {v1, . . . , vm} of m right vertices,
and E is the set of edges, in the following manner. For each vertex in L we choose
its c distinct neighbours by picking randomly, uniformly, and independently a
subset of c vertices from R, i.e., its neighbourhood is an independently and
uniformly chosen element of

(R
c

)
. So, for u ∈ L, S′ ⊆ R,

Pr {Γ(u) ⊆ S′} =

(|S′|
c

)

(
m
c

) ≤
(|S′|

m

)c

.

Next, for a subset S ⊂ L, |S| = i, c+1 ≤ i ≤ k and a subset S′ ⊂ R, |S′| = i−1,
we say that event BadS,S′ has occured if Γ(S) ⊆ S′. So, we have

Pr{BadS,S′} ≤
(

i − 1
m

)ic

, (1)

using independence of the events Γ(u) ⊆ S′ for u ∈ L. Now, our goal is to bound
the probability of occurence of any BadS,S′ , S ⊂ L, S′ ⊂ R, and c + 1 ≤ i ≤ k.
To this end, we have

∑

c+1≤i≤k

∑

S⊂L,
|S|=i

∑

S′⊂R,
|S′|=i−1

Pr{BadS,S′} ≤
∑

c+1≤i≤k

(
n

i

)(
m

i − 1

)(
i − 1
m

)ic

(2)

≤
∑

1≤i≤k

nimi−1

(
i − 1
m

)ic

Derandomized Construction of Combinatorial Batch Codes 275

≤
∑

1≤i≤k

nimi−1

(
k

m

)ic

≤
∑

1≤i≤k

(
1
4k

)i

since n =
mc−1+ 1

k

4kc+1

≤ 1
4
.

Next, for u ∈ L, v ∈ R define the indicator random variable Xu
v such that

Xu
v =

{
1 (u, v) ∈ E
0 otherwise,

and Xv, v ∈ R, be a random variable denoting the degree of vertex v. Clearly
Xv =

∑

u∈L
Xu

v . Now, Pr{Xu
v = 1} = c

m . So, by linearity of expectation,

E[Xv] = E

[
∑

u∈L
Xu

v

]

=
∑

u∈L
E[Xu

v] =
nc

m
.

From the fact that neighbourhoods of vertices u ∈ L are chosen independently,
it follows that the variables Xu

v for u ∈ L, and a fixed v ∈ R, are mutually
independent. So, applying Theorem 3 with a =

√
n
2 ln(4m) we have

Pr
{

|Xv − E[Xv]| ≥
√

n

2
ln(4m)

}

≤ 2(4m)−1 ≤ 1
2m

. (3)

So, by union bound, probability that the event |Xv−E[Xv]| ≥ √
n
2 ln(4m) occurs

for some v, v ∈ R is bounded by

∑

v∈R
Pr

{

|Xv − E[Xv]| ≥
√

n

2
ln(4m)

}

≤ 1
2
. (4)

Hence, from Eqs. (2) and (4), with probability at least 1 − (1
4 + 1

2) = 1
4 , none of

the above events occur. 	

Derandomization. Before presenting the algorithm we derive expressions for
expected number of BadS,S′ events and expected number of vertices v ∈ R for
which |deg(v)− nc

m | >
√

n
2 ln(4m) conditional on fixed choices of Γ(u1), . . . ,Γ(ut).

Then we show that if at t-th stage, 1 ≤ t ≤ n, (having fixed Γ(u1), . . . ,Γ(ut−1))
choice of Γ(ut) is made in such a way to minimize the sum of these two expecta-
tions then in the final graph, which is no longer random since all the neighbour-
hoods are fixed, there are no events BadS,S′ and no vertices v ∈ R for which
|deg(v) − nc

m | >
√

n
2 ln(4m), i.e., no violations of conditions (a) and (b). So, the

derandomization proceeds in n stages; the beginning of stage t, neighbourhood of
vertices u1, . . . , ut−1 ∈ L are fixed, and neighbourhood of ut, Γ(ut) ∈ (R

c

)
is fixed

276 S. Bhattacharya

in such a way that minimizes the expected number of violations of conditions
(a) and (b). The algorithm (Algorithm 1) is immediate from these observations.

First, we introduce indicator random variables YS,S′ corresponding to each
event BadS,S′ , i.e.,

YS,S′ =

{
1 if Γ(S) ⊆ S′

0 otherwise.

Also, we define Y =
∑

c+1≤i≤k

∑
S⊂L,
|S|=i

∑
S′⊂R,

|S′|=i−1

YS,S′ . By linearity of expecta-

tion we have

E[Y] = E

⎡

⎢
⎢
⎣

∑

c+1≤i≤k

∑

S⊂L,
|S|=i

∑

S′⊂R,
|S′|=i−1

YS,S′

⎤

⎥
⎥
⎦

=
∑

c+1≤i≤k

∑

S⊂L,
|S|=i

∑

S′⊂R,
|S′|=i−1

E[YS,S′]

=
∑

c+1≤i≤k

∑

S⊂L,
|S|=i

∑

S′⊂R,
|S′|=i−1

Pr{YS,S′} ≤ 1
4

, from(2).

Let {u1, u2, . . . , ut} ⊆ L, and C1, C2, . . . , Ct ∈ (R
c

)
be fixed subsets such that

Γ(uj) = Cj , 1 ≤ j ≤ t, and for the remaining vertices in L, their neighbourhoods
are chosen independently, and uniformly at random from

(R
c

)
. Let S ⊆ L, S′ ⊆

R, |S| = i, |S′| = i − 1 be fixed subsets for some i, c + 1 ≤ i ≤ k, also let
W = S ∩ {u1, u2, . . . , ut}, |W | = w, and Γ(W) = ∅ for W = ∅. Then we have

E[YS,S′ |Γ(u1) = C1, . . . ,Γ(ut) = Ct]
= Pr{Γ(S) ⊆ S′|Γ(u1) = C1, . . . , . . . Γ(ut) = Ct}

=

⎧
⎪⎨

⎪⎩

0 if Γ(W) � S′
(

(i−1
c)

(mc)

)i−w

otherwise.
(5)

So, by applying linearity of expectation and from above

E[Y |Γ(u1) = C1, . . . ,Γ(ut) = Ct]

=
∑

c+1≤i≤k

∑

S⊂L,
|S|=i

∑

S′⊂R,
|S′|=i−1

E[YS,S′ |Γ(u1) = C1, . . . , . . . Γ(ut) = Ct]

=
∑

c+1≤i≤k

∑

S⊂L,
|S|=i

∑

S′⊂R,
|S′|=i−1

Pr{Γ(S) ⊆ S′|Γ(u1) = C1, . . . , . . . Γ(ut) = Ct}

Derandomized Construction of Combinatorial Batch Codes 277

=
∑

c+1≤i≤k

∑

S⊂L,
|S|=i

∑

S′⊂R,
|S′|=i−1
Γ(W)⊆S′

((
i−1

c

)

(
m
c

)

)i−w

. (6)

Next, corresponding to each vertex v ∈ R we introduce an indicator random
variable Zv such that

Zv =

{
1 |deg(v) − nc

m | >
√

n
2 ln(4m)

0 otherwise,

and define Z =
∑

v∈R
Zv. So, by linearity of expectation we have

E[Z] = E

[
∑

v∈R
Zv

]

=
∑

v∈R
E[Zv] =

∑

v∈R
Pr{Zv = 1} ≤ 1

2
, from (4).

Like in the previous case, our goal is to estimate E[Z|Γ(u1) = C1, . . . ,Γ(ut) = Ct]
by estimating E[Zv|Γ(u1) = C1, . . . ,Γ(ut) = Ct] for each v ∈ R. For a fixed
v ∈ R, let l = |{ui|v ∈ Γ(ui), 1 ≤ i ≤ t}|. Let α = nc

m − √
n
2 ln(4m), and

β = nc
m +

√
n
2 ln(4m). Then we have

E[Z|Γ(u1) = C1, . . . ,Γ(ut) = Ct]

=
∑

v∈R
E[Zv|Γ(u1) = C1, . . . ,Γ(ut) = Ct]

=
∑

v∈R
Pr{deg(v) < α − l or deg(v) > β − l|Γ(u1) = C1, . . . ,Γ(ut) = Ct}

=
∑

v∈R

(i=α−l−1∑

i=0

(
n − t

i

)(c

m

)i (
1 − c

m

)n−t−i

+

n−t∑

i=β−l+1

(
n − t

i

)(c

m

)i (
1 − c

m

)n−t−i)
. (7)

Finally, we show that if at j-th iteration (having fixed Γ(u1) = C1, . . . ,Γ(uj−1) =
Cj−1 at the beginning) Γ(uj) = Cj is chosen so as to minimize E[Y +Z|Γ(u1) =
C1, . . . ,Γ(uj) = C], C ∈ (R

c

)
, then in the final graph, which is no longer random,

conditions (a) and (b) are met. To this end, we first observe that

E[Y + Z|Γ(u1) = C1, . . . ,Γ(ut−1) = Ct−1]

=
1

(
m
c

)
∑

C∈(R
c)

E[Y + Z|Γ(u1) = C1, . . . ,Γ(ut) = C]

≥ min
C∈(R

c)
E[Y + Z|Γ(u1) = C1, . . . ,Γ(ut) = C]. (8)

278 S. Bhattacharya

Algorithm 1. Algorithm to construct uniform and almost regular CBC
Input: Positive constants c, k, and sufficiently large m.
Output: A bipartite graph (L, R, E), where

L = {u1, u2, . . . , un}(n = m
c−1+ 1

k

4kc+1) and R = {v1, v2, . . . , vm}
such that Γ(uj) = Cj ∈ (R

c

)
, 1 ≤ j ≤ n meeting conditions (a)

and (b).
α = nc

m
−√n

2
ln(4m), and β = nc

m
+
√

n
2

ln(4m);
for j ← 1 to n do

Uj−1 = {u1, u2, . . . , uj−1}, min ← 1
for C ∈ (R

c

)
do

Y ′ ←
∑

c+1≤i≤k

∑
uj∈S⊂L,

|S|=i

∑

S′⊂R,
|S′|=i−1

Γ(Uj−1∩S)∪C⊆S′

((
i−1

c

)
(

m
c

)
)i−|Uj−1∩S|−1

Z ←
∑
v∈R

(α−|Uj−1∩Γ(v)|−|{v}∩C|−1∑
i=0

(
n − j

i

)(c

m

)i (
1 − c

m

)n−j−i

+

n−j∑
i=β−|Uj−1∩Γ(v)|−|{v}∩C|+1

(
n − j

i

)(c

m

)i (
1 − c

m

)n−j−i)

if min > Y ′ + Z then
Γ(uj) = C
min ← Y ′ + Z

end

end

end

Hence, it follows that

min
C1,...,Cn∈(R

c)
E[Y + Z|Γ(u1) = C1, . . . ,Γ(un) = Cn]

≤ min
C1,...,Cn−1∈(R

c)
E[Y + Z|Γ(u1) = C1, . . . ,Γ(un−1) = Cn−1]

...

≤ min
C1∈(R

c)
E[Y + Z|Γ(u1) = C1] ≤ E[Y + Z] ≤ 3

4
. (9)

Since Y and Z are integer valued random variables, the above essentially means
that at the end, when all the neighbourhoods Γ(u1), . . . ,Γ(un) are fixed, Y = 0
and Z = 0. So, both the conditions (a) and (b) are met. Now, we have the
following algorithm (Algorithm 1) to construct the bipartite graph.

Derandomized Construction of Combinatorial Batch Codes 279

Proof of Correctness of the Algorithm. At the beginning of j-th iteration,
Γ(u1) = C1, . . . ,Γ(uj−1) = Cj−1 are fixed and the algorithm selects C = Cj

which minimizes Y ′ + Z for given Γ(u1) = C1, . . . ,Γ(uj−1) = Cj−1,Γ(uj) = C.
Note that in (5), E[YS,S′ |Γ(u1) = C1, . . . ,Γ(ut) = Ct] is independent of par-
ticular choice of Ci if ui /∈ S. So, in j-th iteration of the algorithm, while
computing Y ′, only those summands E[YS,S′ |Γ(u1) = C1, . . . ,Γ(uj) = C] are
considered for which uj ∈ S. Hence, Y ′ ≤ E[YS,S′ |Γ(u1) = C1, . . . ,Γ(uj) =
C], and particular choice of C = Cj which minimizes Y ′ + Z for given
Γ(u1) = C1, . . . ,Γ(uj−1) = Cj−1,Γ(uj) = C also minimizes E[Y + Z|Γ(u1) =
C1, . . . ,Γ(uj−1) = Cj−1,Γ(uj) = C]; by (9), this also justifies setting min to 1
at the beginning of j-th iteration for 1 ≤ j ≤ n. Hence the proof follows from
the discussion preceeding Algorithm 1.

Runtime of the Algorithm. Now, we present a coarse analysis of the algorithm
which is sufficient to indicate that the algorithm runs in time poly(m). For
that, we first estimate the time required by the algorithm to compute Y .7 Note
that the time reqired to compute

(
m
c

)
and

(
i−1

c

)
is O(m2) (through dynamic

programming); the exponentiation takes time O(log k), and these operations
are done O(knk−1mk−1) times to get the summation. So, the time required
by the algorithm to compute Y is O(m(c+1)(k−1)+2). Similarly, in the case of
computing Z, the binomial coefficients

(
n−i

j

)
takes time O(n2) to be evaluated,

exponentiations take time O(log n). So, the overall time requirement in this case
is O(mn3 log n) = O(m3c−1 log m). The above two steps are done O(nmc) =
O(m2c) times. So, the overall complexity of the algorithm is O(m(k+1)(c+1)).

3 Concluding Remarks

Limitations of the Construction. It can be observed that the algorithm
crucially depends on the fact that k is a constant, and this limits its applicability
to wider setting where k is allowed to vary. Apart from being globally explicit,
which, as discussed in the beginning, is a weaker notion of explicitness, the
construction is on the slower side (even in terms of the number of edges which
is O(mc)), as indicated by the above analysis. One of the possible approaches to
speed-up the algorithm is discussed below.

Towards Derandomization in NC. It can be observed from the first part of
Theorem 2 that the construction is in RNC, i.e., the construction can be carried
out on a probabilistic Parallel Random Access Machine (PRAM) (see [MR95]
for definition) with poly(m) many processors in constant time.8 It is naturally
interesting to investigate NC-derandomization of problems in RNC i.e., whether
the same problem can be solved using a deterministic PRAM under same set of
7 We consider RAM model (see [MR95]), so addition, multiplication, and division are

atomic operations.
8 In fact, it can be seen that the construction is in ZNC with the expected number of

iterations at most 4.

280 S. Bhattacharya

restrictions on resources. Two of the most commonly used techniques employed
for such derandomization are the method of conditional expectation and the
method of small sample spaces (see [AS92]); sometimes they are used together
[BR91,MNN94].

While the method of conditional expectation performs a binary search (or
more commonly a d-ary search) on the sample space for a good point, method of
small sample spaces takes advantage of small independence requirement of ran-
dom variables involved in the algorithm and constructs a small sized (polynomial
in the number of variables) sample space which ensures such independence, and
searches the sample space for a good sample point. Since the sample space is
polynomial sized the search can be done in polynomial time, and hence leads to
polynomial time construction.

In the proof of Theorem 2 we used independence twice; in (1) we used k-
wise independence and in (3) we used Hoeffding’s inequality (Theorem 3) which
requires the involved random variables X1, . . . , Xn to be n-wise independent.9

However, such independence comes at the cost of a large sample space. More
precisely, in [ABI86] it was shown that in order to ensure k-independence among
n random variables the sample space size have to be Ω(n

k
2). So, in case of

Theorem 2 requirement on the size of sample space is huge (Ω(mm)). However, we
want to point out here that the requirement of n-wise independence in Theorem
2 can be brought down to O(ln(m))-wise independence with the help of following
limited independence Chernoff bound from [BR94]. First we state the bound.

Theorem 4 ([BR94]). Let t ≥ 4 be an even integer. Suppose X1, . . . , Xn be t-
wise independent random variables taking values in [0, 1]. Let X = X1+· · ·+Xn,
and a > 0. Then

Pr{|X − E[X]| ≥ a} ≤ Ct

(
nt

a2

) t
2

,

where Ct is a constant depending on t, and Ct < 1 for t ≥ 6.

Now, in inequality (3), we need 1
2m in the r.h.s. This can be achieved by setting

t = 2 ln(2m) in the above theorem (for simplicity we assume 2 ln(2m) to be
even), and a =

√
2en ln(2m). Hence, O(ln(m))-wise independence in choosing

Γ(u) for u ∈ L is sufficient for the randomized construction (with somewhat
inferior bound on the deviation of the degrees from the average).

In [BR91,MNN94], the authors developed frameworks for NC-derandomiza-
tion of certain algorithms (notably, the set discrepancy problem of Spencer
[Spe94]) that require O(logc(n))-wise independence. One of the vital points
of these frameworks is parallel computation of relevant conditional expecta-
tions for limited independence random variables in logarithmic time. In case
of Algorithm 1, this means computation of Y ′ and Z by poly(m) processors in
polylog(m) time under O(ln(m))-wise independence among random choices of
Γ(u) for u ∈ L. At present it is not clear to us how this can be achieved in the
frameworks of [BR91,MNN94] and seems to require a more specialized technique.
9 Here we again point out that though the events and random variables are different in

two cases, k-wise independence in choices of Γ(u), u ∈ L induces k-wise independence
among random variables Xu

v , u ∈ L for fixed v ∈ R.

Derandomized Construction of Combinatorial Batch Codes 281

Acknowledgement. I would like to thank all the anonymous reviewers for their valu-
able remarks and suggestions. I would also like to thank Mr. Satrajit Ghosh and Mr.
Subhabrata Samajder for commenting on an earlier version of the manuscript.

References

[ABI86] Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algo-
rithm for the maximal independent set problem. J. Algorithms 7(4), 567–
583 (1986)

[AS92] Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New York (1992)
[BB14] Balachandran, N., Bhattacharya, S.: On an extremal hypergraph problem

related to combinatorial batch codes. Discrete Appl. Math. 162, 373–380
(2014)

[BKMS10] Brualdi, R.A., Kiernan, K., Meyer, S.A., Schroeder, M.W.: Combinatorial
batch codes and transversal matroids. Adv. in Math. of Comm. 4(3), 419–
431 (2010)

[Bol86] Bollobás, B.: Combinatorics: Set Systems, Hypergraphs, Families of
Vectors, and Combinatorial Probability. Cambridge University Press,
New York (1986)

[BR91] Berger, B., Rompel, J.: Simulating (logc n)-wise independence in NC. J.
ACM 38(4), 1026–1046 (1991): Preliminary version. In: Proceedings of the
30th Annual Symposium on Foundations of Computer Science (FOCS 1989)

[BR94] Bellare, M., Rompel, J.: Randomness-efficient Oblivious Sampling. In: Pro-
ceedings of the 35th Annual Symposium on Foundations of Computer Sci-
ence (FOCS 1994), Washington, DC, USA, pp. 276–287. IEEE Computer
Society (1994)

[BRR12] Bhattacharya, S., Ruj, S., Roy, B.K.: Combinatorial batch codes: a lower
bound and optimal constructions. Adv. in Math. of Comm. 6(2), 165–174
(2012)

[BT11a] Bujtás, C., Tuza, Z.: Combinatorial batch codes: extremal problems under
hall-type conditions. Electron. Notes Discrete Math. 38, 201–206 (2011)

[BT11b] Bujtás, C., Tuza, Z.: Optimal batch codes: many items or low retrieval
requirement. Adv. in Math. of Comm. 5(3), 529–541 (2011)

[BT12] Bujtás, C., Tuza, Z.: Relaxations of hall’s condition: optimal batch codes
with multiple queries. Appl. Anal. Discrete Math. 6(1), 72–81 (2012)

[BT15] Bujtás, C., Tuza, Z.: Turán numbers and batch codes. Discrete Appl. Math.
186, 45–55 (2015)

[ES73] Erdős, P., Selfridge, J.: On a combinatorial game. J. Comb. Theory Ser. A
14(3), 298–301 (1973)

[GUV09] Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and ran-
domness extractors from parvaresh-vardy codes, J. ACM 56(4), 20:1–20:34
(2009): Preliminary version. In: Proceedings of the Twenty-Second Annual
IEEE Conference on Computational Complexity (CCC 2007)

[Hoe63] Hoeffding, W.: Probability inequalities for sums of bounded random vari-
ables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)

[IKOS04] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Batch codes and their
applications, In: Proceedings of the 36th Annual ACM Symposium on The-
ory of Computing (STOC 2004), Chicago, IL, USA, pp. 262–271. ACM
(2004)

282 S. Bhattacharya

[MNN94] Motwani, R., Naor, J.S., Naor, M.: The probabilistic method yields deter-
ministic parallel algorithms, J. Comput. Syst. Sci. 49(3), 478–516 (1994):
Preliminary version in Proceedings of the 30th Annual Symposium on Foun-
dations of Computer Science (FOCS 1989)

[MR95] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University
Press, New York (1995)

[PSW09] Paterson, M.B., Stinson, D., Wei, R.: Combinatorial batch codes. Adv.
Math. Commun. 3(1), 13–27 (2009)

[Rag88] Raghavan, P.: Probabilistic construction of deterministic algorithms:
approximating packing integer programs, J. Comput. Syst. Sci. 37(2), 130–
143 (1988). In: Proceedings of the 27th Annual Symposium on Foundations
of Computer Science (FOCS’86)

[SG14] Silberstein, N., Gál, A.: Optimal combinatorial batch codes based on block
designs, In: Designs, Codes and Cryptography, pp.1–16 (2014)

[Spe94] Spencer, J.: Ten Lectures on the Probabilistic Method, 2nd edn. Society
for Industrial and Applied Mathematics, Philadelphia (1994)

On the Mathematics of Data Centre
Network Topologies

Iain A. Stewart(B)

School of Engineering and Computing Sciences,
Durham University Science Labs, South Road,

Durham DH1 3LE, UK
i.a.stewart@durham.ac.uk

Abstract. In a recent paper, combinatorial designs were used to con-
struct switch-centric data centre networks that compare favourably with
the ubiquitous (enhanced) fat-tree data centre networks in terms of the
number of servers within (given a fixed server-to-server diameter). Unfor-
tunately there were flaws in some of the proofs in that paper. We correct
these flaws here and extend the results so as to prove that the core com-
binatorial construction, namely the 3-step construction, results in data
centre networks with optimal path diversity.

1 Introduction

Data centres are expanding both in terms of their physical size and their reach
and importance as computational platforms for cloud computing, web search,
social networking and so on. There is an increasing demand that data centres
incorporate more and more servers but so that computational efficiency is not
compromised. A key contributor as to the eventual performance of a data cen-
tre is the data centre network (DCN). New topologies are continually being
developed so as to incorporate more servers and best utilize the additional com-
putational power. It is with topological aspects of DCNs that concern us here.

The traditional design of a DCN is switch-centric whereby all routing intel-
ligence resides amongst the switches. In such DCNs, there are no direct server-
to-server links; only server-to-switch and switch-to-switch links. Switch-centric
DCNs are traditionally tree-like with servers located at the ‘leaves’ of the tree-
like structure, e.g., Fat-Tree [1], VL2 [3] and Portland [5]. Whilst it is generally
acknowledged that tree-like, switch-centric DCNs have their limitations when it
comes to, for example, scalability (with the core switches at the ‘roots’ quickly
becoming bottlenecks), tree-like switch-centric DCNs remain popular and can
usually be constructed from commodity hardware. A more recent paradigm,
namely server-centric DCNs, has emerged so that deficiencies of tree-like, switch-
centric DCNs might be ameliorated. In a server-centric DCN, routing intelligence
resides within the servers with switches operating only as dumb crossbars; as

I.A. Stewart—Supported by EPSRC grant EP/K015680/1 ‘Interconnection Net-
works: Practice unites with Theory (INPUT)’.

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 283–295, 2015.
DOI: 10.1007/978-3-319-22177-9 22

284 I.A. Stewart

such, there are only server-to-switch and server-to-server links. However, server-
centric DCNs also suffer from deficiencies such as packet relay overheads caused
by the need to route packets within the server (see [4] for the DCN state of the
art). Both switch-centric and server-centric DCNs are abstracted as undirected
graphs where the set of nodes is partitioned into a set of servers and a set of
switches with edges depending upon the DCN type. It is with switch-centric
DCNs that we are concerned here.

It is difficult to design computationally efficient DCNs so as to incorporate
large numbers of servers as there are additional design considerations. For exam-
ple, switches and (especially) servers have a limited number of ports; so, the
more servers there are, the greater the average or worst-case link-count between
two distinct servers and, consequently, there is a packet latency overhead to be
borne. Also, so as to better support routing, fault-tolerance and load-balancing,
we would prefer that there is path diversity in the form of numerous alternative
(short) paths within the DCN joining any two distinct servers. There are many
other design parameters to bear in mind (see, e.g., [7]).

A recent proposal in [6] advocated the use of combinatorial design theory
in order to design switch-centric DCNs which incorporate more servers, have
short server-to-server paths and possess path diversity. The use of combinator-
ial designs within the study of general interconnection networks is not new and
originated in [2] where the targeted networks involved processors communicating
via buses. A hypergraph framework was developed in [2] where the hypergraph
nodes represented the processors and the hyperedges the buses, and likewise an
analogous framework was developed in [6] where the hypergraph nodes repre-
sented the servers and the hyperedges represented the switches. However, some
of the results derived in [6] are incorrect in that for some of the results there
were errors in the proofs while for other results the actual claims are not true.

In this paper we provide correct proofs for some of the results from [6] and we
also extend and improve the results from [6]. In particular, using the general con-
struction for building switch-centric DCNs from bipartite graphs and transversal
designs as adopted in [6], we prove that in the resulting switch-centric DCNs,
there is the maximal number of internally disjoint paths joining any two distinct
servers and provide a bound on the length of the longest such path. As can be
seen from our proofs, the situation is far more subtle than was assumed in [6].

2 Basic Concepts

Hypergraphs provide the original framework for the 3-step construction as
employed in [2] and [6]. A hypergraph H = (V,E) consists of a finite set V
of nodes together with a finite set E of hyperedges where each hyperedge is a
non-empty set of nodes and each node appears in at least one hyperedge. The
degree of a node is the number of hyperedges containing it and the rank of a
hyperedge is its size as a subset of V . A hypergraph is regular (resp. uniform) if
every node has the same degree (resp. every hyperedge has the same rank) with
this degree (resp. rank) being the degree (resp. rank) of the hypergraph. Every

On the Mathematics of Data Centre Network Topologies 285

graph G = (V,E) has a natural representation as a hypergraph: the nodes of the
hypergraph are V ; and the hyperedges are E, where the hyperedge e consists of
the pair of nodes incident with the edge e of G.

We can represent a hypergraph H = (V,E) as a bipartite graph: the node
set of the bipartite graph is V ∪ E; and there is an edge (v,D), for v ∈ V and
D ∈ E, in the bipartite graph iff v ∈ D in the hypergraph. It is clear that this
yields a one-to-one correspondence between hypergraphs and bipartite graphs
(without isolated nodes) that come complete with a partition of the elements
into a ‘left-hand side’, which will correspond to the nodes of the hypergraph, and
a ‘right-hand side’, which will correspond to the hyperedges of the hypergraph.
We assume (henceforth) that every bipartite graph comes equipped with such
a partition and for clarity we henceforth refer to the nodes on the left-hand
side as nodes and the nodes on the right-hand side as blocks. Likewise, we refer
to the degree of a node as its degree and the degree of a block as its rank .
A bipartite graph corresponding to a regular, uniform hypergraph of degree d
and rank Δ is called a (d,Δ)-bipartite graph. Every bipartite graph (and so every
hypergraph) also describes its dual hypergraph where the roles of the nodes on
the left-hand side and the blocks on the right-hand side of the partition are
reversed in the definition of the hypergraph. With regard to our one-to-one
correspondence between bipartite graphs and hypergraphs described above, if G
is a bipartite graph then it corresponds to a hypergraph via this correspondence
and it also corresponds to a (different) hypergraph via the natural representation
highlighted in the previous paragraph.

A path in some hypergraph H = (V,E) is an alternating sequence of nodes
and hyperedges so that all nodes are distinct, all hyperedges are distinct and
a node v ∈ V follows or preceeds a hyperedge D ∈ E in the sequence only if
v ∈ D in the hypergraph. The length of any path is its length in the bipartite
graph corresponding to the hypergraph, and the distance between two distinct
elements of V ∪ E is the length of a shortest path joining these two elements in
the corresponding bipartite graph. The diameter of H is the maximum of the
distances between every pair of distinct nodes of V , and the line-diameter of H
is the maximum of the distances between every pair of distinct hyperedges of E.

We have two remarks. First, we have analogous notions of diameter and
line-diameter in any bipartite graph. Note that our notion of diameter (which
ignores node-to-block and block-to-block paths) is different from the usual graph-
theoretic notion of diameter in a bipartite graph (and likewise for line-diameter).
Second, our graph-theoretic notion of path length in a hypergraph differs from
that in [6] where the focus is on the number of hyperedges in a hyperedge-
to-hyperedge path in some hypergraph. We shall soon move to an exclusively
graph-theoretic formulation in which our notion of length is the natural one.

We shall be interested in building sets of paths in some hypergraph H so that
all paths have the same (distinct) source and destination nodes or hyperedges;
moreover, we shall require that these paths do not ‘interfere’ with one another.
We say that a set of paths in H joining two distinct elements of V ∪E is: pairwise
internally disjoint if every node and every hyperedge different from the source
and destination lies on at most one path from this set; or pairwise internally

286 I.A. Stewart

edge-disjoint if every pair (v,D) ∈ V × E is such that v follows or precedes D
on at most one path from this set. The reason we make the above differentiation
as regards path disjointness is as follows. Given some hypergraph, our intention
is to ultimately consider the nodes as servers and the hyperedges as switches
(as it happens, we shall go on to compose such hypergraphs so that servers
morph into switches but more later when we discuss composing DCNs). This
intention is best appreciated by working with the corresponding bipartite graph
where the nodes are to denote servers and the blocks switches. Consequently, we
can regard a hypergraph as modelling a switch-centric DCN where there is one
layer of switches. A set of pairwise internally disjoint (resp. edge-disjoint) paths is
required if we want to enable simultaneous data transfer when the corresponding
servers and switches are blocking (resp. non-blocking).

The notion of a transversal design is crucial to what follows.

Definition 1. Let k,Δ ≥ 2. A [Δ, k]-transversal design T is a triple (X,D, V)
where: |X| = Δk; D = (D1,D2, . . . , DΔ) is a partition of X into Δ equal-sized
groups (each of size k); and V = {Vj : j = 1, 2, . . . , k2} is a family of k2 subsets
of X, each of size Δ and called a block, so that

– |Di ∩ Vj | = 1, for i = 1, 2, . . . ,Δ, j = 1, 2, . . . , k2

– each pair of elements {xi, xj}, where xi ∈ Di, xj ∈ Dj and i �= j, is contained
in exactly 1 block (we say that the unique block containing xi and xj is the
block generated by xi and xj).

We adopt a graph-theoretic perspective on transversal designs as defined in
Definition 1: we think of the [Δ, k]-transversal design T as a bipartite graph
where the elements of X (resp. V) lie on the left-hand side (resp. right-hand
side) of the partition, and so are called nodes (resp. blocks) within the bipartite
graph, and so that in this bipartite graph there is an edge (p,Q), for p ∈ X and
Q ∈ V , iff in the transversal design the element p is in the block Q. Note that
the bipartite graph corresponding to the transversal design from Definition 1 is a
(k,Δ)-bipartite graph. Henceforth, we regard both hypergraphs and transversals
as bipartite graphs unless we state otherwise.

3 The 3-Step Construction and Its Extensions

We begin by describing the 3-step construction (originating in [2] and used in [6])
for building bipartite graphs by using a base bipartite graph and a transversal
design. We’ll then explain how one might iterate it and then compose bipartite
graphs to obtain more complex DCNs (as was done in [6]).

Step 1: Let H0 be a (d,Δ)-bipartite graph so that there are n nodes (on the
left-hand side of the partition, each of degree d) and e blocks (on the right-hand
side, each of rank Δ). Such an H0 can be visualized as in Fig. 1(a).

Step 2: Let T be a [Δ, k]-transversal design. In particular, there are Δ groups
of k nodes (on the left-hand side) as well as k2 blocks (on the right-hand side).

On the Mathematics of Data Centre Network Topologies 287

Fig. 1. A (d,Δ)-bipartite graph H0 and a [Δ, k]-transversal.

Such a T can be visualized as in Fig. 1(b). Build the bipartite graph H as follows.
For every node p of H0, introduce a group Gp of k nodes of H. For every block Q
of H0, adjacent to the nodes p1, p2, . . . , pΔ in H0, introduce a copy of T , denoted
TQ, rooted on the Δ groups of nodes Gp1 , Gp2 , . . . , GpΔ (so, corresponding to the
block Q of H0, we have introduced k2 blocks in H). We refer to the Δ groups of
nodes Gp1 , Gp2 , . . . , GpΔ as the roots of the copy TQ of T in H. Such a bipartite
graph H can be visualized as in Fig. 2 where two of the copies of T are partially
shown. The bipartite graph H0 essentially provides a template as to where we
introduce copies of T to form H.

Note that: each node of H can be indexed as ap,j , where p ∈ {1, 2, . . . , n}
and j ∈ {1, 2, . . . , k}, so that p is the node of H0 to which the group Gp in which
ap,j sits corresponds and j is the index of ap,j in this group; and each block of H
can be indexed as BQ,V , where Q ∈ {1, 2, . . . , e} and V ∈ {1, 2, . . . , k2}, so that
Q is the block of H0 to which the set of blocks in which BQ,V sits corresponds
and V is the block of T to which BQ,V corresponds. In addition, each node of T
can be indexed ui,j , where i ∈ {1, 2, . . . ,Δ} and j ∈ {1, 2, . . . , k}, so that Di is
the group of nodes in which ui,j sits and j is the index of ui,j in that group.

Step 3: Let H∗ be the bipartite graph obtained from the bipartite graph H by
reversing the roles of nodes and blocks (so, H∗ is the dual bipartite graph of H).
Note that the bipartite graph H∗ is regular of degree Δ and uniform of rank dk.

We refer to the (dk,Δ)-bipartite graph H (resp. the (Δ, dk)-bipartite graph
H∗) constructed above as having been constructed by the 2-step (resp. 3-step)
method using the (d,Δ)-bipartite graph H0 and the [Δ, k]-transversal T .

Our intention with our constructions is to ultimately design switch-centric
DCNs with beneficial properties. Whilst there are many properties we would
like our DCNs to have, it is important that DCNs can integrate a large number
of servers so that the server-to-server distances are short and so that there is
redundancy as to which short server-to-server routes we choose to use. In the
parlance of bipartite graphs, this translates as building bipartite graphs with

288 I.A. Stewart

Fig. 2. Amalgamating H0 and T to get H.

a large number of nodes and with redundant, short node-to-node paths. The
following result was proven in [2] (it is actually derivable from the proofs of our
upcoming results) and allows us control over the length of block-to-block paths
in 2-step constructions (and so node-to-node paths in 3-step constructions).

Theorem 1 [2]. Suppose that the (dk,Δ)-bipartite graph H has been con-
structed by the 2-step method using the (d,Δ)-bipartite graph H0 and the [Δ, k]-
transversal T . If H0 has line-diameter λ ≥ 2 then H has line-diameter λ.

We can iterate the 3-step construction (as was done in [6]). Note that if H0 is a
(d,Δ)-bipartite graph of line-diameter λ then the bipartite graph H1 resulting
from the 2-step construction (using H0 and some [Δ, k]-transversal design T) is a
(dk,Δ)-bipartite graph of line-diameter λ. So, repeating the 2-step construction
but with H1 replacing H0 (we keep the same T , though) yields a (dk2,Δ)-
bipartite graph H2 of line-diameter λ. By iterating this construction, we can
clearly obtain a (dki,Δ)-bipartite graph Hi of line-diameter λ. Converting Hi

into H∗
i results in a bipartite graph with ek2i nodes, with dki blocks, with

diameter λ and that is regular of degree Δ and uniform of rank dki.
In [2], the 3-step construction was the focus as the application there was to

build bus interconnection networks of large size but so as to limit the diameter
of the resulting network. Similarly, in [6], the 3-step construction was the focus
as the intention was to interpret nodes as servers and blocks as switches; were
we to focus on the 2-step method and allow the server degree to grow (in Hi,
above, the degree is dki), this would result in practically infeasible DCNs.

On the Mathematics of Data Centre Network Topologies 289

New methods of composing bipartite graphs (built using the 3-step construc-
tion) so as to obtain switch-centric DCNs were also derived in [6] where 4 such
methods were given: Methods M1, M2 and M3 are different cases of our Method
A; and Method M4 is our Method B. Let H be a (σ, ω)-bipartite graph which
we think of as a DCN with the nodes as servers and the blocks as switches, and
where σ < ω.

