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Abstract Cloud robotics is currently driving interests in both academia and industry,
especially for systems with limited computation capability. Resource allocation is
the fundamental and dominant problem for resource sharing among agents in the
cloud robotics system. This chapter introduces a novel resource allocation framework
for cloud robotics and proposes a Stackelberg game model and the corresponding
task oriented pricing mechanism for resource allocation. Simulation investigates the
parameter selection and time cost of the proposed mechanism. Experimental results
of co-localization task demonstrate that the proposed mechanism achieve an optimal
performance in resource allocation.
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1 Introduction

Nowadays, there is a growing need for service robots in human daily life, and the
involved services are more complicated than ever before. For traditional robotic sys-
tems, robots have to carry adequate physical processing power and various sensors
among other resources to facilitate the completion of various tasks such as visual
navigation [38], range-finder-based navigation [41, 43], path planning [14], recog-
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nition [40] and scene analysis [39, 42]. However, developing a practical robot that
can cover many services would be extremely expensive and require a long time.
It is thus reasonable to combine multiple robots that have limited capabilities, and
access variety of information or services. This leads to the so-called paradigm “Cloud
Robotics”, which combines robot technology with ubiquitous network and cloud-
computing infrastructures that link a lot of robots, sensors, portable devices and data
centers. Therefore, robots can be remitted from hardware limitations while benefit
from plenty of resources and computing capabilities in the cloud. However, resource
competition is pervasive in practical applications for networked robotics today. It
necessitates the allocation of limited bandwidth as an essential problem to be taken
into account for the system design.

The authors of [25] first described a dual-level system architecture for cloud robot-
ics, consisting of a machine-to-machine (M2M) level and a machine-to-cloud (M2C)
level. On the M2M level, a team of robots communicates via wireless links such as
Local Area Network (LAN) or Mobile Ad-hoc Networks (MANETs). On the M2C
level, the infrastructure cloud provides a pool of shared sensor data, computation and
storage resources, to be allocated among robotic agents. Considering the aforemen-
tioned dual-level architecture, this chapter presents a novel framework of a cloud
robotic system. It consists of networked robots and a cloud-computing infrastruc-
ture. The latter connects the robots, sensors, portable devices and most importantly a
centralized data-center. By adopting such a proxy-based model, all primary data can
be retrieved from the cloud and managed by the proxy so that the requirements on
hardware for each robot can beminimized. In addition, the proposed pricing resource
allocation mechanism is task-oriented, which focuses on completing the necessary
task or series of tasks in order to achieve optimized resource allocation.

Briefly speaking, this chapter deals with the resource allocation problem for cloud
robotics by using a market-based mechanism. The following major contributions are
addressed.

• A novel cloud robotic architecture is proposed based on an asynchronous data
flow framework [70] for resource allocation managements among multiple robots.
Especially, the architecture of cloud robotics is classified as an inter-cloud formed
by robot-to-robot (R2R) and an infrastructure cloud enabled by robot-to-cloud
(R2C).

• AStackelberg game-based [45] resourcemanagementmechanism is proposedwith
consideration of the interaction among robot clients. The mechanism optimization
is theoretically proved and implemented as functionalities of admission control,
request ranking and resource distributing. Besides, a data buffer is set up on the
access proxy for frequently requested data.

• Aset of task-orientedQuality-of-service (QoS) criteria are proposed as the primary
assessment metric of a co-localization scenario. The QoS’s are defined regarding
the fact that sophisticated collaborative robotic tasks are usually time sensitive.

The rest of the chapter is organized as follows. In Sect. 2, we discuss the related
work in the area of resource allocation and cloud robotics. Section3 presents our
design of a typical cloud robotic system with a resource management middleware.
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Afterwards, we define criteria of QoS at the end of the section. In order to solve the
inherent conflicts of MSDR, we introduce the theoretical modeling and solution in
Sect. 4. In Sect. 5, the parameter investigation and time cost of the proposed mecha-
nism are presented. The experimental setup and results analysis are demonstrated in
Sect. 6. At last, Sect. 7 presents the conclusion and future work.

2 Related Work

In this section, current works in the aspect of service-oriented architecture, cloud
robotic systems, robotic task allocation and resource allocation mechanisms are
reviewed and discussed.

2.1 Service-Oriented Architecture in Cloud Computing

The Service-oriented architecture (SOA) [6] is a widely used framework for cloud
computing, where the cloud hosts and clients are synthesized under an elastic archi-
tecture. It represents computing in three parallel processes: service development,
service publication and application composition using services that have been pub-
lished. Cloud computing extends the scope of SOA by including the development
of platform and infrastructure. So far, it is usually characterized by four paradigms:
Software as a Service (SaaS), Platform as a Service (PaaS), Infrastructure as a Ser-
vice (IaaS) and Hardware as a Service (HaaS) [55]. Cloud computing can speed
up many computationally intensive robotic and automation systems or applications,
such as Simultaneous Localization and Mapping (SLAM) [54], robotic big data
analysis, sample-based uncertainty sensing model analysis [32]. Thus, Robot as a
Service (RaaS) [10] can also be added to such a scope. Most existing works using
this framework are web service-based or database dependent. All major information
technology companies and providers, including Google [9], IBM [13], Intel [27],
Oracle [20], SAP [46] have adopted and supported this computing paradigm.

