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Part I
Hamiltonian Systems and Celestial

Mechanics

Editors

Montserrat Corbera
Josep Maria Cors
Jaume Llibre

Foreword

From January to July 2014, the Research Programme Central Configurations,
Periodic Orbits and beyond in Celestial Mechanics took place at the Centre
de Recerca Matemàtica (CRM), in Bellaterra, Barcelona. It was coordinated by
Montserrat Corbera (Universidad de Vic, Spain), Josep Maria Cors (Universitat
Politècnica de Catalunya, Spain), and Jaume Llibre (Universitat Autònoma de
Barcelona, Spain).

During these intense seven months, several scientific events took place, including
an international conference (the HAMSYS-2014), three advanced courses, and a
weekly seminar, all of them with the active participation of many visitors invited
to attend from several countries abroad. Of course, additionally, all participants had
numerous occasions to host informal but fruitful conversations among themselves,
discussing mathematical ideas which, in many cases, gave rise to new and interest-
ing results; altogether in a very dynamic and productive research atmosphere.

In this volume of the subseries Research Perspectives CRM-Barcelona (pub-
lished by Birkhäuser inside the series Trends in Mathematics), we present fifteen
Extended Abstracts corresponding to selected talks given by participants in the
Research Programme. More than half of them come from talks at the Conference
on Hamiltonian Systems and Celestial Mechanics 2014 (HAMSYS2014) (held from
June 2nd to 6th, 2014), and the rest come from talks at the weekly seminar held
along the first semester of 2014. We hope the presentation of this material under
the present Extended Abstract form will give to the authors the opportunity to
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quickly communicate their recent research: most of the short articles here are brief
and preliminary presentations of new results not yet published in regular research
journals.

We would like to express our gratitude to CRM for hosting and supporting our
research programme. Also our warm thanks to the CRM staff, its director, Joaquim
Bruna, and all the secretaries for providing great facilities and a very pleasant
working environment. Finally, thanks are due to all those who attended the talks, for
their interest, their active participation, and their enthusiasm towards mathematics.

Vic, Spain Montserrat Corbera
Manresa, Spain Josep Maria Cors
Barcelona, Spain Jaume Llibre



On the Force Fields Which Are Homogeneous
of Degree �3

Alain Albouy

Soon after establishing the famous properties of the 1=r2 law of force, Newton
described a spiraling orbit of a particle under a central force in 1=r3. He also noticed
that the addition of a force in 1=r3 to another force results in a kind of precession of
the orbit, see [14, Book 1, Proposition 44]. In 1842, Jacobi [8] gave general results
about the force fields which are homogeneous of degree �3 and derived from a
potential. More recently, Montgomery [12] gave an impressive description of the
dynamics of the planar 3-body problem with a force in 1=r3. Such homogeneity of
the force also appears in Appell’s projective dynamics, where the force is considered
together with a constraint, see [2].

Here we deduce a very elementary property: the dynamics defined by a force field
which is homogeneous of degree �3 can always be reduced, by simply constraining
it. This remark is indeed an elegant foundation of Appell’s projective dynamics. We
will see how does it relate to other known properties.

Proposition 1 Let � � V be an open semi-cone in a finite dimensional real vector
space V, and f W� ! V be a vector field which is positively homogeneous of degree
�3. The dynamics of the ordinary differential equation Rq D f .q/ is reduced by one
degree of freedom (i.e., by two dimensions) by constraining it to any hypersurface
transverse to the rays, the constraint being imposed by means of a central reaction.

Here semi and positively refer to the fact that we are only concerned with the
half -lines drawn from the origin of the vector space, called rays. The term reaction
refers to the familiar mechanical system formed by a particle moving on a surface.
In this familiar situation the reaction is normal to the surface. But in our proposition
the reaction is central, i.e., “radial”, i.e., carried by the ray. The existence and
uniqueness theorems for the solution of such kind of constrained system are easy.

A. Albouy (�)
IMCCE, CNRS, Observatoire de Paris, Paris, France
e-mail: albouy@imcce.fr

© Springer International Publishing Switzerland 2015
M. Corbera et al. (eds.), Extended Abstracts Spring 2014, Trends in Mathematics 4,
DOI 10.1007/978-3-319-22129-8_1
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4 A. Albouy

Their proofs do not depend on the particular choice concerning the direction of
the reaction, provided that this direction is fixed in advance and transverse to the
hypersurface.

Proof We write the equation of the hypersurface h.q/ D 1, where hW� ! �0;C1Œ

is a positively homogeneous function of degree 1. We denote by q1 D q=h.q/ the
central projection of q on the hypersurface. We will show that q1 follows some
trajectory of the system defined by the constraint and by the force field f .

We start with the given equation Rq D f .q/. We compute Pq1 D h�2.hPq � Phq/.
Instead of differentiating again with respect to the time t, we introduce a change
of time depending only on the position q. The corresponding differentiation on any
quantity r is denoted by r0 and the change of time is defined by the formula r0 D h2Pr.
We get q0

1 D hPq� Phq, Pq0
1 D hRq� Rhq and q00

1 D h3 Rq�h2 Rhq. But h3 Rq D h3f .q/ D f .q1/
according to the degree of homogeneity of the force field f . The final equation is
q00
1 D f .q1/ C �q1, where � D �h3 Rh. The value of � should be rather thought of

as determined by the constraint: q1 remains on the hypersurface, which determines
uniquely the value of the multiplier �. ut

This reduction process is not standard. The reduction by two dimensions does
not involve a constant of motion. We can describe it as the effect of two vector fields
Y and Z related with the vector field X defined by our ordinary differential equation.
The three vector fields are characterised by @Xq D Pq D p, @Xp D Pp D f .q/,
@Yq D q, @Yp D �p, @Zq D 0, @Zp D q. The Lie brackets ŒX;Y� D 2X, ŒY;Z� D 2Z,
ŒZ;X� D Y show that the subspaces generated at each .q; p/ by X, Y and Z form an
integrable distribution in the sense of the Frobenius [–Stefan–Sussmann] theorem.
Note also that these brackets define a Lie algebra sl2. The three-dimensional integral
manifolds intersect our constraint along curves, which are the trajectories of the
constrained system.

A force field f with degree of homogeneity ˛ defines an X which satisfies the
commutation relation ŒX;Yˇ� D .1�ˇ/X, where Yˇ is defined by @Yˇq D q, @Yˇp D
ˇp, and where 2ˇ D ˛ C 1. If ˛ ¤ �3, nothing replaces the vector field Z, and we
can only reduce by one dimension.

Proposition 1 is the fastest way to introduce projective dynamics. If we start
with a dynamics defined by a force field on an affine space of dimension n, we can
embed this space as an affine hyperplane in a vector space V of dimension n C 1,
and extend the force to V by homogeneity of degree �3. Then we constrain this
homogeneous force field to another hypersurface (another “screen”), thus producing
another system which is very simply related with the initial one. Many dynamical
properties are thus preserved by central projection. We already know that many
geometrical properties are also preserved by central projection, and this remark
is the foundation of projective geometry. Thus, we should similarly consider that
there is a projective dynamics, which extends projective geometry to the motions
generated by force fields.

Applying this construction to the two fixed centres problem allows deducing
the well-known integrability of this problem from purely geometric considerations.
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By choosing a convenient quadric as the other screen, the question reduces to
considerations on the intersections of a plane with two cylinders, see [2].

Facts related to Proposition 1 are known in the case where f is derived from a
potential, see [3, pp. 161, 169, 172] and [5]. The following observation may be new.

Proposition 2 If the vector space V is endowed with an inner product, if the force
field f of Proposition 1 is the gradient of a function UW� ! R with respect to
this inner product, and if we constrain f , by means of a central reaction, to the
intersection S of � with the unit sphere, then the multiplier � associated to the
constraint is the energy multiplied by �2.

Here, the central reaction is normal. We have a natural constrained system on
S. The potential is the restriction of U to S. If we start with such a natural system
on S, we form the unique extension of the potential in a function U on � which is
positively homogeneous of degree �2. Note that f D rU will not be tangent to the
sphere, which does not affect the dynamics but does affect the value of the multiplier
�.

Proof To determine � in the equation Rq D rU C �q we differentiate twice the
constraint hq; qi D 1. We get 0 D hq; Pqi and 0 D hq;rU C �qi C hPq; Pqi D �2U C
�C hPq; Pqi. ut

Proposition 2 plays an interesting role in the relation discovered by Knörrer
between the Neumann potential on the sphere and the geodesics on an ellipsoid,
see [6, 9]. We will exhibit an intermediate problem which clarifies this relation as
well as the integrability of the Neumann potential. Consider a symmetric positive
definite GW V ! V� and the vector field on � D V n f0g

f .q/ D Mq

hGq; qi2 ;

where MW V �! V is such that GM D tMG. In words, the linear map M is
symmetric with respect to the inner product G. We may make explicit this symmetry
in two ways: through a symmetric BW V ! V� such that M D G�1A, or through a
symmetric BW V ! V� such that M D B�1G. For simplicity of exposition we assume
that A is positive definite (and then so is B D GA�1G).

The formula M D G�1A suggests to endow V with the inner product G
and to observe that f is, up to a central force, the gradient of the function
hGq; qi�2hAq; qi=2. By constraining the dynamics to the sphere hGq; qi D 1, we
get the Neumann potential.

The formula M D B�1G suggests to endow V with the inner product B and
to observe that f is the gradient of the function �hGq; qi�1=2. Constraining the
dynamics to hBq; qi D 1, we get our intermediate problem, whose integrability was
established by Braden, see [7, 17]. This is a natural system on the sphere, defined by
a potential which is the inverse of a quadratic form (while the Neumann potential is
a quadratic form).
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We can deduce the integrability of both the Neumann potential and our inter-
mediate problem from their correspondence through central projection and change
of time. They are quasi-bi-Hamiltonian systems, as already claimed about the
Neumann potential in [1, 4, 15]. This last reference also connects this remark to
the works [10, 11, 16].

Let us consider the Jacobi problem on the ellipsoid. The motion of a particle Q
on the ellipsoid hAQ;Qi D 1 embedded in the Euclidean vector space .V;G/, under
the potential �hGQ;Qi=2, is defined by the equation

RQ D �MQ C �Q:

Here, � is a multiplier. The case � D 0 defines the geodesic motion on the ellipsoid.
The addition of this potential was already considered by Jacobi, and again by
Moser [13] in connection with Knörrer’s work. Differentiating the constraint three
times, we find Joachimsthal’s constant of motion in the form � D �hAQ;MQi2. The
motion of q D MQ is constrained by hBq; qi D 1 and satisfies the equation

Rq D �

hGq; qi2Mq C �q:

This constraint and this equation also define our intermediate problem. But � and
� have a different interpretation in both problems. In the Jacobi problem, � is a
parameter and � is a multiplier which appears to be a constant of motion. In our
intermediate problem � D 1 and � is a multiplier which, according to Proposition 2,
is a constant of motion. Any orbit of a problem is an orbit of the other problem for
some choice of a parameter.

This is similar to what was explained by Knörrer and Moser, except that they
needed a change of the time parameter and we did not. The motion on a sphere
under the inverse of a quadratic potential is thus closer to the Jacobi problem than
the motion on the sphere under a quadratic potential.

The introduction of our intermediate problem allows decomposing the Gauss
map Q 7! MQ=kMQk introduced by Knörrer, into two steps: Q 7! q 7! q=kqk.
Knörrer’s change of time appears in the second step as associated to the central
projection from our intermediate problem to the Neumann problem. It satisfies the
rule, discovered by Appell, which associates a change of time to a central projection.
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Bifurcations of the Spatial Central
Configurations in the 5-Body Problem

Martha Álvarez-Ramírez, Motserrat Corbera, and Jaume Llibre

1 Introduction

A configuration of n particles is called central when the acceleration vector of
each particle is a common scalar multiple of its position vector. One of the
reasons why central configurations are interesting is that they allow us to obtain
explicit homographic solutions of the n-body problem, that is, motions where
the configuration of the system changes size but keeps its shape. Also, they are
important in the study of total collisions.

Even the finiteness of the number of central configurations is a very difficult
question. This conjecture was proposed by Chazy [6] and Wintner [17] and was
listed by Smale as problem number 6 on his list of problems for this century [15].
Central configurations, which appear so deeply in the dynamics of the n body
problem are very difficult to count [15]. A complete enumeration of all such
solutions for n � 4 represents a very difficult task for the present day methods.

For the collinear n-body problem, an exact count of the central configurations
of n bodies was found by Moulton back in 1910. He showed that there are nŠ=2
equivalence classes.

Saari [13] proved that the regular N � 1 dimensional simplex is a central
configuration of N bodies for any value of the masses. In particular, case N D 4

M. Álvarez-Ramírez (�)
Departamento de Matemáticas, UAM-Iztapalapa, México, D.F., Mexico
e-mail: mar@xanum.uam.mx

M. Corbera
Departament de Tecnologies Digitals i de la Informació, Universitat de Vic, Vic, Spain
e-mail: montserrat.corbera@uvic.cat

J. Llibre
Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain
e-mail: jllibre@mat.uab.cat
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10 M. Álvarez-Ramírez et al.

has been well known over a century (Lehmann–Filhés [11]). The fact that the
tetrahedron is the unique spatial central configuration of four bodies was proved
in 1904 by Pizzetti [12].

The number of planar central configurations of the n-body problem for an
arbitrary given set of positive masses has been established only for n D 3, namely,
Euler’s three collinear configurations and Lagrange’s two equilateral triangle con-
figurations. For n D 4, Hampton and Moeckel [8] showed that, in addition to the
tetrahedral spatial configurations, there are only finitely many equivalence classes
of planar central configurations.

For n D 5, Hampton and Jensen [7], with computer assistance, showed the
finiteness of the spatial central configurations with positive masses, with the excep-
tion of some explicit special cases of mass values, and Albouy and Kaloshin [3]
have proved that the planar 5-body central configurations are finite apart from some
explicitly given special cases. For n � 6, it is not known, in general, if the number
of equivalence classes of central configurations is finite. The finiteness question and
a number of other interesting questions on central configurations are discussed in a
recent problem list given in Albouy et al. [2].

In this work we analyze the families of central configurations of the spatial 5-
body problem with four masses equal to 1 and the fifth mass, m, varying from 1 to 0.
In particular, we will find two bifurcation values of m. This is accomplished by using
bifurcation theory and the method of analytical continuation to follow numerically
the central configurations as the mass parameter m varies, and we use symbolic
computation software Mathematicar to handle the more tedious calculations.

2 Spatial Central Configurations in the 5-Body Problem

In this section we will describe the setting of the newtonian 5-body problem in
Euclidean three-space and we give the equations of central configurations of five
bodies in R

3.
We start by considering the spatial 5-body problem

mi Rqi D �
5X

jD1

j¤i

G mi mj
qi � qj

jqi � qjj3 ;

i D 1; : : : ; 5, where qi 2 R
3 is the position vector of the punctual mass mi in an

inertial coordinate system, and G is the gravitational constant which can be taken
equal to one. The configuration space of the spatial 5-body problem is defined as

P D f.q1; : : : ;q5/ 2 R
15 W qi ¤ qj; for i ¤ jg:
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Given masses m1; : : : ;m5, the corresponding configuration .q1; : : : ;q5/ 2 P is
central if the acceleration vector for each body is a common scalar multiple of its
position vector (with respect to the center of mass). That is, if there exists a positive
constant � such that

Rqi D �� .qi � qm/ ; (1)

for i D 1; : : : ; 5, where qm is the position vector of the center of mass of the system
given by

qm D
P5

iD1 miqiP5
iD1 mi

: (2)

Therefore, the configuration .q1; : : : ;q5/ 2 P of the 5-body problem with positive
masses m1; : : : ;m5 is central if there exists � such that .�;q1; : : : ;q5/ is a solution
to the system

� .qi � qm/ D
5X

jD1

j¤i

mj
qi � qj

jqi � qjj3 ; for i D 1; : : : ; 5: (3)

We choose the coordinates for the body with mass mi as qi D .xi; yi; zi/ for
i D 1; : : : ; 5. Without loss of generality we assume that the body with mass m1

is fixed at .x1; y1; z1/ D .0; 0; 1/ and that x3 D 0 (this last assumption is to avoid
the rotation with respect to the z-axis). By taking the center of mass at .0; 0; 0/,
system (3) can be written as

fi D
5X

jD1

j¤i

mj
qi � qj

jqi � qjj3 � �qi D 0; for i D 1; : : : ; 5: (4)

It is easy to check that

m1f1 C m2f2 C m3f3 C m4f4 C m5f5 D 0: (5)

Assume now that m2 ¤ 0, from (5) the vectorial equation f2 is a linear combination
of the other ones and it can be eliminated. Moreover, since the center of mass is
fixed at the origin, from (2) we get

x2 D �m4x4 C m5x5
m2

; y2 D �m3y3 C m4y4 C m5y5
m2

;

z2 D �m1 C m3z3 C m4z4 C m5z5
m2

:
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Finally, we isolate � from the first component of the vectorial equation f1 and we
substitute it into the other equations. In short, system (4) has been simplified to a set
of 11 equations which depend on eight unknowns, namely, the position variables y3,
z3, x4, y4, z4, x5, y5, z5. Clearly these 11 equations obtained are not all independent.
Then, in order to have a central configuration, we are seeking the zeros of the
system of eight equations in the eight unknowns that satisfy the remaining three
equations. Since the equations obtained are essentially nonlinear, their solutions
must be found combining numeric and symbolic computations, which are carried
out using Mathematicar (this is just a good tool for doing such calculations).

3 Some Previously Known Results

The main impulse for our study comes from previous results which are described
below.

3.1 Central Configuration for the 5-Body Problem with Equals
Masses

Kotsireas and Lazard [9] assumed that non-planar equal mass central configurations
of five bodies always have several symmetries, and used linear algebra and Gröbner
bases to classify symmetric spatial central configurations of five bodies with
equal masses. They conjectured that there are only four three-dimensional central
configurations of five bodies with equal masses (up to isometry, rescaling and
permutation of the particles), namely two convex and two concave (see Fig. 1).
Álvarez-Ramírez et al. [5] and Santoprete and Lee [10] succeeded in proving the
conjecture to be correct.

3.2 Central Configuration in the (4 C 1)-Body Problem

The (4 C 1)-body problem is a particular case of the 5-body problem with four
equal masses and an infinitesimal mass. Next we summarize the known results of
this problem. In [14], Schmidt shows that a configuration with four equal masses
located at the vertices of an equilateral tetrahedron and an infinitesimal mass at
its barycenter is a central configuration. Almeida [4] proved that for the (4 C 1)-
body problem there are 25 central configurations with the four positive equal masses
forming a tetrahedron, among which 12 are non-convex. They provide six different
classes of central configurations up to isometry, rescaling and permutation of the
particles. Later, Tsai [16] found the same result using Gröebner bases.
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Fig. 1 Equal mass spatial 5-body central configurations. These figures were taken from [10]

It is well known that four equal masses in the plane are necessarily in non-
collinear central configuration, namely, a square, an equilateral triangle with a mass
at its center, and a particular isosceles triangle with another mass on its axis of
symmetry, see [1]. We see that each one of these central configurations provides
a central configuration of the spatial (4 C 1)-body problem with four equal finite
masses contained in the same plane and the fifth particle with infinitesimal mass
lying out of this plane.

In short, we have nine different classes of central configurations of the (4 C 1)-
body problem.
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4 Bifurcation Analysis

We continue numerically via the analytic continuation method the central config-
urations of the 5-body problem with equal masses to the .4 C 1/-body problem
and viceversa. We note that the four classes of central configurations of the 5-
body problem with five equal masses can be continued to nine different classes
of the 5-body problem with four equal masses and the fifth mass close to 1,
depending on the position of the mass that is continued to values different from
1. We find two critical values: one is the well known bifurcation mass value
mc D .10368C 1701

p
6/=54952 � 0:264496 � � � , while the second one is given by

mf � 0:66 � � � .
Our main result is summarized as follows.

Theorem 1 There are five different families of central configurations connecting
the 5-body problem with equal masses and the .4 C 1/-body problem without
bifurcation.

There are two families of central configurations starting at the 5-body problem
with equal masses and ending at the bifurcation point with m D mc, and two
additional families ending at the bifurcation point mf .

There are three families of central configurations starting at the .4 C 1/-body
problem and ending at the bifurcation point with m D mc, and an additional family
ending at the bifurcation point mf .
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Convex Central Configurations of Two Twisted
n-gons

Esther Barrabés and Josep Maria Cors

1 Introduction

The simplest motions that can be found in the Newtonian N-body problem are the
ones whose configuration is constant up to rotations and scaling, and every body
follows a trajectory being a keplerian orbit. Such kind of solutions are called central
configurations.

We consider the planar 2n-body problem, where the masses are located at the
vertices of two regular n-gons, n � 2, and all the masses at the same n-gon are
equal, namely m1 and m2. In [4], Moeckel and Simó consider the case of two nested
regular n-gons, that is, when the vertices of the two n-gons are aligned. They prove
that for all values of n and every ratio m1=m2, there are exactly two planar central
configurations. In [2], Barrabés et al. study the case of two twisted n-gons, where
one of the two gons is rotated an angle of �=n with respect the other. In that case,
the authors prove that the number of central configurations depends on n.

Several authors have studied the convex central configurations in the four body
problem. A classical result due to MacMillan and Bartky [3] states that, for any
four positive masses and any assigned order, there exists a convex planar central
configuration. Xia [7] gives a simple proof of that case. Albouy et al. [1] prove that
in the planar four-body problem, a convex central configuration is symmetric with
respect to one diagonal if and only if the masses of the two particles on the other
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diagonal are equal. As far as we know, it is a conjecture that given four masses in a
certain order, there exists only one convex central configuration.

We present here some results concerning central configurations of two twisted
n-gons that are convex.

2 Equations

We consider two groups of n bodies in the same plane .x; y/ at positions qji 2 R
2,

i D 1; : : : ; n, j D 1; 2. All the bodies in the same group have equal mass, m1 and
m2, respectively. It is well known (see [6]) that a central configuration (CC) of the
planar 2n-body problem is a solution q D .q11;q12; : : : ;q2n/ 2 R

4n of the equation

rU.q/C w2Mq D 0; (1)

for some value of w, where U is the Newtonian potential

U.q/ D
2X

jD1

nX

iD1

0

@
nX

lDiC1

m2
j

jjqji � qjljj C
nX

lDjC1

nX

mD1

mjml

jjqji � qlmjj

1

A ;

and M is the diagonal mass matrix with diagonal m1; : : : ;m1;m2; : : : ;m2 (each mass
repeated n times).

We consider CC consisting in two regular n-gons rotated an angle �=n with
respect to each other. Without loss of generality, we can think that the first n-gon
has one vertex on the positive horizontal axis, y D 0, x > 0, and it is contained in a
circle of radius 1.

Introducing q1k D ei�2k=n and q2k D aei�.2kC1/=n, for k D 0; : : : ; n � 1 and
where a is the radius of the circle containing the second n-gon (that can be viewed
as the size of the second n-gon), then, the system of equations (1) can be written
as 4n real equations: 2n corresponding to the real parts and 2n to the imaginary
parts. Due to the symmetries, the 2n equations corresponding to the imaginary parts
vanish (in fact, the only two possibilities for two gons to be in a CC are being nested
or twisted, see [8]), and the 2n equations corresponding to the real parts reduce to
only 2. Finally, eliminating the variable w, the equations for the CC reduce to the
following single equation

.C2.a/� Sna/m1 C
�

Sn

a2
� aC1.a/

�
m2 D 0; (2)
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where Sn D 1
4

Pn�1
kD1 1

sin.k�=n/ , and the coefficients Cj.a/ are

C1.a/ D
nX

kD1

1 � a cos..2k � 1/�=n/

.1C a2 � 2a cos..2k � 1/�=n//3=2
;

C2.a/ D
nX

kD1

a � cos..2k � 1/�=n/

.1C a2 � 2a cos..2k � 1/�=n//3=2
:

We say that a value of a is admissible if there exists a solution to (2) with m1 > 0

and m2 > 0. In [2] the admissible values of a and the number of CC for a given
mass ratio m2=m1 are studied.

Equation (2) was also obtained by Roberts in [5] and by Yu and Zhang in [8],
and it is similar to the one obtained by Simó and Moeckel in [4] for the nested case.

3 Convex CC of Two Twisted n-gons

Given an admissible value of a, we discuss here whether the configuration is convex
or not. It is not difficult to see that, given 2n bodies distributed uniformly in two
twisted regular n-gons, the configuration is convex if and only if

cos
��

n

�
� a � 1

cos
��

n

� :

We will present the results separately for n D 2; 3; 4 and n � 5.
The case n D 2, that is two bodies in each group, can be summarized in the

following result proved by MacMillan and Bartky.

Theorem 1 For any positive value of the mass ratio m2=m1, there exists only one
CC of two twisted segments and it is convex.

We will present the results considering values of the mass ratio m2=m1 � 1. By
rescaling, the number of convex central configurations for m2=m1 < 1 is obtained.

In the case n D 3 (two equilateral triangles rotated �=3), we prove the following
result:

Theorem 2 Consider six masses located at the vertices of two twisted equilateral
triangles, such that all the masses in one triangle are equal to m1 and the masses of
the other triangle are equal to m2. Then, there exists a value m� > 1 for the mass
ratio m2=m1 such that

(1) for any m2=m1 2 .1;m�/, there exist exactly three different convex central
configurations,

(2) for any m2=m1 2 .m�;1/ there exists only one convex central configuration,
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Fig. 1 Convex CC of two twisted equilateral triangles corresponding to m2 D m1 (left, the regular
hexagon) and the limit case m2=m1 D 1 (right)

(3) for m2=m1 D 1;m� the number of different convex central configurations is
exactly two.

Approximately, m� D 1:0007682. When m2 D m1, the two convex central
configurations where already numerically computed by Moeckel in an unpublished
report. In Fig. 1 we show three examples of convex CC in the case of two twisted
equilateral triangles.

The results (for any value of n) are based on the number of solutions to Eq. (2)
for a given value of the mass ratio m2=m1. A key point is to know the exact number
of solutions to Eq. (2) corresponding to m2=m1 D 0. For n D 3 it can be shown that
there exists exactly two of those solutions, but in the case of n � 4, it can be shown
that there exists two, but as far as we know, it is not proved that they are the only
ones. The results for n � 4 rely on the truthfulness of the following conjecture.

Conjecture 3 For n � 4 there exists exactly two solutions of Eq. (2) that
correspond to m2 D 0 and m1 ¤ 0.

Under that assumption, it can be shown the following results:

Theorem 4 Consider eight masses located at the vertices of two twisted squares,
such that all the masses in one square are equal to m1 and the masses of the other
square are equal to m2. There exists a value m for the mass ratio m2=m1 such that

(1) for any m2=m1 2 Œ1;m�, there exists exactly one convex central configuration,
(2) for any m2=m1 2 .m;1/ there exists no convex central configuration.

Approximately, this value is m D 16:05679941.

Theorem 5 Consider 2n masses, with n � 5, located at the vertices of two n-gons,
such that all the masses in one n-gon are equal to m1 and the masses of the other
n-gon are equal to m2. For any value of the mass ratio m2=m1, there exists at least
one convex central configuration.

