
Algorithms: From Al-Khwarizmi to Turing
and Beyond

Wolfgang Thomas

Abstract The foundational work of Alan Turing and contemporaries on com-
putability marked a turning point in the development of mathematical sciences: It
clarified in a rather absolute sense what is computable in the setting of symbolic
computation, and it also opened the way to computer science where the use of
algorithms and the discussion on their nature was enriched by many new facets.
The present essay is an attempt to address both aspects: We review the historical
development of the concept of algorithm up to Turing, emphasizing the essential
role that logic played in this context, and we discuss the subsequent widening of
understanding of “algorithm” and related “machines”, much in the spirit of Turing
whose visions we see realized today.

Keywords Algorithm • Al-Khwarizmi • Computability • Logic • Leibniz •
Turing

1 Prologue

Alan Turing’s contributions to science and engineering are extraordinary, both in
depth and in breadth. His work spans scientific fields as represented in the four
volumes of his Collected Works (pure mathematics, mathematical logic, machine
intelligence, and morphogenesis), and it also covers less well documented work
in “engineering” disciplines, such as computer architecture.1 The present paper
focuses on a very specific but most prominent aspect of Turing’s heritage, namely
his analysis of symbolic computation and the perspectives he connected with the
idea of “machines” for intellectual tasks. The pivot element in this discussion

1On the occasion of the Alan Turing Year 2012, a new presentation of Turing’s work, including
hitherto unpublished papers, is available in the volume [5].

W. Thomas (�)
RWTH Aachen, Lehrstuhl Informatik 7, 52056 Aachen, Germany
e-mail: thomas@informatik.rwth-aachen.de

© Springer International Publishing Switzerland 2015
G. Sommaruga, T. Strahm (eds.), Turing’s Revolution,
DOI 10.1007/978-3-319-22156-4_2

29

mailto:thomas@informatik.rwth-aachen.de

30 W. Thomas

is his pioneering paper “On computable numbers, with an application to the
Entscheidungsproblem” of 1936 [24].

In a first part we describe the central role that logic played in the long process of
clarification of the concept of “algorithm” that culminated in the work of Turing
and his contemporaries Church, Kleene, and Post. This role of logic is worth
being emphasized since “algorithms” were originally understood as procedures for
numeric calculation. In the second part we discuss the development towards today’s
systems of information processing that has led to a much more comprehensive view
on “algorithms”, not just in scientific discourse but much more so in cultural and
political discussions in the wider public.

This paper offers observations that cannot be called original; and also the
historical sketch we provide is rough and does not touch a number of stages that
may also be considered relevant.2 Nevertheless, we found it worth trying to develop
the larger picture around the idea of algorithm and—in terms of time—to address an
extended historical axis, centered at 1936, the year when Turing’s landmark paper
appeared.

2 Some Prehistory: Al-Khwarizmi and Leibniz

In the work of Turing and his contemporaries, the terms “procedure”, “finite
process”, and (as mostly used by Turing) “machine” occur more often than
“algorithm”. All these terms, however, point to the same idea: a process of symbolic
computation fixed by an unambiguous and finite description.

The word “algorithm” originates in the medieval “algorism” as a recipe to
perform calculations with numbers, originally just natural numbers. “Algorism”
goes back to one of the most brilliant scientists of the islamic culture, Al-Khwarizmi
(around 780–850), who worked in the “House ofWisdom” of the Chalif of Bagdad.3

In this academy, founded by the Chalif Harun Al-Rashid and brought to culmination
by his son Al-Mamun, scientists were employed for a wide spectrum of activities,
among them translations (e.g. from Greek and Persian to Arabic), construction of
scientific instruments, expeditions, and—quite important—advice to the Chalif. Al-
Khwarizmi must have been a leading member. His full name (adding together all
name ingredients we know of) was Muhammad Abu-Abdullah Abu-Jafar ibn Musa
Al-Khwarizmi Al-Majusi Al-Qutrubbulli. The attribute “Al-Khwarizmi” points to
the province of “Choresmia”, located in today’s Usbekistan, where he probably
was born and grew up. He was sent by the Caliph to Egypt for an exploration
the giza pyramids, he undertook measurements (e.g., executing the experiment of
Eratosthenes to determine the diameter of the earth), and he wrote treatises.4

2Among the more comprehensive sources we mention [6].
3For an interesting account on the “House of Wisdom”, we recommend [11].
4For a more detailed summary of Al Khwarizmi’s life see, e.g., [27].

