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Abstract. Oblivious Transfer (OT) is the fundamental building block of
cryptographic protocols. In this paper we describe the simplest and most
efficient protocol for 1-out-of-n OT to date, which is obtained by tweak-
ing the Diffie-Hellman key-exchange protocol. The protocol achieves UC-
security against active and adaptive corruptions in the random oracle
model. Due to its simplicity, the protocol is extremely efficient and it
allows to perform m 1-out-of-n OTs using only:
– Computation: (n + 1)m + 2 exponentiations (mn for the receiver,

mn + 2 for the sender) and
– Communication: 32(m+1) bytes (for the group elements), and 2mn

ciphertexts.
We also report on an implementation of the protocol using elliptic curves,
and on a number of mechanisms we employ to ensure that our software
is secure against active attacks too. Experimental results show that our
protocol (thanks to both algorithmic and implementation optimizations)
is at least one order of magnitude faster than previous work.

1 Introduction

Fig. 1. Our protocol in a nutshell

Oblivious Transfer (OT) is
a cryptographic primitive
defined as follows: in its sim-
plest flavour, 1-out-of-2 OT, a
sender has two input messages
M0 and M1 and a receiver
has a choice bit c. At the end
of the protocol the receiver
is supposed to learn the mes-
sage Mc and nothing else,
while the sender is supposed
to learn nothing. Perhaps sur-
prisingly, this extremely sim-
ple primitive is sufficient to
implement any cryptographic
task [Kil88]. OT can also be used to implement most advanced cryptographic
tasks, such as secure two- and multi-party computation (e.g., the millionaire’s
problem) in an efficient way [NNOB12,BLN+15].
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Given the importance of OT, and the fact that most OT applications require
a very large number of OTs, it is crucial to construct OT protocols which are at
the same time efficient and secure against realistic adversaries.

A Novel OT Protocol. In this paper we present a novel and extremely simple,
efficient and secure OT protocol. The protocol is a simple tweak of the celebrated
Diffie-Hellman (DH) key exchange protocol. Given a group G and a generator g,
the DH protocol allows two players Alice and Bob to agree on a key as follows:
Alice samples a random a, computes A = ga and sends A to Bob. Symmetrically
Bob samples a random b, computes B = gb and sends B to Alice. Now both
parties can compute gab = Ab = Ba from which they can derive a key k. The
key observation is now that Alice can also derive a different key from the value
(B/A)a = gab−a2

, and that Bob cannot compute this group element (assuming
that the computational DH problem is hard).

We can now turn this into an OT protocol by letting Alice play the role of
the sender and Bob the role of the receiver (with choice bit c) as shown in Fig. 1.
The first message (from Alice to Bob) is left unchanged (and can be reused over
multiple instances of the protocol) but now Bob computes B as a function of his
choice bit c: if c = 0 Bob computes B = gb and if c = 1 Bob computes B = Agb.
At this point Alice derives two keys k0, k1 from (B)a and (B/A)a respectively.
It is easy to check that Bob can derive the key kc corresponding to his choice
bit from Ab, but cannot compute the other one. This can be seen as a random
OT i.e., an OT where the sender has no input but instead receives two random
messages from the protocol, which can be used later to encrypt his inputs.

We show that combining the above random OT protocol with the right sym-
metric encryption scheme (e.g., a robust encryption scheme [ABN10,FLPQ13])
achieves security in a strong, simulation based sense and in particular we prove
UC-security against active and adaptive corruptions in the random oracle model.

A Secure and Efficient Implementation. We report on an efficient and
secure implementation of the 1-out-of-2 random OT protocol: Our choice for the
group is a twisted Edwards curve that has been used by Bernstein, Duif, Lange,
Schwabe and Yang for building the Ed25519 signature scheme [BDL+11]. The
security of the curve comes from the fact that it is birationally equivalent to
Bernstein’s Montgomery curve Curve25519 [Ber06] where ECDLP is believed to
be hard: Bernstein and Lange’s SafeCurves website [BL14] reports cost of 2125.8

for solving ECDLP on Curve25519 using the rho method. The speed comes from
the complete formulas for twisted Edwards curves proposed by Hisil, Wong,
Carter, and Dawson in [HWCD08].

We first modify the code in [BDL+11] and build a fast implementation for a
single OT. Later we build a vectorized implementation that runs OTs in batches.
A comparison with the state of the art shows that our vectorized implementation
is at least an order of magnitude faster than previous work (we compare in
particular with the implementation reported by Asharov, Lindell, Schneider and
Zohner in [ALSZ13]) on recent Intel microarchitectures. Furthermore, we take
great care to make sure that our implementation is secure against both passive
attacks (our software is immune to timing attacks, since the implementation
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is constant-time) and active attacks (by designing an appropriate encoding of
group elements, which can be efficiently verified and computed on). Our code
can be downloaded from http://orlandi.dk/simpleOT.

