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Abstract. The AKS algorithm (by Agrawal, Kayal and Saxena) is a sig-
nificant theoretical result proving “PRIMES in P”, as well as a brilliant
application of ideas from finite fields. This paper describes the first step
towards the goal of a full mechanisation of this result: a mechanisation
of the AKS Main Theorem, which justifies the correctness (but not the
complexity) of the AKS algorithm.

1 Introduction

The AKS algorithm is a decision procedure for primality testing. That is, given
a number n, it returns “true” if n is prime and “false” otherwise. As per the
title of AKS paper [3],“PRIMES is in P”, the significance of their work is that
the number of steps for the verification is bounded by some polynomial function
of the size of n, measured by log2 n.

There have been several attempts to formalize the AKS Main Theorem (see
Sect. 6), but so far none is complete. In this paper, we describe the first complete
mechanization of this result. In subsequent work, we aim to demonstrate that
the algorithm built on top of this result does indeed compute its answer in
polynomial time.

1.1 Overview

A number n is a perfect-power of another number m if there exists an exponent e
such that n =me , and n is power-free if it is a trivial perfect power, i.e., if n =me

then e = 1 and m =n. Given a number n, the smallest positive exponent j such
that nj ≡ 1 (mod k) is denoted by orderk (n). Computation in (mod n, Xk − 1)
means that all numerical as well as polynomial computational results are reduced
to remainders after divisions by n and by Xk − 1. The constant polynomial
arising from constant c is denoted by boldface c. More notation will be covered
in Sect. 1.2. Here is a peek at our HOL4 result.
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Theorem 1. The AKS Main Theorem.

� prime n ⇐⇒
1 < n ∧ power free n ∧
∃ k.

prime k ∧ (2(log n + 1))2 ≤ orderk (n) ∧
(∀ j. 0 < j ∧ j ≤ k ∧ j < n ⇒ gcd(n, j ) = 1) ∧
(k < n ⇒

∀ c.
0 < c ∧ c ≤ 2

√
k (log n + 1) ⇒

(X + c)n ≡ (Xn + c) (mod n, Xk − 1))

This theorem then justifies the following algorithm1 for primality testing:

Input: integer n > 1.

1. If (n = bm for some base b with m > 1), return COMPOSITE.
2. Search for a prime k satisfying orderk (n) ≥ (2(log n + 1))2.
3. For each (j = 1 to k) if (j = n) break, else if (gcd(j ,n) 	= 1), return

COMPOSITE.
4. If (k >= n), return PRIME.
5. For each (c = 1 to 2

√
k (log n + 1)) if (X + c)n �≡ (Xn + c) (mod

n,Xk − 1), return COMPOSITE.
6. return PRIME.

Given a number n, this version of the AKS algorithm requires a search for
another prime k in Step 2. Step 4 suggests that it is not always true that k < n.
Nevertheless, the theorem can still be viewed as a well-founded recursive def-
inition because it turns out that k is roughly bounded by (log n)5 [3]. So, for
sufficiently large values of n, there will always be a k < n. For smaller n (effec-
tively the base cases of recursion), a look-up table might be used.

The rest of this paper is devoted to explaining the mechanised proof of this
result. Section 2 covers some necessary background. Sections 3 and 4 describe the
proof of the AKS Main Theorem. Section 5 discusses our mechanisation experi-
ence. Section 6 compares our work with others. Finally, we conclude in Sect. 7.

1.2 Notation

All statements starting with a turnstile (�) are HOL4 theorems, automati-
cally pretty-printed to LATEX from the relevant theory in the HOL4 develop-
ment. Generally, our notation allows an appealing combination of quantifiers

1 The constants involved in this algorithm are based on [10, Algorithm 8.2.1]. They
are slightly different from those in the AKS papers [2,3], but such variations do not
affect the conclusion of “PRIMES is in P”.
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(∀,∃), set notation (∈,∪ and comprehensions such as {x | x < 6} ), and func-
tional programming (λ for function abstraction, and juxtaposition for function
application).

The cardinality of a set s is written |s|; the image of set s under the mapping
f is written f (|s|); we write f : s ↪→ t to mean that function f is injective from
set s to set t.

Number-Theoretic Notation. With n a natural number,
√

n is its square-root,
and log n its logarithm to base 2. Both logarithm and square-root are integer
functions, being the floor value of the corresponding real functions. We use ϕ(n)
to denote the Euler ϕ-function of n, the count of coprime numbers less than n.
We write n | m when n divides m.

For the AKS algorithm, we shall use n for the input number, p for its prime
factor, k for the prime (existentially quantified) “parameter” of the Main The-
orem, and �= 2

√
k (log n + 1) for a computed parameter (the limit for a range

of constants). Note that orderk (n) is nonzero whenever gcd(k ,n)= 1.

Ring, Field, and Polynomial Notation. A ring R has carrier set R, with 1 and
0 its one and zero. The characteristic of a ring R is written as χ(R), often
abbreviated to χ for a generic ring. A ring homomorphism from a ring R to
another ring S via a map f is denoted by f : R �→r S.

We write R[X] to denote the ring of polynomials with coefficients drawn from
the underlying ring R. Similarly, the ring F [X] has polynomials with coefficients
from a field F . Polynomials from those rings are written with the sans-serif font,
e.g., p, q, h. The constant polynomial c (in bold) is derived from adding 1 repeat-
edly c times. The degree of p is written deg p, its leading coefficient is lead p,
and monic p means its leading coefficient is 1. The polynomial X is the monomial
(monic of degree 1) with zero constant. The polynomial field quotiented by mod-
ulus with an irreducible polynomial h is Fh[X], with multiplicative group F∗

h [X].
Arithmetic (addition, subtraction, multiplication, remainders) on polynomi-

als is written with usual symbols (+, −, ∗, mod etc.), e.g., Xk−1 is the unity
polynomial of degree k. Here we can see HOL4’s overloading facilities at work:
constant polynomials one and zero are 1 and 0, the same as those for a ring.
More aggressively, we use overloading to conceal “implicit” parameters such as
the underlying ring R in terms such as p ∗q (polynomial product).