Method A: We take c copies of H where ω − cσ > 0 and c ≥ 1. For each server
(node) u of H: we remove the corresponding server in each of the c copies of H
and introduce a new switch (this switch is common to all copies of H); we make
all of the cσ links incident with the c original servers incident with this new
switch; and we attach ω − cσ pendant servers to the new switch (in [6], the new
switches are termed level-1 switches with the original switches level-2 switches).
So, the new DCN is such that: all switches have ω ports; there are links from
(new) servers to level-1 switches; and links joining level-1 and level-2 switches.
Note that there is some choice as regards the parameter c. The case where c ≥ 1
corresponds to Method M2 of [6]; the case when c = 1 corresponds to Method
M1; and the case when c = � � ω

2 �
σ � corresponds to Method M3 (here, the aim is

to ensure that every level-1 switch is adjacent to roughly the same number of
level-2 switches as it is nodes).

Method B: We now work with a switch-centric DCN as constructed by Method
A. Let every level-1 switch have ne adjacent servers. Suppose that there is an
even number of level-1 switches. Partition the set of level-1 switches into pairs.
For each pair of switches (S′, S′′): remove �ne

2 � servers that are adjacent to S′

and remove 	ne

2
 servers that are adjacent to S′′; and make every server that is
adjacent to the switch S′ or the switch S′′ also adjacent to the other switch.

In [6], various switch-centric DCNs were constructed using the 3-step con-
struction allied with Methods A and B and were favourably compared with the
ubiquitous 3-level fat-tree with regard to the number of servers therein when the
diameter and the switch radix are held constant (see Tables 2–4 in [6]).

4 Constructions of Paths

We are now in a position to use transversal designs to build switch-centric DCNs,
similarly to as was done in [6]. However, in [6] there were a number of problems
with the proofs (so much so that some claimed results are false). We begin by
highlighting these problems and then we provide not only correct proofs but also
extend some of the claimed results in [6] with regard to path diversity.

In order to detail the difficulties in [6], we adopt the terminology of [6]. In
Subcases (1.1) and (2.1) of the proof of Theorem 2 in [6], the situation when
rj = sj , for some j where p �= tj , was not considered (although this is trivial
to remedy). However, and more importantly, in Subcases (1.2) and (2.2) the
construction does not work when j = i as ri, si, ti all lie in the same group GE

i

and consequently we cannot infer the existence of Ri and Si.

290 I.A. Stewart

An attempt was also made in [6] to extend Theorem 2 of [6]; see Theorem 3 of
[6]. Assumptions concerning the connectivity of H0 are made and the existence
of additional paths to those constructed in the proof of Theorem2 are claimed
in the situation when the two blocks BQ,V and BQ′,V ′ are such that Q �= Q′.
However, there are serious flaws in the proof of Theorem 3 of [6], so much so
that the theorem is untrue. In short, Theorem 3 of [6] claims that if there are ω
pairwise internally disjoint paths in H0 from Q to Q′ then there are min{Δω, kω}
pairwise internally disjoint paths in H from BQ,V to BQ′,V ′ . This does not make
sense: the maximum number of pairwise internally disjoint paths in H from
BQ,V to BQ′,V ′ is Δ (as the bipartite graph H has rank Δ) and so we must have
that min{Δω, kω} ≤ Δ. For instance, in Example 1 of [6], where the bipartite
graph H0 is the cycle of length 10, so that d = Δ = 2 and n = e = 5, and a
[2,3]-transversal T is used, the bipartite graph H built by the 2-step method has
degree 6 and rank 2. However, there are 2 paths from any block of H0 to any
other block of H0 and so if Theorem 3 of [6] were true then there would be 4
pairwise disjoint paths from BQ,V to BQ′,V ′ in H which clearly cannot be the
case.

We now resurrect (some of) the proofs from [6] and extend the results claimed
in that paper. We use the following easy-to-prove lemma repeatedly.

Lemma 1. Let T be some [Δ, k]-transversal with groups of nodes {D1,D2, . . . ,
DΔ}. Let U be some block of T . For each i ∈ {1, 2, . . . ,Δ}, let ri ∈ Di be the
unique node of Di that is adjacent to U . Set R = {ri : i = 1, 2, . . . ,Δ}. Let P be
a set of distinct pairs of nodes so that: exactly one node of any pair in P is in R
and no node of R is in more than one pair of P ; and no pair in P is such that
both nodes lie in the same group. The blocks generated by the pairs in P are all
distinct and different from U .

Theorem 2. Let k,Δ, d ≥ 2 but where (k,Δ) �∈ {(2, 3), (2, 5), (2, 7)}. Let H be
built by the 2-step method from the (d,Δ)-bipartite graph H0 using the [Δ, k]-
transversal T .

(a) If Q and Q′ are distinct blocks of H0 so that there are λ ≥ 1 pairwise
internally disjoint paths in H0 from Q to Q′, each of length at most μ, then
there are min{Δ, kλ} pairwise internally disjoint paths from any block BQ,V

of H to any other block BQ′,V ′ of H, each of length at most μ + 4.
(b) If BQ,V and BQ,V ′ are distinct blocks of H then there are Δ pairwise inter-

nally disjoint paths from BQ,V to BQ,V ′ , each of length at most 6 and lying
entirely within TQ.

Proof. (a) We may assume that λ ≤ 	Δ
k
. Consider the λ pairwise internally

disjoint paths from Q to Q′ in H0. We may clearly assume that either every
path has length 2 or that every common neighbour of Q and Q′ in H0 lies on
one of the λ paths (with each of these paths having length 2).

Suppose that b + c = λ, where b ≥ 1 and c ≥ 0, and that the nodes
p1, p2, . . . , pb are common neighbours in H0 of Q and Q′ (the case when there are
no common neighbours is easy). As stated above, we may assume that either:

On the Mathematics of Data Centre Network Topologies 291

b = λ; or c > 0 and {p1, p2, . . . , pb} consists of all common neighbours of Q and
Q′ in H0. In the case when c > 0, let the nodes q1, q2, . . . , qc be neighbours of Q
but not of Q′ in H0, and let the nodes q′

1, q
′
2, . . . , q

′
c be neighbours of Q′ but not

of Q in H0 so that the remaining c paths from Q to Q′ in H0 are of the form
Q, qi, . . . , q

′
i, Q

′, for i = 1, 2, . . . , c.
We begin with an involved construction. Set k′ = Δ − k(Δ

k
 − 1); so 1 ≤
k′ ≤ k. We can batch groups of nodes of TQ and TQ′ in H as follows:

– for i ∈ {1, 2, . . . , b}, define Gi
0 = Gpi

= Hi
0

– for i ∈ {1, 2, . . . , c} (where c > 0), define Gb+i
0 = Gqi

and Hb+i
0 = Gq′

i

– for i ∈ {1, 2, . . . , b + c − 1}, choose groups Gi
1, G

i
2, . . . , G

i
k−1 within TQ

and groups Hi
1,H

i
2, . . . , H

i
k−1 within TQ′ , and choose groups Gb+c

1 , Gb+c
2 , . . . ,

Gb+c
k′−1 within TQ and groups Hb+c

1 ,Hb+c
2 , . . . , Hb+c

k′−1 within TQ′ so that:
• all Gi

j , where j > 0, are distinct and different from G1
0, G

2
0, . . . , G

b+c
0

• all Hi
j , where j > 0, are distinct and different from H1

0 ,H2
0 , . . . , Hb+c

0

• any Gi
j , where j > 0, corresponds to some node p of H0 that is adjacent to

both Q and Q′ iff the group Hi
j corresponds to the same node p of H0, i.e.,

Gi
j and Hi

j are identical.

We have three remarks: each Gi
j , where j ≥ 0, is in TQ and each Hi

j , where
j ≥ 0, is in TQ′ , so that if c > 0 then the only groups common to both TQ and
TQ′ are Gp1 , Gp2 , . . . , Gpb

; the bound b + c ≤ 	Δ
k
 means that there are enough

groups available in both TQ and TQ′ for us to be able to choose as above; and
if some group of the form Gi

j , where j > 0, is identical to the group Hi
j then

it must be the case that both are rooted at the same node p of H0 that is a
common neighbour of Q and Q′ in H0, and consequently that c = 0.

For each i ∈ {1, 2, . . . , b + c} and each j ∈ {0, 1, . . . , k − 1}, if i �= b + c, or
each j ∈ {0, 1, . . . , k′ − 1}, if i = b + c, let ri

j ∈ Gi
j (resp. si

j ∈ Hi
j) be the unique

node of Gi
j (resp. Hi

j) that is adjacent to BQ,V (resp. BQ′,V ′) in H. Note that
the pair ri

j and si
j lie in the same group of H iff both Gi

j and Hi
j are rooted at

the same node of H0 and this node is adjacent to both Q and Q′ in H0.
For each i ∈ {1, 2, . . . , b+c}, let Gi

0 = {ri
0, t

i
1, . . . , t

i
k−1} and Hi

0 = {si
0, w

i
1, . . . ,

wi
k−1} so that in the case when Gi

0 = Hi
0: if ri

0 = si
0 then tij = wi

j , for j ∈
{1, 2, . . . , k − 1}; and if ri

0 �= si
0 then ri

0 = wi
1 and si

0 = ti1, with tij = wi
j , for

j ∈ {2, 3, . . . , k − 1}.
We are now ready to generate some blocks within TQ and TQ′ in H. For

each i ∈ {1, 2, . . . , b + c} and each j ∈ {1, 2, . . . , k − 1}, if i �= b + c, or each
j ∈ {1, 2, . . . , k′ − 1}, if i = b + c: let Bri

j ,ti
j

be the block of TQ in H generated
by ri

j ∈ Gi
j and tij ∈ Gi

0; and let B′
si

j ,wi
j

be the block of TQ′ in H generated by

si
j ∈ Hi

j and wi
j ∈ Hi

0. So, we have generated Δ − λ blocks in TQ and Δ − λ
blocks in TQ′ . Note that any block of TQ is necessarily distinct from any block
of TQ′ . By Lemma 1 applied twice to both TQ and TQ′ : all blocks of {Bri

j ,ti
j

: i =
1, 2, . . . , b+ c− 1 and j = 1, 2, . . . , k − 1, or i = b+ c and j = 1, 2, . . . , k′ − 1} are
distinct and different from BQ,V ; and all blocks of {B′

si
j ,wi

j
: i = 1, 2, . . . , b+c−1

292 I.A. Stewart

and j = 1, 2, . . . , k − 1 or i = b + c and j = 1, 2, . . . , k′ − 1} are distinct and
different from BQ′,V ′ ; call these two sets of blocks our working sets of blocks.

Now we build some paths from BQ,V to BQ′,V ′ in H. For each i ∈ {1, 2, . . . , b}:
if ri

0 = si
0 then define the paths:

– πi
0 as BQ,V , ri

0, BQ′,V ′

– πi
1 as BQ,V , ri

1, BQ′,V ′ , if ri
1 = si

1, and as BQ,V , ri
1, Bri

1,ti
1
, ti1, B

′
si
1,wi

1
, si

1,

BQ′,V ′ , if ri
1 �= si

1 (note that ti1 = wi
1)

and if ri
0 �= si

0 then define the paths:

– πi
0 as BQ,V , ri

0, B
′
si
1,wi

1
, si

1, BQ′,V ′ (note that wi
1 = ri

0)
– πi

1 as BQ,V , ri
1, Bri

1,ti
1
, si

0, BQ′,V ′ (note that ti1 = si
0).

The above definition of πi
0 and πi

1 presupposes that both paths exist; that is, that
it is not the case that Δ = k(b − 1) + 1 and rb

0 �= sb
0 (as otherwise it is not clear

how we build only πb
0 without having recourse to Gb

1; note that if Δ = k(b−1)+1
and rb

0 = sb
0 then πb

0 exists). We shall return to this special case later.
For each i ∈ {1, 2, . . . , b} and each j ∈ {2, 3, . . . , k − 1}, if i < b + c, or each

j ∈ {2, 3, . . . , k′ − 1}, if i = b and c = 0: if ri
j �= si

j then define the path πi
j as

BQ,V , ri
j , Bri

j ,ti
j
, tij , B

′
si

j ,wi
j
, si

j , BQ′,V ′ ; and if ri
j = si

j then define the path πi
j as

BQ,V , ri
j , BQ′,V ′ .

Note that out of all the ‘π-paths’ constructed above, the only way that we
can have that two of our paths are not internally disjoint is when ri

0 �= si
0 but

ri
1 = si

1, for some i ∈ {1, 2, . . . , b}. In every such case, choose xi
1 ∈ Gi

1 \ {ri
1}.

Let Bri
0,xi

1
be the block of TQ in H generated by ri

0 ∈ Gi
0 and xi

1 ∈ Gi
1, and

let B′
si
0,xi

1
be the block of TQ′ in H generated by si

0 ∈ Gi
0 and xi

1 ∈ Gi
1 (in

essence, we have dispensed with the blocks Bri
1,ti

1
and B′

si
1,wi

1
and replaced them

with the blocks Bri
0,xi

1
and B′

si
0,xi

1
in our working sets of blocks; we reiterate

that we do this for every i ∈ {1, 2, . . . , b} for which ri
0 �= si

0 and ri
1 = si

1). The
conditions of Lemma 1 still hold and so the blocks in our working sets of blocks
are all distinct and different from BQ,V and BQ′,V ′ . For each i ∈ {1, 2, . . . , b}
for which ri

0 �= si
0 and ri

1 = si
1, redefine the paths: πi

0 as BQ,V , ri
1, BQ′,V ′ ; and

πi
1 as BQ,V , ri

0, Bri
0,xi

1
, xi

1, B
′
si
0,xi

1
, si

0, BQ′,V ′ . The paths from the resulting set of
π-paths are now pairwise internally disjoint.

Let us now return to the situation where Δ = k(b − 1) + 1 and rb
0 �= sb

0 (so,
necessarily, c = 0). In this case, we proceed exactly as we did above but without
building the path πb

0. We need to build a path of the form BQ,V , rb
0, . . . , s

b
0, BQ′,V ′

(that is internally disjoint from all of the above Δ − 1 π-paths). Suppose that
k ≥ 3; so, there is a node xb−1

0 ∈ Gb−1
0 \{rb−1

0 , sb−1
0 }. Generate the block Brb

0,xb−1
0

of TQ within H and the block Bsb
0,xb−1

0
of TQ′ within H. By Lemma 1, these blocks

are different from BQ,V , BQ′,V ′ and all other blocks so generated within TQ and
TQ′ . Define the path πb

0 as BQ,V , rb
0, Brb

0,xb−1
0

, xb−1
0 , Bsb

0,xb−1
0

, sb
0, BQ′,V ′ . This path

is internally disjoint from all other π-paths. Suppose that k = 2. So, there are 4
blocks in T and consequently Δ ∈ {3, 5, 7} which yields a contradiction.

On the Mathematics of Data Centre Network Topologies 293

If c > 0 then we can define additional paths in H from BQ,V to nodes of
Gb+1

0 , Gb+2
0 , . . . , Gb+c

0 and from BQ′,V ′ to nodes of Hb+1
0 ,Hb+2

0 , . . . , Hb+c
0 (note

that in this scenario Gi
j �= Hi

j unless i ∈ {1, 2, . . . , b} and j = 0). For each
i ∈ {b+1, b+2, . . . , b+ c}, define the paths: ηi

0 as BQ,V , ri
0; and νi

0 as BQ′,V ′ , si
0.

For each i ∈ {b+1, b+2, . . . , b+ c} and each j ∈ {1, 2, . . . , k − 1}, if i �= b+ c, or
each j ∈ {1, 2, . . . , k′ − 1}, if i = b+ c, define the paths: ηi

j as BQ,V , ri
j , Bri

j ,ti
j
, tij ;

and νi
j as BQ′,V ′ , si

j , B
′
si

j ,wi
j
, wi

j . Any 2 distinct paths from our collection of π-
paths, η-paths and ν-paths clearly have no nodes in common and the only block
in common is BQ,V , BQ′,V ′ or both.

If we can find a path in H from ri
0 or tij to si

0 or wi
j , respectively, for each

i ∈ {b + 1, b2, . . . , b + c} and each j ∈ {1, 2, . . . , k − 1}, if i < b + c, or each
j ∈ {1, 2, . . . , k′ − 1}, if i = b + c, so that no node or block of any of these
paths, apart from the source and destination nodes, lies in TQ or TQ′ and so
that the resulting paths are pairwise internally disjoint then we are done. Fix
i ∈ {1, 2, . . . , c} and let Q, qi, Q1, q

2
i , Q2, q

3
i , . . . , qm

i , Qm, q′
i, Q

′, be one of our
remaining c paths from Q to Q′ in H0; in particular, m ∈ {1, 2, . . . , 1

2 (μ − 2)}.
In H: there are k paths of length 2, each path having a source in Gqi

and a
destination in Gq2

i
so that all sources are distinct as are all destinations and

lying entirely within TQ1 ; there are k paths of length 2, each path having a
source in Gq2

i
and a destination in Gq3

i
so that all sources are distinct as are all

destinations and lying entirely within TQ2 ; . . .; and there are k paths of length
2, each path having a source in Gqm

i
and a destination in Gq′

i
so that all sources

are distinct as are all destinations and lying entirely within TQm
. We are done.

Now return to the case ignored at the beginning of the proof, namely the
case when b = 0 and c = λ. The above construction of paths from BQ,V to each
node of Gqi

, concatenated with paths from each node of Gqi
to each node of Gq′

i
,

concatenated with paths from each node of Gq′
i

to BQ′,V ′ still works.
(b) Consider the case when our two blocks are BQ,V and BQ,V ′ . Suppose

that the block Q of H0 is adjacent to the nodes p1, p2, . . . , pΔ. For each i ∈
{1, 2, . . . ,Δ}, let ri ∈ Gpi

be adjacent to BQ,V in H and let si ∈ Gpi
be adjacent

to BQ,V ′ in H. W.l.o.g. suppose that ri �= si, for i = 1, 2, . . . , b, and that ri = si,
for i = b + 1, b + 2, . . . ,Δ.

Suppose that b ≥ 2. For each i ∈ {1, 2, . . . , b − 1}, let Bri,si+1 be the
unique block of TQ that is generated by ri and si+1, and let Brb,s1 be the
unique block of TQ that is generated by rb and s1. By Lemma 1, all blocks
Br1,s2 , Br2,s3 , . . . , Brb−1,sb

, Brb,s1 are distinct and different from BQ,V and BQ,V ′ .
Hence, if πi is the path BQ,V , ri, Bri,si+1 , si+1, BQ,V ′ , for i ∈ {1, 2, . . . , b − 1},
πb is the path BQ,V , rb, Brb,s1 , s1, BQ,V ′ , and πi is the path BQ,V , ri, BQ,V ′ , for
i ∈ {b + 1, b + 2, . . . ,Δ}, then the set of paths are pairwise internally disjoint.

If b = 0 then the above construction trivially yields Δ paths of length 2 from
BQ,V to BQ,V ′ . Suppose that b = 1. Choose x2 ∈ Gp2 \ {r2} and let Br1,x2

(resp. Bs1,x2) be the block of TQ generated by r1 and x2 (resp. s1 and x2).
By Lemma 1, Br1,x2 , Bs1,x2 , BQ,V and BQ,V ′ are all distinct. So, if π1 is the
path BQ,V , r1, Br1,x2 , x2, Bs1,x2 , s1, BQ,V ′ and πi is the path BQ,V , ri, BQ,V ′ , for
i ∈ {2, 3, . . . ,Δ} then we obtain a pairwise internally disjoint set of paths. �

294 I.A. Stewart

Note that Theorem 2 is optimal in the sense that if H0 has blocks Q and Q′

so that there are exactly λ pairwise internally disjoint paths from Q to Q′ in
H0 then we can do no better than min{Δ, kλ} pairwise internally disjoint paths
from any block BQ,V to any block BQ′,V ′ in H, as by Menger’s Theorem we
can remove λ nodes from H0 so as to disconnect Q and Q′, and so kλ nodes
from H so as to disconnect BQ,V and BQ′,V ′ . Note also that irrespective of the
erroneous proofs in [6], Theorem 2 extends any claimed results in [6] by deriving
min{Δ, kλ} pairwise internally disjoint paths from any block BQ,V in H to any
block BQ′,V ′ where not only might we have Q �= Q′ but also Q = Q′.

5 Conclusion

In this paper we have extended the use of mathematical techniques within the
design of data centre networks. We feel that theoretical computer science has
a lot to offer more practical areas such as data centre design and hope that
this work provides some impetus to theoreticians. Naturally, our work pro-
vokes some directions for further research, both theoretical and applied. Whilst
we have developed an optimal analysis of path diversity as regards using the
3-step construction, we have yet to use the additional path diversity so obtained.
In order to do this we would need use bipartite graphs H0 (with reference to
the 3-step construction) with additional connectivity properties. In future we
shall seek to build and use such bipartite graphs. Also, our constructions form
part of a wider as yet untouched topic, analogous to the well-established study
of Moore graphs, namely the analysis of (not graphs but) ‘switch-server graphs’
(the models of DCNs) as to the maximal number of servers that can be incor-
porated under ‘degree and diameter’ constraints. Finally, we would like to use
techniques similar to those here so as to build not just switch-centric DCNs but
also server-centric DCNs.

References

1. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network
architecture. SIGCOMM Comput. Commun. Rev. 38(4), 63–74 (2008)

2. Bermond, J.C., Bond, J., Djelloul, S.: Dense bus networks of diameter 2. In: Pro-
ceedings of the Workshop on Interconnection Networks. DIMACS Series vol. 21,
pp. 9–18 (1995)

3. Greenberg, A., Hamilton, J.R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz,
D.A., Patel, P., Sengupta, S.: VL2: a scalable and flexible data center network.
SIGCOMM Comput. Commun. Rev. 39(4), 51–62 (2009)

4. Liu, Y., Muppala, J.K., Veeraraghavan, M., Lin, D., Katz, J.: Data Centre Net-
works: Topologies, Architectures and Fault-Tolerance Characteristics. Springer,
Heidelberg (2013)

5. Mysore, R.N., Pamboris, A., Farrington, N., Huang, N., Miri, P., Radhakrishnan,
S., Subramanya, V., Vahdat, A.: Portland: a scalable fault-tolerant layer 2 data
center network fabric. SIGCOMM Comput. Commun. Rev. 39(4), 39–50 (2009)

On the Mathematics of Data Centre Network Topologies 295

6. Qu, G., Fang, Z., Zhang, J., Zheng, S.-Q.: Switch-centric data center network
structures based on hypergraphs and combinatorial block designs. IEEE Trans. on
Par. Distrib. Sys. 26(4), 154–1164 (2015)

7. Wu, K., Xiao, J., Ni, L.M.: Rethinking the architecture design of data center net-
works. Frontiers of Comput. Sci. 6(5), 596–603 (2012)

Anonymity and Indistinguishability

Privacy in Elections: k-Anonymizing
Preference Orders

Nimrod Talmon(B)

Institut für Softwaretechnik und Theoretische Informatik,
TU Berlin, Berlin, Germany
nimrodtalmon77@gmail.com

Abstract. We study the (parameterized) complexity of a combinatorial
problem, motivated by the desire to publish elections-related data, while
preserving the privacy of the voters (humans or agents). In this problem,
introduced and defined here, we are given an election, a voting rule,
and a distance function over elections. The task is to find an election
which is not too far away from the original election (with respect to
the given distance function) while preserving the election winner (with
respect to the given voting rule), and such that the resulting election is
k-anonymized; an election is said to be k-anonymous if for each voter in
it there are at least k − 1 other voters with the same preference order.
We consider the problem of k-anonymizing elections for the Plurality
rule and for the Condorcet rule, for the Discrete distance and for the
Swap distance. We show that the parameterized complexity landscape
of our problem is diverse, with cases ranging from being polynomial-time
solvable to Para-NP-hard.

1 Introduction

We consider privacy issues when publishing preferences-related (or, election-
related) data. Assume being given data consisting of a set of records, where
each record (corresponding to a human or an agent) contains preferences-related
information as well as some private (side) information. The task is to publish this
data (for example, to let researchers analyze it) while preserving the privacy of
the entities in it. Two of the most well-studied approaches for achieving privacy
when publishing information is differential privacy (see, for example, Dwork and
Roth [12]) and k-anonymity (and l-diversity ; see, for example, Sweeney [25] and
Machanavajjhala et al. [20]). Here we follow the k-anonymity framework (see
Clifton and Tassa [9] for a recent comparison between these two approaches).

We say that an election is k-anonymous if each preference order in it appears
at least k times (where a preference order is an order over a set of predefined
alternatives). Given an input election, the goal is to generate an election which
is k-anonymous but still preserves some properties of the original election.

It is natural to consider the distance between the original election and the
resulting anonymized election (in a similar way as done when k-anonymizing

N. Talmon—Supported by DFG Research Training Group MDS (GRK 1408).

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 299–310, 2015.
DOI: 10.1007/978-3-319-22177-9 23

300 N. Talmon

graphs; there, one can define the distance as the symmetric difference of the
edge set, for example). Therefore, we consider distances over elections. We study
the Discrete distance (where each preference order can be transformed into any
other preference order at unit cost) and the Swap distance (where each two
consecutive alternatives can be swapped at unit cost), as these are the most
basic and well-studied distances defined on elections (see, for example, [14]).
The idea is that if the distance is small, then the anonymized election does not
differ too much from the original election; this is, arguably, more apparent in
the Swap distance.

Besides requiring that the original election and the resulting k-anonymized
election will be close (with respect to the considered distance), we would like to
preserve some specific properties of the original election (in this, we follow ideas
presented by Bredereck et al. [5], who considered preserving graph properties,
such as the connectivity, the relative distances, and the diameter). Here, we
require that the winner of the election will be preserved. For this, we need to fix
a voting rule. We study two voting rules, the Plurality rule and the Condorcet
rule, as these are the most basic and well-studied voting rules, which are also
good representative rules (specifically, the Plurality rule, albeit simple, can be
seen as a representative scoring rule, while the Condorcet rule can be seen as a
representative tournament-based rule).

In what follows, we study the parameterized complexity of k-anonymizing
elections, under the Plurality rule and under the Condorcet rule, for the Discrete
distance and for the Swap distance. We consider two election-related parame-
ters, specifically, the number of voters and the number of alternatives, and one
anonymity-related parameter, the anonymity level k. We show that the parame-
terized complexity landscape of our problem is diverse, with cases ranging from
being polynomial-time solvable to Para-NP-hard.

In a way, this paper can be seen as bringing the well-studied field of
k-anonymity to the well-studied field of voting systems and social choice, with the
hope of better understanding complexity issues of preserving privacy when pub-
lishing election-related data. We view our definition of k-anonymous elections as
being a natural adaptation of the concept of k-anonymity to preferences-related
(or, election-related) data.

1.1 Related Work

There is a big body of literature on security of elections and on preserving
privacy of voters participating in (digital) elections. Chaum [7], Nurmi et al. [24],
and Cuvelier et al. [10], among others, considered cryptographic mechanisms to
encrypt the votes, while Chen et al. [8], among others, considered differential
privacy. Ashur and Dunkelman [1] showed how to breach the privacy of voters
for the Israeli parliament when an adversary can look at the publicly-available
nation-wide election statistics. This work is of some relevance to us as it considers
privacy with respect to (publicly-available) published data.

Sweeney [25] introduced the concept of k-anonymity as a way to preserve pri-
vacy over published data, after demonstrating how to identify many individuals

Privacy in Elections: k-Anonymizing Preference Orders 301

by mixing publicly-available medical data with publicly-available voter lists
(interestingly, Sweeney [25] already somewhat focuses on election-related data,
specifically on the party affiliation; informally speaking, party affiliation cor-
responds to the Plurality rule, since only the first choice counts, while for the
Condorcet rule we would need the complete preference orders publicly available).
Much work has been done on k-anonymizing tables (for example, Meyerson and
Williams [22], Bredereck et al. [4], and Bredereck et al. [6]; some of these concen-
trate on parameterized complexity), on k-anonymizing graphs (for example, Liu
and Terzi [19], Hartung et al. [17], and Bredereck et al. [5]; some of these con-
centrate on parameterized complexity). Here, we consider neither general tables
nor graphs, but instead we consider elections. Indeed, elections can be described
as tables, but here we require to preserve the winner and allow different, election
specific, operations. Specifically, while the Discrete distance can be natural also
for general tables, this is not the case for the Swap distance.

For general information about social choice, elections, voting systems, and
voting rules, we point the reader to any textbook on social choice, for example
the book by Brandt et al. [3].

2 Preliminaries

Considering distances over elections, we follow some notation from Elkind et al.
[14]. We assume familiarity with standard notions regarding algorithms, compu-
tational complexity, and graph theory. For a non-negative integer z, we denote
the set {1, . . . , z} by [z].

2.1 Elections and Distances

An election E is a pair (C, V) where C = {c1, . . . , cm} is the set of alternatives
and V = (v1, . . . , vn) is the collection of voters. Each voter vi is represented by a
total order �vi

over C (her preference order; we use voters and preference orders
interchangeably). A voter which prefers c to all other alternatives is called a
c-voter. For reading clarity, we refer to the voters as females, while the alterna-
tives are males. A voting rule R is a function that, given an election E = (C, V),
returns a set R(E) ⊆ C of election winners (indeed, we use the non-unique
winner model). We consider the following voting rules:

1. The Plurality Rule. Each alternative receives one point for each voter
which ranks him first, and the winners are the highest-scoring alternatives.

2. The Condorcet Rule. An alternative c is a (weak) Condorcet winner if
for each other alternative c′ ∈ C \ {c}, it holds that |{v ∈ V : c �v c′} ≥
|{v ∈ V : c′ �v c}|, that is, if he beats (or ties with) all other alternatives
in head-to-head contests. The Condorcet rule elects the Condorcet winners if
some exist, returning an empty set otherwise.

Given a set V ′ of preference orders, we say that a function d : V ′ × V ′ → N is a
distance function over preference orders if it is a metric over preference orders.

302 N. Talmon

Given a distance function over preference orders d and two elections (over the
same set of alternatives), E = (C, (v1, . . . , vn)) and E′ = (C, (v′

1, . . . , v
′
n)), the

above definition can be naturally extended by fixing an arbitrary order for the
voters of E, that is, [v1, . . . , vn], considering all the possible permutations for
the voters of E′, that is, [v′

π(1), . . . , v
′
π(n)], and defining the d-distance between

E and E′ to be d(E,E′) = minπ∈Sn

∑
i∈[n] d(vi, v

′
π(i)), where Sn is the set con-

taining all the possible permutations of [n]. We define the following distance
functions:

1. Discrete Distance. ddiscr(v1, v2) = 0 if and only if v1 = v2, while otherwise
ddiscr(v1, v2) = 1. Indeed, for two elections, E = (C, (v1, . . . , vn)) and E′ =
(C, (v′

1, . . . , v
′
n)), it holds that ddiscr(E,E′) = |{i : vi �= v′

i}| (hence, the
Hamming distance).

2. Swap Distance. dswap(v1, v2) = |{(c, c′) ∈ C × C : c �v1 c′ ∧ c′ �v2 c}|.
Indeed, the swap distance dswap(v1, v2) (also called the Dodgson distance) is
the minimum number of swaps of consecutive alternatives needed for trans-
forming the preference order of v1 to that of v2.

Clearly, both the Discrete distance and the Swap distance are distance functions.

2.2 Anonymization

A group of voters with the same preference order is called a block. Using this
notion, we have that an election is k-anonymous if and only if each block in it
is of size at least k. We denote the number of voters in block B by |B| and say
that a block is bad if 0 < B < k (as it is not yet anonymized in this case). Since
all voters in a block have the same preference order, it is valid to consider the
preference order of the voters in the block. Specifically, a block of c-voters is
called a c-block.

2.3 Parameterized Complexity

An instance (I, k) of a parameterized problem consists of the “classical” problem
instance I and an integer k being the parameter [11,15,23]. A parameterized
problem is called fixed-parameter tractable (FPT) if there is an algorithm solving
it in f(k)·|I|O(1) time, for an arbitrary computable function f only depending on
the parameter k. In difference to that, algorithms running in |I|f(k) time prove
membership in the class XP (clearly, FPT ⊆ XP).

One can show that a parameterized problem L is (presumably) not fixed-
parameter tractable by devising a parameterized reduction from a W[1]-hard
problem (for example, the Clique problem, parameterized by the solution size)
or a W[2]-hard problem (for example, the Set Cover problem, parameterized by
the solution size) to L. A parameterized problem which is NP-hard even for
instances for which the parameter is a constant is said to be Para-NP-hard.

Privacy in Elections: k-Anonymizing Preference Orders 303

Table 1. (parameterized) Complexity of EA.

2.4 Main Problem and Overview of Our Results

The main problem we consider in this paper is defined as follows.

R-d-Election Anonymization (R-d-EA)
Input: An election E = (C, V) where C = {c1, . . . , cm} is the set of
alternatives and V = (v1, . . . , vn) is the collection of voters, anonymity
level k, and a budget s.
Question: Is there a k-anonymous election E′ such that R(E) = R(E′)
and d(E,E′) ≤ s (where R is a voting rule, d is a distance function over
elections, and an election is said to be k-anonymous if for each voter in
it there are at least k − 1 other voters with the same preference order)?

We study the (parameterized) complexity of R-d-Election Anonymiza-
tion, where we consider both the Plurality rule and the Condorcet rule as
the voting rule R, and where we consider both the Discrete distance and the
Swap distance as the distance d (that is, we consider the following four vari-
ants: Plurality-Discrete-EA, Condorcet-Discrete-EA, Plurality-Swap-EA, and
Condorcet-Swap-EA). Our results are summarized in Table 1. Due to the lack
of space, some proof details are deferred to the full version.

3 Results

Intuitively, from all variants considered in this paper, Plurality-Discrete-EA
should be the most tractable, as the Plurality rule is conceptually simpler than
the Condorcet rule and the Discrete distance is conceptually simpler than the
Swap distance. This intuition is correct: it turns out that Plurality-Discrete-EA
is polynomial-time solvable, while all other variants are NP-hard. We begin by
describing a polynomial-time algorithm, based on dynamic programming, for
Plurality-Discrete-EA.

Theorem 1. Plurality-Discrete-EA is polynomial-time solvable.

Proof. We describe an algorithm based on applying dynamic programming twice,
in a nested way. To understand the general idea, consider an alternative c and

304 N. Talmon

its corresponding c-voters. We have two cases to consider with respect to the
solution election: either (1) some of the c-voters are transformed to be c′-voters
(for some, possibly several, other alternatives c′ �= c), or (2) some c′-voters (for
some, possibly several, other alternatives c′ �= c) are transformed to be c-voters.
The crucial observation is that, with respect to anonymizing the c-voters, we
do not need to remember the specific c′-voters discussed above, but only their
number. Therefore, we define a first (outer) dynamic program, iterating over the
alternatives, and computing the most efficient way of anonymizing the c-voters,
while considering all possible values for these numbers of c′-voters, and while
making sure that the initial winner of the election stays the winner. In order
to compute how to anonymize the c-voters we define a second (inner) dynamic
program, considering the c-blocks one at a time. For each c-block, the inner
dynamic program decides whether to make the respective c-block empty (with
zero voters) or full (with at least k voters), by considering the possible ways
of transforming other c-voters or other c′-voters, similarly in spirit to the first
(outer) dynamic programming. The full proof is deferred to the full version.
�
For the Condorcet rule, still considering the Discrete distance, we can show that
EA is NP-hard, by a reduction from a restricted variant of the Exact Cover
by 3-Sets problem.

Theorem 2. Condorcet-Discrete-EA is NP-hard.

Proof. We reduce from the following NP-hard problem [16], defined as follows.

Restricted Exact Cover by 3-Sets
Input: Collection S = {S1, . . . , Sn} of sets of size 3 over a universe
X = {x1, . . . , xn} such that each element appears in exactly three sets.
Question: Is there a subset S ′ ⊆ S such that each element xi occurs in
exactly one member of S ′?

We assume, without loss of generality, that {{x1, x2, x3}, . . . , {xn−2, xn−1,
xn}} = {{x3l−2, x3l−1, x3l} : l ∈ [n/3]} �⊆ S, and that n = 0 (mod 3). Given
an instance for Restricted Exact Cover by 3-Sets, we create an instance for
Condorcet-Discrete-EA, as follows.

We create two alternatives, p and d, and, also, for each element xi ∈ X, we
create an alternative xi, such that the set of alternatives is {X, p, d}. We create
a set of n/3 voters, called jokers, such that the ith joker (for i ∈ [n/3]) has
preference order x3i−2 � x3i−1 � x3i � p � d � X \{x3i−2, x3i−1, x3i}. For each
set Sj , we create k voters, each with preference order Sj � p � d � Sj . We refer
to these voters as the set voters. We create another set of (n− 6)k + ((n/3) − 2)
voters, each with preference order d � X � p, called the init voters. Finally, we
set s to n/3 and k to (n/3) + 2. This finishes the construction.