Related Work. OT owes its name to Rabin [Rab81] (a similar concept was intro-
duced earlier by Wiesner [Wie83] under the name of “conjugate coding”). There
are different flavours of OT, and in this paper we focus on the most common and
useful flavour, namely

(
n
1

)
-OT, which was first introduced in [EGL85]. Many effi-

cient protocols for OT have been proposed over the years. Some of the protocols
which are most similar to ours are those of Bellare-Micali [BM89] and Naor-Pinkas
[NP01]: those protocols are (slightly) less efficient than ours and, most impor-
tantly, are not known to achieve full simulation based security. More recent OT
protocols such as [HL10,DNO08,PVW08] focus on achieving a strong level of
security in concurrent settings1 without relying on the random oracle model.
Unfortunately this makes these protocols more cumbersome for practical appli-
cations: even the most efficient of these protocols i.e., the protocol of Peikert,
Vaikuntanathan, and Waters [PVW08] requires 11 exponentiations for a single(
2
1

)
-OT and a common random string (which must be generated by some trusted

source of randomness at the beginning of the protocol). In comparison our pro-
tocol uses fewer exponentiations (e.g., 5 for

(
2
1

)
-OT), generalizes to

(
n
1

)
-OT and

does not require any (hard to implement in practice) setup assumptions.

OT Extension. While OT provably requires “public-key” type of assump-
tions [IR89] (such as factoring, discrete log, etc.), OT can be “extended” [Bea96]
in the sense that it is enough to generate few “seed” OTs based on public-
key cryptography which can then be extended to any number of OTs using
symmetric-key primitives only (PRG, hash functions, etc.). This can be seen as
the OT equivalent of hybrid encryption (where one encrypts a large amount of
data using symmetric-key cryptography, and then encapsulates the symmetric-
key using a public-key cryptosystem). OT extension can be performed very
efficiently both against passive [IKNP03,ALSZ13] and active [Nie07,NNOB12,
Lar14,ALSZ15,KOS15] adversaries. Still, to bootstrap OT extension we need a
secure and efficient OT protocol for the seed OTs (as much as we need secure and
efficient public-key encryption schemes to bootstrap hybrid encryption): The OT
extension of [ALSZ15] reports that it takes time (7 ·105 +1.3m)μs to perform m
OTs, where the fixed term comes from running 190 base OTs. Using our proto-
col as the base OT in [ALSZ15] would reduce the initial cost to approximately
190 · 114 ≈ 2 · 104μs [Sch15], which leads to a significant overall improvement
(e.g., a factor 10 for up to 4 · 104 OTs and a factor 2 for up to 5 · 105 OTs).

2 The Protocol

Notation. If S is a set s ← S is a random element sampled from S. We work
over an additive group (G, B, p,+) of prime order p (with log(p) > κ) generated
1 I.e., UC security [Can01], which is impossible to achieve without some kind of trusted

setup assumptions [CF01].

http://orlandi.dk/simpleOT
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by B (the base point), and we use the additive notation for the group since we
later implement our protocol using elliptic curves. Given the representation of
some group element P we assume it is possible to efficiently verify if P ∈ G. We
use [n] as a shortcut for {0, 1, . . . , n − 1}.

Building Blocks. We use a hash-function H : (G × G) × G → {0, 1}κ as a
key-derivation function to extract a κ bit key from a group element, and the
first two inputs are used to seed the function.2 We model H as a random oracle
when arguing about the security of our protocol.

The Ideal Functionality. We want to implement m
(
n
1

)
-OT’s for �-bit messages

with κ-bit security between a sender S and a receiver R. We define a functionality
F−

OT (n,m, �) as follows:

Honest Use: the functionality receives a vector of indices (c1, . . . , cm) ∈ [n]m

from the receiver R and m vectors of message {(M i
0, . . . ,M

i
n−1)}i∈[m] from

the sender S where for all i, j : M j
i ∈ {0, 1}�. The functionality outputs a

vector of �-bit strings (z1, . . . , zn) to the receiver R, such that for all i ∈ [m],
zi = M i

ci .
Dishonest Use: We weaken the functionality (hence the minus in the name) in

the following way: a corrupted receiver R∗ can input the choice values in an
adaptive fashion i.e., the ideal adversary can input the choice indices ci one
by one and learn the message zi before choosing the next index.

Note that when m = 1 the weakening has no effect. We choose to describe
the protocol for m OTs in parallel since we can do this more efficiently than
simply repeating m times the protocol for a single OT.

2.1 Random OT

We split the presentation in two parts: first, we describe and analyze a proto-
col for random OT where the sender outputs n random keys and the receiver
only learns one of them; then, we describe how to combine this protocol with
an appropriate encryption scheme to complete the OT. We are now ready to
describe our novel random OT protocol:

Setup: (only once, independent of m):
1. S samples y ← Zp and computes S = yB and T = yS;
2. S sends S to R, who aborts if S �∈ G;

Choose: (in parallel for all i ∈ [m])
1. R (with input ci ∈ [n]) samples xi ← Zp and computes

Ri = ciS + xiB

2. R sends Ri to S, who aborts if Ri �∈ G;
2 Standard hash functions do not take group elements as inputs, and in later sections

we will give explicit encodings of group elements into bitstrings.
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Key Derivation: (in parallel for all i ∈ [m])
1. For all j ∈ [n], S computes

ki
j = H(S,Ri)(yRi − jT )

2. R computes
ki

R = H(S,Ri)(xiS)

Basic Properties. The key ki
j is computed by hashing xiyB + (ci − j)T and

therefore at the end of the protocol ki
R = ki

ci if both parties are honest. It is also
easy to see that:

Lemma 1. No (computationally unbounded) S∗ on input Ri can guess ci with
probability greater than 1/n.