Algorithms: From Al-Khwarizmi to Turing and Beyond 31

The most influential ones were his book on algebra (“Kitāb al-mukhtasar fi
hisab al-jabr wa’l-muqabala”) and his text “Computing with the Indian Numbers”
(“Kitāb al-Jam

˘

wa-l-tafrN{q bi-Phisāb al-Hind”). We concentrate here on the latter,
in which he describes the execution of the basic operations of arithmetic (addition,
multiplication, and others) in the decimal number system. The Indian sources he
used are not known. Also the original text of Al-Khwarizmi seems to be lost. We
have translations into Latin, for example the famous manuscript of the thirteenth
century kept at the library of the University of Cambridge (England).5 This text,
however, is a bad example of scientific literature: Citations and comments are mixed
into a conglomerate, and also many places where the decimal ciphers should appear
remain empty. Probably the monk who wrote this text was eager to put everything
into a solid theological context, and he was not comfortable with writing down these
strange decimal symbols. Thus one has to guess at several places how the missing
example computations would look like that should clarify the textual descriptions.
It is amusing to read the phrase “but now let us return to the book”, indicating that
the author comes back to Al-Khwarizmi. And thus, many paragraphs start with the
repetitive phrase “Dixit Algorizmi”—which motivated the term “algorism” for the
procedures described in this work.

It is noteworthy that this concept of “algorithm” clearly refers to a process of
symbol manipulation, in contrast to calculations performed on the abacus. The
arrangement of pieces on the abacus also reflects the decimal system, but the
computation process there is not symbolic in the proper sense of the word.

A new dimension to symbolic computation was added by Gottfried Wilhelm
Leibniz (1646–1716). Extending ideas of precursors (among them Ramon Llull and
Anastasius Kircher), he developed the vision of calculating truths (true statements)
and not just numerical values. This vision was partly motivated by the fierce
theological disputes of his time, a phenomenon which was not just academic but
penetrated politics. Leibniz was born at the very end of the 30 years’ war that had
devastated Germany and that was partly rooted in theological conflicts between the
catholic and the protestant. Leibniz dreamed of a universal calculus that would help
philosophers in their disputes by just following the call “Calculemus!” He hints at
his concept of a “characteristica universalis” in a letter to Duke Johann Friedrich of
Braunschweig-Lüneburg 6:

In philosophy I found some means to do, what Descartes und others did via Algebra and
Analysis in Arithmetic and Geometry, in all sciences by a combinatorial calculus [“per

5A full presentation in facsimile with transcription to Latin is given in [26]; a translation to English
in [2].
6Leibniz wrote this letter [13] of 1671 to a duke and not to a colleague; hence he used German
rather than Latin, with some Latin words inserted: “In Philosophia habe ich ein Mittel funden,
dasjenige was Cartesius und andere per Algebram et Analysin in Arithmetica et Geometria gethan,
in allen scientien zuwege zu bringen per Artem Combinatoriam [: : :]. Dadurch alle Notiones
compositae der ganzen welt in wenig simplices als deren Alphabet reduciret, und aus solches
alphabets combination wiederumb alle dinge, samt ihren theorematibus, und was nur von ihnen
zu inventiren müglich, ordinata methodo, mit der zeit zu finden, ein weg gebahnet wird.”

32 W. Thomas

Artem Combinatoriam”] [: : :]. By this, all composed notions of the world are reduced to
few simple parts as their Alphabet, and from the combination of such alphabet [letters] a
way is opened to find again all things, including their truths [“theorematibus”], and whatever
can be found about them, with a systematic method in due time.

Leibniz undertook only small steps in this huge project, but in a methodological
sense he was very clear about the task. As he suggests, logic should be applied by
procedures of “alphabet’s combination”, i.e., symbolic computation. And he was
very definite about his proposal to join the algorithmic procedures known from
arithmetic with logic. This idea of “arithmetization of logic” (which later Hilbert
pursued in his program to show the consistency of mathematics) is raised in two
ways:

In his paper “Non inelegans specimen demonstrandi in abstractis” of 1685 [15]
(“A not inelegant example of abstract proof method”), he develops the rudiments
of Boolean algebra, using equations such as “ACADA” with “C” as a sign for
union. As an example, let us state the last theorem (XIII) of his note:

Si coincidentibus addendo alia fiant coincidentia, addita sunt inter se communicantia

i.e.,

If from two equal entities we get, by adjoining something, other but again equal entities,
then among the added parts there must be something in common

or in a more formal set theoretic terminology, using the symbols of Leibniz:

If to A we add B, respectively N, and we obtain again “coincidentia”, i.e. ACBDACN,
and these are “alia”, i.e. proper supersets of A, then B and N must have a nonempty
intersection.