We write p[[q]] to denote the substitution of q for every X in p. We use roots p
for the set of p’s roots, and ipoly p to mean that p is an irreducible polynomial,
both with respect to its underlying ring R. The quotient ring formed by R[X]
and irreducible polynomial h is denoted by Rh[X], which can be shown to be a
field. Its multiplicative group is R∗

h[X]. The order of an element in this group,
e.g., X, is denoted by orderh(X).

HOL4 Sources. All our proof scripts can be found at http://bitbucket.org/jhlchan/
hol/src/aks/theories.

http://bitbucket.org/jhlchan/hol/src/aks/theories
http://bitbucket.org/jhlchan/hol/src/aks/theories
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2 Background

A glance at the algorithm in Sect. 1.1 shows its most prominent feature: poly-
nomial identity tests in modulo Xk−1. To understand this we need to get a feel
for the motivation behind the AKS algorithm.

2.1 Finite Fields

The AKS Main Theorem has a setting in finite fields, since the characteristic
of a finite field is always prime. A field is also a ring, and a ring with prime
characteristic enjoys some wonderful properties.

Theorem 2. The Freshman-Fermat Theorem
� Ring R ∧ prime χ ⇒ ∀ c. (X + c)χ = Xχ + c

Proof. This follows directly from two theorems, (a) Freshman’s Theorem:
� Ring R ∧ prime χ ⇒ ∀p q. poly p ∧ poly q ⇒ (p + q)χ = pχ + qχ

and (b) Fermat’s Little Theorem for polynomials:
� Ring R ∧ prime χ ⇒ ∀ c. cχ = c

Both theorems (a) and (b) have been mechanized in a previous paper by the
same authors [6]. �
The converse, suitably formulated, is also true:
Theorem 3. A ring has its characteristic prime iff a Freshman-Fermat identity
holds for any constant coprime with the characteristic.
� Ring R ⇒ ∀ c. gcd(c, χ) = 1 ⇒ (prime χ ⇐⇒ 1 < χ ∧ (X + c)χ = Xχ + c)

Given a number n > 1, we can identify R with Zn , and χ(Zn)=n. Since
gcd(1,n)= 1 always, pick c = 1, then this theorem applies, and whether n is
prime is just one check of a Freshman-Fermat polynomial identity in Zn , i.e.,
(mod n).

Therefore, this theorem amounts to a deterministic primality test. But there
is a catch: the left-side, upon expansion, contains n + 1 terms. Thus this is an
impractical primality test for large values of n.

The AKS idea begins with checking such Freshman-Fermat identities, with
two twists:
– Instead of just checking in (mod n), perform the computations in (modn, Xk−1)

for a suitably chosen parameter k . Since results are always the remainder after
division by Xk−1, the degree of intermediate polynomials (which determines the
number of terms) never exceed k—presumably k is much smaller than n.

– Instead of checking just one coprime value, check for a range of coprime val-
ues c, for 0 < c ≤ �, up to some maximum limit �—presumably � is related to
k , and small compared to n.

Of course, the big question is whether after such modifications there is still
a primality test. The AKS team answered this in the affirmative—there exist
parameters k and �, bounded by some polynomial function of the size of input
number n, i.e., log n, giving a polynomial-time deterministic primality test.
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2.2 Introspective Relation

Recall from Sect. 1.1 that AKS computations are done in (mod n, Xk − 1).
This double modulo notation is clumsy. Let us work in a generic ring R, later to
be identified with instances such as Zn . The first (mod n) equivalence becomes
equality in the ring R (i.e., x ≡ y (mod n) means x = y in Zn); leaving the
symbol (≡) to indicate the polynomial modulo equivalence in R[X].

In this context, of a general ring R, the polynomial identity checks in Theo-
rem 1 take the form:

(X+ c)n ≡ Xn + c (mod Xk−1)

They look like Freshman-Fermat identities of Theorem 2, only now under
modulo by a polynomial. Rewriting with a polynomial substitution, the left and
right sides are strikingly similar:

(X+ c)n [[X]] ≡ (X+ c)[[Xn ]] (mod Xk−1)

The rewrites are trivial, since for any polynomial p, we have p[[X]]= p and
(X+ c)[[p]]= p+ c. Superficially, the left-hand side is transformed into the right-
hand side simply by shifting of the exponent n. Following the terminology of
AKS team, we say n is introspective to polynomial p, denoted by n �� p, when:

� n �� p ⇐⇒ poly p ∧ 0 < k ∧ pn ≡ p[[Xn ]] (mod Xk − 1)

Note that the symbol for introspective relation (��) hides the polynomial mod-
ulus Xk−1, and the underlying ring R. We shall include a subscript when the
underlying ring is of significance, e.g., ��Zn

.
Therefore, the AKS algorithm verifies, for the input number n, the identities

n �� X+ c in Zn for 0 < c ≤ � up to some maximum �. Moreover, Freshman-
Fermat (Theorem 2) can be restated as:

Theorem 4. For a ring with prime characteristic, its characteristic is intro-
spective to any monomial.

� Ring R ∧ 1 	= 0 ∧ prime χ ⇒ ∀ k. 0 < k ⇒ ∀ c. χ �� X + c

Proof. By introspective definition, this is to show: (X+ c)χ ≡ (X+ c)[[Xχ]] (mod
Xk−1). Transforming the right side by substitution, (X+ c)[[Xχ]]=Xχ + c. Then
both sides are equal by Freshman-Fermat (Theorem2), hence they are equivalent
under modulo by Xk−1. �

The fundamental properties of introspective relation are:

Theorem 5. Introspective relation is multiplicative for exponents.

� Ring R ∧ 1 	= 0 ⇒ ∀ k p n m. n �� p ∧ m �� p ⇒ n m �� p

Proof. Working in (mod Xk−1), we have pn ≡ p[[Xn ]] by n �� p, and pm ≡ p[[Xm ]]
by m �� p. The latter means p[[X]]m−p[[Xm ]] is divisible by Xk−1. Substitute every
X of the previous statement by Xn , and noting Xk−1 | (Xn)k−1 by divisibility of
unity polynomials, p[[Xn ]]m ≡ p[[(Xn)m ]]. Therefore, pn m = (pn)m ≡ p[[Xn ]]m ≡
p[[(Xn)m ]]= p[[Xn m ]], or n m �� p. �
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Theorem 6. Introspective relation is multiplicative for polynomials.