Because of the heterogeneous service and data that are discussed in [59], the
cloud is usually addressed by a common middleware to get interoperability. Many
researchers have worked on the resource management that is constrained in the field
of e-commerce and enterprise computing systems, such as Eucalypus of Amazon
Elastic Computing Cloud (EC2) [50], OpenNebula [51] and Nimbus [58]. Specif-
ically, for RaaS, SOA can also be introduced. For example, Microsoft Robotics
Developer Studio (MRDS) [15] was a vital product in applying SOA to embedded
systems [63, 64]. Microsoft also released Visual Programming Language (VPL) in
2006 [57], which marked a milestone in SOA and in robotics. Many robot manufac-
turers have used VPL as their programming platform, including Coroware, iRobot,
Kuka, LEGO NXTMindstorm, Parallax, Robosoft, Robotics Connection, Whitebox
Robotics, MOLMC IntoRobots, etc [15]. In addition, many of them use a web-based
platform to configure the infrastructure that processing power, memory capacity, and
communication bandwidth.



6 L. Wang et al.

2.2 Current Cloud Robotic Systems

Although the concept of networked robots can date back to the 1990s [52], cloud
robotics is now in better condition for both network and robot to provide an innovated
outtake.

A large number of works took advantage of the big data in the cloud to simplify
algorithms in robotics. ASORO laboratory in Singapore built a cloud computing
infrastructure “DAvinCi” [3] to generate 3Dmodels of environments, which allowed
robots to perform SLAM. The Google autonomous driving project indexedmaps and
images that were collected and updated by satellite, street view, and crowdsourc-
ing to facilitate accurate localization. The “cloud-based robot grasping” [31] used
the Google Object Recognition Engine to recognize and grasp common household
objects.

Some works provide designs of programming, middleware management frame-
work enable robots sharing of data in the cloud.Google andWillowGarage initialized
a software enables an Android phone to control robots based on platforms such as
Lego Mindstroms, iRobot create and Vex Pro. MOLMC provides a sophisticated
solution to an internet of things using MQTT protocol. The Gostainet [22] is an
infrastructure of cloud robotic for executing the speech recognition on humanoid
robot Nao [1]. This system is used to improve the interactions with children as part
of a research project at a hospital in Italy. Authors of [26] presented a PaaS based
cloud engine Rapyuta, which can allocate secure computing environments for robots.

Some works focus on accessing to databases of robotic sensing data such as maps
and images. RoboEarth [67] is built for robots to autonomously share descriptions
of environments and object models. Microsoft implemented a RaaS [10] platform,
which included services for performing functionality, service broker for discovery
and publishing, and applications for clients’ direct access.

The aforementioned research took advantage of a wide range of online data
resources, which is one of the most meaningful fields at the current stage. How-
ever, many robotic systems have a very strict assumption, such as the resource in the
cloud is unlimited. In the matter of fact, most resources in cloud robotics systems
are indeed limited [68]. For instance, network bandwidth for transmitting image
data, CPU occupancy for parallel computation, as well as available number of hosts
(proxy) are limited. Therefore, how to design a module that maximizes the utility
of available resources on demand is a quite challenging problem, especially when
multiple robots request the same kind of resource or service in an asynchronous
manner.

2.3 Robotic Task Allocation Mechanisms

In robotics, tasks are usually regarded as resources to be allocated to robots in a
collaborative system. Therefore, multi-robot task allocation (MRTA) problems are
widely studied and can be characterized as the following types [21].
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• ST-SR-IA is a simple optimal assignment problem and can be solved by both
the centralized algorithm [8] and the distributed algorithm [37]. Centralized
approaches usually can find the optimal faster than distributed approaches, but
lead to a higher communication overhead.

• ST-SR-TA is an instance of problemswhen the task information and utility of robots
can be predicted with some accuracy. This problem is building a time-extended
schedule of tasks for each robot, with the goal of minimizing total weighted
cost [65].

• ST-MR-IA is a kind of problems that involve tasks that require the combination of
multiple robots. It is referred as coalition formation in the multi-agent community
and is more difficult than the previously mentioned MRTA problems. The authors
of [66] proposed a service-based approach with the principal idea that a robot can
ask for services from other robots if the robot cannot execute a task by itself.

• ST-MR-TA is a class of problems includes both coalition formation and scheduling.
It can be considered as an extension of the ST-MR-IA model with additional
scheduling for future allocations. For example, the learning-based probabilistic
algorithms [44] and the incremental task allocation algorithms [35] have been
proposed.

In [48], the problem is formulated as a set of optimization problems with various
objectives:

• MinMax (Minimize the maximal cost of nodes): it aims at timely critical missions
by finding the shortest mission execution duration, which only concerns the worst
node [35].

• MinSum (minimize the sum costs of all nodes): it is aimed at optimization of effi-
ciency byminimizing of energy cost. However, it cannot guarantee an optimization
on each node, and generally cause some nodes are optimized while some others
are not [12].

• MinAve (minimize the average cost of all nodes): this objective measures the
average time since a task appears in the system until it is completed. It is relevant
to the problems where the completion is more important than aggregated global
cost [60].