Clearly this approach to reasoning prepares Boolean algebra as a calculus, using
notation of arithmetic.

The second idea on the arithmetization of logic appears in his note “Elementa
calculi” (Elements of a calculus) of 1679 [16], where we find the following
passage7:

For example, since man is a rational animal (and since gold is the heaviest metal), if hence
the number for animal (for metal) is a (such as 2) (m such as 3) and of rational (heaviest) r
such as 3 (p such as 5), then the number for man or h will be the same as ar, which in our
example is 2 � 3, i.e. 6 (and the number for gold, s, will be the same as mp, which in this
example is 3 � 5, i.e. 15).

We see very clearly the idea to represent elementary concepts by prime numbers
and their conjunction by products of prime numbers, which allows to reestablish the
factors. This prepares the idea of Gödel numbering that entered the stage again 250

7“Verbi gratia quia Homo est Animal rationale (et quia Aurum est metallum ponderosissimum)
hinc si sit Animalis (metalii) numerus a ut 2 (m ut 3) Rationalis (ponderosissimi) vero numerus r
ut 3 (p ut 5) erit numerus hominis seu h idem quot ar id est in hoc exemplo 2,3 seu 6 (et numerus
auri solis s idem quot mp id est in hoc exemplo 3,5 seu 15.”

Algorithms: From Al-Khwarizmi to Turing and Beyond 33

years later—using number theoretic facts to code complex objects (like statements
or proofs) by numbers—in a way that allows unique decomposition.

It is somewhat breathtaking to see how optimistic Leibniz was about the
realization of his ideas. In a note8 of 1677 he writes

When this language is introduced sometime by the missionaries, then the true religion which
is unified to the best with rationality, will be founded firmly, and one does not need to fear
a renunciation of man from it in the future, just as one does not need to fear a renunciation
from algebra and geometry.

This idea of a rational theory of ethics was shared by many of Leibniz’s contem-
poraries. As examples we just mention Spinoza’s treatise “Ethica. Ordine geometrio
demonstrata” (1677) and the dissertation “Philosophia practica universalis, methodo
mathematica conscripta” (1703) of Leibniz’s student Christian Wolff.

But more than his colleagues, Leibniz formulated rather bold promises—in a
very similar way as we do today when we apply for project money9:

I think that some selected people can do the job in five years, and that already after two
years they will reach a stage where the theories needed most urgently for life, i.e., moral
and metaphysics, are manageable by an unfallible calculus.

3 Towards Hilbert’s Entscheidungsproblem

Leibniz’s dream in its full generality remained (and remains) unrealized. Surpris-
ingly, however, it was materialized in the domain of mathematics. This process
started with George Boole who developed the vague sketch of Leibniz into a proper
theory: “Boolean algebra”. The breakthrough in devising a universal scientific cal-
culus was then achieved by Gottlob Frege. His “Begriffsschrift” (1879) introduces
a formal language in which mathematical statements can be expressed, the essential
innovation being a clarification of the role of quantifiers and quantification. His own
work on the foundations of arithmetic, and in particular the subsequent enormous
effort undertaken by Russell and Whitehead in their “Principia Mathematica”,
opened a way to capture mathematics in a formal system.

But in this development the objectives connected with formalization shifted
dramatically. The objectivewas no longer the Leibnizian approach to compute truths
needed in life (or just in mathematics) but of a moremethodological nature. The shift
occurred with the discovery of contradictions (“paradoxes”) in Frege’s system. The
most prominent problem was the contradiction found independently by Russell and

8From [14]: “Nam ubi semel a Missionariis haec lingua introduce poterit, religio vera quae maxime
rationi consentanea est, stabilia erit et non magis in posterum metuanda erit Apostasia, quam ne
hominess Arithmeticam et Geometriam, quam semel dedicere, mox damnent.”
9From [14]: “Aliquot selectos homines rem intra quinquennium absolvere posse puto; intra bien-
nium autem doctrinas, magis in vita frequentalas, id est Moralem et Metaphysicam, irrefragabile
calculo exhibebunt.”