� Ring R ∧ 1 	= 0 ⇒ ∀ k p q n. n �� p ∧ n �� q ⇒ n �� p∗q
Proof. Working in (mod Xk−1), we have pn ≡ p[[Xn ]] by n �� p, and qn ≡
q[[Xn ]] by n �� q. Therefore, (p ∗q)n = pn ∗qn ≡ p[[Xn ]] ∗q[[Xn ]]= (p ∗q)[[Xn ]], or
n �� p ∗q. �

3 Main Theorem

We can now restate the AKS Main Theorem (Theorem 1) in terms of the intro-
spective relation.

Theorem 7. A number is prime iff it satisfies all the AKS checks.

� prime n ⇐⇒
1 < n ∧ power free n ∧
∃ k.

prime k ∧ (2(log n + 1))2 ≤ orderk (n) ∧
(∀ j. 0 < j ∧ j ≤ k ∧ j < n ⇒ gcd(n, j ) = 1) ∧
(k < n ⇒

∀ c. 0 < c ∧ c ≤ 2
√

k (log n + 1) ⇒ n ��Zn
X + c)

Note how the symbol ��Zn
encapsulates the introspective relation (i.e., mod

Xk−1) within Zn (i.e., mod n), the double modulo in the AKS computations.
We prove this logical equivalence in two parts.

3.1 Easy Part (⇒)

Theorem 8. The if-part of AKS Main Theorem (Theorem7).

� prime n ⇒
1 < n ∧ power free n ∧
∃ k.

prime k ∧ (2(log n + 1))2 ≤ orderk (n) ∧
(∀ j. 0 < j ∧ j ≤ k ∧ j < n ⇒ gcd(n, j ) = 1) ∧
(k < n ⇒ ∀ c. 0 < c ∧ c ≤ 2

√
k (log n + 1) ⇒ n ��Zn

X + c)

Proof. The first two goals, 1 < n and power freen, are trivial for a prime n. For
the third goal, let m = (2(log n + 1))2, then parameter k exists by Theorem 25
in Sect. 4.6:

� 1 < n ∧ 0 < m ⇒ ∃ k. prime k ∧ gcd(k ,n) = 1 ∧ m ≤ orderk (n)

If k ≥ n, the coprime checks are subsumed by ∀ j . 0 < j ∧ j < n ⇒ gcd(n, j )= 1.
Otherwise k < n, and the coprime checks are subsumed by ∀ j . 0 < j ∧ j ≤ k ⇒
gcd(n, j )= 1. Either way this is true since a prime n is coprime with all values
less than itself. When k < n, the last check is established by Theorem 4, since a
prime n gives a field Zn , with χ(Zn)=n. �
A close equivalent of this Theorem 8 was mechanised by de Moura and Tadeu [9]
in Coq, and by Campos et al. [5] in ACL2.
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3.2 Hard Part (⇐)

Theorem 9. The only-if part of AKS Main Theorem (Theorem7).

� 1 < n ∧ power free n ∧
(∃ k.

prime k ∧ (2(log n + 1))2 ≤ orderk (n) ∧
(∀ j. 0 < j ∧ j ≤ k ∧ j < n ⇒ gcd(n, j ) = 1) ∧
(k < n ⇒ ∀ c. 0 < c ∧ c ≤ 2

√
k (log n + 1) ⇒ n ��Zn

X + c)) ⇒
prime n

Proof. Based on the given parameter k , let �= 2
√

k (log n + 1). If k ≥ n the
coprime checks will verify ∀ j . 0 < j ∧ j < n ⇒ gcd(n, j )= 1, thus n will be prime
since it has no proper factor. Otherwise k < n, the coprime checks are
∀ j . 0 < j ∧ j ≤ k ⇒ gcd(n, j )= 1. In Sect. 3.3 we shall establish:

Theorem 10. The AKS Main Theorem in Zn .

� 1 < n ⇒
∀ k �.

prime k ∧ (2(log n + 1))2 ≤ orderk (n) ∧ � = 2
√

k (log n + 1) ∧
(∀ j. 0 < j ∧ j ≤ k ⇒ gcd(n, j ) = 1) ∧
(∀ c. 0 < c ∧ c ≤ � ⇒ n ��Zn

X + c) ⇒
∃ p. prime p ∧ perfect power n p

Applying this theorem, n = pe for some prime p and exponent e by definition of
a perfect power. But n is assumed power-free, so e = 1 and n = p, making n a
prime. �

3.3 Shifting Playgrounds

The AKS verifications take polynomials with coefficients from Zn , a ring for
general n. Polynomials with coefficients from a ring can have more roots than
their degree, due to the possible existence of zero divisors in a ring.2 A field has
no zero divisors, and polynomials with coefficients from a field have this nice
property:

� Field F ⇒ ∀p. poly p ∧ p 	= 0 ⇒ |roots p| ≤ deg p

As we shall see (Sects. 4.3 and 4.4), there will be two important injective maps
involved in the AKS proof. To establish the injective property, this restriction
on the number of polynomial roots by its degree is of utmost importance.

But where to find a field F to work with, given that we start in the ring Zn?
When the number n is not 1, it must have a prime factor p. This leads to the

field Zp . If relationships between monomials X+ c are carried over unaffected
from Zn [X] to Zp [X], we are in a better place to investigate the nature of n. This
shifting of playgrounds is essential in the proof of Theorem10:
2 For example, in Z6, 2 × 3 = 0, hence (X − 2)(X − 3) = X2 − 5X = X(X − 5), which

shows a polynomial of degree 2 can have more than 2 roots.
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Proof (of Theorem 10). If n is prime, take p =n. Otherwise, n has a proper prime
factor p such that p < n and p | n. Introduce two rings, Zn and Zp . The latter
ring Zp is also a field, in fact a finite field. This is because all nonzero elements
are coprime to the prime modulus p, hence they have inverses.