Other objectives are also proposed recently. For instance, minimize the processing
time [74],maximize throughput,maximize the utility of theworst node,maximize the
sum of individual costs and so on. However, one of the critical challenges in cloud
robotic systems is how to optimally manage available resources such as physical
robots, and sensor data while considering task constraints. The reasons are two-fold:
multi-agent systems are typical complex and distributed, and agents are combined
together as an overarching framework for integrated tasks [19]. Therefore, the com-
bined resource allocation should be considered besides robotic task allocation, and
current resource allocation mechanisms are reviewed in the next subsection.
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2.4 Resource Allocation Mechanisms

In general, resource allocation problems are NP-hard [16, 53], which exist in
computation systems, network communications, transportation systems and etc.
Resource allocation solutions can be mainly classified into two approaches: one
is the optimization-oriented approach which is usually a central planning, and the
other is the economic approach which is usually a distributed scheduling.

For the centralized planning, researchers proposed different optimization tech-
niques to minimize the rate of failure and execution time of tasks, or maximize the
system utilization and throughput. Colony optimization proposed an algorithm to
make an efficient resource assignment for computational jobs being processed, such
as Ant colony algorithm [62] which can efficiently solve the resource constrained
scheduling problem for mining supply chains. The genetic algorithm is used to solve
the optimization problem based on a natural selection process that mimics biological
evolution. For example, Rodriguez et al. proposed a particle swarm optimization
algorithm for resource providing and scheduling on IaaS cloud to minimize the over-
all workflow execution cost [56]. Fuzzy logic is a problem-solving control system
methodology that lends itself to implementation in various size of systems, such as
Fuzzy Clustering Chaotic-based Differential Evolution (FCDE) solved the resource
constrained project scheduling problem [11]. Market-based approaches to resource
management [2, 28] are characterized by capturing complex interactions among
autonomous agents and the system, which suit our problem most. However, most
of them have assumptions that are not suitable for practical robotic tasks, such as
the boundless communication and computation resources. The limited bandwidth
resource should be considered in the real life scenario as presented in [61, 71, 73].

Autonomous negotiation among multiple robots has become a crucial problem
in cloud robotic systems when clients query resources in parallel. The key issues
of resource allocation for cloud robotics are the uncertain demands for resources
such as that in big data mining and computing of robotics, and the large number of
unreliable hosts which are physically distributed. Game theory has its advantages
in solving this problem since it considers every agent and service provider’s profits.
For robotic systems, there are also several related works with different structures.

• Centralized approaches: the advantage is that the global knowledge can be used to
manage all the available resources optimally while the disadvantage is that time
and complexity cost are usually high. For example, the authors of [34] introduced
a centralized iterated auction which included three objective functions and six
bidding rules for a single task. It firstly demonstrated theoretical guarantees of
auction-based methods for such a variety of bidding rules and team objectives.
Higuera et al. [24] formulated the task distribution problem as a fair subdivision
problem and provided a centralized algorithm to provoke the allocationmechanism
for each robot.

• Distributed approaches: these methods are generally low cost since they only
use local information, but they cannot achieve the theoretical global optimum.
For example, the authors of [65] presented two algorithms for task distribution
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problems where multiple tasks can be allocated to a single robot during the nego-
tiation. Later, the authors of [66] presented a distributed market-based algorithm
named S + T, which solved a task allocation problem for robot cooperation.

• Combinatorial approaches: allocated resources are a combination of different
tasks, rather than a single task in complex systems. In [5, 36], the combinator-
ial auction was utilized to allocate multiple tasks in a multi-robot system, where
robots bid on bundles of targets. They proposed different combinatorial bidding
strategies and compared their performances, as well as with single-task auctions.
Their computational results indicated that combinatorial auctions generally led to
superior team-level performance than single-task auctions.

In general, the above works are based on theoretical analysis and simulation, few
real-time robotic scenarios are reported in the real robotic cooperative system. This
chapter aims at development of a practical mechanism for real applications.

3 System Architecture of Cloud Robotics

Theproposed cloud robotic system is shown inFig. 1,which includes anR2Cnetwork
and an R2R network. In the R2C network, an Internet-based cloud infrastructure
provides a data center sharing various kinds of sensor data [69]. In the R2R network,
a team of robots communicates via wireless links such as LAN or MANETs [72].

3.1 Structure Design

The proposed framework of data retrieval is shown as Fig. 2. It is a host-based network
framework which has three main entities involved for supporting Multi-sensor Data

Fig. 1 A architecture of typical cloud robotic systems
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Fig. 2 The data retrieval
framework of cloud robotic
systems

Retrieval (MSDR) in cloud robotic system, namely, Data Center, Cloud Cluster Host,
and Robot Client.

• Data Center (DC): it is a relative database based on PostgreSQL that stores various
information, such as point-cloud, images that are established. All data are main-
tained and shared by any robot client on the network [68]. At the same time, the
DC confronts unpredictable parallel requests from the robot clients.

• Cloud Cluster Host (CCH): it is a server that manages a large amount of data
retrieval. The CCH consists of twomajor functionalities: Request Negotiator (RN)
and Request Allocator (RA). The RN deals with the interfaces among the robot
clients and hosts. It classifies the requests and provides clients with different prices
in a pricing scheme. The RA is a function that accesses the cloud for admission
control and buffer queue management. The RA distributes resources to robots in
term of priority which is derived from the RN.

• Robot Client (RC): at the lowest level of the framework, it is a unit of different
kinds of robots with various sensors. RC can be assigned to either an integrated
task or separate tasks. Details are introduced in the next subsections.