In summary, we observe that there always exists a convex CC of twisted rings
for any value of n, except for n D 4 (8-body problem). Moreover, the richer case is
n D 3, where there are values of the mass ratio with three convex CC.
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The Newtonian n-Body Problem in the Context
of Curved Space

Florin Diacu

The idea that geometry and physics are intimately related made its way in human
thought during the early part of the nineteenth century. Gauss measured the angles
of a triangle formed by three mountain peaks near Göttingen, Germany, apparently
hoping to learn whether the universe has positive or negative curvature, but the
inevitable observational errors rendered his results inconclusive [3]. In the 1830s,
Bolyai and Lobachevsky took these investigations further. They independently
addressed the connection between geometry and physics by seeking a natural
extension of the gravitational law from Euclidean to hyperbolic space. Their idea
led to the study of the Kepler problem and the 2-body problem in spaces of
nonzero constant Gaussian curvature, 	 ¤ 0, two fundamental problems that are
not equivalent, unlike in Euclidean space. A detailed history of the results obtained
in this direction since Bolyai and Lobachevsky can be found in [3, 5, 6].

It is important to emphasize the reasons why this approach provides a natural
way of extending gravitation to spaces of constant Gaussian curvature, since there
is no unique way of generalizing the classical equations of motion in order to
recover them when the curved ambient space becomes flat. As there are no physical
experiments that could test the validity of the potential, we have to rely on a
mathematical approach. The potential we want to use should thus satisfy the same
basic properties the Newtonian potential does in its most basic setting: the Kepler
problem—the particular case when one body moves around a fixed attracting centre.

Two fundamental properties characterize the Newtonian potential of the Kepler
problem: it is a harmonic function in 3D (but not in 2D), i.e., it satisfies Laplace’s
equation; and it generates a central field in which all bounded orbits are closed, a
result proved by Joseph Louis Bertrand in 1873. In the early years of the twentieth
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century, Heinrich Liebmann proved that these properties are also satisfied by the
Kepler problem in spaces of constant curvature, thus offering strong arguments for
this mathematical generalization of the gravitational force.

In some recent studies, such as [1–13, 15, 16], we introduced a suitable
framework for generalizing the equations of motion suggested by Bolyai and
Lobachevsky to n � 2 bodies. Like the curved Kepler problem and the curved
2-body problem, our equations made sense in spaces of constant Gaussian curvature
	 ¤ 0, i.e., on 3-spheres of radius R D 	�1=2 embedded in R

4, for 	 > 0, and on
hyperbolic 3-spheres of imaginary radius iR D 	�1=2 embedded in the Minkowski
space R3;1, for 	 < 0. But whether written in extrinsic or intrinsic coordinates, these
equations contain undetermined expressions for 	 D 0, although we can recover the
classical Newtonian system when 	 ! 0. So a study of the flat case in the context
of curved space, including some understanding of the bifurcations and the stability
of solutions when the parameter 	 is varied through 0, is impossible to perform in
that setting.

In this study we derive some equations of motion that overcome the difficulties
mentioned above. Using a coordinate system in R

4 having the origin at the North-
Pole of the 3-spheres (the only point that is common to all the manifolds involved),
we prove that the n-body problem in spaces of constant Gaussian curvature 	 2 R

can be written as

Rri D
nX

jD1;j¤i

mj

h
rj �

�
1 � 	r2ij

2

�
ri C r2ijR

2

i

r3ij

�
1 � 	r2ij

4

�3=2 � .Pri � Pri/.	ri C R/; i D 1; : : : ; n; (1)

where m1;m2; : : : ;mn > 0 represent the masses, the dot � denotes the standard inner
product of signature .C;C;C;C/ for 	 � 0, but the Lorentz inner product of
signature .C;C;C;�/ for 	 < 0, the vectors R and ri are given by

R D .0; 0; 0; 
 j	j1=2/; ri D .xi; yi; zi; !i/; i D 1; : : : ; n;


 is the signum function, i.e., 
 D C1 for 	 � 0 and 
 D �1 for 	 < 0, and

rij WD Œ.xi � xj/
2 C .yi � yj/

2 C .zi � zj/
2 C 
.!i � !j/

2�1=2

is the Euclidean distance for 	 � 0 and the Minkowski distance for 	 < 0.
Notice that the distances rij vary smoothly with 	. In particular, the values of

the coordinates !i; i D 1; : : : ; n, and consequently the values of the expressions
.!i � !j/

2; i; j 2 f1; 2; : : : ; ng; i ¤ j; become small when 	 gets close to 0 and
vanish at 	 D 0.

For 	 ¤ 0, the initial conditions must be taken such that the bodies are restricted
to 3-spheres for 	 > 0 and hyperbolic 3-spheres for 	 < 0. For 	 D 0 and ri D
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.xi; yi; zi; 0/; i D 1; : : : ; n, we recover the Newtonian equations,

Rri D
nX

jD1;j¤i

mj.rj � ri/

r3ij
; i D 1; : : : ; n: (2)

To make system (1) analytic for all values of the parameter, we can introduce the
substitution ı D 
 j	j1=2. This slight modification of the equations of motion will
be helpful in future studies of the bifurcations of solutions when the new parameter
passes through the value ı D 0.

A potential application of these equations is that of establishing the geometric
nature of the physical space. Physicists agree that the large-scale universe has
constant curvature, 	, but it is not known whether this curvature is positive, negative,
or zero. All experiments, however, show that j	j must be very small. If the study of
system (1) shows that some types of solutions exist only for one kind of curvature,
but not for the other two kinds, and if the corresponding orbits prove to be stable,
then we might find such motions in the universe through astronomical observations.
If we do, then the physical space must necessarily have that kind of curvature.

So far we have proved that Lagrangian orbits (3-body motions for which the
masses lie at the vertices of a rotating equilateral triangle) must have equal masses
if 	 ¤ 0, [14], a fact that is not true for 	 D 0. Such non-equal mass orbits have
been found in the solar system, for example Sun, Jupiter, and any of the Trojan
asteroids. But we cannot yet conclude that space is flat. Motions very close to
Lagrangian orbits might exist for 	 ¤ 0; nobody, however, has proved or disproved
their existence yet.
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Poincaré Maps and Dynamics in Restricted
Planar .n C 1/-Body Problems

Antonio García

To Clark Robinson, in his 70th birthday.

1 Setting

This work deals with the motion of an infinitesimal particle, the secondary, in a
plane subject to the gravitational attraction of n particles of mass m D 1, the
primaries, which are placed in the vertices of a regular polygon on n vertices. The
primaries can be fixed or rotate with an uniform velocity around their center of mass.
The first case is called the n-center problem, and the second the restricted .n C 1/-
body problem. The last case has been studied in [1], in this note we will mainly
study the first one.

We denote by Qk D .Ak;Bk/ the position of the k primary, for k D 0, . . . , n � 1.
Without lost of generality, we assume that Q0 D .1; 0/ and the center of mass of the
primaries is C D � �0; cot �n

�
.

Theorem 1 The n-center problem has the following properties:

(i) It is a Hamiltonian system of two degrees of freedom. The Hamiltonian is
H .q;p/ D 1

2
p � p � U .q/, where U .q/ D Pn�1

kD0 1= jq � Qkj.
(ii) The singularities take place when the secondary collides with one of the

primaries.
(iii) The energy h D H .q;p/ is an integral.
(iv) Let Dn be the dihedral group, the group of symmetries of the n polygon,

including both rotations and reflections. This group acts on the Hamiltonian,
that is if ˛.t/ D .q.t/;p.t// is a solution and T 2 Dn then T˛.t/ D
.Tq.t/;Tp.t// is also a solution, see [2].

(v) The system is reversible: if .q.t/;p.t// is a solution, then .q.�t/;p.�t// is also
a solution.
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By (iii), we can restrict our study to a fixed level of energy h. Item (iv) gives us a
partition of the orbits of the system: two orbits are equivalent if there is an element
of Dn sending one to the other.

Theorem 2 If �h is a regular value of U .q/ then

(i) The set A D fq W h C U .q/ � 0g � R
2, called the Hill region for the level of

energy h, is a manifold with boundary @A D fq W h C U .q/ D 0g and interior
Aı D fq W h C U .q/ > 0g.

(ii) For certain values of h < 0, the Hill region has a ring shape with the center of
mass of the primaries inside.

(iii) The orbit of the secondary with energy h is constrained to the Hill region; the
secondary reaches @A at zero velocity.

2 Main Results

We choose a regular value h of U .q/ satisfying Theorem 2(ii). The intersection of
the Hill region with any ray that starts in the center of masses is a segment, we
call La the segment containing .0; 0/, and Lb the segment containing the primary
Q0 D .1; 0/. Let us remark that La is a subset of the Y-axis.

Let S be the subset of the Hill region between La and Lb. This set is a
fundamental region of the action of Dn on the Hamiltonian. Hence all the orbits
of the Hamiltonian can be obtained as the image of the orbits contained in S by the
elements of Dn. The only primary in S is Q0 D .1; 0/ 2 Lb.

Definition 3 The mechanical or Jacobi metric on S is: Qg D 2 .h C U .q// g, where
g is the standard metric (as a subset of R2). The Gaussian curvature corresponding
to the Jacobi metric is the mechanical curvature.

Theorem 4 We have the following properties:

(i) The Jacobi metric is zero in @A \ S and 1 in Q0 D .1; 0/.
(ii) The mechanical and the standard metrics are conformal.

(iii) The mechanical curvature is:

Kh.x; y/ D �
n�1X

kD0

1

4 .h C U .q// jq � Qkj3

C 1

8 .h C U .q//2

2

4
 

n�1X

kD0

Ak � q1

jq � Qkj3
!2

C
 

n�1X

kD0

Bk � q2

jq � Qkj3
!23

5 ;

with Kh.x; y/ D 1 in @A \ S and in .1; 0/.
(iv) The geodesics of the mechanical metric on A are the solutions of the Hamilto-

nian system.
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Theorem 5 The equivalent classes of the Hamiltonian flow by the action of Dn form
a geodesic billiard.

Proof Since the solutions of the Hamiltonian are geodesics of the mechanical
metric, it is enough to study the behavior of the orbits when they cross La or Lb.

Let us assume that the orbit .q.t/;p.t// satisfies q.t/ 2 S if t � t0, q.t0/ 2 La

and q.t/ 62 S for t > t0. Let Ta 2 Dn be the reflection by La then .q1.t/;p1.t// D
.Taq.t/;Tap.t// is an equivalent orbit and q1.t/ 62 S if t < t0, q1.t0/ D q.t0/ 2 La

and q1.t/ 2 S for t � t0. Therefore the broken curve formed by .q.t/;p.t// if t � t0
and .q1.t/;p1.t// if t � t0 is a representant of the orbit contained in S. It is easy
to see that for this curve the angle of incidence with La is equal to the angle of
reflection with the same line. The same argument works with Lb. ut
Theorem 6 There are three types of orbits in the fundamental region S:

(1) Orbits starting in La, pointing to the interior of S and reaching Lb.
(2) Orbits starting in Lb, pointing to the interior of S and reaching Lb again.
(3) Orbits starting in Lb, pointing to the interior of S and reaching La.

Since Q0 2 Lb then the collision orbits can be of type (1) or (2), the orbits of
ejection can be of type (2) or (3), in the other hand the orbits that reaches @A are of
type (2).

Now, since the energy is fixed, the orbits starting in A D La [Lb are determinated
by the point p 2 A and the angle � of the velocity with La or Lb. If we follow this
orbit to the next intersection p1 2 A, that has an angle �1 with La or Lb. Then the
map .p; �/ ! .p1; �1/ is well defined.

Corollary 7 The map .p; �/ ! .p1; �1/ consists of the three Poincaré maps:

PabWLa � .0; �/ �! Lb � .0; �/;
PbaWDba � Lb � .0; �/ �! La � .0; �/; .s; �/ �! .s1; �1/

PbbWDbb � Lb � .0; �/ �! Lb � .0; �/;

where Dbb is closed, @Dbb is the set of points with orbits reaching the boundary of
the Hill region, Dba is open, and Dba [ Dbb D Lb � .0; �/. The maps Pba, Pbb are
smooth, and Pab is smooth except in the collision orbits.

By the study of these maps and the geometry of the problem, it is possible to find
several kinds of periodic orbits.
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A Methodology for Obtaining Asymptotic
Estimates for the Exponentially Small Splitting
of Separatrices to Whiskered Tori
with Quadratic Frequencies

Amadeu Delshams, Marina Gonchenko, and Pere Gutiérrez

1 Introduction

The aim of this work is to provide asymptotic estimates for the splitting of
separatrices in a perturbed 3-degree-of-freedom Hamiltonian system, associated to
a two-dimensional whiskered torus (invariant hyperbolic torus) whose frequency
ratio is a quadratic irrational number. We show that the dependence of the
asymptotic estimates on the perturbation parameter is described by some functions
which satisfy a periodicity property, and whose behavior depends strongly on the
arithmetic properties of the frequencies.

First, we describe the Hamiltonian system to be studied. It is also considered
in [6], as a generalization of the famous Arnold’s example [1], and provides a model
for the behavior of a nearly-integrable Hamiltonian system in the vicinity of a single
resonance (see [4] for a motivation). In canonical coordinates .x; y; '; I/ 2 T � R �
T
2 � R

2, we consider a perturbed Hamiltonian

H.x; y; '; I/ D H0.x; y; I/C �H1.x; '/: (1)

H0.x; y; I/ D h!"; Ii C 1

2
hƒI; Ii C y2

2
C cos x � 1; (2)

H1.x; '/ D cos x �
X

k2�0
e��jkj cos.hk; 'i � 
k/: (3)
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For the integrable Hamiltonian H0, we consider a vector of fast frequencies

!" D !p
"
; ! D .1;�/; (4)

where the frequency ratio� is a quadratic irrational number. In this way, our system
has two parameters " > 0 and �, but we assume them linked by a relation of the
kind � D "p, p > 0 (the smaller p the better). Thus, if we consider " as the unique
parameter, we have a singular or weakly hyperbolic problem for " ! 0 (see [4] for
a discussion about singular and regular problems).

On the other hand, notice that H0 consists of a classical pendulum and two rotors
(in the coordinates x; y and '; I respectively). Then, we see that H0 has a family
of two-dimensional whiskered tori, with coincident whiskers (invariant manifolds).
Such tori can be indexed by the (constant) action I, and have frequency vectors
!" C ƒI. We assume that the matrix ƒ is such that the condition of isoenergetic
nondegeneracy is satisfied (see, for instance, [6]). Among the tori, we fix our
attention on the torus given by I D 0,

T0 W .0; 0; �; 0/; � 2 T
2;

whose inner flow is given, in this parameterization, by P� D !". This torus has a
homoclinic whisker (i.e., coincident stable and unstable whiskers),

W0 W .x0.s/; y0.s/; �; 0/; s 2 R; � 2 T
2;

where x0.s/ D 4 arctan es, y0.s/ D 2= cosh s (the upper separatrix of the classical
pendulum). The inner flow on W0 is given by Ps D 1, P� D !".

Concerning the perturbation H1, it is given by a constant � > 0 (the complex
width of analyticity in the angles '), and phases 
k that, for the purpose of this
work, can be chosen arbitrarily.

Under the hypotheses described, the hyperbolic KAM theorem (see, for instance,
[8]) can be applied to the perturbed Hamiltonian (1)–(3). We have that, for � ¤
0 small enough, the whiskered torus T0 persists with some shift and deformation
giving rise to a perturbed torus T , with perturbed local stable and unstable whiskers.

Such local whiskers can be extended to global whiskers W s, Wu but, in general,
for � ¤ 0 they do not coincide anymore, and one can introduce a splitting function
giving the distance between the whiskers in the directions of the actions I 2 R

2:
denoting J s;u.�/ parameterizations of a transverse section of both whiskers, one
can define M.�/ WD J u.�/ � J s.�/, � 2 T

2. In fact, this function turns out to be
the gradient of the (scalar) splitting potential: M.�/ D rL.�/ (see [3, Sect. 5.2],
and also [7]).

In (4), we deal with the following 24 quadratic numbers

ŒN1� ; ŒN2� ; : : : ; Œ13� ; Œ1; 2� ; : : : ; Œ1; 12� ; (5)
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where we denote a quadratic number according to its periodic part in the continued
fraction, see (8).

Next, we establish the main result of this work, providing two types of asymptotic
estimates for the splitting, as " ! 0. On one hand, we give an estimate for the
maximal splitting distance, i.e., for the maximum of jM.�/j, � 2 T

2. On the other
hand, we show that for most values of " ! 0 there exist four transverse homoclinic
orbits, associated to simple zeros �� of M.�/ (i.e., nondegenerate critical points of
L.�/) and, for such homoclinic orbits, we obtain an estimate for the transversality
of the splitting, given by the minimum eigenvalue (in modulus) of the matrices
DM.��/.

We use the notation f 	 g if we can bound c1jgj � jf j � c2jgj with positive
constants c1; c2 not depending on ", �.

Theorem 1 Assume the conditions described above for the Hamiltonian (1)–(3),
and that " is small enough and � D "p, p > 3. Then, there exist continued functions
h1."/ and h2."/ (defined in (17)), periodic in ln " and satisfying 1 � h1."/ � h2."/,
and a positive constant C0 (given in (16)), such that:

(i) for the maximal splitting distance, we have the estimate

max
�2T2

jM.�/j 	 �p
"

exp

�
�C0h1."/

"1=4

	
I

(ii) the splitting function M.�/ has exactly four zeros ��, all simple, for all "
except for a small neighborhood of a finite number of geometric sequences
of ";

(iii) at each zero �� of M.�/, the minimal eigenvalue of DM.��/ satisfies

m� 	 �"1=4 exp

�
�C0h2."/

"1=4

	
:

For the proof of this theorem, we apply the Poincaré–Melnikov method, which
provides a first order approximation

M.�/ D �rL.�/C O.�2/ (6)

in terms of the Melnikov potential, which can be defined by integrating the
perturbation H1 along the trajectories of the unperturbed homoclinic whisker W0 :

L.�/ WD �
Z 1

�1
H1.x0.t/; � C !"t/ dt: (7)

Since this first order approximation is exponentially small in ", in principle the
approximation (6) cannot be directly applied in our singular problem with � D
"p. However, using suitable bounds for the error term O.�2/, given in [6], one
can see that for p > 3 the first order approximation given by the Melnikov
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potential overcomes the error term and provides the right asymptotic estimates for
the splitting. Such estimates come from the size of dominant harmonics in the
Fourier expansion of (7), and studying their dependence on ". More precisely, to
estimate the maximal splitting one dominant harmonic is enough and, to estimate
the transversality of the splitting, two dominant harmonics are required (excluding
the values of " such that the second and third harmonics are of the same magnitude,
which could give rise to bifurcations in the homoclinic orbits and would require a
further study).

The remaining sections of this work are devoted to the definition of the functions
h1."/ and h2."/, making emphasis on their dependence on the arithmetic properties
of the quadratic number�.

2 Continued Fractions and Resonant Sequences

We review briefly the technique developed in [5] for studying the resonances of
quadratic frequencies. Let 0 < � < 1 be a quadratic irrational number. It is well-
known that it has an infinite continued fraction

� D Œa1; a2; a3; : : :� D 1

a1 C 1

a2 C 1

a3 C � � �

; an 2 Z
C; n � 1 (and a0 D 0);

(8)
which is eventually periodic, i.e., periodic starting at some al. For a purely m-
periodic continued fraction� D Œa1; : : : ; am� we introduce the matrix

U D .�1/mA�1
1 � � � A�1

m ; where Al D
 

al 1

1 0

!
; l D 1; : : : ;m:

It is well-known that quadratic vectors satisfy a Diophantine condition

jhk; !ij � 

jkj ; 8k 2 Z
2 n f0g:

With this in mind, we define the “numerators”

k WD jhk; !ij � jkj; k 2 Z
2 n f0g (9)

(for integer vectors, we use the norm j�j D j�j1). Our aim is to find the integer vectors
k which give the smallest values k; we call such vectors the primary resonances.

All vectors k 2 Z
2 n f0g with jhk; !ij < 1=2 are subdivided into resonant

sequences:

s.j; n/ WD Unk0.j/; n D 0; 1; 2; : : : ; (10)
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where the initial vector k0.j/ D .� rint.j�/; j/, j 2 Z
C, satisfies

1

2�
< jhk0.j/; !ij < 1

2
; (11)

� being the eigenvalue of U with � > 1. For each j 2 Z
C satisfying (11), it was

proved in [5, Theorem 2] (see also [2]) that, asymptotically, the resonant sequence
s.j; n/ exhibits a geometric growth and the sequence s.j;n/ has a limit �

j :

js.j; n/j D Kj�
n C O.��n/; s.j;n/ D �

j C O.��2n/; as n ! 1; (12)

where Kj and �
j can be determined explicitly for each resonant sequence (see

explicit formulas in [5]). We select the minimal of �
j :

� WD lim inf
jkj!1

k D min
j
�

j D �
j0
> 0: (13)

The integer vectors of the corresponding sequence s.j0; n/ are the primary reso-
nances, and we call the secondary resonances the integer vectors belonging to any of
the remaining resonant sequences s.j; n/, j ¤ j0. We also call by the main secondary
resonances the sequence s.j1; n/ which is linearly independent with s.j0; n/ and
gives the smallest limit �

j1
among the secondary resonances.

3 The Functions h1."/ and h2."/

Taking into account the form of H1 in (3), we present the Melnikov potential (7) in
its Fourier expansion. Using (4) and (9), we present the coefficients in the form

Lk D 2�jhk; !"ij e��jkj

sinh j�
2
hk; !"ij D ˛k e�ˇk ; ˛k � 4�k

jkjp" ; ˇk D �jkj C �k

2jkjp" :
(14)

For any given ", we find the dominant harmonics Lk."/which correspond essentially
to the smallest exponents ˇk."/.

The exponents ˇk."/ in (14) can be presented in the form

ˇk."/ D C0
"1=4

gk."/; gk."/ WD Q1=2k

2

"�
"

"k

�1=4
C
�"k

"

�1=4
#
; (15)

where

"k WD D0

Q 2k
jkj4 ; Qk D k

� ; C0 D .2���/1=2; D0 D
�
��

2�

�2
:

(16)
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Fig. 1 Graphs of the functions h1."/ (solid blue) and h2."/ (dash-dot blue) for Œ1; 2� D p
3 � 1.

Red lines are the primary functions gs.j0;n/."/, and green lines correspond to the main secondary
functions gs.j1;n/."/

Since the coefficients Lk are exponentially small in ", it is more convenient to work
with the functions gk, whose smallest values correspond to the largest Lk. To this
aim, it is useful to consider the graphs of the functions gk."/, k 2 Z

2 n f0g, in order
to detect the minimum of them for a given value of ".

We know from (15) that the functions gk."/ have their minimum at " D "k and the
corresponding minimal values are gk."k/ D Q1=2k . For the integer vectors k D s.j; n/
belonging to a resonant sequence (10), using the approximations (12), we have

"s.j;n/ � D0. Q�
j /
2

K 4
j �

4n
; gs.j;n/."/ � . Q�

j /
1=2

2

"�
"

"s.j;n/

�1=4
C
�
"s.j;n/

"

1=4
�#

; as n ! 1:

Taking into account such approximations, we have a periodic behavior of the
functions with respect to ln ", as we see in Fig. 1 (where a logarithmic scale for
" is used).

We define, for any given ", the function h1."/ and h2."/ as

h1."/ WD min
k

gk."/ D gS1."/; h2."/ WD min
k lin:indep:of S1

gk."/ D gS2."/; (17)

with some integer vectors S1."/ and S2."/ realizing such minima. The functions
are continuous and 4 ln�-periodic in ln ". It turns out that for the 24 quadratic
numbers (5), the integer vector S1."/ providing h1."/ always corresponds to a
primary resonance, defined in (13). On the other hand, the vector S2."/ providing
h2."/may correspond to primary or main secondary resonances in different intervals
of " (see Fig. 1 for an illustration for the number Œ1; 2� D p

3 � 1). There is a finite
number of geometric sequences of ", where a change in S2."/ occurs. These points
require a special study for the transversality and they are excluded in Theorem 1.
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Homoclinic and Heteroclinic Orbits for a Class
of Singular Planar Newtonian Systems

Joanna Janczewska

1 Introduction

The study of existence and multiplicity of solutions of differential equations
possessing a variational nature is a problem of great meaning since most of them
derives from mechanics and physics. In particular, this relates to Hamiltonian
systems including Newtonian ones. During the past 30 years there has been a great
deal of progress in the use of variational methods to find periodic, homoclinic and
heteroclinic solutions of Hamiltonian systems. Hamiltonian systems with singular
potentials, i.e., potentials that become infinite at a point or a larger subset of Rn,
are among those of the greatest interest. Let us remark that such potentials arise in
celestial mechanics. For example, the Kepler problem with

V.q/ D � 1

jq � �j
has a point singularity at � (q 2 R

n n f�g). In physics, the gradient rV of the
gravitational potential is called a weak force.

Our presentation is based on [3, 5]. We are interested in conservative dynamical
systems involving strong forces. A model potential in a neighbourhood of a singular
point � is defined by

V.q/ D � 1

jq � �j˛ ;

where ˛ � 2.
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Consider an autonomous Newtonian system

Rq C rV.q/ D 0; (HS)

where q 2 R
2. Assume that a potential V satisfies the following conditions:

.V1/ V 2 C1.R2 n f�g;R/;

.V2/ V.x/ ! �1 as x ! �;

.V3/ there exist a neighbourhood N of the point � and a function U 2 C1.N n
f�g;R/ such that jU.x/j ! 1 as x ! �, and �jrU.x/j2 � V.x/ for every
x 2 N n f�g;

.V4/ V.x/ � 0 and V.x/ D 0 iff x 2 fa; bg, a; b 2 R
2 n f�g;

.V5/ there is V0 < 0 such that lim supjxj!1 V.x/ � V0.

The assumption .V3/ due to W.B. Gordon is called a strong force condition, see [2].
Let E denote the Sobolev space

�
q 2 W1;2

loc .R;R
2/W
Z 1

�1
jPq.t/j2dt < 1

	

with the norm

kqkE D
�

jq.0/j2 C
Z 1

�1
jPq.t/j2dt

� 1
2

:

Set

ƒ D fq 2 EW q.t/ ¤ � for t 2 Rg:

We can define a rotation number map

fq 2 ƒW q.˙1/ 2 fa; bgg 3 q �! rot� .q/ 2 Z

as follows. In the polar coordinate system with the pole � and the polar axis l D fx 2
R
2W x D �Cs� E�a; s � 0g one has q.t/ D .r.t/ cos'.t/; r.t/ sin '.t//. We can assume

that r.t/ and '.t/ are continuous. (Polar angles are measured counterclockwise from
l.) If q.�1/ D b and q.1/ D a then

rot�.q/ D


'.1/� '.�1/

2�

�
C 1:

Otherwise,

rot�.q/ D


'.1/� '.�1/

2�

�
;
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where Œ� � is the integral part of � . Let us remark that if q.�1/ D q.1/ then rot�.q/
is the winding number of the curve q about �. Moreover, after a reparametrization,
q can be considered to be the continuous image of S1. Therefore one can associated
with q its Brouwer degree with respect to �. The Brouwer degree of q equals rot�.q/.

Theorem 1 (See Conclusion 1.5 in [5]) Under the assumptions .V1/–.V5/, the
Newtonian system (HS) has at least two solutions which wind around � and join
fa; bg to fa; bg. One of them is a heteroclinic orbit joining the point a to the
point b. The second is either heteroclinic with a rotation different from the first,
or homoclinic.

Theorem 1 is a generalization of the result given by Rabinowitz in [6] on the
existence of homoclinic solutions in the case a D b.

2 Variational Approach

Our approach to the problem of existence and multiplicity of connecting orbits
of (HS) is variational. Homoclinic and heteroclinic solutions are global in time.
Moreover, they are critical points of an action functional. Therefore it is reasonable
to use variational (global) methods to receive them.