Let us first compute the winner in the input election. Notice that the set
voters and the jokers prefer p to d, while the init voters prefer d to p. As there
are kn set voters, n/3 jokers, but only (n−6)k+((n/3)−2) init voters, p defeats d.
Consider an element xi. There is exactly one joker which prefers xi to p, and
exactly three set voters which prefer xi to p (as xi appears in exactly three sets),

Privacy in Elections: k-Anonymizing Preference Orders 305

and all the init voters prefer xi to p. Other than these, all other voters prefer p
to xi. Therefore, there are (n/3) − 1 + k(n − 3) voters which prefer p to xi and
1 + 3k + (n− 6)k + ((n/3) − 2) = (n/3) − 1 + k(n− 3) voters which prefer xi to
p, so p and xi are tied (we use the weak Condorcet criterion, but the reduction
can be changed to work for the strong Condorcet criterion as well). Finally, it
is not hard to see that d defeats xi. Summarizing the above computations, we
see that p is the winner in the input election. Thus, in an anonymized solution
election, p shall be the winner as well. Given an exact cover S ′, we move all jokers
to the set voters corresponding to the exact cover, that is, we move all jokers
such that, for each set S ∈ S ′, we will have one joker in the block of set voters
corresponding to S. Notice that initially the jokers form an exact cover. Notice
further that they still form an exact cover in the solution, as we moved them
to blocks of set voters corresponding to the sets of S ′. Specifically, considering
only the jokers, the relative score of p and the xi’s did not change between the
input and the solution. Therefore p is still the winner. Moreover, it is not hard
to see that the election is anonymized. For the other direction, notice that the
jokers are not anonymized (that is, their blocks are bad; specifically, each joker
forms its own block) while all other blocks are anonymized. It is not possible to
anonymize the jokers by moving other voters (or other jokers) to their blocks, as
the budget is too small for that. Therefore, in a solution, all jokers should move
to other blocks. There are two possibilities for each joker, either to move to the
init voters or to move to some set voters. It is not a good idea to move some
voters to the init voters, as the init voters prefer X to p. More formally, if in a
solution, some jokers move to the init voters, then we can instead move them
to an arbitrarily-chosen set voter. Therefore, we can assume that, in a solution,
all jokers move to set voters. If the jokers move to set voters in a way that does
not correspond to an exact cover, than at least one xi would win over p (as
at least one xi would be covered twice, that is, at least two jokers would move
to set voters preferring xi to p; therefore, the relative score between xi and p
would change in such a way that xi would win over p in a head-to-head contest).
Therefore, a solution must correspond to an exact cover, and we are done.
�
Moving further to the Swap distance, we show that EA is NP-hard for both
voting rules considered, and even for elections with only four voters (and there-
fore, also for elections with anonymity level only four; indeed, any input with
k > n is a trivial no-instance). Technically, in the corresponding reduction, from
Kemeny Distance, we set both n and k to four. We mention that the next
theorem actually holds for all voting rules which are unanimous (a voting rule
is unanimous if for all elections where all voters prefer the same alternative c, it
selects the preferred alternative c; see, for example, [14]).

Theorem 3. For R ∈ {Plurality,Condorcet}, R-Swap-EA is NP-hard even if
the number n of voters is four and the anonymity level k is four.

Proof. We reduce from the Kemeny Distance problem.

Kemeny Distance
Input: An election E′ = (C ′, V ′) and a positive integer h.

306 N. Talmon

Question: Is the Kemeny distance of E′ = (C ′, V ′) at most h (where the
Kemeny distance is the minimum total number of swaps of neighboring
alternatives needed to have all voters vote the same; such a similar vote
is called a Kemeny vote)?

Kemeny Distance is NP-hard already for four voters [2,13]. Given an input
election for Kemeny Distance, we create an instance for EA, as follows. We
initialize our election E = (C, V) with the election given for Kemeny Distance
and create another alternative c (that is, we set C = C ′ ∪ {c}). For each voter
in the election, we place c as the first choice of the voter, that is, for each voter
v′ ∈ V ′, we create a voter v ∈ V with the same preference order as v′ while
preferring c to all other alternatives. We set k to n and s to h. This finishes the
construction.

It is clear that originally c is the winner of the election (both under the
Plurality rule and under the Condorcet rule; indeed, for this theorem, we only
require the rule to be unanimous; see, for example, [14]). The crucial observation
is that there is no need to swap the new alternative c; this follows because all
voters already agree on him, as they place him first in their preference orders.
More formally, as k is set to n, it follows that if in a solution c is swapped in
some voters, then he must be swapped in all voters. Therefore, we can simply
“unswap” these swaps to get a cheaper solution.

Finally, since k is set to n, it follows that all voters should vote the same in
the resulting k-anonymous solution election. Thus, the best way to anonymize
the election is by finding a Kemeny vote, and transforming all voters to vote
as this Kemeny vote. Therefore, the election can be k-anonymized by at most s
swaps if and only if the Kemeny distance of the input election is at most h, and
we are done.
�
With respect to the parameter number n of voters, the situation for the Discrete
distance is different than the situation for the Swap distance. Specifically, it
turns out that Condorcet-Discrete-EA is FPT wrt. n.

Theorem 4. Condorcet-Discrete-EA is FPT wrt. the number n of voters.

Proof. The crucial observation here is that there is no need to create new blocks,
besides, perhaps, one arbitrarily-chosen p-block. To see this, consider a solution
that adds a new block B which is not a p-block (recall that a p-block is a
block of p-voters). Change the solution by moving the voters in B to a new
arbitrarily-chosen p-block (instead of the block B). While using the same budget,
the election is still anonymized and p is still a Condorcet winner. It follows that
no new blocks, besides, perhaps, one additional arbitrarily chosen new p-block,
are needed. We mention that an additional p-block might be needed when there
are no p-voters (and, therefore, no p-blocks) in the input election.

The above observation suggests the following simple algorithm. We begin by
guessing whether we need a new p-block. Then, for each voter, we guess whether
(1) it will stay the same, (2) it will move to some other original block (out of
the possible n − 1 other original blocks), or (3) it will move to the new p-block
(if we guessed that such a new block p-block exists).

Privacy in Elections: k-Anonymizing Preference Orders 307

Correctness follows by the observation above and by the brute-force nature
of the algorithm. Fixed-parameter tractability follows since we guess for each
voter (out of the n original voters), where it will end up (out of n or n + 1
possibilities), resulting in running time O(m · nn).
�
We move on to consider the number m of alternatives. Similarly to numerous
other problems in computational social choice, all variants of EA considered in
this paper are FPT with respect to this parameter. This follows by applying
the celebrated result of Lenstra [18] after formulating the problem as an integer
linear program where the number of variables is upper-bounded by a function
dependent only on the number m of alternatives.

Theorem 5. For R ∈ {Plurality, Condorcet} and d ∈ {Discrete, Swap}, R-d-
EA is FPT wrt. the number m of alternatives.

Proof. The crucial observation is that the number of different preference orders is
m!, therefore upper-bounded by a function depending only on the parameter, m.
We enumerate the set of m! different preference orders and create a variable xi,j ,
for each i, j ∈ [m!], with the intended meaning that xi,j will represent the number
of voters with preference order i in the input and preference order j in the
solution.

We add a budget constraint:
∑

i,j∈[m!]

xi,j · d(i, j) ≤ s.

(Note that we can precompute all the distances, in polynomial time.)
For preference order i, we denote the number of voters with preference order

i in the input by starti and the number of voters with preference order i in the
solution by endi. For each i, it holds that:

endi = starti +
∑

j∈[m!]

xj,i −
∑

j∈[m!]

xi,j .

We guess a set Z ⊆ [m!] of preference orders with the intent that these will
be the preference orders that will be present in the solution. For each preference
order i ∈ Z we add a k-anonymity constraint, and, similarly, for each preference
order i /∈ Z we require that its endi will be 0, as follows:

∀i ∈ Z : endi ≥ k

∀i /∈ Z : endi = 0

Differently for the Plurality rule and the Condorcet rule, we add more con-
straints to make sure that the winner will not change, as follows.

For the Plurality rule, we guess the highest score z in the solution (that is,
the winning score), and we check that the initial winner p gets exactly z points,
by adding the following constraint:

∑

{i : p is at the first position of i}
endi = z.

308 N. Talmon

Similarly, for each non-winning alternative c �= p, we add a non-winning con-
straint: ∑

{i : c is at the first position of i}
endi ≤ z.

For the Condorcet rule, for the initial Condorcet winner p (if it exists), we check
that he indeed beats all other alternatives in the solution:

∀c �= p :
∑

i∈[m!] and p�ic

endi ≥
∑

i∈[m!] and c�ip

endi.

Since the number of variables and the number of constraints is upper-bounded
by the parameter, fixed-parameter tractability follows by applying the result of
Lenstra [18].
�

4 Conclusion

Motivated by privacy issues when publishing election-related data, we initiated
the study of k-anonymizing preference orders, investigating its computational
complexity for the Plurality rule and the Condorcet rule, while considering the
Discrete distance and the Swap distance. We showed a wide diversity of the
(parameterized) complexity of EA, with respect to several natural parameters.

There are numerous opportunities for future research, some of which we
briefly discuss next. Most immediately, there are still some open questions, as
Table 1 suggests, and one might also consider other parameterizations as well
as approximation algorithms for coping with the NP-hard cases. It is also nat-
ural to extend this line of research to other voting rules (for example, can the
polynomial-time algorithm presented in Theorem1 be extended to the Borda
rule? what happens for Approval voting? what happens for multi-winner rules?).
Similar in spirit, it is natural to consider other distances besides the Discrete
distance and the Swap distance. While we considered a minmax approach, as
we compute the distance between two elections as the sum of distances between
their voters (and allow to permute the voters), it might also be interesting to
study a minmax approach, where, roughly speaking, we would not allow any
individual voter to change its vote by too much. This could be of particular
interest as it might preserve the original election more closely. On a similar note,
it is worth studying how to preserve more properties of the original election;
while we only require to preserve the winner, one might require to preserve the
full relative ranking of the alternatives (that is, fixing some scoring rule, and
considering two alternatives c′ and c′′ such that c′ is achieving a greater score
than c′′ in the original election, we might require c′ to achieve greater score
than c′′ in the resulting election as well). Somehow related, one might consider
some stronger notions of k-anonymity, for example l-diversity, which might be
interesting to explore in the context of elections. Finally, one might experiment
with real-world preference-data (for example, from PrefLib [21]) to evaluate the
quality of the algorithms presented in this paper.

Privacy in Elections: k-Anonymizing Preference Orders 309

References

1. Ashur, T., Dunkelman, O.: Poster: on the anonymity of Israel’s general elections.
In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communi-
cations Security, pp. 1399–1402. ACM (2013)

2. Biedl, T., Brandenburg, F.J., Deng, X.: On the complexity of crossings in permu-
tations. Discrete Math. 309(7), 1813–1823 (2009)

3. Brandt, F., Conitzer, V., Endriss, U.: Computational social choice. In: Weiss, G.
(ed.) Multiagent Systems, 2nd edn., pp. 213–283. MIT Press, Cambridge (2013)

4. Bredereck, R., Nichterlein, A., Niedermeier, R.: Pattern-guided k-anonymity.
Algorithms 6(4), 678–701 (2013)

5. Bredereck, R., Froese, V., Hartung, S., Nichterlein, A., Niedermeier, R., Talmon,
N.: The complexity of degree anonymization by vertex addition. In: Gu, Q., Hell,
P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp. 44–55. Springer, Heidelberg
(2014)

6. Bredereck, R., Nichterlein, A., Niedermeier, R., Philip, G.: The effect of homogene-
ity on the computational complexity of combinatorial data anonymization. Data
Min. Knowl. Disc. 28(1), 65–91 (2014b)

7. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

8. Chen, Y., Chong, S., Kash, I.A., Moran, T., Vadhan, S.: Truthful mechanisms for
agents that value privacy. In: Proceedings of the Fourteenth ACM Conference on
Electronic Commerce, pp. 215–232. ACM (2013)

9. Clifton, C., Tassa, T.: On syntactic anonymity and differential privacy. In: 2013
IEEE 29th International Conference on Data Engineering Workshops (ICDEW),
pp. 88–93. IEEE (2013)

10. Cuvelier, É., Pereira, O., Peters, T.: Election verifiability or ballot privacy: do we
need to choose? In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013.
LNCS, vol. 8134, pp. 481–498. Springer, Heidelberg (2013)

11. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, Heidelberg (2013)

12. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Theoret.
Comput. Sci. 9(3–4), 211–407 (2013)

13. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for
the web. In: Proceedings of the 10th International Conference on World Wide Web,
pp. 613–622. ACM (2001)

14. Elkind, E., Faliszewski, P., Slinko, A.: On the role of distances in defining vot-
ing rules. In: Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems, vol. 1, pp. 375–382. International Foundation for
Autonomous Agents and Multiagent Systems (2010)

15. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer,
Heidelberg (2006)

16. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance.
Theoret. Comput. Sci. 38, 293–306 (1985)

17. Hartung, S., Nichterlein, A., Niedermeier, R., Suchý, O.: A refined complex-
ity analysis of degree anonymization in graphs. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp.
594–606. Springer, Heidelberg (2013)

18. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8, 538–548 (1983)

310 N. Talmon

19. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data, pp.
93–106. ACM (2008)

20. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.:
l-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Disc. Data
(TKDD) 1(1), 3 (2007)

21. Mattei, N., Walsh, T.: PrefLib: a library for preferences http://www.
preflib.org. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) ADT 2013. LNCS, vol.
8176, pp. 259–270. Springer, Heidelberg (2013)

22. Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: Pro-
ceedings of the Twenty-third ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pp. 223–228. ACM (2004)

23. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

24. Nurmi, H., Salomaa, A., Santean, L.: Secret ballot elections in computer networks.
Comput. Secur. 10(6), 553–560 (1991)

25. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty,
Fuzziness Knowl. Based Syst. 10(05), 557–570 (2002)

http://www.preflib.org
http://www.preflib.org

On Equivalences, Metrics, and Polynomial Time

Alberto Cappai and Ugo Dal Lago(B)

Università di Bologna and INRIA, Bologna, Italy
{alberto.cappai2,ugo.dallago}@unibo.it

Abstract. Interactive behaviors are ubiquitous in modern cryptogra-
phy, but are also present in λ-calculi, in the form of higher-order construc-
tions. Traditionally, however, typed λ-calculi simply do not fit well into
cryptography, being both deterministic and too powerful as for the com-
plexity of functions they can express. We study interaction in a λ-calculus
for probabilistic polynomial time computable functions. In particular, we
show how notions of context equivalence and context metric can both be
characterized by way of traces when defined on linear contexts. We then
give evidence on how this can be turned into a proof methodology for
computational indistinguishability, a key notion in modern cryptogra-
phy. We also hint at what happens if a more general notion of a context
is used.

1 Introduction

Modern cryptography [14] is centered around the idea that security of cryp-
tographic constructions needs to be defined precisely and, in particular, that
crucial aspects are how an adversary interacts with the construction, and when
he wins this game. The former is usually specified by way of an experiment,
while the latter is often formulated stipulating that the probability of a favor-
able result for the adversary needs to be small, where being “small” usually
means being negligible in a security parameter. This framework would however
be vacuous if the adversary had access to an unlimited amount of resources, or if
it were deterministic. As a consequence the adversary is usually assumed to work
within probabilistic polynomial time (PPT in the following), this way giving rise
to a robust definition. Summing up, there are three key concepts here, namely
interaction, probability and complexity. Security as formulated above can often
be spelled out semantically as the so-called computational indistinguishability
between two distributions, the first one being the one produced by the con-
struction and the second one modeling an idealized construction or a genuinely
random object.

Typed λ-calculi as traditionally conceived, do not fit well into this picture.
Higher-order types clearly allow a certain degree of interaction, but probability
and complexity are usually absent: reduction is deterministic (or at least conflu-
ent), while the expressive power of λ-calculi tends to be very high. This picture

This work is partially supported by the ANR project 12IS02001 PACE.

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 311–323, 2015.
DOI: 10.1007/978-3-319-22177-9 24

312 A. Cappai and U. Dal Lago

has somehow changed in the last ten years: there have been some successful
attempts at giving probabilistic λ-calculi whose representable functions coincide
with the ones which can be computed by PPT algorithms [5,15,17]. These cal-
culi invariably took the form of restrictions on Gödel’s T, endowed with a form
of binary probabilistic choice. All this has been facilitated by implicit compu-
tational complexity, which offers the right idioms to start from [11,12], them-
selves based on linearity and ramification. The emphasis in all these works were
either the characterization of probabilistic complexity classes [5], or more often
security [16,17]: one could see λ-calculi as a way to specify cryptographic con-
structions and adversaries for them. The crucial idea here is that computational
indistinguishability can be formulated as a form of context equivalence. The real
challenge, however, is whether all this can be characterized by handier notions,
which would alleviate the inherently difficult task of dealing with all contexts
when proving two terms to be equivalent.

The literature offers many proposals going precisely in this direction: this
includes logical relations, context lemmas, or coinductive techniques. In applica-
tive bisimulation [1], as an example, terms are modeled as interactive objects.
This way, one focuses on how the interpreted program interacts with its envi-
ronment, rather than on its internal evolution. None of them have so far been
applied to calculi capturing probabilistic polynomial time, and relatively few
among them handle probabilistic behavior.

In this paper, we study notions of equivalence and distance in one of these
λ-calculi, called RSLR [5]. More precisely:

• After having briefly introduced RSLR and studied its basic metatheoretical
properties (Sect. 2), we define linear context equivalence. We then show how
the role of contexts can be made to play by traces. Finally, a coinductive
notion of equivalence in the style of Abramsky’s bisimulation is introduced.
We also hint at how all this can be extended to metrics. This can be found in
Sect. 4.

• We then introduce a notion of parametrized context equivalence for RSLR
terms, showing that it coincides with computational indistinguishability when
the compared programs are of base type. We then turn our attention to the
problem of characterizing the obtained notion of equivalence by way of linear
tests, giving a positive answer to that by way of a notion of parametrized trace
metric. A brief discussion about the role of linear contexts in cryptography is
also given. All this is in Sect. 5.

An extended version of this paper with more details is available [2].

2 Characterizing Probabilistic Polynomial Time

In this section we introduce RSLR [5], a λ-calculus for probabilistic polynomial
time computation, obtained by extending Hofmann’s SLR [12] with an operator
for binary probabilistic choice. Compared to other presentations of the same cal-
culus, we consider a call-by-value reduction and elide nonlinear function spaces

On Equivalences, Metrics, and Polynomial Time 313

and pairs. This has the advantage of making the whole theory less baroque,
without any fundamental loss in expressiveness (see Sect. 5.1 below).

First of all, types are defined as follows:

A ::= Str | �A → A | ��A → A.

The expression Str serves to type strings, and is the only base type. �A → B
is the type of functions (from A to B) which can be evaluated in constant time,
while for ��A → B the running time can be any polynomial. Aspects are the
elements of {��,�} and are indeed fundamental to ensure polytime soundness.
We denote them with metavariables like a or b. We define a partial order <:
between aspects simply as the relation {(��, ��), (��,�), (�,�)}, and subtyping by
the rules below:

A <: A
A <: B B <: C

A <: C
B <: A C <: D a <: b

aA → C <: bB → D

The syntactical categories of terms and values are defined by the following
grammar:

t ::= x | v | 0(t) | 1(t) | tail(t) | tt

| caseA(t, t, t, t) | recA(t, t, t, t) | rand;

v ::= m | λx : aA.t;

where m ranges over the set {0, 1}∗ of finite, binary strings, while x ranges
over a denumerable set of variables X. We write T,V for the sets of terms and
values, respectively. The operators 0 and 1 are constructors for binary strings,
while tail is a destructor. The only nonstandard constant is rand, which returns
0 or 1, each with probability 1

2 , thus modeling uniform binary choice. The terms
caseA(t, t0, t1, tε) and recA(t, t0, t1, tε) are terms for case distinction and recursion,
in which first argument specifies the term (of base type) which guides the process.
The expression ε stands for the empty string and we set tail(ε) → ε.

As usual, a typing context Γ is a finite set of assignments of an aspect and
a type to a variable, where as usual any variable occurs at most once. Any such
assignment is indicated with x : aA. The expression Γ,Δ stands for the union of
the two typing contexts Γ and Δ, which are assumed to be disjoint. The union
Γ,Δ is indicated with Γ ;Δ whenever we want to insist on Γ to only involve
the base type Str. Typing judgments are in the form Γ � t : A. Typing rules
are in Fig. 1. The expression TA

Γ (respectively, VA
Γ) stands for the set of terms

(respectively, values) of type A under the typing context Γ . Please observe how
the type system we have just introduced enforces variables of higher-order type
to occur free at most once and outside the scope of a recursion. Moreover, the
type of terms which serve as step-functions in a recursion are assumed to be
��-free, and this is precisely what allow this calculus to characterize polytime
functions.

314 A. Cappai and U. Dal Lago

Fig. 1. RSLR’s typing rules

The operational semantics of RSLR is of course probabilistic: any closed term
t evaluates not to a single value but to a value distribution, i.e., a function
D : V → R such that

∑
v∈V D(v) = 1. Judgments expressing this fact are in the

form t ⇓ D, and are derived through a formal system (see [2] for more details).
In the rest of this paper, we use some standard notation on distributions: the
expression {vα1

1 , . . . , vαn
n } stands for the distribution assigning probability αi to

vi (for every 1 � i � n), while the support of a distribution D is indicated with
S(D). Given a set X, PX is the set of all distributions over X. Noticeably:

Lemma 1. For every term t ∈ TA
∅

there is a unique distribution D such that
t ⇓ D, which we denote as [[t]]. Moreover, If v ∈ S(D), then v ∈ VA

∅
.

This tells us both that ⇓ can be seen as a function, and that subject reduction
holds.

A probabilistic function on {0, 1}∗ is a function F from {0, 1}∗ to P{0,1}∗ .
A term t ∈ TaStr→Str

∅
is said to compute F iff for every string m ∈ {0, 1}∗ it holds

that tm ⇓ D where D(n) = F (m)(n) for every n ∈ {0, 1}∗. What makes RSLR
very interesting, however, is that it precisely captures those probabilistic func-
tions which can be computed in polynomial time (see, e.g., [6] for a definition):

Theorem 1 (Polytime Completeness). The set of probabilistic functions
which can be computed by RSLR terms coincides with the polytime computable
ones.

This result is well-known [5,17], and can be proved in various ways, e.g. combi-
natorially or categorically.

3 Equivalences

Intuitively, we can say that two programs are equivalent if no one can distin-
guish them by observing their external, visible, behavior. A formalization of this
intuition usually takes the form of context equivalence. A context is a term in

On Equivalences, Metrics, and Polynomial Time 315

which the hole [·] occurs at most once. Formally, contexts are defined by the
following grammar:

C ::= t | [·] | λx.C | Ct | tC | | 0(C) | 1(C) | tail(C)

| caseA(C, t, t, t) | caseA(t, C,C,C) | recA(C, t, t, t).

What the above definition already tells us is that our emphasis in this paper
will be on linear contexts, which are contexts whose holes lie outside the scope
of any recursion operator. Given a term t we define C[t] as the term obtained
by substituting the occurrences of [·] in C (if any) with t. We only consider non-
binding contexts here, i.e. contexts are meant to be filled with closed terms (this
can be justified formally [2]). In other words, the type system from Sect. 2 can
be turned into one for contexts whose judgments take the form Γ � C[� A] : B,
which means that for every closed term t of type A, it holds that Γ � C[t] : B.
See [2] for more details. Now that the notion of a context has been properly
defined, one can finally give the central notion of equivalence in this paper.

Definition 1 (Context Equivalence). Given two terms t, s such that � t, s :
A, we say that t and s are context equivalent iff for every context C such that
� C[� A] : Str we have that [[C[t]]](ε) = [[C[s]]](ε).

The way we defined it means that context equivalence is a family of relations
{≡A}A∈A indexed by types, which we denote as ≡. Context equivalence is easily
proved to be a congruence, i.e., a compatible equivalence relation.

3.1 Trace Equivalence

In this section we introduce a notion of trace equivalence for RSLR, and we show
that it characterizes context equivalence.

We define a trace as a sequence of actions l1 · l2 · . . . · ln such that li ∈
{pass(v), view(m) | v ∈ V,m ∈ VStr}. Traces are indicated with metavariables
like T,S. The compatibility of a trace T with a type A is defined inductively on the
structure of A. If A = Str then the only trace compatible with A is T = view(m),
with m ∈ VStr, otherwise, if A = aB → C then traces compatible with A are in
the form T = pass(v) · S with v ∈ VB and S is itself compatible with C. With
a slight abuse of notation, we often assume traces to be compatible with the
underlying type.

Due to the probabilistic nature of our calculus, it is convenient to work
with term distributions, i.e., distributions whose support is the set of closed
terms of a certain type A, instead of plain terms. We denote term distributions
with metavariables like T or S. The effect traces have to distributions can be
formalized by giving some binary relations:

• First of all, we need a binary relation on term distributions, called �. Intu-
itively, T � S iff T evolves to S by performing internal moves, only. Further-
more, we use → to indicate a single internal move.

316 A. Cappai and U. Dal Lago

• We also need a binary relation ⇒· between term distributions, which is how-
ever labeled by a trace, and which models internal and external reduction.

• Finally, we need a labeled relation �→· between distributions and real numbers,
which captures the probability that distributions accept traces.

The three relations are defined inductively by the rules in Fig. 2. The following
gives basic, easy, results about the relations we have introduced:

Fig. 2. Term distribution small-step rules

Lemma 2. Let T be a term distribution for the type A. Then, there is a unique
value distribution D such that T �∗ D. As a consequence, for every trace T
compatible for A there is a unique real number p such that T �→T p. This real
number is denoted as Pr(T ,T).

We are now ready to define what we mean by trace equivalence:

Definition 2. Given two term distributions T ,S we say that they are trace
equivalent (and we write T 	T S) if, for all traces T it holds that Pr(T ,T) =
Pr(S,T). In particular, then, two terms t, s are trace equivalent when {t1} 	T

{s1} and we write t 	T s in that case.

It is easy to prove that trace equivalence is an equivalence relation. The next
step, then, is to prove that trace equivalence is compatible, thus paving the way
to a proof of soundness w.r.t. context equivalence. Unfortunately, the direct proof
of compatibility (i.e., an induction on the structure of contexts) simply does not
work: the way the operational semantics is specified makes it impossible to track
how a term behaves in a context. Following [7], we proceed by considering a
refined semantics, defined not on terms but on pairs whose first component is a
context and whose second component is a term distribution. Formally, a context
pair has the form (C, T), where C is a context and T is a term distribution.
A (context) pair distribution is a distribution over context pairs. Such a pair
distribution P = {(Ci, Ti)pi} is said to be normal if for all i ad for all t in the
support of Ti we have that Ci[t] is a value. Similarly to terms, the internal and
external evolution of traces can be defined by way of relations →, � ⇒· and �→·

(see [2] for more details).
The following tells us that working with context pairs is the same as working

with terms as far as traces are concerned:

On Equivalences, Metrics, and Polynomial Time 317

Lemma 3. Suppose given a context C, a term distribution T , and a trace
S. Then if (C, T) ⇒S {(Ci, Ti)pi} then C[T] ⇒S {(Ci[Ti])pi}. Moreover, if
(C, T) �→S p, then Pr(C[T],S) = p.

But how could we exploit context pairs for our purposes? The key idea can
be informally explained as follows: there is a notion of “relatedness” for pair
distributions which not only is stricter than trace equivalence, but can be proved
to be preserved along reduction, even when interaction with the environment is
taken into account.

Definition 3 (Trace Relatedness). Let P,Q be two pair distributions. We
say that they are trace-related, and we write P�Q if there exist families {Ci}i∈I ,
{Ti}i∈I , {Si}i∈I , and {pi}i∈I such that P = {(Ci, Ti)pi},Q = {(Ci,Si)pi} and
for every i ∈ I, it holds that Ti 	T Si.

Lemma 4 (Bisimulation, Externally). Given two pair distributions P,Q
with P�Q, then for all traces S we have:

1. If P ⇒S M, with M normal distribution, then Q ⇒S N , where M�N and
N is a normal distribution too.

2. If P �→S p then Q �→S p.

We are now in a position to prove the main result of this section:

Theorem 2 (Full Abstraction). Context equivalence and trace equivalence
coincide.

3.2 Some Words on Applicative Bisimulation

As we already discussed, the quantification over all contexts makes the task
of proving two terms to be context equivalent burdensome, even if we restrict
to linear contexts. And we cannot say that trace equivalence really overcomes
this problem: there is a universal quantification anyway, even if contexts are
replaced by objects (i.e. traces) having a simpler structure. It is thus natural
to look for other techniques. The interactive view provided by traces suggests
the possibility to go for coinductive techniques akin to Abramsky’s applicative
bisimulation, which has already been shown to be adaptable to probabilistic
λ-calculi [3,4].

One could define (see [2] for more details) a notion of applicative bisimulation
for RSLR by giving a labeled Markov chain whose states are closed terms and
whose labels are either eval, which models evaluation, pass(v), which models
parameter passing, and view(m), which models testing for equality with the
string m. With some effort, one can prove that a greatest applicative bisimulation
exists, and that it consists of the union (at any type) of all bisimulation relations.
This is denoted as ∼ and said to be (applicative) bisimilarity. One can then
generalize ∼ to a relation ∼◦ on open terms by the usual open extension (see [2]
for more details).

318 A. Cappai and U. Dal Lago

One way to show that bisimilarity is included in context equivalence con-
sists in proving that ∼◦ is a congruence; to reach this goal one can go through
the Howe’s method [13], which works well but requires some care (see [2] for
more details). Is there any hope to get full abstraction? The answer is negative:
applicative bisimilarity is too strong to match context equivalence. A counterex-
ample to that can be built easily following the analogous one from [4].

This, however, is not the end of the story on coinductive methodologies for
context equivalence in RSLR. A different route, suggested by trace equivalence,
consists in taking the naturally definable (deterministic) labeled transition sys-
tem of term distributions and ordinary bisimilarity over it. What one obtains
this way is a precise characterization of context equivalence. There is a price to
pay however, since one is forced to reason on distributions rather than terms.
For more details, see [2].

4 From Equivalences to Metrics

The notion of observation on top of which context equivalence is defined is the
probability of evaluating to the empty string, and is thus quantitative in nature.
This suggests the possibility of generalizing context equivalence into a notion of
distance between terms:

Definition 4 (Context Distance). For every type A, we define δCA : TA
∅

×
TA

∅
→ R[0,1] as δCA(t, s) = sup	C[A]:Str|[[C[t]]](ε) − [[C[s]]](ε)|.

For every type A, the function δCA is a pseudometric1 on the space of closed terms.
Obviously, δCA(t, s) = 0 iff t and s are context equivalent. As such, then, the
context distance can be seen as a natural generalization of context equivalence,
where a real number between 0 and 1 is assigned to each pair of terms and
is meant to be a measure of how different the two terms are in terms of their
behavior. δC refers to the family {δCA}A∈A.

One may wonder whether δC, as we have defined it, can somehow be char-
acterized by a trace-based notion of metric, similarly to what have been done
in Sect. 3 for equivalences. First of all, let us define such a distance. Actually,
the very notion of a trace needs to be slightly modified: in the action view(·),
instead of observing a single string m, we need to be able to observe the action
on a finite string set M. The probability of accepting a trace in a term will be
modified accordingly: Pr(t, view(M)) = [[t]](M).

Definition 5 (Trace Distance). For every type A, we define δTA : TA
∅

× TA
∅

→
R[0,1] as δTA(t, s) = supT|Pr(t,T) − Pr(s,T)|.
It is easy to realize that if t 	T s then δTA(t, s) = 0. Moreover, δTA is itself a
pseudometric. As usual, δT denotes the family {δTA}A∈A.

But how should we proceed if we want to prove the two just introduced
notions of distance to coincide? Could we proceed more or less like in Sect. 3.1?
1 Following the literature on the subject, this stands for any function δ : A × A → R

such that δ(x, y) = δ(y, x), δ(x, x) = 0 and δ(x, y) + δ(y, z) ≥ δ(x, z).

On Equivalences, Metrics, and Polynomial Time 319

The answer is positive, but of course something can be found which plays the
role of compatibility, since the latter is a property of equivalences and not of
metrics. The way out is relatively simple: what corresponds to compatibility in
metrics is non-expansiveness (see, e.g., [8]). A notion of distance δ is said to be
non-expansive iff for every pair of terms t, s and for every context C, it holds
that δ(C[t], C[s]) ≤ δ(t, s).

The proof of non-expansiveness for δT reflects the proof of compatibility for
trace equivalence. What needs to be adapted, of course, is the notion of trace-
relatedness, which should be made parametric on a real number ε, standing for
the distance between the two context pair distributions at hand. Once we have
non-expansiveness (see [2] for more details), full abstraction is within reach. As
a corollary of non-expansiveness, one gets that:

Theorem 3 (Full Abstraction). Context distance and trace distance coincide.

One may wonder whether a coinductive notion of distance, sort of a metric ana-
logue to applicative bisimilarity, can be defined. The answer is positive [8]. It
however suffers from the same problems applicative bisimilarity has: in particu-
lar, it is not fully abstract.

5 Computational Indistinguishability

In this section we show how our notions of equivalence and distance relate to
computational indistinguishability (CI in the following), a key notion in modern
cryptography.

Definition 6. Two distribution ensembles {Dn}n∈N and {En}n∈N (where both
Dn and En are distributions on binary strings) are said to be computationally
indistinguishable iff for every PPT algorithm A the following quantity is a neg-
ligible2 function of n ∈ N: |Prx←Dn

(A(x, 1n) = ε) − Prx←En
(A(x, 1n) = ε)|.

It is a well-known fact in cryptography that in the definition above, A can
be assumed to sample from x just once without altering the definition itself,
provided the two involved ensembles are efficiently computable ([9], Theorem
3.2.6, page 108). This is in contrast to the case of arbitrary ensembles [10].

The careful reader should have already spotted the similarity between CI and
the notion of context distance as given in Sect. 4. There are some key differences,
though:

1. While context distance is an absolute notion of distance, CI depends on a
parameter n, the so-called security parameter.

2. In computational indistinguishability, one can compare distributions over
strings, while the context distance can evaluate how far terms of arbitrary
types are.

2 A negligible function is a function which tends to 0 faster than any inverse polynomial
(see [9] for more details).

320 A. Cappai and U. Dal Lago

The discrepancy Point 1 puts in evidence, however, can be easily overcome by
turning the context distance into something slightly more parametric.

Definition 7 (Parametric Context Equivalence). Given two terms t, s such
that � t, s : aStr → A, we say that t and s are parametrically context equiva-
lent iff for every context C such that � C[� A] : Str we have that |[[C[t1n]]](ε) −
[[C[s1n]]](ε)| is negligible in n.

This way, we have obtained a characterization of CI:

Theorem 4. Let t, s be two terms of type aStr → Str. Then t, s are parametric
context equivalent iff the distribution ensembles {[[t1n]]}n∈N and {[[s1n]]}n∈N are
computationally indistinguishable.

Please observe that Theorem 4 only deals with terms of type aStr → Str. The
significance of parametric context equivalence when instantiated to terms of
type aStr → A, where A is a higher-order type, will be discussed in Sect. 5.1
below. How could traces capture the peculiar way parametric context equivalence
treats the security parameter? First of all, observe that, in Definition 7, the
security parameter is passed to the term being tested without any intervention
from the context. The most important difference, however, is that contexts are
objects which test families of terms rather than terms. As a consequence, the
action view(·) does not take strings or finite sets of strings as arguments (as in
equivalences or metrics), but rather distinguishers, namely closed RSLR terms of
type aStr → Str that we denote with the metavariable D. The probability that a
term t of type Str satisfies one such action view(D) is

∑
m[[t]](m) · [[Dm]](ε).

A trace T is said to be parametrically compatible for a type aStr → A if it is
compatible for A. This is the starting point for the following definition:

Definition 8. Two terms t, s : aStr → A are parametrically trace equivalent,
and we write t 	T

n s, iff for every trace T which is parametrically compatible with
A, there is a negligible function negl : N → R[0,1] such that |Pr(t, pass(1n) · T) −
Pr(s, pass(1n) · T)| ≤ negl(n).

The fact that parametric trace equivalence and parametric context equivalence
are strongly related is quite intuitive: they are obtained by altering in a very
similar way two notions which are already known to coincide (by Theorem3).
Indeed:

Theorem 5. Parametric trace equivalence and parametric context equivalence
coincide.

The right-to-left inclusion is trivial, indeed every trace can be easily emulated
by a context. The other one, as usual is more difficult, and requires a careful
analysis of the behavior of terms depending on parameter, when put in a context.
Overall, however, the structure of the proof is similar to the one we presented
in Sect. 3.1 (see [2]).

On Equivalences, Metrics, and Polynomial Time 321

5.1 Higher-Order Computational Indistinguishability?

Theorems 4 and 5 together tell us that two terms t, s of type aStr → Str are
parametrically trace equivalent iff the distributions they denote are computa-
tionally indistinguishable. But what happens if the type of the two terms t, s
is in the form aStr → A where A is an higher-order type? What do we obtain?
Actually, the literature on cryptography does not offer a precise definition of
“higher-order” computational indistinguishability, so a formal comparison with
parametric context equivalence is not possible, yet.