3.2 Resource Management Framework

In Robotic Operating System (ROS) system, rosservice provides task requests
and responses among nodes. Although the actionlib package provides tools to
create servers that execute preemptive long-running goals, it does not support the
queue management, especially asynchronous accesses for multiple tasks in the wait-
ing list. Therefore, this is not sufficient for real-time tasks in multi-robot systems.
In order to implement the SOA of cloud robotic system, we compared two paral-
lel managements and communication software platforms, Hadoop MapReduce and
twisted [47]. It is preferable to choose twisted as the software platform con-
sidering its multi-thread mechanism and compilation of the current database.
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Benefits of twisted in Parallel Communication Twisted [47] is a framework
for deploying asynchronous, event-driven and multi-thread supported network sys-
tem using Python. The obvious advantage is the user-defined structure that can be
flexibly applied for various managements. It is composed of the following three
primary elements:

• reactor
Thereactor is the core of the event-driven programming construct intwisted.
As shown in Fig. 3, it provides a basic interface to a number of services, including
network communication, threading, and event dispatching. The application func-
tions can be simply divided into modular and compact parts. It is also easily added
specific data query and data retrieval modules for clients and hosts respectively.

• protocol
The protocol defines specifications for transmitting and receiving behaviors.
Functions of received data and sent data can be constructed following the prede-
fined virtual function names. A protocol begins and ends its life with two pre-
defined virtual functions: connectionMade and connectionLost, which are called
whenever a connection is established or dropped, respectively.

• factory
The factory is responsible for two tasks: creating new protocols and keep-
ing global configurations and states. The tasks are completed by functions of
buildProtocol and management as shown in Fig. 3. In addition to abstrac-
tions of low-level system calls, it also includes a large number of utility functions
and classes, which facilitate the establishment of new types of servers. Twisted
includes the support for popular network protocols, e.g. SOCKETS, HTTP and
SMTP etc. It is flexible to define globally visible variables in the factory, such
as the local data buffer. The host factory manages the connections to all the
client reactor loops. At the same time, it is also in charge of updating the exist-
ing relation database, registering with newmultiple sensor readings. Details of the
framework structure and its assessment are outlined in the following.

Fig. 3 Protocol creation
process in Twisted reactor
loop between CCH and
clients
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Fig. 4 Data flow of
multi-data retrieval and
communication in cloud
robotic systems

3.3 Data Flow Management

The data flow of multi-data retrieval and communication in our cloud robotic system
is shown in Fig. 4. The host and clients are built using the twisted framework.
The designed program includes a main loop reactor and a callback system. This
system automatically launches a new thread for each client that attempts to connect
the networkwith a approved address and port. The specific functionalities are defined
in the host and clients separately. The major functions in the process are introduced
as follows:

• Database Query
This function is launched and managed only by CCH which retrieves data from
DC for RC. It utilizes a standard SQL [18] syntax to retrieve target information
from a dynamically updated relation database. The database access may be one
bottle-neck in the system, which can be alleviated by the management of the host.
To this end, the following two sub-functions is designed to assist the retrieval,
namely Filter and Pre-process and Buffer Management and Scheduler.

• Filter and Pre-process
In the proposed data flow structure, the filter and pre-process blocks stand for
general data pre-process. For example, data fusion, feature fusion and decision
fusion [17, 23], are the major means to decrease the frequency of database access
and reduce data noise.
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• Buffer Management
This function is launched and managed by CCH where a local data buffer is
deployed for storage of frequently requested data as depicted in Fig. 4. Because
activities of robots are usually regular, the same resource may be queried repet-
itively. Therefore, the buffered mechanism is built to help alleviate the database
access bottle-neck to an extent.

• Scheduler
Last but not least, the proposed scheduling scheme is launched by CCH that allo-
cates resources for all clients’ requests on top of asynchronous communication
threads. The asynchronous management based on the twisted framework is
implemented in CCH to manage all the connections among CCH and robot clients
through reactor loop in parallel as shown in Fig. 4. Please note that reactor
loop is a fundamental infrastructure of the twisted-based socket, which is used
to automate asynchronous data transmission. In addition, the reactor loops are
running on both CCH and heterogeneous robot clients. The optimization mecha-
nism of resource allocation is modeled as a Stackelberg game. More mechanism
details of resource allocation are introduced in the next section.

3.4 Quality of Service Criteria (QoS)

In common sense, bandwidth usage is one of the most important factors to define
QoS since the response of most network-based applications is sensitive to it. In cloud
robotic systems, instead of taking bandwidth usage as the only criterion, QoS defini-
tion can be extended to other aspects regarding the processing or storage capabilities
of nodes. The following QoS’s are selectively defined as primary criteria to assess
the proposed framework.

Definition 3.1: Firm Real-Time Some infrequent deadlines can be missed, which
may degrade the system’s quality of service. The usefulness of a result is zero after its
deadline. In this chapter, FRT is used to measure the performance of such a system.
Because FRT is not directly about the delay but about effectivity. It relaxes the certain
planned delay and settle with accomplishing the time delay restrictions most of the
time.

Definition 3.2: Time of Response (ToR) ToR defines the period that from sending a
request to receiving the corresponding response. It is formulated as

ToR = TData_received − TRequest_sent. (1)

ToR, including request data transmission period, data matching period and response
data transmission period, has been considered because sophisticated collaborating
robotic tasks are usually timely sensitive and the long delay of robot’s response can
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make the task completion meaningless. For instance, cooperative semantic mapping
or 3Dmapping using several robots is time sensitive. Especially, the data transmission
periods are the key factor impacting on the QoS performance.