Proof. Since B generates G, fixed any P = x0B the probability that Ri = P
when ci = j is the probability that xi = (x0 − ciy), therefore ∀S, P ∈ G, j ∈ [n],
Pr[Ri = P |ci = j] = 1/p, which is independent of j.

Lemma 2. No (computationally bounded) R∗ can output any two keys ki
j0

and
ki

j1
with j0 �= j1 ∈ [n] if the computational Diffie-Hellman problem is hard in G.

Proof. In the random oracle model R∗ can only (except with negligible prob-
ability) compute ki

j0
, ki

j1
by querying the oracle on points of the form U i

0 =
(yRi − j0T ) and U i

1 = (yRi − j1T ). Assume for the sake of contradiction
that there exist a PPT R∗ who outputs (R, j0, j1, U0, U1) ← R∗(B,S) such
that (j1 − j0)−1(U0 − U1) = T = logB(S)2B with probability at least ε.
We show an algorithm A which on input (B,X = xB, Y = yB) outputs
Z = xyB with probability greater than ε3. Run (RX , UX

0 , UX
1 ) ← R∗(B,X),

(RY , UY
0 , UY

1 ) ← R∗(B, Y ), then run (R+, U+
0 , U+

1 ) ← R∗(B,X+Y ) and finally
output

Z =
(p + 1)

2
(
(U+

0 + U+
1 ) − (UX

0 + UX
1 ) − (UY

0 + UY
1 )

)

Now Z = xyB with probability at least ε3, since when all three executions of
R∗ are successful, then UX

0 + UX
1 = (x2)B, UY

0 + UY
1 = (y2)B and U+

0 , U+
1 =

(x + y)2B and therefore Z = p+1
2 2xyB = xyB. �	

Note that the above proof loses a cubic factor. A better proof for this lemma,
which only loses a quadratic factor, can be found in [BCP04].

2.2 How to Use the Protocol and UC Security

We now show how to combine our random OT protocol with an appropriate
encryption scheme to achieve UC security.

Motivation. Lemmas 1 and 2 only state that some form of “privacy” holds
for both the sender and the receiver. However, since OT is mostly used as a
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building block into more complex protocols, it is important to understand to
which extent our protocol offers security when composed arbitrarily with itself
or other protocols: Simulation based security is the minimal requirement which
enables to argue that a given protocol is secure when composed with other
protocols. Without simulation based security, it is not even possible to argue that
a protocol is secure if it is executed twice in a sequential way! (See e.g., [DNO08]
for a concrete counterexample for OT). The UC theorem [Can01] allows us to say
that if a protocol satisfies the UC definition of security, then that protocol will
be secure even when arbitrarily composed with other protocols. Among other
things, to show that a protocol is UC secure one needs to show that a simulator
can extract the input of a corrupted party: intuitively, this is a guarantee that
the party knows its input, and its not reusing/modifying messages received in
other protocols (aka malleability attack).

From Random OT to standard OT. We start by adding a transfer phase
to the protocol, where the sender sends the encryption of his messages to the
receiver:

Transfer: (in parallel for all i ∈ [m])
1. For all j ∈ [n], S computes ei

j ← E(ki
j ,M

i
j)

2. S sends (ei
0, . . . , e

i
n−1) to R;

Retrieve: (in parallel for all i ∈ [m])
1. R computes and outputs zi = D(ki, ei

ci).

The Encryption Scheme. The protocol uses a symmetric encryption scheme
(E,D). We call K,M, C the key space, message space and ciphertext space
respectively and κ the security parameter. We allow the decryption algorithm
to output a special symbol ⊥ to indicate an invalid ciphertext. We need the
encryption scheme to satisfy the following properties:

Definition 1. We say a symmetric encryption scheme (E,D) is non-
committing if there exist PPT algorithms S1,S2 such that ∀M ∈ M (e′, k′) and
(e, k) are computationally indistinguishable where e′ ← S1(1κ), k′ ← S2(e′,M),
k ← K and e ← E(k,M) (S1,S2 are allowed to share a state).

The definition says that it is possible for a simulator to come up with a
ciphertext e which can later be “explained” as an encryption of any message,
in such a way that the joint distribution of the ciphertext and the key in this
simulated experiment is indistinguishable from the normal use of the encryption
scheme, where a key is first sampled and then an encryption of M is generated.

Definition 2. Let S be a set of random keys from K and VS,e ⊆ S the subset
of valid keys for a given ciphertext e i.e., the keys in S such that D(k, e) �= ⊥.

We say (E,D) satisfies robustness if for all ciphertexts e ← A(1κ, S) adver-
sarially generated by a PPT A, |VS,e| ≤ 1 except with negligible probability.

The definition says that it should be hard for an adversary to generate a
ciphertext which can be decrypted to more than one valid ciphertext using any
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polynomial number of randomly generated keys (even for adversaries who see
those keys before generating the ciphertext).

A Concrete Example. We give a concrete example of a very simple scheme
which satisfies Definitions 1 and 2: let M = {0, 1}� and K = C = {0, 1}�+κ.
The encryption algorithm E(k,m) parses k as (α, β) and e = (m ⊕ α, β). The
decryption algorithm D(k, e) parses k = (α, β) and e = (e1, e2) and outputs ⊥
if e2 �= β or outputs m = e1 ⊕ α otherwise. It can be shown that:

Lemma 3. The scheme (E,D) defined above satisfies Definitions 1 and 2.