For q 2 ƒ, set

I.q/ D
Z 1

�1

�
1

2
jPq.t/j2 � V.q.t//

�
dt:

We define the family F as follows. A subset Z � ƒ is a member of F iff it has the
following properties:

• I.q/ < 1 for all q 2 Z,
• if p; q 2 Z then p.�1/ D q.�1/ and p.1/ D q.1/,
• for each q 2 Z and for each  2 C1

0 .R;R
2/ there exists ı > 0 such that if

s 2 .�ı; ı/ then q C s 2 Z.

Of course F is nonempty. We see at once that for example:

�C D fq 2 ƒW q.�1/ D a; q.1/ D b ^ rot.q/ � 0g;
�� D fq 2 ƒW q.�1/ D a; q.1/ D b ^ rot.q/ < 0g;
�˙n

a D fq 2 ƒW q.˙1/ D a ^ ˙rot.q/ � ng;
�˙n

b D fq 2 ƒW q.˙1/ D b ^ ˙rot.q/ � ng;

where n 2 N, are members of this family. Standard arguments show that if q is a
minimizer of I on Z 2 F then q is a classical solution of (HS).
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Outline of the Proof of Theorem 1 Set

˙ D inffI.q/W q 2 �˙g:

Without loss of generality we can assume that � � C. Let fqmgm2N � �� and
fQqmgm2N � �C be minimizing sequences of I on �� and �C, respectively. There
exist Q and QQ in ƒ such that, going to subsequences if necessary, qm * Q and
Qqm * QQ in E. Both Q and QQ are connecting orbits of (HS). One can show that
Q 2 ��. Whereas QQ may belong to ��, �C or �k

a for a certain k 2 N.
In the case QQ 2 �� we check that C D I. QQ/C !n

b , where !n
b D inffI.q/W q 2

�n
bg and n D �rot�. QQ/. Moreover, the Hamiltonian system (HS) possesses either a

homoclinic solution pWR ! R
2 n f�g such that p.˙1/ D b and rot�.p/ > 0, or a

heteroclinic solution Q0 2 �� such that rot�.Q0/ < rot�. QQ/ (see [5, Theorems 1.3,
1.4]). This connecting orbit is obtained as a weak limit of a minimizing sequence of
the action functional I on �n

b. ut
Fix Z 2 F such that if q; p 2 Z then rot� .q/ D rot�.p/. Let

z D inffI.q/W q 2 Zg

and fqmgm2N � Z be a sequence such that

lim
m!1 I.qm/ D z:

For each i 2 N, set

Ci D
1[

mDi

qm.R/:

Define

SC D
1\

iD1
Ci:

Theorem 2 (Shadowing Chain Lemma, See Lemma 3.2 in [3]) Under the
assumptions .V1/–.V5/, there are a finite number of homoclinic and heteroclinic
orbits, Q1;Q2; : : : ;Ql, of the Newtonian system (HS) such that

z D I.Q1/C I.Q2/C � � � C I.Ql/

and

rot� .qm/ D rot�.Q1/C rot�.Q2/C � � � C rot�.Ql/:
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Theorem 2 is the starting point to show the existence of infinitely many
homoclinic and heteroclinic orbits to the Newtonian system (HS) under certain extra
conditions of Bolotin’s type (see [1]) on the existence of minimal noncontractible
periodic orbits around �.

Theorem 3 (M. Izydorek, J. Janczewska) Let a D b. Suppose that V 2 C1;1.R2 n
f�g;R/ satisfies the conditions .V2/–.V5/ and, moreover,

.B1/ there are T1 2 .0;1/ and p1 2 W1;2.Œ0;T1�;R2 n fa; �g/ such that p1.0/ D
p1.T1/, rota.p1/ D 0, rot�.p1/ D 1 and

R T1
0

�
1
2
jPp1.t/j2 � V.p1.t//

�
dt < �1;

.B2/ there are T2 2 .0;1/ and p2 2 W1;2.Œ0;T2�;R2 n fa; �g/ such that p2.0/ D
p2.T2/, rota.p2/ D rot�.p2/ D 1 and

R T2
0

�
1
2
jPp2.t/j2 � V.p2.t//

�
dt < �1, where

�1 D inffI.q/W q 2 �1
a ^ rot�.q/ D 1g;

and rota.pi/, rot�.pi/ are the winding numbers (Brouwer’s degree) of the curve pi

about the point a and �, respectively.

Under the above assumptions, there exist infinitely many homotopy classes
in �1.R2 n f�g/ containing at least two geometrically distinct homoclinic (to a)
solutions.

The detailed proof of Theorem 3 is contained in the paper [4].
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Transport Dynamics: From the Bicircular
to the Real Solar System Problem

Mercè Ollé, Esther Barrabés, Gerard Gómez, and Josep Maria Mondelo

1 Introduction

The main goal is to give an explanation of transport in the Solar System based in
dynamical systems theory. More concretely, we consider as an approximation of
the Solar System, a chain of independent Bicircular problems in order to get a first
insight of transport in this simplified case. Each bicircular problem (BP) consists of
the Sun (S), Jupiter (J), a planet and an infinitesimal mass. For each fixed BP we
consider natural periodic orbits which are unstable. These periodic orbits are the
dynamical substitutes in the BP of the collinear equilibrium points L1 and L2 of the
Circular Restricted Three Body Problem (CRTBP) Sun-Planet-particle. We study
the behavior of their invariant manifolds, in order to look for connections between
invariant manifolds of consecutive BP.

We are interested in transport from the external Solar System to the internal one.
On one hand we start with the BP S-J-Neptune-particle and the dynamical substitute
of L1 of the CRTBP S-Neptune-particle, and its unstable invariant manifold. On the
other hand we consider the BP S-J-Uranus-particle, and the dynamical substitute of
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L2 of the CRTBP S-Uranus-particle, and its stable invariant manifold. The key idea
is to compute both manifolds up to a suitable Poincaré section in such a way that
heteroclinic connections are found. As we deal with two independent BP, they are
not really connections, but they can be viewed as seeds to be used in a more realistic
model. Of course, the same kind of simulation may be carried out considering now
the BP S-J-Uranus-particle and S-J-Saturn-particle problems. And so on.

Therefore, these heteroclinic connections provide an skeleton of dynamics that
explains how to transfer from the outer part of the Solar System to the inner one.

The final goal—in progress—is concerned with a more realistic model of the
Solar System where the dynamical substitutes of the previous invariant objects used
(periodic orbits and their invariant manifolds) should be obtained and study their
role to explain transport.

2 The Bicircular Problem

The Bicircular problem (BP) is a simplified model of the four body problem. In this
model we assume that the Sun and Jupiter are revolving in circular orbits around
their center of mass, and a planet (P) moves in a circular orbit around this baricenter.
A remark to comment is that this model is not coherent, that is, the positions of the
Sun, Jupiter and the planet do not satisfy Newton’s equations.

Let mS, mJ and mP be the masses of S, J and P respectively. Let B be the
barycenter of the S-J system and assume that the distance between S and J is equal
to one. Let aP be the distance from the planet to B. In a suitable rotating system
of coordinates with origin at B (where the Sun and Jupiter remain fixed in the x-
axis), being .x; y; z/ the position of the particle and defining momenta px D Px � y,
py D Py C x, pz D Pz, the equations may be written as a Hamiltonian system of
differential equations with Hamiltonian function

H.x; y; z; px; py; pz/ D 1

2
.p2x C p2y C p2z /C ypx � xpy

� 1 � �
�1

� �

�2
� �P

�P
� �P

a2P
.y sin � � x cos �/;

(1)

where

�1 D ..x � �/2 C y2 C z2/1=2; � D t.1 � !P/;

�2 D ..x � �C 1/2 C y2 C z2/1=2; � D mJ
mJCmS

;

�P D ..x � aP cos �/2 C .y C aP sin �/2 C z2/1=2; �P D mP
mJCmS

:

We obtain a Hamiltonian system of 3 degrees of freedom, non autonomous but
periodic in t with period TP D 2�=!P. For more details see [2].
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Fig. 1 Periodic orbits POLi, i D 1; 2, in a BP problem in rotating coordinates .x; y/

For small values of �, the BP can be view as a perturbation of the CRTBP Sun-
Planet-particle. It is well known that the CRTBP has three collinear equilibrium
points Li, i D 1; 2; 3. The points L1 and L2 are the ones close to the planet. The
dynamical substitutes of these equilibrium points are periodic orbits, with period TP

in the BP, which are denoted by POL1 and POL2. See Fig. 1.
The periodic orbits POLi, i D 1; 2, are unstable so, there exist stable and unstable

invariant manifolds associated to them. Each invariant manifold has two branches.
The orbits of one branch, in mean, spiral inwards, whereas the orbits of the other
branch spiral outwards.

3 Transport Between Neptune and Uranus

Let us consider the BP S-J-Neptune-particle, the periodic orbit POL1 and the branch
of its unstable manifold Wu that spirals inwards. And let us consider the BP S-
J-Uranus-particle, the periodic orbit POL2, and the branch of its stable manifold
Ws such that spirals outwards. We can see that behavior considering the distance
r.t/ D p

x2 C y2 C z2 from the orbits of the invariant manifolds to the origin. We
plot in Fig. 2 the distance r.t/ for the unstable branch Wu.POL1/ of the Neptune BP
(left) and for the stable branch Ws.POL2/ of the Uranus BP (right).
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Fig. 2 Behavior of the distance r.t/ of some orbits of the branches of the invariant manifolds
Wu.POL1/ for the BP S-J-Neptune-particle (left) and Ws.POL2/ for the BP S-J-Uranus-particle
(right)

Next, in order to look for heteroclinic connections, we fix a Poincaré section
† D fr D Rg, where R is an intermediate constant value between the position of
Uranus and Neptune. We compute both manifolds for a range of time of t D 50;000,
and we keep all the intersections of the orbits with†. So we have a set of points S1 of
Wu.POL1/\† and a set of points S2 of Ws.POL2/\†. We compute the minimum
distance between each point in S1 to S2. If one of these minimum distances is 0,
then we should obtain a heteroclinic connection, assuming the particle goes from†

backward/forward in time asymptotically to the periodic orbit POL1=2 taking into
account different BP, that is, S, J and Neptune/Uranus. In positions, the distances
obtained are of order 10�7, but in velocities the minimum obtained is of order 10�4.
Nevertheless, as we are matching different BP problems, and the results must be
refined in a more realistic model, it seems a good enough result to support the idea
that the invariant manifolds of some objects are responsible for natural transport in
the Solar System.

Other simulations can be done taking into account other BP (see [1]) in order to
study similar transport between other two consecutive planets.

Finally, the results obtained are considered as seeds to look for trajectories in a
more realistic model of the Solar System, like the model of the JPL ephemerides or
an N-body problem.
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Quasi-Periodic Almost-Collision Motions
in the Spatial Three-Body Problem

Jesús F. Palacián, Flora Sayas, and Patricia Yanguas

1 Introduction

We deal with the spatial three-body problem in the various regimes where the
Hamiltonian is split as the sum of two Keplerian systems plus a small perturbation.
This is a region of the phase space T�

R
6 where the perturbation is small [3], the so

called perturbing region P";n. In particular, we prove the existence of quasi-periodic
motions where the inner particles describe bounded near-rectilinear trajectories
whereas the outer particle follows an orbit lying near the invariable plane. These
motions fill in five-dimensional invariant tori. Moreover, the inner particles move in
orbits either near an axis perpendicular to the invariable plane or near the invariable
plane.

By averaging over the mean anomalies, truncating higher-order terms and using
singular reduction theory we get a one-degree-of-freedom Hamiltonian system
defined in a singular reduced space, the so called orbit space. In [3] we analyse
the relative equilibria and bifurcations and in [4] we reconstruct the invariant tori
corresponding to motions of non-rectilinear type. Three of the relative equilibria
of the reduced Hamiltonian in the orbit space are elliptic points corresponding to
near-rectilinear motions of the inner bodies, and these are the ones we carry out
the reconstruction of the KAM 5-tori surrounding them. We regularise the double
inner collisions following the guidelines of Zhao [6, 7]. In particular, he applies
the Kustaanheimo–Stiefel regularisation. This allows us to build sets of action-
angle coordinates needed to apply KAM theory. The motions we deal with admit
different combinations, for instance, the outer particle may move in a near-circular
orbit or the invariable plane may coincide with the horizontal plane. This leads to
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various situations that have to be analysed in different intermediate reduced spaces.
We achieve our study by considering all possible cases, constructing an adequate
set of coordinates and computing the corresponding torsion in each case. Hence,
our analysis is global and we characterise properly all type of bounded motions of
the three particles (excluding triple collisions). In order to achieve the existence
of the quasi-periodic motions we use a theorem by Han et al. [2] allowing us
to handle the high-order degeneracy of the Hamiltonians involved in the process.
The application of this theorem is not straightforward as one needs to bring the
Hamiltonian to normal form through successive changes of symplectic coordinates
and these transformations are rather cumbersome.

2 Reconstruction of the Full System

We reconstruct the rectilinear motions of the inner particles which are represented
by elliptic relative equilibria of the reduced space, establishing the existence of
KAM tori in the spatial 3-body problem. We characterise properly all type of
bounded motions of the three particles, excluding triple collisions. In this sense
our analysis, stated in Theorem 1, extends Zhao’s results [6]. The proof will appear
in [5].

Deprit’s elements are used in Theorem 1. These coordinates were introduced by
Deprit in [1] for eliminating two nodal angles in the N-body problem. In particular,
`1 and `2 denote the mean anomalies of the inner and outer ellipses respectively, Li

is the conjugate momentum to `i (i D 1; 2) and C is the modulus of the total angular
momentum vector.

Theorem 1 The Hamiltonian system of the spatial 3-body problem, reduced by the
symmetry of translations and defined in Q";n 
 T�

R
6 (i.e., subset of P";n where

resonances between the mean anomalies are avoided), has invariant KAM 5-tori
densely filled with quasi-periodic trajectories of the fictitious inner and outer bodies
of the following types:

(i) The fictitious inner body moves in orbits nearly rectilinear, bounded and
perpendicular to the invariable plane, whereas the outer body moves in a
non-circular orbit lying near the invariable plane, and they are provided by
L1 6� p

3=10C.
(ii) The fictitious inner body moves in orbits nearly rectilinear, bounded and

perpendicular to the invariable plane, whereas the outer body moves in a near-
circular orbit lying near the invariable plane, which is not the horizontal plane.

(iii) The fictitious inner body moves in orbits nearly rectilinear, bounded and
perpendicular to the invariable plane which is near the horizontal plane. The
outer body moves in a near-circular orbit lying near the invariable plane,
which is the horizontal plane.
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(iv) The fictitious inner body moves in orbits nearly rectilinear, bounded and lying
near the invariable plane, whereas the outer body moves in a non-circular orbit
that lies near the invariable plane.

For a given constant 0 < ı < 1=5, the excluding measure for the existence of
invariant 5-tori is of order O."ı=4/.
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Generalized Discrete Nonlinear Schrödinger
as a Normal Form at the Thermodynamic
Limit for the Klein–Gordon Chain

Simone Paleari and Tiziano Penati

1 Motivations: The Problem

A still open challenge in Hamiltonian dynamics is the development of a perturbation
theory for Hamiltonian systems with an arbitrarily large number of degrees of
freedom and, in particular, in the thermodynamic limit. Indeed, motivated by the
problems arising in the foundations of Statistical Mechanics, it is relevant to
consider large systems (e.g., for a model of a crystal the number of particles should
be of the order of the Avogadro number) with non vanishing energy per particle
(which corresponds to a non zero temperature in the physical model).

Being interested in the low temperature regime (aiming for example at some
rigorous results of the classical mechanics description of the behavior of the specific
heats in such a regime), it is foreseeable the use of perturbation theory to exploit
the presence of a small parameter like the specific energy. Unfortunately, it is a
well known limit of the classical results of this theory (like KAM or Nekhoroshev
theorem) to suffer a bad dependence on the number of degrees of freedom, often
resulting in void or non applicable statements in the thermodynamic limit.

We present here some results, which can be considered to be among the first to
(at least partially) accomplish the aforementioned goals, and some ideas for future
developments.
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2 Recent Results: Extensive Adiabatic Invariant

To overcome the problem illustrated above, we exploited and implemented two kind
of ideas. The first one, for which we give credit to Carati (see, e.g., [2]), is to give
up controlling all the orbits in the phase space. Instead, we try to measure the set of
initial data for which we are able to perform our construction and our estimates.

The second idea is to formalize and exploit some physical properties of the model
at hand, in particular the system being extensive and the short range of interaction.
We thus developed a perturbation construction adapted to preserve such properties,
and then we exploited them also in the statistical part.

We consider a Klein–Gordon model as described by the following Hamiltonian

H.x; y/ D 1

2

NX

jD1

�
y2j C x2j C a.xjC1 � xj/

2
C 1

4

NX

jD1
x4j ; x0 D xN ; y0 D yN ;

(1)

i.e., a finite chain of N degrees of freedom and periodic boundary conditions.
Our construction of an extensive adiabatic invariant in the thermodynamic limit

can be described as follows. Given a fixed and sufficiently small value of the
coupling constant a, the evolution of the adiabatic invariant is controlled up to times
scaling as ˇ1=a for any large enough value of the inverse temperature ˇ. The time
scale becomes a stretched exponential if the coupling constant is allowed to vanish
jointly with the specific energy. The adiabatic invariance is exhibited by showing
that the variance along the dynamics, i.e., calculated with respect to time averages,
is much smaller than the corresponding variance over the whole phase space, i.e.,
calculated with the Gibbs measure, for a set of initial data of large measure. All
the perturbation constructions and the subsequent estimates are consistent with the
extensive nature of the system.

To give a more precise statement, let us denote by dm the Gibbs measure and by
Z the corresponding partition function, namely dm.ˇ; a/ WD e�ˇH.z;a/=Z.ˇ; a/dz,
and Z.ˇ; a/ WD R

M e�ˇH.z;a/dz; for every function XWM ! R we denote its
phase average and its variance respectively by hXi WD R

M Xdm.ˇ; a/ and 
2ŒX� WD
hX2i�hXi2. For every measurable set A 2 M, we will denote m.A/ WD R

A dm.ˇ; a/.
We also need to define the time average and the time variance, evaluated along
the time evolution. Denoting by � t the Hamiltonian flow, we have X.z; t/ WD
1
t

R t
0 .X ı �s/ .z/ds and 
2t ŒX� WD X2 � X

2
.

Theorem 1 (Giorgilli et al. [7]) There exist positive constants a�, ˇ0, ˇ1, C1 and

C2 such that, for all 0 < a < a�, given the integer r WD
j

C1
p
.1C 2a/=a

k
,
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there exists an extensive polynomial ˆ of degree 2r C 2, such that, for all ˇ >

maxfˇ0; ˇ1r6g one has

m

 
z 2 R

2N W 
2t Œˆ� � 
2Œˆ�
p
ˇ

!
� C2
ˇ

� t

t

�2
; t D ˇr=2:

The above result can be seen as an improvement over the previous paper by Carati
and Maiocchi [3], where the perturbation parameter is the sum of the coupling a and
the temperature 1=ˇ. We were able to made them independent from each other, so
that one can fix the model (fix a) and let the temperature vanish. We also slightly
improved, in an independent way, the statistical part.

Another result worth to be quoted is [11], where several adiabatic invariants are
constructed for the Fermi–Pasta–Ulam model, though for short time scales.

3 GdNLS as an Extensive Normal Form

The natural step, after the direct construction of an approximated conserved
quantity, is the construction of a normal form, which is a more versatile tool to
investigate the dynamics. Further exploiting the extensive nature and the short range
of interaction, in the limit of small couplings, and small (total or specific) energy,
we constructed a high order resonant normal form with estimates uniform in the
number of degrees of freedom.

Theorem 2 (Paleari and Penati [13]) There exist C1 and C2, such that for every
N, every small enough value of the coupling constant a, every integer r < C1=a,
and (total or specific) energy less than C2=r2, there exists an analytic canonical
transformation, under which the Hamiltonian (1) takes the form

H.r/ D H� C Z0 C � � � C Zr C P.rC1/; fH�;Zsg D 0 8s 2 f0; : : : ; rg;

with H� a system of N identical oscillators, Zs homogeneous polynomials of order
2s C 2, and P.rC1/ a remainder of order 2r C 4 and higher.

In particular, the first order normal form is a generalized discrete nonlinear
Schrödinger model, characterized by all-neighbors coupling with exponentially
decaying strength. Indeed, in such a normal form we have a truncated expansion
in (specific or total) energy, given by the index s, and an infinite expansion in the
coupling, in each term Zs; at every given order in such an expansion we have terms
with coupling between sites at the corresponding distance. Using only the first term
in both Z0 and Z1 we have exactly the usual dNLS.

A relevant point is that, due to this particular structure, such a normal form allows
to postpone the problem of the double scaling in the two small parameters: it is
possible to chose afterwards the regime, possibly discarding the tails in the Zs.
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Another important comment is that, since the normal form itself is a
transformation of the Hamiltonian, it does not involve the dynamics in its
formulation. And this is the reason for its validity at the thermodynamic limit
without the use of the statistical argument. Of course, once we try to use it to
control the dynamics, either we give measure estimates, or we revert to a small total
energy regime. As in the next section.

3.1 An Application: Long Time Stability for a Breather

As a first application of our normal form, we showed a long time stability result for
a Breather solution in KG model (actually a slightly more general one, also with
nonlinear couplings). The idea is to exploit stability of the dNLS breathers, induced
by the existence of the additional conserved quantity via variational methods. In this
way we reproduce, and slightly improve a classical result by Bambusi [1] which was
based on a different normal form construction. The model (a mixed FPU-KG one)
is the following:

H.x; y/ D 1

2

NX

jD1

�
y2j C x2j C a.xjC1 � xj/

2
C 1

4

NX

jD1

�
x4j C b.xjC1 � xj/

4

; (2)

with periodic boundary conditions x0 D xN , y0 D yN , where a > 0 and b � 0; fix
also c WD maxfa; bg. Let us denote by ‰a;b and O.‰a;b/ respectively the Breather
profile, i.e., an initial datum, and its orbit for our model (2). Concerning ‰a;b, we
require it to emerge, in the anticontinuous limit, from the one-site excitation with
prescribed amplitude k‰0;0k D R=6. Using the usual Hausdorff distance1 dH, we
have

Theorem 3 (Paleari and Penati [14]) Fix an arbitrary integer r � 1. Then there
exists R�.r/ < 1 such that for all R < R� and 0 < � � R2 there exist c�.r;R; �/
and ı.�/, such that for all c < c� the (piece of) orbit O.�/ WD f�.t/ W jtj �
�2

r2
R�2.rC2/ ; �.0/ D �g, solution of (2), satisfies

k� �‰a;bk < ı H) dH .O.�/;O.‰a;b// < �: (3)

1Given A and B one has dH.A;B/ WD maxfd.A;B/; d.B;A/g, with d.A;B/ WD supa2A infb2B ka �
bk.
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3.2 Planned Investigations

Several other possible application of the normal form result exist, and we plan to
investigate in (at least some of) the following directions.

Some work has been recently devoted to the study (see, e.g., [10, 15, 16]) of
multibreathers, also with holes; it is feasible to use techniques like Krein signature
to study the linear stability of such object in the GdNLS, and then transport the
corresponding properties to the KG chain.

Another promising direction is that of the variational approximation techniques
for an effective description of breathers-like solutions in the dNLS and some
generalizations (see, e.g., [4, 5, 12]). Once again, it should be interesting to try to
exploit the normal form to provide this kind of results in the KG models.

A further benefit of the normal form could be in better approximation results for
the Cauchy problem, opposed to more traditional multiscale approaches.

We also plan possible extension of the normal form result in order to deal with
infinite chains, or with model supporting (almost-)compact solutions (like in [6, 17,
18]) or model for granular chains (like those in [8, 9]).
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Stability of Euler-Type Relative Equilibria
in the Curved Three Body Problem

Ernesto Pérez-Chavela and Juan Manuel Sánchez Cerritos

1 Introduction

We consider three point particles of masses m1;m2;m3 moving on a two-
dimensional surface of constant curvature k. It is well known that, locally, these
surfaces are characterized by the sign of the curvature k. If k > 0, the surface is the
two dimensional sphere S2 of radius R D 1=k embedded in the Euclidian space R

3.
If k D 0, we recover the Euclidean space R

2. And if k < 0, the surface is the upper
part of the hyperboloid x2 C y2 � z2 D �1=.�k/1=2, known as the pseudo-sphere
S2h embedded in the three dimensional Minkowski space R

2;1, corresponding to the
Weierstrass model of hyperbolic geometry.

Let qi D .xi; yi; zi/, i D 1; 2; 3, be the position of the ith particle. The force
function which extends the Newtonian one to S2 or S2h is given by

U.q/ D
3X

iD1

3X

jD1;j¤i

mimj.
/
1=2qi � qjq


 � 

�
qi � qj

�2 ; (1)

where .�/ denotes the classical scalar product if the curvature is positive, or the
Lorentz product in the case of negative curvature. In the same way, the symbol 

stands for 
 D 1 if we consider k > 0, and 
 D �1 for k < 0.
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Using a variational method with constrains to maintain the particles on the
respective surface, we can write the equations of motion as follows

Rqi D
3X

j¤i

mjŒqj � 
.qi � qj/qi�

Œ
 � 
.qi � qj/2�3=2
� 
.Pqi � Pqi/qi; i D 1; 2; : : : ; n; (2)

where . P / represents the differentiation with respect to the time t. The curved
problem has energy and angular momentum as first integrals, the centre of mass
is no longer an integral in contrast with the Euclidean case.

In this work we are interested in the linear spectral stability of a particular kind
of periodic solutions know as relative equilibria.

Definition 1 A relative equilibrium is a solution of the curved n-body problem in
which the mutual distances between particles are constant in time.

In the curved three body problem for k ¤ 0 we have two different types of
relative equilibria, the Lagrangian ones, which a difference of the Euclidean case
only exist if the three masses are equal [3], the stability of this kind of equilateral
relative equilibria has been wide studied by Martínez and Simó in [5]. The other
type of relative equilibria are the so called Eulerian-type relative equilibrium, that
is a relative equilibrium in which the particles are for all time t on a same geodesic
of the corresponding surface. We will be focused on the linear spectral stability of
an especial type of Eulerian relative equilibria, that by short we will call isosceles
Eulerian relative equilibria, where the three particles are on the same geodesic, the
masses at the ends are equal and the mass between them is arbitrary, the geodesic
distance between the central mass and each mass at the ends is equal, by short along
this work we will call them as Eulerian relative equilibria [4]. In the proofs of the
main results we use the same kind of ideas than in [5].

Since we always can map a geodesic into other geodesic, we will assume without
loss of generality that m1 is the particle in the middle located at the point .0; 0; 1/,
and the other two equal masses m2 and m3 are at the opposite ends of a diameter on
the circle determined by zi being constant, i D 1; 2.