Definition 3.3: Reliability of Response (RoR) RoR is defined as a success rate of
issued data retrievals. Its value is given in percentage and calculated as

RoR = #Succeeded_Requests
#Total_Requests

. (2)

RoR is a key criterion for all services. Typically, in large scale systems, the percep-
tion results need to be shared and retrieved with acceptable reliability. The on-board
computational capability of the robot clients is usually weak, which implies two
inherent requirements as follows.

• The computation and analysis are generally to be off-board from the clients. There-
fore, data retrieval from an existing database is inevitable.

• The accuracy of the retrieved data and reliability of the transmission are crucial.
Especially, the reliability determines potentials to expand an existing system to a
large scale.

QoS criteria advertise performance quality levels of service which are provided
by service providers; on the other hand, clients use it to select an optimal candidate
data/service, which could in part fulfills the request. Therefore, a well-defined set of
QoS’s could greatly help the assessment of the quality of a service framework.

4 A Pricing Resource Allocation Mechanism for MSDR

In order to share data and service, the paradigm of cloud robotics enables large
numbers of robot clients working in parallel to retrieve multiple data in the cloud. In
this section, a systemmodel,MSDRproblems, and solutions are proposed as follows.

4.1 System Model

We model the interaction between the cloud service provider and robot client (RC)
as a Stackelberg game. The proxy CCH is regarded as the cloud service provider,
who sets the price menu for different resource per bandwidth, and RCs respond
to the price by presenting a certain amount of requests to the cloud. Suppose that
a monopolistic CCH charges RC for usage of a network to maximize profit. Let
N := {1, · · · , n} denote the set of RCs, and link of capacity nc accessed by n RCs.
For RC i of willingness to pay type ωi , xi is usage of bandwidth resource and pi be
the price per unit bandwidth charged by the CCH, then its utility is
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ui (ti , pi ) = ωi · log (1 + ti ) − ti pi , (3)

where ωi denotes the willingness to pay of RC i , ti is the completion time of robot i
for resource retrieval. The logarithmic function ωi log(1+ xi ) is verified to ensure a
non-trivial and meaningful solution to the Stackelberg game. At the same time, the
revenue of CCH is calculated as

L(t, p) =
n∑

i=1

ti pi , (4)

where n is the number of robot clients that are allocated resources.

4.2 Problems and Solutions

The CCH maximizes its revenue by choosing the price pi and the admitted RC
number K for the limited bandwidth,

p∗ = argmax
t≥0
p≥0

L(t, p), (5)

RC i determines xi to maximize its utility and the problem is given by

t∗i = argmax
ti ≥0

ui (ti , pi ), (6)

Constraints aremainly focusing on the deadline of execution time T0 and the admitted
number n as follows

n∑

i=1

ti ≤ T0, n = 0, . . . , N . (7)

Remark 1: For each robot client i , the utility function ui is increasing, strictly con-
cave, and twice continuously differentiable with respect to ti .

Consider the optimization problem of maximization utility function ui : Rn →
R+, defined in (6), where ui is twice continuously differentiable in point t∗i . The
first-order necessary condition that t∗i is a local optimum is

∂ui (ti , pi )

∂ti
|ti =t∗i = 0 (8)

Therefore, we differentiate the utility function as
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∂ui (ti , pi )

∂ti
= ∂(ωi · log (1 + ti ) − ti pi )

∂ti

= ωi

1 + ti
− pi

= 0.

(9)

The optimal price of resources queried by robot client i is derived as

p∗
i = ωi

1 + t∗i
. (10)

The revenuemaximization problem (5) is a non-convex optimization problemwith
a non-convex objective function. Therefore, we have to convert it into an equivalent
convex formulation to solve it. Then the solutions are proposed in the following two
steps:

Step 1—Resource allocation: Assuming a fixed admitted RC number K , then plug
(10) into (5), the above non-convex optimization problem be easily converted to
convex as follows

t∗i = argmax
ωi ≥0
ti ≥0

n∑

i=1

ωi ti
1 + ti

. (11)

Because the revenue is strictly concave, and the constraint set is convex and
compact, this optimization problem admits an optimal solution for the transmission
time of robot clients and leads to a unique allocation. Considering the problem in (6)
and the constraints in (7), we define the Lagrange function as

�(ti , pi ,λ) = L(ti , pi ) + λ

(
n∑

i=1

ti − T0

)
, (12)

where λ is the Lagrange multiplier. By using the Lagrange multiplier technique, we
can get the optimal transmission rate that denoted as

t∗i =
√

ωi

λ
− 1. (13)

Step 2—Admission control: Please note the bandwidth constraints (7) must hold
equality since the objective is strictly increasing function in ti . Thus, by plugging
the t∗i into (7), we have

n∑

i=1

(√
ωi

λ
− 1

)
= T0. (14)
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Assuming that ω1 ≥ ω2 ≥ · · · ≥ ωN , then λ∗ must satisfy the above condition (14).
For a admitted RC number threshold value Kth satisfying

ωKth

λ∗ > 1 and
ωKth+1

λ∗ ≤ 1, (15)

where Kth is used for the admission control, so only Kth or fewer robot clients can

retrieve data. Moreover, we have λ∗ =
(∑Kth

i=1
√

ωi
T0+Kth

)2

derived from (14).