There is a homomorphism between these two rings due to that fact that p
divides n:

� 0 < n ∧ 0 < p ∧ p | n ⇒ (λ x . x mod p) : Zn �→r Zp

This ring homomorphism will preserve monomials X+ c if a condition on limit �
is met:

� 0 < n ∧ 1 < p ∧ � < p ⇒
∀ c. 0 < c ∧ c ≤ � ⇒ ∀ f . f : Zn �→r Zp ⇒ f (X + c) = X + c

Here f (p) denotes applying the ring homomorphism f to each coefficient of a
polynomial p. We shall show in Sect. 4.6 that � ≤ k (Theorem 27). To meet the
condition � < p, we need only to show k < p. Note that the given coprime checks
on k are (from the statement of Theorem 10):

∀ j . 0 < j ∧ j ≤ k ⇒ gcd(n, j ) = 1

Taking j = k , we conclude gcd(n, k)= 1. This will be useful later. Apply the
following theorems:

� 1 < n ∧ prime p ∧ p | n ⇒ ∀ j. gcd(n, j ) = 1 ⇒ gcd(p, j ) = 1
� 1 < p ⇒ ∀ k. (∀ j. 0 < j ∧ j ≤ k ⇒ gcd(p, j ) = 1) ⇒ k < p

Tracing the transformation of gcd’s gives k < p, hence � < p.
Therefore the monomials are preserved by homomorphism, together with the

introspective relation:

� 0 < n ∧ 1 < p ∧ p | n ∧ 0 < k ∧ � < p ⇒
∀m c. 0 < c ∧ c ≤ � ∧ m ��Zn

X + c ⇒ m ��Zp
X + c

Thus the AKS checks in Zn are equivalent to checks in Zp , a finite field, where p
is a prime factor of n. Generalising to arbitrary finite fields, in Sect. 4.5 we will
prove:

Theorem 11. AKS Main Theorem in finite fields.

� FiniteField F ∧ prime k ∧ k < χ ⇒
∀n.

1 < n ∧ χ | n ∧ gcd(n, k) = 1 ∧ (2(log n + 1))2 ≤ orderk (n) ∧
� = 2

√
k (log n + 1) ∧ (∀ c. 0 < c ∧ c ≤ � ⇒ n �� X + c) ⇒

perfect power n χ

We then identify F with Zp , noting χ(Zp)= p, with k < p. Knowing gcd(n, k)= 1
from the gcd checks above, we conclude that n must be a perfect power of its
prime factor p, as required. �
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4 Introspective Game

There are two useful facts when working in the context of a finite field F , where
χ is necessarily prime:

– We get, for free in F [X], the result: χ �� X+ c, by Theorem 4, since a field is a
non-trivial ring.

– The modulus polynomial Xk−1, now in F [X], will have a monic irreducible
factor h 	=X−1.

Both will play significant roles in the proof of Theorem11. Here are the high-
lights:

– The finite field F will enrich the introspective relation, through the interplay
between prime χ and n.

– This will give rise to some interesting sets, among them are two finite sets ̂N
and M (Sect. 4.2).

– The conditions on parameters k and � will establish an injective map from ̂N
to M.

– If n were not a perfect power of χ, then we would have | ̂N| > |M|, contradicting
the Pigeonhole Principle.

Summary of the AKS Proof (Theorem 11)

Our strategy for the AKS proof can be described as a game between two players
(see Fig. 1). The introspective relations of n and p, a prime factor of n, give rise
to two sets N and P (Sect. 4.1). Taking modulo by k (an AKS parameter) and
by h (an irreducible factor of Xk−1), the sets N and P map (straight arrows),
respectively, to two finite sets M and Qh (Sect. 4.2). Two finite subsets of N and
P, shown as ̂N and ̂P, can be crafted in such a way that injective maps (curve
arrows) between the finite sets can be constructed, if k and � (another AKS
parameter) are suitably chosen to satisfy the “if” conditions (Sects. 4.3 and 4.4).
The construction of injective maps involves interactions (dashed arrows) between
the two players, based on properties of the introspective relation and polynomials
in Fh[X]. Once these are all in place, if n were not a perfect power of p, the grey set
̂N will have more than |M| elements, where M is the target of the left injective
map. This contradicts the Pigeonhole Principle (Sect. 4.5). Hence n must be a
perfect power of its prime factor p.

4.1 Introspective Sets

As noted above, after shifting to a finite field F where p =χ is prime, for the
constants 0 < c ≤ �, besides the given n �� X+ c, we also have p �� X+ c by
Theorem 4.

In view of this, we define the following two sets:

� N = {m | gcd(m, k) = 1 ∧ ∀ c. 0 < c ∧ c ≤ � ⇒ m �� X + c}
� P = {p | poly p ∧ ∀m. m ∈ N ⇒ m �� p}
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Fig. 1. The AKS proof as a game between numbers and polynomials via introspective
relation. Refer to summary above for an explanation.

The set N captures the introspective exponents. Observe that n ∈ N , p ∈ N , and
trivially, 1 ∈ N . They are all coprime to k , since the coprime checks in Sect. 3.3
give gcd(n, k)= 1 and k < p. For a prime p, k < p gives gcd(p, k)= 1.

The set P captures the introspective polynomials, those with introspective
exponents in N . Certainly ∀ c. 0 < c ∧ c ≤ � ⇒X+ c∈ P, and trivially, 1∈ P.

Recall the fundamental properties of introspective relation: there will be mul-
tiplicative exponents for N (Theorem 5) and multiplicative polynomials for P
(Theorem 6). Together they imply that the sets N and P will be infinitely large.
Our contradiction from the Pigeonhole Principle comes when we have derived
some related, and finite sets.

4.2 Modulo Sets

One way to get a finite counterpart from an infinite set is by looking at remain-
ders after division, or image of the set under some modulus. For the exponents
set N , the parameter k provides a modulus:

� M = (λm. m mod k)(|N |)
It is easy to estimate the cardinality of M:

Theorem 12. The cardinality of set M is bounded by k and orderk (n).

� Ring R ∧ 1 	= 0 ∧ 1 < k ⇒ ∀n. n ∈ N ⇒ orderk (n) ≤ |M| ∧ |M| < k

Proof. Since there are k remainders under modulo k , |M| ≤ k . But multiples of
k (those n with n mod k = 0) are not in N , as all elements of N are coprime to k
and k �= 1. Therefore 0 /∈ M, making |M| < k . Given n ∈ N , so are all its powers:
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∀ j . nj ∈ N by Theorem 5. Hence all the remainders nj mod k are in M. Since
orderk (n) is the minimal exponent j before such remainders wrap around to 1,
there are at least orderk (n) distinct remainders. Thus orderk (n) ≤ |M|. �

For the polynomials set P, the irreducible factor h of Xk−1 provides a modulus:

� Qh = (λ p. p mod h)(|P|)
For the cardinality of Qh , estimation requires more work, due to the change of
modulus to h. Let z=Xk−1, then monic z and deg z= k . Note that z ≡ 0 (mod h),
since h divides z by being a factor. These facts ensure that polynomial equiva-
lences in (mod z) are preserved to (mod h):

Theorem 13. Polynomial modulo equivalence holds for modulus factor.