Proof. We show that the scheme satisfies Definitions 1 and 2 in a strong, infor-
mation theoretic sense. For Definition 1: S1 outputs a random e ← {0, 1}�+κ;
S2(e,M) parses e = (e1, e2) and outputs k = (e1⊕M, e2). The simulated distrib-
ution is trivially identical to the real one. For Definition 2: given any ciphertext
e = (e1, e2), D((α, β), e) �= ⊥ implies that β = e2. Thus even an unbounded
adversary can break robustness of the scheme only if there are two keys ki, kj ∈ S
such that βi = βj which only happens with probability negligible in κ.

2.3 Simulation Based Security (UC)

We can finally argue UC security of our protocol.3 The main ideas behind the
proof are: it is possible to extract the choice value by checking whether a cor-
rupted receiver queries the random oracle on points of the form yRi − cT for
some c, since no adversary can query on points of this form for more than one
c (without breaking the CDH assumption) and the non-committing property
of (E,D) allows us to complete a successful simulation even if the corrupted
receiver queries the oracle after he receives the ciphertexts; it is also possible to
extract the sender messages by decrypting the ciphertexts with every key which
the receiver got from the random oracle and Definition 2) allows us to conclude
that except with negligible probability D returns ⊥ for all keys different from
the correct one.

Theorem 1. The above protocol securely implements the functionality
F−

OT (n,m, �) under the following conditions:

Corruption Model: any active, adaptive corruption;
Hybrid Functionalities: we model H as a random oracle and we assume an

authenticated channel (but not confidential) between the parties;
Computational Assumptions: we assume that the symmetric encryption

scheme (E,D) satisfies Definitions 1 and 2 and the computational Diffie-
Hellman problem is hard in G.

Proof. We prove our theorem in steps: first, we show that the protocol is secure
if the adversary corrupts the sender or the receiver at the beginning of the

3 This subsection assumes that the reader is familiar with standard security definitions
and proofs for two-party computation protocols such as those presented in [HL10].
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protocol (i..e, static corruptions). Then we show that the protocol is secure if
the adversary corrupts both parties at the end of the protocol (post-execution
corruption).

(Corrupted Sender) First we argue that our protocol securely implements the
functionality against a corrupted sender in the random oracle model (we will
in particular use the property that the simulator can learn on which points
the oracle was queried on), by constructing a simulator for a corrupted S∗ in
the following way:4 (1) in the first phase, the simulator answers random oracle
queries H(·,·)(·) at random; (2) at some point S∗ outputs S and the simulator
checks that S ∈ G or aborts otherwise; (3) the simulator now chooses a random
xi for all i ∈ [m] and sends Ri = xiB to S∗. Note that since xi is chosen
at random the probability that S∗ had queried any oracle H(S,Ri)(·) before is
negligible. At this point, any time S∗ makes a query of the form H(S,Ri)(P q), the
simulator stores its random answers in ki,q; (4) Now S∗ outputs (ei

0, . . . , e
i
n−1)

and the simulator computes for all i, j the value M i
j in the following way: for

all q compute D(ki,q, ei
j) and set M i

j to be the first such value which is �= ⊥
(if any), or ⊥ otherwise; (5) finally it inputs all the vectors (M i

0, . . . ,M
i
n−1) to

the ideal functionality. We now argue that no distinguisher can tell a real-world
view apart from a simulated view. This follows from Lemma 1 (the distribution
of Ri does not depend on ci), and that the output of the honest receiver can
only be different if there exists a pair (i, j) such that the adversary queried
the random oracle on a point P ′ �= yRi − jT and M ′ = D(k′, ej

i ) �= ⊥, where
k′ = H(S,Ri)(P ′). In this case the simulator will input M i

j = M ′ to the ideal
functionality which could cause the honest receiver in the ideal world to output
a different value than it would in the real world (if ci = j). But this happens
only with negligible probability thanks to the property of the encryption scheme
(Definition 2).

(Corrupted Receiver) We now construct a simulator for a corrupted receiver5:
(1) In the first phase, the simulator answers random oracle queries H(·,·)(·) truly
at random; (2) at some point the simulator samples a random y and outputs
S = yB. Afterwards it keeps answering oracle queries at random, but for each
query of the form kq = H(S,P q)(Qq) it saves the triple (kq, P q, Qq) (since y is
random the probability that any query of the form H(S,·)(·) was performed before
is negligible); (3) at some point the simulator receives a vector of elements Ri

and aborts if ∃i : Ri �∈ G; (4) the simulator now initializes all ci = ⊥; for each
tuple q in memory such that for some i it holds that P q = Ri the simulator
checks if Qq = y(Ri − dS) for some d ∈ [n]. Now the simulator saves this value
d in ci if ci had not been defined before or aborts otherwise. In other words,
when the simulator finds a candidate choice value d for some i it checks if it
had already found a choice value for that i (i.e., ci �= ⊥) and if so it aborts and

4 The main goal of this argument is to show that a corrupted sender knows the message
vectors.

5 The main goal of this argument is to show that a corrupted receiver knows the choice
value.



48 T. Chou and C. Orlandi

outputs fail, otherwise if it had not found a candidate choice bit for i before
(i.e., ci = ⊥) it sets ci = d; (5) When the adversary is done querying the random
oracle, the simulator has to send all ciphertexts vectors {(ei