2 The Positive Curvature Case

In [3], Diacu et al. find the value of the angular velocity ! allowing to obtain the
Eulerian relative equilibrium of the three body problem on S2. To achieve our goal
we consider a time transformation and position coordinates Qi D .Xi;Yi/ in the
following way

t D r
3
2 �;

xi D rXi; yi D rYi;

Qi D .Xi;Yi/:

(3)
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With these changes, the angular velocity ! found in [3] becomes

�2 D M C 4m.1 � r2/

4.1 � r2/
3
2

; (4)

where M is the fixed mass at the north pole and m denotes the value of the masses on
the circle of radius r. With the above expressions we are able to express the system
in a rotating frame, defining new variables .�i; �i/, i D 1; 2; 3, as

�
Xi

Yi

�
D R.��/

�
�i

�i

�
; (5)

where

R.��/ D
�

cos�� � sin��
sin�� cos��

�
: (6)

After a straightforward computation it is possible to show that the new equations
of motion are the following

�
� 00

i

�00
i

�
D 2�

�
�0

i

�� 0
i

�
C�2

�
�i

�i

�
� r2hi

�
�i

�i

�

C
3X

jD1;j¤i

mj
�
�2i C �2i C �2j C �2j � 2.�i�j C �i�j/Ti;j

� r2..�i�j C �i�j/
2 C .�2i C �2i /.�

2
j C �2j //

�3=2

�

�j

�j

�
� �

r2.�i�j C �i�j/

C
q
.1 � r2.�2i C �2i //.1� r2.�2j C �2j //

��
�i

�i

��
;

where

hi D �2.�2i C�2i /C2�.�i�
0
i ��i�

0
i /C..� 02

i /C.�02
i //C

r2

1 � r2.�2i C �2i /
.�i�

0
i C�i�

0
i/
2;

and

Ti;j D
q
.1 � r2.�2i C �2i //.1 � r2.�2j C �2j //;

for i D 1; 2; 3.
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The main result for the stability of the Eulerian relative equilibria is the
following:

Theorem 2 Consider Eulerian-relative equilibria of three masses moving on S2,
where m1 is fixed at .0; 0; 1/, m2 and m3 are at opposite ends of a diameter on a
circle with constant z. Then,

(i) if m1 D m2 D m3 and z 2 .�1=2; 1/n0, the generated orbits are unstable, and
the motion is not possible if z 2 .�1;�1=2/;

(ii) if m1 is negligible and m2 D m3, the generated orbits are unstable for every
z 2 .0; 1/, and the motion is not possible if z 2 .�1; 0/;

(iii) if m2 and m3 are negligible, the generated orbits are stable if z 2 .0; 1/, and
the motion is not possible if z 2 .�1; 0/.

Sketch of the Proof The idea is the classical one for studying stability, we must
find the matrix associated to the linearization of the equations of motion at the
equilibrium point in a rotating frame. The size of the corresponding matrix is 12�12,
which makes the computations of the roots of the corresponding characteristic
polynomial difficult. We have introduced a new change of variables and we have
applied Descartes rule of signs to obtain the results. ut

3 The Negative Curvature Case

Here we have three independent groups of isometries acting on the pseudo-sphere
S2h, then a priori we can have three different kind of relative equilibria, elliptic,
parabolic and hyperbolic [6]. In [1, 2] the authors prove that there are not relative
equilibria of parabolic type.

For the case of elliptic relative equilibria, we analyze the motions which are
invariant through the isometric group generated by the matrix

A.!�/ D
0

@
cos!� � sin!� 0
sin!� cos!� 0

0 0 1

1

A :

The main result in this case is the following.

Theorem 3 Consider an Eulerian relative equilibria of three masses of elliptic type
on S2h, where m1 is fixed at .0; 0; 1/ and m2 and m3 are located at opposite ends of a
diameter on a circle with z constant. Then,

(i) if m1 D m2 D m3 the generated orbits are unstable for every z > 1;
(ii) if m1 is negligible, and m2 D m3, the generated orbits are unstable for every

z 2 .1;1/;
(iii) if m2 and m3 are negligible, then the generated orbits are stable if z 2 .1;1/.
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For the case of hyperbolic relative equilibria we analyze the motions which are
invariant through the isometric group generated by the matrix

H.!�/ D
0

@
1 0 0

0 cosh!� sinh!�
0 sinh!� cosh!�

1

A :

The main result in this case is the following.

Theorem 4 Consider an Eulerian-relative equilibrium of hyperbolic type for the
curved three body problem on S2h, where the body mi has coordinates qi D .xi; yi; zi/.
If m3 is negligible, and is on the geodesic passing through .0; 0; 1/ with x3 D 0, and
m1 and m2 are on hyperbolas of the form x1 D k ¤ 0; x2 D �x1; y1 D y2 D
r sinh.t/; z1 D z2 D r cosh.t/; t 2 R, then the generated orbits are unstable for any
r > 1:
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Two-Dimensional Symplectic Return Maps
and Applications

Regina Martínez and Carles Simó

The goal of this extended abstract is to show how return maps, even in simple cases,
can provide accurate information in some dynamical aspects.

We restrict our attention to 2D symplectic maps, despite many ideas are useful
in wider contexts; see, e.g., [1, 3, 6]. Those maps can appear as discrete models of
a conservative, area-preserving, systems or as Poincaré maps of some Hamiltonian
system with two degrees of freedom (dof). To present the problem we describe next
the setting, illustrated by the plots in Fig. 1.

Assume that a 2D symplectic map F has a hyperbolic fixed point, H, which in
the 2 dof Hamiltonian case comes from a periodic hyperbolic orbit. Assume also
that both branches of the unstable and stable manifolds of H (Wu;s;˙ in Fig. 1, left)
intersect transversally giving rise to homoclinic points like h1 and h3 whose images
under F are, respectively, h2 and h4. A similar behaviour can be found in the case that
F has two hyperbolic fixed points, H˙, with transversal heteroclinic points (Fig. 1,
middle).

If the map F belongs to a family of maps, F", it can happen that in the left plot
Wu;C and Ws;C (and also Wu;� and Ws;�) tend to coincide when " ! 0. In an
analogous way in the middle plot Wu;C and Ws;� (and also Wu;� and Ws;C) can
tend to coincide. In the homoclinic case one would obtain the integrable dynamics
shown in the right plot. Under suitable conditions it turns out to be the flow time � ,
'� (eventually � D �."/) of a 1 dof Hamiltonian H. The integrable limit is easy to
imagine in the heteroclinic case and we skip it.
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Fig. 1 Models for the homoclinic (left) and double heteroclinic (middle) connections giving rise to
return maps. The right plot shows the integrable homoclinic case. See text for detailed explanation

In the integrable case (right plot) Wu;C and Ws;C (resp. Wu;� and Ws;�) coincide
and give rise to the separatrix SC (resp. S�). One can define two domains A˙
around S˙, limited by levels of the energy,H, assumed to be zero on S˙,> 0 (resp.
< 0) inside (resp. outside) the loops, and segments IC and JC D '�.IC/ (resp. I�
and J� D '�.I�/). Taking a point in A D AC [ A� the return map describes the
first return to A by iteration under '� . It is clear that the upper (resp. lower) part of
AC (resp. of A�) returns to A� (resp. to AC) and the lower part of AC (resp. upper
of A�) returns to AC (resp. to A�). Suitable variables in A are some time t that
we can assume to be in Œ0; 2�/ (it is not restrictive to assume � D 2� by scaling
H) taking the value 0 at IC and at I�, the energy level h and a sign ˙ to specify
the domain A˙. The return map, as associated to dynamics close to separatrices is
known as separatrix map. In the integrable case all the points in AnS˙ are periodic.
The period T depends on the location of the initial point, either TC;T� or T˙ and in
all cases is of the form T.h; "/ D j log.jhj/j= C c0 C O.h; "/, where  (eventually
."/) denotes the dominant eigenvalue of the map at H, c0 is related to the passage
time from LC to IC then to JC and return to KC (in the case of TC, similar in other
cases). Hence, the separatrix map is given, in the integrable case, by

SepMI W
�

t
h

�
!
� Nt D t � T.Nh; "/ .mod 2�/

Nh D h

�
: (1)

To define SepM in cases like the left plot in Fig. 1 one has to take into account
that the energy is not preserved, due to the splitting of the separatrices. It can be
measured using the energy (or suitable definitions of stable/unstable energies, see,
e.g., [5, 15]). Let a."/ �.t/ be the position, in energy, of Wu wrt Ws in A (or in
AC or in A�). The value a."/ measures the amplitude of the splitting and �.t/ is a
normalized shape. Then,

SepM W
�

t
h

�
!
� Nt D t � T.Nh; "/ .mod 2�/

Nh D h C a."/�.t/

�
: (2)
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For the classical and very popular separatrix map (see, e.g., [4]) one takes �.t/ D
sin.t/.

The maps (1) and (2) are not defined in Ws˙. One can confine attention only to
AC or to A�. The upper and lower loops can be symmetric or not, or have additional
symmetries. In the heteroclinic case (middle plot in Fig. 1), with IC; JC; I�; J�
containing h1; h2; h3; h4, respectively, the separatrix map goes from AC to A� and
from A� to AC. It is not defined also if a point in AC is to the left of Ws;� and so
on. The times of passage near HC or near H� can also have different expressions.
In case of symmetry just the same expression can be used for AC 7! A� and for
A� 7! AC.

If the map family F" comes from a 2� periodic perturbation with size " of a 1 dof
Hamiltonian then, typically, one has a."/ D O."/. If the map family F" is an O."/
perturbation of the identity, then the usual suspension+averaging techniques [2, 12,
13] combined with analyticity properties and suitable parametrization [5] give expo-
nentially small upper bounds, typically of the form a."/ D A"B exp.�c=."//.1C
O."//, A > 0, c > 0.

In turn the map in (2) can be approximated around h D h0 > 0, if h0 �
a."/=."/, by a standard map (in the case �.t/ D sin.t/ by the classical standard
map [4])

SM	 W
�

u
v

�
!
� Nu D u C Nv

Nv D v C 	�.u/

�
; (3)

where 	 D a."/=.h0."//. If �.t/ D sin.t/ for 	 > 	G � 0:971635406 (Greene’s
value [7]) SM	 has no rotational invariant curves and the dynamics has an important
chaotic part. Hence, chaos is mainly present for values h0 < a."/=.	G."// for (3).
See [14] for different applications to measure the amount of chaos. To this end, one
requires to introduce a chaotic factor, which gives an average, wrt h, of the amount
of chaos for the related values of 	; see [8] for details. In the same reference there is
an analysis of the changes to be introduced, both on the equivalent to Greene’s value
and in the chaotic factor, in the case that �.t/ includes also the effect of a second
harmonic.

It is clear that for return maps of the separatrix type both the return period and
the size/shape of the splitting play a key role. For applications to several problems,
specially in Celestial Mechanics, it is necessary to consider the case in which points
like H or H˙ are no longer hyperbolic, but parabolic with stable and unstable
manifolds (at least with one branch of each type, as shown in Fig. 1, middle plot).

In a general context, near a fixed point .q; p/ at .0; 0/ one can consider,
normalizing constants,

� h D p2l � qk; p0 D qr; l; k; r 2 N; q � 0; (4)

as dominant terms, so that on h D 0 the unstable (stable) manifold starts as p D
˙qk=.2l/ (defined only for q � 0 is k is odd). The relevant parameter is m D 2lr � k.
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It is positive in the parabolic case and the case m D 0 can be seen, in some sense,
as hyperbolic. Furthermore, the case m < 0 can be named super-hyperbolic. In
all these cases it is possible to produce a unified study and to derive the related
separatrix maps, as a function of h and the splitting, see [8].

As an application we consider the Sitnikov problem, which describes the motion
of a massless particle moving on the z-axis under the gravitational attraction of two
bodies of mass 1/2 which move on the .x; y/-plane in elliptic orbits of eccentricity "
and centre of masses at .0; 0; 0/, see [10, 11, 16]. The motion equations are

Rz D � z

.z2 C r.t/2=4/3=2
; r.t/ D 1�" cos.E/; t D E�" sin.E/ (Kepler); (5)

being E the eccentric anomaly. System (5) is integrable for " D 0 with energy levels
1
2
v2 � .z2 C 1=4/�1=2 Dconstant, being v D Pz. One can use † D fz D 0g as

Poincaré section and . Ov;E/ as variables on it, being Ov D jvj.1�" cos.E//1=2, taking
into account symmetries. The orbits are bounded for " D 0 if they intersect † with
jvj < 2.

There exist periodic orbits at infinity, which are parabolic in the Dynamical
Systems sense. They have weak hyperbolicity and have invariant manifolds which
can be studied in McGehee’s coordinates, z D 2=q2, Pz D �p; see [10]. For " D 0

the passage through E D 0 gives an integrable version of the middle plot in Fig. 1.
For " ¤ 0 these manifolds intersect transversally [11]. They are of class Gevrey 1/3
around .q; p/ D .0; 0/, q � 0; see [9]. According to [11], the splitting measured as
energy variation in† is "A sin.E/CO."2/, where A is given by an explicit integral.
See [8] for details. In the same reference one can find the proofs of the following
results.

Lemma 1 Sitnikov’s problem fits in the setting of (4) with l D 1, k D 2, r D 4 and
the passage time from † to † is T.h; "/ D �

p
2jhj�3=2 C c0 C O.h; "/.

Using this lemma, the related separatrix map using the splitting value, the passage
to (3) and Greene’s value, one has

Theorem 2 For Sitnikov’s problem and small eccentricity, there are invariant
curves up to a distance of jvj D 2 given by

�v D 1

2

�
6�A

	G

p
2

�2=5
"2=5 C O."4=5/:

Using numerical values for the constants in the previous bound, one obtains
�v � 0:82333"2=5 C O."4=5/, in very good agreement with direct numerical
estimates for " < "0 � 0:02. See again [8] for details.
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Central Configurations of an Isosceles
Trapezoidal Five-Body Problem

Abdulrehman Kashif, Muhammad Shoaib, and Anoop Sivasankaran

1 Introduction

The study of central configurations is very popular for producing the simplest
solutions of the planar n-body problems (cf., [1, 2, 4]). In this paper, we study the
central configuration of the isosceles trapezoidal five-body problem where four of
the masses are placed at the vertices of the isosceles trapezoid and the fifth body
can take various positions on the axis of symmetry. We identify regions in the
phase space where it is possible to choose positive masses which will make the
configuration central. A similar approach was adopted by Shoaib et al. in [3] for the
rhomboidal five-body problem.

2 General Equations

The condition that .m1;m2; : : : ;mn/ form a planar, non-collinear, central configura-
tion is equivalent to

fij D
nX

kD1;k¤i;j

mk.Rik � Rjk/�ijk D 0; (1)
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where Rij D 1=r3ij and �ijk D .ri � rj/ ^ .ri � rk/, see [1]. Let us consider five
bodies of masses m1;m2;m3, m4 and m5. The mass m2 is on the line of symmetry.
The remaining four bodies are placed at the vertices of an isosceles trapezoid. We
choose the coordinates for the five bodies as follows:

r1 D .�1; 0/; r2 D .0;�w/; r3 D .1; 0/; r4 D .�t; t/; and r5 D .t; t/: (2)

Due to the inherent symmetries of the trapezoidal five-body model we get the
following four equations from Eq. (1), which define the central configurations for
the model described above:

f14 D m1h11 C m2h12 C m4h13 D 0; f15 D m1h21 C m2h22 C m4h23 D 0;

(3)

f12 D m1h31 C m4h33 D 0; f24 D m1h41 C m4h43 D 0; (4)

where

h11 D .R13 � R15/�143; h12 D .R24 � R12/�124; h13 D .R15 � R45/�145;

h21 D .R13 � R14/�143; h22 D .R24 � R12/�125; h23 D .R45 � R14/�145;

h31 D .R13 � R12/�123; h33 D .R14 � R24/�124 C .R15 � R24/�125;

h41 D .R12 � R14/�124 C .R23 � R34/�243; h43 D .R24 � R45/�245;

R12 D R23 D .1C w2/�
3
2 ; 8R13 D 1;R14 D R35 D ..1 � t/2 C t2/�

3
2 ;

R15 D R34 D ..1C t/2 C t2/�
3
2 ;R24 D R25 D ..t C w/2 C t2/�

3
2 ; 8R45 D t�3;

�124 D �235 D .t C w.1 � t//;�125 D �234 D .t C w.1C t//;

�145 D �345 D �2t2;�245 D �2t.t C w/;�123 D 2w:

After writing Eqs. (3) and (4) in matrix form, and after a number of row operations,
we are left with a system of three equations which gives the following values of
�1 D m1=m4, and �2 D m2=m4 and the geometric constraint C:

�1 D �h43
h41

I �2 D h21h43 � h23h41
h41h22

D N�2
D�2

; (5)

C D h31h43 � h41h33 D 0: (6)
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3 Trapezoidal Five-Body Central Configurations

Theorem 1 Let Er D .r1; r2; r3; r4; r5/ be a non-collinear configuration with a
positive mass vector .m1;m2;m3;m4;m5/. Then,

(i) there is a region R�1 given by (9) in the tw-plane, such that for any .t;w/ 2
R�19�1 > 0 making Er a central configuration;

(ii) there is a region R�2 given by (10) in the tw-plane, such that for any .t;w/ 2
R�29�2 > 0 making Er a central configuration;

(iii) there is a region R in the tw-plane, such that for any .t;w/ 2 R9�1 > 0,�2 > 0
making Er a central configuration subject to the constraint C D 0.

No central configurations are possible in the complement R�1 , R�2 and R. Numeri-
cally, R�1 , R�2 and R are given in Figs. 1 and 2.

3.1 Proof of Theorem 1(i)

To find the central configuration region where �1 is positive, we will need to find
regions in the tw-plane where h43 and h41 have opposite signs. Note that

h43 D 2t.t C w/

 
1

8t3
� 1

.t2 C .t C w/2/3=2

!
< 0

Fig. 1 Central configuration region. Left: for �1 > 0; right: for �2 > 0
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Fig. 2 Left: region RN�2 (shaded); right: central configuration region R D R�1 \ R�2 (shaded)
where both �1 and �2 are positive. The bold line correspond to C D 0

when both of its factors have opposite sign. This is satisfied in the following region
of the tw-plane:

R�
h43 D

n
.t;w/ j

�
w � 0 ^

�
0 < t < 0:5.

p
3jwj C w/ _ t > �w

��
(7)

_
�

w > 0 ^ t > 0:5.
p
3jwj C w/

� o
:

In the complement of R�
h43

, we have h43 > 0. The denominator of �1 (i.e., h41/
can be written as

h41 D ..1 � t/w C t/
��

w2 C 1
��3=2 � �

t2 C .1 � t/2
��3=2�

C ..t C 1/w C t/
��

t2 C .t C 1/2
��3=2 � �

w2 C 1
��3=2�

:

As h41 is a sum of two non-linear functions of t and w, we have to use some
approximation techniques to find the region in the tw-plane where h41 > 0:

RC

h41
D
n
.t;w/ j

�
w < 0 ^ 0 < t <

w

w � 1
�

_
�

w < 0 ^ t > 0:5
p
2w2 C 3:5C 0:1

�

(8)

_
�

w > 2:81 ^ 0:75w

w � 1 < t < 0:5
p
2w2 C 3: � 0:3

�o
:
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Thus the CC region where�1 has positive real values is given as below. Numerically,
this region is given in Fig. 1:

R�1 D �
R�

h43 \ RC
h41

� [ �
.R�

h43 /
c \ .RC

h41
/c
�
: (9)

This completes the proof of Theorem 1(i).

3.2 Proof of Theorem 1(ii)

For �2 to be positive, N�2 and D�2 must have the same sign. The denominator of
�2, i.e., D�2 is positive when its components (h22; h41) have the same signs. We have
shown that h41 > 0 in RC

h41
: Let

h22 D
�
.t C 1/w C t/

�
.t2 C .t C w/2

��3=2 � �
w2 C 1

��3=2 �
:

Using a simple sign analysis of the two factors of h22 it is found that h22 > 0 in the
following region:

RC
h22

D
n
.t;w/ j

�
0 < t < 1 ^ �t.t C 1/�1 < w <

�
1 � 2t2

�
.2t/�1

�

_
�

t > 1 ^ �1 � 2t2
�
.2t/�1 < w < �t.t C 1/�1

�o
:

Therefore, D�2 > 0 in RD�2
D .RC

h22
\ RC

h41
/[ ..RC

h22
/c \ .RC

h41
/c/.

Using the same technique as we have used for h22, h41 and h43, we show that h21,
h23 and h43 are positive, respectively, in the following regions:

RC
h21

D ˚
.t;w/ j 0 < t < 1:82 ^ w 2 R

�
;

RC
h23

D ˚
.t;w/ j f.t;w/jt > 0:37 ^ w 2 R

�
;

RC
h43

D
n
.t;w/ j

�
w < 0 ^ 0:5.p3jwj C w/ < t < �w

�

_
�

w > 0 ^ 0 < t < 0:5.
p
3jwj C w/

�o
:

It is also possible for N�2 to be positive when at least one of h21h43 and h23h41 are
positive. It is found that N�2 is positive in the following region:

RN�2 D �
RN�2a \ RC

h41

�[ �RN�2b \ .RC
h41
/c
�[ �RN�2c \ .RC

h41
/c
�[ �RN�2d \ .RC

h41
/c
�
;
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where

RN�2a D f.t;w/j � 1 < w � �0:26 ^ 0:9jwj C 0:5w < t < 0:35g;
RN�2b D f.t;w/j .�5 < w � �1:8 ^ 0:9jwj C 0:5w < t < 1:8/

_ ��1:8 < w ��1 ^ 0:9jwj C 0:5w < t <�1w
�

_ .�1 < w < �0:4 ^ 0:4 < t < �w/

_ �0:3 < w < 1:3 ^ 0:4 < t < 0:9jwj C 0:5w
� _ .w � 1:3 ^ 0:4 < t < 1:8/g;

RN�2 c D ˚
.t;w/j�w < �5 ^ �1:8 < t < 0:9jwj C 0:5w _ t > �w

��

_ .�5 � w � �1:8 ^ t > �w/

_ .�1:8 < w � 1:3 ^ t > 1:8/ _ �w > 1:3 ^ t > 0:9jwj C 0:5w
��
;

RN�2 d D ˚
.t;w/j�w � 0:27 ^ 0 < t < 0:37

�

_ �0 < w < 0:27 ^ 0 < t < 0:5.
p
3jwj C w/

��
:

Thus, the central configuration where �2 > 0 is given by

R�2 D �
RN�2a \ RD�2

� [ �
Rc

N�2a \ Rc
D�2

�
: (10)

This completes the proof of Theorem 1(ii).
Finally, Theorem 1(iii) follows as a direct consequence of 1(i) and 1(ii). That is,

the central configuration region R D R�1 \ R�2 where both �1 and �2 are positive
can be found by taking the intersection of the regions found for �1 and �2. This
region is given in Fig. 2 with the geometric constraint C D 0:
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The Discrete Hamiltonian–Hopf Bifurcation
for 4D Symplectic Maps

Ernest Fontich, Carles Simó, and Arturo Vieiro

We consider a family of real-analytic symplectic four-dimensional maps FQ� , Q� 2 R
p,

p � 1, with respect to the standard symplectic two-form� D dx1^dy1Cdx2^dy2,
where .x1; x2; y1; y2/ denote the Cartesian coordinates. We assume that:

1. FQ�.0/ D 0 for all the values of Q� 2 R
p;

2. for Q� D Q�� the eigenvalues (multipliers) related to the fixed point 0 2 R
4 of FQ�

undergo a Krein collision with opposite Krein signature at ei O�0 with O�0 D 2��0,
�0 2 .0; 1=2/, �0 � q=m, q;m 2 N, .q;m/ D 1.

Under these hypotheses the fixed point of FQ� generically undergoes a
Hamiltonian–Hopf bifurcation at Q� D Q��. At the bifurcation the two pairs of
eigenvalues of DF.0/ suffer a Krein collision [9, 14] and leave the unit circle, so
the point becomes complex-unstable. This is a codimension 2 bifurcation [1] and
we can consider unfolding parameters ı; � such that ı changes the collision angle
(i.e., �0 D q=m C ı) and � measures the relative distance (in the parameter space)
to the bifurcation: 0 is a totally elliptic fixed point for � < 0 while it becomes a
complex-saddle for � > 0. From now on, we shall write Fı;� instead of FQ� .

In this work we investigate the transition to complex instability of the origin
of Fı;� at � D 0. Several aspects are considered. We note that the 2D invariant
manifolds that emanate from the complex-unstable point are of particular dynamical
interest because: (1) they can destroy some invariant tori around 0; and (2) they play
a role in organizing the dynamics in a neighbourhood of 0. For concreteness, below
we just comment on the results concerning the geometry and the splitting of those
invariant manifolds.

The normal form (NF) analysis of Fı;� for jıj; j�j � 1 helps in clarifying the
geometry of the invariant manifolds. At a Krein collision with opposite signature the
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linear part A D DF0;0.0/ possesses a non-trivial Jordan block. That is, A D S C N
with S semi-simple and N nilpotent. The Takens NF commutes with S, that is, there
is a canonical change of coordinates C1 which (formally) transforms Fı;� into the
NF, that is, one has

C1 ı F ı C�1
1 D TNF.Fı;�/C E.1/ı;� D S ı 'Hı;�

tD1 C E.1/ı;� ; (1)

where Hı;� is the 2-dof NF interpolating Hamiltonian, '
Hı;�
t denotes its associ-

ated flow and E.1/ı;� denotes the error between F and the Takens NF. From the
“suspension+averaging” procedure, truncating the NF averaging procedure at an
optimal order r1, see [2], it follows for � > 0 that jE.1/ı;� j < N1 exp.�C1=1/ with
0 < 1 < �1 max.jıj; �/ and N1;C1; �1 > 0 are constants.

In particular, the local geometry of the system is reflected in the 2-dof Hamilto-
nian Hı;� . Next, we will focus on the analysis of Hı;� and later we will discuss our
results concerning the effect of the exponentially small error E.1/ı;� on the splitting of
the 2D invariant manifolds.

The S-invariance of Hı;� implies that its quadratic terms are given by

H2 D �
�2 � 2�ı�1 C �

�



6
�2 C 
�3 � 1

2
�4

�
C O.�2/;

where �1 D x2y1�x1y2, �2 D .x21Cx22/=2, �3 D .y21Cy22/=2 and �4 D x1y1Cx2y2.
Note that S D '

�!�1
tD1 , ! D �i log�0 D � O�0. The quadratic part of OHı;� D �!�1 C

Hı;� is OH2 D �.!C 2�ı/�1 �
�2 CO.�/ and we see that �
 OHı;� D �
.�!�1 C
Hı;�/ undergoes a Hamiltonian–Hopf bifurcation. It can be then reduced to the so-
called Sokolskii NF, see [13, 16]. This can be achieved by a change of coordinates
C2 so that

C2 ı Hı;� ı C�1
2 D SNF.Hı;�/C E.2/ı;� ; (2)

where, after some non-canonical rescalings of the coordinates and time, see details
in [7, 10, 12],

SNF.Hı;�/ D ��1 C p
�.�2 C a�3 C b�23 /C O.�/; (3)

for suitable parameters a; b 2 R (that include the dependence on ı; this dependency
is also reflected in the performed scalings). In particular, �1 becomes a formal
integral of SNF.Hı;�/ (i.e., any truncation of the NF of the Hamiltonian is
integrable). Note that the averaging procedure up to an optimal order r2 implies
jE.2/ı;� j < N2 exp.�C2=2/ with 0 < 2 < �2 max.jıj; �/ where N2;C2; �2 > 0 are
constants.

From (3), see [11], it follows that the 2D invariant manifolds Wu=s are given
by the rotation by an angle O�0 of the zero energy level of a Duffing Hamiltonian
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system. We are interested in the case a < 0, � > 0 because the manifolds of the
Duffing system are bounded. For the complete Hamiltonian system (2), the invariant
manifolds do not coincide. Using a suitable Poincaré section, the complete system
can be regarded as a near-the-identity family of area-preserving maps. They have
the Duffing system as a limit vector field. Hence, as it follows from the general
approach in [5], one has that the splitting angle ˛ behaves as

˛ 	 A�B exp

� ��p�a
p
�

�
	 AjRe �jB exp

��� jIm �j
jRe �j

�
;

where � 2 C is one of the eigenvalues (which form a complex quadruplet)
associated to the origin of the Hamiltonian system Hı;� . The concrete expression of
the asymptotic expansion of this splitting was obtained in [7]. Here we take further
advantage of the geometry of the system to reduce it to a near-the-identity family of
analytic maps.