34 W. Thomas

Zermelo inherent in the concept of a “set of those sets that do not contain themselves
as elements”. The formalization of mathematics was now pursued as a way to
show its consistency. As Hilbert formulated in his program on the foundations of
mathematics, the task was to analyze the combinatorial processes in formal proofs
and by such an analysis arrive at the result that the arithmetical equation 0D 1,
for example, cannot be derived. In pursuing this program, the key issues were
axiomatizations of theories, the consistency of theories, and the soundness and
completeness of proof calculi.

The fundamental results of Gödel (completeness of the first-order proof calculus
and incompleteness of any axiomatic system of arithmetic) made it clear that only
in a fragmentary way there was hope to fulfill Hilbert’s program. An essential
ingredient in Gödel’s approach was the arithmetization of logic (today called
“Gödelization”), transforming Leibniz’s hint mentioned above into a powerful
method.

However, a positive result of the foundational research of the early twentieth
century was that the “atomic ingredients” of mathematical proofs, as condensed
in the rules of the proof calculus of first-order logic, were established. Together
with the axiomatization of set theory, a framework emerged in which most of
mathematics could be formally simulated. This framework clarified to a large extent
which kind of symbolic manipulations are necessary to do logic algorithmically—as
Al-Khwarizmi had explained this centuries before for numeric calculations. Most
remarkably, it was an algorithmic problem in the domain of logic (and not in the
domain of arithmetic) which motivated a general analysis of computability and
hence of “algorithm”.

This was “Hilbert’s Entscheidungsproblem”, as formulated in the monograph
“Einführung in die theoretische Logik” by Hilbert and Ackermann (1928).

Das Entscheidungsproblem ist gelöst, wenn man ein Verfahren kennt, das bei einem
vorgelegten logischen Ausdruck durch endlich viele Operationen die Entscheidung über
die Allgemeingültigkeit bzw. Erfüllbarkeit erlaubt.

Turing’s paper “On computable numbers, with an application to the Entschei-
dungsproblem” [24] solves this problem in the negative, and it does so by a radical
reduction of “algorithm” to very elementary steps of symbol manipulation.

Before discussing this work in more detail, let us emphasize again that the
objectives of Hilbert and his colleagues were quite distinct from the visions that
Leibniz had in mind, although one might say that axiomatic set theory is the
fulfillment of Leibniz’s project of devising a “characteristica universalis”, restricted
to the field of mathematics. Rather than studying global properties of formal
systems, such as consistency and completeness, Leibniz wanted to use formal
rules as a “knowledge engineer”: to find and verify interesting statements by
calculation—primarily in areas far beyond mathematics. Hilbert did—as far as
we know—not adopt the view that formalization would help in any way to solve
concretemathematical problems, by performing the algorithmic execution of proofs.
For him and most logicians in his tradition, the formalization of mathematics is an
approach to understand its methodological foundations.

Algorithms: From Al-Khwarizmi to Turing and Beyond 35

Only today, in computer science, both traditions of “formal logic” are merged
again: In computer science, formal systems are set up in many ways, for example
as programming languages or as query languages for data bases, and in this design
questions of soundness, completeness, and complexity have to be addressed. But we
see at the same time the application of these formal systems of data processing to
solve concrete problems in virtually all sciences and domains of human life, very
much in the spirit of Leibniz.

4 Turing’s Breakthrough

Turing learned about Hilbert’s Entscheidungsproblem in lectures of Max Newman
in Cambridge, after 4 years of (very successful) studies of mathematics. It was
the fresh look of a young genius that helped to settle the problem. The paper he
wrote is one of the most remarkable documents of mathematical literature of the
twentieth century. In fact, the solution of the Entscheidungsproblem (which was
solved independently by Alonzo Church [3]) is only one of at least seven innovations
which Turing offered in his paper:

1. A machine model capturing computability
2. Its justification
3. Conception and implementation of a universal program
4. Establishment of a non-solvable problem
5. Proof that Hilbert’s Entscheidungsproblem is undecidable
6. Equivalence between Turing machines and œ-calculus
7. Initial steps to computable analysis

We do not repeat here the precise formulation of the model of Turing machine.
It should be noted that a variant of this model (“finite combinatory processes”) was
presented in the same year 1936 by Emil Post [17]. What makes Turing’s paper
so brilliant is the mature and conceptually tight justification of his model. This
justification starts with phrases which remind us precisely of the algorithms that
were the subject of Al-Khwarizmi:

Computing is normally done by writing certain symbols on paper. We may suppose this
paper is divided into squares like a child’s arithmetic book : : : .