0, . . . , e
i
n−1)}i∈[m]:

∀i ∈ [m], j ∈ [n] the simulator sets a) if ci = ⊥ : ei
j = S1(1κ) b) if j �= ci :

ej
i = S1(1κ) and c) if j = ci : ei

j = E(ki
ci , z

i); (6) at this point the protocol is
almost over but the simulator can still receive random oracle queries. As before,
the simulator answers them at random except if the adversary queries on some
point H(S,Ri)(Qq) with Qq = y(Ri − dS). If this happens for any i such that
ci �= ⊥ the simulator aborts and outputs fail. Otherwise the simulator sets
ci = d, inputs ci to the ideal functionality, receives zi and programs the random
oracle to output k′ ← S2(ei

ci , z
i).

Now to conclude our proof, we must argue that a simulated view is indistin-
guishable from the view of a corrupted party in an execution of the protocol.
When the simulator does not output fail indistinguishability follows immedi-
ately from Definition 1. Finally the simulator only outputs fail if R∗ queries
the oracle on two points U0, U1 such that U1 − U0 is a known multiple of y2B,
and as argued in Lemma 2 such an adversary can be used to break the CDH
assumption.

(Post-Execution Corruptions) We now construct a simulator for an adversary
that corrupts adaptively either/both of the two parties after the protocol is over.
This is the hardest case and it is easy to see how our simulator can be adapted
for an adversary who corrupts either party during the protocol execution. Since
we are not assuming confidential channels the simulator needs to produce a view
even while both parties are honest: the simulator (1) samples random y, xi

0 ← Zp

and computes S = yB and Ri = xi
0B for all i ∈ [m]; computes and stores

the values xi
j for all j ∈ [n] as xi

j = xi
0 − jy (those are the values which are

consistent with the view of the protocol for a receiver with input ci = j, since
Ri = xi

0B = jS + xi
jB); (3) computes and stores the values Qi

j = y(Ri − jS)
for all i ∈ [m], j ∈ [n]; (4) the simulator computes ei

j ← S1(1κ) and outputs
S,Ri, ei

j for all i ∈ [m], j ∈ [n]; (5) The simulator starts answering all random
oracle queries at random except for queries of the form H(S,Ri)(Qi

j), in which
case it aborts. When/if the adversary corrupts the sender, the simulator learns
M j

i for all i ∈ [m], j ∈ [n], runs ki
j ← S2(ei

j ,M
i
j) and programs the random

oracle to answer ki
j = H(S,Ri)(Qi

j). When/if the adversary corrupts the receiver,
the simulator learns ci, zi = M i

ci for all i ∈ [m], runs ki
ci ← S2(ei

ci , z
i) and

programs the random oracle to answer ki
ci = H(S,Ri)(Qi

j). If the simulator does
not abort the simulated view is indistinguishable from a real view of the protocol,
as the distribution of S,Ri is identical in both cases (see Lemma 1) and thanks
to non-committing property of (E,D) (Definition 1). Using the same argument
as above, we can show that an adversary that makes the simulator abort (i.e.,
queries the oracle on a point of the form (S,Ri, Qi

j)) can be used to break the
CDH assumption.

Non-Malleability in Practice. Clearly, a proof that a → b only says that b is
true when a is true, and since cryptographic security models (a) are not always
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a good approximation of the real world, we discuss some of these discrepancies
here and therefore to which extent our protocol achieves security in practice (b),
with particular focus on malleability attacks.

When instantiating our protocol we must replace the random oracle with a
hash function: UC proofs crucially rely on the fact that the oracle is local to the
protocol i.e., it can be only queried by the protocol participants, and different
instances of the protocol run with different random oracles: clearly, there is no
such a thing in the real world. To approximate the model, one can “localize”
the random oracle by prepending the parties id’s and the session id to the hash
function. We argue here that our choice of using the transcript of the protocol
(S,Ri) as salt for the hash function helps in making sure that the oracle is local
to the protocol, and helps against malleability attacks in cases where the parties’
and session id’s are unavailable. Consider the following man-in-the middle attack,
where an adversary A plays two copies of the

(
n
1

)
-OT, one as the sender with

R and one as the receiver with S. Here is how the attack works: (1) A receives
S from S and forwards it to R; (2) Then the adversary receives R from R and
sends R′ = S + R to S; (3) Finally A receives the {ei}i∈[n] from S and sets
e′

i = e(i−1 mod n) to R. It is easy to see that if the same hash function is used
to instantiate the random oracle in the two protocols (and if c �= 0), then the
honest receiver outputs z = Mc+1, which is clearly a breach of security (i.e., this
attack could not be run if the protocols are replaced with OT functionalities).

The previous can be seen as a malleability attack on the choice bit. An
adversary can also try a malleability attack on the sender messages by forward-
ing (S′, R′) = (S,R) but then manipulating the ei’s into ciphertexts e′

i which
decrypt to related messages. In the

(
2
1

)
-OT, these attacks can be mitigated by

using authenticated encryption for (E,D) (which also satisfies robustness as in
Definition 2). Now an adversary who changes both ciphertext is equivalent to
an ideal adversary using input (⊥,⊥), while an adversary who only changes one
ciphertext, say ec, is equivalent to an adversary which uses input bit 1−c on the
left and inputs (m1−c,⊥) on the right. Unfortunately for

(
n
1

)
-OT (with n > 2)

this does not work. For instance, an adversary who corrupts only 1 out of m
ciphertext cannot be simulated having access to ideal functionalities.