Apparently, linear contexts do not capture equivalences as traditionally empl-
oyed in cryptography, already when A is the first-order type aStr → Str. A central
concept in cryptography, indeed, is pseudorandomness, which can be spelled out
for strings, giving rise to the concept of a pseudorandom generator, but also
for functions, giving rise to pseudorandom functions [14]. Formally, a function
F : {0, 1}∗ → {0, 1}∗ → {0, 1}∗ is said to be a pseudorandom function iff F (s)
is a function which is indistinguishable from a random function from {0, 1}n to
{0, 1}n whenever s is drawn at random from n-bit strings. Indistinguishability,
again, is defined in terms of PPT algorithms having oracle access to F (s). Now,
having access to an oracle for a function is of course different than having linear
access to it. Indeed, building a linear pseudorandom function is very easy: G(s)
is defined to be the function which returns s independently on the value of its
input. G is of course not pseudorandom in the classical sense, since testing the
function multiple times a distinguisher immediately sees the difference with a
truly random function. On the other hand, the RSLR term tG implementing the
function G above is such that λx.tGs is trace equivalent to a term r where:

• s is a term which produces in output |x| bits drawn at random;
• r is the term λx.q of type aStr → bStr → Str such that q returns a random

function from |x|-bitstrings to |x|-bitstrings. Strictly speaking, r cannot be an
RSLR term, but it can anyway be used as an idealized construction.

But this is not the end of the story. Sometime, enforcing linear access to
primitives is necessary. Consider, as an example, the two terms

t = λn.(λk.λx.λy.ENC (x, k))GEN (n);
s = λn.(λk.λx.λy.ENC (y, k))GEN (n);

where ENC is meant to be an encryption function and GEN is a function gen-
erating a random key. t and s should be considered equivalent whenever ENC
is a secure cryptoscheme. But if ENC is secure against passive attacks (but
not against active attacks), the two terms can possibly be distinguished with
high probability if copying is available. The two terms can indeed be proved to
be parametrically context equivalent if ENC is the cryptoscheme induced by a
pseudorandom generator (see [2] for a proof and for more details).

Summing up, parametrized context equivalence coincides with CI when instan-
tiated on base types, has some interest also on higher-order types, but is different
from the kind of equivalences cryptographers use when dealing with higher-order

322 A. Cappai and U. Dal Lago

objects (e.g. when defining pseudorandom functions). This discrepancy is mainly
due to the linearity of the contexts we consider here. It seems however very hard
to overcome it by just considering arbitrary nonlinear contexts instead of lin-
ear ones. Indeed, it would be hard to encode any arbitrary PPT distinguisher
accessing an oracle by an RSLR context: those adversaries are only required to
be PPT for oracles implementing certain kinds of functions (e.g. n-bits to n-bits,
as in the case of pseudorandomness), while filling a RSLR context with any PPT
algorithm is guaranteed to result in a PPT algorithm. This is anyway a very
interesting problem, which is outside the scope of this paper, and that we are
currently investigating in the context of a different, more expressive, probabilistic
λ-calculus.

6 Conclusions

We believe that the main contribution of this work is the new light it sheds
on the relations between computational indistinguishability, linear contexts and
traces. In particular, this approach, which is implicitly used in the literature
on the subject [16,17], is shown to have some limitations, but also to suggest a
notion of higher-order indistinguishability which could possibly be an object of
study in itself. This is indeed the main direction for future work we foresee.

References

1. Abramsky, S.: The lazy lambda calculus. In: Turner, D. (ed.) Research Topics in
Functional Programming, pp. 65–117. Addison Wesley, Boston (1990)

2. Cappai, A., Dal Lago, U.: On equivalences, metrics, and polynomial time (long
version) (2015) http://arxiv.org/abs/1506.03710

3. Crubillé, R., Dal Lago, U.: On probabilistic applicative bisimulation and call-by-
value λ-calculi. In: Shao, Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp.
209–228. Springer, Heidelberg (2014)

4. Dal Lago, U., Sangiorgi, D., Alberti, M.: On coinductive equivalences for higher-
order probabilistic functional programs. In: POPL (2014)

5. Dal Lago, U., Parisen Toldin, P.: A higher-order characterization of probabilistic
polynomial time. In: Peña, R., van Eekelen, M., Shkaravska, O. (eds.) FOPARA
2011. LNCS, vol. 7177, pp. 1–18. Springer, Heidelberg (2012)

6. Dal Lago, U., Zuppiroli, S., Gabbrielli, M.: Probabilistic recursion theory and
implicit computational complexity. Sci. Ann. Comp. Sci. 24(2), 177–216 (2014)

7. Deng, Y., Zhang, Y.: Program equivalence in linear contexts. CoRR, abs/1106.2872
(2011)

8. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labeled
markov systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol.
1664, pp. 258–273. Springer, Heidelberg (1999)

9. Goldreich, O.: The Foundations of Cryptography. Basic Techniques, vol. 1.
Cambridge University Press, New York (2001)

10. Goldreich, O., Sudan, M.: Computational indistinguishability: a sample hierarchy.
In: CCC, pp. 24–33 (1998)

http://arxiv.org/abs/1506.03710

On Equivalences, Metrics, and Polynomial Time 323

11. Hofmann, M.: A mixed modal/linear lambda calculus with applications to
bellantoni-cook safe recursion. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414,
pp. 275–294. Springer, Heidelberg (1997)

12. Hofmann, M.: Safe recursion with higher types and bck-algebra. Ann. Pure Appl.
Logic 104(1–3), 113–166 (2000)

13. Howe, D.J.: Proving congruence of bisimulation in functional programming lan-
guages. Inf. Comput. 124(2), 103–112 (1996)

14. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC Press, Boca Raton (2007)

15. Mitchell, J.C., Mitchell, M., Scedrov, A.: A linguistic characterization of bounded
oracle computation and probabilistic polynomial time. In: FOCS, pp. 725–733
(1998)

16. Nowak, D., Zhang, Y.: A calculus for game-based security proofs. In: Heng, S.-
H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol. 6402, pp. 35–52. Springer,
Heidelberg (2010)

17. Zhang, Y.: The computational SLR: a logic for reasoning about computational
indistinguishability. Mathematical Structures in Computer Science 20(5), 951–975
(2010)

Graphs, Automata, and Dynamics

Conjunctive Visibly-Pushdown Path Queries

Martin Lange1(B) and Etienne Lozes2

1 School of Electrical Engineering and Computer Science,
University of Kassel, Kassel, Germany

martin.lange@uni-kassel.de
2 LSV, ENS Cachan and CNRS, Cachan, France

Abstract. We investigate an extension of conjunctive regular path
queries in which path properties and path relations are defined by visi-
bly pushdown automata. We study the problem of query evaluation for
extended conjunctive visibly pushdown path queries and their subclasses,
and give a complete picture of their combined and data complexity.
In particular, we introduce a weaker notion called extended conjunc-
tive reachability queries for which query evaluation has a polynomial
data complexity. We also show that query containment is decidable
in 2-EXPTIME for (non-extended) conjunctive visibly pushdown path
queries.

1 Introduction

Querying is the central mechanism for extracting information from a knowl-
edge or data base. Queries have therefore been extensively studied in the fields
of knowledge representation and database theory. Some of the most important
foundational issues regarding queries and their decision problems like query eval-
uation or query containment concern the decidability, computational complexity
and — related to that — expressive power of querying languages.

Graph-structured data [14] and their querying problems occur in many appli-
cation areas such as semi-structured data the semantic web social networks
transportation networks biological networks program analysis etc [2]. A well-
established logical formalism for querying graph-structured data is the one of
conjunctive regular path queries [5,7,8]. In this formalism, queries can express
conditions on paths in the data-graph by regarding them as words over the
alphabet of relation names; it is then possible to ask for instance whether or
not there is a path whose associated word belongs to a certain regular language.
This formalism has been extended, to context-free languages [10], regular rela-
tions [4], and later to rational ones [3], yielding extended conjunctive regular path
queries. This extension allows to express rich queries, like the existence of two
paths of the same length.

The European Research Council has provided financial support under the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no 259267.

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 327–338, 2015.
DOI: 10.1007/978-3-319-22177-9 25

328 M. Lange and E. Lozes

In the formalism used by Barceló et al. [4], no two atoms in a non-extended
query may use the same path variable. Intuitively, this makes queries easier and
less expressive: they merely express reachability properties on graphs. We there-
fore suggest a new 2-dimensional nomenclature for such queries, distinguishing
path from reachability queries on one hand, and extended from non-extended
queries on the other.

Path query Reachability query

Non-extended CPQ CRQ

Extended ECPQ ECRQ

Path queries may contain multiple occurrences of path variables, reachability
queries may not. Extended queries speak about relations, non-extended ones
about languages. In the notation of Barceló et al.’s [4], their conjunctive path
queries correspond to CRQ in our setting, and their extended conjunctive path
queries are the same as ours, i.e. ECPQ.

This paper deals with issues of decidability and computational complex-
ity of extended conjunctive path queries over visibly pushdown languages
(ECPQ[VPL]). Visibly pushdown languages [1,13] form an interesting class that
lies between the regular and context-free ones because it basically has the same
closure and decidability properties as the regular ones. Our contributions regard-
ing the decidability and complexity of query evaluation and containment are the
following.

1. We show that ECPQ[VPL] query evaluation is undecidable.
2. We show that, for CPQ[VPL] and ECRQ[VPL] queries, query evaluation is

P-complete w.r.t. data complexity, thus only a bit more expensive than it is
for regular queries (NLOGSPACE).

3. We give upper and lower bounds for the combined complexity of query eval-
uation for each subclass of queries.

4. We consider the query containment problem; this problem is already unde-
cidable for extended queries in the regular case [9]. So we focus on CRQ[VPL]
queries. We show that query containment is decidable among these queries,
with a complexity upper bound of 2-EXPTIME, close to the EXPSPACE-
complete [5] complexity of query containment for CRQ[REG] queries [5,8].

2 Preliminaries

Let N denote the set of non-negative integers. As usual, Σ denotes a finite
alphabet, Σ∗ is the set of all finite words over Σ, ε is the empty word. We
assume a fixed alphabet Σ for the rest of this paper and note that the concepts
introduced herein are to be understood with respect to this alphabet but do not
depend on its actual content for as long as |Σ| ≥ 2.

Conjunctive Visibly-Pushdown Path Queries 329

Visibly-Pushdown Relations. Let ⊥ be a new symbol not occurring in Σ, and let
Σ⊥ := Σ ∪ {⊥}. Let w = (w1, . . . , wk) ∈ (Σ∗)k, where wi = ai,1 · · · ai,|wi| (and
all ai,j ∈ Σ). We define the string [w] ∈ (Σk

⊥)∗ by [w] := b1 · · · bn, where n is the
maximum of all |wi|, and bj := (bj,1, . . . , bj,k), with bj,i = ai,j if j ≤ |wi|, and
bj,i =⊥ if j > |wi|. Intuitively, [w] is obtained by aligning all wi to the left, and
padding the unfilled space with ⊥ symbols.

An alphabet Σ′ is a visibly pushdown alphabet if it is partitioned into push,
pop, and no-op symbols. A visibly-pushdown automaton [1,13] (VPA) is a non-
deterministic pushdown automaton whose stack action (push, pop, no-op) is
determined by the input letter they read, according to its type push, pop or
no-op. A k-ary relation R ⊆ (Σ∗)k is called a visibly pushdown relation if (Σk)⊥
is a visibly pushdown alphabet and {[w] | w ∈ R} is recognised by a VPA.

DB-Graphs. A Σ-labeled db-graph (db-graph for short) is a directed graph G =
(V,E), where V is a finite set of nodes, and E ⊆ V × Σ × V is a finite set of
directed edges with labels from Σ. A path ρ between two nodes v0 and vn in
G with n ≥ 0 is a sequence v0a1v1 . . . vn−1anvn with (vi, ai+1, vi+1) ∈ E for
0 ≤ i < n. We define the label λ(ρ) of the path ρ by λ(ρ) := a1 · · · an.

Extended Conjunctive Path Queries. We generalise the definition of extended
conjunctive regular path queries [4] to visibly pushdown relations. Fix a count-
able set of node variables and a countable set of path variables. Let k ≥ 1.
A k-dimensional extended conjunctive visibly pushdown path query Q is an
expression of the form

Ans(z, χ) ←
∧

1≤i≤m

(xi, πi, yi),
∧

1≤j≤l

Rj(ωj), (1)

such that m ≥ 1, l ≥ 0, and

1. there is a fixed partition of the alphabet (Σ⊥)k into push, pop, and no-op
symbols

2. each Rj is a k-dimensional visibly pushdown relation
3. x = (x1, . . . , xm) and y = (y1, . . . , ym) are tuples of (not necessarily distinct)

node variables,
4. π = (π1, . . . , πm) is a tuple of distinct path variables,
5. ω1, . . . , ωl are tuples of path variables, such that each ωj is a tuple of variables

from π, of the same arity as Rj ,
6. z is a tuple of node variables among x, y, and
7. χ is a tuple of path variables among those in π.

The expression Ans(z, χ) is the head, and the expression to the right of ← is
the body of Q. If z and χ are the empty tuple (i. e., the head is of the form
Ans()), Q is a Boolean query. The relational part of Q is

∧
1≤i≤m(xi, πi, yi),

and the labeling part is
∧

1≤j≤l Rj(ωj). We denote the set of node variables in
Q by nvar(Q). The size of the query is defined as m +

∑
1≤i≤n |Ri|, where |Ri|

denotes the size (number of states and transitions) of the VPA representing the
relation Ri.

330 M. Lange and E. Lozes

ECPQ[VPL] will denote the class of all extended conjunctive visibly push-
down path queries, and CPQ[VPL] will denote the class of queries of dimension
k = 1. A query is called an extended reachability query if ωi ∩ ωj = ∅ for
i �= j, in other words if every path variable occurs at most in one relation con-
straint. In that case, we abbreviate R(x,y) for (x,ω,y) ∧ R(ω). ECRQ[VPL]
will denote the class of extended visibly pushdown reachability queries. Finally,
we write ECPQ[REG] for the class of extended conjunctive regular path queries,
i.e. extended path queries where all relations are regular.

Example 1. Let L0 := {anbn ∈ Σ∗ | n ≥ 0}, L = L∗
0, and R = {(w1, w2) ∈ L×L |

w1 �= w2}. The query Ans(x, y) ← (x, π, y) ∧ L∗(π) is a CRQ[VPL] query. The
query Ans(x, y) ← (x, π1, y)∧ (x, π2, y)∧R(π1, π2) is an ECRQ[VPL] query that
would be hard to express as a CRQ[VPL] query or an ECPQ[REG] query. Finally,
the query Ans(x, y) ← (x, π1, y) ∧ (x, π2, y) ∧ (x, π3, y3) ∧ R(π1, π2) ∧ R(π1, π3) ∧
R(π2, π3) is an ECPQ[VPL] query.

Remark 1. Since visibly pushdown languages are closed under intersection, every
CPQ[VPL] query is equivalent to a CRQ[VPL] query.

Query Evaluation and Query Containment. The evaluation Q(G) of a query Q
over a db-graph G is intuitively obtained by interpreting all variables as quan-
tified existentially, and path constraints as constraints on the words formed by
the labels along the paths. Formally, for every db-graph G, every ECPQ[VPL]
query Q (of the form described in (1)), every mapping σ from the node variables
of Q to nodes in G, and every mapping μ from the path variables of Q to paths
in G, we write G, σ, μ |= Q if

1. μ(πi) is a path from σ(xi) to σ(yi) for every 1 ≤ i ≤ m,
2. for each ωj = (πj1 , . . . , πjk), 1 ≤ j ≤ l, the tuple (λ(μ(πj1)), . . . , λ(μ(πjk)))

belongs to the relation Rj .

We define the output of Q on G as

Q(G) := { (
σ(z), μ(χ)

) | G, σ, μ |= Q }.

The query Q is contained in the query Q′ if Q(G) ⊆ Q′(G) for all db-graphs G.
The problem of query evaluation is: given a Boolean query Q and a db-graph

G over the same underlying alphabet, decide whether or not Q(G) = {()}, or in
other words, whether there are σ, μ such that G, σ, μ |= Q. We distinguish the
combined complexity from the data complexity. The former considers both Q and
G to be the input, the latter considers the query to be fixed and measures the
complexity of query evaluation only in terms of the size of the db-graph G. For
complexity considerations we focus on the decision problem of query evaluation
for Boolean queries, but in general, when this problem is decidable, it is possible
to compute a representation of the output of a query.

3 The Complexity of Evaluating CPQ[VPL] Queries

We address the problem of evaluation of both CPQ[VPL] and CRQ[VPL] queries
w.r.t. combined and data complexity. First note that, since every CPQ[VPL]

Conjunctive Visibly-Pushdown Path Queries 331

query can be converted into a CRQ[VPL] query, the data complexity of query
evaluation is the same for these two formalisms. It can also be noticed that, for a
given db-graph G, a CRQ[VPL] query Q, and a mapping σ, the model-checking
problem G, σ |= Q can be solved in polynomial time. Indeed, for two variables
x, y, the language L(σ(x), σ(y)) of all paths from σ(x) to σ(y) is recognized by
a NFA of size |G|, and G satisfies the atom (x,L, y) iff L ∩ L(σ(x), σ(y)) is not
empty. Since G, σ |= Q can be decided in polynomial time, the data complexity
of query evaluation is PTIME – the enumeration of all possible σ takes time
O(|G||nvars(Q)). This upper bound is actually tight.

Theorem 1. Evaluating CRQ[VPL] queries is P-complete (data complexity).

Proof. For a natural number n let bin(n) denote its binary representation using
a special symbol to mark the end of the code, e.g. bin(13) = 1101 $. Let

←−
bin(n)

be its representation in reverse order using different symbols, i.e.
←−
bin(13) =

$′1′0′1′1′. Finally, let # be an extra symbol. It is not hard to see that the
language L0 described recursively by

L′
0 = set + or {bin(n)L′

0

←−
bin(n) | n ∈ N} +

(
and {bin(n)L′

0

←−
bin(n) | n ∈ N})2

as well as L0 := #L′
0 is a VPL over the visibly pushdown alphabet with push-

symbols $, 1, 0, pop-symbols $′, 1′ 0′ and no-op symbols #, set, or, and.
We present a logspace reduction from the Circuit Value Problem, known to be

P-complete [12], to the problem of evaluating the query Ans() ← (x, π, x)∧L0(π).
We informally describe how to turn a circuit C into a db-graph GC . W.l.o.g. we
can assume that every internal gate in C has fan-in exactly 2, and is identified
by a unique number i.

Every input gate that is set to 0 becomes a single node . Every input
gate that is set to 1 becomes a node The OR-gate with number i and the
AND-gate with number i are translated as the filled nodes below

assuming the non-filled nodes represent the nodes associated to the inputs of
these gates, and the gray node is a local auxiliary node. Additionally, we append
a loop labeled with # to the output gate of the circuit. Note that this is a
logspace reduction.

Now we have Q0(GC) = true iff there is a path starting and ending in the
output gate’s node that traverses through the graph such that in every OR-gate
node it continues to one successor, and in every AND-gate node it traverses first
through one input gate and then, after coming back to it goes through the other
successor. The path can only traverse through input gates that are 1. Thus, this
is the case iff the circuit evaluates to 1. �

332 M. Lange and E. Lozes

We now consider the combined complexity of query evaluation. Note that even
if a CPQ[VPL] query can be converted into an equivalent CRQ[VPL] query,
the original query might be exponentially more concise, so the two families of
queries might have different combined complexities – and indeed, they do. Con-
sider first evaluating a CRQ[VPL] query Q. Since G, σ |= Q can be decided in
polynomial time and σ can be guessed in polynomial time, query evaluation is
in NP. Moreover, query evaluation is NP-hard for basic conjunctive queries [6].
As a consequence, CRQ[VPL] query evaluation is NP-complete wrt combined
complexity. The situation is rather different for CPQ[VPL] queries.

Theorem 2. Evaluating CPQ[VPL] queries is EXPTIME-complete (combined
complexity).

Proof. The emptiness of the intersection of a family of VPAs is EXPTIME-
complete due to the EXPTIME-completeness of the emptiness problem of a
familiy of tree automata. We show that this is also equivalent to CPQ[VPL]
query evaluation upto logspace reductions. Assume first a fixed query Q in the
form of a conjunct of k queries Q1, . . . , Qk with Qi of the form (xi, πi, yi) ∧
Li,1(πi) ∧ · · · ∧ Li,n(πi). Then, for every db-graph G and mapping σ, G, σ |= Q
iff L(σx, σy) ∩ Li,1 ∩ . . . Li,n �= ∅ for all i = 1, . . . , k, which shows the upper
bound. Conversely, if L1, . . . , Ln is a family of visibly pushdown languages, and
if G is the graph restricted to a single node with a self loop labeled with Σ, then
G |= (x, π, x) ∧ L1(π) ∧ · · · ∧ Ln(π) iff L1 ∩ · · · ∩ Ln �= ∅. �

4 The Complexity of Evaluating ECPQ[VPL] Queries

We now address the complexity of evaluating extended queries. We just saw that
reachability and path queries are equally expressive in the non-extended case.
In the extended setting, however, reachability and path queries have important
differences. Let us first consider the richest language of extended path queries.

Theorem 3. Evaluating ECPQ[V PL] is undecidable for dimension 2 and two
path constraints (data and combined complexity).

In other words, there is a query Q ∈ ECPQ[VPL] containing two two-dimensional
relations R1, R2 ⊆ (Σ2

⊥)∗, such that query evaluation for Q is undecidable. Note
that according to the definition of ECPQ[VPL], Σ2

⊥ is partitioned into the same
visibly pushdown alphabet for R1 and R2, and note moreover that the query Q
is fixed.

Proof. We claim that there are two visibly pushdown languages L1, L2 over
two visibly pushdown alphabet Σ1, Σ2 containing the same symbols, but with
different associated operations, such that the word problem for L0 := {w |
there is v with wv ∈ L1 ∩L2} is undecidable. Indeed, it is folklore that for every
Turing machine M , there are pushdown languages L1, L2 such that L1 ∩ L2 is
the set of runs of M coded as words, and L0 can be defined as the set of inputs
accepted by a universal Turing machine M .

Conjunctive Visibly-Pushdown Path Queries 333

Now we reduce this problem to the problem of evaluating a fixed ECPQ[VPL]
query. Let Σ′ := Σ ∪ {$,
} with the two symbols not occurring in Σ. A symbol
($, a) of (Σ′

⊥)2 is a push (resp. pop, remain) symbol if a is a push (resp. pop,
remain) symbol in L1. Similarly, (#, a) is a push (resp. pop, remain) symbol if a
is a push (resp. pop, remain) symbol in L2. w = a1 . . . an ∈ Σ∗. The fixed query
we consider is Q =

Ans() ← (x, π, y) ∧ (x, π$, x) ∧ (y, π#, y) ∧ (L1 × $∗)(π, π$) ∧ (L2 × #∗)(π, π#).

Now, for every db-graph G of the form

it is not hard to see that w ∈ L0 iff Q(G) = true. �
We now turn our attention to extended reachability queries. Evaluating an
ECRQ[VPL] query of dimension k over a db-graph G is equivalent to evaluating
a CRQ[VPL] query over Gk, which shows by Theorem 1 that the combined com-
plexity of evaluating ECRQ[VPL] queries also is in EXPTIME. The same remark
shows that the problem is in PTIME w.r.t. data complexity, and even P-complete
by Theorem 1. For the combined complexity, we have get EXPTIME-hardness.
The proof relies on EXPTIME-hardness of the following decision problem
VpaDfaISect.

– INPUT: a VPA A, and arbitrarily many DFAs A1, . . . ,An

– QUESTION: is L(A) ∩ L(A1) ∩ · · · ∩ L(An) empty?

Lemma 1. VpaDfaISect is EXPTIME-hard.

Proof. By a reducton the problem to decide whether or not the intersection
of the languages of given top-down tree automata (TA) A1, . . . ,An over some
alphabet Σ is empty. This is known to be EXPTIME-hard [15]. For the sake of
simplicity we assume that all the TA share a common state space Q, transition
function δ and acceptance set F ⊆ Q. The n different TA are then simply given
by n different initial states qI

1 , . . . , q
I
n. W.l.o.g. we furthermore assume that the

underyling alphabet Σ has binary symbols a,b and a unique leaf symbol c, and
that trees have height (number of nodes) at least 2.

Next we consider a particular encoding of trees t with node labels of the
form Σ × Qn as a word rep(t) over the alphabet Σ̂ = {−−−→

(x, y),
←−−−
(x, y) | x, y ∈ Σ or

x, y ∈ Q}. This can easily be done by induction on the structure of t. If t is the
single-leaf tree with Σ-label c and any label from Qn then rep(t) is the empty
word. If t is of the form

334 M. Lange and E. Lozes

and t′ and t′′ are the left and right subtrees starting with y and z respectively,
then we have

rep(t) =
−−→(

x
y

)−−−→(
q1
p1

)

. . .
−−−→(

qn

pn

)

rep(t′)
←−−−(

qn

pn

)

. . .
←−−−(

q1
p1

)←−−(
x
y

)−−→(
x
z

)−−−→(
q1
r1

)

. . .
−−−→(

qn

rn

)

rep(t′′)
←−−−(

qn

rn

)

. . .
←−−−(

q1
r1

)←−−(
x
z

)

It should be clear that the language {rep(t) | t is a Σ × Qn-labelled tree} is
recognisable by a VPA B over the visibly pushdown alphabet with push-symbols
of the form

−−→
(·, ·), pop-symbols of the form

←−−
(·, ·) and no internal symbols. It uses

Σ̂ as the stack alphabet and can then easily check the symmetries in the given
word. It needs n + 1 states to check that the length of each segment encoding
a node label is n + 1 while it pushes such an encoding onto the stack, and one
more state in which it pops such an encoding and compares it to the

←−−
(·, ·)-parts

of the word.
It remains to be seen that on such words a DFA Bi can check whether or

not the labelling in the i-th component of the state tuple forms an accepting
run of the TA Ai on the tree given by the Σ-labels. We describe its behaviour
informally, using the term segment to denote each part of length n + 1 in such
a word that enocdes the labels of two consecutive nodes in the tree.

1. It discards if the symbol at position i+1 of the entire word is not of the form−−−→
(qI

i , ·), i.e. the run does not start in the initial state. Otherwise it continues.
2. On a −→· -segment it remembers the symbol

−−−→
(q, p) at position i + 1. If this

segment is followed by another −→· -segment then it discards this information
and continues. Otherwise the second components in this segment encode the
label of a leaf node, and Bi discards if p �∈ F . Otherwise it continues.

3. On a ←−· -segment it remembers the symbols
←−−−
(q, p) and

←−−−
(a, b) at positions n+1−i

and n + 1. If this segment is followed by another ←−· -segment then it discards
this information because this segment encodes the labels on a node and its
right child. Otherwise this segment is followed by a −→· -segment, and these two
encode the labels on a node with Σ-label a and its two children. Bi then also
reads the symbol

−−−→
(q′, r) at position i of this successor segment and discards

if q �= q′ or (p, r) �∈ δ(q, a). Otherwise it continues reading the next segment.

It should be clear that each Bi only needs polynomial size in Ai and n. Moreover,
we get that L(B) ∩ ⋂n

i=1 L(Bi) �= ∅ iff there is a word rep(t) in this intersection
which encodes a Σ ×Qn-labelled tree such that the (i+1)-st components of the
labels form an accepting run of the TA Ai on the tree given by the Σ-labels.
This is the case iff

⋂n
i=1 L(Ai) �= ∅. �

Theorem 4. Evaluating ECRQ[VPL] queries is EXPTIME-hard (combined
complexity).

Proof. By a reduction from VpaDfaISect. Let A be a VPA and A1, . . . ,An

be n DFAs. We then construct a db-graph GA1,...,An
as their disjoint union and

add a self-loop labeled with a new symbol starti to every starting state in Ai as

Conjunctive Visibly-Pushdown Path Queries 335

well as a self-loop labeled with a new symbol end to each of its final states. Then
consider the n-ary relation

Rn =

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

start1
...

startn

⎞

⎟
⎠

⎛

⎜
⎝

w
...
w

⎞

⎟
⎠

⎛

⎜
⎝

end
...

end

⎞

⎟
⎠ | w ∈ L(A)

⎫
⎪⎬

⎪⎭
.

Note that it can be recognised by a VPA A′ of linear size in the size of A. Then
L(A) ∩ ⋂n

i=1 L(Ai) �= ∅ iff GA1,...,An
|= ∧n

i=1(xi, πi, yi) ∧ Rn(π1, . . . , πn). �

5 Query Containment

We now consider the problem of query containment. For ECRQ[REG] (extended
conjunctive regular reachabilty queries), Freydenberger and Schweikardt showed
that this problem is undecidable. In the remainder, we focus on query contain-
ment for CRQ[VPL] queries where no path variables occur in the head. That is,
we consider the problem Q1 ⊆ Q2 for two CRQ[VPL] queries Q1, Q2 of the form
Qh =

Ans(z1, . . . , zn) ←
∧

i=1...mh

(xh,i, Lh,i, yh,i).

Note that the distinguished variables z1, . . . , zn are the same for the two queries.
We assume that these are the only variables shared by the queries – the non-
distinguished variables are assumed properly renamed. We also assume that the
languages Lh,i are recognised by VPAs working with a fixed visibly pushdown
alphabet Σ. The set Vi := nvars(Qi) is the set of all variables of Qi. A tuple
G = (V,E, σ) is a canonical candidate of Q1 if σ : V1 → V and G is the union
of m1 cycle-free paths π1, . . . , πn, one for each conjunct of Q1, such that πi goes
from σ(xi) to σ(yi). A canonical candidate of Q1 is a canonical model of Q1

if moreover λ(πi) ∈ L1,i. In particular, if G is a canonical model of Q1, then
σ(z) ∈ Q1(G). The following result has been proved in several places, see for
instance [11].

Lemma 2. Q1 ⊆ Q2 iff for all canonical model G = (V,E, σ) of Q1, there
is σ′ : V2 → V such that G, σ′ |= Q2 and σ(z) = σ′(z) for all distinguished
variables z.

We now follow the automata-based approach [5] for deciding query containment.
The main idea of this approach is that canonical db-graphs can be represented
by means of words. To every canonical db-graph G = (V,E, σ), we associate the
word wG := $d1w1d

′
1$d2w2d

′
2$. . . $dm1wm1d

′
m1

$ where the new symbol $ �∈ Σ
acts as a separator and d1, d

′
1, . . . , dm1 , d

′
m1

range over D1 := 2V1 . The i-th block
of wG contains $diwid

′
i$ if di = σ−1(σ(x1,i)), d′

i = σ−1(σ(y1,i)), and wi labels the
path associated to the atom (x1,i, L1,i, y1,i). In the extended visibly pushdown
alphabet Σ ∪ {$} ∪ D1, the symbols $ and D1 are considered no-op symbols.

Lemma 3. Let Q1 be a query of size n. Then L(Q1) := {wG | G is a canonical
model of Q1} is recognised by a VPA with 2O(n log n) states.

336 M. Lange and E. Lozes

Proof. Let Lpart be the language of words w over Σ ∪ {$} ∪ D1 such that the set
of D1 symbols of w define a partition of D1. Then Lpart is recognised by an NFA
that guesses the partition P of V1 and then checks that the set of D1 symbols of
w is P . Since there are 2O(|V1| log(|V1|)) different partitions of V1, the automaton
is of size 2O(n log n).

Let {x}↑ denote the set of D1 symbols d such that x ∈ d. The language
Lquery := ${x1}↑L1,1{y1}↑$. . . ${xm1}↑L1,m1{ym1}↑$ is recognised by a VPA
with O(|Q1|) states. Since L(Q1) = Lpart ∩ Lquery, this shows the result.

Let G = (V,E, σ) be a canonical db-graph of Q1, and let σ′ : V1 ∪ V2 → V be
an extension of σ. The pair (G, σ′) can be represented as a word wG,σ′ over the
alphabet Σ ∪$∪D2 with D2 := 2V1∪V2 following the same idea as before, except
that now symbols d ∈ D2\1 := 2V2\V1 can occur anywhere – a variable x ∈ V2\V1

can be mapped to a node σ′(x) that is not in the image of σ. Let π2→1 be the
substitution that sends d ∈ D2 to d ∩ V1 if d ∩ V1 �= ∅, ε otherwise. Note that
if L is definable by a VPA, then π2→1(L) is definable by a VPA, because π2→1

only changes or erases no-op symbols.
Let L(Q2|Q1) be the set of words wG,σ′ such that G, σ′ |= Q2 and G is a

canonical candidate for Q1. Then, by virtue of Lemma 3, Q1 ⊆ Q2 iff L(Q1) ⊆
π2→1(L(Q2|Q1)).

Example 2. Consider the query Q1 whose unique canonical model is the graph
G such that wG = ${x1}aa{y1}${x2}cc{y2}${y1}b{x2}$. Let Q2 be the query
(x, abc, z). Then G, σ′ |= Q2 for σ′ such that wG,σ′ =

${x1}a{x}a{y1}${x2}c{z}c{y2}${y1}b{x2}$,

so Q1 ⊆ Q2 (assuming G is the unique canonical model of Q1).

As seen in the example above, it is not straightforward to recognise L(Q2|Q1)
with a VPA, because checking the atom (x,L, y) requires an L-path to be guessed
that might be coded in different blocks, in any order, and the extremities of this
path can be at intermediate positions inside some blocks. This motivates the
following definition.

Definition 1. A jumping visibly pushdown automaton (JPA) over a visibly
pushdown alphabet Σ is a tuple A = (Q,Γ, δ, qI , F, J) such that (Q,Γ, δ, qI , F) is
a VPA and J ⊆ Q is a set of jumping states.

Intuitively, a JPA reads a word on a tape from left to right managing the stack
as usual, but when it enters a jumping state, the head of the tape can instanta-
neously move to any position, while erasing the content of the stack. Formally, a
configuration of the run of a jumping VPA over a nested word w ∈ Σ∗ is a tuple
(q, s, i) ∈ Q×Γ∗ ×{1, . . . , |w|}; it is accepting if q ∈ F . The configuration (q, s, i)
leads to the configuration (q′, s′, i′), (q, s, i) �w (q′, s′, i′), if there is a transition
from (q, a, α, q′) ∈ δ such that a is the i-th symbol of w, α is some stack action
that transforms s into α(s), and either i′ = i + 1 and s′ = α(s), or q′ ∈ J and
s′ = ⊥. A nested word w is accepted if (qI ,⊥, 1) �∗

w (q, s, i) for some accepting
configuration (q, s, i).

Conjunctive Visibly-Pushdown Path Queries 337

Lemma 4. L(Q2|Q1) is recognised by a JPA with O(|Q1| + |Q2|) states.

Proof. We first assume that Q2 contains only one atom (x,L, y). Let A =
(Q,Σ, δ, qI , F) be the VPA representing L. We informally define a JPA B that
accepts wG,σ′ iff G, σ′ |= (x,L, y). In the first step, the automaton jumps any-
where in the word. Then it checks that the symbol it reads is a D2 symbol d that
contains x, and start running A. When it meets a D2 symbol d, it may jump
anywhere else provided the next symbol it will read is a D2 symbol d′ such that
d ∩ d′ ∩ V1 �= ∅. It accepts when it reads a symbol d that contains y.

Clearly, if wG,σ′ is accepted by B, the piece of wG over which B ran
corresponds to a path satisfying the atom (x,L, y). Conversely, assume that
G, σ′ |= (x,L, y). Then there is a word w1w2 . . . wn in L and blocks indices
i1, . . . , in such that w1 is a suffix of the word of i1th block of wG,σ′ , w2, . . . , wn−1

are the words of the blocks i2, . . . , in−1, and wn is a prefix of the word of the inth
block. To ensure that an accepting run of A over w1w2 . . . wn can be mimicked
by an accepting run of B, it must be checked that the wi are well nested, so that
it does not harm to erase the stack when jumping. For k = 2, . . . n − 1, wk is
well-nested because it belongs to the visibly pushdown language L1,ik , and w1

and wn are also well-nested because they are prefixes of well-nested words of L
and L1,in respectively.

Let us assume now that Q2 is
∧n

i=1(xi, Li, yi), and let Bi be the JPA asso-
ciated to the ith atom following the previous construction. Then we define
B as the automaton that executes B1, then B2, . . . , then Bn. Clearly |B| =
O(|B1| + · · · + |Bn|) and L(B) =

⋂n
i=1 L(Bi), which shows the result. �

Observe now that if a JPA has an accepting run over a word w, then it has
an accepting run over w with at most |J | jumps, where J is its set of jumping
states. This leads to the following result.

Lemma 5. For every JPA A with n states, there is a VPA B such that L(A) =
L(B) and |B| = 2O(n log n).

Proof. Let A be a fixed JPA. Observe that if A has an accepting run over a
word w, then it has an accepting run with at most |J | jumps, where J is the
set of jumping states. Indeed, if during a run A jumps in jumping state q from
position i1 to position j1 and later from i2 to j2 in the same jumping state q,
then a shorter run is obtained by jumping from i1 to j2 directly.