A second remarkable aspect in Turing’s paper is the fact that after presenting
his model of Turing machine, he immediately exhibits a problem that is not
solvable with this model. For this, he develops the idea of a universal machine,
enters the technicalities of actually constructing one (and, as an aside, introduces
the programming technique today called “macros” for this purpose), and then
applies a diagonalization argument. This appearance of a powerful model connected
immediately with a corresponding unsolvability result should be compared with the
centuries that elapsed between the clear understanding of algebraic expressions (in

36 W. Thomas

Vieta’s time) and the proof of Abel that for polynomials of degree 5 one cannot in
general find solutions in this format.

In fact, the mere possibility to envisage algorithmically unsolvable problems
emerged only at a rather late stage. In 1900, in the formulation of Hilbert’s 10th
problem

Eine diophantische Gleichung mit irgendwelchen Unbekannten und mit ganzen rationalen
Zahlenkoeffizienten sei vorgelegt: Man soll ein Verfahren angeben, nach welchem sich
mittels einer endlichen Anzahl von Operationen entscheiden lässt, ob die Gleichung in
ganzen rationalen Zahlen lösbar ist.

One just finds the task to develop a “procedure” (“Verfahren”). The earliest place
in mathematical literature where the certainty about algorithmic solutions is put into
doubt seems to be a most remarkable paper by Axel Thue of 1910 (“Die Lösung
eines Spezialfalles eines allgemeinen logischen Problems” [23]). He formulates the
fundamental problem of term rewriting: Given two terms s, t and a set of axioms as
equations between terms, decide whether from s one can obtain t by a finite number
of applications of the axioms. He resorts to a special case in order to provide a partial
solution. About the general case one finds the following prophetic remark:

A solution of this problem in the most general case might perhaps be connected with
unsurmountable difficulties.10

It is a pity that this brilliant paper remained unnoticed for decades; one reason
for this is perhaps its completely uninformative title. (A detailed discussion is given
in [21].)

The work of Turing and his contemporaries Church, Kleene, Post finished a
struggle of many centuries for an understanding of “algorithm” and its horizon of
applicability, termed “computability”. This success was possible by a merge of two
traditions in symbolic computation: arithmetic and logic. The impression that an
unquestionable final point was reached with this work was underlined by Gödel,
who stated in 1946, 10 years after Turing’s breakthrough [7]:

Tarski has stressed [: : :] (and I think justly) the great importance of the concept of general
recursiveness (or Turing’s computability). It seems to me that this importance is largely due
to the fact that with this concept one has for the first time succeeded in giving an absolute
definition of an interesting epistemological notion, i.e., one not depending on the formalism
chosen. [: : :] By a kind of miracle it is not necessary to distinguish orders.

5 Moves Towards Computer Science

The year 1936 not only marks a point of final achievement but is at the same time
the initialization of a new and rapidly developing discipline: computer science (or

10“Eine Lösung dieser Aufgabe im allgemeinsten Falle dürfte vielleicht mit unüberwindlichen
Schwierigkeiten verbunden sein.”

Algorithms: From Al-Khwarizmi to Turing and Beyond 37

“informatics”). Each of the pioneers mentioned above in connection with Turing,
namely Church, Kleene, and Post, as well es Turing himself, were active in this
launch of a new scientific subject.

Turing himself turned, for example, to questions that are hosted today in the
field of “computer architecture”, but he also addressed many further issues, such as
program verification. In 1957, Church formulated a fundamental problem beyond
program verification—“Application of recursive arithmetic to the problem of circuit
synthesis” [4]—thus opening a fascinating branch of computer science, in which
today game theoretic methods are used for the automatic construction of interactive
programs (see, e.g. [22]). Kleene should be noted for his path-breaking work [12]
on regular events and finite automata, establishing the basic equivalence result in
automata theory. Finally, Post was the first to exhibit purely combinatorial (and thus
purely “mathematical”, as opposed to logical) undecidable problems (among them
Post’s Correspondence Problem [19]), and he developed in [18] a theory of problem
reduction that today underlies much of complexity theory.

The subsequent rise of computer science changed our views on algorithms in
two ways: First, algorithmic methods in computer science transcend the framework
of symbol manipulation inherent in Turing’s analysis. Secondly, “algorithms” are
understood today in the context of the highly complex software systems that govern
our life (e.g., in enterprise software, internet applications, etc.) Let us address them
both.