This completes the analysis of the NF Hamiltonian Hı;� . It remains to clarify the
role of the error E.1/ı;� in (1). To this end we note that, from (1)–(2), it follows that
the discrete system Fı;� behaves, in a neighbourhood of Wu=s, as a quasi-periodic
forcing of an integrable Duffing Hamiltonian system. The two frequencies are
related to the Krein collision angle O�0 (this is given by the semi-simple part of DF0;0
and it is related to the rotation of the Wu=s already present in the Hamiltonian Hı;�)
and the extra time-frequency (related to the fact that the map Fı;� is the composition
of a semi-simple part with a near-the-identity map which can be written, by the
so-called suspension procedure, as the flow of a 2 C 1=2 dof Hamiltonian). As a
consequence, one expects that the splitting of Wu=s for Fı;� behaves as described
in [3, 4, 15]. That is, the dominant harmonic of the Fourier expansion of the
Melnikov potential function is expected to change as the size of the perturbation
� tends to 0.

Nevertheless, we can take advantage of the intrinsic geometric structure given
by (1)–(2). One of the frequencies basically is responsible of the splitting shown
in the Hamiltonian Hı;� , while the interaction between the two creates the quasi-
periodic phenomena. But (1)–(2) also define a privileged direction to measure the
quasi-periodic effect for the map Fı;� : the time along the homoclinic trajectory of
the interpolating Hamiltonian Hı;� . In this work we introduce a splitting function
 (instead of a Melnikov vector) to measure this effect along this direction. The
function  measures the distance between Wu and Ws in a fundamental domain (an
annulus). In this annulus we introduce coordinates .˛; t/ 2 S

1 � Œ0; 1� and relate
them to the natural parametrisation of Wu=s. This can be seen as a generalization of
the ideas in [5] to 4D maps.

Recall that the role of ı is to change the collision angle O�0. Hence, the relevant

unfolding parameter is �. At � D 0 the eigenvalues � D j�jei O� of F� have a Krein
collision, i.e., j�j D 1 C a� C O.�2/, O� D O�0 C O.�2/. For ı fixed, assuming that
F� can be extended analytically to a neighbourhood of f˛ 2 C=2�Z j jIm ˛j <
�g � f
.t/ j jIm tj < �g for some 0 < � < �0 and 0 < � < �0, one can
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bound the Fourier coefficients of  . If h denotes log.�/ one obtains j .˛; t/j <
KS; where K > 0 is a constant and S D P

.k;n/2Z2nf0g exp.�2�jn ��0kj�=h � jkj�/.
The sum S can be decomposed into S D SCC C SC� C S�C C S�� C SC0 C

S0C C S�0 C S0�, according to the signs of D D 2�.n � k�0/ and k, respectively.
Then we look for k D k�.h/ > 0 such that it gives the minimum of the dominant
coefficients ˇk

�

in the exponential bound of S.

Proposition 1

(i) Let �0 D p=q, with .p; q/ D 1 (rational collision). Then, there exists �0 > 0

such that for � < �0 the following properties hold:

(a) k�.h/ D ˇ�C
k

�
.h/ D q, where h D log.�.�//;

(b)  can be bounded by a function whose behaviour is determined by the
value of k D k��.h/ minimizing the coefficient ˇCC

k . One has k��.h/ D
b.q � 1/=pc independently of h (provided �0 is small enough). Then,
ˇCC

k
��
.h/ 	 C=h, where C D C.k��/ > 0 is a constant and, consequently,  

is bounded by

j .˛; t/j � K exp.�C=h/;

where K > 0 is independent from ˛, t and �.

(ii) Let �0 2 R n Q (irrational collision). Then,  is bounded by a function that
is asymptotically exponentially small in a parameter  , such that  & 0 when
h & 0. In this case, the function  reflects the quasi-periodic properties of the
splitting function: the dominant harmonic k.h/ of  changes infinitely many
times as h ! 0.

The theoretical results have been guided by several numerical explorations using
a Froeschlé like 4D map as a concrete model. In particular, we have computed
the splitting of Wu=s (measuring a volume V of a 4D parallelotope defined by two
tangent vectors to each invariant manifolds at a given homoclinic point, see [8]) to
check that the behaviour of V is in agreement with the behaviour of  given by the
above Proposition.

The considered map is related to the time- Qı stroboscopic map of the 2-dof
Hamiltonian

H. 1;  2; J1; J2/ D J21
2

Ca2J1J2Ca3
J22
2

Ccos 1CQ� cos. 2/; where a2; a3; Q� 2 R;

and was obtained in [8] from the NF analysis of a generic 4D analytic map around a
totally elliptic fixed point when studying the non-strong double resonance structure
associated to the crossing of two resonances of different (but similar!) order. Several
implications of the transition to complex-saddle in this general setting have been
included in [6], where the results presented here can be found.
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Moment Map of the Action of SO.3/ on R
3 � R

3

José Antonio Villa Morales

The aim of this extended abstract is to expose the main results of the moment map of
the action of SO.3/ on the cotangent bundle of R3. The moment map for this action
has a strong motivation from the angular momentum studied in classical mechanics.
Suppose we have a central force and a particle which rotates around this force with
velocity v and position r, then we know that the angular momentum is given by
r � v. Viewing the rotation of the particle as an action of the group SO.3/ over the
cotangent bundle of R3 we can find that the angular momentum is related to a map
between T�

R
3 and the dual of the Lie algebra so.3/ called moment map.

1 Lie Group Actions and Symmetric Hamiltonians

Definition 1 Let M be a differential manifold and G a Lie group. An action of G on
M is a smooth map G�M ! M, .g; p/ 7! gp, satisfying the following conditions:

(1) if e is the null element in G then ep D p for all p 2 M;
(2) for all g; h 2 G and p 2 M, g.hp/ D .gh/p.

A symplectic manifold is an even dimensional differentiable manifold M with
a non-degenerate and closed 2-form !. Remember that ˛ 2 �k.M/ is closed if
s˛ D 0.

Definition 2 Let .M; !/ a symplectic manifold and G a Lie group acting on .M; !/.
We say that the action is symplectic if L�

g! D !, for all g 2 G.
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Suppose we have a Lie group G acting over a differentiable manifold M. For
an arbitrary tangent vector � 2 g we construct a vector field, called the infinitely
generated vector field X� given by

X�.p/ D d

dt tD0
exp.t�/p:

Given the symplectic manifold .M; !/, and a vector field X on M, we denote the
contraction by iX! and it is defined by iX!.Y/ D !.X;Y/ for Y a vector field in M.

Definition 3 Let .M; !/ be a symplectic manifold, and X a given vector field on
M. If there is a function H 2 C1.M/ such that iX! D dH we say that H is the
Hamiltonian associate to the vector field X. Conversely, if given a differentiable
function H 2 C1.M/ there exists a vector field X such that iX! D dH we say that
X is the vector field associated to the function H.

We will denote by XH the vector field associated to H and, conversely, by HX the
function associated to the vector field X.

2 Symplectic Structure on the Cotangent Bundle

Given an n dimensional manifold M, it is possible to construct a 1-form on T�M
which give rise to a symplectic form on T�M. We only expose the construction
result on a coordinate chart; a free coordinate construction can be found in [1].

Proposition 4 Let M a differentiable manifold. Then, there exists a 1-form � on
T�M such that, for a chart .U; '/ on T�M with coordinates .x1; : : : ; xn; p1; : : : ; pn/,
� is given by

� D dx1 ^ dp1 C � � � C dxn ^ dpn:

Definition 5 The 2-form ! WD �d� on T�M is called the symplectic form over the
cotangent bundle.

For the next section, we will use the fact that the cotangent bundle of R3 is trivial,
so we can express the symplectic manifold .T�

R
3; !/ as .R3 � R

3; !/.

3 Rotations on R
3 � R

3

Consider the symplectic manifold .R3 � R
3; !/, and define the action of the Lie

group SO.3/ over it given by

SO.3/� .R3 � R
3; !/ ! .R3 � R

3; !/

.A; .u; v// 7! .Au;Av/:
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Proposition 6 This action of SO.3/ on .R3 � R
3; !/ is symplectic.

We give the idea of the proof: by definition ! D �d� , where � is the
canonical 1-form of the cotangent bundle given in a chart .U; '/ with coordinates
.x1; : : : ; xn; p1; : : : ; pn/ by ! D Pn

i dxi ^ dpi. With some calculations we can verify
that, for all A 2 SO.3/, L�

A� D � . And, by the commutativity of the operator d with
the pullback, it is possible to verify that L�

A! D !.

Proposition 7 Let B 2 so.3/ and let XB be the corresponding infinitely generated
vector field of B. Then, the Hamiltonian associated to XB is given by

HXB.u; v/ D hAu; vi:

Proposition 8 Let B 2 so.3/ and let XB be the corresponding infinitely generated
vector field of B. Then, the Hamiltonian HXB is symmetric, i.e., for all A 2 SO.3/,

L�
AH D H:

3.1 Moment Map of Rotations on R
3 � R

3

The main goal of this section is to define the moment map of a symplectic action,
and to calculate it for the specific action of SO.3/ over the cotangent bundle of R3.

Definition 9 Let .M; !/ be a symplectic manifold, and let G be a Lie group with a
symplectic action over .M; !/. A moment map is a function�W M ! g� such that for
all � 2 g there is a function�� W M ! R such that d�� D iX� ! and��.p/ D �.p/.�/.

Proposition 10 Let .M; !/ be a symplectic manifold, let H 2 C1.M/ be a
symmetric Hamiltonian, and consider the vector field XH associated to it. Then,
its moment map is a first integral of XH.

We have that the Lie algebra so.3/ has dimension three and then, we can identify
it with the Euclidean space R

3. We define the map so.3/ ! R
3 via

0

@
0 �3 ��2

��3 0 �1

�2 ��1 0

1

A �! .�1; �2; �3/:

In A 2 so.3/, we denote the associated vectors in R
3 as �A. If we take a tangent

vector B 2 so.3/ and u 2 R
3, by calculations, we can verify that

Bu D �B � u:
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Proposition 11 There exist an inner product on the Lie algebra so.3/ given by

hA;Biso.3/ D tr.AtB/

2
:

Now, consider the moment map�WR3�R
3 ! so.3/. By definition, d Q�B D iXB!.

But, by definition of associated Hamiltonian, we also have d Q�B D iXB! D dHB. So,
we conclude Q�B.u; v/ D HB.u; v/ and, using this last equality, we calculate the
moment map

. Q�.u; v//.B/ D hBu; vi D h�B � u; vi D hu � v; �Bi:

Hence, given a tangent vector B 2 so.3/, we have .�.u; v//.B/ D hu � v; �Bi
and, using the inner product of so.3/, we get hu � v; �Bi D hAu�v;Biso.3/. It is then
possible to conclude that the moment map is �.u; v/ D Au�v .

4 The Moment Map of the Action SO.3/ Over T�SU.2/

We make the construction of the action of the group SO.3/ over the cotangent bundle
T�

R
3 and, via the moment map, we find a first integral of the system given by this

action. Naturally, we have an action of SO.3/ over the Euclidean space R
3 which is

the mathematical model of the rotations in three dimensional space. But if we make
a one point compactification of R3, we obtain the Lie group SU.2/, so it is natural to
try to extend this action to an action over SU.2/. But following the theory developed
above, if we see the cotangent bundle of T�SU.2/ as a symplectic manifold, can we
extend the action of SU.2/ to an action of SO.3/ over T�SU.2/? We enumerate the
steps for constructing the possible action:

1. The action of SO.3/ over R3 is given by multiplication of a matrix and a vector
on R

3. If we make the one point compactification of R3 at the point 1, how can
we define an action SO.3/ � SU.2/ ! SU.2/ such that .A;1/ 7! A1 makes
sense?

2. SU.2/ is a Lie group and then its cotangent bundle is T�SU.2/ D SU.2/ � R
3.

So it is natural to define the action of SO.3/ by .A; vp/ 7! .Ap;Av/. Does this
define a symplectic action?

3. How can we calculate the moment map for this action?
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Virus Dynamics and Evolution
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Foreword

The Workshop on Virus Dynamics and Evolution was held from June 23th to June
27th 2014, at the Centre de Recerca Matemàtica (CRM) in Bellaterra, Barcelona,
Spain. It was the third event in the framework of CRM series on Mathematics in
Life Sciences (the two previous events being the “Workshop on Emergence, Spread
and Control of Infectious Diseases”, held at the CRM in 2013, and the “Advanced
Course on Mathematical Methods of Biological Evolution”, which preceded the
workshop). The intention of the organizers of this interdisciplinary workshop
was to bring together biologists and mathematicians to exchange, in an informal
and friendly atmosphere, ideas, methods and open problems. The most desirable
outcome of the workshop would be developing lasting collaborations between them.

The workshop attracted more than 30 scientists, both mathematicians and
biologists, affiliated in Spain, Europe and around the world, and proved to be
highly successful. The invited keynote lectures were delivered by Graeme Wake
(Massey University, New Zealand), Yoh Iwasa (Kyushu University, Japan), Susanna
Manrubia (Centro de Astrobiología, INTA-CSIC, Spain), Esteban Domingo (Centro
de Biología Molecular “Severo Ochoa”, CSIC-UAM, Spain), Fernando García-
Arenal Rodríguez (Centro de Biotecnología y Genómica de Plantas, UPM-INIA,
Spain), Ricard Solé (Universitat Pompeu Fabra, Catalonia), Santiago F. Elena
(Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Spain), and
Juana Díez (Universitat Pompeu Fabra, Catalonia). The workshop also gave an
opportunity to young researchers and students to present their results and findings
and to learn from more experienced colleagues.
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The organizers would like to thank all participants and the authors, who
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for financial support, and the CRM’s administrative staff for wonderful organization
of this event.
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Modelling Infection Dynamics and Evolution
of Viruses in Plant Populations

Aurora Fraile and Fernando García-Arenal

1 Introduction

Mathematical models have been used extensively to analyse and/or predict the
dynamics of pathogen infection in host populations, as well as the evolution of
key pathogen traits, notably infectivity and virulence. Model analyses have been
very useful in identifying factors that affect infection dynamics and pathogen
evolution, and in predicting their effects under different scenarios. However, a
serious shortcoming of theoretical analyses is that often there is not enough
information on how realistic the underlying assumptions are, and very often there
is a serious lack of information on the range of values of key model parameters. An
example is the classical susceptible-infected-recovered (SIR) model, first proposed
by Kermack and McKendrick [8] in 1927, and becoming the basis to predict
virulence evolution. A central assumption of this model is that both virulence,
defined as the effect of infection on host mortality, and the rate of transmission
to new hosts, are positively correlated with the within-host multiplication rate of
the pathogen, so that a trade-off between virulence and transmission is established
to optimize the intrinsic reproduction value. Interestingly, a positive correlation
between virulence and within-host multiplication has been demonstrated in few
host-parasite systems, and seems not to be the rule for the whole classes of parasites,
including plant viruses [10], which has not discouraged the use (and the utility) of
SIR-based evolutionary models.

A central interest of our group has been the analysis of the evolution and infection
dynamics of viruses in their host populations. We have developed simple models that
explain field observations, and we have made efforts to experimentally estimate the
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values of relevant model parameters, so that realistic conditions would be simulated.
We work with plant-infecting viruses and a large part of this work has involved
Cucumber mosaic virus, an economically important virus that is a good model to
address significant epidemiological and evolutionary questions.

2 Cucumber Mosaic Virus

Cucumber mosaic virus (CMV, family Bromoviridae), is a plant virus with a single-
stranded, messenger sense, RNA genome built of three segments that are separately
encapsidated in isometric particles. The CMV is a typical multi-host pathogen, with
the broadest host range among plant viruses, infecting more than 1200 species
in more than 100 mono- and dicotyledon families. The CMV is horizontally
transmitted by more than 80 aphid (Homoptera: Aphididae) species. Transmission
is non-persistent: the virus does not infect the insect vector but is retained in its
mouth parts, and the aphid is able to transmit the virus for a short time (<6 h) after
acquisition. The CMV is also transmitted vertically through the seed, with varying
rates according to the plant species. Seed transmission may be epidemiologically
relevant in weed reservoirs that, together with other crops, are inoculum sources for
crop epidemics, see [7, 9]. CMV is the helper virus for a satellite RNA (satRNA), a
small, non-coding, single-stranded RNA that is not infectious by itself but depends
on CMV for its replication, encapsidation, and transmission. CMV-satRNA may
modulate the pathogenicity of CMV according to the strains of CMV and satRNA
and to the host plant species. While most satRNA variants do not modify, or
attenuate CMV symptoms in most plant species, in tomato two main types can
be distinguished, those that attenuate CMV symptoms (A-satRNAs) and those that
aggravate them to a systemic necrosis (N-satRNAs). Interestingly, in most other
hosts of CMV the phenotypes of these two types of satRNAs are undistinguishable,
and the symptoms caused by satRNA-supporting or by satRNA-free CMV isolates
are apparently the same. CMV-satRNAs occur with low frequency in the field, high
satRNA prevalence has been mostly associated with epidemics of tomato necrosis.
It has been shown that satRNAs spreads in the CMV population as a molecular
hyperparasite [1]. Indeed, CMV-satRNA parasitizes the CMV helper isolate, as it
competes with the CMV genomic RNAs for the replication complex, and depresses
significantly virus accumulation in different hosts. In addition, as CMV virulence
in different host plant species is genetically determined, and is modulated by the
presence of satRNAs, CMV-satRNA can be considered as a fourth, non-essential,
component of CMV genome.

From 1986 to 1992 an epidemic of systemic necrosis occurred in tomato crops
in eastern Spain, caused by CMV plus satRNAs [4]. CMV isolates collected during
this epidemic caused three different symptoms in tomato plants: a systemic necrosis
(N isolates), a stunting of the plant and curling of the leaves (A isolates), or a
stunting of the plant with extreme reduction of the leaf lamina (Y isolates). N and A
isolates were associated with satRNA-variants necrogenic and non-necrogenic (i.e.,
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attenuating of CMV symptoms), respectively, while Y isolates were not associated
with satRNAs [5]. The symptoms caused by N and A isolates were determined solely
by the presence and nature of the associated satRNA, and not by the interaction
between satRNA variant and CMV variant [4].

3 Conditions for the Emergence of CMV Genotypes
Necrogenic for Tomato: Single Host Populations

Since tomato necrosis was not reported previously in Spain, this epidemic gave us
the opportunity to model and analyse the conditions for the emergence of highly
virulent virus genotypes, i.e., the conditions under which necrogenic CMV isolates
would invade the tomato-infecting CMV population. We used first SIR-like models
in which plants would be single-infected by just one CMV genotype [5]. At odds
with typical SIR models, an equation describing the dynamics of a recovered
subclass of plants was not included because CMV, as most plant viruses, cause
persistent infections. The key model parameters of virulence and transmissibility
were estimated experimentally for CMV genotypes, Y, A and N, which ranked
N > Y > A for virulence and Y > A > N for transmissibility. While transmissibility
correlated positively with within-host multiplication, this was not so for virulence,
the most virulent genotype N accumulating to much lower levels than the Y or
A genotypes, at odds with a central assumption of SIR models. For low and
intermediate aphid densities, the predictions of the single-infection model agreed
well with the observed long term evolution to decreased levels of virulence in the
field, but did not explain the appearance and invasion of N genotypes, see [1, 5].

Next, we used a co-infection model that considered competition between the
CMV genotypes in double-infected plants, competition affecting transmission, and
included the possibility that the most competitive genotype takes over the host,
approaching super-infection as a limit of co-infection. That model was a modifi-
cation of that proposed by Mosquera and Adler [9], and is fully described in Escriu
et al. [5]. Parameters of the competition between the different CMV genotypes in
co-infected tomato plants, and the probabilities of competitive exclusion, were also
determined experimentally. This co-infection model predicted the observed long-
term evolution to low levels of virulence at low aphid density and, in addition,
explained the invasion of the CMV population by N-CMV, which occurred at higher
aphid densities and in co-infection with A-CMV, according to field observations [5].
An important conclusion from model analyses was that the density of the aphid
vector’s population is a major factor in the evolution of CMV virulence, which
may be relevant for the design of control strategies for CMV. Another important
conclusion is that SIR-like models accurately predicted the evolution of CMV
virulence, even if the central assumption of a link between virulence and virus
multiplication did not hold in the analysed system.
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4 Conditions for the Emergence of CMV Genotypes
Necrogenic for Tomato: Heterogeneous Host Populations

Since in host plant species other than tomato all CMV genotypes cause similar
symptoms, it could be that their virulence, within-host accumulation and transmis-
sibility would differ from those in tomato. Hence, these hosts should be considered
in analyses of N-CMV emergence. Thus, analysed CMV virulence evolution over
two host species, among which N, A and Y genotypes will differ in within host
multiplication, competition in mixed infections, virulence and transmission. In
addition to tomato, the focal host in which the necrosis epidemic emerged, melon
was chosen as the second host. Since satRNA variants responsible for the N and
A CMV types in tomato do not differ in phenotype in melon plants [2], melon
represents the large majority of CMV hosts in this respect. We extended the
previous co-infection model to two hosts, allowing for inoculum flows between
hosts, which is according to knowledge on CMV biology. Parameters of within-
host multiplication, within-host competition, virulence and transmission, were
determined experimentally for different CMV genotypes in each host. Importantly,
Y, A and N CMV genotypes ranked differently for virulence and transmissibility
in either host. The model is described in Betancourt et al. [3], and simulations
were done under different scenarios that would mimic realistic field conditions. For
instance, both hosts would grow synchronically, and inoculum flows between host
could be symmetrical or asymmetrical, as would be the case of weeds within a crop
or outside of the crop; also, hosts would overlap only part of the cycle, which would
be the case of other weeds or crops. For most simulated conditions, evolution to high
virulence in the more competent tomato host was little dependent of inoculum flow
from melon, while in melon it depended of transmission from tomato. Virulence
evolution bifurcated in each host at low, but not at high, vector densities. There
was no evidence of between-host trade-offs in CMV life history traits, at odds with
most theoretical assumptions. Predictions agreed with field observations and, as in
the previous work, are relevant for designing control strategies for multi-host plant
viruses.

5 Future Work

All the above described analyses were done using models that considered that the
probability of infection of susceptible-uninfected plants (S plants) depends on the
density of susceptible and infected plants (I plants). Because CMV is transmitted
by aphids, it could be more realistic to consider a model in which the probability
of infection depends on the density of susceptible plants and of viruliferous
aphid vectors. This model should allow for introducing realistic parameters of
transmission according to the transmission mechanisms, e.g., for non-persistent
transmission in the case of CMV. We have recently developed such a model, which
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has been used to analyse how efficient a host is as a reservoir for infection of other
hosts [6].

Last, an important limitation of all models considering that the probability of
infection varies according to the product of susceptible and infected plants, or
plants and aphids, is that they ignore how this probability is modified by the
spatial distribution of S and I plants. Extensive epidemiological analyses in crops of
infection by viruses non-persistently transmitted by aphids show that the distribution
of infected plants is aggregated, with the number of foci, their size and the degree
of aggregation varying along the epidemics as incidence increases [1]. Our next
goal is to develop spatially-explicit models that would integrate these field estimates
of aggregation, for the analysis of the population dynamics and evolution of plant
viruses.
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The Spread of Two Viral Strains on a Plant Leaf

Juan Carlos Cantero-Guardeño, Vladimir Sobolev, and Andrei Korobeinikov

1 Introduction

Our objective is to construct a mathematical model for the spread of two subtypes (a
wild type and a mutant) of a virus on a plant leaf. A model that we are to construct
has to take account of a number of observed facts, and in particular:

1. the presence of one type of virus in infected cells;
2. it is a system with competition between two types: the presence of one type

suppresses the spread of the other;
3. co-infection is a very rare event: infection of a cell by one type prevent co-

infection by the other strains; thus, in real life situation, there is a spatial
separation of the two types of virus on a leaf.

Our hypothesis is that a presence of a sub-type within a cell suppresses proliferation
of the competitors.

2 Model

Let u.x; t/ and v.x; t/ be the concentrations of the two sub-types of a virus,
respectively, at a point x 2 Œ0; 1� and at a time t. Modifying Fisher–Kolmogorov
equation that satisfies hypothesis (1), in order to satisfy hypothesis (2) and (3),
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we propose the following system of partial derivative equations as a model for the
problem:

@u

@t
D �1

@2u

@x2
C u.1� u � bv/.1 � qv/;

@v

@t
D �2

@2v

@x2
C av.1� cu � hv/.1 � ru/;

(1)

where a, b, c, h, q, r 2 R
C. Here the terms 1� qv and 1� ru reflect the suppression

of proliferation of a type by the presence of the competing type. This system has to
be complemented with Neumann (no-flux) boundary conditions

@u

@x
.x D 0; t/ D @u

@x
.x D 1; t/ D 0;

@v

@x
.x D 0; t/ D @vu

@x
.x D 1; t/ D 0:

(2)

Without the “suppressing” terms .1 � qv/ and .1 � ru/, the system exhibits a
very limited degree of the sub-types interaction. The steady-state in this case is a
homogeneous distribution of the sub-types over the interval Œ0; 1�.

3 Numerical Simulation

For simplicity, we assume that all parameters are the same for both sub-types:

@u

@t
D �

@2u

@x2
C u.1 � u � v/.1 � qv/;

@v

@t
D �

@2v

@x2
C v.1 � u � v/.1 � qu/;

i.e., �1 D �2 D �, q D r and a D b D c D h D 1. We also assume symmetric
initial conditions

u.x; 0/ D
(
0:9 for x 2 .0; 0:1/
0 else;

v.x; 0/ D
(
0:9 for x 2 .0:9; 1/
0 else:

Depending on a value of q, we observed the spatial separation of the two types. For
comparatively small q, such as that in Figs. 1 and 2, where q D 0:1, both u.x; t/ and
v.x; t/ tend to a homogeneous steady state u.x; t/ D v.x; t/ D 0:5. For larger values
of q, for instance such as that in Figs. 3 and 4, where q D 5 (and for the same value
of � D 0:00001 the same initial conditions), the system tends to a steady state with
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Fig. 1 Initial conditions u.x; t D 0/ (the left-hand column on the left plot) and v.x; t D 0/ (the
right-hand column on the left plot), and u.x; t D 100000/ � v.x; t D 100000/ on the right plot;
for q D 0:1

Fig. 2 Evolutions of the function u.x; t/ (left) and v.x; t/ (right) for t 2 Œ0; 100000� and q D 0:1

Fig. 3 Initial conditions u.x; t D 0/ (the left-hand column on the left plot) and v.x; t D 0/ (the
right-hand column on the left plot), and u.x; t D 100000/ � v.x; t D 100000/ on the right plot;
for q D 5

Fig. 4 Evolutions of the function u.x; t/ (left) and v.x; t/ (right) for t 2 Œ0; 100000� and q D 5

spatial separation of the two types. Thus, the computations clearly indicate that the
separation of two viral types is possible for some q.
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4 Analysis of the Stability of Homogeneous Solution

Consider the homogeneous solution .u.x; t/; v.x; t// D .u; v/, 8 .x; t/ 2 Œ0; 1�� R
C

of the system (1) satisfying 1 � u � bv D 0 and 1 � cu � hv D 0. Here, u D
.b � h/=.bc � h/ and v D .c � 1/=.bc � h/. Let us consider a perturbation of this
solution in the form

.u.x; t/; v.x; t// D .u C �.x; t/; v C �.x; t//:

Then, � and � must satisfy the following system of partial differential equations:

�t D �1�xx C A.b�C �/; A D .h�b/..bc�h/�q.1�c//
.bc�h/2

;

�t D �2�xx C B.h�C c�/; B D a .1�c/..bc�h/�r.b�h//
.bc�h/2

:

Assuming that either h < b and 1 < c, or h > b and 1 > c, and denoting
� D bc � h, we can conclude that the steady-state u; v is unstable (A and B are both
positive, and hence a small perturbation should increase), if

q >
�

b � h
and r >

�

c � 1

hold. Furthermore, under these same conditions, steady-state u; v is stable (A and B
are both negative, and hence a small perturbation would eventually disappear), if

q <
�

b � h
and r <

�

c � 1

hold.
For the simplified case with equal coefficients for both sub-types, that we

numerically integrated, u D v D 1=2, and the system of partial differential
equations for perturbations is

�t D ��xx C
�

q

4
� 1

2

�
.�C �/;

�t D �2�xx C
�

q

4
� 1

2

�
.�C c�/:

Hence the system asymptotic behaviour depends on the sign of q=4 � 1=2. That
is, it depends on whether the parameter q is greater or smaller than 2: for q < 2

the system tends to the homogeneous steady-state u D v D 1=2, while for q > 2

the system tends to the non-homogeneous solution with a separation of u.x; t/ and
v.x; t/. This result is congruent with the numerical simulation that we described
above.
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5 Conclusion

These computations and analysis confirm that the proposed model with the suppres-
sion of proliferation of a competing type by a type that infected a cell first is capable
to describe the observed spatial separation of viral subtypes on a plant leaf.
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Tracking the Population Dynamics of Plant
Virus Escape Mutants

Santiago F. Elena

One of the most challenging problems in agronomy is to obtain plants that are
resistant to the infection of pathogens. Not only this, but also that resistance must
be as durable as possible. Unfortunately, most, if not all, strategies to generate such
resistant plants have been overcome by the tremendous evolutionary potential of
viral pathogens. In recent years, a new strategy based on the transgenic expression
of artificial micro-RNAs (amiRs), designed to target viral genomes and induce
their degradation, has been developed. This resistance has proven to be highly
effective and sequence-specific against several plant viruses infecting Arabidopsis
thaliana [7]. However, before these transgenic plants can be deployed in the
field, it was important to evaluate the likelihood of the emergence of resistance-
breaking mutants [2, 5]. Two issues were of particular interest: (1) whether such
mutants can arise in non-transgenic plants that may act as reservoirs for the viral
populations and (2) whether a suboptimal expression level of the transgene, resulting
in sub-inhibitory concentrations of the amiR, would favor the emergence of escape
mutants.