Consider a sequence S = (q1, q′
1)(q2, q

′
2) . . . (q|S|, q′

|S|) of |S| ≤ n pairs of
set of states of A. We say that S is accepting if q1 is the initial state, q′

|S| is
accepting, and q′

i = qi+1 ∈ J for each i = 1, . . . , |S|−1. There are thus 2O(n log n)

accepting sequences. For a fixed sequence S, and for each i = 1, . . . , |S|, there
is a VPA AS,i with O(n) states that accepts a word w iff w contains a factor
w′ and there is a run of A from qi to q′

i over w′. There is also a VPA AS that
accepts

⋂n
i=1 L(AS,i) and such that |AS | = 2O(n log n). Let B be the automaton

that accepts
⋃ {L(AS) | S is an accepting sequence}. Then L(B) = L(A) and

|B| = 2O(n log n).

338 M. Lange and E. Lozes

To sum up, Lemmas 4 and 5 show that L(Q2|Q1) can be recognised by a VPA of
exponential size, and so can L(Q1) (Lemma 3). Language inclusion between two
VPAs can be decided in exponential time, so the inclusion L(Q1) ⊆ L(Q2|Q1)
can be decided in 2-EXPTIME.

Theorem 5. Containment for CRQ[VPL] queries is decidable in 2-EXPTIME.

Acknowledgments. We would like to thank Nicole Schweikardt for introducing the
world of conjunctive path queries to us and for some interesting discussions on that
topic.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the
STOC 2004, pp. 202–211. ACM (2004)

2. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv.
40(1), 1–39 (2008)

3. Barceló, P., Figueira, D., Libkin, L.: Graph logics with rational relations. Logical
Methods Comput. Sci. 9(3:1), 1–44 (2013)

4. Barceló, P., Libkin, L., Lin, A.W., Wood, P.T.: Expressive languages for path
queries over graph-structured data. ACM Trans. Database Syst. 37(4), 31 (2012)

5. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Containment of con-
junctive regular path queries with inverse. In: Proceedings of the KR 2000, pp.
176–185. Morgan Kaufmann (2000)

6. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational databases. In: Proceedings of the STOC 1977, pp. 77–90 (1977)

7. Deutsch, A., Tannen, V.: Optimization properties for classes of conjunctive regular
path queries. In: Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397, pp.
21–39. Springer, Heidelberg (2002)

8. Florescu, D., Levy, A.Y., Suciu, D.: Query containment for conjunctive queries
with regular expressions. In: Proceedings of the PODS1998, pp. 139–148 (1998)

9. Freydenberger, D., Schweikardt, N.: Expressiveness and static analysis of extended
conjunctive regular path queries. J. Comp. Syst. Sci. 79(6), 892–909 (2013)

10. Hellings, J.: Conjunctive context-free path queries. In: Proceedings of the 17th
International Conference on Database Theory (ICDT), pp. 119–130. Athens,
Greece, 24–28 March 2014

11. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satis-
faction. In: Proceedings of the PODS 1998, pp. 205–213. ACM (1998)

12. Ladner, R.E.: The circuit value problem is log-space complete for P . SIGACT
News 6(2), 18–20 (1975)

13. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL-recognition.
In: Proceedings of the ICALP 1980, vol. 85 of LNCS, pp. 422–435. Springer (1980)

14. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases.
In: Proceedings of the VLDB 1989, pp. 185–193. Morgan Kaufmann (1989)

15. Seidl, H.: Deciding equivalence of finite tree automata. SIAM J. Comput. 19(3),
424–437 (1990)

On the Power of Color Refinement

V. Arvind1, Johannes Köbler2(B), Gaurav Rattan1, and Oleg Verbitsky2,3

1 The Institute of Mathematical Sciences, Chennai 600 113, India
{arvind,grattan}@imsc.res.in

2 Institut für Informatik, Humboldt Universität zu Berlin, Berlin, Germany
{koebler,verbitsk}@informatik.hu-berlin.de

3 On leave from the Institute for Applied Problems of Mechanics
and Mathematics, Lviv, Ukraine

Abstract. Color refinement is a classical technique used to show that
two given graphs G and H are non-isomorphic; it is very efficient,
although it does not succeed on all graphs. We call a graph G amenable
to color refinement if the color-refinement procedure succeeds in distin-
guishing G from any non-isomorphic graph H. Babai, Erdős, and Selkow
(1982) have shown that random graphs are amenable with high probabil-
ity. We determine the exact range of applicability of color refinement by
showing that amenable graphs are recognizable in time O((n+m) logn),
where n and m denote the number of vertices and the number of edges
in the input graph.

1 Introduction

The well-known color refinement (also known as naive vertex classification) pro-
cedure for Graph Isomorphism works as follows: it begins with a uniform coloring
of the vertices of two graphs G and H and refines the vertex coloring step by step.
In a refinement step, if two vertices have identical colors but differently colored
neighborhoods (with the multiplicities of colors counted), then these vertices get
new different colors. The procedure terminates when no further refinement of the
vertex color classes is possible. Upon termination, if the multisets of vertex colors
in G and H are different, we can correctly conclude that they are not isomorphic.
However, color refinement sometimes fails to distinguish non-isomorphic graphs.
The simplest example is given by any two non-isomorphic regular graphs of the
same degree with the same number of vertices. Nevertheless, color refinement
turns out to be a useful tool not only in isomorphism testing but also in a number
of other areas; see [9,12,17] and references there.

For which pairs of graphs G and H does the color refinement procedure
succeed in solving Graph Isomorphism? Mainly this question has motivated the
study of color refinement from different perspectives.

This work was supported by the Alexander von Humboldt Foundation in its research
group linkage program. The second author and the fourth author were supported by
DFG grants KO 1053/7-2 and VE 652/1-2, respectively.

c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 339–350, 2015.
DOI: 10.1007/978-3-319-22177-9 26

340 V. Arvind et al.

Immerman and Lander [10], in their highly influential paper, established a
close connection between color refinement and 2-variable first-order logic with
counting quantifiers. They show that color refinement distinguishes G and H if
and only if these graphs are distinguishable by a sentence in this logic.

A well-known approach to tackling intractable optimization problems is to
consider an appropriate linear programming relaxation. A similar approach to
isomorphism testing, based on the notion of a fractional isomorphism (introduced
by Tinhofer [18] using the term doubly stochastic isomorphism), turns out to
be equivalent to color refinement. Building on Tinhofer’s work [18], it is shown
by Ramana, Scheinerman and Ullman [16] (see also Godsil [8]) that two graphs
are indistinguishable by color refinement if and only if they are fractionally
isomorphic.

We say that color refinement applies to a graph G if it succeeds in distinguish-
ing G from any non-isomorphic H. A graph to which color refinement applies is
called amenable. There are interesting classes of amenable graphs:

1. An obvious class of graphs to which color refinement is applicable is the class
of unigraphs. Unigraphs are graphs that are determined up to isomorphism
by their degree sequences; see, e.g., [5,19].

2. Trees are amenable (Edmonds [6,20]).
3. It is easy to see that all graphs for which the color refinement procedure

terminates with all singleton color classes (i.e. the color classes form the
discrete partition) are amenable. Babai, Erdös, and Selkow [2] have shown
that a random graph Gn,1/2 has this property with high probability. Moreover,
the discrete partition of Gn,1/2 is reached within at most two refinement steps.
This implies that graph isomorphism is solvable very efficiently in the average
case (see also [3]).

Our Contribution. What is the class of graphs to which color refinement
applies? The logical and linear programming based characterizations of color
refinement do not provide any efficient criterion answering this question.

We aim at determining the exact range of applicability of color refinement.
We find an efficient characterization of the entire class of amenable graphs,
which allows for a quasilinear-time test whether or not color refinement applies
to a given graph. This result is shown in Sect. 5, after we unravel the structure of
amenable graphs in Sects. 3 and 4. We note that a weak a priori upper bound for
the complexity of recognizing amenable graphs is coNPGI[1], where the superscript
means the one-query access to an oracle solving the graph isomorphism problem.
To the best of our knowledge, no better upper bound was known before.

Combined with the Immerman-Lander result [10] mentioned above, it follows
that the class of graphs definable by first-order sentences with 2 variables and
counting quantifiers is recognizable in polynomial time.

Related Work. In an accompanying paper [1], we use our characterization of
amenable graphs to prove that the polytope of fractional automorphisms of an
amenable graph is integral. A characterization of amenable graphs similar to that

On the Power of Color Refinement 341

in the present paper has been suggested independently by Kiefer, Schweitzer, and
Selman [13]. Moreover, they obtain a generalization of this result to arbitrary
relational structures (which includes, in particular, directed graphs).

Notation. The vertex set of a graph G is denoted by V (G). The vertices adjacent
to a vertex u ∈ V (G) form its neighborhood N(u). A set of vertices X ⊆ V (G)
induces a subgraph of G, that is denoted by G[X]. For two disjoint sets X and Y ,
G[X,Y] is the bipartite graph with vertex classes X and Y formed by all edges
of G connecting a vertex in X with a vertex in Y . The vertex-disjoint union of
graphs G and H will be denoted by G + H. Furthermore, we write mG for the
disjoint union of m copies of G. The bipartite complement of a bipartite graph
G with vertex classes X and Y is the bipartite graph G′ with the same vertex
classes such that {x, y} with x ∈ X and y ∈ Y is an edge in G′ if and only if it
is not an edge in G. We use the standard notation Kn for the complete graph
on n vertices, Ks,t for the complete bipartite graph whose vertex classes have s
and t vertices, and Cn for the cycle on n vertices.

2 Basic Definitions and Facts

Throughout the paper, we consider vertex-colored graphs. A vertex-colored graph
is an undirected simple graph G endowed with a vertex coloring c : V (G) →
{1, . . . , k}. Isomorphisms between vertex-colored graphs are required to preserve
vertex colors. We get usual graphs when c is constant.

Given a graph G, the color-refinement algorithm (to be abbreviated as CR)
iteratively computes a sequence of colorings Ci of V (G). The initial coloring C0

is the vertex coloring of G, i.e., C0(u) = c(u). Then,

Ci+1(u) =
(
Ci(u),

{{
Ci(a) : a ∈ N(u)

}})
, (1)

where {{. . .}} denotes a multiset.
The partition Pi+1 of V (G) into the color classes of Ci+1 is a refinement

of the partition Pi corresponding to Ci. It follows that, eventually, Ps+1 = Ps

for some s; hence, Pi = Ps for all i ≥ s. The partition Ps is called the stable
partition of G and denoted by PG.

Given a partition P of the vertex set of a graph G, we call its elements cells.
We call P equitable if:

(i) Each cell X ∈ P is monochromatic, i.e., all vertices u, v ∈ X have the same
color c(u) = c(v).

(ii) For any cell X ∈ P the graph G[X] induced by X is regular, that is, all
vertices in G[X] have equal degrees.

(iii) For any two cells X,Y ∈ P the bipartite graph G[X,Y] induced by X and
Y is biregular, that is, all vertices in X have equally many neighbors in Y
and vice versa.

It is easy to see that the stable partition of G is equitable; our analysis in the
next section will make use of this fact.

A straightforward inductive argument shows that the colorings Ci are pre-
served under isomorphisms.

342 V. Arvind et al.

Lemma 1. If φ is an isomorphism from G to H, then Ci(u) = Ci(φ(u)) for
any vertex u of G.

Lemma 1 readily implies that, if graphs G and H are isomorphic, then
{{

Ci(u) : u ∈ V (G)
}}

=
{{

Ci(v) : v ∈ V (H)
}}

(2)

for all i ≥ 0. When used for isomorphism testing, the CR algorithm accepts two
graphs G and H as isomorphic exactly when the above condition is met on input
G + H. Note that this condition is actually finitary: If Equality (2) is false for
some i, it must be false for some i < 2n, where n denotes the number of vertices
in each of the graphs. This follows from the observation that the partition P2n−1

induced by the coloring C2n−1 must be the stable partition of the disjoint union
of G and H. In fact, Equality (2) holds true for all i if it is true for i = n; see,
e.g., [15]. Thus, it is enough that CR verifies (2) for i = n.

Note that computing the vertex colors literally according to (1) would lead
to an exponential growth of the lengths of color names. This can be avoided
by renaming the colors after each refinement step. Then CR never needs more
than n color names (appearance of more than n colors is an indication that the
graphs are non-isomorphic).

Definition 2. We call a graph G amenable if for every graph H, procedure CR
works correctly on the input pair G and H. That is, Equality (2) is false for
i = n whenever H �∼= G.

3 Local Structure of Amenable Graphs

Consider the stable partition PG of an amenable graph G. The following lemma
gives a list of all possible regular and biregular graphs that can occur, respec-
tively, as G[X] and G[X,Y] for cells X,Y of PG.

Lemma 3. The stable partition PG of an amenable graph G fulfills the following
properties:

(A) For any cell X ∈ PG, G[X] is an empty graph, a complete graph, a matching
graph mK2, the complement of a matching graph, or the 5-cycle;

(B) For any two cells X,Y ∈ PG, G[X,Y] is an empty graph, a complete bipar-
tite graph, a disjoint union of stars sK1,t where X and Y are the set of s
central vertices and the set of st leaves, or the bipartite complement of the
last graph.

The proof of Lemma 3 is based on the following facts.

Lemma 4 (Johnson [11]). A regular graph of degree d with n vertices is a
unigraph if and only if d ∈ {0, 1, n − 2, n − 1} or d = 2 and n = 5.1

1 The last case, in which the graph is the 5-cycle, is missing from the statement of this
result in [11, Theorem 2.12]. The proof in [11] tacitly considers only graphs with at
least 6 vertices.

On the Power of Color Refinement 343

Lemma 5 (Koren [14]). A bipartite graph is determined up to isomorphism
by the conditions that every of the m vertices in one part has degree c and every
of the n vertices in the other part has degree d if and only if c ∈ {0, 1, n − 1, n}
or d ∈ {0, 1,m − 1,m}.
If G contains a subgraph G[X] or G[X,Y] that is induced by some X,Y ∈ PG

but not listed in Lemma 3, then Lemmas 4 and 5 imply that this subgraph can
be replaced by a non-isomorphic regular or biregular graph with the same para-
meters. Hence, in order to prove Lemma 3 it suffices to show that the resulting
graph H is indistinguishable from G by color refinement. The graphs G and H in
the following lemma have the same vertex set. Given a vertex u, we distinguish
its colors Ci

G(u) and Ci
H(u) in the two graphs.

Lemma 6. Let X and Y be cells of the stable partition of a graph G.

(i) If H is obtained from G by replacing the edges of the subgraph G[X] with the
edges of an arbitrary regular graph of the same degree on the same vertex
set X, then Ci

G(u) = Ci
H(u) for any u ∈ V (G) and any i.

(ii) If H is obtained from G by replacing the edges of the subgraph G[X,Y] with
the edges of an arbitrary biregular graph with the same vertex partition such
that the vertex degrees remain unchanged, then Ci

G(u) = Ci
H(u) for any

u ∈ V (G) and any i.

Proof of Lemma 3. (A) If G[X] is a graph not from the list, by Lemma 4, it is
not a unigraph. Hence, we can modify G locally on X by replacing G[X] with
a non-isomorphic regular graph with the same parameters. Part (i) of Lemma 6
implies that the resulting graph H satisfies Equality (2) for any i, implying
that CR does not distinguish between G and H. The graphs G and H are non-
isomorphic because, by Part (i) of Lemma 6 and by Lemma 1, an isomorphism
from G to H would induce an isomorphism from G[X] to H[X]. This shows that
G is not amenable.

(B) This condition follows, similarly to Condition A, from Lemma 5 and Part
(ii) of Lemma 6. �	

4 Global Structure of Amenable Graphs

Recall that PG is the stable partition of the vertex set of a graph G, and that
elements of PG are called cells. We define the auxiliary cell graph C(G) of G
to be the complete graph on the vertex set PG with the following labeling of
vertices and edges. A vertex X of C(G) is called homogeneous if the graph G[X]
is complete or empty and heterogeneous otherwise. An edge {X,Y } of C(G) is
called isotropic if the bipartite graph G[X,Y] is either complete or empty and
anisotropic otherwise. A path X1X2 . . . Xl in C(G) where every edge {Xi,Xi+1}
is anisotropic will be referred to as an anisotropic path. If also {Xl,X1} is an
anisotropic edge, we speak of an anisotropic cycle. In the case that |X1| = |X2| =
. . . = |Xl|, such a path (or cycle) is called uniform.

344 V. Arvind et al.

For graphs fulfilling Conditions A and B of Lemma 3 we refine the labeling of
the vertices and edges of C(G) as follows. A heterogeneous cell X ∈ PG is called
matching, co-matching, or pentagonal depending on the type of G[X]. Note that
a matching or co-matching cell X always consists of at least 4 vertices. Further,
an anisotropic edge {X,Y } is called constellation if G[X,Y] is a disjoint union of
stars, and co-constellation otherwise (in the latter case, the bipartite complement
of G[X,Y] is a disjoint union of stars). Likewise, homogeneous cells X (and
isotropic edges {X,Y }) are called empty if the graph G[X] (resp. G[X,Y]) is
empty, and complete otherwise.

Note that if an edge {X,Y } of a uniform path or cycle is a constellation,
then G[X,Y] is a matching graph.

Lemma 7. The cell graph C(G) of an amenable graph G has the following
properties:

(C) C(G) contains no uniform anisotropic path connecting two heterogeneous
cells;

(D) C(G) contains no uniform anisotropic cycle;
(E) C(G) contains neither an anisotropic path XY1 . . . YlZ such that |X| <

|Y1| = . . . = |Yl| > |Z| nor an anistropic cycle XY1 . . . YlX such that
|X| < |Y1| = . . . = |Yl|;

(F) C(G) contains no anisotropic path XY1 . . . Yl such that |X| < |Y1| = . . . =
|Yl| and the cell Yl is heterogeneous.

Proof. (C) Suppose that P is a uniform anisotropic path in C(G) connecting
two heterogeneous cells X and Y . Let k = |X| = |Y |. Complementing G[A,B]
for each co-constellation edge {A,B} of P , in G we obtain k vertex-disjoint
paths connecting X and Y . These paths determine a one-to-one correspondence
between X and Y . Given v ∈ X, denote its mate in Y by v∗. Call P conducting
if this correspondence is an isomorphism between G[X] and G[Y], that is, two
vertices u and v in X are adjacent exactly when their mates u∗ and v∗ are
adjacent. In the case that one of X and Y is matching and the other is co-
matching, we call P conducting also if the correspondence is an isomorphism
between G[X] and the complement of G[Y].

We construct a non-isomorphic graph H such that CR does not distinguish
between G and H. Since X and Y are heterogeneous, we can replace the edges
of the subgraph G[X] with the edges of an isomorphic but different graph on the
same vertex set X such that P is a conducting path in the resulting graph H if
and only if P is a non-conducting path in G. Now, Part (i) of Lemma 6 implies
that CR computes the same coloring for G and H and does not distinguish
between them. On the other hand, Lemma 1 implies that any isomorphism φ
between G and H must map each cell to itself. Since φ(v∗) = φ(v)∗, φ must also
preserve the conducting property along the path P . It follows that G and H are
not isomorphic. Hence, G is not amenable.

(D) Suppose that C(G) contains a uniform anisotropic cycle Q of length m. All
cells in Q have the same cardinality; denote it by k. Complementing G[A,B]

On the Power of Color Refinement 345

for each co-constellation edge {A,B} of Q, in G we obtain the vertex-disjoint
union of cycles whose lengths are multiples of m. As two extreme cases, we can
have k cycles of length m each or we can have a single cycle of length km.
Denote the isomorphism type of this union of cycles by τ(Q). Note that this
type is isomorphism invariant: For an isomorphism φ from G to another graph
H, τ(φ′(Q)) = τ(Q) for the induced isomorphism φ′ from C(G) to C(H).

Let X and Y be two consecutive cells in Q. We can replace the subgraph
G[X,Y] with an isomorphic but different bipartite graph so that in the resulting
graph H, τ(Q) becomes either kCm or Ckm, whatever we wish. In particular, we
can replace the subgraph G[X,Y] in such a way that τ(Q) is changed.

Similarly as for Condition C, we use Part (ii) of Lemma 6 to argue that CR
does not distinguish between G and H. Furthermore, G �∼= H because the types
τ(Q) in G and H are different. Therefore, G is not amenable.

(E) Suppose that C(G) contains an anisotropic path P = XY1 . . . YlZ such
that |X| < |Y1| = . . . = |Yl| > |Z| (for the case of a cycle, where Z = X, the
argument is virtually the same). Let G[X,Y1] = sK1,t and G[Z, Yl] = aK1,b,
where s, a, t, b ≥ 2 (if any of these subgraphs is a co-constellation, we consider
its complement). Thus, |X| = s, |Z| = a, and |Y1| = |Yl| = st = ab.

Like in the proof of ConditionC, the uniform anisotropic path Y1 . . . Yl deter-
mines a one-to-one correspondence between the cells Y1 and Yl that can be used
to make the identification Y1 = Yl = {1, 2, . . . , st} = Y . For each x ∈ X, let Yx

denote the set of vertices in Y adjacent to x. The set Yz is defined similarly for
each z ∈ Z. Note that for any x �= x′ in X and z �= z′ in Z,

|Yx| = t, |Yz| = b, Yx ∩ Yx′ = ∅, andYz ∩ Yz′ = ∅.

We regard YG = {Yx }x∈X ∪ {Yz }z∈Z as a hypergraph on the vertex set Y .
Note that YG has multiple hyperedges if Yx = Yz for some x and z. Without loss
of generality, we can assume that the hyperedges Yz, z ∈ Z, form consecutive
intervals in Y . We call the anisotropic path P flat, if there exists no pair (x, z) ∈
X × Z such that one of the two hyperedges Yx and Yz is contained in the other.

We construct a non-isomorphic graph H such that CR does not distinguish
between G and H. If P is flat in G, we replace the edges of the subgraph G[X,Y1]
by the edges of an isomorphic but different biregular graph such that P becomes
non-flat in the resulting graph H. More precisely, we replace the edges in such
a way that all hyperedges of YH form consecutive intervals in Y by letting
YH = {Yi }i∈[s] ∪ {Yz }z∈Z , where Yi = {(i − 1)t + 1, . . . , it}. Likewise, if P is
non-flat in G, we replace the edges of G[X,Y1] such that P becomes flat in H
by letting Yi = {i, i + s, . . . , i + (t − 1)s}.

Now, Part (i) of Lemma 6 implies that CR computes the same coloring for
G and H and does not distinguish between them. On the other hand, Lemma 1
implies that any isomorphism φ between G and H must map each cell to itself.
As φ must also preserve the flatness property of the path P , it follows that G
and H are not isomorphic. Hence, G is not amenable.

(F) Suppose that C(G) contains an anisotropic path XY1 . . . Yl where |X| <
|Y1| = . . . = |Yl| and Yl is heterogeneous. Let G[X,Y1] = sK1,t (in the case of

346 V. Arvind et al.

a co-constellation, we consider the complement). Since s, t ≥ 2 and |Y1| = st,
the cell Yl cannot be pentagonal. Considering the complement if needed, we can
assume without loss of generality that Yl is matching. Like in the proof of Condi-
tion E, the uniform anisotropic path Y1 . . . Yl determines a one-to-one correspon-
dence between the cells Y1 and Yl that can be used to make the identification
Y1 = Yl = {1, 2, . . . , st} = Y . Consider the hypergraph YG = {Yx }x∈X ∪ E ,
where Yx = N(x) ∩ Y1 and E consists of the pairs of adjacent vertices in G[Yl].
Now, exactly as in the proof of Condition E, we can change the isomorphism
type of YG by replacing the edges of the subgraph G[X,Y1] by the edges of
an isomorphic biregular graph. This yields a non-isomorphic graph H that is
indistinguishable from G by CR. �	
It turns out that Conditions A–F are not only necessary for amenability (as
shown in Lemmas 3 and 7) but also sufficient. As a preparation we first prove
the following Lemma 8 that reveals a tree-like structure of amenable graphs. By
an anisotropic component of the cell graph C(G) we mean a maximal connected
subgraph of C(G) whose edges are all anisotropic. Note that if a vertex of C(G)
has no incident anisotropic edges, it forms a single-vertex anisotropic component.

Lemma 8. Suppose that a graph G satisfies Conditions A–F. Then for any
anisotropic component A of C(G), the following is true.

(G) A is a tree with the following monotonicity property. Let R be a cell in A
of minimum cardinality and let AR be the rooted directed tree obtained from
A by rooting A at R. Then |X| ≤ |Y | for any directed edge (X,Y) of AR.

(H) A contains at most one heterogeneous vertex. If R is such a vertex, it has
minimum cardinality among the cells of A.

Proof. (G) A cannot contain any uniform cycle by Condition D and any other
cycle by Condition E. The monotonicity property follows from Condition E.

(H) Assume that A contains more than one heterogeneous cell. Consider two
such cells S and T . Let S = Z1, Z2, . . . , Zl = T be the path from S to T in A. The
monotonicity property stated in Condition G implies that there is j (possibly
j = 1, l) such that |Z1| ≥ . . . ≥ |Zj | ≤ . . . ≤ |Zl|. Since the path cannot be
uniform by Condition C, at least one of the inequalities is strict. However, this
contradicts Condition F.

Suppose that R is a heterogeneous cell in A. Consider now a path R =
Z1, Z2, . . . , Zl = S in A where S is a cell with the smallest cardinality. By the
monotonicity property and Condition F, this path must be uniform, proving
that |R| = |S|. �	
In combination with Conditions A and B, Conditions G and H on anisotropic
components give a very stringent characterization of amenability.

Theorem 9. For a graph G the following conditions are equivalent:

(i) G is amenable.
(ii) G satisfies Conditions A–F.

On the Power of Color Refinement 347

(iii) G satisfies Conditions A, B, G and H.

Proof. It only remains to show that any graph G fulfilling the Conditions A, B,
G and H is amenable. Let H be a graph indistinguishable from G by CR. Then
we have to show that G and H are isomorphic.

Consider the coloring Cs corresponding to the stable partition Ps of the
disjoint union G + H. Since G and H satisfy Equality (2) for i = s, there is a
bijection f : PG → PH matching each cell X of the stable partition of G to the
cell f(X) ∈ PH such that the vertices in X and f(X) have the same Cs-color.
Moreover, Equality (2) implies that |X| = |f(X)|. We claim that for any cells
X and Y of G,

(a) G[X] ∼= H[f(X)] and
(b) G[X,Y] ∼= H[f(X), f(Y)],

implying that f is an isomorphism from C(G) to C(H).
Indeed, since X and f(X) are cells of the stable partitions PG and PH ,

both G[X] and H[f(X)] are regular. Since X ∪ f(X) is a cell of the stable
partition Ps of G + H, the graphs G[X] and H[f(X)] have the same degree. By
Condition A, G[X] is a unigraph, implying Property (a). Property (b) follows
from Condition B by a similar argument.

We now construct an isomorphism φ from G to H. By Lemma 1, we should
have φ(X) = f(X) for each cell X. Therefore, we have to define the map φ :
X → f(X) on each X.

By Condition H, an anisotropic component A of the cell graph C(G) contains
at most one heterogeneous cell. Denote it by RA if it exists. Otherwise fix RA

to be an arbitrary cell of the minimum cardinality in A.
For each A, define φ on R = RA to be an arbitrary isomorphism from G[R]

to H[f(R)], which exists according to (a). After this, propagate φ to any other
cell in A as follows. By Condition G, A is a tree. Let AR be the directed rooted
tree obtained from A by rooting it at R. Suppose that φ is already defined on X
and (X,Y) is an edge in A. By the monotonicity property in Condition G and
our choice of R, we can assume that |X| ≤ |Y |. Then φ can be extended to Y
so that this is an isomorphism from G[X,Y] to H[f(X), f(Y)]. This is possible
by (b) due to the fact that all vertices in Y have degree 1 in G[X,Y] or its
bipartite complement (and the same holds for all vertices in f(Y) in the graph
H[f(X), f(Y)]).

It remains to argue that the map φ obtained in this way is indeed an isomor-
phism from G to H. It suffices to show that φ is an isomorphism between G[X]
and H[f(X)] for each cell X of G and between G[X,Y] and H[f(X), f(Y)] for
each pair of cells X and Y .

If X is homogeneous, f(X) is homogeneous of the same type, complete or
empty, according to (a). In this case, any φ is an isomorphism from G[X] to
H[f(X)]. If X is heterogeneous, the assumption of the lemma says that it belongs
to a unique anisotropic component A (and X = RA). Then φ is an isomorphism
from G[X] to H[f(X)] by construction.

348 V. Arvind et al.

If {X,Y } is an isotropic edge of C(G), then (b) implies that {f(X), f(Y)} is
an isotropic edge of C(H) of the same type, complete or empty. In this case, φ
is an isomorphism from G[X,Y] to H[f(X), f(Y)], no matter how it is defined.
If {X,Y } is anisotropic, it belongs to some anisotropic component A, and φ is
an isomorphism from G[X,Y] to H[f(X), f(Y)] by construction. �	

5 Examples and Applications

Theorem 9 is a convenient tool for verifying amenability. For example, amenabil-
ity of discrete graphs is a well-known fact. Recall that those are graphs whose
stable partitions consist of singletons. Since the cell graph has no anisotropic edge
in this case, any anisotropic component of a discrete graph consists of a single
cell. Hence, Conditions A and B as well as Conditions G and H on anisotropic
components are fulfilled by trivial reasons.

Checking these four conditions, we can also reprove the amenability of trees.
Moreover, our argument extends to the class of forests. Note in this respect that
the class of amenable graphs is not closed under disjoint unions. For example,
C3 + C4 is indistinguishable by CR from C7 and, hence, is not amenable.

Corollary 10. All forests are amenable.

Proof. A regular acyclic graph is either an empty or a matching graph. This
implies Condition A. Condition B follows from the observation that biregular
acyclic graphs are either empty or disjoint unions of stars.

Let C∗(G) be the version of the cell graph C(G) where all empty edges are
removed. If C∗(G) contains a cycle, G must contain a cycle as well. Therefore,
if G is acyclic, then C∗(G) is acyclic too, and any anisotropic component of
C(G) must be a tree. To prove the monotonicity property in Condition G, it
suffices to show that C(G) cannot contain an anisotropic path XY1 . . . YlZ with
|X| < |Y1| = · · · = |Yl| > |Z|. But this easily follows since in this case each
vertex of the induced subgraph G[X ∪ Y1 ∪ . . . ∪ Yl ∪ Z] has degree at least 2 in
G, contradicting the acyclicity of G.

To prove Condition H, suppose that C(G) contains an anisotropic path
X0,X1, . . . , Xl connecting two heterogeneous cells X0 and Xl. Then each vertex
of the induced subgraph G[X0 ∪X1 ∪ . . .∪Xl−1 ∪Xl] has degree at least 2 in G,
a contradiction. The same contradiction arises if such a path connects a hetero-
geneous cell X0 with an arbitrary cell Xl, where |Xl| < |Xl−1|. Hence, X0 must
have minimum cardinality among all cells belonging to the same anisotropic
component. �	
Our characterization of amenable graphs via Conditions A, B, G and H leads
to an efficient test for amenability of a given graph, that has the same time
complexity as CR. It is known (Cardon and Crochemore [7]; see also [4]) that
the stable partition of a given graph G can be computed in time O((n+m) log n).
It is supposed that G is presented by its adjacency list.

On the Power of Color Refinement 349

Corollary 11. The class of amenable graphs is recognizable in time O((n +
m) log n), where n and m denote the number of vertices and edges of the input
graph.

Proof. Using known algorithms, we first compute the stable partition PG =
{X1, . . . , Xk} of the input graph G. Let C∗(G) be the version of the cell graph
C(G) where all empty edges are removed. We can compute the adjacency list
of each vertex Xi of C∗(G) by traversing the adjacency list of an arbitrary
vertex u ∈ Xi and listing all cells Xj that contain a vertex v adjacent to u.
Simultaneously, we compute for each pair (i, j) such that i = j or {Xi,Xj} is an
edge of C∗(G) the number dij of neighbors in Xj of any vertex in Xi. Knowing
the numbers |Xi|, |Xj | and dij allows us to determine whether all the subgraphs
G[Xi] and G[Xi,Xj] fulfill Conditions A and B of Lemma 3.

To check Conditions G and H we use breadth-first search in the graph C∗(G)
to find all anisotropic components A of C(G) and, simultaneously, to check that
each component A is a tree containing at most one heterogeneous cell. If we
restart the search from an arbitrary cell in A having minimum cardinality, we
can also check for each forward edge of the resulting search tree whether the
monotonicity property of Condition G is fulfilled. �	
We conclude by considering logical aspects of our result. A counting quantifier
∃m opens a sentence saying that there are at least m elements satisfying some
property. Immerman and Lander [10] discovered an intimate connection between
color refinement and 2-variable first-order logic with counting quantifiers. This
connection implies that amenability of a graph is equivalent to its definability
in this logic. Thus, Corollary 11 asserts that the class of graphs definable by a
first-order sentence with counting quantifiers and occurrences of just 2 variables
is recognizable in polynomial time.

References

1. Arvind, V., Köbler, J., Rattan, G., Verbitsky, O.: On Tinhofer’s linear program-
ming approach to isomorphism testing. In: In: Proceedings of the 40th International
Symposium on Mathematical Foundations of Computer Science (MFCS), Lecture
Notes in Computer Science. Springer (2015) (to appear)

2. Babai, L., Erdös, P., Selkow, S.M.: Random graph isomorphism. SIAM J. Comput.
9(3), 628–635 (1980)

3. Babai, L., Kucera, L.: Canonical labelling of graphs in linear average time. In:
Proceedings of the 20th Annual Symposium on Foundations of Computer Science,
pp. 39–46, (1979)

4. Berkholz, C., Bonsma, P., Grohe, M.: Tight lower and upper bounds for the com-
plexity of canonical colour refinement. In: Bodlaender, H.L., Italiano, G.F. (eds.)
ESA 2013. LNCS, vol. 8125, pp. 145–156. Springer, Heidelberg (2013)

5. Borri, A., Calamoneri, T., Petreschi, R.: Recognition of unigraphs through super-
position of graphs. J. Graph Algorithms Appl. 15(3), 323–343 (2011)

6. Busacker, R., Saaty, T.: Finite Graphs and Networks: An Introduction with Appli-
cations. International Series in Pure and Applied Mathematics. McGraw-Hill Book
Company, New York (1965)

350 V. Arvind et al.

7. Cardon, A., Crochemore, M.: Partitioning a graph in O(|A| log2 |V |). Theor. Com-
put. Sci. 19, 85–98 (1982)

8. Godsil, C.: Compact graphs and equitable partitions. Linear Algebra Appl.
255(13), 259–266 (1997)

9. Grohe, M., Kersting, K., Mladenov, M., Selman, E.: Dimension reduction via colour
refinement. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp.
505–516. Springer, Heidelberg (2014)

10. Immerman, N., Lander, E.: Describing graphs: a first-order approach to graph
canonization. In: Selman, A.L. (ed.) Complexity Theory Retrospective, pp. 59–81.
Springer, Heidelberg (1990)

11. Johnson, R.: Simple separable graphs. Pac. J. Math. 56, 143–158 (1975)
12. Kersting, K., Mladenov, M., Garnett, R., Grohe, M.: Power iterated color refine-

ment. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intel-
ligence, pp. 1904–1910. AAAI Press (2014)

13. Kiefer, S., Schweitzer, P., Selman, E.: Graphs identified by logics with counting.
In:Graphs identified by logics with counting. In: Proceedings of the 40th Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS),
Lecture Notes in Computer Science. Springer (2015) (to appear)

14. Koren, M.: Pairs of sequences with a unique realization by bipartite graphs. J.
Comb. Theor. Series B 21(3), 224–234 (1976)

15. Krebs, A., Verbitsky, O.: Universal covers, color refinement, and two-variable logic
with counting quantifiers: lower bounds for the depth. In: Proceedings of the 30-
th ACM/IEEE Annual Symposium on Logic in Computer Science (LICS), IEEE
Computer Society (2015) (to appear)

16. Ramana, M.V., Scheinerman, E.R., Ullman, D.: Fractional isomorphism of graphs.
Discrete Math. 132(1–3), 247–265 (1994)

17. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

18. Tinhofer, G.: Graph isomorphism and theorems of Birkhoff type. Computing 36,
285–300 (1986)

19. Tyshkevich, R.: Decomposition of graphical sequences and unigraphs. Discrete
Math. 220(1–3), 201–238 (2000)

20. Valiente, G.: Algorithms on Trees and Graphs. Springer, Heidelberg (2002)

Block Representation of Reversible Causal
Graph Dynamics

Pablo Arrighi1, Simon Martiel2(B), and Simon Perdrix3

1 Aix-Marseille University, LIF, 13288 Marseille Cedex 9, France
pablo.arrighi@univ-amu.fr

2 University Nice-Sophia Antipolis, I3S, 06900 Sophia Antipolis, France
martiel@i3s.unice.fr

3 CNRS, LORIA, Inria Project Team CARTE,
University de Lorraine, Nancy, France

simon.perdrix@loria.fr

Abstract. Causal Graph Dynamics extend Cellular Automata to arbi-
trary, bounded-degree, time-varying graphs. The whole graph evolves
in discrete time steps, and this global evolution is required to have a
number of physics-like symmetries: shift-invariance (it acts everywhere
the same) and causality (information has a bounded speed of propaga-
tion). We study a further physics-like symmetry, namely reversibility.
More precisely, we show that Reversible Causal Graph Dynamics can be
represented as finite-depth circuits of local reversible gates.