6 New Facets of “Algorithm”

Turing’s analysis (as well as the parallel work of Post) refers to procedures
that work on finite words composed from symbols taken from a finite alphabet.
As noted by Turing, the algorithms of basic arithmetic can be treated in this
framework. However, a standard first-year course in computer science, usually titled
“Algorithms and data structures”, already shows several chapters that go beyond
this domain. In particular, we deal there with algorithms over trees and over graphs
rather than words. In this generalized setting, some features of algorithms arise that
are hidden when we work over words. For example, over graphs we observe the lack
of a natural ordering (e.g. for the set of vertices). This lack of order allows to say
“Pick an element in the set V of vertices : : : ” without the requirement (and indeed,
without the possibility) of fixing a particular element. Over words, the situation is
different: Picking a letter in a word always implies the possibility to pick a particular
(e.g., the first) letter. As Gurevich and others remarked, the Turing model working
with the substrate of words on a tape does not allow us to deal with algorithms on
the adequate level of abstraction. The machinery of coding (by words) that enables
us to make a bridge to Turing’s model spoils this adequacy. To settle this problem,
a generalized view on algorithms was developed in the model of “abstract state
machine” [8]. It has the flexibility that is needed to answer the challenge of very

38 W. Thomas

diverse kinds of algorithms as they are specified, for example, in programming
languages.

In some domains of algorithmic mathematics, a more abstract view (than that of
computations over words) is unavoidable even when allowing “codings by words”.
An example is the domain of classical Euclidean geometry, where algorithms in the
form of “geometric constructions” are familiar since antiquity. The data handled by
these constructions (points, lines, etc.), are infinite objects, as are the real numbers.
Points of Euclidean space and real numbers cannot serve as “inputs” to an algorithm
in Turing’s sense, since in their generality they are not codable by finite words.
Abstract state machines over the space of (tuples of) reals can be invoked to handle
geometric algorithms and algorithms over the reals; for the latter, also the Blum-
Shub-Smale model [1] provides an adequate framework.

Apart from this, a host of new algorithmic concepts was developed in computer
science, often termed as “schemes”, “processes”, etc., which are not immediately
covered by the model of Turing machine but constitute clearly mechanisms to
transform data according to finite recipes. One can give numerous examples:
Classification procedures for image and speech processing (as needed in visual com-
puting, data mining, and automatic speech translation), distributed algorithms that
guarantee a convergence of network states to prescribed equilibria, or algorithms for
planning and search as used in robotics. A field of growing importance is the use of
algorithms in non-terminating reactive systems (such as communication protocols
or control systems); here the idea of Turing of a nonterminating process (e.g., to
generate the decimal expansion of a real number) is enhanced by the feature that
an infinite computation may be subject to a non-termining sequence of receipts of
inputs while it works.

These procedures are far away from the simple set-up of symbolic computation
considered by Turing in his paper of 1936. But it was exactly Turing who was
aware of the perspective of a widening of the horizon of algorithmic methods—
at a very early stage. His term was “machine”, allowing him to cover the software
and hardware aspects simultaneously. Let us document this by two citations:

We may hope that machines will eventually compete with men in all purely intellectual
fields. [25]

One way to setting about our task of building a “thinking machine” would be to take
a man as a whole and try to replace all parts of him by machinery. This would include
television cameras, microphones, loudspeakers, wheels, and “handling servo-mechanisms”,
as well as some sort of “electronic brain”.11

11Cited from [10, p. 117].

Algorithms: From Al-Khwarizmi to Turing and Beyond 39

7 Algorithms as Molecules in Large Organisms

The vision of “thinking machine” as sketched by Turing is a reality today. Such
systems are developed in the field of robotics; they are serious approximations of
living organisms.

Indeed, computer science has created hierarchies and networks of algorithms of
such a huge complexity that their description necessarily makes use of terms famil-
iar from biology. “Life cycle”, “software evolution”, “virus”, “worm”, “infection”
are common terms in the discussion of large software systems or networks. One
may say that the instructions for Turing machines represent the atomic level of data
processing, and algorithms (in the classical sense) the molecular level. Based on
this, much larger systems are designed in which the global structure and sensory
elements for the interaction with the environment (e.g., humans) are often more
essential features than the individual components.