1 Evaluating the Durability of amiR-Mediated Resistance
Against Evolving Virus Populations

To address the first of the above issues, we experimentally evolved independent
lineages of Turnip mosaic virus (TuMV; genus Potyvirus, family Potyviridae) in
fully susceptible wild-type A. thaliana plants and then simulated the spill over
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of the evolving viral populations to fully resistant A. thaliana transgenic plants.
To address the second issue, the evolution phase took place with transgenic
plants that expressed the amiR at sub-inhibitory concentrations. In both cases, 25
independent evolutionary lineages were generated and maintained until resistance
was broken. Our results show that TuMV populations replicating in susceptible
hosts accumulated resistance-breaking alleles that resulted in the overcoming of
the resistance of fully resistant plants [3]. The rate at which resistance was broken
was seven times higher for TuMV populations that experienced sub-inhibitory
concentrations of the antiviral amiR [3].

A molecular characterization of escape alleles using Sanger sequencing showed
that the target genomic sequence of all TuMV escape mutants contained at least one
nucleotide substitution, generally a transition of the G-to-A and C-to-U types, with
many instances of convergent molecular evolution. Most of these mutations were
synonymous but a few changed the encoded amino acid.

Using an adaptation of the classic Luria–Delbrück fluctuation test, we also
evaluated in vivo the mutation rate of TuMV on the amiR locus [1], and found
that it was in the lower side of values reported for other RNA viruses [8]: 5 � 10�5
mutations per nucleotide and generation.

2 A Population Genetic Model of the Dynamical Process

To better understand the viral population dynamics taking place within each host, as
well as to evaluate relevant population genetic parameters, we performed in silico
simulations of the experiments [3]. The experiments were simulated using a bit
string Monte Carlo model in which digital genomes were represented by binary
strings, S, of length L D 31 bits. The digital genomes explicitly considered the 21st
of the target and added ten more bits, each corresponding to one of the ten viral
cistrons. We made this distinction to disentangle the effects due to mutation in the
target (evaluated at the challenging step of the experiment) from those associated
to changes in other viral genes and that determine the overall fitness of the virus.
Maximum string population size was set to Nmax D 5000 genomes. The simulation
model considered 25 independent lineages. Each lineage started with a sample of
size N < Nmax of wild type genomes. For each lineage we let the population to
experience � replication events. At each event, two locations in the population were
randomly chosen. If location i already contained a string, it was copied to site j with
probability

Pij D 1

1C exp .�4fij=T/
;

which depends on the fitness difference 4fij D fi � fj between strings Si and Sj (if
site j is empty fj D 0). Here, T is the Boltzman temperature, which is a measure of
the noise tied to replication events and it was fixed to T D 0:2. The fitness of a given
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string, Sk, is obtained from the binary composition of the 10 loci. We consider four
types of deleterious fitness landscapes: additive .� D 1/, antagonistic .� < 1/ and
synergistic .� > 1/, plus one in which mutations in the bits representing the 10 viral
cistrons were considered as lethal. For the three deleterious landscapes we compute
the fitness as

fk D 1 � d�H=10;

where dH is the Hamming distance between sequence k and the corresponding wild
type, and � measures the sign and strength of epistasis. During replication, each bit
of the target mutated with probability �. The other 10 loci mutated with probability
�li D 3�v=2li, where li is the length of locus i and the 2=3 is introduced to consider
that mutations at third codon positions are neutral. In order to differentiate between
the experiments carried out in wild type and partially resistant plants, we consider
that if the string chosen for replication was wild type it will be degraded with
probability " D 0 in wild type plants and " > 0 for in partially resistant plants.

For each lineage we let the population to evolve over � replication events
according to the previous rules. Then, we took two random samples of size N. The
first sample was used to initiate the next population (simulating the next passage
in the experimental evolutionary lineages) until resistance was broken. The second
sample was used to evaluate the likelihood of resistance-breaking as follows. For
each string Si in the second sample we evaluated its pathogenicity as

�.Si/ D 1 �…2l
kD1Œ1 � �.Sik/�;

where �.Sik/ is the empirical probability that a change in position k of the 21st
target will be an escape mutation [5]. Next, we evaluated the likelihood of resistance
breaking for this second sample, after 20 trials (the number of plants inoculated
during the challenging experiments), as Pb D 1 � .1 � hpi/20, where hpi D
1
N

PN
iDl �.Si/ is the average pathogenicity of all the strains contained in the sample.

If Pb � 0:05 we assumed that resistance was broken. For a sample of 20 plants this
threshold means at least one plant becoming symptomatic.

The most robust estimates of model parameters were obtained for an additive
fitness landscape with parameters. In the case of viruses evolved in wild type plants:
h�i D 13;918 replications between passages, h�i D 4:1 � 10�5 mutations per site
and generation and hNei 	 19% of the total population. Likewise, the parameters
estimated for the viruses evolved in the partially resistant plants were h�i D 5629,
h�i D 7:7 � 10�5, hNei 	 1:4% of the total population size, and h"i D 0:22 per
genome. The estimated mutation rates are in excellent agreement with the empirical
observations shown in the previous paragraph (Fig. 1). This data also suggests a
major role of genetic drift.
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Fig. 1 Results of the simulation studies for the set of parameters that showed the best fit to
empirical data (solid lines). Left: simulation results for the WT A. thaliana-evolved TuMV
lineages. Right: simulation results for the TuMV lineages evolved in partially resistant 10–4 plants.
The red dots correspond to the best-fitting trajectory obtained from the most optimized parameter
set. Red bars denote the SD among 1000 runs of the simulation model using the best-fitting
parameters. For details, see [4]

3 Molecular Characterization of the Evolutionary Dynamics
of TuMV Populations

Next, to gain deeper insights into the population dynamics of these viral population,
we used Illumina ultra deep sequencing to identify virus sequence variants at
frequencies as low as 2 � 10�6 and to track their variation in time before and
after the viral population was able of successfully infecting plants fully resistant
to the ancestral virus [6]. We found that every site in the amiR-target sequence
of the viral genome presented variation and that the variant that eventually broke
resistance was sampled among the many coexisting ones. In this system, viral
evolution in fully susceptible plants results from an equilibrium between mutation
and genetic drift, whereas evolution in partially resistant plants originates from more
complex dynamics involving mutation, selection, and drift. In both cases, genetic
drift associated to the transmission events played an important role.

4 Development of More Durable Strategies

As we showed in the previous sections, a drawback of amiRs-based antiviral
therapies in plants was the ease with which viruses generate escape mutations.
In an attempt to increase the durability of transgenic resistance, we explored two
alternative strategies for improving the effectiveness of resistance in plants [4]. First,
we expressed two amiRs complementary to independent targets in the viral genome
(the HC-Pro and the CP cistrons), and second, we designed amiRs complementary
to a strictly conserved 29 nucleotides long RNA motif present at the 30 end of the
CP cistron. We found that both strategies reduced the probability of generating an
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escape mutant more than 30-fold. Together, these results show that better and more
rational ways of improving ami-based antiviral resistance in plants are possible.
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Evolutionary Escape in Populations
with Genotype-Phenotype Structure

Esther Ibáñez-Marcelo and Tomás Alarcón

1 Introduction

Evolutionary escape is the process whereby a population under sudden changes
in the selective pressures acting upon it try to evade extinction by evolving from
previously well-adapted phenotypes to those that are favoured by the new selective
pressure. This evolutionary process is driven by gene mutations. Some examples
are: (1) viruses evading anti-microbial therapy, (2) cancer cells escaping from
chemotherapy, (3) parasite infecting a new host, and also (4) species trying to invade
a new ecological niche.

Previous models of evolutionary escape have been developed by Iwasa et al. [5],
and analysed in more detail by Sagitov and Serra [6] and Serra [7]. An alternative
escape mechanism have been proposed in [1] whereby escape is achieved by means
of a growth-restricted (quiescent) phenotype that is insensitive to the selective
pressure (e.g., a drug).

Since selective pressures act on phenotypes rather than genotypes, evolutionary
escape would be best described in terms of a population dynamics that accounts
for the genotype-phenotype map. This modification alters the approach proposed
by Iwasa and co-workers in two significant ways. First, due to evolved robustness
in populations with genotype-phenotype map [3, 8–10], not every gene mutation
necessarily generates a new phenotype. As a consequence, many gene mutations are
neutral as far as the evolutionary escape process is concerned. Furthermore, it has
been shown that the topology of genotype-phenotype networks is far from that of
the hypercube lattice assumed by Iwasa et al. [2, 4]. In fact, we have recently shown
that the corresponding phenotype network exhibits the small-world phenomenon
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and that, as a consequence, accelerated evolvability (relative to that of a system
with no genotype-phenotype map) may emerge.

Our aim is to extend the theory of evolutionary escape by analysing the
effects on the probability of escape and the escape rate of considering that the
evolutionary dynamics occurs on a genotype-phenotype network rather than on
a regular hypercube. We apply a general theory, based on multi-type branching
processes, to compute the evolutionary dynamics and probabilities of escape which
takes into account the structure of the genotype-phenotype space and that only few
species with a certain phenotype have a reproductive ratio R, (quotient between
reproduction probability and death probability), greater than 1, which means that
one of these individuals.

We consider two classes of graphs: B class comes from genotype-phenotype
networks as modelled in [4] and H, an artificial genotype-phenotype graph where
the genotype space is given by a hypercube.

2 Connectivity Structure of Genotype-Phenotype Networks

In order to estimate the time needed to hit the escape phenotype starting from
another in B class graphs we consider the average shortest path length between
phenotypes. Once we have that, we can know more about the structure of B graphs
and use this information. Different structures appear in B genotype-phenotype
networks. Some are clustered in big communities, others are in a unique community
and also there are examples with a big community with some small communities.

On the other hand, we are going to introduce in a more detailed way how we
obtain H genotype-phenotype networks. The process consists of given a graph B,
we start with a hypercube with approximately same number of nodes than B graph
and then we add phenotypes nodes with same phenotype degree distribution than
in graph B. The obtained H networks, as we can expect, do not have community
structure.

3 Mutation and Extinction Process

To explore networks we are going to use a Galton–Watson multi-type process. The
escape phenotype has associated its corresponding genotypes (escape genotypes)
and the process starts with an individual of certain genotype (with their correspond-
ing phenotype). In the process main parameters that take part are: �, reproduction
probability of an individual and �, mutation rate. Other parameters are defined from
them, such as, probability of die 
 D 1 � � and reproduction ratio R D �=
 . Note
that these parameters are independent of the parameters used to generate phenotype-
genotype networks, B.
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In order to characterize the process, we will look what can happen at each time
step to each individual. This is, if an individual has a genotype of non escape:

• reproduction of the individual, with probability �, producing depending on
mutation rate �: two new individuals identical to the ancestor, with probability
.1 � �/2, mutated individual and a identical to the ancestor, with probability
2�.1 � �/ or two mutated individuals, with probability �2;

• die, with probability 
 D 1 � �.

On the other hand, if an individual has an escape genotype, this individual can not
die. We refer to an escape genotype with rate R D �=
 > 1; .R D 1/.

Using the general Galton–Watson theory and defining Ni.t/ as the number of
individuals of type i at time t, we consider the generating function of probability for
type i,

fi.s1; : : : ; snI t/ D E.sN1.t/
1 � sN2.t/

2 � � � sNn.t/
n jNi.0/ D 1;Nj.0/ D 0; 8j ¤ i/;

imposing that we start with one individual of type i (and zero, otherwise) at time
0. Here, n will be the number of different genotypes and Es D .s1; s2; : : : ; sn/ is
a parameter satisfying 0 � si � 1 8i. We define A D .aij/ as the adjacency
matrix of genotype network. Using Galton–Watson properties (like forward and
backward equations) we can obtain the generating function fi.s1; : : : ; snI t/ from
fi.s1; : : : ; snI 1/. This last, is defined as,

fi.Es; 1/ D E
�
sN1.1/
1 � sN2.1/

2 � � � sNn.1/
n jNi.0/ D 1;Nj.0/ D 0; 8j ¤ i

� D

D 
 C s2i � � � .1 � �/2 C
X

j

2aijsisj��.1 � �/=di C
X

j

aijsjsk��
2=d2i :

(1)

On the other hand, if we are in a escape genotype i, as it is immortal, the
associated probability generating function is,

fi.Es; 1/ D E
�
sN1.1/
1 � � � � � sNn.1/

n jNi.0/ D 1;Nj.0/ D 0;8i ¤ j
� D si: (2)

After defining the multi-type branching process, we are going to compute escape
probabilities.

4 Computing Escape Probabilities

Let Ne.t/ be the number of individuals in escape genotype at time t, where t 2 N,
and consider as initial condition:

.E�0/i WD
�
0 if i is an escape genotype,
1 otherwise.

and E�t WD f .E�0; t/: (3)
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Then, .E�t/i D P.Ne.t/ D 0jNi.0/ D 1;Nj.0/ D 0; 8i ¤ j/, is the probability to
not having any individual in escape genotypes, assuming that we have started with
one individual of type i at time 0. Clearly,

P.Ne.1/ > 0/ D 1 � �1 D
X

t

P.Ne.t/ > 0 ^ Ne.t � 1/ D 0/: (4)

And it can also be checked that

P.Ne.t � 1/ D 0^ Ne.t/ > 0/jNi.0/ D 1;Nj.0/ D 0;8i ¤ j/ D .E�t�1 � E�t/i: (5)

Taken a graph of set B and another of H class, we compute the escape
probabilities above described.

5 Results and Conclusions

We have been able to compute the probability of escape at time t [Eq. (5)] and the
probability of escape (4) based on branching processes. These probabilities have
been computed for two different kind of graphs: B and H genotype-phenotype
networks.

The results obtained, for different mutation rates at H and B graphs, show that the
probability to escape, P.Ne.1/ > 0/, is higher in B graphs than in the hypercube
graphs H. This fact is produced by the topological structure of B graphs, specially
their local topology and small-world properties; see [4]. Moreover, if we compute
the probability to escape in exactly each time t, P.Ne.t/ > 0^Ne.t�1/ D 0jNi.0/ D
1;Nj.0/ D 0;8i ¤ j/ we obtain that these probability distributions follow an
exponential distribution in both cases with the same tails. Also, we can note that
a bigger variability of results is observed in the B genotype-phenotype graph, while
in the hypercube case probabilities are less variable independently of the pair of
genotypes chosen. This fact is given by a higher richness of structure in B graphs
than in H graphs.

Finally, after obtaining an exponential distribution in the probability to escape
at time t, we ask about the conditioned probability. This means, we compute the
probability conditioned to escape, P.Ne.t/ > 0^Ne.t�1/ D 0jNe.1/ > 0;Ni.0/ D
1;Nj.0/ D 0 8j ¤ i/, and compare results between H and B classes. Now, results
seems very different for each genotype-phenotype structure: probability distribution
of graph H is sharper and with smaller variance than in B class graph, where the
probability is spread along a broad range of time. Here, the diameter of the graph
turns out to be a crucial parameter of this conditioned distribution. Diameter in H
graphs are smaller than in B graphs, and the probability to escape in a time greater
than the diameter, assuming we are going to escape, is zero. Probabilities in B graphs
are spread in all range of possible times shorter than the diameter. So, it does not
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matter if we escape at time 8 or 50, because we know that we are going to escape.
Remind that the diameter is defined as max.u;v/ d.u; v/ 8.u; v/ pair of nodes. This
fact produces the spread through a wide range of time distribution in B graphs, and
on the other hand, H probability distributions are sharped and concentrated in a
small range of time to escape.

Another interesting result (not presented here) is that the decay of the probability
escape distribution depending on time is 2�, independently from the graph topology.
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Evolution of Stalk/Spore Ratio in a Social
Amoeba: Cell-to-Cell Interaction via a Signaling
Chemical Shaped by Cheating Risk

Yoh Iwasa

1 Introduction

The cellular slime mold, or social amoeba, exists as a unicellular form that divides
and multiplies rapidly. When food is depleted, cells aggregate to form a fruiting
body within which cells differentiate into spores and stalks. Some spores succeed in
dispersing to a new micro-habitat with plenty of food and in resuming a unicellular
phase with fast population growth. In contrast, stalk cells lift spores to aid in
their dispersal and then die, see Fig. 1 (left). Becoming a stalk cell is an altruistic
behavior, see [2]. This system provides an ideal system for studying the maintenance
of altruism.

The developmental fate of a cell in a social amoeba is not fixed, but is decided
based on interactions with other cells in the aggregation. A cell aggregation
including both pre-spore cells and pre-stalk cells may be divided experimentally
into two: one consisting mostly of pre-spore cells and the second consisting mostly
of pre-stalk cells. In both of these groups, the relative abundance of the two cell
types changes, resulting in an intermediate ratio of the two cell types.

Differentiation inducing factor-1 (DIF-1) controls stalk versus spore cells [1, 3].
It is produced by pres-pore cells and decomposed by pre-stalk cells [1]. It induces
the differentiation of pres-pore cells into pre-stalk cells and suppresses differentia-
tion of pre-stalk cells into pre-spore cells. Negative feedback results in a stable ratio
of prestalk/prespore cells that will later differentiate into stalks and spores.

In [4], we modeled the mechanism of cell differentiation in D. discoideum
controlled by a signaling chemical within cell aggregation, and discuss how the
number of different cell types may be adjusted. When two strains are mixed in a
fruiting body, one strain may predominantly become pre-spore cells, while the other
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Fig. 1 Left: cells in an assemblage are differentiated to spore and stalk. Right: the cells between
pre-spore (P) and pre-stalk (T) are controlled by chemical signal DIF-1

contributes more to pre-stalk cells, despite the fruiting body being formed by cells
of single strains with the same stalk/spore ratio. We then considered the evolution of
the rates of production of the signaling chemical, and cell sensitivity to the signaling
chemical concentration.

2 The Model

We begin with the control of the stalk/spore cell ratio within an aggregation
consisting of a single strain by the signaling chemical. Within the aggregation, cells
change state between pres-pore cells and pre-stalk cells. After the proportion of
cells in these states reaches equilibrium, pre-stalk cells and pre-spore cells develop
into spores and stalks, respectively. Here, we consider the dynamics of the cell state
change illustrated in Fig. 1 (right). We denote the number of pre-spore cells by P
and that of pre-stalk cells by T. Cells change their states at the rates controlled by
the amount of the signaling chemical, which is denoted by C,

dT

dt
D f .C/P � g.C/T: (1)

Here, the total number of cells N D P C T is a constant. In (1), f .C/ is the rate of
switching from pre-spore cells to pre-stalk cells, and is an increasing function of C.
Since the signaling chemical promotes conversion from pre-spore cells to pre-stalk
cells. g.C/ is the rate of switching from pre-stalk cells to pre-spore cells, and is a
decreasing function of C. In the numerical analyses, we assumed f .C/ D f0.C/, and
g.C/ D g0=C, where f0 and g0 are constants indicating the rate of conversion. The
concentration of the signaling chemical follows:

dC

dt
D aP � bCT: (2)
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The first term on the right hand side indicates that the signaling chemical is secreted
by pres-pore cells at a rate of a per cell. The second term indicates that pre-stalk cells
have an enzyme called DIF dechlorinase, which inactivates the signaling chemical.

Dynamics of (1) and (2) show that the ratio of pre-stalk cells to pre-spore cells
converges to a globally stable ratio of T to P:

OT= OP D .f0=g0/
1=3.a=b/2=3: (3)

The ratio depends on f0=g0, the relative sensitivity to the signaling chemical between
two reactions. It also depends on a=b, the ratio of the secretory capacity of signaling
chemical and the inactivating capacity of signaling chemical. Since the equilibrium
ratio of pre-spore cells and pre-stalk cells given by (3) is independent of the total
number of cells N, the final proportion is independent of the total number of cells
N, as observed in experiments; see [1].

Next, we consider the case in which multiple strains are mixed in the same
fruiting body. We assume that there are two strains indicated by suffix i .D 1; 2/,
and that both strains secrete and inactivate the same chemical, signaling chemical.
Further, cells of the two strains switch between the two states according to the
concentration of signaling chemical. Ti and Pi are the numbers of pre-stalk cells
and pre-spore cells of strain i, respectively. The dynamics are as follows:

dTi

dt
D fi.C/Pi � gi.C/Ti; i D 1; 2: (4a)

Each strain shares 50% of the total cell number N, and we have Ti C Pi D N=2
for i D 1 and 2. fi.C/ D f0iC is the rate of switching from a pre-spore cell to a
pre-stalk cell of strain i, and gi.C/ D g0i=C is the rate of switching from a pre-stalk
cell to a pre-spore cell of strain i. Cells of different strains may switch their states,
but their sensitivity to the signaling chemical may differ. The production rate and
inactivation rate of strain i are ai and bi, respectively. The dynamics of the chemical
signal is given by

dC

dt
D

2X

iD1

�
aiPi � biCTi/: (4b)

Consider a case in which each fruiting body consists of a single strain. Here, two
strains form a fruiting body of the same ratio of T to P when each fruiting body
consists of cells from the same strain. However, when the strains are mixed in a
fruiting body with 1 W1 ratio, one strain develops more pre-spore cells and the other
strain develops more pre-stalk cells. These values are calculated by Eq. (4). The
strain that contributes less to stalk development may be called a cheater; see [2].
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For the equilibrium condition of Eq. (4a), we have the following expression for the
stalk/spore ratio:

OTi= OPi D OC2f0i=g0i; .i D 1; 2/; and OC D
X

j

aj OPj

.X

j

bj OTj: (5)

Equation (5) indicates that the stalk/spore ratio at equilibrium is proportional to
the ratio f0i=g0i. Hence, if there are two aggregated strains that differ in this ratio, the
one with the smaller ratio can be regarded as a cheater because it contributes less to
stalk formation. On the other hand, the cheater stain may have the same stalk/spore
ratio when it forms a fruiting body consisting of cells from the same strain. This
ratio is given by (3), which depends not only on f0=g0, but also on a=b. Thus, this
simple model explains opponent-dependent cheating often observed in experiments;
see [2].

3 Evolution

The cycle of unicellular life with asexual proliferation and fruiting body formation
with dispersal occurs repeatedly. If the whole population is composed of multiple
strains that differ in the number of surviving spore cells, the strain with the highest
expected number of surviving spore cells increases in proportion, and eventually
dominates the population after many cycles of proliferation and dispersal phases. In
this section, we model this process of natural selection and discuss the evolutionary
outcome.

3.1 No Mixing of Strains in a Fruiting Body

We begin with the case in which each fruiting body consists of a single strain. We
consider a population composed of two strains: � and 1�� are the fractions of strain
1 and strain 2 in the beginning of a cycle, respectively. The success of dispersal and
settlement to a new micro-habitat with a sufficient amount of food is an increasing
function of the number of stalk cells:

S. OT/ D S0 OTl=.˛0 C OTl/: (6)

Here, OT is the total number of pre-stalk cells. Dispersal success increases with the
number of stalk cells, but the rate of increase becomes lower for a large stalk cell
number. Equation (6) saturates for a very large T. In addition, we consider the cost of
signaling chemical secretion, which is expressed as a factor e�kai k is the magnitude
of the cost to produce each unit amount of signaling chemical. For a fruiting body



Evolution of Stalk/Spore Ratio in a Social Amoeba: Cell-to-Cell Interaction via. . . 117

composed only of strain i cells, the number of surviving spores of strain i is Wi D
OPiS. OTi/e�kai , where i D 1; 2 and Wi is proportional to the fitness of strain i. The
fraction of strain 1 at the beginning of the next cycle can be expressed in terms of
the fraction of strain 1 in the current cycle,

�next D Wl�=.W1� C W2.1 � �//: (7)

If this process of natural selection repeats over many generations, one strain may
outcompete the other. If mutation introduces a new genotype into the population, it
may go extinct or replace the old type. Mutation and replacement occur many times
over the course of evolution, and the traits of the organism change slowly.

The evolutionary changes in the production rate (a) and the sensitivity to the
chemical .f0/ caused by recurrent invasion of mutants and subsequent replacement
are as follows: because the mutants are assumed to be close to the parent in
phenotype, evolution appears as a continuous change in the traits. The traits quickly
converge onto a curve in which the optimal ratio of stalk cells to spore cells is
realized. After the convergence to this curve, changes along the curve occur slowly,
where the production rate a decreases and the sensitivity f0 increases.

3.2 When a Fruiting Body Consists of Multiple Strains

We next consider the case in which some fruiting bodies are a mixture of two
strains. Specifically, we consider the following scenario. Let m be the fraction of
fruiting bodies consisting of cells originating from the two initial cells, and 1 � m
be the fraction of fruiting bodies consisting of cells originating from a single cell. If
mutations occur recurrently and if the mutants are close to the parent in phenotype,
the evolutionary trajectory of traits can be modeled. Unlike in the case without
mixing, now the evolutionary equilibrium has a positive rate of chemical production
Na and an intermediate level of sensitivity to the chemical Nf0. When the degree of
mixing m is positive, evolution would produce the equilibrium state with a faster
production rate and lower sensitivity.
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Within-Host Viral Evolution Model
with Cross-Immunity

Narani van Laarhoven and Andrei Korobeinikov

1 Introduction

In the last 20 years, a considerable amount of research has been done in order to
mathematically study the dynamics of viruses and immunity, and HIV in particular.
A mathematical model of within-host dynamics of HIV, which incorporates random
mutations modelled by diffusion in a continuous one dimensional strain space and
postulates that immune response is phenotype specific, shows that for a fast evolving
virus the phenotype specific immune response is not able to clear HIV from its host.
In this contribution, we develop the model further by including a cross-immunity,
rather than specific immunity, modelled by a weight function which represents
the broadness of cross-immunity. Numerical simulations show that if the cross-
immunity is sufficiently broad, cell mediated immune response is able to clear a
virus from its host.