Finally we note that no practical instantiation of the encryption scheme leads
to a non-committing encryption scheme (as required in Definition 1), but we
conjecture that this an artificial requirement and does not lead to any concrete
vulnerabilities.

3 The Random OT Protocol in Practice

This section describes how the random OT protocol can be realized in practice.
In particular, this section focuses on describing how group elements are repre-
sented as bitstrings, i.e., the encodings. In the abstract description of the random
OT protocol, the sender and the receiver transmit and compute on “group ele-
ments”, but clearly any implementation of the protocol transmits and computes
on bitstrings. We describe how the encodings are designed to achieve efficiency
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(both for communication and computation) and security (particularly against a
malicious party who might try to send malformed encodings).

The Group. The group G we choose for the protocol is a subset of Ḡ; Ḡ is
defined by the set of points on the twisted Edwards curve

{(x, y) ∈ F2255−19 × F2255−19 : −x2 + y2 = 1 + dx2y2}

and the twisted Edwards addition law

(x1, y1) + (x2, y2) =
(

x1y2 + x2y1
1 + dx1x2y1y2

,
y1y2 + x1x2

1 − dx1x2y1y2

)

introduced by Bernstein, Birkner, Joye, Lange, and Peters in [BBJ+08]. The
constant d and the generator B can be found in [BDL+11]. The two groups
Ḡ and G are isomorphic respectively to Zp × Z8 and Zp with p = 2252 +
27742317777372353535851937790883648493.

Encoding of Group Element. An encoding E for a group G0 is a way of
representing group elements as fixed-length bitstrings. We write E(P ) for a bit-
string which represents P ∈ G0. Note that there can be multiple bitstrings that
represent P ; if there is only one bitstring for each group element, E is said to
be deterministic (E is said to be non-deterministic otherwise6). Also note that
some bitstrings (of the fixed length) might not represent any group element;
we write E(G1) for the set of bitstrings which represent some element in G1 ⊆ G0.
E is said to be verifiable if there exists an efficient algorithm that, given a bit-
string as input, outputs whether it is in E(G0) or not.

The Encoding EX for Group Operations. The non-deterministic encoding
EX for Ḡ, which is based on the extended coordinates in [HWCD08], represents
each point using the tuple (X : Y : Z : T ) with XY = ZT , representing x = X/Z
and y = Y/Z. We use EX whenever we need to perform group operations since
given EX(P ), EX(Q) where P,Q ∈ Ḡ, it is efficient to compute EX(P+P ), EX(P+
Q), and EX(P − Q). In particular, given an integer scalar r ∈ Zp it is efficient
to compute EX(rB), and given r and EX(P ) it is efficient to compute EX(rP ).

The Encoding E0 and Related Encodings. The deterministic encoding E0

for Ḡ represents each group element as a 256-bit bitstring: the natural 255-bit
encoding of y followed by a sign bit which depends only on x. The way to recover
the full value x is described in [BDL+11, Sect. 5], and group membership can
be verified efficiently by checking whether x2(y2 − 1) = dy2 + 1 holds; therefore
E0 is verifiable. See [BDL+11] for more details of E0.

For the following discussions, we define deterministic encodings E1 and E2 for
G as

E1(P ) = E0(8P ), E2(P ) = E0(64P ), P ∈ G.

6 We stress that non-deterministic in this context does not mean that the encoding
involves any randomness.
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We also define non-deterministic encodings E(0) and E(1) for G as

E(0)(P ) = E0(P + t), E(1)(P ) = E0(8P + t′), P ∈ G,

where t, t′ can be any 8-torsion point. Note that each element in G has exactly
8 representations under E(0) and E(1).

Point Compression/Decompression. It is efficient to convert from EX(P )
to E0(P ) and back; since E0 represents points as much shorter bitstrings, these
operations are called point compression and point decompression, respectively.
Roughly speaking, point compression outputs y = Y/Z along with the sign
bit of x = X/Z, and point decompression first recovers x and then outputs
X = x, Y = y, Z = 1, T = xy. We always check for group membership during
point decompression.

We use E0 for data transmission: the parties send bitstrings in E0(Ḡ) and
expect to receive bitstrings in E0(Ḡ). This means a computed point encoded
by EX has to be compressed before it is sent, and a received bitstring has to
be decompressed for subsequent group operations. Sending compressed points
helps to reduce the communication complexity: the parties only need to transfer
32 + 32m bytes in total.

Secure Data Transmission. At the beginning of the protocol S computes
and sends E0(S). In the ideal case, R should receive a bitstring in E0(G) which
he interprets as E0(S). However, an attacker (a corrupted S∗ or a man-in-the-
middle) can send R 1) a bitstring that is not in E0(Ḡ) or 2) a bitstring in
E0(Ḡ \ G). In the first case, R detects that the received bitstring is not valid
during point decompression and ignores it. In the second case, R can check group
membership by computing the pth multiple of the point, but a more efficient way
is to use a new encoding E ′ such that each bitstrings in E0(Ḡ) represents a point
in G under E ′. Therefore R considers the received bitstring as E(0)(S) = E0(S+t),
where t can be any 8-torsion point.