� Ring R ∧ monic z ∧ 0 < deg z ∧ monic h ∧ 0 < deg h ∧ z ≡ 0 (mod h) ⇒
∀p q. poly p ∧ poly q ∧ p ≡ q (mod z) ⇒ p ≡ q (mod h)

Proof. When (p − q) is divisible by z (due to p ≡ q (mod z)), and z is divisible
by h (due to z ≡ 0 (mod h)), the difference (p − q) is also divisible by h due to
transitivity of division. �

An irreducible polynomial h gives a polynomial modulo field Fh[X], and
nonzero elements of a field form a multiplicative group. Since X 	= 0, it has a
nonzero orderh(X), with the following features.

Theorem 14. When X is a root of unity, order of X is maximal when unity
exponent is prime.

� FiniteField F ∧ monic h ∧ ipoly h ∧ h 	=X − 1 ⇒
∀ k. prime k ∧ Xk ≡ 1 (mod h) ⇒ orderh(X) = k

Proof. Let t =orderh(X). By definition of order, Xt ≡ 1 (mod h), and given Xk ≡
1 (mod h). Since t is minimal, t divides k. Given prime k, t = 1 or t = k. Only 1

has order 1, but X �≡ 1 (mod h) by assumption. Therefore orderh(X) = t = k . �
Theorem 15. In the polynomial field Fh[X], powers of X are distinct for expo-
nents less than orderh(X).
� FiniteField F ∧ monic h ∧ ipoly h ∧ h 	=X ⇒

∀m n. m < orderh(X) ∧ n < orderh(X) ⇒ (Xm ≡ Xn (mod h) ⇐⇒ m = n)

Proof. Since Fh[X] is a finite field, its multiplicative group is a finite group. By
the given assumption, X �≡ 0 (mod h), thus X is an element in this group. Its
order is the minimal exponent for the powers of X to wrap around to 1. Given
the exponents are less than its order, such powers of X are distinct. �
We shall see how the distinct powers of X lead to a lower bound for Qh. This
simple result is helpful:

Theorem 16. Powers of X are equivalent in Xk − 1 if exponents are equivalent
in Zk .

� Ring R ∧ 1 	= 0 ⇒ ∀ k. 0 < k ⇒ ∀m. Xm ≡ Xm mod k (mod Xk − 1)

Proof. Since m = (m div k)k + m mod k and Xk ≡ 1 (mod Xk−1), the result
follows. �
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4.3 Reduced Polynomials

Referring to Fig. 1, we shall see eventually that the right injective map is essential
to give a lower bound for Qh , and this lower bound is essential to provide the
left injective map. These two injective maps are critical in the AKS proof.

To obtain a lower bound for Qh , we need another way to get something finite
from the infinite set P, by taking a reduced subset of P:

� ̂P = {p | p∈ P ∧ deg p < |M| }
This is a finite subset of P due to the polynomial degree cut-off. We shall prove
that there is an injective map from ̂P to Qh, hence a lower bound on | ̂P| will
also be a lower bound for |Qh|.

First, note an interesting interaction from M to P, which is relevant to ̂P since
̂P ⊆ P. We know that P has a lot of elements (Sect. 4.1), so pick two polynomials
p∈ P and q∈ P. While it is almost impossible to identify any roots for p or q in
Fh[X], it turns out that introspective relation helps to identify some interesting
roots of their difference (p − q), from the elements of M.

Theorem 17. Each element in M gives a root for any difference polynomial
from P in Fh[X].

� Field F ∧ monic h ∧ 0 < deg h ∧ Xk − 1 ≡ 0 (mod h) ⇒
∀p q.

p∈ P ∧ q∈ P ∧ p ≡ q (mod h) ⇒
∀n. n ∈ M ⇒ (p − q)[[Xn ]] ≡ 0 (mod h)

Proof. Given n ∈ M, there is m ∈ N such that n =m mod k . Therefore m �� p and
m �� q by definition of P. Let z=Xk−1. Note that z ≡ 0 (mod h) by assumption.
We can proceed:

pm ≡ p[[Xm ]] (mod z) by m �� p
and p[[Xm ]] ≡ p[[Xn ]] (mod z) by Theorem 16
so pm ≡ p[[Xn ]] (mod z) by transitivity
or for p , by z ≡ 0 (mod h) pm ≡ p[[Xn ]] (mod h) by Theorem 13—[1]
Repeat the same steps for q qm ≡ q[[Xn ]] (mod h) by m �� q etc.—[2]
Since pm ≡ qm (mod h) by p ≡ q (mod h) given
so p[[Xn ]] ≡ q[[Xn ]] (mod h) by [1] and [2] above
or (p − q)[[Xn ]] ≡ 0 (mod h) as claimed. �

Due to this, an injective map between the two finite sets derived from P is
possible:

Theorem 18. There is an injective map from reduced set of P to modulo set of P.

� FiniteField F ∧ 0 < k ∧ monic h ∧ ipoly h ∧ Xk − 1 ≡ 0 (mod h) ∧
k = orderh(X) ⇒

(λ p. p mod h) : ̂P ↪→ Qh.
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Proof. Let p, q∈ ̂P, with p ≡ q (mod h) in Qh. For our map to be injective, we
need to show p= q. Since ̂P ⊆ P, p, q∈ P. Theorem 17 applies: each n ∈ M gives a
root Xn for (p − q). Now h 	=X because, by assumption, h | Xk−1, but X 	 | Xk−1,
and n < k since n ∈ M means n is a remainder in (mod k). By assumption,
k =orderh(X), hence these roots are distinct by Theorem 15. Thus there are at
least |M| distinct roots for (p − q).