A methodological problem of computer science is the span of orders of magni-
tude realized in the huge data conglomerates and software systems as we see them
today. If we consider the physical world, start from the atoms as basic units, and
proceed in stages to larger physical objects, where one step involves an enlargement
by a factor 1000, we reach, successively in four steps, objects of the following kind:
a molecule, a living cell, a small animal, a small village. These kinds of objects are
studied in separate scientific disciplines, ranging from physics via chemistry and
biology to sociology. Each of these disciplines has specific—and rather different—
models that are suitable for the respective objects under consideration. In computer
science we may start with a byte corresponding to the atomic level (describing,
for example, an alphanumeric symbol as handled in a Turing machine instruction),
and proceed in four steps to a Kilobyte (corresponding to a small program of a
dozen lines), a Megabyte (corresponding to a book, or to code produced by a team
of students during a software project), a Gigabyte (a size of data comparable to
the Windows operating system), and a Terabyte (comparable to the stock of the
Library of Congress). Much larger are the “big data” handled in the world wide
web. Although this huge span of orders of magnitude is studied in one science,
computer science, it is obvious that rather diverse methodologies (as in the natural
sciences) are needed for an adequate study. A common misunderstanding of the
role of Turing machines is the remark that this model “does not match the reality of
computer science systems today”. This remark is as misplaced as is the rather empty
statement that atomic physics does not capture the reality of living organisms.

Despite this richness of the landscape of computer systems and computer science,
the public view on the intelligent machinery designed by computer scientists puts
the term “algorithm” at its center, most often in the plural form. “Algorithms” is
what make devices and processes of information technology run. Any conglomerate
of units of information processes is covered by this term. This is different from the
situation in biology where one does not say that biological systems are “molecules”.

Let us illustrate this observation on the colloquial use of “algorithms” by three
headlines the author noted in 2012–2013, taken from the press, respectively the web.

40 W. Thomas

The deeply troubling perspective of programmed robots designed for military com-
bat (on earth and on air) was discussed with the subtitle “The moral of algorithms”
in a leading German newspaper.12 In connection with the comprehensive analysis
of data on the web (covering millions of persons) by government agencies, the term
“the tyranny of algorithms” was used in an article of the same newspaper,13 and,
finally, the controversy in this discussion was condensed by “Spiegel Online” into
the remarkable headline “Freedom against algorithms”.14

While it is clear to the experts that current implementations of computer systems
ultimately rely on small computation steps in microprocessors and are thus in
principle reducible to Turing machine computations, we see that in the public
discussion the actual understanding of “algorithms” drastically exceeds the content
of the Turing model—it is today located on a much more general level.

8 Returning to Leibnizian Visions?

The current colloquial usage of “algorithms” seems approaching the visions of
Leibniz on treating central questions of human behavior and social disputes
by calculation. Indeed, in an unexpected sense, our contemporary information
processing systems are coming close to Leibniz’s idea—envisaging the solution of
moral, social, and political questions by algorithms. We observe today that software
systems used in the financial markets and in military and government institutions
are installed precisely for the purpose of decision finding in questions of economics,
politics, and even war.15

Thus, “algorithms” in this general view, i.e., the algorithmic abilities of the
most sophisticated software and hardware systems that computer scientists develop
today, silently put into reality a fair amount of Leibnizian utopia. But in contrast
to Leibniz’s hopes, it seems that the “unfallible calculus” underlying these systems
can no more be seen as a secure means to get nearer to the “best of all worlds”;
rather we are confronted with new troubling questions on estimating the power and
justifying the use of algorithms.

12F. Rieger, Das Gesicht unserer Gegner von morgen, Frankfurter Allgemeine Zeitung, 20th Sept.
2012.
13G. Baum, Wacht auf, es geht um dieMenschenwürde, Frankfurter Allgemeine Zeitung, 16th June
2013.
14“Freiheit gegen Algorithmen”, Spiegel Online, 21st June 2013.
15This aspect, with a focus on the role of algorithmic game theory, is developed at length by F.
Schirrmacher, a leading German journalist, in [20], a bestseller on the German book market.

Algorithms: From Al-Khwarizmi to Turing and Beyond 41

References

1. L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the real numbers:
NP-completeness, recursive functions and universal machines. Bull. Am. Math. Soc. 21, 1–46
(1989)

2. J.N. Crossley, A.S. Henry, Thus spake al-KhwārizmN{: a translation of the text of Cambridge
University Library Ms. Ii.vi.5. Hist. Math. 17, 103–131 (1990)

3. A. Church, A note on the Entscheidungsproblem. J. Symb. Log. 1, 40–41 (1936)
4. A. Church, in: Summaries of the Summer Institute of Symbolic Logic. Application of recursive

arithmetic to the problem of circuit synthesis, vol. I (Cornell University, Ithaca, 1957), pp.
3–50