Remark 2: The complexity of Algorithm 1 isO(N ), which has a linear relationship
with the number of robot clients.

Algorithm 1 start to computing λ∗ and Kth by assuming Kth = N and calculate λ.
If the condition of (15) is not satisfied, Kth is decreased by one and λ is recalculated
until it is satisfied. Because ω1 ≤ λ1 and λ1 = 1

T0+1 , Algorithm 1 always converges
and returns the unique value of Kth and λ∗.

Algorithm 1: The Revenue Maximization Algorithm

Inputs: ωi , T0 and N
Outputs: Kth , λ∗, t∗i , and p∗

i

1 BEGIN
2 function Revenue(i,ωi , T0, N )

3 k ← N ,λ(k) ← (

∑k
i=1

√
ωi

T0+k )2

4 while ωk ≤ λ(k) do

5 k ← k − 1,λ(k) ← (

∑k
i=1

√
ωi

T0+k )2

6 end while
7 Kth ← k,λ∗ ← λ(k)

8 t∗i =
√

ωi
λ∗ − 1

9 p∗
i = ωi

1+t∗i
10 return Kth,λ∗, t∗i , p∗

i
11 END

4.3 Scheduling Scheme

All the previous theoretical analysis indicates the proposed scheduling scheme can
optimize theMSDR problem. The basic operation of the scheduling scheme is imple-
mented in CCH and comprises the following processes:

• Admission control: When a service request is submitted, request negotiator uti-
lizes the proposed admission control mechanism (seeAlgorithm 1) to interpret the
request before determining whether to accept or reject it according to the optimal
threshold Kth . Thus, it ensures that there is no overloading of information, and
sufficient requests can be fulfilled successfully. In the factory, a threshold is



18 L. Wang et al.

set for the admitted number of robot clients considering the factors such as ToR
and willingness to pay.

• Request ranking: The request negotiation is responsible for ranking the admitted
requests considering their willingness to pay and time deadline as presented in
Algorithm 2. Having access to the allocation requests of all robot clients, the
CCH can keep tracking current robot clients, and update the ranking list when a
new request is registered.

• Resource distributing: The admitted requests are responded in accordance with
the order in the rank list. In this situation, it optimizes both the utility of each RC
and the revenue of CCH.When new requests from robot clients arrive, the resource
allocator would response the requests in accordance with the order of the updated
rank list.

Algorithm 2: Scheduling Algorithm

Inputs: optimal price p∗
i of request i

Outputs: current_priority_list

1 BEGIN
2 function update_priority_list(pi)
3 current_priority_list.append(pi )
4 function is_lowest_priority(pi)
5 current_priority_list.sort(pi )
6 while i ≤ nthreshold
7 update_priority_list(pi)
8 is_lowest_priority(pi)
9 return current_priority_list
10 END

5 Simulation

In this section, the evaluation of mechanism parameter investigation and time cost
are presented.

5.1 Parameter Investigation

In the proposed admission control, the Kth is determined by the distribution of will-
ingness to pay from robot clients. If there are too many clients with high willingness
to pay, the ones with relatively low willingness to pay will not be allocated data.
Then the CCH can reduce the Kth to fulfill the resource retrieval before the dead-
line, namely admission control. However, there is no restriction on how to choose
willingness to pay as a robot clients. Weibull distribution [49] is chosen because it is
a versatile distribution that can represent different kinds of statistical distribution by
changing its parameters as shown in Fig. 5. Therefore, Weibull distribution can take
on various characteristics based on function as follows:
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Fig. 5 Weibull distribution
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(16)

where α ≥ 0 is the scale parameter, and β ≥ 0 is the shape parameter. If the quantity
x is the number of clients with a willingness to pay, and the Weibull distribution
demonstrates the proportion of the high willingness to pay clients. Then β can be
interpreted directly as follows:

• 0 < β ≤ 1: f (x) decreases monotonously and is convex as x increases to ∞.
Especially, it is an exponential distribution when β = 1.

• β > 1: f (x) has a bell-shape, which increases as x increases to the maximum
and decreases thereafter. Especially, it is a Rayleigh distribution of mode σ = α√

2
when β = 2.

In order to indicate the relationship between willingness to pay and the threshold
of admitted number of clients in the proposed admission control, we compare the
optimal Kth under different distributions of willingness to pay from all clients by
tuning three factors: the shape parameter of Weibull distribution β that indicates
different distribution of willingness to pay; the number of clients requested resource
“N”; and the timeout period “T0”, which is a required time for a task.