Keywords: Bijective · Invertible · Locality · Cayley graphs · Reversible
cellular automata

1 Introduction

Cellular Automata (CA) consist in a Z
n grid of identical cells, each of which

may take a state among a finite set Σ. Thus the configurations are in ΣZ
n

.
The state of each cell at time t + 1 is given by applying a fixed local rule f to
the cell and its neighbours, synchronously and homogeneously across space. CA
constitute the most established model of computation that accounts for euclidean
space. They are widely used to model spatially distributed computation (self-
replicating machines, synchronization problems. . .), as well as a great variety of
multi-agents phenomena (traffic jams, demographics. . .). But their origin lies in
Physics, where they are commonly used to model waves or particles. And since
small scale physics is understood to be reversible, it was natural to endow them
with this further, physics-like symmetry: reversibility. The study of Reversible
CA (RCA) was further motivated by the promise of lower energy consumption,
according to Landauer’s principle. RCA have turned out to have a beautiful
mathematical theory, which relies on topological and algebraic characterizations
[9] in order to prove that any RCA can be expressed as a finite-depth circuits of
local reversible permutations or ‘blocks’ [7,10,11].
c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 351–363, 2015.
DOI: 10.1007/978-3-319-22177-9 27

352 P. Arrighi et al.

Causal Graph Dynamics (CGD) [1,3], on the other hand, deal with a twofold
extension of CA. First, the underlying grid is extended to being an arbitrary –
possibly infinite – bounded degree graph G. Informally, this means for that each
vertex of the graph may take a state among a finite set Σ, so a configuration is an
element of ΣV (G), and the edges of the graph stand for the locality of the evolu-
tion: the next state of a vertex depends only on the states of the vertices which are
at distance at most k, i.e. in a disk of radius k, for some fixed integer k. Second,
the graph itself is allowed to evolve over time. Informally, this means having con-
figurations in

⋃
G ΣV (G). This has led to a model where the local rule f is applied

synchronously and homogeneously on every possible subdisk of the input graph,
thereby producing small patches of the output graphs, whose union constitutes
the output graph. Figure 1 illustrates the concept of these CA over graphs.

CGD are motivated by the countless situations in which some agents inter-
act with their neighbours, leading to a global dynamics in which the notion of
who is next to whom also varies in time (e.g. agents become physically con-
nected, get to exchange contact details, move around. . .). Indeed, several existing
models (of physical systems, computer processes, biochemical agents, economi-
cal agents, social networks. . .) feature such neighbour-to-neighbour interactions
with time-varying neighbourhood, thereby generalizing CA for their specific sake
(e.g. self-reproduction as [17], discrete general relativity à la Regge calculus [14],

fF f

Fig. 1. Informal illustration of Causal Graph Dynamics. The entire graph evolves into
another according to a global function F . But this evolution is causal (information
propagates at a bounded speed) and homogeneous (same causes lead to same effects).
This global function approach has been proved equivalent [3] to applying a local rule
f to every subdisk of the input graphs, leading to small output graphs whose union
make up the output graph. But this local rule f is not reversible. In this paper, we
take the global approach as the starting point, and show that it can be implemented
by reversible local mechanisms.

Block Representation of Reversible Causal Graph Dynamics 353

etc.). CGD provide a theoretical framework, for these models. Some graph rewrit-
ing models, such as Amalgamated Graph Transformations [6] and Parallel Graph
Transformations [8,15,16], also work out rigorous ways to apply a local rewrit-
ing rule synchronously throughout a graph, albeit with a different, category-
theory-based perspective. In particular the topological approach we follow and the
reversibility question that we address have not been considered in these works.

This paper studies CGD in the reversible regime. From a theoretical Computer
Science perspective, the point is therefore to generalize RCA theory to arbitrary,
bounded-degree, time-varying graphs. From this perspective, our main result is
the proof that Reversible CGD admit a block representation, i.e. an implemen-
tation as a finite-depth circuit of local gates. This is a non-trivial problem: the
[11] construction seems unapplicable with dynamical graphs. We manage to apply,
after some work, a proof scheme which comes from Quantum CA theory [5].

From a theoretical physics perspective, the question whether the reversibility
of small scale physics can be reconciled with the time-varying topology of large
scale physics (relativity), is a topic of debate and constant investigation. This
paper provides all by itself a first toy, discrete, classical model where reversibility
and time-varying topology coexist and interact. But ultimately, this deep ques-
tion would need to be addressed in a quantum mechanical setting. This paper
is indeed part of a long standing program to approach these issues in the frame-
work of CA, and more precisely through the “axiomatic definition of a global
evolution versus existence of an implementation for it, via local mechanisms”
question.

Can CA be implemented by local mechanisms?
CA type. . . Classical Reversible Quantum
Grid Yes [9] Yes [10] Yes [5]
Graphs Yes [1, 3] This paper Future

2 Pointed Graph Modulo, Paths, and Operations

Pointed Graph Modulo. There are two main approaches to CA. The one with a
local rule, usually denoted f , is the constructive one, but CA can also be defined
in a more topological way as being exactly the shift-invariant continuous func-
tions from ΣZ

n

to itself, with respect to a certain metric. Through a compactness
argument, the two approaches are equivalent. This topological approach carries
through to CA over graphs. But for this purpose, one has to make the set of
graphs into an appropriate compact metric space, which can only be done for
certain pointed graph modulo isomorphism – referred to as generalized Cayley
graphs in [3]. This is worth the trouble, as the topological characterization is
one of the crucial ingredients to prove that the inverse of a CGD is a CGD.

Basically, the pointed graphs modulo isomorphism (or pointed graphs mod-
ulo, for short) are the usual, connected, undirected, possibly infinite, bounded-
degree graphs, but with a few added twists:

354 P. Arrighi et al.

• Each vertex has ports in a finite set π. A vertex and its port are written u : a.
• An edgeis an unordered pair {u : a, v : b}. I.e. edges are between ports of

vertices, rather than vertices themselves. Because the port of a vertex can
only appear in one edge, the degree of the graphs is bounded by |π|. We shall
consider connected graphs only.

• The graphs are rooted i.e., there is a privileged pointed vertex playing the
role of an origin, so that any vertex can be referred to relative to the origin,
via a sequence of ports that lead to it.

• The graphs are considered modulo isomorphism, so that only the relative
position of the vertices can matter.

• The vertices and edges are given labels taken from finite sets Σ and Δ, so that
they may carry an internal state just like the cells of a cellular automaton.

• The labelling functions are partial, so that we may express our partial knowl-
edge about part of a graph. For instance it is common that a local function
may yield a vertex, its internal state, its neighbours, and yet have no opinion
about the internal state of those neighbours.

The set of all pointed graphs modulo (see Fig. 2(c)) of ports π, vertex labels Σ
and edge labels Δ is denoted XΣ,Δ,π. A thorough formalization of pointed graphs
modulo can be found in [3]. For the sake of this paper, Fig. 2 summarizes the
construction of pointed graphs modulo from pointed graphs whose vertex names
are dropped.

Paths and Vertices. Since we are considering pointed graphs modulo isomor-
phism, vertices no longer have a unique identifier, which may seem impractical
when it comes to designating a vertex. Two elements come to our rescue. First,
these graphs are pointed, thereby providing an origin. Second, the vertices are
connected through ports, so that each vertex can tell between its different neigh-
bours. It follows that any vertex of the graph can be designated by a sequence of
ports in (π2)∗ that lead from the origin to this vertex. The origin is designated
by ε. For instance, say two vertices designated by a path u and a path v, respec-
tively. Suppose there is an edge e = {u : a, v : b}. Then, v can be designated by

1

2

3

4

:a
:b

:b
:c

:c

:b

:a

:b

(a)

1

2

3

4

:a
:b

:b
:c

:c

:b

:a

:b

(b)

:a
:b

:b
:c

:c

:b

:a

:b

(c)

Fig. 2. The different types of graphs. (a) A graph G. (b) A pointed graph (G, 1). (c)
A pointed graph modulo isomorphism. These are anonymous: vertices have no names
and can only be distinguished using the graph structure.

Block Representation of Reversible Causal Graph Dynamics 355

(1a)

:a

:a :c

:a

:b

:b

:d

:a

:b

:a

:b

:c

:c

:b

:a

:c

(1b)

:a

:a :c

:a

:b

:b

:d

:a

(2a)

:a
:b

:c

:b

:b

:c

:a
:c

(2b)

:a
:b

:c

:b

:b

:c

:a
:c

(2c)

:a
:b

:c

:b

:b

:c

:a
:c

Fig. 3. Operations over pointed graphs modulo. (1) From X to X0: taking the subdisk
of radius 0. In general the neighbours of radius r are just those vertices which can be
reached in r steps starting from the origin, whereas the disk of radius r, written Xr,
is the subgraph induced by the neighbours of radius r+ 1, with labellings restricted to
the neighbours of radius r and the edges between them. (2a) A pointed graph modulo
X. (2b) Xab the pointed graph modulo X shifted by ab. (2c) Xbc.ac the pointed graph
modulo X shifted by bc.ac, which also corresponds to the graph Xab shifted by cb.ac.
Shifting this last graph by cb.ac = ca.bc produces the graph (2b) again.

the path u.ab, where “.” stands for the word concatenation. A thorough formal-
ization of pointed graphs modulo and naming conventions can be found in [3].

Operations. Given a pointed graph modulo X, Xr denotes the subdisk of radius
r around the pointer. The pointer of X can be moved along a path u, leading to
Y = Xu. The pointer can be moved back where it was before, leading to X = Yu.
We use the notation Xr

u for (Xu)r i.e., first the pointer is moved along u, then
the subdisk of radius r is taken. A thorough formalization of these operations
on pointed graph modulo can be found in [3]. For the sake of this paper, Fig. 3
illustrates the operations.

3 Reversible Causal Graph Dynamics

We will now recall the definition of CGD. We provide a topological definition
in terms of shift-invariant continuous functions, rather than a constructive def-
inition based on a local rule f applied synchronously across space (Fig. 1). The
two were proved equivalent in [3].

A crucial point in the topological characterization of CGD is the correspon-
dence between the vertices of a pointed graph modulo X, and those of its image
F (X). Indeed, on the one hand it is important to know that a given vertex u ∈ X
has become u′ ∈ F (X), e.g. in order to express shift-invariance F (Xu) = F (X)u′ ,

356 P. Arrighi et al.

or to express continuity. But on the other hand since u′ is named relative to ε,
its determination requires some knowledge of X.

The following analogy provides a useful way of tackling this issue. Say that
we were able to place a white stone on the vertex u ∈ X that we wish to
follow across evolution F . Later, by observing that the white stone is found at
u′ ∈ F (X), we would be able to conclude that u has become u′. This way of
grasping the correspondence between an image vertex and its antecedent vertex
is a local, operational notion of an observer moving across the dynamics.

Definition 1 (Dynamics). A dynamics (F,R•) is given by

• a function F : XΣ,Δ,π → XΣ,Δ,π;
• a map R•, with R• : X �→ RX and RX : V (X) → V (F (X)).

For all X, the function RX can be pointwise extended to sets of vertices i.e.,
RX : P(V (X)) → P(V (F (X))) maps S to RX(S) = {RX(u) | u ∈ S}.
The intuition is that RX indicates which vertices {u′, v′, . . .} = RX({u, v, . . .}) ⊆
V (F (X)) will end up being marked as a consequence of {u, v, ...} ⊆ V (X) being
marked. Now, clearly, the set {(X,S) | X ∈ XΣ,Δ,π, S ⊆ V (X)} is isomorphic to
XΣ′,Δ,π with Σ′ = Σ × {0, 1}. Hence, we can define the function F ′ that maps
(X,S) ∼= X ′ ∈ XΣ′,Δ,π to (F (X), RX(S)) ∼= F ′(X ′) ∈ XΣ′,Δ,π, and think of a
dynamics as just this function F ′ : XΣ′,Δ,π → XΣ′,Δ,π.

Since continuity and uniform continuity are equivalent over compact spaces,
we give directly the definition of uniform continuity:

Definition 2 (Uniform Continuity). A dynamics (F,R•) is said to be con-
tinuous if for any m ≥ 0, there exists n ≥ 0 such that for every X,Y , Xn = Y n

implies both

• F (X)m = F (Y)m.
• domRm

X ⊆ V (Xn), domRm
Y ⊆ V (Y n), and Rm

X = Rm
Y .

where Rm
X denotes the partial map obtained as the restriction of RX to the

codomain F (X)m, using the natural inclusion of F (X)m into F (X).

In the F ′ : XΣ′,Δ,π → XΣ′,Δ,π formalism, the two above conditions are equivalent
to just one: F ′ continuous.

A dynamics can be be shifted to act over the region surrounding some vertex u.

Definition 3 (Shifted Dynamics). Given a dynamics (F,R•) over XΣ,Δ,π

and u ∈ π∗, (F,R•) shifted at u is the dynamics (Fu, Ru,•) where

Fu = X �→
{

(F (Xu))RXu
(u) ifu∈X

X otherwise
and Ru,X = v �→

{

RXu (u).RXu (u.v) ifu∈X

v otherwise

The dynamics (F,R•) which are shift invariant – i.e. ∀u, (Fu, Ru,•) = (F,R•)
– satisfy the following property:

Block Representation of Reversible Causal Graph Dynamics 357

Lemma 1 (Shift-invariance). A dynamics (F,R•) is shift-invariant if and
only if for every X, u ∈ X, and v ∈ Xu,

• F (Xu) = F (X)RX(u)

• RX(u.v) = RX(u).RXu
(v).

The second condition expresses the shift-invariance of R• itself. Notice that
RX(ε) = RX(ε).RX(ε); hence RX(ε) = ε.

Definition 4 (Boundedness). A dynamics (F,R•) is said to be bounded if
there exists a bound b such that for any X and any w′ ∈ F (X), there exist
u′ ∈ im RX and v′ ∈ F (X)b

u′ such that w′ = u′.v′.

The following is the topological definition of CGD:

Definition 5 (Causal Graph Dynamics). A CGD is a shift-invariant, con-
tinuous, bounded dynamics.

A reversible causal graph dynamics (RCGD) is an invertible CDG which
inverse is a CGD itself:

Definition 6 (Reversible). A CGD (F,R•) is reversible if there exists S• such
that (F−1, S•) is a CGD.

Actually it can be proven that if a CGD has an inverse, this inverse is neces-
sarily a CGD [4]. This works through a compactness argument just like for CA,
but goes beyond the scope of this paper. It can also be shown that:

Theorem 1 (Reversible Implies Almost-Vertex-Preserving). Let (F,R•)
be a Reversible CGD over XΣ,Δ,π. Then there exists a bound p, such that for any
graph X, if |X| > p then RX is bijective.

Moving Head. Figure 4 is an example of invertible CGD. In this example, a
vertex, representing the head of an automaton, is moving along a line graph,
representing a tape. The line graph is built using ab−edges, while the head is
attached using either a cc−edge if it is travelling forward along the ab−edges, or
dd−edges if it is travelling backwards. The transformation can be completed into
a bijection over the entire set of graphs with π = {a, b, c, d}. It then accounts
for several heads, etc. The resulting transformation is continuous, as the moving
heads travel at speed one along the tape, and shift-invariant as it is possible to
build a R• operator verifying the right commutation properties.

4 Locality

Causal Graph Dynamics change the entire graph in one go. The word causal there
refers to the fact that information does not propagate too fast. Local operations,
on the other hand, act just in one bounded region of the graph, leaving the rest
unchanged. We introduce the following locality definition:

358 P. Arrighi et al.

:a :b :a :b :a :b
:c
:c

:a :b :a :b :a :b
:c
:c

:a :b :a :b :a :b
:c
:c

)3()2()1(

:a :b :a :b :a :b
:c
:c

:a :b :a :b :a :b

:d
:d

:a :b :a :b :a :b

:d
:d)6()5()4(

Fig. 4. Moving head dynamics. In this example, a moving head is running along a
“tape” formed by a linear graph of alternating ab edges. When reaching the end of the
line, the head starts moving backwards and changes the ports on its attaching edge to
dd. (1) to (6) represent 6 consecutive configurations.

Definition 7 (Local Dynamics). A dynamics (L, S•) is r-local if it is contin-
uous and bounded, and for any X and any v ∈ L(X) with |v| > r, there exists
u ∈ X such that L(X)0v = X0

u and ∀w ∈ X0
u, SX(u.w) = v.w.

A local dynamics acts around the pointer of the graph modulo. To act around
another position u, one can shift the local dynamics at u. Moreover, we may wish
to apply a series of local operations at several positions ui i.e., a circuit. However,
applying a local operation may change the graph and hence vertex names, hence
some care must be taken.

Definition 8 (Product). Consider a local dynamics (L, S•) and X a pointed
graph modulo in its domain we define the product

∏
(L, S) as the limit when r

goes to infinity of (Lr, Sr
•):

Lr(X) =
∏

i∈[1,...,|V (Xr)|]
Lu′

i
(X)

Sr
X =

∏

i∈[1,...,|V (Xr)|]
Su′

i,
∏

k∈[1,...,i−1] Lu′
k
(X)

where {u1, u2, ...} = V (X) such that i < j ⇒ |ui| ≤ |uj |, and u′
1 = u1, u′

2 =
Su′

1,X(u2), u′
3 = Su′

2,Lu′
1
(X)(u3),...

Soundness of the Definition. For infinite graphs, the image of a graph X through
the application of

∏
(L, S) needs to be defined as the limit of the sequence

of graphs (Lr(X)) obtained by applying L to every node of the disk Xr. As
XΣ,Δ,π is compact (see [3] for details), this sequence of graphs converges toward
a limit graph X ′. Moreover, for all radii r′ there exists a radius r such that
X ′r = Lr′

(X). Thus, X ′ corresponds to the graph X where the local dynamics
(L, S•) has been applied on every vertex.

Block Representation of Reversible Causal Graph Dynamics 359

5 Block Representation

A famous result on RCA [10], is that these admit a finite-depth, reversible circuit
form, with gates acting only locally. The result carries through, with a different
proof, to Quantum CA [5]. It is the Quantum CA proof scheme that we managed
to adapt to RCGD. First, we show that conjugating a local operation with an
RCGD still yields a local operation.

Proposition 1. If (F,R•) is an RCGD and (L, S•) is a local dynamics,
then (L′, T•) is a local dynamics, with L′ = F−1 ◦ L ◦ F and TX(u) =
R′

F −1(L(F (X))(SF (X)(RX(u))), where the function R′
• is such that (F−1, R′

•) is
a CDG.

Proof Outline. To say that ‘L is local’ is a formal way of saying that far away
from ε, it acts like the identity. Hence, far away from ε, the expression for L′

becomes F−1 ◦ F which is just the identity, and so L′ is itself local. The actual
proof is much more technical, see [4]. Notice that the function R′

• iwhich makes
(F−1, R′

•) a CGD is not unique in general.
Second, we give ourselves a little more space so as to mark which parts of

the graph have been updated, or not.

Definition 9 (Marked Pointed Graphs Modulo). Consider the set of
pointed graph modulo XΣ,Δ,π with labels in Σ, and ports in π. Let Σ′ = Σ×{0, 1}
and π′ = π×{0, 1}. We define the set of marked pointed graph modulo XΣ′,Δ,π′

to be the subset of XΣ′,Δ,π′ such that:

(1) ∀u ∈ X, if u is labelled with (x, a) and {u:(i, b), v:(j, c)} ∈ X, then a = c.
(2) ∀v ∈ X, if {u:(i, b), v:(j, c)}∈X and {u′:(i′, b′), v:(j, c′)} ∈ X, then u = u′.

Condition (1) states that a marked vertex is connected to the rest of the marked
graph through marked ports only. Condition (2) states that if a vertex has both
the marked instance and unmarked instance of a same port affected to an edge,
then both edges lead to the same vertex.

Definition 10 (Mark Operation). We define the mark operation μ as the
following local dynamics (Lμ, Sμ

•) over XΣ′,Δ,π′ . For any X in XΣ′,Δ,π′ :

• if the label of ε is (x, a) in X then its label is (x, 1−a) in Lμ(X).
• if {ε : (x, a), ε : (y, b)} ∈ X then {ε : (x, 1−a), ε : (y, 1−b)} ∈ Lμ(X).
• if {ε : (x, a), v : (y, b)} ∈ X with v �= ε then {ε : (x, a), v : (y, 1−b)} ∈ Lμ(X),

• Sμ
X(u) =

⎧
⎪⎨

⎪⎩

ε if u = ε

(x, a)(y, 1−b) if {ε : (x, a), v : (y, b)} ∈ X with v �= ε

Sμ
X(v).pq ifu = v.pqwithp, q ∈ π′

and leaving the rest of the graph X unchanged.

Notice that the set of marked graphs XΣ′,Δ,π′ is nothing but the subset of
XΣ′,Δ,π′ obtained by as closure of μ, and shifts, upon XΣ×{0},Δ,π×{0}. Notice
also that XΣ′,Δ,π′ is a compact subset of XΣ′,Δ,π′ .

It turns out that any RCGD admits an extension that allows for these marks.

360 P. Arrighi et al.

Definition 11 (Reversible Extension). Let (F,R•) be an RCGD over
XΣ,Δ,π. We say that (F ′, R′

•) is a reversible extension of (F,R•) if it is an
RCGD over XΣ′,Δ,π′ such that,

• For any X ∈ XΣ,Δ,π and u ∈ X:
F ′(X×{0}) = F (X)×{0} R′

X×{0}(u×{0}) = RX(u)×{0}
F ′(X×{1}) = X×{1} R′

X×{1}(u×{1}) = u×{1}
• For any X ∈ XΣ′,Δ,π′ such that |X| ≤ p and X /∈ XΣ×{0},Δ,π×{0}:

F ′(X) = X R′
X = u �→ u

where p is that of Theorem 1; X×{0} consists in pairing with 0 all the vertex-
states and edges of X; and u×{0} is defined as ε×{0} = ε and u.ab×{0} =
(u×{0}):(a, 0)(b, 0).

Proposition 2 (Reversible Extension). Any RCGD (F,R•) over XΣ,Δ,π

admits a reversible extension (F ′, R′
•) over XΣ′,Δ,π′ .

Proof Outline. Since (F,R•) is be induced by a local rule f (see [3] for details),
one can construct another local rule f ′ acting over graphs in the set XΣ′,Δ,π′ as
follow:

– When applied on an unmarked vertex u, f ′ creates the same subgraph f(Xr
u)

while preserving edges on marked ports.
– When applied to a marked vertex u, f ′ creates the subgraph X0

u, preserving
the connectivity of u.

Basically, the induced CGD (F ′, R′
•) performs the identity around every marked

vertex, and performs (F,R•) around unmarked vertices. More details are pro-
vided in [4].

In order to obtain our circuit-like form for RCGD, we will proceed by
reversible, local updates.

Definition 12 (Conjugate Mark). Given a reversible extension (F ′, R′
•) over

XΣ′,Δ,π′ , we define the conjugate mark K as a dynamics (LK , SK
•) over XΣ′,Δ,π′

as follows:

LK = F ′−1 ◦ Lμ ◦ F ′ and SK
X (u) = TF ′−1(Lµ(F ′(X))(S

μ
F (X)(R

′
X(u)))

where the function T• is such that (F ′−1, T•) is a CGD.

Notice that by Proposition 1, the local update blocks are local operations. More-
over, since they are defined as a composition of invertible dynamics, they are
invertible. In order to represent the whole of an RCGD, it suffices to apply these
local update blocks at every vertex.

Theorem 2 (Reversible Localizability). For any RCGD (F,R•) over
XΣ,Δ,π, (F,R•) and (

∏
μ)(

∏
K) act the same on all but a finite number of

graphs, where K is the conjugate of μ with respect to F ′ a reversible extension
of F i.e., K = F ′ ◦ μ ◦ F ′−1.

Block Representation of Reversible Causal Graph Dynamics 361

Proof Outline. By Theorem 1, there exists p > 0 s.t. if |X| > p, RX is invertible.
These are the graphs we consider, i.e. all but a finite number. On these graphs,
the action of (

∏
μ)(

∏
K) is equivalent to (

∏
μ)(F ′−1, R−1

•)(
∏

μ)(F ′, R•).

Therefore, given X s.t. |X| > p, we have X×{0} (F ′,R•)�−−−−−→ F (X)×{0}
∏

μ�−−→
F (X)×{1} (F ′−1,R−1

•)�−−−−−−−→ F (X)×{1}
∏

μ�−−→ F (X)×{0}. Full details are provided
in [4].

(1)

:a :b :a :b :a :b

u

:c
:c

v

w

(2)

:a :b :a :b :a :b

u

:c
:c

v

w

(3)

:a :b :a :b :a :b

u

:c
:c

v

w

(4)

:a :b :a :b :a :b

u

:d
:d

v

w
(5)

:a :b :a :b :a :b

u

:c
:c

v

w

(6)

:a :b :a :b :a :b

u

:c
:c

v

w

(7)

:a :b :a :b :a :b

u

:c
:c

v

w

(8)

:a :b :a :b :a :b

u

:c
:c

v

w

(9)

:a :b :a :b :a :b
:c
:c

Fig. 5. Block representation of the moving head dynamics. (1) Initially, no vertices are
marked. (2) to (4) Application of Kv. First F is applied, then v is marked, followed
by the application of F−1. (5) to (7) Application of Ku. (8) The graph once every K
have been applied. The vertices just need to be unmarked by the µ’s. (9) Altogether
this implements one time step of F.

Notice that for the finite number of graphs when the decomposition of
Theorem 2 does not apply, F is bijective. Therefore it just permutes those cases.
Thus, this theorem generalizes the block decomposition of reversible cellular
automata, which represents any reversible cellular automata as a circuit of finite
depth of local permutations. Here, the mark μ and its conjugate K are the local
permutations. The circuit is again of finite depth, a vertex u will be attained by
all those K that act over Xr′

u , where r′ is the locality radius of K. Therefore,
the depth is less than |π|r′

. An example of such a decomposition is described in
Fig. 5.

6 Conclusion

Summary of Results. The pointed graphs modulo are arbitrary bounded-degree
networks, with a pointed vertex serving as the origin, and modulo renaming of

362 P. Arrighi et al.

vertices. We have studied Reversible Causal Graph Dynamics (RCGD), extend-
ing Reversible Cellular Automata results to time-varying, pointed graphs mod-
ulo. We have shown that RCGD admit a Block representation according to the
formula (

∏
μ)(

∏
K), where the K’s are commuting permutations, each of them

acts locally on the neighbourhood of a vertex which gets marked, whereas μ is
a local permutation that just unmarks a vertex. The result entails that RCGD
can be implemented by reversible local mechanisms. The result also entails that
RCGD can be enumerated: by enumerating every possible commuting, marking,
local permutation K.

Future Work. This enumeration is feasible, but non-trivial, since every candidate
local permutation K needs to be checked for commutation against its shifted
version Ku for every neighbouring u. In CA theory, the notion of Partitioned
CA, a.k.a Lattice-Gas, resolves this issue. Indeed, Partitioned CA form a class
of trivial-to-enumerate RCA (because they act by first applying a permutation
locally to each cell, and second just exchanging information between neighbour-
ing cells). Yet, they are intrinsically universal for RCA [7,13], so this is without
loss of generality. The same has been proven for Quantum CA [2]. As regards
CGD, it is also possible to define a class of trivial-to-enumerate RCGD, which
works by first applying a permutation locally to each vertex, and second just
exchanging information between neighbouring vertices — although care must be
taken to account for dynamical connectivity in this second step. The proofs of
intrinsic universality, however, do not seem to carry through. Thus, we challenge
the reader with this open question: are Partitioned CGD instrinsically universal
for RCGD? As for us, we wish to extend the Block representation theorem of
this paper to quantum CGD. Such structure results would be of strong interest
to theoretical physics, where quantum, discrete spacetime dynamics are being
studied in relation to Quantum Gravity [12].

Acknowledgements. This work has been funded by the ANR-12-BS02-007-01 TAR-
MAC grant, the ANR-10-JCJC-0208 CausaQ grant, and the John Templeton Foun-
dation, grant ID 15619. The authors acknowledge enlightening discussions with Bruno
Martin and Emmanuel Jeandel. This work has been partially done when PA was dele-
gated at Inria Nancy Grand Est, in the project team Carte.

References

1. Arrighi, P., Dowek, G.: Causal graph dynamics. In: Czumaj, A., Mehlhorn, K.,
Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 54–
66. Springer, Heidelberg (2012)

2. Arrighi, P., Grattage, J.: Partitioned quantum cellular automata are intrinsically
universal. Nat. Comput. 11, 13–22 (2012)

3. Arrighi, P., Martiel, S., Nesme, V.: Generalized Cayley graphs and cellular
automata over them. submitted (long version) (2013). Pre-print arXiv:1212.0027

4. Arrighi, P., Martiel, S., Perdrix, P.: Reversible Causal Graph Dynamics (2015).
Pre-print arXiv:1502.04368

http://arxiv.org/abs/1212.0027
http://arxiv.org/abs/1502.04368

Block Representation of Reversible Causal Graph Dynamics 363

5. Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability.
J. Comput. Syst. Sci. 77, 372–378 (2010). QIP 2010 (long talk)

6. Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations: a
synchronization mechanism. J. Comput. Syst. Sci. 34(2–3), 377–408 (1987)

7. Durand-Lose, J.O.: Representing reversible cellular automata with reversible block
cellular automata. Discrete Math. Theor. Comput. Sci. 145, 154 (2001)

8. Ehrig, H., Lowe, M.: Parallel and distributed derivations in the single-pushout
approach. Theor. Comput. Sci. 109(1–2), 123–143 (1993)

9. Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system.
Math. Syst. Theory 3, 320–375 (1969)

10. Kari, J.: Representation of reversible cellular automata with block permutations.
Theory Comput. Syst. 29(1), 47–61 (1996)

11. Kari, J.: On the circuit depth of structurally reversible cellular automata. Funda-
menta Informaticae 38(1–2), 93–107 (1999)

12. Konopka, T., Markopoulou, F., Smolin, L.: Quantum graphity. Arxiv preprint
(2006). Pre-print arXiv:hep-th/0611197

13. Morita, K.: Computation-universality of one-dimensional one-way reversible cellu-
lar automata. Inf. Process. Lett. 42(6), 325–329 (1992)

14. Sorkin, R.: Time-evolution problem in Regge calculus. Phys. Rev. D. 12(2), 385–
396 (1975)

15. Taentzer, G.: Parallel and distributed graph transformation: Formal description
and application to communication-based systems. Ph.D. thesis, Technische Uni-
versitat Berlin (1996)

16. Taentzer, G.: Parallel high-level replacement systems. Theor. comput. sci. 186(1–
2), 43–81 (1997)

17. Tomita, K., Kurokawa, H., Murata, S.: Graph automata: natural expression of
self-reproduction. Phys. D: Nonlin. Phenom. 171(4), 197–210 (2002)

http://arxiv.org/abs/hep-th/0611197

Logic and Games

Reasoning with Global Assumptions
in Arithmetic Modal Logics

Clemens Kupke1, Dirk Pattinson2, and Lutz Schröder3(B)

1 University of Strathclyde, Glasgow, UK
2 Australian National University, Canberra, Australia

3 Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
lutz.schroeder@fau.de

Abstract. We establish a generic upper bound ExpTime for reason-
ing with global assumptions in coalgebraic modal logics. Unlike earlier
results of this kind, we do not require a tractable set of tableau rules
for the instance logics, so that the result applies to wider classes of log-
ics. Examples are Presburger modal logic, which extends graded modal
logic with linear inequalities over numbers of successors, and probabilis-
tic modal logic with polynomial inequalities over probabilities. We estab-
lish the theoretical upper bound using a type elimination algorithm. We
also provide a global caching algorithm that offers potential for practical
reasoning.

Arithmetic modal logics feature arithmetical constraints on the number or total
weight of successors. The simplest logics of this type compare weights to con-
stants, such as graded modal logic [12] or some variants of probabilistic modal
logic [17,19]. More involved examples are Presburger modal logic [7], which allows
Presburger constraints on numbers of successors, and probabilistic modal logic
with polynomial inequalities over probabilities. The former logic allows for state-
ments like ‘the majority of university students are female’, or ‘dance classes have
an even number of participants’, while probabilistic modal logic with polynomial
inequalities can assert, for example, independence of events.

These logics are the main examples we address in a more general coalgebraic
framework in this paper. Our main observation is that satisfiability for coalge-
braic logics can be decided in a step-by-step fashion, peeling off one layer of oper-
ators at a time. We thus reduce the overall satisfiability problem to instances of
a one-step satisfiability problem involving only immediate successor states, and
hence no nesting of modalities [21,26]. We define a strict variant of this prob-
lem, distinguished by a judicious redefinition of its input size; if strict one-step
satisfiability is in ExpTime, we obtain a (typically optimal) ExpTime upper
bound for satisfiability under global assumptions in the full logic. For our two
main examples, the requisite complexity bounds (in fact, even PSpace) on strict
one-step satisfiability follow in essence directly from known complexity results
in integer programming and the existential theory of reals, respectively; in other
words, even in fairly complex examples the complexity bound for the full logic
is obtained with comparatively little effort once the generic result is in place.
c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 367–380, 2015.
DOI: 10.1007/978-3-319-22177-9 28

368 C. Kupke et al.

Applied to Presburger constraints, our results complement a recent result [6,7]
showing that the complexity of Presburger modal logic without global assump-
tions isPSpace, the same as for the modal logic K (or equivalently the description
logic ALC). For polynomial inequalities on probabilities, our syntax generalizes
propositional polynomial weight formulae [11] to a full modal logic allowing nest-
ing of weights (and global assumptions).

In more detail, our first contribution is to show via a type elimination algo-
rithm [24] that also in presence of global assumptions (and, hence, in presence
of the universal modality [13]), the satisfiability problem for coalgebraic modal
logics is no harder than for K, i.e. in ExpTime, provided strict one-step satisfi-
ability is in ExpTime. We then refine the algorithm to use global caching in the
spirit of Goré and Nguyen [15], i.e. bottom-up expansion of a tableau-like graph
and propagation of satisfiability and unsatisfiability through the graph. We thus
potentially avoid constructing the whole exponential-sized tableau, and provide
maneuvering space for heuristic optimization. Global caching algorithms have
been demonstrated to perform well in practice [16].

Related Work. Our algorithms use a semantic method, and as such comple-
ment earlier results on global caching in coalgebraic description logics that rely
on tractable sets of tableau rules [14], which are not currently available for our
leading examples. (In fact, [18] gives tableau-style axiomatizations of various
logics of linear inequalities over the reals and over the integers; however, over
the integers the rules appear to be incomplete: if �(p) denotes the integer weight
of successors satisfying p, the formula 2�(p) < 1 � −2�(p) < −1 is clearly valid,
but cannot be derived.)

Work related to XML query languages has shown that reasoning in Presbur-
ger fixpoint logic is ExpTime complete [30], and that a logic with Presburger
constraints and nominals is in ExpTime [3], when these logics are interpreted
over finite trees, thus not subsuming our ExpTime upper bound for Presburger
modal logic with global assumptions. It will likely be possible to obtain this
bound via looping tree automata like for graded modal logic [31]. However, this
would mean translating the target formula into an exponential-sized automaton,
making exponential runtime the typical rather than the worst case; contrast-
ingly, the main goal of our global caching algorithm is to avoid building the
full exponential-sized set of types. Description logics with explicit quantification
over integer variables and number restrictions mentioning integer variables [2]
appear to be incomparable to Presburger modal logic: they do not support gen-
eral linear inequalities, but on the other hand allow integer variables to be used
at different modal depths. Reasoning with polynomial inequalities over proba-
bilities has been studied in propositional logics [11] and in many-dimensional
modal logics [20], which work with a single distribution on worlds rather than
with world-dependent probability distributions as in [10,17,19].

1 Coalgebraic Logic

We briefly describe the key concepts of coalgebraic logic, a general framework
that allows us to treat structurally different modal logics, such as Presburger

Reasoning with Global Assumptions in Arithmetic Modal Logics 369

and probabilistic modal logics, in a uniform way. We parametrize modal logics
in terms of their syntax and their coalgebraic semantics. Syntactically, we work
with a modal similarity type Λ of modal operators with given finite arities. The
set F(Λ) of Λ-formulas is then given by the grammar

F(Λ) � φ, ψ :: = ⊥ | φ ∧ ψ | ¬φ | ♥(φ1, . . . , φn) (♥ ∈ Λn-ary).

We omit explicit propositional atoms; these can be regarded as nullary modali-
ties. The operators �, →, ∨, ↔ are assumed to be defined in the standard way.