2 The Model

The model of virus dynamics due to Wodarz et al. [6],

du.t/

dt
D b � ˇu.t/v.t/ � cu.t/;

dv.t/

dt
D ˇu.t/v.t/ � mv.t/;

(1)
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will be the basis for the model developed in the present extended abstract. Here,
u.t/ and v.t/ are the population of uninfected and infected target cells, respectively.
This model implicitly assumes that the population of free virus particles, which
are produced by infected cells and infect target cells, have a life cycle which
is much faster than that of the host cells. This assumption reduces the three-
dimensional Nowak and Bangham [3] and Nowak and May [4] models to the
two-dimensional model (1). In this model, uninfected cells are postulated to be
produced at constant rate b and have natural death rate proportional to its population
size cu.t/. Uninfected cells become infected at rate ˇu.t/v.t/, and infected cells die
with a rate mv.t/.

Let us assume that several viral strains simultaneously coexist. Each strain can
be described by a set of parameters, and all possible values of these parameters
form a phenotype space, which we assume to be continuous. Since a viral strain is
characterized by its basic reproduction number R0 D bˇ=cm (see [1, 2]), it suffices
to consider a one-dimensional phenotype space M D fs 2 Œ0;1/g, where s is
proportional to R0 and can serve as a measure of the viral fitness. Then v.t; s/ is the
distribution of the infected population in the strain space, and V.t/ D R1

0
v.t; s/ds is

the total infected population. For simplicity, we assume ˇ.s/ D as, and new strains
to emerge as a result of random mutations, which in a continuous strain space can be
modelled by the diffusion. These assumptions lead to the following model, which is
due to Korobeinikov and Dempsey [1]:

du.t/

dt
D b � u.t/

Z 1

0

ˇ.s/v.t; s/ds � cu.t/;

@v.t; s/

@t
D ˇ.s/u.t/v.t; s/ � mv.t; s/C �

@2v.t; s/

@s2
:

(2)

This model can be further developed by introducing z.t; s/ as the number of
CTL cells at time t, able to recognize and kill infected cells of phenotype s. Llensa
and Korobeinikov [2] modelled phenotype-specific immune response by describing
the killing of infected cells by CTL by a term proportional to the product of the
population of infected cells and the population of killer T-cells, thus adding to the
second equation of model (2) a term ��v.t; s/z.t; s/. The dynamics of CTL cells
were described by adding a third equation,

@z.t; s/

@t
D qv.t; s/C z.t; s/

�
1 � z.t; s/

p

�
;

such that the activation term of CTL response is proportional to the infected
cell population and after activation of CTL response, the activated cells multiply
according to the logistical term. By a numerical simulation of this model, Llensa–
Korobeinikov showed that phenotype specific immune response is not able to clear
HIV from the host.

In reality, immune cells that arise in response to a specific viral genotype can
also be partly effective against mutant genotypes, which are sufficiently close to
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the original one. This so-called cross-immunity can be modelled by replacing term
�v.t; s/z.t; s/ by �v.t; s/

R1
0
�.s; r/z.t; r/dr; thus, we obtain the following model of

study:

du.t/

dt
D b � u.t/

Z 1

0

ˇ.s/v.t; s/ds � cu.t/;

@v.t; s/

@t
D ˇ.s/u.t/v.t; s/ � mv.t; s/C �

@2v.t; s/

@s2

� �v.t; s/
Z 1

0

�.s; r/z.t; r/dr;

@z.t; s/

@t
D qv.t; s/C z.t; s/

�
1 � z.t; s/

p

�
:

(3)

A natural choice for the weight function �.s; r/ is the normal distribution

�.s; r/ D 1



p
2�

e� .s�r/2

2
2 ;

since we want immune cells that arise in response to a specific genotype s to be
most affective against viral strains of the same genotype and partly affective to viral
strains of genotype r 2 M, which are close to s. The closer r is to s, the more
affective CTL response should be. Furthermore, we want

R1
0 �.s; r/dr to be equal

to one. The standard deviation 
 of the normal distribution represents the broadness
of cross-immunity in this case.

To complement the system, we need some boundary and initial conditions. Since
v.t; s/ is a distribution, it is natural to assume that v.t; s/ D 0 at s D C1: The
choice for the boundary condition at s D 0 is not that obvious, and we will assume
the no-flux condition @v.t; s/=@s D 0 at s D 0 for convenience. Furthermore, we
need non-negative initial conditions u.0/ D u0 and v.0; s/ D v0.s/ and z.0; s/ D
z0.s/ at t D 0.

3 Results

Figure 1 show the total concentrations of the uninfected and infected cells,
respectively, for model (3). These results are obtained numerically using a semi-
explicit method on a time interval from t D 3650 to t D 3850, and s is considered
in the interval Œ6; 9:5�. In order to answer the main question (namely if cross-
immunity is sufficiently broad, is CTL response able to clear a virus from its host?),
in these simulations we vary variance 
 , while keeping all other parameters of the
model fixed. In the computations we use the same parameters as those in [1] that
correspond to a certain patient with HIV: b D 20 cells/(mm3� day), c D 0:02
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Fig. 1 Dynamics of the total population of the uninfected (top) and infected (bottom) cells in time
for 200 days, for 
 D 0:001 � 2k, k 2 f0; 2; 4; 6; 8; 9g

day�1 and m D 0:8 day�1. Furthermore, we choose a D 10�3 mm3/(cells�day).
The immunity parameters are due to [2]: � D 0:01mm3/(cells�day), q D 2 � 10�3
days�1,  D 1 days�1 and p D 2000 cells/mm3.

Note that for a comparatively narrow cross-immunity, when 
 D 0:001 and 
 D
0:004, the number of infected and uninfected cells quickly reach a quasi-equilibrium
state, while the number of uninfected cells increase and the number of infected cells
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decrease as 
 increases. For 0:016 � 
 � 0:256, oscillations of both the uninfected
cell and the infected cell levels occur. However, there appears to be a value for 
 ,
namely 
 D 0:512, such that these oscillations do not persist. We can conclude,
therefore, that there indeed is a critical value 
CR, which guarantees elimination of
an infection.

Let us consider why oscillations occur for certain values of 
 . Since mutations
are modelled by diffusion, v.t; s/ > 08s 2 M. Therefore, there are values of 
 ,
such that cross-immunity is sufficiently broad to apparently kill a virus on a broad
interval of s. However, it is still not broad enough to kill the virus for all s > 0. A
new peak in the distribution of infected cells can arise for strains that have not yet
been recognized by the immune system. This increase in v.t; s/ triggers z.t; s/ such
that the new peak in the distribution of infected cells is immediately suppressed
again by CTL, and the same process starts over again. However, for 
 D 0:512,
cross-immunity is sufficiently broad to keep the infected cell population at zero
level.

4 Discussion

The aim of this contribution was to further develop the model of within-host viral
evolution with specific immunity, proposed by Korobeinikov and Llensa [2], by
incorporating cross-immunity instead of specific immunity. Numerical simulations
show that if cross-immunity is sufficiently broad, then CTL response is able to clear
a virus from its host. We have seen that, for a certain broadness of cross-immunity,
oscillations in the uninfected and infected cell populations arise. Whether or not
these oscillations were clinically observed, is a question which lies beyond the scope
of this research, due to time limitations. However, it is noteworthy that the outbreaks
of the viral load closely resemble the phenomenon of the so-called viral blips [5].

An interesting topic of further research would be to find the relationship between
the critical broadness of cross-immunity needed to clear a virus from its host, and
the other parameters discussed in the model; especially after developing the model
further by incorporating drug therapy.
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Modelling Viral Evolution and Adaptation

Susanna Manrubia

1 Introduction

Viral populations are extremely plastic [5]. They maintain and steadily generate
high levels of genotypic and phenotypic diversity that result in the coexistence of
several different viral types in quasi-species, and eventually constitute a powerful
tool to deploy different adaptive strategies. The interest in understanding and
formally describing viral populations has steadily increased. At present, there are
major unknown factors that difficult the construction of realistic models of viral
evolution, as the way in which mutations affect fitness [19] or, in a broader scenario,
which is the statistical nature of viral fitness landscapes. Our understanding of viral
complexity is however improving thanks to new techniques as deep sequencing [17]
or massive computation, and to systematic laboratory assays that reveal that, as other
complex biological systems (e.g., cancer or ecosystems) the term virus embraces a
dissimilar collection of populations with a remarkable ensemble of evolutionary
strategies. New empirical data and improved models of viral dynamics are clearing
up the role played by neutral networks of genotypes [21], by defective and
cooperative interactions among viral mutants [13], by co-evolution with immune
systems [22], or by changes in host populations [10], to cite but a few examples.
Models of viral evolution are steadily improving their accuracy and becoming more
competent from a conceptual and a predictive viewpoint [11, 12]. Here, we review
some examples were well-motivated models of viral evolution succeed at capturing
experimentally described features of those populations. Such are the relationship
between intra-species competition and the geometry of the propagating substrate of
a viral infection [3], the origin of bipartite viral genomes [8], and the adaptation to
multi-drug therapies [9, 16].
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2 Infection Propagation in Space

The geometry of the physical space where the propagation of viral infections occurs
affects quantities such as the probability of transmission from an infected to a
susceptible host, the pace of accumulation of mutations, or the diversity that a
viral population can sustain [1], but also to design effective contention strategies.
There are two other features of infection propagation often disregarded in quasi-
species models. First, the appearance of compensatory or beneficial mutations is
non-negligible, especially for sub-optimally adapted viruses; second, viruses often
encounter host resistance to infection. These two features were implemented in a
model that studied the propagation of a viral population in 2D space, and showed
that the dynamical behaviour and fate of those populations qualitatively differs
from their mean-field counterpart. A first important difference between spatial
and mean-field models with otherwise identical rules for viral dynamics is the
appearance of clustering (of similar viral types) induced by spatial proximity, which
fades as mobility increases [1] or as mutations rates augment [2]. This clustering
causes a local advantage of less fit viral types, and hinders the advantage of high-
fitness types, which are locally forced to compete with their equals. A second
important fact regards the effect of host resistance. When spatial restrictions are
absent, viruses can overcome host resistance by increasing its progeny production;
however, if the number of available hosts is limited, augmenting progeny does
not confer any additional advantage beyond a certain limit threshold. As a result,
infection clearance may occur at a finite value of host resistance, a situation that
maps the spatial model to a multi-component generalization of the Domany–Kinzel
probabilistic cellular automaton [4], and thus classifies viral extinction within the
directed percolation (DP) universality class.

3 On the Origin of Multipartite Viral Genomes

Multipartite viruses, characterized by fragmented genomes encapsidated in different
virions (from two to eight fragments), represent about 50 % of all viruses infecting
plants. Infection by such viruses is successful if at least one representative of
each fragment is present in the cell—usually requiring a high multiplicity of
infection (MOI). For viral multi-partition to be an evolutionary stable strategy,
those viruses must compensate the cost of high MOI with an advantage originating
from their fragmented nature. It was experimentally shown that such an advantage
may arise from the higher stability of particles enclosing smaller genomes [14].
Inspired by those observations, a simple model of competition between a complete,
wild-type virus encapsidated in a single particle and its bipartite counterpart was
developed [8]. The model was successful at recovering the observations cited,
assuming that bipartition appeared, as in the experiment, through segment deletion
of the wild-type genome followed by competition between the two strategies. The



Modelling Viral Evolution and Adaptation 127

cooperating, smaller and fragmented solution, was able to displace the wild-type if
MOI was above a threshold that could be analytically calculated. Since both frag-
ments are symmetrically treated in the model (there were no experimental evidences
indicating that they were different in any way), the stable solutions corresponded to
equal amounts of each of the fragmented forms present in the population. In this
scenario, the model made two predictions regarding the emergence and fixation of
multipartite viruses with any number of fragments. First, it turned out that the values
of MOI needed to compensate for the disadvantage of fragmentation appeared
unrealistically high for viruses with four and more fragments; second, all stable
solutions should present an equal amount of each of the fragmented types, any
deviation from equal abundances resulting in even higher MOI values. However, it is
known that the MOI of multipartite viruses is not as high as predicted by this simple
model, and recent observations have come to challenge the second prediction,
identifying significant imbalances in the frequencies of genomic fragments of two
common plant viruses [18, 20]. The nature of the adaptive advantages enjoyed by
these and likely many other multipartite viruses, and their evolutionary origin, are
at this moment unsolved questions worth pursuing.

4 Viral Escape from Multidrug Therapies

Designers of antiviral therapies have to cope with the astonishing ability of viruses
to escape medical treatments. The question is not whether a virus will develop
resistance to an antiviral drug, but when will it occur. The simultaneous adminis-
tration of two or more drugs has been used to delay the appearance of resistant
mutants [6]. Searching for efficient therapeutic protocols, modelling may aid in three
aspects: to characterize the response of viral populations to antiviral drugs through
a more realistic implementation of their evolutionary strategies, to optimize drug
administration protocols such that viral load is minimized, and to identify strategies
that delay as much as possible the appearance of resistant forms [11]. A key issue
to consider in multi-drug treatments is the possible interaction between the drugs
involved. Combination therapies, where the drugs are simultaneously administered,
are in general more efficient if the two drugs have a similar behaviour (e.g., both act
as inhibitors of viral replication). However, in cases where a non-linear interaction
between the effects caused by the two drugs is possible, a sequential administration
might be preferred.

In experiments with foot-and-mouth disease virus, it was demonstrated that for
a wide range of doses of an inhibitor of the viral replication and a mutagenic drug,
their sequential administration ushered in a lower viral yield compared to their
simultaneous use [15]. This fact motivated the design of a mathematical model
that described viral dynamics and the response of the population to both drugs
subjected to different modes of administration [9]. The model considered two types
of viruses in the population, one susceptible to the inhibitor and another resistant. As
indicated by experimental results, it was assumed that no resistance to the mutagen
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could emerge. Viral properties (type of genome, replication mechanism, and basal
mutation rate) were translated into model parameters, yielding a phase diagram
where the preference of a sequential or combined administration of the drugs was
quantified by means of the administered doses. The sequential treatment is preferred
at high doses of both drugs, while for low doses a combination treatment is better
suited. The precise dose value can be analytically calculated with the model. Further,
it was also predicted that an intermediate region, where the combination treatment
caused a lower viral load, but an increased likelihood of appearance of resistant
forms (and vice versa for the sequential treatment), separated both phases at low
doses of the inhibitor [16]. The disadvantage of a combination therapy at high doses
of the mutagen (in particular) is due to the twofold effect of a mutagenic drug. On the
one hand, it properly acts as an antiviral agent by augmenting the number of lethal
and deleterious mutations in the population, increasing the number of defective
(occasionally interfering) viral mutants. The latter are known to affect quasi-species
fitness and may even cause the complete extinction of the population at doses below
the error threshold [7]. On the other hand, it has been demonstrated that increases
in the mutation rate may improve adaptation of suboptimal populations [12], since
it produces higher diversity within the quasi-species and promotes the appearance
of rare beneficial mutations. In the case of combination therapy, possible resistant
forms that may get lost in absence of the inhibitor rapidly come to fixation due to
the selection pressure it exerts.

5 Prospects

There are many unknowns regarding the adaptive potential of RNA viruses and their
adaptive strategies. Current efforts are devoted to better understand and quantify the
effect of mutational mechanisms, interactions within the mutant spectrum, and the
role of the selective pressures at play. The fast increase in empirical knowledge and
steady improvements in quasi-species models, together with technologies that are
becoming easily accessible (as next generation sequencing or super-computation)
are essential to acquire a better understanding of the general features involved
in viral evolution and adaptation. Our hope for a meaningful theory of viral
quasi-species depends on the existence of a reduced set of universal mechanisms,
which should make possible the development of evolutionary theories of broad
applicability. Advances in that direction are highly encouraging.
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Changes in Codon-Pair Bias of Human
Immunodeficiency Virus Type 1 Affect Virus
Replication

Miguel Ángel Martínez

The standard genetic code consists of 64 codons for a set of 20 amino acids and
the stop signal, showing its redundancy (except for tryptophan and methionine) and
implying that several synonymous triplets encode for the same amino acid. Usually,
the position of such synonymous codons is not constant along the protein coding
sequences and therefore, their properties are not entirely comparable. Relative
amounts of tRNAs iso-acceptors have been associated to codon usage patterns in
different organisms. Codon usage bias, the frequency of occurrence of synonymous
codons in coding DNA, in human cells is limited by amino acids needed for protein
structure/function and by genome signatures (dinucleotide relative abundances). In
contrast, translational and transcriptional influences appear to play a minor role in
human codon usage [5].

The remarkable nucleotide composition of human immunodeficiency virus type
1 (HIV-1) genome, containing an above average percentage of A nucleotides,
results in a codon composition different from the human one [17]. Specifically, the
more flexible third codon positions are preferentially occupied by A nucleotides
that usually induce ribosome pausing and inefficient translation [18]. Still, it is
unclear whether HIV-1 codon composition is an adaptive trait or has neutrally
evolved through genome drift. In both cases, it may influence HIV-1 evolution
as well as drug resistance development. The frequent G-to-A mutations observed
in HIV-1 genome might be associated to the action of APOBEC3 family host
enzymes. Changes in codon composition may have a significant impact on different
aspects of HIV-1. For instance, a codon-optimized gag HIV-1 showed a significant
increase in protein expression (up to a 60 %) compared to wild type gag in an in
vitro study [11]. However, it is unknown whether this codon optimization would
increase viral fitness or virulence. Another study showed that recoding with a
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high level of preferred human codon usage may provoke the disruption of some
unknown HIV-1 RNA properties deleterious for other reasons, e.g., disturbing the
secondary structure of HIV-1 RNA genome [12]. Recent data have identified a
novel antiviral mechanism within the innate immune response, in which human
SLFN11 selectively inhibits viral protein synthesis in HIV-infected cells by means
of codon-bias discrimination [7]. Synonymous substitutions optimizing for human
cell expression reduces the antiviral activity of SLFN11. Synonymous mutation
is thought to be selectively neutral. However, previous work demonstrated that
synonymous substitutions can negatively affect the replication capacity of several
RNA viruses [3], including HIV-1 [10].

While the non-random usage of synonymous codons for the same amino acids is
defined as codon bias, the codon-pair bias means the non-random juxtaposition of
codons in an open reading frame (ORF). Codon-pairs occur at irregular levels [4].
The observed juxtaposition frequency of two codons is different to that expected if
those codons were randomly located next to each other. This codon-pair usage of
two codon-pairs can be quantified as a codon-pair score (CPS) as well as the mean
codon-pair bias score (CPB) through an ORF. Codon-pairs were found to be highly
over-represented or under-represented independently from codon usage [4], and
this was associated with increased or decreased levels of protein expression [13].
During translation in the ribosome, the formation of the peptide bond demands the
adjustment of two codons and the accommodation of two tRNAs in the ribose [16].
It has been suggested that, for steric causes, not all the combinations of tRNAs and
codons might be equally fitting on the ribosome surface, even though ribosomes are
only occupied briefly by two tRNAs [16]. Therefore, some codon-pairs might have
a translational benefit over others.

Independent groups have described that most under-represented codon-pairs
possessed a central CG dinucleotide (e.g., the codon-pair Leu–Glu: CTC-GAA).
CpG islands are methodically under-represented in mammals and viruses [1].
Probably, evolution lowered CpG content to avoid mammal innate immune system
and elude to trigger an immune response induction. In a multiple ORFeome (a set
of ORFs cloned from different species) analysis, translation was suggested to exert
a more powerful impact on codon-pair bias than molecular mechanisms [15]. By
analyzing in an ORFeome context the evolutionary conservation of codon usage
compared to codon-pair usage, the trees topologies showed that, in eukaryotes, the
resemblance of codon-pair usage is higher than codon usage. Those trees differ both
in branch lengths and positions, suggesting that codon usage and codon-pair usage
are independent, due to different molecular mechanisms [15]. Finally, a co-evolution
between the translational machinery used and a given organism has been suggested.
The consequence of that co-evolution is the non-randomness in codon-pair usage,
probably explaining that, not only codon-pair bias, but also codon bias and tRNA
iso-acceptors are species-specific. Despite the observed evidence of an actual CPB,
as well as a means to accurately quantify CPB, it is not evident why this bias exists
and what selective pressures are governing the preference of codons to be adjacent
or apart from one another.
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Recently, a new approach was used to rationally design live attenuated poliovirus
and influenza virus vaccines [2, 9]. This approach works by recoding and synthe-
sizing the viral genome. The wild type amino acid sequence is preserved while
the existing synonymous codons are rearranged to create a suboptimal arrangement
of codon-pairs [2]. For instance, eight different codon-pairs can encode the amino
acid pair Ala–Glu. Thus, the expected frequency of each eight encodings can be
calculated by multiplying the individual frequencies of codon usage of the two
individual codons. In order to calculate the individual frequency of each codon, the
consensus coding DNA sequence database dating from March 2005 and containing
a total of 14,795 human genes was used [2]. If the ratio observed/expected is lower
than one, this codon-pair is considered as under-represented and vice-versa. The
natural logarithm of the ratio between observed/expected frequencies of each human
codon-pair was used to calculate the CPS. A positive CPS implies that the codon-
pair is statistically over-represented while a negative CPS implies that the pair is
statistically under-represented. For an entire ORF, the CPB is calculated as a mean:
the sum of all individual CPS in an ORF divided by the number of pairs present.
If the CPB resulting is positive, the gene contains over-represented codon-pairs and
vice-versa.

Poliovirus and influenza virus genomes were recoded in order to include
infrequently used codon-pairs [2, 9]. When de-optimized, poliovirus and influenza
virus displayed a much lower replication capacity in tissue culture. Moreover, mice
previously immunized with deoptimized viruses, displayed a protective immunity
when challenged with wild type virus. Thus, recoded viruses were efficiently used
in mice as vaccines. The mechanism of attenuation remains unclear, though it
has been suggested that translation might be affected [2, 9]. Since codon-pair
de-optimization is the result of tens, hundreds, or even thousands of nucleotide
substitutions, reversion to virulence is unlikely to occur. Attenuation may be fine-
tuned by adjusting the extent of codon-pair de-optimization.

Using synonymous codon pairs, we recently rationally recoded and codon pair-
optimized and de-optimized different moieties of the HIV-1 gag and pol genes [8].
De-optimized viruses had significantly lower viral replication capacity in MT-4
and peripheral blood mononuclear cells (PBMCs). Varying degrees of ex vivo
attenuation were obtained, depending upon both the specific de-optimized region
and the number of de-optimized codons. Importantly, a protease optimized virus
carrying 38 synonymous mutations was not attenuated and displayed a replication
capacity similar to that of the wild-type virus in MT-4 cells and PBMCs. Although
attenuation was based on several tens of nucleotide changes, in our hands, de-
optimized HIV-1 reverted to wild-type virulence after serial passages in MT-4
cells. Sequence clonal analysis of phenotypically reverted viral populations showed
that phenotype reversion was due not only to the reversion of initially introduced
synonymous mutations but also to the presence of new synonymous and non-
synonymous mutations. Remarkably, no reversion was observed in the optimized
virus. This result suggests that certain neutral genetic drift is operating in protease
synonymous nucleotide residues and that, in addition to explore virus attenuation,
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synonymous codon pair recoding can be used to explore other aspects of the HIV-1
biology.

Our data demonstrated that SAVE is a useful strategy to phenotypically affect the
replicative properties of HIV-1. However, many questions remain to be answered.
First, stability of de-optimized HIV-1 variants should be improved. We propose
to generate de-optimized viruses with a lager number of substitutions but with
lower CPSs to avoid lethality. We generated gag variants carrying more than
300 substitutions but only those carrying less than a hundred substitutions were
viable [8], suggesting that CPSs above a threshold may be lethal. Second, it has
been suggested that CPB may have an effect on translation [2]. Nevertheless,
RNA sequences may be also targeted by factors other than those of the translation
machinery (e.g., aberrant splicing, RNA decay process or miRNA targeting). In
contrast to poliovirus and other RNA viruses HIV-1 DNA is permanently integrated
into the host cell genome and transcribed by the host RNA polymerase II. Moreover,
HIV-1 can initiate translation either by the classical cap-dependent mechanism or by
internal recruitment of the ribosome through RNA domains called IRESs (internal
ribosome entry sites). HIV-1 can be a very useful tool to know how CPB affects
translation. Third, the fact that HIV-1 CPB optimized variants may have a replication
capacity similar to that observed in wild type viruses opens the possibility of use
these variants as tools to explore the presence of unknown functionally redundant
RNA elements in the HIV-1 genome [14] or to explore the effect of the virus genome
base content in the virus replication capacity [18]. Finally, to use optimized neutral
virus variants may help to better define how HIV-1 deal with its high mutation rate
in the real world and to define the mutation distribution of a viral population in
order to establish the proportion of neutral mutations [6]. Previously, it was found
that a codon pair base de-optimized poliovirus variant containing 224 synonymous
substitutions did not revert its phenotype after 19 passages in HeLaR19 cells [2].
In contrast, we showed that highly attenuated HIV-1 variants carrying more or near
100 synonymous substitutions reverted their phenotype after 15 passages in MT-4
cells [8]. Differences in the life cycle between poliovirus and HIV-1 may account
for the above discrepancies. Alternatively, differences in virus protein or genome
mutational robustness and evolvability can not be discarded. The different codon
usage between poliovirus and HIV-1 may determine differences in their mutational
robustness and evolutionary capacity.
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Competing Neutral Populations of Different
Diffusivity

Simone Pigolotti

1 Introduction

The possibility of moving in space is fundamental for the survival of many bio-
logical organisms. While movement patterns can sometimes be complex, reflecting
evolutionary strategies to search for food, in many settings movement can be
mathematically described as Brownian motion. Macroscopically, this leads to a
description in terms of a diffusion equation, or a Fisher equation [2, 3] if birth-death
dynamics is also taken into account.

In this work, I discuss a model of two competing species [6]. They are assumed to
be neutral, i.e., characterized by the same birth and death/competition rates, except
for having a different diffusion coefficient. While the outcome of a deterministic
analysis is that the two species can coexist at any relative fraction, I will show that
the fastest species tends to dominate when demographic stochasticity due to finite
number of individuals is properly taken into account.

2 Results

We consider a particle model described by the following macroscopic equations:

@t cA.x; t/ D .D C ıD/r2cA C �cA.1 � cA � cB/C 
A �A.x; t/;
@t cB.x; t/ D Dr2cB C �cB.1 � cA � cB/C 
B �B.x; t/;

(1)
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where 
A D p
�cA.1C cA C cB/=N and symmetrically for 
B. The parameter N,

typical of a Van Kampen expansion, tunes the noise amplitude and can be interpreted
as the number density that corresponds to a macroscopic concentration c D 1.
Now, �A.x; t/ and �B.x; t/ are independent noise sources, delta-correlated in space
and time, h�i.x; t/�j.x0; t0/i D ıijı.x � x0/ı.t � t0/. An equation for the relative
concentration of species A, f D cA=.cA C cB/, is readily obtained from Eq. (1),
by means of Ito’s formula [7, 8]. Upon neglecting fluctuations of the total particle
density by imposing cA C cB D 1 at the end of the procedure, the equation reads:

@tf D Dr2f C ıD.1 � f /r2f C 
�; (2)

where 
 D p
2�f .1 � f /=N. Equation (2) is the starting point of our analysis.