The encoding E(0) (along with point decompression) makes sure that R
receives bitstrings representing elements in G. However, an attacker can derive
ci by exploiting the extra information given by a nonzero t: a naive R would
compute and send E0(ci(S + t) + xiB) = E0(cit + Ri); now by testing whether
the result is E0(G) the attacker learns whether ci = 0.

To get rid of the 8-torsion point, R can multiply received point by 8 ·
(8−1 mod p), but a more efficient way is to just multiply by 8 and then
operate on EX(8S) and EX(8xiB) to obtain and send E1(Ri) = E0(8Ri), i.e., the
encoding switches to E1 for Ri. After this S works similarly as R: to ensure that
the received bitstring represents an element in G, S interprets the bitstring as
E(1)(Ri) = E0(8Ri + t); to get rid of the 8-torsion point S also multiplies the
received point by 8, and then S operates on EX(64Ri) and EX(64T ) to obtain
EX(64(yRi − jT )).

Key Derivation. The protocol computes HS,Ri(P ) where P can be xiS, yRi,
or yRi − jT for j ∈ [n]. This is implemented by hashing E1(S) ‖ E2(Ri) ‖ E2(P )
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with Keccak [BDPVA09] with 256-bit output. The choice of encodings is nat-
ural: S computes EX(S), and R computes EX(8S); since multiplication by 8 is
much cheaper than multiplication by (8−1 mod p), we use E1(S) = E0(8S) for
hashing. For similar reasons we use E2 for Ri and P .

Table 1. How the parties compute encodings of group elements: each row shows that
the “Output” is computed given “Input” using the operations “Operations”. The input
might come from the output of a previous row, a received string (e.g., E(1)(Ri)), or
a random scalar that the party generates (e.g., 8xi). The upper half of the table are
the operations that does not depend on i, which means the operations are performed
only once for the whole protocol. EX is suppressed: group elements written without
encoding are actually encoded by EX . C and D stand for point compression and point
decompression respectively. Computation of the rth multiple of P is denoted as “r ·P”.
In particular, 8 · P can be carried out with only 3 point doublings.

Actual Operations. For completeness, we present in Table 1 a full overview
of operations performed during the protocol for the case of 1 out of 2 OT
(i.e., n = 2).

4 Field Arithmetic

This section describes our implementation strategy for arithmetic operations in
F2255−19, which serve as low-level building blocks for operations on the curve.
Field operations are decomposed into double-precision floating-point operations
using our strategy. A straightforward way for implementation is then using
double-precision floating-point instructions. However, a better way to utilize the
64 × 64 → 128-bit serial multiplier is to decompose field operations into integer
instructions as [BDL+11] does. The real reason we decide to use floating-point
operations is that it allows us to use 256-bit vector instructions on the tar-
get microarchitectures, which are functionally equivalent to 4 double-precision



The Simplest Protocol for Oblivious Transfer 53

floating-point instructions. The technique, which is called vectorization, makes
our vectorized implementation achieve much higher throughtput than our non-
vectorized implementation based on [BDL+11].

Representation of Field Elements. Each field element x ∈ F2255−19 is rep-
resented as 12 limbs (x0, x1, . . . , x11) such that x =

∑
xi and xi/2�21.25i� ∈ Z.

Each xi is stored as a double-precision floating-point number. Field operations
are then carried out by limb operations such as floating-point additions and
multiplications.

When a field element gets initialized (e.g., when obtained from a table
lookup), each xi uses no more than 21 bits of the 53-bit mantissa. However,
after a series of limb operations, the number of bits xi takes can grow. It is thus
necessary to reduce the number of bits (in the mantissa) with carries before any
precision is lost; see below for more discussions.

Field Arithmetic. Additions and subtractions of field elements are imple-
mented in a straightforward way: simply adding/subtracting the corresponding
limbs. This does increase the number of bits in the mantissa, but in our appli-
cation it suffices to reduce bits only at the end of the multiplication function.

A field multiplication is divided into two steps. The first step is a school-
book multiplication on the 2 · 12 input limbs, with reduction modulo 2255 − 19
to bring the result back to 12 limbs. The schoolbook multiplication takes 132
floating-point additions, 144 floating-point multiplications, and a few more mul-
tiplications by constants to handle the reduction.

Let (c0, c1, . . . , c11) be the result after schoolbook multiplication. The second
step is to perform carries to reduce number of bits in ci. Carry from ci to ci+1

(indices work modulo 12), which we denote as ci → ci+1, is performed with 4
floating-point operations: c ← ci + αi; c ← c − αi; ci ← ci − c; ci+1 ← ci+1 + c.
The idea is to use αi = 3 · 2ki where ki is big enough so that the less significant
part of ci are discarded in ci + αi, forcing c to contain only the more significant
part of ci. For i = 11, one extra multiplication is required to scale c by 19 ·2−255

before it is added to c0.
A straightforward way to reduce number of bits in all limbs is to use the carry

chain c0 → c1 → c2 → · · · → c11 → c0 → c1. The problem with the straight-
forward carry chain is that there is not enough instruction level parallelism to
hide the 3-cycle latencies (see discussion below). To hide the latencies we thus
interleave the following 3 carry chains:

c0 → c1 → c2 → c3 → c4 → c5,

c4 → c5 → c6 → c7 → c8 → c9,

c8 → c9 → c10 → c11 → c0 → c1.