But deg p< |M| and deg q< |M| since p, q∈ ̂P, hence deg (p − q) < |M|. There
are more roots than its degree for the difference (p − q) with coefficients from a
finite field F . This is possible only when the difference is 0, i.e., p= q. �

This injective map leads to a lower bound for the cardinality of Qh.

Theorem 19. The modulo set of P has a nice lower bound.

� FiniteField F ∧ 1 < k ∧ k = orderh(X) ∧ � < χ ∧ monic h ∧ ipoly h ∧
Xk − 1 ≡ 0 (mod h) ⇒

2min(�,|M|) ≤ |Qh|
Proof. Applying Theorem18, there is an injective map from ̂P to Qh. As both
sets are finite, | ̂P| ≤ |Qh |. We shall estimate | ̂P|, by counting how many polyno-
mials p∈ P have deg p< |M|.

Note that 1 < |M|, since orderk (n) ≤ |M| by Theorem 12, and 1 < orderk (n)
since n 	= 1. A simple estimate for | ̂P| proceeds as follows:

– For 0 < c ≤ �, X+ c∈ ̂P, since each monomial is in P, and each has a degree
equal to 1.

– Given � < χ, these monomials are distinct, as χ is the least additive wrap-
around of 1 in field F .3

– By Theorem 6, any product of these monomials will be in ̂P, if the product
has a degree less than |M|.

– If � < |M|, there are less than |M| such monomials. Therefore any product
drawn from a subset of {X+ c | 0 < c ≤ �} will have a degree less than |M|.
There are 2� such products.

– If |M| ≤ �, reduce the constants range to 0 < c ≤ |M|. Any product drawn
from a subset of {X+ c | 0 < c ≤ |M|} will have a degree less than |M|,
almost—the product of all such monomials must be excluded. However, 1∈ ̂P,
but 1 is not a monomial product. There are still 2|M| products.

Considering both cases, we conclude that 2min(�,|M|) ≤ |Qh |. �

4.4 Reduced Exponents

It turns out that an injective map to M is possible based on the following set of
reduced exponents:

� ̂N p n m = {pi nj | i ≤ m ∧ j ≤ m }
3 The characteristic χ of a ring R is defined as the order of 1 in the additive group of

R, i.e., χ1=0.
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This is generated by the two known elements n, p ∈ N (Sect. 4.1), with cut-
off m in their exponents. By multiplicative closure of introspective exponents
(Theorem 5), ̂N ⊆ N . Observe the following property:

Theorem 20. Upper bound of an element in ̂N p n m.

� 1 < p ∧ p ≤ n ⇒ ∀ e m. e ∈ ̂N p n m ⇒ e ≤ n2m

Proof. Each e ∈ ̂N p n m has the form pi nj , where i, j ≤ m. Given p ≤ n, we
can deduce e = pi nj ≤ ni nj ≤ nm nm = n2m . �

Note another interesting interaction from Qh to N , which is relevant to ̂N
since ̂N n p m ⊆ N . Pick two exponents n ∈ N and m ∈ N . Consider the special
polynomial Xn−Xm . It turns out that the introspective relation helps to identify
some interesting roots of this special polynomial, from the elements of Qh.

Theorem 21. Each element in Qh gives a root for a special polynomial from N
in Fh[X].

� Field F ∧ monic h ∧ ipoly h ∧ Xk − 1 ≡ 0 (mod h) ⇒
∀n m.

n ∈ N ∧ m ∈ N ∧ n ≡ m (mod k) ⇒
∀p. p ∈ Qh ⇒ (Xn − Xm)[[p]] ≡ 0 (mod h)

Proof. Given p∈ Qh, there is q∈ P such that p= q mod h. Therefore n �� q and
m �� q by definition of P. Let z =Xk−1. Note that z ≡ 0 (mod h) by given. We
can proceed:

qn ≡ q[[Xn ]] (mod z) by n �� q — [1]
qm ≡ q[[Xm ]] (mod z) by m �� q — [2]

and q[[Xm ]] ≡ q[[Xn ]] (mod z) by Theorem16
so qn ≡ qm (mod z) by [1], [2], transitivity
Therefore qn−qm ≡ 0(mod z) by subtraction
by z ≡ 0 (mod h) qn−qm ≡ 0 (mod h) by Theorem13—[3]
Since (Xn−Xm)[[p]] ≡ (Xn−Xm)[[q]] (mod h) by p=q mod h —[4]
and the right-side (Xn−Xm)[[q]]=qn−qm by substitution of q —[5]
Combine [4],[5],[3] (Xn−Xm)[[p]] ≡ 0 (mod h) as claimed. �

Due to this, an injective map between the two finite sets derived from N is
possible:

Theorem 22. There is an injective map from reduced set of N to modulo set
of N .

� FiniteField F ∧ monic h ∧ ipoly h ∧ Xk − 1 ≡ 0 (mod h) ⇒
∀n p.

1 < p ∧ p < n ∧ n ∈ N ∧ p ∈ N ∧ n2
√

|M| < |Qh| ⇒
(λm. m mod k) : ̂N p n

√|M| ↪→ M



Mechanisation of AKS Algorithm: Part 1 – The Main Theorem 131

Proof. Let i, j ∈ ̂N n p
√|M|, with i ≡ j (mod k) in M. If the map is to

be injective, we need i = j . Since ̂N n p
√|M| ⊆ N , both i, j ∈ N . Theorem 21

applies: every p∈ Qh is a root of Xi − Xj . Hence there are at least |Qh | roots.
By Theorem 20, both i, j are bounded by n2

√
|M|, hence deg (Xi−Xj ) ≤

n2
√

|M|. Given n2 |M| < |Qh|, there are more roots than its degree for the poly-
nomial (Xi−Xj ) with coefficients from a finite field F . This is not possible, unless
it is 0, which means i = j . �

4.5 Punch Line

Given a prime p that divides n, if nx = py for some exponents x , y with x > 0,
what can we conclude?

Theorem 23. A condition that implies a number is a perfect power of prime.

� 0 < n ∧ prime p ∧ p | n ∧ (∃ x y. 0 < x ∧ px = ny) ⇒ perfect power n p

Proof. Since p | n, divide n by p as many times as possible, and express n = pmq
where m is the maximum possible, and p 	 | q . The equation px = ny becomes
px = (pmq)y = pmyqy. By unique factorisation, with prime p and p 	 | q and x 	= 0,
it must be that y 	= 0, and qy = 1, i.e., q = 1. �

When its generators have a special property, the cardinality of ̂N p n m is simple
to express:

Theorem 24. Cardinality of ̂N when generators n and prime divisor p are not
related by perfect power.