Setting ıD D 0 in (2) yields the equation for spatial neutral dynamics of an allele
having concentration f , see [4, 8]. Deterministically (i.e., in the limit N ! 1)
any state f equal to constant is a meta-stable solution of (2), meaning that one can
expect coexistence. In the stochastic case of finite N, the net average effect of the
difference in diffusivity can be understood by studying the time evolution of the
integrated mean concentration F.t/ D hf i, where h�i denotes an average over space
and noise. Assuming periodic boundary conditions and averaging Eq. (2) we obtain

dF

dt
D ıD

L

Z L

0

dx .rf /2 > 0: (3)

The above equation shows that F.t/ grows with time for any ıD > 0, meaning that
a larger diffusion confers an average advantage, as shown in Fig. 1.

A simple calculation shows that dF.t/=dt D .D=2/r2H.x; t/jxD0, where we
introduced the heterozygosity function H.x D x1 � x2; t/ D hf .x1/Œ1 � f .x2/� C
f .x2/Œ1�f .x1/�i, which depends only on x1�x2 and t due to translational invariance.
In one spatial dimension and for ıD D 0, the function H.x; t/ is explicitly known
(see e.g., [4]). For ıD=D � 1, we estimate the average growth in perturbation
theory, i.e., by replacing the average h�i with the average over the solvable case of
ıD D 0. The result is

dF.t/

dt
D ıD

4D
p
��tf

H.0/G.t=tf /; (4)

where G.x/ D exp.x/erfc.
p

x/, tf D 2DN2 and � is an ultraviolet cutoff that can
be assumed to be of order 1. Expression (4) can be used to write the growth of
ıF.t/ D F.t/ � F.0/ in a scaling form

ıF.t/ D H.0/
p

tf
ıD

D
�.t=tf /; (5)

where the scaling function � is independent from parameters, and �.x/ 	 x for
small x. The growth of F.t/ and the scaling form are numerically confirmed in Fig. 2.
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Fig. 1 Snapshots of 2D configurations, a particle-based simulation of model (1). In all panels,
parameters are N D 104 and D D 10�4. Upper row: the two species have the same diffusivity.
Lower row: the red species have diffusivity D C ıD with ıD=D D 0:05. To help the viewer,
configurations has been down-sampled (adapted from [6])

Fig. 2 Average concentration of the fast species F.t/ varying the number density N and the
diffusion constant of the slowest species D in one dimension. In all simulations, we fixed ıD=D D
0:1, the initial fraction of the fast species is F.0/ D 0:1 and the system size is L D 10. Curves are
average over 103 realizations. The inset shows a data collapse according to Eq. (5). Linear scaling
(black dashed line) is shown for comparison (adapted from [6])
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Notice that, at this order, perturbation theory does not predict absorbing states. This
means that the perturbable approach can properly describe the dynamics only on
times shorter than the global fixation time, which is of the order of L2=D.

We now compare the selective advantage caused by a difference in diffusivity
with that provoked by a difference s in reproduction rates. Assuming s � 1 and
averaging directly such term, one obtains dF=dt D sH.0/G.t=tf /=2. Comparing the
latter expression with Eq. (4), one can define an effective advantage given by

seff D ıD

2D
p
��tf

: (6)

In higher dimensions, the problem can be described starting from the general
evolution equation for the heterozygosity, as obtained from Eq. (2) for ıD D 0:

@tH.x; t/ D 2Dr2H � 2�

N
H.0; t/ı.x/: (7)

Due to the spatial regularization [1], the delta function resulting from Ito’s Lemma
must be interpreted as ı.x/ 	 1=ad, where a 	 p

2D� is the lattice mesh. In an
adiabatic approximation, r2HjxD0 can then be estimated as

r2HjxD0 	 �H.0; t/

DN.D�/d=2
; (8)

which is consistent with Eq. (5) for d D 1. Evaluating Eq. (8) in d D 2 yields
r2HjxD0 	 �H.0; t/=.ND2�/, i.e., the effective advantage becomes a factor larger
1=

p
D� compared to the one dimensional case.

Finally, the effective selective advantage introduced in Eq. (6) can be used to
study the probability of fixation Pfix, defined as the probability of reaching the
absorbing state f D 1 from Eq. (2). In presence of a reproductive advantage, Pfix

is given by Doering et al. [1] and Pigolotti et al. [8]:

Pfix.s/ D 1 � exp.�2sNF.0//

1 � exp.�2sN/
: (9)

Assuming the same formula to hold in our case with seff replacing s, leads us to an
interesting prediction: Pfix should not depend on N as seff / N�1. This prediction is
confirmed in simulations shown in Fig. 3.
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Fig. 3 Fixation probabilities. Left: 1D; the black line is the theoretical prediction of Eq. (9). Right:
2D; including simulations with a fluid flow. In both panels we set D D 10�4 (adapted from [6])

3 Conclusions

An analysis of the problem of competition of species with two different diffusivities
shows how taking into account stochastic fluctuation is crucial to understand the
dynamics. Analytical results are quantitative consistent with particle simulations
in continuous space [6]. Similar models considered on the lattice and studied with
discrete equations lead to similar qualitative conclusions [5].
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Density-Dependent Diffusion and Epidemics
on Heterogeneous Metapopulations

Albert Avinyó, Marta Pellicer, Jordi Ripoll, and Joan Saldaña

1 The Model

Systems with many components (individuals or local populations as cities, or
metropolitan areas, or regions, : : :) connected by non-trivial associations or relation-
ships can be statistically described by means of the formalism of complex networks
which is based on descriptors like degree distributions, degree-degree correlations,
etc. In the last years, many researchers from different fields have been using different
approaches to model processes taking place on complex networks.

Here we take the approach of heterogeneous mean-field models for modelling
epidemic spread on a heterogeneous meta-population, which is a set of local
populations with a non-trivial pattern of migratory flows amongst them. This type of
approach was first introduced in [1] and extended in [2]. In [4, 6] the authors use the
new formulation introduced in [5] and compare analytical results with stochastic
simulations obtaining a good agreement between them. We extend our previous
works [3–6] to a non-linear diffusion term and demographic turnover. For instance,
the model can tackle the human mobility from rural areas to big cities to look for
job opportunities, or the other way round, from crowded areas to small villages to
get rid of stress.

We deal with the following mean-field type model as a system of ode’s which
combines (random, memoryless) movement of individuals among patches (nodes)
with SIS-epidemics within each patch, with infection transmission rate ˇ, recovery
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rate �, and equal birth and death rates ı. The evolution of the average number
of susceptible individuals �S;k.t/ and infected individuals �I;k.t/, in patches of
connectivity k, k D 1; : : : ; kmax, at time t, is governed by

�0

S;k.t/ D
�
�� ˇc.�k/

�S;k

�k

�
�I;k C ı.�k � �S;k/� DS.�k/�S;kCk

X

k0

DS.�k0 /P.k0jk/ �S;k0

k0
;

�0

I;k.t/ D
�
ˇc.�k/

�S;k

�k
� �

�
�I;k � ı�I;k � DI.�k/�I;kCk

X

k0

DI.�k0 /P.k0jk/ �I;k0

k0
:

(1)

Here, P.k0jk/ is the conditional probability that a patch of degree k has a connection
to a patch of degree k0. Each local population size is denoted by �k.t/ D �S;k.t/ C
�I;k.t/ and we are assuming a density-dependent number of contacts c.�k/, and also
density-dependent diffusion rates DS.�k/ and DI.�k/ of susceptible and infected
individuals respectively, in order to deal with demographic effects on the migration
process. The latter is the main novelty of the present work.

The first term in each equation corresponds to the infection and recovery
processes, the second one is the neutral demographic turnover, and the last ones are
the migration process which can be split into the negative terms counting the number
of individuals leaving the patch and the positive ones counting those arriving at it.

Once we know the solution of system (1), the total number of susceptible and
infected individuals is S.t/ D N

P
k p.k/ �S;k.t/ and I.t/ D N

P
k p.k/ �I;k.t/,

respectively, where p.k/ is the degree distribution and N is the number of nodes
of the network. From (1) and assuming the consistency condition kP.k0jk/p.k/ D
k0P.kjk0/p.k0/ which means that the number of links from k to k0 must be equal to
the number of links from k0 to k, it follows that the total number of individuals is
conserved in the meta-population, i.e., S.t/C I.t/ D N�0, with �0 being the average
number of individuals per patch.

1.1 Density Dependent Rates

The number of contacts c is assumed to be a non-decreasing, density dependent
function, generalizing the two cases considered in [4, 5]: c.�/ D � (fully-mixed
population) and c.�/ D 1 (limited homogeneous mixing).

The diffusion rates DS and DI are also density dependent and will be assumed to
be of the form D0

i �
˛i , with exponent ˛i for i D I; S. For ˛i < 0 we have the scenario

in which the probability of emigration is higher in patches with low population (rural
emigration). On the other hand, ˛i > 0 models the scenario in which the probability
of emigration is higher in patches with high population (urban emigration). Finally,
˛i D 0 recovers the constant diffusion rate considered in [4, 5]. Moreover, we will
assume that the total outflow of individuals in any patch, Di.�/� with i D I; S, is a
strictly increasing function of its population �. This implies the assumption ˛i > �1.
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2 Migration Process Without Epidemics

Denoting by E�S and E�I the vectors of the population distribution of each type in the
metapopulation, system (1) can be written as

8
<̂

:̂

E� 0
S D diag

� Q�� ˇ c.�k/
�S;k

�k

� E�I C .C � Id/ diag.DS.�k// E�S ;

E� 0
I D

�
diag

�
ˇ c.�k/

�S;k

�k
� Q��C .C � Id/ diag.DI.�k//

�
E�I ;

(2)

where Q� D � C ı and C, which is non-negative and assumed to be irreducible,
denotes the connectivity matrix with Ckk0 D kP.k0jk/=k0. For uncorrelated networks,
P.k0jk/ D k0p.k0/=hki and, hence, Ckk0 D kp.k0/=hki, where the brackets stands for
the mean value. In (2) we use the notation diag.xk/ for a diagonal matrix whose
diagonal elements are x1; : : : ; xkmax .

To study the impact of the different diffusion rates on the population distribution
�k, we consider the model in the absence of epidemic, that is, with E�I D E0, and study
the disease-free equilibrium E�� D E��

S . As C is irreducible, vk D k, k D 1; : : : ; kmax,
is the only positive eigenvector of C � Id associated to the dominant eigenvalue
� D 0. So, from (2) at the disease-free equilibrium, ��

k satisfies DS.�
�
k /�

�
k D M k,

with M being a suitable constant. Assuming that F.�/ WD DS.�/� is continuous and
strictly increasing, with F.0/ D 0, the existence and uniqueness of

��
k D F�1.M k/ (3)

is guaranteed and, hence, M is computed from the normalizing conditionP
k p.k/��

k D �0.
According to the hypotheses on F.�/, the disease-free equilibrium ��

k is increas-
ing in the degree k. In particular, for DS.�k/ D D0

S�
˛
k , ˛ > �1, (3) is explicitly given

by

��
k D k1=.1C˛/

hk1=.1C˛/i�
0: (4)

Note the linear dependence of ��
k on k when the diffusion rate is constant, i.e., ˛ D 0

(Fig. 1).
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Fig. 1 Profile of ��

k given by (4) with ˛ D �1=2 (superlinear), ˛ D 0 (linear), and ˛ D 1

(sublinear) for scale-free networks with p.k/ � k�3, kmin D 3, and kmax D 213. The average
population per patch is �0 D 100

3 Early Stage of the Epidemics

The initial growth of the epidemic is governed by the dominant eigenvalue �1 of the
Jacobian matrix of (2) at the disease-free equilibrium, which can be written as:

�
.C � Id/ � diag

�
F0.��

k /
� �diag

�
ˇc.��

k / � Q��
0 .C � Id/ � diag

�
DI.�

�
k /
�C diag

�
ˇc.��

k / � Q��
�
:

(5)

An exponential initial growth of the infectious population occurs when the
disease-free becomes unstable, that is, when �1 > 0. The block structure of the
Jacobian and the fact that the dominant eigenvalue of the first block is 0 imply that
�1 > 0 if and only if the dominant eigenvalue of the fourth block is strictly positive.
A sufficient condition for this to be fulfilled is

max
k

ˇc.��
k /

Q�C .1 � P.kjk//DI.�
�
k /
> 1; (6)

which follows after grouping all the diagonal terms in the fourth block.
For a given k, the previous ratio can be interpreted as an estimation of the basic

reproduction number of the populations living in patches with connectivity k, R0k ,
neglecting the immigration process from patches with connectivities k0 ¤ k. Note
that the factor 1� P.kjk/ in the denominator accounts for individuals who emigrate
to patches with a different connectivity.



Density-Dependent Diffusion and Epidemics on Heterogeneous Metapopulations 147

Fig. 2 Estimation of R0k given by the ratio in (6) for uncorrelated scale-free networks with  D
�3. Parameters: ˇ D 1:1, Q� D 1, c.�/ D �, and DS.�/ D DI.�/ D 0:1 �˛ with ˛ D 5 (urban
emigration)

In contrast to the case of constant diffusion in scale-free networks [4], the maxi-
mum in (6) is not necessarily attained at populations with the largest connectivities.
In some cases, the maximum is attained at the minimum degree kmin. In other cases,
as the one in Fig. 2, this maximum occurs at intermediate values of k. Since the ratio
in (6) is a lower bound of R0k , this means that local epidemic outbreaks will take
place for sure in patches with intermediate connectivities. So, the early stage of an
epidemic may not be triggered by infectious individuals living in large populations,
as it could be expected from the fact that ��

k increases with k. Hence, the role of
migration becomes crucial since it determines which patches act as sources or sinks
of infectious individuals.
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Are Viral Blips in HIV-1-Infected Patients
Clinically Relevant?

Daniel Sánchez-Taltavull and Tomás Alarcón

1 Introduction

HIV infection has a disturbing feature, after being treated by administration of
highly active anti-retroviral therapy (HAART), plasma viral load decays below
the detection threshold of standard clinical assays (	50 copies RNA=mL) but
appears to fail to completely eradicate the infection, a residual viral load (detectable
only by supersensitive assays) persists in plasma. An evidence that the virus is
not completely suppressed is the observation of the so-called vira blips, transient
episodes of viremia where the viral load raises above the standard test detection
limit for a brief period of time. The origin and clinical relevance of these blips
remains unclear. There are several studies that have compiled evidence against viral
blips being correlated with virological failure.

In order to explain the origin of these blips, Rong and Perelson [3] have formu-
lated a model in which stochastic activation of latently infected cells can maintain
viral blips without completely depleting the latent reservoir, thus maintaining long-
term, low-level viremia. Conway and Coombs [1] have proposed a model to analyse
the stochastic viral dynamics in treated patients. This model treats viral blips as
random events occurring every time the viral load reaches the standard detection
limit, however, there are several properties of the statistics of viral blips in which [1]
appears to depart from experimental observation, for example the duration and
frequency of the viral blips.

The models discussed assume that the system is well-mixed, the number of
species are uniformly distributed. For this modelling assumption to hold, the
numbers of each species must be large. The system we are dealing with in this
paper has at least two species, virus and infected cells, which are present in very

D. Sánchez-Taltavull • T. Alarcón (�)
Centre de Recerca Matemàtica, Campus de Bellaterra, Barcelona, Spain
e-mail: dsanchez@crm.cat; talarcon@crm.cat

© Springer International Publishing Switzerland 2015
M. Corbera et al. (eds.), Extended Abstracts Spring 2014, Trends in Mathematics 4,
DOI 10.1007/978-3-319-22129-8_26

149

mailto:dsanchez@crm.cat
mailto:talarcon@crm.cat


150 D. Sánchez-Taltavull and T. Alarcón

small numbers and we can observer large fluctuations in the local numbers of the
species. The effect of this inhomogeneity can be rather sizeable, specially since
measurements of viral load are performed by extracting small samples of blood
which are then analysed. The aim of this paper is to ascertain whether density
fluctuations affect the stochastic dynamics of the viral load in HAART-treated
patients beyond the predictions of [1] and investigate if an stochastic model which
includes density fluctuations is capable of reproduction of the experimental results.

2 Stochastic Inhomogeneous Model

We consider a compartmental model in which we assume that compartments are
arranged on a one dimensional, closed (i.e., with periodic boundary conditions)
lattice. In each compartment, we consider three types of interacting species, namely,
active infected cells, latently infected cells, and virus. The number of each of
these species in compartment i is referred to as T�

i , Li, and Vi, respectively, where
i D 1; : : : ;Nc with Nc is the number of compartments. We further introduce the
vector X.t/ D .T�

1 .t/;L1.t/;V1.t/; : : : ;T
�
Nc
.t/;LNc.t/;VNc.t//.

The stochastic dynamics of our system is described by the corresponding Master
Equation:

@PX

@t
.t/ D

X

r

�
W.X � r; r; t/P.X � r; t/

� � W.X; r; t/P.X; t/: (1)

The transition rates are defined in Table 1.
In order to facilitate later formulation of our in silico blood extraction protocol

and its comparison with [2], we will consider compartments of volume Vc D 8:5mL
each, which is the volume of blood sampled extracted for analysis in the study
reported in [2]. We will consider that an average individual has 5 L of blood so
we need to consider Nc D 588 compartments.

2.1 In Silico Blood Sample Analysis Model

Nettles et al. [2] designed an experimental protocol in which ten HIV-1 infected
patients under HAART were intensively sampled (every 2 or 3 days) for a period
of 3–4 months. Each time blood was extracted, two samples per patient were taken
and sent to two different laboratories for analysis.

Our procedure is as follows. After running the compartmental dynamics until
time tc, which is chosen to be long enough so that the average properties of the
system reach an steady state, we choose two compartments at random i and j among
the Nc compartments that compose our system. We then record the corresponding
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state xi.tc/ D .T�
j .tc/;Li.tc/;Vi.tc// and xj.tc/ D .T�

j .tc/;Lj.tc/;Vj.tc//. In order
to account for possible delays between the time of extraction and the actual
analysis, we assume that the extracted samples continue to evolve subject to the
local (within-compartment) dynamics with the transition rates corresponding to
between-compartment transitions W6C10NcC6.i�1/ D 0. As the extracted sample is
isolated for the mechanisms of the body to clear the virus we will consider a new
W8C10NcCRL.i�1/ D c�Vi with c� < c. This post-extraction dynamics is ran for a
duration tw.

3 Results

In order to study the Master Equation we perform numerical simulations by means
of the Gillespie algorithm. The first thing we investigate is how the mean viral load
affects the appearance of the viral blips: in Fig. 1 (top) we show that the probability

Fig. 1 Top: probability of observing at least one blip in our in silico blood sample analysis model
as a function of the average virus load for different values of tw. Bottom: comparison between blips
statistics obtained in the study by Nettles et al. [2] and those obtained from our simulations, where
tw D 0
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of the appearance of at least one viral blip increases with the mean viral load and
the time between the extraction and the observation. Another important thing is the
duration of this viral blips: in Fig. 1 (bottom) we show a comparison between the
duration observed in the study by Nettles et al. [2] and our model predictions, the
simulation results are in good agreement with experimental observations. However,
appears to overestimate the frequencies of the shorter blips.

4 Discussion

Our aim is to discuss whether the effect of the inhomogeneous density fluctuations
can be the origin of viral blips. To this end, we have presented an inhomogeneous
stochastic HIV-1 infection dynamics model. We have further designed an in silico
blood sample model, in order to reproduce as close as possible the experimental
protocol of Nettles et al. [2].

Furthermore, our approach allows us to (partially) address the issue of whether
laboratory and sample manipulation artifacts affect the observation of blips. We
have investigated the effect that the post-extraction handling time, i.e., the time
elapsed between sample extraction and the actual analysis, has on the statistics of
the number of blips. According to our model, this factor contaminates the statistics
of the number of blips, which supports the position regarding the effects laboratory
artifacts on viral blip observation.
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Models of Developmental Plasticity and Cell
Growth

Graeme Wake

1 Introduction

In this note we discuss the following topics:

1. Epigenetics: How to alter your genes? This is evolution within a lifetime.
Epigenetics is a relatively new scientific field; research only began in the mid
nineties, and has only found traction in the wider scientific community in the last
decade or so. We have long been told our genes are our destiny. But it is now
thought a genotype’s expression (that is, its phenotype), can change during its
lifetime by habit, lifestyle, even finances. What does this mean for our children?
So we consider phenotype change:

(a) firstly in a stochastic setting, where we consider the expected value of the
mean fitness;

(b) then we consider a Plastic Adaptive Response (PAR) in which the response to
an environmental cue is initiated after a period of waiting;

(c) finally, we consider the steady-fitness states, when the phenotype is modelled
on a continuous scale providing a structured variable to quantify the pheno-
type state.

2. Consider the steady-size distribution of an evolving cohort of cells and therein
establish thresholds for growth or decay of the cohort.

G. Wake (�)
Centre for Mathematics in Industry, Institute of Natural and Mathematical Sciences, Massey
University, Albany, Auckland, The New Zealand

Gravida, National Centre for Growth and Development, Auckland, The New Zealand
e-mail: G.C.Wake@massey.ac.nz

© Springer International Publishing Switzerland 2015
M. Corbera et al. (eds.), Extended Abstracts Spring 2014, Trends in Mathematics 4,
DOI 10.1007/978-3-319-22129-8_27

155

mailto:G.C.Wake@massey.ac.nz


156 G. Wake

2 Details

2.1 Topic (1a)

In some species an inducible secondary phenotype will develop sometime after the
environmental change that evolves it. Nishimura showed in [2] how an individual
organism should optimise the time it takes to respond to an environmental change
(the waiting time). If the optimal waiting time is considered to be a population
attribute then there are implications for the mean fitness in that population. We do
this in [4] where we assume that the waiting time is a normally distributed random
variable because of the biological variance inherent in mounting the response. It
is found that the value of the mean waiting time that maximises fitness depends
linearly on the variance of the waiting time, an important issue where perturbed
environments impact on the development of a Predictive Adaptive Response (PAR).
See diagram below, where we have also shown the trade-off between the expected
value of the time for plasticity and the variance of the time for plasticity in a
population subjected to two different energy availabilities, and the optimal path of
time to plasticity mean and variance when the energy available changes from low to
high.
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2.2 Topic (1b)

Here we consider a PAR in which the response to an environmental cue is initiated
after a period of waiting and the induced phenotype develops completely before
the eventual environmental change forecast by the cue. This is developed non-
stochastically, in [3].

The realization that the induced response need not manifest itself immediately
after the environmental cue has generally been under-appreciated by evolutionary
biologists. Predictive adaptive responses are a form of developmental plasticity but
differ from most in that the selective advantage of the response manifests later
in life, well after the initiating environmental cue, when a second or “eventual”
environment prevails. Note that this eventual environment may or may not be the
same as that than induced the initial response. The archetypal case is adult coat
thickness in the Meadow Vole, Microtus pennsylvanicus, which is induced before
birth by the day length sensed by pregnant mothers, but which has an evolutionary
pay-off in the highly seasonal post-natal environment.

Our modelling shows that, for a variety of formulations for the costs of
development, predictive adaptive responses (PARs) maximize fitness when there is
no anticipation (the time between the completion of the development of the induced
phenotype and the onset of the eventual environment). In addition, when rapid
development is costly, fitness is maximized when there is no delay between the
environmental cue and the initiating of development, and hence all available time is
allotted to development. Developmental costs appear to be privileged, fitness being
maximized whenever the additional costs of development are minimized.

Second in the hierarchy is the delay time, with fitness maximized when any time
not required for development is assigned to the delay (Fig. 1).

Costs

Death
Rate

C 4
C 3
C 1

m 4
m 1

Delay

Cue Initiation
of Response

Completion
of Response

Environmental
Change

Evaluation
of Fitness

Time

Development

T

t

Anticipation
t v

Fig. 1 Life history of the model organism. The dashed yellow line shows the death rate for an
organism that fails to respond to the environmental cue
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2.3 Topic (1c)

We consider steady-fitness states, in a model developed by Korobeinikov and
Dempsey [1], in which the phenotype is modelled on a continuous scale providing
a structured variable to quantify the phenotype state. This enables thresholds for
survival/extinction to be established in terms of fitness. We note that methylation
is a chemical process by which genes can be switched off-thereby changing our
phenotype. There is also increasing evidence that certain cancers are caused by
misplaced epigenetic tags. For development we switch to viral evolution which
is probably the most significant single factor accountable for emergence of new
pathogens and drug-resistant strains and preventing a development of effective
drugs and vaccines. The ability of virus to evolve and leads to development of
drug-resistant strains, thus making its treatment extremely difficult; it prevents
development of an effective vaccine, and enables the virus to escape immune
control. Moreover, it is believed that the dynamics of HIV is also mostly determined
by the ability of HIV to evolve. Viruses mutate quickly so data is easy to obtain.

Phenotype expression can be modelled using these structured population models.
These involve challenging nonlocal nonlinear eigenvalue problems, with thresholds
able to be quantified. Algorithms are being developed at present.

An example of the type of the non-local problem that arises is

DV 00.s/C
 

abs

�C a
R1
0

sV.s/ds
� m

!
V.s/ D 0; s > 0;

with V 0.0/ D V.1/ D 0. Here, V.s/ is the steady state population of the infected
cells, which in turn is structured by the phenotype variable s. This equation is a type
of nonlinear eigenvalue problem.

2.4 Topic (2)

We look now at the steady-size distribution of an evolving cohort of cells, such
as tumour cells in vitro, and therein establish thresholds for growth or decay of
the cohort. Living cell populations which are simultaneously growing and dividing
are usually structured by size, which can be, for example, mass, volume, or
DNA content. The evolution of the number density n.x; t/ of cells by size, in an
unperturbed situation, is observed experimentally to exhibit the attribute of that of
an asymptotic Steady Size Distribution (SSD). That is, n.x; t/ 	 scaled (by time
only) multiple of a constant shape y.x/ as t ! 1 (Fig. 2).
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Fig. 2 SSD’s for binary asymmetrical division x ! .x=˛; x=ˇ/, where 1=˛ C 1=ˇ D 1

3 The Cell Cycle

If t2 > t1 then the population is growing; and if t2 < t1 then the population is dying.
By developing a simple evolutionary model to describe this outcome, criteria for the
growth/decline of the cohort can be determined.

This work is relevant to the underlying understanding of cell tumour growth.
The application is stimulating new mathematics, for example the spectral theory
of non-local singular eigenvalue problems, see [5]. Cells dividing asymmetrically
are essential for generating diverse cell types during development. The capacity for
symmetric stem-cell self-renewal may confer developmental plasticity, increased
growth and enhance regenerative capacity; however, it may also confer an inherent
risk of cancer. When the machinery that regulates asymmetric divisions is disrupted,
however, these cells begin dividing symmetrically and form tumours. This needs
underpinning rigour to understand the dynamics of cancer-cell growth and regula-
tion of cell-growth.

This is established using a new class of non-local (but linear) singular eigenvalue
problems which have point spectra, like the traditional Sturm–Liouville problems.
The first eigenvalue gives the threshold required. But these problems are first order
unless dispersion is added to incorporate random perturbations; the same idea
will also apply here. Current work involves binary asymmetrical division of cells,
simultaneous with growth. It has implications to cancer biology, helping biologists
to conceptualise non-local effects and the part they may play in cancer. This is
developed in [6].

A new model is needed of cell-growth with asymmetrical division [two or more
daughter cells of different sizes (usually DNA content)] from a single division event.
This model must capture the key features from earlier models with symmetrical cell-
division, where the cell-size distribution tends asymptotically to one of constant
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shape when the cohort is not disturbed; this being a well-known observation. This
is also still called a steady-size-distribution (SSD).

A model is proposed which does this for different types of cellular evolution
and amounts to a hyperbolic integro-differential equation. Separated solutions again
answer the question of SSD behaviour and the time-constant can be a principal
eigenvalue of a singular first-order integro-first-order ODE. More general questions
arise as to whether these solutions are attracting with time and whether they span
the space of all solutions.
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