In the simulation, we tested the admission control proposed in Sect. 4 by selecting
α = 1 and β = {0.1, 0.5, 1.0, 1.5, 5}, the time deadline T0 = {10, 20, 30, 40} and
client number k = {12, 48, 96, 192} respectively. One hundred runs were carried out
on each configuration. In Fig. 6, we can be seen that Kth increases as β increases
when T0 is fixed. Especially, the increasing rate of Kth when 0 < β < 1 is much
larger than the increasing rate when β > 1. This is because the ratio of clients with
high willingness to pay is smaller in the range of 0 < β < 1. Moreover, it also shows
that the willingness to pay is a key factor for the designation of the scheduler since
it can affect the QoS. Moreover, the above results are references for the evaluation
in the next subsection.
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Fig. 6 Comparison of the threshold of admitted user number. The black points are the calculated
Kth of 100 runs on each configuration, magenta squares are average values from each 100 runs,
green curves are average values of Kth under different T0, and the colored surface is a regression
over all the average values. a Comparison of the threshold of admitted number of clients when there
are 12 clients in total, b Comparison of the threshold of admitted number of clients when there are
48 clients in total, c Comparison of the threshold of admitted number of clients when there are 96
clients in total, d Comparison of the threshold of admitted number of clients when there are 192
clients in total

5.2 Time Cost of the Scheduling Scheme

The time cost of the scheduling scheme to get the optimal rank, including admission
control and request ranking, is directly proportional to the number of nodes as shown
in Fig. 7. The time cost is justified when the number of nodes is in the range of [12,
230] with an increment of 12 nodes for each test. In addition, it keeps in tens of
milliseconds when the numbers of nodes are 276, 324, and 384. A fitted line is
showed in the red dash line. Figure7 in this document shows the fitted line has a
gradient 1.4951× 105, which means the cost time increase with the number of robot
clients.
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Fig. 7 Time cost
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6 Experiment

This section introduces the experiment design, experimental results and performance
discussion.

6.1 Robot Setup

The hardware system is composed of two major categories of robots. The leading
robot is set upmainly towork as the database feederwhile the others act as consumers
of the feeded data.

• Well-equipped leading robot: the leading robot is shown in Fig. 8a. It equips with
several sensors like a rotating laser scanner (for 3D point-cloud), an omni-camera
(Ladybug™) and an Inertial Measure Unit (IMU) with a GPS module. It can
provide an online database with sufficient mapping and localization hints.

• Relatively poorly-equipped follower robot: the follower robot “Epuck” is shown
in Fig. 8b. It equips with a Firefly™ camera and a WiFi module. It can request
various types of sensor data, for example, the camera can capture 2D bar-codes on
the wall in the target environment, then the WiFi module can send it to the host to
request the location or the regional map around it.

6.2 Experiment Design

A typical co-localization scenario is shown as Fig. 9. We put up several markers in
the environment, which pose can be estimated. The well-equipped robot built a full
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(a) (b)

Fig. 8 Robots instances in a typical cloud robotic system, a Leading robot: NIFTi, b Follower
robot: Epuck

Fig. 9 A map with 3D point
cloud of a typical indoor
environment for multi-robot
co-localization

3D map with marker location registered on it as shown in Fig. 9d. All information
on the map were stored in a data center and can be subscribed by follower robots
according to the response rank. In the aspect of poorly-equipped robots, they can use
their camera to take pictures of AR markers as depicted in Fig. 9a, b. For the specific
task, a structure for data flow and resource management is described in Fig. 10.
Many services are provided in the cloud such as object detection, node initialization,
besides localization as extensions. Robot client can retrieve these services though
the structure we introduced in Sect. 3.3.

2D BarcodesAugmented Reality (AR), as shown in Fig. 9, is utilized as 2D barcodes
for localization. It provides a package namedARToolKit, which uses computer vision
algorithms to calculate the real camera position and orientation relative to physical
markers in real time.
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Fig. 10 Data flow and resource management of the proposed system

Marker Pose Registration and Retrieval All this location registration is imple-
mented by ROS since ARToolKit is a package belonged to it. Not all AR markers
can be accurately recognized and stable registered, we set a threshold to classify
them. Only when the confidence is higher than the preset threshold, the location can
be recorded in the database.

Pose Estimation At the beginning, the leading robot builds a 3D map with both
images and registered local maps. Then the position of each AR marker is registered
on the map by subscribe the related ROS topic, such as transformations. The relative
poses are calculated by ARToolKit module.1 At last, the pose of marker i in the map
can be obtained by

T /map
/markeri

= T /map
/ leading_robot︸ ︷︷ ︸

SLAM

· T / leading_robot
/camera_leading_robot︸ ︷︷ ︸

Sensor Calibration

· T /camera_leading_robot
/markeri︸ ︷︷ ︸

ARToolKit

, (17)

where T a
b is the transformation matrix from frame b to a, namely target frame b in

base frame a. Similarly, the pose retrieval for each follower robot j regarding marker
i is formulated as

T /map
/robot j

= T /map
/markeri︸ ︷︷ ︸

Data Retreival

· (T /camera_robot j
/markeri

)−1

︸ ︷︷ ︸
ARToolKit

· T
/camera_robot j
/robot j︸ ︷︷ ︸
Sensor Calibration

. (18)

We could see that the data retrieval efficiency will determine the efficiency of
the whole co-localization system since it provides a required link. This problem is
non-trivial when the system scale is large. Due to the limited bandwidth constraints
and constraints of computational ability, the response of such information needs to
be negotiated within robot clients and to be managed by the CCH.