� Ring R ∧ 1 	= 0 ∧ 1 < k ⇒
∀n p m.

n ∈ N ∧ p ∈ N ∧ prime p ∧ p | n ∧ ¬perfect power n p ⇒
| ̂N p n m| = (m + 1)2

Proof. Let f = (λ (i ,j ). pi nj ), t = { j | j ≤ m } . From its definition, it is simple
to verify that ̂N p n m = { pi nj|i ≤ m ∧ j ≤ m } = f (|t × t |). More interesting is
that the conditions will imply f : t × t ↪→ ̂N p q n. Once this is proved, being
the image of an injective map gives | ̂N p q n|= |t × t | = |t |2 = (m + 1)2.

To show that the map is injective, assume pi nj = pu nv for some i, j and u, v.
We need to show i = u and j = v . This comes down to analysis by cases.

If i < u, only the case j > v is interesting, with nj−v = pu−i . As j−v 	= 0,
Theorem 23 applies, giving perfect power n p, which contradicts the assumption.
By the symmetric roles of i, j and u, v, the case i > u leads to the same contra-
diction. The only possible case is i = u, giving j = v . �

This property is crucial in order to complete the proof of AKS Main Theorem
(Theorem 11).

Proof. (of Theorem 11). AKS Main Theorem in finite fields
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� FiniteField F ∧ prime k ∧ k < χ ⇒
∀n.

1 < n ∧ χ | n ∧ gcd(n, k) = 1 ∧ (2(log n + 1))2 ≤ orderk (n) ∧
� = 2

√
k (log n + 1) ∧ (∀ c. 0 < c ∧ c ≤ � ⇒ n �� X + c) ⇒

perfect power n χ

Let p =χ. By assumption, p | n, so p ≤ n. The case p =n is trivial, so we shall
assume p < n.

The finite field F gives prime p, so p �� X+ c (Theorem 4). We have k < p, so
gcd(p, k)= 1. Assuming gcd(n, k)= 1 and n �� X+ c, we have the ingredients for
the introspective sets N and P (Sect. 4.1). Their finite counterparts, the modulo
sets M and Qh (Sect. 4.2), and reduced sets ̂N and ̂P (Sects. 4.3 and 4.4) can be
set up accordingly.

Recall that the introspective relation is based on modulus Xk−1. By the
second useful fact in Sect. 4, in a finite field F it has a monic irreducible factor
h 	=X−1, i.e., Xk−1 ≡ 0 (mod h). With prime k , we have orderh(X)= k
(Theorem 14), giving the injective map from ̂P to Qh (Theorem 18), which is
essential for the lower bound estimate of Qh .

In Sect. 4.6, we shall investigate the parameters k and �. We shall show that
� < k (Theorem 27). By assumption, k < p, so � < p. Therefore 2min(�,|M|) ≤ |Qh |
(Theorem 19, which invokes Theorem 18). We shall also show that n2

√
|M| <

2min(�,|M|) (Theorem 26). Hence n2
√

|M| < |Qh |. With p < n, these inequalities
establish the injective map from ̂N n p

√|M| to ̂N (Theorem 22).
Now, given prime p and p | n, if n were not a perfect power of p, Theorem 24

applies, so that:

| ̂N p n
√

|M||= (
√

|M| + 1)2 = |M| + (2
√

|M|) + 1 > |M|
This means the injective map from ̂N p n

√|M| to M, both finite sets, would
violate the Pigeonhole Principle. Therefore, n must be a perfect power of p =χ. �

4.6 Parameters

The AKS Main Theorem contains a parameter k with the property:
orderk (n) ≥ (2 (log n + 1))2, from which a related parameter �= 2

√
k (log n + 1)

is computed.
In the original AKS paper [2], parameter k is a prime (for a different set

of conditions) while in the revised version [3] this prime requirement on k is
dropped. Only the bound on k affects the conclusion “PRIMES is in P”, a
general k needs more advanced theory to establish. Our mechanisation effort is
based on a prime k , following Dietzfelbinger [10]. We use a prime k to show
k =orderh(X) in Theorem 14.

The existence of such a prime k can be established by generalizing the prob-
lem: given a number n, and a maximum m, find a prime modulus k such that
orderk (n) ≥ m. This is applied in Theorem 8:

Theorem 25. There is always a modulus k giving big enough order for n in Zk .
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� 1 < n ∧ 0 < m ⇒ ∃ k. prime k ∧ gcd(k ,n) = 1 ∧ m ≤ orderk (n)

Proof. First, we define a set of candidates:

� candidates n m = {k | prime k ∧ k 	 | n ∧ ∀ j. 0 < j ∧ j < m ⇒ k 	 | nj − 1}
Pick a large prime z > nm , then z cannot divide n or any of the factors nj − 1
for 0 < j < m, hence z ∈ candidates n m.

Thus candidates n m 	= ∅, and we can pick a candidate k , say the least value,
from the set. Being an element, prime k ∧ k 	 | n. Since a prime is coprime to its non-
multiples, gcd(k ,n)= 1. Thus n has nonzero order in Zk . Let j =orderk (n), then
0 < j with nj ≡ 1 (mod k), or k | nj−1. If j < m, by the candidates definition
k 	 | nj−1, a contradiction. Hence orderk (n)= j ≥ m. �

The parameters k and � provide a crucial inequality involving |M|, used in
Theorem 11:

Theorem 26. The AKS parameters meet the inequality condition.

� FiniteField F ∧ 1 < k ∧ 1 < n ∧ n ∈ N ∧ (2(log n + 1))2 ≤ orderk (n) ∧
� = 2

√
k (log n + 1) ⇒

n2
√

|M| < 2min(�,|M|)

Proof. Let j =orderk (n), and m = log n + 1, then 2m > n for integer logarithm.
By Theorem 12, j ≤ |M| and |M| < k . By the given assumption, (2m)2 ≤ j . Tak-
ing integer square roots, we have

√|M| ≥ √
j ,

√
k ≥

√|M| and
√

j ≥ 2m. Note
also |M| ≥ √|M|√|M| by integer square root. Therefore:

– �= 2
√

k m ≥ m (2
√|M|)

– |M| ≥ √
j
√|M| ≥ m (2

√|M|)
Thus min(�, |M|) ≥ m (2

√|M|), and

2min(�,|M|) ≥ 2m (2
√

|M|) = 2m2
√

|M| > n2
√

|M|. �

Incidentally, the choice of k and � ensures that � ≤ k , used in Theorems 10
and 11:

Theorem 27. The AKS computed parameter does not exceed the modulus para-
meter.