The semantics of formulas is then parametrized over the choice of a Λ-
structure consisting of a set functor T : Set → Set and the assignment of an
n-ary predicate lifting �♥� to each modality ♥ ∈ Λ, of arity n; we briefly refer to
this structure just by T . We recall that an n-ary predicate lifting for T is a natural
transformation λ : Qn → Q◦T op where Q : Setop → Set is the contravariant pow-
erset functor, T op : Setop → Setop acts like T , and Qn denotes the pointwise n-th
Cartesian power, i.e. Qn(X) = Q(X)n. Naturality of λ then amounts to commu-
tation with preimage, i.e. λX(f−1[A1], . . . , f−1[An]) = Tf−1[λY (A1, . . . , An)]
for f : X → Y.

The idea here is that T determines the type of systems underlying the seman-
tics, as the coalgebras of T : Recall that a T -coalgebra C = (X, γ) consists of a
set X of states and a map γ : X → TX, which should be thought of as assigning
to each state s a structured collection γ(x) of successors. The basic example has
T = P, the powerset functor; in this case, γ(x) is just a set of successors, so a
P-coalgebra is a Kripke frame. The predicate liftings then turn predicates on the
set X of states into predicates on the set TX of structured collections of succes-
sors. A basic example is the predicate lifting for the usual diamond modality ♦,
given by �♦�X(A) = {B ∈ P(X) | B ∩ A �= ∅}.

Satisfaction x |=C φ of formulas φ ∈ F(Λ) in states x of a coalgebra C =
(X, γ) is defined inductively by the expected clauses for Boolean operators, and

x |=C ♥(φ1, . . . , φn) iff γ(x) |= ♥(�φ1�C , . . . , �φn�C)

where we write �φ�C = {x ∈ X | x |=C φ}, and for t ∈ TX, t |= ♥(A1, . . . , An)
is short for t ∈ �♥�X(A1, . . . , An). Continuing the above example, the predicate
lifting �♦� thus induces exactly the usual semantics of ♦, i.e. x |=C ♦φ iff the set
of successors of x intersects with �φ�C .

We will be interested in satisfiability under global assumptions, or, in descrip-
tion logic terminology, reasoning with general TBoxes [1]: Given a formula ψ, the
global assumption (or TBox), a coalgebra C = (X, γ) is a ψ-model if �ψ�C = X;
and a formula φ is ψ -satisfiable if there exists a ψ-model C such that �φ�C �= ∅.
The satisfiability problem with global assumptions is to decide, given ψ and φ,
whether φ is ψ-satisfiable. For the complexity analysis of these problems, we
assume a suitable encoding of the modal operators in Λ that enters into the
calculation of the size |φ| of formulas φ; in particular, we assume that numbers
occurring in the description of modal operators are coded in binary.

Previous generic algorithms in coalgebraic logic did for the most part rely on
complete rule sets for the given operators [27]. Our interest in the present paper

370 C. Kupke et al.

is in cases for which suitable rule sets are not (currently) available. We proceed
to present our leading examples of this kind, Presburger modal logic and a prob-
abilistic modal logic with polynomial inequalities. For the sake of readability, we
focus on the case with a single (weighted) transition relation, and omit proposi-
tional atoms. Both features are easily added, e.g. using compositionality results
in coalgebraic logic [28], and in fact we use them freely in the examples.

1.1 Presburger Modal Logic

Presburger modal logic [7] admits statements in Presburger arithmetic over num-
bers �φ of successors satisfying a formula φ, called cardinalities. Throughout, we
let Rels denote the set {<,>,=} ∪ {≡k| k ∈ N} of arithmetic relations, with
≡k read as congruence modulo k. Syntactically, Presburger modal logic is then
defined by taking Λ to contain all modal operators of the form

La1,...,an;∼b =
∑n

i=1 ai�(·)i ∼ b

where (·)i denotes the i-th argument of the operator, ∼ ∈ Rels, and a1, . . . , an, b ∈
Z. Weak inequalities can be coded as strict ones, replacing, e.g., ≥ k with > k−1.
The numbers ai and b, as well as the modulus k in ≡k, are referred to as the
coefficients of a Presburger constraint. We also apply these terms to constraints∑n

i=1 aixi ∼ b in general, interpreted over the integers.
The semantics of Presburger modal logic was originally defined over standard

Kripke frames; in order to make sense of sums with arbitrary integer coefficients,
one clearly needs to restrict to finitely branching frames. We consider an alter-
native more general semantics in terms of multigraphs, which have some key
technical advantages [5]. Informally, a multigraph is a Kripke frame but with
every transition edge annotated with an integer-valued multiplicity; ordinary
finitely branching Kripke frames can be viewed as multigraphs by just taking
edges to be transitions with multiplicity 1. Formally, a multigraph can be seen
as a coalgebra for the finite multiset functor B: For a set X, B(X) consists of
the finite multisets over X, which are maps μ : X → N with finite support, i.e.
μ(x) > 0 for only finitely many x. We view μ as an N-valued measure, and write
μ(Y) =

∑
x∈Y μ(x) for Y ⊆ X. Then, B(f), for maps f , acts as image measure

formation. A coalgebra γ : X → B(X) assigns to each state x a multiset γ(x) of
successor states, i.e. each successor state is assigned a transition multiplicity.

The semantics of the operators is then given by the predicate liftings

�La1,...,an;∼b�X(A1, . . . , An) = {μ ∈ B(X) | ∑n
i=1 ai · μ(Ai) ∼ b},

that is, a state x in a B-coalgebra C = (X, γ) satisfies
∑n

i=1 ai · �φi ∼ b
iff

∑n
i=1 ai · γ(x)(�φi�C) ∼ b. This setup generalises effortlessly to multiple

(weighted) transition relations: If R is a set of roles, we take the modal operators
to be

La
r1
1 ,...,arn

n ;∼b =
n∑

i=1

ai�ri
(·)i ∼ b

Reasoning with Global Assumptions in Arithmetic Modal Logics 371

where ri ∈ R for every 1 ≤ i ≤ n and �r(·) is the number of successors along
the (weighted) transition relation r. Logics with operators of this kind are then
intrpreted by assigning R-many multisets of successors to each world, i.e. as
coalgebras of type X → B(X)R.

We note that satisfiability is the same over Kripke and over multigraphs:

Lemma 1 [25]. A formula φ is ψ-satisfiable over multigraphs iff φ is ψ-
satisfiable over Kripke frames.

(The proof of the non-trivial direction is by making copies of states according
to their multiplicity.)

Expressiveness and Examples. Presburger modal logic subsumes graded
modal logic [12]: the graded formula ♦kφ, read ‘more than k successors satisfy φ,’
becomes �(φ) > k in Presburger modal logic. Moreover, Presburger modal logic
subsumes majority logic [22]: The weak majority formula Wφ (‘at least half the
successors satisfy φ’) is expressed in Presburger modal logic as �(φ)− �(¬φ) ≥ 0.
Using propositional atoms as indicated above, we express the examples given in
the abstract by the formulas

University → �hasStudent(Female) − �hasStudent(Male) > 0
DanceCourse → �hasParticipant(�) ≡2 0

where indices informally indicate the understanding of the successor relation,
and the formulae are sensibly understood as global assumptions. As an exam-
ple involving non-unit coefficients, a chamber of parliament in which a motion
requiring a 2/3 majority has sufficient support is described by the concept

�hasMember(SupportsMotion) − 2�hasMember(¬SupportsMotion) ≥ 0.

1.2 Probabilistic Modal Logic with Polynomial Inequalities

Probabilistic logics of various forms have been studied in different contexts such
as reactive systems [19] and uncertain knowledge [10,17]. A typical feature of
such logics is that they talk about probabilities w(φ) of formulas φ holding for the
successors of a state; the concrete syntax then variously includes only inequalities
of the form w(φ) ∼ p for ∼ ∈ {>,≥,=, <,≤} and p ∈ Q∩ [0,1] [17,19], linear
inequalities over terms w(φ) [10], or polynomial inequalities, with the latter so far
treated only in either purely propositional settings [11] or in many-dimensional
logics such as the probabilistic description logic Prob-ALC [20], which use a single
global distribution over worlds. An important use of polynomial inequalities over
probabilities is to express independence constraints [20]; e.g. two properties φ
and ψ (of successors) are independent if w(φ ∧ ψ) = w(φ)w(ψ).

We thus define the following probabilistic modal logic with polynomial inequal-
ities: the system type is given by the distribution functor D that assigns to a
set X the set D(X) of discrete probability distributions on X; again, for a map

372 C. Kupke et al.

f , D(f) takes image measures. Then, a D-coalgebra γ : X → D(X) assigns to
each state x a distribution γ(x) over successor states. We can thus view γ as
a Markov chain (interpreting γ(x) as a distribution over possible future evolu-
tions of the system), or as a (single-agent) type space in the sense of epistemic
logic [17] (interpreting γ(x) as the subjective probabilities assigned by the agent
to possible alternative worlds in world x). We let the modal similarity type Λ
consist of modalities Lp indexed over polynomials p ∈ Q[X1, . . . , Xn], n ≥ 0;
Lp then has arity n. We denote the application of Lp to formulas φ1, . . . , φn by
substituting each variable Xi in p with w(φi) and postulating the result to be
non-negative; e.g., the formula w(φ∧ψ)−w(φ)w(ψ) ≥ 0 denotes one half of the
above-mentioned independence constraint. We correspondingly interpret Lp by
the predicate lifting

�Lp�X(A1, . . . , An) = {μ ∈ D(X) | p(μ(A1), . . . , μ(An)) ≥ 0}.

2 One-Step Satisfiability

The key to our approach is to deal with modalities level by level; the core con-
cepts of the arising notion of one-step satisfiability checking go back to [21,25,26].
From now on, we mostly restrict the notation to unary operators although our
central examples all have operators with higher arities, to avoid cumbersome
notation; a fully general treatment requires no more than additional indexing. We
fix a Λ-structure T throughout. Peeling off one level of modalities and abstracting
from their arguments leads to the following notions.

Definition 2 (One-Step Pairs, One-Step Satisfiability). We assume a set
V of (propositional) variables. We denote the set of Boolean formulas over a set
Z of atoms by Prop(Z), and by Λ(Z) = {♥a | ♥ ∈ Λ, a ∈ Z} the set of modal
atoms over Z. As usual, a literal over Z is an element z ∈ Z or a negation
thereof, written εz where ε is either nothing or negation. A modal literal over Z
is a literal over Λ(Z). A conjunctive clause over Z is a finite set of literals over
Z, read as a conjunction. A one-step pair (φ, η) over V ⊆ V consists of

– a conjunctive clause φ over Λ(V) mentioning each variable at most once, and
– a Boolean formula η ∈ Prop(V) mentioning only variables occurring in φ.

A one-step model M = (X, τ, t) over V consists of

– a set X together with a P(X)-valuation τ : V → P(X); and
– an element t ∈ TX, thought of as the successor structure of an anonymous

state.

For η ∈ Prop(V), τ(η) is the interpretation of η in the Boolean algebra P(X)
under the valuation τ . For a modal atom ♥a ∈ Λ(V), we put τ(♥a) =
�♥�X(τ(a)) ⊆ TX. Via the Boolean algebra structure on P(TX), this extends
to an assignment of τ(φ) ∈ P(TX) to each φ ∈ Prop(Λ(V)). We say that

Reasoning with Global Assumptions in Arithmetic Modal Logics 373

the one-step model M = (X, τ, t) satisfies the one step pair (φ, η), and write
M |= (φ, η), if

τ(η) = X and t ∈ τ(φ).

Then, (φ, η) is (one-step) satisfiable if there exists a one-step model M such that
M |= (φ, η). The one-step satisfiability problem is to decide whether a given (φ, η)
is one-step satisfiable, with η given as a DNF consisting of conjunctive clauses
each mentioning every variable occurring in φ. The strict one-step satisfiability
problem is the same problem, but with the input size defined to be just the size
of φ; the representation of η is, then, irrelevant. We say that Λ has the one-
step small model property if there is a polynomial p such that every one-step
satisfiable (φ, η) has a one-step model (X, τ, t) with |X| ≤ p(|φ|) (no bound is
assumed on the representation of t).

The intuition behind these definitions is that propositional variables are place-
holders for argument concepts; their valuation τ in a one-step model represents
the extensions of these argument concepts; and the second component η of a
one-step pair captures the Boolean constraints on the argument concepts that
are globally satisfied in a given model. One-step satisfiability is precisely what
will allow us to construct satisfying models later on. Note that most of a one-step
pair (φ, η) is disregarded for purposes of determining the input size of the strict
one-step satisfiability problem, as η, a propositional formula, can be exponen-
tially larger than the conjunctive clause φ.

Example 3. In Presburger modal logic, let φ = �(a) ≥ 1∧ �(b) ≥ 1. Then (φ, η)
is one-step satisfiable as long as η does not force the interpretation of either a or
b to be empty, i.e. both η ∧ a and η ∧ b need to be (propositionally) satisfiable.
Thus, the strongest possible η are a ∧ b and (a ∧ ¬b) ∨ (¬a ∧ b).

Lemma 4. A one-step pair (φ, η) over V is satisfiable iff it is satisfiable by a
one-step model of the form (X, τ, t) where X is the set of valuations V → 2
satisfying η (where 2 = {�,⊥} is the set of Booleans) and τ(a) = {κ ∈ X |
κ(a) = �} for a ∈ V.

Under the one-step small model property, the two versions of the one-step sat-
isfiability problem coincide for our purposes:

Lemma 5. Let T have the one-step small model property. Then for any com-
plexity class C containing PSpace, strict one-step satisfiability is in C iff one-step
satisfiability is in C.

Although not phrased in these terms, the complexity analysis of (TBox-free)
Presburger modal logic by Demri and Lugiez [7] is based on showing that the
strict one-step satisfiability problem is in PSpace [26], without using the one-
step small model property – in fact, the latter is based on more recent results
from integer programming:

Lemma 6 [8]. Every system of d linear inequalities over the integers with coef-
ficients of binary length at most s has a solution with at most polynomially many
non-zero components in d and s.

374 C. Kupke et al.

The corresponding statement over the rationals (where in fact one has at most
d non-zero components) is well-known, and features centrally in the analysis of
probabilistic logics [11]. From these observations, we obtain sufficient tractability
of one-step satisfiability in our key examples:

Example 7. 1. Presburger modal logic has the one-step small model property.
To see this, let (φ, η) be satisfied by M = (X, τ, μ), where by Lemma 4 we
can assume that X consists of satisfying valuations of η, hence of at most
exponential size in |φ|. Let V = {a1, . . . , an}, and put qi = μ(τ(ai)). By
standard estimates in integer programming [23] we can assume that the
μ(x) and, hence, the qi (being sums of at most exponentially many μ(x))
have polynomial binary length in |φ|. Now all we need to know about τ to
guarantee that M satisfies φ is that

∑
x∈τ(ai)

μ(x) = qi.

We can see this as a system of linear constraints on the μ(x), which by
Lemma 6 has a solution with only m nonzero components where m is poly-
nomially bounded in n and the binary length s of the largest qi, and hence
in |φ|; from this solution, we immediately obtain a one-step model of (φ, η)
with m states.

Moreover, again using Lemma 4, one-step satisfiability in Presburger
modal logic easily reduces to checking solvability of Presburger constraints
over the integers, which can be done in NP and hence in PSpace; by
Lemma 5, we obtain that strict one-step satisfiability in Presburger modal
logic is in PSpace.

2. By a completely analogous (slightly easier) argument as for Presburger
modal logic, probabilistic modal logic with polynomial inequalities has the
one-step small model property. In this case, one-step satisfiability reduces
to solvability of systems of polynomial inequalities over the reals, which can
be checked in PSpace [4] (this argument can essentially be found in [11]).
Again, we obtain that strict one-step satisfiability in probabilistic modal logic
with polynomial inequalities is in PSpace.

By [26], these observations imply decidability in PSpace of the plain satisfiabil-
ity problem. We show below that one obtains an optimal upper bound ExpTime
for satisfiability under global assumptions. One should note that the proof of the
one-step small model property will in both cases work for any coalgebraic modal
logic over integer- or real-weighted systems whose modalities depend only on the
measures of their arguments.

Remark 8. Most previous generic complexity results in coalgebraic logic have
relied on tractable sets of tableau rules, e.g. [14,27,29]. These rules are of the
shape φ/η where φ is a conjunctive clause over Λ(V) and η ∈ Prop(V), to be read,
within a system including also the standard propositional rules, as ‘in order to
establish that ψ is satisfiable, show that the conclusions of all rule matches to ψ
are satisfiable’. E.g. PSpace-tractability [27] of a rule set essentially amounts to

Reasoning with Global Assumptions in Arithmetic Modal Logics 375

the rules being codable in such a way that it suffices, for each ψ, to consider only
rules with polynomial-sized codes. In terms of one-step pairs, this means essen-
tially that there are certificates (in the shape of rule codes) for unsatisfiability
of a one-step pair (φ, η) that are of polynomial size in |φ| and can be checked
in polynomial space in |φ| (in particular comparing η with the conclusion of the
encoded rule), so that the strict one-step satisfiability problem is in PSpace.
Summing up, complexity bounds obtained by our current semantic approach
subsume earlier tableau-based ones.

3 Type Elimination

We now describe a type elimination algorithm that realizes an ExpTime upper
bound for reasoning with global assumptions in coalgebraic logics. Like all type
elimination algorithms, it is not suited for practical use, as it begins by construct-
ing the full exponential-sized set of types. We therefore refine the algorithm to
a global caching algorithm in Sect. 4.

As usual, we rely on defining a scope of relevant concepts:

Definition 9. A set Σ of concepts is closed if Σ is closed under subconcepts
and single negations.

We fix from now on a global assumption ψ and a formula φ0 to be checked for
ψ-satisfiability. We denote the closure of {ψ, φ0} in the above sense by Σ.

Definition 10. A ψ-type is a subset T ⊆ Σ such that

– ψ ∈ T �� ⊥;
– whenever ¬φ ∈ Σ, then ¬φ ∈ T iff φ /∈ T ;
– whenever φ ∧ χ ∈ Σ, then φ � χ ∈ T iff φ, χ ∈ T .

The design of the algorithm relies on one-step satisfiability as an abstraction:
We denote the set of all ψ-types by S0. We take V to be the set of propositional
variables a♥φ for all modal atoms ♥φ ∈ Σ; we then define a substitution σ by
σ(a♥φ) = φ for all a♥φ ∈ V . For S ⊆ S0 and T ∈ S, we construct a one-step
pair (φT , ηS) over V by taking φT to be the set of all modal literals ε♥a over
V such that ε♥σ(a) ∈ T , and ηS a DNF consisting of all conjunctive clauses
ϑ (seen as sets of literals L) over V such that {Lσ | L ∈ ϑ} ⊆ T for some
T ∈ S. Then we define a functional E : P(S0) → P(S0) by S �→ {T ∈ S0 |
(φT , ηS) one-step satisfiable}.

Lemma 11. E is monotone w.r.t. set inclusion.

We can thus compute the greatest postfixpoint νE of E by just iterating E :

Algorithm 12. (Decide by type elimination whether φ0 is satisfiable over ψ)

1. Set S := S0.
2. Compute S′ = E(S); if S′ �= S then put S := S′ and repeat.
3. Return ‘yes’ if φ0 ∈ T for some T ∈ S, and ‘no’ otherwise.

376 C. Kupke et al.

If strict (!) one-step satisfiability is in ExpTime, then this algorithm has at most
exponential run time. We analyse correctness:

Definition 13. A type T is realized in a ψ-model C = (X, γ) if there exists
x ∈ X such that x |= φ for all φ ∈ T .

Lemma 14. The set of types realized in a given ψ-model is a postfixpoint of E.

By Lemma 14, all ψ-satisfiable types are in νE . Thus, the algorithm is sound,
i.e. answers ‘yes’ on ψ-satisfiable concepts. To see completeness, we show

Lemma 15. Let S be a postfixpoint of E. Then there exists a T -coalgebra C =
(S, γ) such that for each φ ∈ Σ, �φ�C = {T ∈ S | φ ∈ T }.
An interpretation as in Lemma 15 is clearly a ψ-model, so that Algorithm 12 is
complete, i.e. answers ‘yes’ only on ψ-satisfiable concepts.

Theorem 16. If strict one-step satisfiability in T is in ExpTime, then satisfi-
ability with global assumptions is in ExpTime.

Example 17. By the results of the previous section and by inheriting lower
bounds from reasoning with global assumptions in K, we obtain that reasoning
with global assumptions in Presburger modal logic and in probabilistic modal
logic with polynomial inequalities is ExpTime-complete.

4 Global Caching

We now develop the type elimination algorithm from the preceding section into a
global caching algorithm. Existing global caching algorithms work with systems
of tableau rules (satisfiability is guaranteed if every applicable rule has at least
one satisfiable conclusion) [14]. The fact that we work with a semantics-based
decision procedure impacts on the design of the algorithm in two ways:

– In a tableaux setting, node generation is driven by the tableau rules, and a
global caching algorithm generates successor nodes by applying tableau rules.
In principle, however, successor nodes can be generated at will, with the rules
just pointing to relevant nodes. In our setting, we make the relevant nodes
explicit using the concept of children.

– The rules govern the propagation of satisfiability and unsatisfiability among
the nodes. Semantic propagation of satisfiability is straightforward, but prop-
agation of unsatisfiability again needs the concept of children: a node can only
be marked as unsatisfiable once all its children have been generated (and too
many of them are unsatisfiable).

We continue to work with a closed set Σ as in Sect. 3 (generated by the global
assumption ψ and the target formula φ0) but replace types with (tableau)
sequents, i.e. arbitrary subsets Γ,Θ ⊆ Σ, understood conjunctively; in partic-
ular, a sequent need not mention every formula in Σ. We write Seqs = P(Σ).

Reasoning with Global Assumptions in Arithmetic Modal Logics 377

A state is a sequent consisting of modal literals only (recall that we take atomic
propositions as nullary operators). We denote the set of states by States.

To convert sequents into states, we emply the usual propositional rules

Γ, φ1 � φ2

Γ, φ1, φ2

Γ,¬(φ1 � φ2)
Γ,¬φ1 | Γ,¬φ2

Γ,¬¬φ

Γ, φ

Γ,⊥

where | denotes alternative conclusions. (As usual, a rule Γ, φ,¬φ/ with no con-
clusions is admissible.)

Definition 18. The children of a state Γ are the sequents consisting of ψ and,
for each modal literal ε♥φ ∈ Γ , a choice of either φ or ¬φ. The children of a
non-state sequent are its conclusions under the propositional rules.

We modify the functional E defined in the previous section to work also with
sequents and depend on a set G ⊆ Seqs of sequents already generated: we define
EG : P(G) → P(G) by taking EG(S) to contain

– a non-state sequent Γ ∈ G−States iff every propositional rule that applies to
Γ has a satisfiable conclusion that is contained S, and

– a state Γ ∈ G ∩ States iff, for C the set of children of Γ , the one-step pair
(φΓ , ηS∩C) over VΓ is one-step satisfiable where VΓ contains a variable aε♥φ

for each modal literal ε♥φ ∈ Γ , and φΓ , ηS∩C are defined like φT , ηS in the
previous section, using the substitution σΓ (aε♥φ) = φ in place of σ.

To propagate unsatisfiability, we introduce a second functional AG : P(G) →
P(G), where we take AG(S) to contain

– a non-state sequent Γ ∈ G − States iff there is a propositional rule applying
to Γ all whose conclusions are in S, and

– a state Γ ∈ G ∩ States iff, for C the set of children of Γ , we have C ⊆ G and
the one-step pair (φΓ , ηC\S) is one-step unsatisfiable.

The global caching algorithm maintains, as global variables, a set G of sequents
with subsets E and A of sequents already decided as satisfiable or unsatisfiable,
respectively.

Algorithm 19. (Decide T -satisfiability of φ0 by global caching.)

1. Initialize G = {Γ0} with Γ0 = {φ0, ψ}, and E = A = ∅.
2. (Expand) Select a sequent Γ ∈ G that has children that are not in G, and

add any number of these children to G. If no sequents with missing children
are found, go to Step 5

3. (Propagate) Optionally recalculate E as the greatest fixed point νS. EG(S ∪
E), and A as μS.AG(S ∪ A). If Γ0 ∈ E, return ‘yes’; if Γ0 ∈ A, return ‘no’.

4. Go to Step 2.
5. Recalculate E as νS. EG(S ∪ E); return ‘yes’ if Γ0 ∈ E, and ‘no’ otherwise.

378 C. Kupke et al.

Theorem 20. If the strict one-step satisfiability problem of T is in ExpTime
then the global caching algorithm decides satisfiability under global assumptions
in ExpTime.

The key feature of the algorithm is that it avoids generating the full set of types
by detecting satisfiability or unsatisfiability on the fly in the intermediate prop-
agation step. The non-determinism in the formulation of the algorithm can be
resolved arbitrarily, i.e. any choice (e.g. of which sequents to add in the expansion
step and whether or not to trigger propagation) leads to correct results; thus, it
affords room for heuristic optimization. Detecting unsatisfiability (but not satis-
fiability) in Step 19 requires previous generation of all, in principle exponentially
many, children of a sequent. This is presumably not necessarily prohibitive in
practice, as the exponential dependence is only in the number of top-level modal-
ities in a sequent. As an extreme example, if we encode ♦φ as �(φ) > 0, then
the sequent {♦n�} (n successive diamonds) induces 2n types but has only two
children, {♦n−1�} and {¬♦n−1�}.

5 Conclusions

We have provided a generic upper bound ExpTime for reasoning with global
assumptions in coalgebraic modal logics, based on a generic semantic approach
centered around one-step satisfiability checking. This approach is particularly
suitable for logics for which no tractable sets of modal tableau rules are known;
our core examples of this type are Presburger modal logic and probabilistic
modal logic with polynomial inequalities. (Another example is Elgesem’s logic
of agency [9], which also satisfies the conditions of our generic result [26].) The
upper complexity bounds we obtain for these logics by instantiating our generic
results appear to be new. The upper bound is based on a type elimination algo-
rithm; additionally, we have designed a more practical global caching algorithm
that offers a perspective for efficient reasoning in practice.

Acknowledgements. We wish to thank Erwin R. Catesbeiana for remarks on unsat-
isfiability. Work of the first author forms part of the DFG project GenMod2 (SCHR
1118/5-2).

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

2. Baader, F., Sattler, U.: Description logics with symbolic number restrictions. In:
European Conference on Artificial Intelligence, ECAI 1996, pp. 283–287. Wiley
(1996)

3. Bárcenas, E., Lavalle, J.: Expressive reasoning on tree structures: recursion, inverse
programs, presburger constraints and nominals. In: Castro, F., Gelbukh, A.,
González, M. (eds.) MICAI 2013, Part I. LNCS, vol. 8265, pp. 80–91. Springer,
Heidelberg (2013)

Reasoning with Global Assumptions in Arithmetic Modal Logics 379

4. Canny, J.: Some algebraic and geometric computations in PSPACE. In: Symposium
on Theory of Computing, STOC 1988, pp. 460–467. ACM (1988)

5. D’Agostino, G., Visser, A.: Finality regained: A coalgebraic study of Scott-sets and
multisets. Arch. Math. Logic 41, 267–298 (2002)

6. Demri, S., Lugiez, D.: Presburger modal logic is PSPACE-complete. In: Furbach,
U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 541–556.
Springer, Heidelberg (2006)

7. Demri, S., Lugiez, D.: Complexity of modal logics with Presburger constraints. J.
Appl. Logic 8, 233–252 (2010)

8. Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Oper. Res.
Lett. 34(5), 564–568 (2006)

9. Elgesem, D.: The modal logic of agency. Nordic J. Philos. Logic 2, 1–46 (1997)
10. Fagin, R., Halpern, J.: Reasoning about knowledge and probability. J. ACM 41,

340–367 (1994)
11. Fagin, R., Halpern, J., Megiddo, N.: A logic for reasoning about probabilities.

Inform. Comput. 87, 78–128 (1990)
12. Fine, K.: In so many possible worlds. Notre Dame J. Form. Log. 13, 516–520 (1972)
13. Goranko, V., Passy, S.: Using the universal modality: Gains and questions. J. Log.

Comput. 2, 5–30 (1992)
14. Goré, R., Kupke, C., Pattinson, D.: Optimal tableau algorithms for coalgebraic

logics. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp.
114–128. Springer, Heidelberg (2010)

15. Goré, R., Nguyen, L.: EXPTIME tableaux for ALC using sound global caching.
In: Description Logics, DL 2007, CEUR Workshop Proceedings, vol. 250 (2007)

16. Goré, R.P., Postniece, L.: An experimental evaluation of global caching for ALC
(System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 299–305. Springer, Heidelberg (2008)

17. Heifetz, A., Mongin, P.: Probabilistic logic for type spaces. Games Econ. Behav.
35, 31–53 (2001)

18. Kupke, C., Pattinson, D.: On modal logics of linear inequalities. In: Advances in
Modal Logic, AiML 2010, pp. 235–255. College Publications (2010)

19. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94,
1–28 (1991)

20. Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty.
In: Principles of Knowledge Representation and Reasoning, KR 2010, pp. 393–403.
AAAI (2010)

21. Myers, R., Pattinson, D., Schröder, L.: Coalgebraic hybrid logic. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 137–151. Springer, Heidelberg (2009)

22. Pacuit, E., Salame, S.: Majority logic. In: Principles of Knowledge Representation
and Reasoning, KR 2004, pp. 598–605. AAAI Press (2004)

23. Papadimitriou, C.: On the complexity of integer programming. J. ACM 28,
765–768 (1981)

24. Pratt, V.: Models of program logics. In: Foundations of Computer Science, FOCS
1979, pp. 115–122. IEEE Comp. Soc. (1979)

25. Schröder, L.: A finite model construction for coalgebraic modal logic. J. Log.
Algebr. Prog. 73, 97–110 (2007)

26. Schröder, L., Pattinson, D.: Shallow models for non-iterative modal logics. In:
Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds.)
KI 2008. LNCS (LNAI), vol. 5243, pp. 324–331. Springer, Heidelberg (2008)

27. Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Trans.
Comput. Log. 10,13:1–13:33 (2009)

380 C. Kupke et al.

28. Schröder, L., Pattinson, D.: Modular algorithms for heterogeneous modal logics
via multi-sorted coalgebra. Math. Struct. Comput. Sci. 21, 235–266 (2011)

29. Schröder, L., Pattinson, D., Kupke, C.: Nominals for everyone. In: International
Joint Conference on Artificial Intelligence, IJCAI 2009, pp. 917–922 (2009)

30. Seidl, H., Schwentick, T., Muscholl, A.: Counting in trees. In: Logic and Automata:
History and Perspectives (in Honor of Wolfgang Thomas), pp. 575–612. Amsterdam
Univ. Press (2008)

31. Tobies, S.: Complexity results and practical algorithms for logics in knowledge
representation. Ph.D. thesis, RWTH Aachen (2001)

Nearest Fixed Points and Concurrent
Priority Games

Bruno Karelovic and Wies�law Zielonka(B)

LIAFA, Université Paris Diderot, Paris 7, France
bruno.karelovic@gmail.com, zielonka@liafa.univ-paris-diderot.fr

Abstract. As it is known the values of different states in parity games
(deterministic parity games, or stochastic perfect information parity
games or concurrent parity games) can be expressed by formulas of
µ-calculus – a fixed point calculus alternating the greatest and the least
fixed points of monotone mappings on complete lattices.

In this paper we examine concurrent priority games that generalize
parity games and we relate the value of such games to a new form of
fixed point calculus – the nearest fixed point calculus.

1 Introduction

As it is well known parity games are closely related to μ-calculus. This fact
was first observed in the context of turn based deterministic games [1,2], next
for perfect information stochastic games [3,4] and for concurrent stochastic
games [5].

Intuitively, parity games capture a situation where we meet two types of
properties, desirable ones and undesirable ones. Moreover properties are ordered
by a priority relation. This leads to a classification of infinite runs of a system, a
run is desirable iff the property associated with the maximal priority encountered
infinitely often during the run is desirable.

We can try however a finer classification of properties by quantifying them
by real numbers from a closed bounded interval I = [p1, p2] of real numbers.
To this end we associate with the most preferable properties the reward p2 and
with the most undesirable the reward p1. However in general we can have also a
whole spectrum of intermediate properties with rewards between p1 and p2. As
in parity games the properties can be ordered by a priority relation, the priority
over properties has nothing to do with the natural reward order on I, given two
properties a and b with rewards r(a), r(b) ∈ I, it is possible to have r(a) < r(b)
(b gives a better payoff than a) with the priority of a greater than the priority
of b, i.e. property a whenever happens then it “invalidates” property b. As in
parity games, given an infinite run we take the property a of maximal priority
encountered infinitely often during the run and define the reward of the run as
the reward associated with this property.

We obtain in this way a class of games that we call priority games. Deter-
ministic priority games can be reduced to parity games, in particular solving
c© Springer International Publishing Switzerland 2015
A. Kosowski and I. Walukiewicz (Eds.): FCT 2015, LNCS 9210, pp. 381–393, 2015.
DOI: 10.1007/978-3-319-22177-9 29

382 B. Karelovic and W. Zielonka

a sequence of parity games we can find the values of all states in the priority
games and optimal memoryless strategies for both players. Perfect information
stochastic priority games also admit optimal memoryless strategies, however we
do not know if they can be reduced to parity games. In this paper we examine
concurrent stochastic priority games. As it turns out the values of such games
can be obtained by a new kind of μ-calculus. The traditional μ-calculus alter-
nates the greatest and the least fixed points, the μ-calculus in this paper defines
for each r ∈ I = [p1, p2] the nearest fixed point of a monotone function (nearest
to r). The greatest and the least fixed points are just special cases of the nearest
fixed points (they are nearest to p1 and to p2 respectively).

Even if priority games just extend parity games we think that our approach
contributes also to a better comprehension of parity games. Indeed it is noto-
riously difficult to comprehend the μ-calculus formulas that give solutions to
parity games. This follows from the fact that it is difficult to grasp the meaning
of a μ-calculus formula alternating several greatest and least fixed points.

Our approach has advantage because it provides a natural interpretation in
terms of games of a partially evaluated μ-calculus formula, where fixed points
are applied only to some variables while other variables are left free. In our
approach each variable in the formula corresponds to a state of the game and
free variables correspond to absorbing states. Then adding a new fixed point
over a free variable has the following interpretation in term of games – the
state corresponding to this variable changes its nature from absorbing to non-
absorbing. And the usual method for approximating a new fixed point giving
the value of the state turns out to be nothing else but the natural algorithm for
calculating the value the new non-absorbing state. At the end, when all fixed
points are applied, then this corresponds to the final situation where all states
are transformed from absorbing to non-absorbing.

2 Concurrent Stochastic Priority Games

A two-player arena G = (S,A,B, p) is composed of a finite set of states S =
{1, 2, . . . , n} ⊂ N (we assume without loss of generality that S is a subset of
positive integers) and finite sets A and B of actions of players Max and Min.
For each state s, A(s) ⊆ A and B(s) ⊆ B, are the set of actions that players
Max and Min have at their disposal at s. We assume that A and B are disjoint
and (A(s))s∈S, (B(s))s∈S are partitions of A and B.

For s, s′ ∈ S, a ∈ A(s), b ∈ B(s), p(s′|s, a, b) is the probability to move to s′

if players Max and Min execute respectively actions a and b at s.
An infinite play is played by players Max and Min. At each stage, given the

current state s, the players choose simultaneously and independently actions
a ∈ A(s) and b ∈ B(s) and the game moves to a new state s′ with probability
p(s′|s, a, b). The couple (a, b) is called a joint action.

A finite history is a sequence h = (s1, a1, b1, s2, a2, b2, s3 . . . , sn) alternating
states and joint actions and beginning and ending with a state. The length of h
is the number of joint actions in h, in particular a history of length 0 consists of
just one state and no actions. The set of finite histories is denoted H.

Nearest Fixed Points and Concurrent Priority Games 383

A strategy of player Max is a mapping σ : H → Δ(A), where Δ(A) is the
set of probability distributions on A. We require that supp(σ(h)) ⊆ A(s), where
s is the last state of h and supp(σ(h)) := {a ∈ A | σ(h)(a) > 0} is the support
of the measure σ(h).

A strategy σ is stationary if σ(h) depends only on the last state of h. Thus
stationary strategies of player Max can be identified with mappings from S to
Δ(A) such that supp(σ(s)) ⊆ A(s) for each s ∈ S.

A strategy σ is pure if supp(σ(h)) is a singleton for each h. Pure stationary
strategies of player Max are identified with mappings σ : S → A such that
σ(s) ∈ A(s).

Strategies for player Min are defined in a similar way.
We write Σ(G) and T (G) to denote the sets of all strategies for player Max

and Min respectively.
We omit G and write Σ, T if G is clear from the context. We use σ and τ

(with subscripts or superscripts) to denote strategies of players Max and Min
respectively.

An infinite history or a play is an infinite sequence h = (s1, a1, b1, s2, a2, b2,
s3, a3, b3, . . .) alternating states and joint actions. The set of infinite histories is
denoted H∞. For a finite history h by h+ we denote the cylinder generated by h
consisting of all infinite histories with prefix h. We assume that H∞ is endowed
with the σ-algebra B(H∞) generated by the set of cylinders.

Strategies σ, τ of players Max and Min and the initial state s determine in
the usual way a probability measure P

σ,τ
s on (H∞,B(H∞)).