1www.rog.org/wiki/artoolkit.

www.rog.org/wiki/artoolkit
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Table 1 Matched marker number vs confidence threshold under different WiFi strength

Number of markers Threshold of confidence Averaged ratio of matched markers

−40 ∼ −50 dB (%) −50 ∼ −60 dB (%)

30 0.5 84.45 71.24

0.9 73.28 60.15

100 0.5 80.97 69.22

0.9 62.64 55.34

Table 2 Measured accuracy
results of X-Y-Z offset error

Error marker Z-offset X-offset Y-offset

Standard
derivation

32.25884 10.97756 5.197521

Average
(mm)

22.87656 –2.36570 0.480358

6.3 Qualitative Results on Localization Behavior

In the online co-localization scenario, all robot clients can be localized in firm real-
time by request from the CCH. In this work, localization accuracy is mainly affected
by matched marker ratio and marker location registered in the data center. There-
fore, as shown in Table1 we compare the matched marker number with confidence
threshold which is pre-set in the ar_multi.cpp. For deriving better results, the
WiFi strength is recorded when follower robots are requiring location. Moreover,
the localization accuracy of ARToolKit is tested in [4], the localization accuracy is
evaluated and shown in Table2. The robot positions are well localized.

6.4 Quantitative Results on Resource Allocation

At first, we compare the ToR of continuous requests from 3 robot clients. Figure11
demonstrates that the ToR of requests from all robots in a period. Comparing with
the case without mechanism depicted in Fig. 11a, the proposed mechanism managed
to reduce the ToR according to the priority setup. With the proposed mechanism
depicted in Fig. 11b, robot clients received more retrieval data from the cloud. The
priority setup for robot 1, 2 and 3 are 1, 3 and 2 respectively. With higher priority,
the corresponding requests got a faster response at most of the time duration.

The typical characteristic of cloud robotic is the large number of robot requests
in parallel. We compared the RoR performance considering the Kth and T0 in the
request tasks of 12 clients, which were data retrievals through the Internet. RoR of
co-localization task depends on the retrieved transformation data registered in the
database which can be easily calculated according to (17) and (18). For each request
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Fig. 11 ToR comparison, a Without mechanism, in unit of millisecond, b With mechanism, in unit
of millisecond

task, it includes 6 independent requests from one client, the package size is s =
15.625Mb × 6, then the ideal transmission time should be s/(2Mb/s) = 46.875s.
Note that, only partial requests in the buffer queuewould get responses from theCCH.
It is because the transmission requires time, where the transmission period may be
longer than the T0. In Table3, we demonstrate the RoR among different T0 and Kth .
Clients submitted their optimal price of requests, which were determined by their
willingness to pay and the desired completing time of the target data retrieval. The
results validate that the RoR with mechanism performs better, when Kth is optimized
for each task to respond to their timeout period. In addition, willingness to pay of all
clients are uniformly distributed because they have the same requests.

6.5 Discussions

In the online experiment, the proposed system distributed the workload of sensing,
localization, computation and communication among a group of robot agents. The
regarding characteristics are discussed as follows.

Optimized Constraints of Resource Allocation It greatly reduced the response time
for the localization task by deployment of access control, scheduling and protocol
management in the proposed cloud robotic system. The optimization is derived from
solving the following constraints.

• Data retrieval constraint: in cloud robotic system, a robot can retrieve information
from a dynamically updated data center which is built by various types of robots
and sensors, therefore it is a heterogeneous structure that needs standard design
and regulation to fit it in applications.
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• Communication constraint: synchronization of data is hard for distributed system,
especially when asynchronous tasks are performed [29]. If multi-sensor data are
distributed in the network on each client, information sharing among robots is
low-efficient without resource allocation.

• Autonomous negotiation constraint: different from research on target tracking [7],
automated identification of targets [33], and automated behavior reasoning [30].
Practical autonomous negotiation for resource allocation in firm real-time systems
such as cloud robotics is a multi-dimensional problem, therefore both revenues of
resource provider and utility of user are considered in this chapter.

Generalization of the Proposed Framework By using such framework, the major
generalization can be derived as follows:

• Extension to cloud robotic system with many poorly-equipped robots for infor-
mation retrieval and communication. It considers of letting robots access a large
amount of computational power on demand. The framework sidesteps drawbacks
include high computational cost, high configuration,maintenance and update over-
heads.

• Extension of amore complex hierarchical topology of the system including various
types of robots. Especially the negotiation mechanism can be extended according
to complex task and environment that it applies.

7 Conclusion

In this chapter, a novel cloud robotic system architecture is developed based on an
asynchronous data flow framework. Then the resource allocation problem is formu-
lated as a Stackelberg game and the corresponding solution is proposed. Moreover,
the task-oriented QoS criteria are proposed. Afterward, simulations on parameter
investigation and time cost are presented. Experiments of co-localization robotic
scenarios are implemented for evaluation. Results are discussed and proved the pro-
posed pricingmechanismoptimized the resource allocation problem for cloud robotic
systems considering physical robots and tasks.

Even if experiments and simulations in the thesis showed promising results, there
are still some further work to be developed and extended. Specifically, both the large
amount of resource in the cloud and robot clients are heterogeneous. Therefore, a
vital issue in this domain is uncertainty about the resource prices, which greatly
affect the cost of request retrieval and allocation. As the proposed Stackelberg game
mechanism, the optimal price depends on a willingness payment and the correspond-
ing response time. However, the response time is not a prior, which is determined
by the willingness payment and a Lagrange multiplier. Instead of depending on the
willingness payment, a schedule concerning the price prediction model could be
explored to enhance the performance of resource retrieval. Future development of
the auction-based mechanisms includes developing and analyzing of optimization
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algorithms that are able to tune the variables in the strategy according to the differ-
ent information conditions. This will then increase the robustness of this resource
allocation strategy to make it suitable for all environments and applications.
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