5. B. Cooper, J.V. Leeuwen (eds.), Alan Turing: His Work and Impact (Elsevier, Amsterdam,
2013)

6. M. Davis, The Universal Computer – The Road from Leibniz to Turing. Turing Centennial
Edition (CRC Press, Boca Raton, 2012)

7. K. Gödel, Remarks before the Princeton bicentennial conference on problems in mathematics,
in Kurt Gödel, Collected Works, ed. by S. Feferman et al., vol. II (Oxford University Press,
Oxford, 1990), pp. 150–153

8. Y. Gurevich, Sequential abstract-state machines capture sequential algorithms. ACM Trans.
Comput. Log. 1, 77–111 (2000)

9. H. Herring (ed.), G.W. Leibniz Schriften zur Logik und zur philosophischen Grundlegung von
Mathematik und Naturwissenschaft (lat. u. deutsch) (Suhrkamp, Frankfurt, 1996)

10. A. Hodges, Alan Turing: The Enigma (Vintage, London, 1992)
11. J. Al-Khalili, The House of Wisdom: How Arabic Science Saved Ancient Knowledge and Gave

Us the Renaissance (Penguin Press, New York, 2011)
12. S.C. Kleene, Representation of events in nerve nets and finite automata, in Automata Studies,

ed. by C.E. Shannon, J. McCarthy (Princeton University Press, Princeton, 1956), pp. 3–41
13. G.W. Leibniz, Brief an Herzog Johann Friedrich von Braunschweig-Lüneburg (Okt. 1671),

in Philosophische Schriften von Gottfried Wilhelm Leibniz, ed. by C.I. Gerhardt, vol. 1
(Weidmannsche Buchhandlung, Berlin, 1875), pp. 57–58

14. G.W. Leibniz, Anfangsgründe einer allgemeinen Charakteristik, in [9], pp. 39–57
15. G.W. Leibniz, Ein nicht unelegantes Beispiel abstrakter Beweisführung, in [9], pp. 153–177
16. G.W. Leibniz, Elemente eines Kalküls, in [9], pp. 67–91
17. E.L. Post, Finite combinatory processes – formulation 1. J. Symb. Log. 1, 103–105 (1936)
18. E.L. Post, Recursively enumerable sets of positive integers and their decision problems. Bull.

Am.. Math. Soc. 50, 284–316 (1944)
19. E.L. Post, A variant of a recursively unsolvable problem. Bull. Am. Math. Soc. 52, 264–268

(1946)
20. F. Schirrmacher, EGO: Das Spiel des Lebens (Karl Blessing-Verlag, München, 2013)
21. M. Steinby, W. Thomas, Trees and term rewriting in 1910: on a paper by Axel Thue. Bull. Eur.

Assoc. Theor. Comput. Sci. 72, 256–269 (2000)
22. W. Thomas. Infinite games and verification, in Proceedings of International Conference on

Computer Aided Verification CAV’02. Lecture Notes in Computer Science, vol. 2404 (Springer,
Berlin, Heidelberg, New York, 2002), pp. 58–64

23. A. Thue, Über die Lösung eines Spezialfalls eines allgemeinen logischen problems. Kristiania
Videnskabs-Selskabets Skrifter. I. Mat. Nat. Kl. 1910, No. 8

24. A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem. Proc.
Lond. Math. Soc. 42, 230–265 (1936)

25. A.M. Turing, Computing machinery and intelligence. Mind 59, 433–460 (1950)

42 W. Thomas

26. K. Vogel, Mohammed ibn Musa Alchwarizmi’s Algorismus. Das früheste Lehrbuch zum
Rechnen mit indischen Ziffern (Zeller, Aalen, 1963)

27. H. Zemanek, Dixit algorizmi: his background, his personality, his work, and his influence,
in Algorithms in Modern Mathematics and Computer Science, ed by A Ershov, D Knuth.
Proceedings, Urgench, Uzbek SSR, 16–22 September 1979. Springer Lecture Notes in
Computer Science, vol. 122 (Springer, Berlin, 1981), pp. 1–81

	Algorithms: From Al-Khwarizmi to Turing and Beyond
	1 Prologue
	2 Some Prehistory: Al-Khwarizmi and Leibniz
	3 Towards Hilbert's Entscheidungsproblem
	4 Turing's Breakthrough
	5 Moves Towards Computer Science
	6 New Facets of “Algorithm”
	7 Algorithms as Molecules in Large Organisms
	8 Returning to Leibnizian Visions?
	References