A concurrent stochastic priority game is obtained by adding to G a reward
mapping

ρ : S → I

associating with each state s a reward ρ(s) belonging to a closed interval I ⊂ R.
The payoff uρ(h) of an infinite history h = (s1, a1, b1, s2, a2, b2, s3, a3, b3, . . .)

in the priority game is defined as

uρ(h) = ρ(lim sup
n

sn). (1)

Thus the payoff is equal to the reward of the greatest (in the usual integer order)
state visited infinitely often.

The aim of player Max (player Min) is to maximize (resp. minimize) the
expected payoff

E
σ,τ
s [uρ] =

∫

H∞
uρ(h)Pσ,τ

s (dh).

Concurrent priority games contain two well known classes of games.

(1) Concurrent parity games [6] correspond to concurrent priority games with
the reward mapping having rewards in the two element set {0, 1} rather than
arbitrary rewards in the interval I.

(2) The second subclass of concurrent priority games is the class of Everett’s
recursive games [7]. Everett games are concurrent priority games such that

384 B. Karelovic and W. Zielonka

all non-absorbing states have reward 0 (a state s is absorbing if p(s|s, a, b) = 1
for all joint actions (a, b)).

Thus in Everett games players receive the payoff 0 if the play remains
forever in non-absorbing states, otherwise, for plays ending in an absorbing
state, the payoff is equal to the reward associated with this state. Note that
Everett games contain as a subclass the class of reachability games which
correspond to Everett games such that all absorbing states have reward 1.

From the determinacy of Blackwell games proved by Martin [8] it follows that
concurrent priority games have values, i.e. for each state s, supσ infτ E

σ,τ
s [uρ] =

infτ supσ E
σ,τ
s [uρ]. (Blackwell games do not have states but the result of Martin

extends immediately to games with states as shown by Maitra and Sudderth [9].)
For two subclasses of concurrent priority games mentioned earlier we have

more precise results. A proof of determinacy of concurrent stochastic parity
games using fixed points was given by de Alfaro and Majumdar [5]. And for
Everett’s games Everett proved not only that such games have values but also
that both players have ε-optimal stationary strategies [7].

Notation: For an arena G by G(ρ) we will denote the priority game obtained
by endowing G with the reward mapping ρ. Another notation used frequently
in the paper is G(x1, . . . , xn) which denotes the priority game with n states
{1, . . . , n} having rewards x1, . . . , xn respectively.

3 Interval Lattice and Nearest Fixed Point

Let us recall that a complete lattice is a partially ordered set (E,≤) such that
each subset X of E has the least upper bound

∨
X and the greatest lower bound∧

X. A mapping f : E → F from a lattice E to a lattice F is monotone if for
all x, y ∈ E, x ≤ y implies f(x) ≤ f(y). The set of such monotone mappings
is denoted Mon(E,F). The greatest and the least element of a complete lattice
will be denoted respectively � and ⊥.

Theorem 1 (Tarski [10]). For each complete lattice (E,≤) and a monotone
mapping f : E → E the set P of fixed points of f is non-empty and is a complete
lattice, in particular P has the greatest and the least element.

In this paper we are interested in the complete lattice I ⊆ R of real numbers
from a closed interval I and in the product lattice In endowed with the compo-
nentwise order. In the sequel we will fix I = [⊥,�] and ⊥, � will always denote
the minimal and maximal elements of I.

Let f : x 	→ f(x) be a monotone mapping from I to itself. For a monotone
mapping f : I → I and r ∈ I we define the nearest fixed point μrx.f(x):

(1) if f(r) = r then μrx.f(x) = r,
(2) if f(r) < r then f maps the interval [⊥, r] into itself and by Tarski’s fixed

point theorem there exists the greatest fixed-point of f in [⊥, r] and μrx.f(x)
denotes this fixed point (in other words, μrx.f(x) is the greatest fixed point
of f in [⊥, r]),

Nearest Fixed Points and Concurrent Priority Games 385

(3) if f(r) > r then f maps the interval [r,�] into itself and by Tarski’s fixed
point theorem, there exists the least fixed-point of f in [r,�] and μrx.f(x)
denotes this fixed point (in other words, μrx.f(x) is the least fixed point of
f in [r,�]).

A mapping f : I → I is nonexpansive if for all x, y ∈ I, |f(x)−f(y)| ≤ |x−y|.
It is known that in general complete lattices a transfinite induction can be

necessary in order to calculate the least and the greatest fixed points of monotone
mappings. The following lemma shows that for monotone nonexpansive map-
pings from I to I the situation is much simpler:

Lemma 2. Let f : I → I be monotone and nonexpansive.

(i) Let r ∈ I and let (rn)n≥0 be the sequence of real numbers such that r0 = r
and rn+1 = f(rn). The sequence (rn) is monotone and it converges (in the
usual sense of convergence in R with the euclidean metric) to μrx.f(x).

(ii) The set of fixed points of f is a closed subinterval of I.
(iii) Let e1, e2 be respectively the least and the greatest fixed points of f . Then

μrx.f(x) = e1 if r < e1, μrx.f(x) = r if r ∈ [e1, e2] and μrx.f(x) = e2 if
r > e2.

Note that (iii) shows that μrx.f(x) is indeed the fixed point which is closest (in
the sense of the euclidean distance) to r.

Proof. (i) If f(r) ∝ r then by monotonicity fn+1(r) ∝ fn(r) for all n ≥ 0, where
∝ is either ≤ or ≥. But a bounded monotone sequence of real numbers converges
to some r∞ ∈ I. Since f is nonexpansive |f(r∞) − fn+1(r)| ≤ |r∞ − fn(r)|. The
left-hand side of this inequality converges to |f(r∞) − r∞| while the right-hand
side converges to 0.
(ii) Suppose that x < y are two fixed points of f and z ∈ [x, y]. Then x =
f(x) ≤ f(z) ≤ f(y) = y and |x − f(z)| = |f(x) − f(z)| ≤ |x − z|. Similarly
|f(z) − y| ≤ |z − y|. However both these inequalities can hold simultaneously
only if f(z) = z. Thus if e1 and e2 are the least and the greatest fixed points of
f then all elements of [e1, e2] are fixed points of f .
(iii) Direct consequence of (ii).

3.1 Nested Nearest Fixed Points

For any set D we endow the set ID of mappings from D to I with the order
relation: for f, g ∈ ID, f ≤ g if f(x) ≤ g(x) for all x ∈ D. Then (ID,≤)
is also a complete lattice, for a set F ⊆ ID, ΘF is a mapping f such that
f(x) = Θh∈F h(x), Θ ∈ {∨,

∧}. Note that the product lattice In can be seen as
a mapping from {1, . . . , n} into I, i.e. is covered by this definition.

The lattice II contains the lattice Mon(I, I) of all monotone mappings from
I to I. Note that for any set F ⊆ Mon(I, I), ΘF calculated in the lattice II or
in the lattice Mon(I, I) gives the same result, Θ ∈ {∧,

∨}.

Lemma 3. Let f, g ∈ Mon(I, I) and r ∈ I. If f ≤ g then for each r ∈ I,
μrx.f(x) ≤ μrx.g(x).

386 B. Karelovic and W. Zielonka

Proof. If f(r) ≤ r ≤ g(r) then μrx.f(x) ≤ f(r) ≤ r ≤ g(r) ≤ μrx.g(x).
If r < f(r) ≤ g(r) then f and g are monotone mappings from [r,�] to

[r,�] and then μrx.f and μrx.g are the least fixed points of f and g considered
as mappings from the lattice [r,�] to [r,�]. However, if f ≤ g, where f and g
monotone, then the least (greatest) fixed point of f is ≤ than the least (greatest)
fixed point of g (Proposition 1.2.18 in [11]).

The case f(r) ≤ g(r) < r is symmetric to the previous one. �
We endow R

n with the norm ‖(x1, . . . , xn)‖ = maxi|xi|.
We say that a mapping f ∈ Mon(In, Im) is monotone nonexpansive if for all

x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ In, ‖f(x) − f(y)‖ ≤ ‖x − y‖.
By Mone(In, Im) we denote the set of monotone nonexpansive mappings

from In to Im.
Given f ∈ Mon(In, I) by

μrzi.f(z1, . . . , zi−1, zi, zi+1, . . . , zn) (2)

we denote the mapping from In−1 to I which maps (z1, . . . , zi−1, zi+1, . . . ,
zn) ∈ In−1 to the nearest fixed point of the mappinng zi 	→ f(z1, . . . ,
zi−1, zi, zi+1, . . . , zn).

Lemma 4. Let us fix r ∈ I.
If f ∈ Mon(In, I) then the mapping (2) belongs to Mon(In−1, I).
If f ∈ Mone(In, I) then the mapping (2) belongs to Mone(In−1, I).

Proof. The first assertion follows immediately from Lemma 3.
For (x1, . . . , xi−1, xi+1, . . . , xn) ∈ In−1 we define inductively a sequence of

mappings:

g0(x1, . . . , xi−1, xi+1, . . . , xn) = f(x1, . . . , xi−1, r, xi+1, . . . , xn)

gk+1(x1, . . . , xi−1, xi+1, . . . , xn) =

f(x1, . . . , xi−1, g
k(x1, . . . , xi, xi+1, . . . , xn), xi+1, . . . , xn).

We shall prove that for all k and all x = (x1, . . . , xi−1, xi+1, . . . , xn) and y =
(y1, . . . , yi−1, yi+1, . . . , yn) in In−1,

|gk(x) − gk(y)| ≤ ‖x − y‖. (3)

For k = 0 this follows directly from the fact that f is monotone nonexpansive.
Suppose that (3) holds for k. Then

|gk+1(x) − gk+1(y)|
= |f(x1, . . . , xi−1, g

k(x), xi+1, . . . , xn) − f(y1, . . . , yi−1, g
k(y), yi+1, . . . , yn)|

≤ max{|x1 − y1|, . . . , |xi−1 − yi−1|, |gk(x) − gk(y)|, |xi+1 − yi+1|, . . . |xn − yn|}
≤ max{|x1 − y1|, . . . , |xi−1 − yi−1|, ‖x − y‖, |xi+1 − yi+1|, . . . |xn − yn|} ≤ ‖x − y‖.

Now it suffices to note that, by Lemma 2, gk(x) and gk(y) converge respectively
to μrxi.f(x1, . . . , xi, . . . , xn) and to μryi.f(y1, . . . , yi, . . . , yn) when k ↑ ∞. �

Nearest Fixed Points and Concurrent Priority Games 387

Let f ∈ Mone(In, In). Thus f is a vector of mappings f=(f1, . . . , fn) where,
for each i, fi ∈ Mone(In, I). Let (r1, . . . , rn) ∈ In.

For each k, 1 ≤ k ≤ n, we define a monotone nonexpansive mapping F (k) :
In−k → Ik:

In−k � (xk+1, . . . , xn) 	→ F (k)(xk+1, . . . , xn) ∈ Ik.

(for k = n, F (n) will be just a constant from In not depending on any variable).
Since F (k) is a mapping into Ik, it is composed of k mappings into I, F (k) =

(F (k)
1 , . . . , F

(k)
k).

For k = 1, F (1) is mapping into I and we will identify it with F
(1)
1 .

We define F (k) by induction. For k = 1,

F (1)(x2, . . . , xn) = F
(1)
1 (x2, . . . , xn) = μx1r1.f1(x1, x2, . . . , xn).

Suppose that F (k−1)(xk, . . . , xn) = (F (k−1)
1 (xk, . . . , xn), . . . , F (k−1)

k−1 (xk, . . . , xn))
is already defined.

Intuitively, given F (k−1) as above to obtain F (k) we should eliminate the
variable xk. To this end we use the kth component mapping fk of f .

First we define

F
(k)
k (xk+1, . . . , xn) =

μrk
xk.fk(F (k−1)

1 (xk, . . . , xn), . . . , F (k−1)
k−1 (xk, . . . , xn), xk, xk+1, . . . , xn), (4)

and subsequently we put

F
(k)
i (xk+1, . . . , xn) = F

(k−1)
i (F (k)

k (xk+1, . . . , xn), xk+1, . . . , xn), for 1 ≤ i < k.
(5)

By Lemma 4 and since the composition of monotone nonexpansive mappings
is monotone nonexpansive we can see that all mappings F (k) are monotone
nonexpansive.

We shall write
μrk

xk. . . . μr1x1.f(x1, . . . , xn)

to denote the mapping F (k) defined above and we call it the k-th nested fixed
point of f . For k = n we will speak about the nested fixed point without men-
tioning k.

4 Value of the Concurrent Priority Game as the Nested
Nearest Fixed Point

4.1 Auxiliary One-Shot Game

In this section we define auxiliary matrix games.
Let x = (x1, . . . , xn) ∈ In and let G(x) be a priority game with n states.

388 B. Karelovic and W. Zielonka

A one shot game Γk(x1, . . . , xn) is the game played on G in the following
way. The game starts at state k, players Max and Min choose independently
and simultaneously actions a ∈ A(k) and b ∈ B(k). Suppose that the next state
is m. Then player Max receives from player Min the payoff xm and the game
Γk(x1, . . . , xn) ends.

Note that Γk(x1, . . . , xn) can be seen a zero-sum matrix game where the pay-
off obtained by player Max from player Min when players play actions a, b respec-
tively is equal to

∑
m∈S xm · p(m|k, a, b). The value of the game Γk(x1, . . . , xn)

will be denoted by

Φk(x1, . . . , xn) := val(Γk(x1, . . . , xn)). (6)

We will be interested in Φk(x1, . . . , xn) as a function of the reward vector x =
(x1, . . . , xn).

Since all entries in the matrix game Γk(x1, . . . , xn) belong to I, val(Γk(x1, . . . ,
xn)) ∈ I, i.e. Φk is a mapping from In into I.

The following well known properties of matrix games are essential (see for
example [12]):

Theorem 5. Let M1 and M2 be two matrix games of the same size. Then

– If M1 ≤ M2 (where the inequality holds componentwise) then val[M1] ≤
val[M2].

– |val[M1] − val[M2]| ≤ ‖M1 − M2‖, where ‖M‖ = maxi,j |M(i, j)|.
From Theorem 5 it follows that

Proposition 6. The mapping Φk defined in (6) is monotone and nonexpansive.

4.2 Priority Games with One Non-absorbing State

In this section we will study concurrent priority games with one non-absorbing
state. Let us recall that a state i is absorbing if for all (a, b) ∈ A(i) × B(i),
p(i|i, a, b) = 1.

We shall write Gk(x1, . . . , xn) to denote a priority game G with n states
having rewards x1, . . . , xn and such that all states, except state k, are absorbing.
We shall call such a game absorbing. A game starting in an absorbing state i,
i �= k, is trivial, the game remains forever in i and the payoff is equal to the
reward xi associated with state i. For plays starting in the non-absorbing state
k either at some moment we hit an absorbing state i and the payoff obtained for
such plays is xi (and it is irrelevant what players play once an absorbing state
is attained) or we remain forever in k and the payoff for such a play is xk. Such
games are equivalent to Everett games with one non-absorbing state. Thus only
the value and players’ strategies in the non-absorbing state k are of interest in
Gk(x1, . . . , xn).

Nearest Fixed Points and Concurrent Priority Games 389

In the sequel we will use the following notation. For x = (x1, . . . , xn) ∈ In

and e ∈ I we write (x−k, e) to denote the element (x1, . . . , xk−1, e, xk+1, . . . , xn)
of In.

Moreover if σ, τ are strategies of players Max and Min in the one shot game Γ
(i.e. for each state s ∈ S, σ(s) ∈ Δ(A(s)) and τ(s) ∈ Δ(B(s)) are mappings from
states to distributions over actions) then σ∞ and τ∞ will denote the stationary
strategies in the priority game G such that at each stage players select actions
independently of the past history with probabilities given by σ and τ .

Lemma 7. Let Gk(x) be an absorbing priority game and r ∈ I. Then

val(Gk(x−k, r)) = μrxk.Φk(x1, . . . , xk, . . . , xn).

(i) If μrxk.Φk(x) ≥ r then player Min has an optimal stationary strategy while,
for each ε > 0, player Max has an ε-optimal stationary strategy.

(ii) If μrxk.Φk(x) ≤ r then player Max has an optimal stationary strategy in
Gk(x−k, r) while, for each ε > 0, player Min has an ε-optimal stationary
strategy.

Note that from this lemma it follows that if μrxk.Φk(x) = r then both players
have optimal stationary strategies in the absorbing game Gk(x−k, r).

4.3 General Priority Games

Let G be a priority game.
Note that

(x1, . . . , xn) 	→ Φ(x1, . . . , xn) = (Φ1(x1, . . . , xn), . . . , Φn(x1, . . . , xn))

where Φi defined in (6) are monotone and nonexpansive mappings from In to I.
By G≤k we will denote the priority game obtained from G by transforming

all states i, such that i > k into absorbing states. On the other hand, all states
j ≤ k have the same available actions and transition probabilities as they have
in G.

Of course, the value of each absorbing state j of the game G≤k(r1, . . . ,
rk, xk+1, . . . , xn), k < j ≤ n, is xj thus only the values of non-absorbing states
1, . . . , k are of interest.

It turns out that these values are obtained as nested fixed points:

Theorem 8. Let (r1, . . . , rk) ∈ Ik. Then the nested fixed point

(F (k)
1 (xk+1, . . . , xn), . . . , F (k)

k (xk+1, . . . , xn)) := μrk
xk. · · · μr1x1.Φ(x)

is the vector of values of non-absorbing states (1, . . . , k) of the game
G≤k(r1, . . . , rk, xk+1, . . . , xn).

390 B. Karelovic and W. Zielonka

As it is known for parity games, which form a special subclass of priority
games, the winning regions (in the deterministic case [2]) or the values (for con-
current stochastic parity games [5]) can be described by an appropriate formulas
of μ-calculus – a fixed point calculus over an appropriate complete lattice where
we alternate the greatest and the least fixed points. From this point of view
Theorem 8 looks just as an extension of known results to a wider framework of
priority games. However there is one ingredient of Theorem 8 that seems to be
new.

It is notoriously difficult to comprehend a μ-calculus formula alternating
several greatest and least fixed point.

Theorem 8 provides a natural interpretation in the term of games of a formula
where only some initial fixed points are applied.

Let

(v1, . . . , vk) = μrk
xk.μrk−1xk−1. · · · μr1x1.Φ(x1, . . . , xk, rk+1, . . . , rn) (7)

Then (v1, . . . , vk) are the values of states 1, . . . , k in the priority game

G≤k(r1, . . . , rk, rk+1, . . . , rn) (8)

which differs from the original priority game G(r1, . . . , rk, rk+1, . . . , rn) in that
the states k + 1, k + 2, . . . , n are absorbing in the game (8).

Now when we add another fixed point to (7) to obtain

(v′
1, . . . , v

′
k, v′

k+1) =
μrk+1xk+1.μrk

xk.μrk−1xk−1. · · · μr1x1.Φ(x1, . . . , xk, xk+1, rk+2, . . . , rn)

then this can be interpreted as an operation transforming state k + 1 form a
non-absorbing in the game (8) into a non-absorbing in the game G≤k+1(r1, . . . ,
rk, rk+1, . . . , rn).

5 Algorithmic Issues

One can wonder if the recursive formulas for the nested nearest point cannot be
used to approximate the values of fixed points, i.e. the values of the states in
the priority game. Unfortunately in general this seems to be difficult, if at levels
1, . . . , k we stop iterations before attaining the fixed points then the resulting
errors can even change the direction of iterations at level k + 1. Moreover it is
difficult to see when we can stop iterations (there is no criterion to estimate the
distance between the value obtained at some iteration and the limit fixed point).

However there is one case when the recursive formulas developed in this paper
can be used to solve the priority game, this is the case of perfect information
stochastic priority games where for each state only one of the two players chooses
actions to play (the other player can be seen as having only one action at this
state). First we have the following counterpart of Lemma 7:

Nearest Fixed Points and Concurrent Priority Games 391

Lemma 9. Let Gk(x) be a priority game with the unique non-absorbing state
k, r ∈ I. Let k be controlled by one player (either Max or Min) who chooses an
action to play and the probability distribution over next states depends uniquely
upon the action chosen by the controlling player. Then the value

val(Gk(x−k, r)) = μrxk.Φk(x1, . . . , xk, . . . , xn).

of state k can be calculated in polynomial time and the controlling player has an
optimal pure strategy.

Proof. For each action a of the player controlling k we have the following formula
for the expected reward after playing a once:

E
a
k[R] = E

a
k[R|A] · p(A|k, a) + r · p(k|k, a)

where R is the expected reward after playing a once, A is the event that the
next state is absorbing, p(A|k, a) =

∑
j∈A p(j|k, a) is the probability that the

next state is absorbing when a is executed, r · p(k|k, a) is the probability that
we remain in k when the player plays a in k. From this formula we can calculate
E

a
k[R|A] i.e. the expected reward under condition that the next state is absorbing.

The expected payoff obtained when we play the strategy a∞ (play only a as
long as the current state is k) is equal

E
a∞
k [u] =

{
E

a
k[R|A] if p(A|k, a) > 0,

r otherwise.
(9)

Thus if k is controlled by player Max (Min) then he should play action a
that maximizes (minimizes) (9) as long as we are in k. �
Thus Lemma 9 shows how to solve one state perfect information stochastic
priority game. To solve a perfect information priority game with any number of
non-absorbing states we use the induction. However instead of value iteration
algorithm (which can be non-terminating) we use the strategy iteration (which
always terminate as the number of pure strategies is finite). In fact this algorithm
just tries to accelerate and optimize the procedure calculating the nested nearest
fixed points.

Algorithm 1 on page 12 implements a recursive procedure SolveGame
(k, (r1, . . . , rk, xk+1, . . . , xn)) that calculates the vector (a1, . . . , ak) of actions
played in non-absorbing states 1, . . . , k by optimal pure stationary strategies in
the perfect information stochastic priority game G≤k(r1, . . . , rk, xk+1, . . . , xn).

392 B. Karelovic and W. Zielonka

Algorithm 1. Calculate optimal pure stationary strategies in a perfect
information stochastic priority game with k non-absorbing states. We
assume that OneState(k, c1, . . . , cn) is the procedure described in Lemma 9
returning the optimal action for the game with one non-absorbing state
k and reward vector (c1, . . . , cn) and value(k, (a1, . . . , ak)) is the value of
state k when players play actions (a1, . . . , ak) in states 1, . . . , k respectively.

1 SolveGame(k, (r1, . . . , rk, xk+1, . . . , xn)) Result: a vector (a1, . . . , ak) of
actions, ai action played in state i by the optimal strategy of the player
controlling i.

2 if k = 1 then
3 return OneState(1, r1, x2, . . . , xn);
4 end
5 w ← rk;
6 while true do
7 (a1, . . . , ak−1) ← SolveGame(k − 1, r1, . . . , rk−1, w, xk+1, . . . , xn);
8 ak ← OneState(k, a1, . . . , ak−1, w, xk+1, . . . , xn);
9 z ← value(k, (a1, . . . , ak));

10 if z = w then
11 return (a1, . . . , ak);
12 end
13 w ← z;

14 end

References

1. Emerson, E., Jutla, C.: Tree automata, mu-calculus and determinacy. In: FOCS
1991, pp. 368–377. IEEE Computer Society Press (1991)

2. Walukiewicz, I.: Monadic second-order logic on tree-like structures. Theoret. Com-
put. Sci. 275, 311–346 (2002)

3. McIver, A., Morgan, C.: Games, probability and the quantitative µ-calculus
qmu. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514,
pp. 292–310. Springer, Heidelberg (2002)

4. McIver, A., Morgan, C.: A novel stochastic game via the quantitative mu-calculus.
In: Cerone, A., Wiklicky, H., (eds.) Proceedings of the Third Workshop on Quan-
titative Aspects of Programming Languages (QAPL 2005), ENTCS, vol. 153(2),
pp. 195–212. Elsevier (2005)

5. de Alfaro, L., Majumdar, R.: Quantitative solution to omega-regular games. J.
Comput. Syst. Sci. 68, 374–397 (2004)

6. Chatterjee, K., de Alfaro, L., Henzinger, T.: Qualitative concurrent parity games.
ACM Trans. Comput. Logic 12, 28:1–28:51 (2011)

7. Everett, H.: Recursive games. In: Contributions to the Theory of Games, vol. III,
pp. 47–78. Princeton University Press (1957)

8. Martin, D.: The determinacy of Blackwell games. J. Symbolic Logic 63(4),
1565–1581 (1998)

9. Maitra, A., Sudderth, W.: Stochastic games with Borel payoffs. In: Neyman, A.,
Sorin, S. (eds.) Stochastic Games and Applications, NATO Science Series C, Math-
ematical and Physical Sciences, vol. 570, pp. 367–373. Kluwer Academic Publishers
(2004)

Nearest Fixed Points and Concurrent Priority Games 393

10. Tarski, A.: A lattice-theoretical fixpoint theoem and its aplications. Pacific J. Math.
5, 285–309 (1955)

11. Arnold, A., Niwiński, D.: Rudiments of mu-calculus. Studies in Logic and the
Foundations of Mathematics, vol. 146. Elsevier (2001)

12. Parthasarathy, T., Raghavan, T.: Some Topics in Two-Person Games. Elsevier,
New York (1971)

Author Index

Andrade, Ricardo 202
Aravind, N.R. 95
Arrighi, Pablo 351
Arvind, V. 339

Bhattacharya, Srimanta 269
Birmelé, Etienne 202
Bougeret, Marin 189
Boyar, Joan 106
Brzozowski, Janusz 146

Cappai, Alberto 311
Claverol, Mercè 53
Czerwiński, Wojciech 173

Dal Lago, Ugo 311
Damaschke, Peter 214
Dartois, Luc 160
De Bonis, Annalisa 255
Duvillié, Guillerme 189

Find, Magnus Gausdal 106

Ganty, Pierre 133
Garijo, Delia 53
Gawrychowski, Paweł 27
Geissmann, Barbara 227
Giroudeau, Rodolphe 189

Iosif, Radu 133

Joglekar, Pushkar S. 95

Kamiński, Marcin 243
Karelovic, Bruno 381
Karpinski, Marek 3
Köbler, Johannes 339
Korman, Matias 53
Kowaluk, Mirosław 65
Kučera, Antonín 12
Kupke, Clemens 367

Lange, Martin 327
Lozes, Etienne 327

Majewska, Gabriela 65
Manea, Florin 27
Martens, Wim 173
Martiel, Simon 351
Mary, Arnaud 202
Mihalák, Matúš 227
Moser, Philippe 81

Paperman, Charles 160
Pattinson, Dirk 367
Paulusma, Daniël 243
Perdrix, Simon 351
Picchetti, Thomas 202

Rattan, Gaurav 339
van Rooijen, Lorijn 173

Sagot, Marie-France 202
Scharpfenecker, Patrick 118
Schröder, Lutz 367
Seara, Carlos 53
Silveira, Rodrigo I. 53
Stephan, Frank 81
Stewart, Anthony 243
Stewart, Iain A. 283
Szykuła, Marek 146

Talmon, Nimrod 299
Thilikos, Dimitrios M. 243
Tomás, Ana Paula 41

Vaccaro, Ugo 255
Verbitsky, Oleg 339

Watrigant, Rémi 189
Widmayer, Peter 227

Zeitoun, Marc 173
Zielonka, Wiesław 381

	Preface
	Conference Organization
	Invited Talks
	It is Better to be Vaguely Right ThanExactly Wrong
	Towards Better Inapproximability Boundsfor TSP: A Challenge of Global Dependencies
	On the Existence and Computabilityof Long-Run Average Properties inProbabilistic VASS

	Contents
	Invited talks
	Towards Better Inapproximability Bounds for TSP: A Challenge of Global Dependencies
	1 Introduction
	2 Underlying Idea
	3 TSP and Related Problems
	4 Bounded Occurrence Optimization Problems
	5 Bi-wheel Amplifier Graphs
	6 Preparation Lemma
	7 Instances of Metric TSP
	8 Instances of Asymmetric TSP (ATSP)
	9 A Role of Weights
	10 Graphic TSP
	11 Some Applications
	12 Summary of Main Results
	13 Further Research
	References

	On the Existence and Computability of Long-Run Average Properties in Probabilistic VASS
	1 Introduction
	2 Preliminaries
	2.1 Probabilistic Vector Addition Systems with States
	2.2 Patterns and Pattern Frequencies

	3 Pattern Frequency in One-Counter pVASS
	3.1 Approximating [p↓q] and [p↑]
	3.2 Approximating E�R↓s� and E#t�r↓s�

	4 Pattern Frequency in Two-Counter pVASS
	5 Future Research
	References

	Geometry, Combinatorics, Text Algorithms
	Longest -Gapped Repeat and Palindrome
	1 Introduction
	2 Preliminaries
	3 Our Solution
	References

	On the Enumeration of Permutominoes
	1 Introduction
	2 Preliminaries
	3 The Inflate-Paste Technique
	4 Direct Enumeration of Permutominoes
	5 Tailoring the Algorithm to Specific Subclasses
	5.1 Convex Permutominoes
	5.2 Row-Convex Permutominoes

	6 Conclusion
	References

	Stabbing Segments with Rectilinear Objects
	1 Introduction
	2 Stabbing with One or Two Halfplanes
	2.1 Stabbing Halfplane
	2.2 Stabbing Strips
	2.3 Stabbing Quadrants

	3 Stabbing with Three Halfplanes
	3.1 Number of Different Stabbing 3-Rectangles
	3.2 Algorithm

	4 Stabbing Rectangles
	References

	β-skeletons for a Set of Line Segments in R2
	1 Introduction
	2 Preliminaries
	3 Algorithm for Computing β-skeletons for 0 < β < 1
	4 Finding β-skeletons for 1 ≤ β
	5 Computing Gabriel Graph for Segments
	6 Conclusions
	References

	Complexity and Boolean Functions
	Depth, Highness and DNR Degrees
	1 Introduction
	2 Preliminaries
	3 C-Depth
	3.1 MLR is not Order-deepC
	3.2 The SGL Fails for C-depth
	3.3 Depth Implies Highness or DNR

	4 K-Depth
	4.1 Highness and Depth Coincide
	4.2 Depth Implies Highness or DNR
	4.3 A Low Deep Set
	4.4 No K-Trivial is O(1)-deepK

	5 Infinitely Often Depth and Conditional Depth
	6 Conclusion
	References

	On the Expressive Power of Read-Once Determinants
	1 Introduction
	2 Basic Observations
	3 Elementary Symmetric Polynomials and Permanent
	3.1 Elementary Symmetric Polynomials
	3.2 Non-expressibility of Permanent as ROD

	4 Non-expressible Monomial Sets
	5 Discussion and Open Problems
	References

	Constructive Relationships Between Algebraic Thickness and Normality
	1 Introduction and Known Results
	2 Preliminaries and Known Results
	3 Majority Has High Algebraic Thickness
	4 Algebraic Thickness and Normality
	4.1 Normal Functions with Low Sparsity

	References

	On the Structure of Solution-Graphs for Boolean Formulas
	1 Introduction
	2 Preliminaries
	3 Structure of CPSS-Formulas
	4 Structure of General Schaefer-Formulas
	5 Improved Algorithms for Connectivity and st-connectivity
	6 Conclusions and Open Problems
	References

	Languages
	Interprocedural Reachability for Flat Integer Programs
	1 Introduction
	2 Preliminaries
	3 Interprocedural Flat Octogonal Reachability
	4 Index-Bounded Depth-First Derivations
	5 A Decision Procedure for REACHfo(P,b)
	6 Related Work
	References

	Complexity of Suffix-Free Regular Languages
	1 Introduction
	2 Suffix-Free Transformations
	3 Witnesses with Transition Semigroups in T5(n)
	4 Witnesses with Semigroups in T6(n)
	5 Conclusions
	References

	Alternation Hierarchies of First Order Logic with Regular Predicates
	1 Introduction
	2 Preliminaries
	3 Main Results
	4 The Delay Question
	5 The Infinitely Testable Property
	References

	A Note on Decidable Separability by Piecewise Testable Languages
	1 Introduction
	2 Preliminaries
	3 Common Patterns
	4 The Algorithm for Separability
	5 Decidable Classes
	6 Concluding Remarks
	References

	Set Algorithms, Covering, and Traversal
	Multidimensional Binary Vector Assignment Problem: Standard, Structural and Above Guarantee Parameterizations
	1 Introduction
	1.1 Definition of the Problem
	1.2 Application and Related Work
	1.3 Parameterizations
	1.4 Our Results

	2 First Remarks and Kernels
	3 Parameterizing According to ζB
	4 Parameterizing According to ζp
	4.1 Positive Result for n=2
	4.2 Negative Results for n ≥ 3

	5 Conclusion
	References

	Incremental Complexity of a Bi-objective Hypergraph Transversal Problem
	1 Introduction
	2 The Bi-objective Transversal Problem
	2.1 The Problem
	2.2 Another Enumeration Problem

	3 Situations in Which the Problems Remain Hard
	3.1 Bounded Degree
	3.2 B of Bounded Dimension

	4 Bounding the Dimension of A
	References

	Pairs Covered by a Sequence of Sets
	1 Introduction
	1.1 Motivation and Aim
	1.2 Overview of Contributions

	2 Finding Minimal New Sets
	2.1 Transversals for Small Complementary Degree
	2.2 Enumerating the Minimal New Sets in a Sequence

	3 A Heuristic for Minimal New Pairs
	3.1 Below the Worst-Case Quadratic Time
	3.2 The Twin Graph
	3.3 Greedy Partial Set Cover of Pairs

	4 Supplementary Results
	4.1 Sampling Large Intersections
	4.2 Building Larger Bags

	5 Approximations if a Few Bags Cover All Pairs
	5.1 Setup and Preparations
	5.2 Illustration: Some Approximation Guarantees

	References

	Recurring Comparison Faults: Sorting and Finding the Minimum
	1 Introduction
	2 Sorting
	2.1 Compatible Solutions
	2.2 Score Solutions
	2.3 Quality of Compatible Solutions and Score Solutions

	3 Finding a Minimum Element
	4 Conclusion
	References

	Graph Algorithms and Networking Applications
	Minimal Disconnected Cuts in Planar Graphs
	1 Introduction
	2 The Algorithm
	3 Hardness
	4 Conclusions
	References

	E-Almost Selectors and Their Applications
	1 The Communication Model
	2 Combinatorial Tools
	3 Hypergraphs and Covers
	4 Constructing �-almost (k,m, n)-Selectors via PartialCoverings
	4.1 Improvements

	References

	Derandomized Construction of Combinatorial Batch Codes
	1 Introduction
	1.1 Background

	2 Proof of Theorem 2
	3 Concluding Remarks
	References

	On the Mathematics of Data Centre Network Topologies
	1 Introduction
	2 Basic Concepts
	3 The 3-Step Construction and Its Extensions
	4 Constructions of Paths
	5 Conclusion
	References

	Anonymity and Indistinguishability
	Privacy in Elections: k-Anonymizing Preference Orders
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Elections and Distances
	2.2 Anonymization
	2.3 Parameterized Complexity
	2.4 Main Problem and Overview of Our Results

	3 Results
	4 Conclusion
	References

	On Equivalences, Metrics, and Polynomial Time
	1 Introduction
	2 Characterizing Probabilistic Polynomial Time
	3 Equivalences
	3.1 Trace Equivalence
	3.2 Some Words on Applicative Bisimulation

	4 From Equivalences to Metrics
	5 Computational Indistinguishability
	5.1 Higher-Order Computational Indistinguishability?

	6 Conclusions
	References

	Graphs, Automata, and Dynamics
	Conjunctive Visibly-Pushdown Path Queries
	1 Introduction
	2 Preliminaries
	3 The Complexity of Evaluating CPQ[VPL] Queries
	4 The Complexity of Evaluating ECPQ[VPL] Queries
	5 Query Containment
	References

	On the Power of Color Refinement
	1 Introduction
	2 Basic Definitions and Facts
	3 Local Structure of Amenable Graphs
	4 Global Structure of Amenable Graphs
	5 Examples and Applications
	References

	Block Representation of Reversible Causal Graph Dynamics
	1 Introduction
	2 Pointed Graph Modulo, Paths, and Operations
	3 Reversible Causal Graph Dynamics
	4 Locality
	5 Block Representation
	6 Conclusion
	References

	Logic and Games
	Reasoning with Global Assumptions in Arithmetic Modal Logics
	1 Coalgebraic Logic
	1.1 Presburger Modal Logic
	1.2 Probabilistic Modal Logic with Polynomial Inequalities

	2 One-Step Satisfiability
	3 Type Elimination
	4 Global Caching
	5 Conclusions
	References

	Nearest Fixed Points and Concurrent Priority Games
	1 Introduction
	2 Concurrent Stochastic Priority Games
	3 Interval Lattice and Nearest Fixed Point
	3.1 Nested Nearest Fixed Points

	4 Value of the Concurrent Priority Game as the Nested Nearest Fixed Point
	4.1 Auxiliary One-Shot Game
	4.2 Priority Games with One Non-absorbing State
	4.3 General Priority Games

	5 Algorithmic Issues
	References

	Author Index