In total the multiplication function takes 192 floating-point additions/
subtractions and 156 floating-point multiplications.

When the input operands are the same, many limb products will repeat
in the schoolbook multiplication; a field squaring is therefore cheaper than a
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Table 2. 256-bit vector instructions used in our implementation. Note that vxorpd

has throughput of 4 when it has only one source operand.

instruction latency throughput description

vandpd 1 1 bitwise and

vorpd 1 1 bitwise or

vxorpd 1 1 (4) bitwise xor

vaddpd 3 1 4-way parallel double-precision floating-point additions

vsubpd 3 1 4-way parallel double-precision floating-point subtractions

vmulpd 5 1 4-way parallel double-precision floating-point multiplications

field multiplication. In total the squaring function takes 126 floating-point addi-
tions/subtractions and 101 floating-point multiplications.

Field inversion is implemented as a fix sequence of field squarings and mul-
tiplications.

Vectorization. We decompose field operations into 64-bit floating-point and
logical operations. The Intel Sandy Bridge and Ivy Bridge microarchitectures,
as well as many recent microarchitectures, offer instructions that operate on
256-bit registers. Some of these instructions treat the registers as vectors of 4
double-precision floating-point numbers and perform 4 floating-point operations
in parallel; there are also 256-bit logical instructions that can be viewed as 4
64-bit logical instructions. We thus use these instructions to run 4 scalar mul-
tiplications in parallel. Table 2 shows the instructions we use, along with their
latencies and throughputs on the Sandy Bridge and Ivy Bridge given in Fog’s
well-known survey [Fog14].

5 Implementation Results

This section compares the speed of our implementation of
(
2
1

)
-OT (i.e., n = 2)

with other similar implementations. We stress that our software is a constant-
time one: timing attacks are avoided using the same high-level strategy
as [BDL+11].

To show that our speeds for curve operations are competitive, we modify
the software to support the function of Diffie-Hellman key exchange and com-
pare the results with existing Curve25519 implementations (our implementation
performs scalar multiplications on the twisted Edwards curve, so it is not the
same as Curve25519). The experiments are carried out on two machines on the
eBACS site for publicly verifiable benchmarks [BL15]: h6sandy (Sandy Bridge)
and h9ivy (Ivy Bridge). Since our protocol can serve as the base OTs for an OT
extension protocol, we also compare our speed with a base OT implementation
presented in [ALSZ13], which is included in the Scapi multi-party computation
library; the experiments are made on an Intel Core i7-3537U processor (Ivy
Bridge) where each party runs on one core. Note that all experiments are per-
formed with Turbo Boost disabled.



The Simplest Protocol for Oblivious Transfer 55

Table 3. DH speeds of our work and existing Curve25519 implementations.

h6sandy h9ivy

[MF15] Average cycles to compute a public key 61828 57612

[BDL+11] Average cycles to compute a shared secret 194036 182708

this work Average cycles to generate a public key 61458 60853

Average cycles to compute a shared secret 182169 180343

Table 4. Timings for per OT in kilocycles. Multiplying the number of kilocycles by
0.5 one can obtain the running time (in µs) on our test architecture.

m 4 8 16 32 64 128 256 512 1024

this work Running time of S 548 381 321 279 265 257 246 237 228

Running time of R 472 366 279 229 205 200 193 184 177

[ALSZ13] Running time of S 17976 10235 6132 4358 3348 2877 2650 2528 2473

Running time of R 16968 9261 5188 3415 3382 2909 2656 2541 2462

Comparing with Curve25519 Implementations. Table 3 compares our
work with existing Curve25519 implementations. “Cycles to generate a pub-
lic key” indicates the time to generate the public key given a secret key; the
Curve25519 implementation is the implementation by Andrew Moon [MF15].
“Cycles to compute a shared secret” indicates the time to generate the shared
secret, given a secret key and a public key; the Curve25519 implementation is
from [BDL+11]. Note that since our software runs 4 scalar multiplications in
parallel, the numbers in the table are the time for generating 4 public keys or
4 shared secrets divided by 4. In other words, our implementation is optimized
for througput instead of latency.

Comparing with Scapi. Table 4 shows the timings of our implementation for
the random OT protocol, along with the timings of a base-OT implementation
presented in [ALSZ13]. The paper presents several base-OT implementations; the
one we compare with is Miracl-based with “long-term security” using random
oracle (cf. [ALSZ13, Section 6.1]). The implementation uses the NIST K-283
curve and SHA-1 for hashing, and it is not a constant-time implementation. It
turns out that our work is an order of magnitude faster for m ∈ {4, 8, . . . , 1024}.

Memory Consumption. Our code for public-key generation uses a 284-KB
table. For shared-secret computation the table size is 12 KB. For OTs, S uses
a 12-KB table, while R is allowed to use a table of size up to 1344 KB which
depends on the parameters given. The current code provides 4 copies of the
precomputed points, one for each of the 4 scalar multiplcations, so it is possible
to reduce the table sizes by a factor of 4 by broadcasting the precomputed points.
Another reason that we have large tables is because of the representation for field
elements: each limbs takes 8 bytes, so each field element already takes 12 ·8 = 96
bytes. The window sizes we use are the same as [BDL+11]. See [BDL+11] for
issues related to table sizes.
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