� 1 < n ∧ 1 < k ∧ gcd(k ,n) = 1 ∧ (2(log n + 1))2 ≤ orderk (n) ⇒
2
√

k (log n + 1) ≤ k

Proof. Since orderk (n) | ϕ(k), and ϕ(k) < k when k > 1, we have orderk (n) < k .
Taking integer square-roots, with the given orderk (n), deduce

k ≥
√

k
√

k ≥
√

k
√

orderk (n) ≥ 2
√

k (log n + 1). �
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5 Mechanisation and its Traps

The updated AKS proof [3] is contained within four pages. Mechanisation of
such a proof is the process of unwinding the dense mathematics within those
pages. It took us about a year to build up the basic libraries, another year to
forge the advanced libraries, then about six months to adapt the libraries for
the proof of AKS Main Theorem, during which time the missing pieces in the
developed libraries were steadily being filled in.

There are always pitfalls during the mechanisation process. One example is
the symbol X in various expositions of the AKS proof, e.g., [4,7,8,10]. Usually X

starts as an indeterminate or a degree one zero constant monomial, then switches
to a root of unity, even to a primitive root of unity. While this is common practice,
such changes mean that we needed to prove the switchings are valid.

The substitution by X is fundamental in the introspective relation (Sect. 2.2).
These subtle changes in the role of X presented some difficulties in our initial
effort to formalize the AKS proof. Indeed, we first used an inappropriate defin-
ition and got carried along until we found that shifting playgrounds (Sect. 3.3)
is impossible with that definition.

Shifting of playgrounds in the AKS proof is pivotal. Most expositions just
point this out without further elaboration.4 After this shifting, where the play-
ground is now Zp , the introspective relation is defined in Zp [X], side-stepping the
issue. It was in the process of mechanisation that we realized a proper formu-
lation should start by defining the introspective relation in a ring R (Sect. 2.2),
and then prove that shifting is valid through ring homomorphisms from Zn to
Zp (Sect. 3.3).

Lessons Learnt. Rather than attempting a direct transcription of the AKS proof,
we came to understand the proof in the context of finite fields, identifying the
key concepts involved in the proof, even comparing various expositions. By refor-
mulations of polynomial theorems in number theory into their counterparts in
rings and fields, a clear picture of the proof’s logic emerged, resulting in this
succinct presentation.

HOL4 and Abstract Algebra. This work demonstrates that HOL4’s simple type
theory, together with its proof machinery, are sufficient to allow the statement
and proof of moderately complicated theorems in abstract algebra. Without
dependent types (as in Coq) or locales (as in Isabelle), theorems are slightly
more awkward to state, but our experience is that ad hoc overloading gets one
a long way. Over-annotation of terms so that the parser chooses the “right”
meaning of a symbol like + is only necessary occasionally. Exploiting overloading
in this way requires a careful understanding of just what the parser is and is not
capable of, and one is often on exactly that boundary. Nonetheless, the result
gives terms that are not far removed from those that have been pretty-printed

4 For example, [3] first stated the computational identity in Zn , then “this implies”
the corresponding identity in Zp . Only [10] proved the shifting from Zn to Zp as a
lemma.
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in this paper. (Pretty-printing to LATEX adds niceties such as superscripts and
juxtaposition for multiplication; these could not be handled by the parser.)

Nor should we forget that Campos et al. [5] proved half of the Main Theorem
in ACL2, where the underlying logic is even simpler, and provides no static type-
checking.

6 Related Work

Other Pen-and-Paper Proofs. The revised proof (2004) of the AKS team [3] takes
this approach: use the injective map on Qh to establish a lower bound for |Qh |;
assuming that n is not a power of p, use the Pigeonhole Principle to show that a
special nonzero polynomial has at least |Qh | roots, thus giving an upper bound
for |Qh |; manipulate inequalities to show that the chosen parameters will lead
to the lower bound exceeding the upper bound, hence a contradiction.

Other expositions of the AKS Main Theorem [1,11–13] take similar approaches,
working mainly in Zp [X]. Our method is equivalent, but is clean in that we:
(i) emphasize the important role of shifting from Zn to Zp (Sect. 3.3); (ii) refor-
mulate the AKS Main Theorem in the context of finite fields (Theorem 11);
(iii) clarify that the choice of parameters gives injective maps between reduced
sets and modulo sets (Theorems 18 and 22); (iv) bring in the assumption that n
is not a power of prime p as late as possible; and (v) use the Pigeonhole Principle
as a punch line to force n to be a power of prime p (Sect. 4.5).

Other Mechanisations. We believe that we are the first to mechanise both direc-
tions of the central theorem of AKS algorithm. As noted earlier, two other teams
(Campos et al. [5] in ACL2, and de Moura and Tadeu [9] in Coq) have mecha-
nised the fact that if the number being tested is prime, then the AKS algorithm
will indeed report “yes”.

We are also aware of preliminary work started by John Harrison, and carried
out in HOL Light.5

7 Conclusion

It is well-known that the cardinality of a finite field must be a prime power, and
it is elementary to check whether a number is power-free. In essence, the AKS
team showed that primality testing can be reduced to finite field cardinality
testing, and demonstrated that the latter can be done in polynomial time.

Through our mechanisation effort, especially in presenting the AKS proof as
an introspective game (Sect. 4), we hope that this elementary proof of the AKS
Main Theorem provides further appreciation of the AKS team’s brilliant ideas.

Future Work. While the existence of parameter k in the AKS Main Theorem is
assured, to show that it is bounded by a polynomial function of log n is harder.
In future work, we intend to perform the necessary complexity analysis of the
AKS algorithm to complete the mechanised proof that PRIMES is indeed in P.
5 John was kind enough to share his approach with us via private communication.
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