
Amortized Complexity Verified

Tobias Nipkow(B)

Technische Universität München, Munich, Germany
nipkow@in.tum.de

Abstract. A framework for the analysis of the amortized complexity of
(functional) data structures is formalized in Isabelle/HOL and applied
to a number of standard examples and to three famous non-trivial ones:
skew heaps, splay trees and splay heaps.

1 Introduction

Amortized complexity [3,14] of an algorithm averages the running times of a
sequence of invocations of the algorithm. In this paper we formalize a simple
framework for the analysis of the amortized complexity of functional programs
and apply it to both the easy standard examples and the more challenging
examples of skew heaps, splay trees and splay heaps. We have also analyzed
pairing heaps [4] but cannot present them here for lack of space. All proofs are
available online [9].

We are aiming for a particularly lightweight framework that supports proofs
at a high level of abstraction. Therefore all algorithms are modeled as recursive
functions in the logic. Because mathematical functions do not have a complexity
they need to be accompanied by definitions of the intended running time that
follow the recursive structure of the actual function definitions. Thus the user is
free to choose the level of granularity of the complexity analysis. In our examples
we simply count function calls.

Although one can view the artefacts that we analyze as functional programs,
one can also view them as models or abstractions of imperative programs. For
the amortized complexity we are only interested in the input-output behaviour
and the running time complexity. As long as those are the same, it does not
matter in what language the algorithm is implemented. In fact, the standard
imperative implementations of all of our examples have the same complexity
as the functional model. However, in a functional setting, amortized complexity
reasoning may be invalid if the data structure under consideration is not used
in a single-threaded manner [10].

1.1 Related Work

Hofmann and Jost [7] pioneered automatic type-based amortized analysis of heap
usage of functional programs. This was later generalized in many directions, for
example allowing multivariate polynomials [6]. Atkey [1] carries some of the
c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 310–324, 2015.
DOI: 10.1007/978-3-319-22102-1 21

Amortized Complexity Verified 311

ideas over to an imperative language with separation logic embedded in Coq.
Charguéraud and Pottier [2] employ separation logic to verify the almost-linear
amortized complexity of a Union-Find implementation in OCaml in Coq.

2 Lists and Trees

Lists are constructed from the empty list [] via the infix cons-operator “·”, |xs|
is the length of xs, tl takes the tail and rev reverses a list.

Binary trees are defined as the data type ′a tree with two constructors: the
empty tree or leaf 〈〉 and the node 〈l , a, r〉 with subtrees l , r :: ′a tree and
contents a :: ′a. The size of a tree is the number of its nodes:

|〈〉| = 0 |〈l , , r〉| = |l | + |r | + 1

For convenience there is also the modified size function |t |1 = |t | + 1.

3 Amortized Analysis Formalized

We formalize the following scenario. We are given a number of operations that
may take parameters and that update the state (some data structure) as a side
effect. Our model is purely functional: the state is replaced by a new state with
each invocation of an operation, rather than mutating the state. This makes no
difference because we only analyze time, not space.

Our model of amortized analysis is a theory that is parameterized as follows
(a locale in Isabelle-speak):

′s is the type of state.
′o is the type of operations.
init :: ′s is the initial state.
nxt :: ′o ⇒ ′s ⇒ ′s is the next state function.
inv :: ′s ⇒ bool is an invariant on the state. We assume that the invariant

holds initially (inv init) and that it is preserved by all operations
(inv s =⇒ inv (nxt f s)).

t :: ′o ⇒ ′s ⇒ real is the timing function: t f s represents the time it takes to
execute operation f in state s, i.e. nxt f s.

The effect of each operation f is modeled as a function nxt f from state to
state. Since functions are extensional, the execution time is modeled explicitly
by function t. Alternatively one can instrument nxt with timing information and
have it return a pair of a new state and the time the operation took. We have
separated the computation of the result and the timing information into two
functions because that is what one would typically do in a first step anyway to
simplify the proofs. In particular this means that t need not be a closed form
expression for the actual complexity. In all of our examples the definition of t
will follow the (usually recursive) structure of the definition of nxt precisely. One
could go one step further and derive t from an intensional formulation of nxt

312 T. Nipkow

automatically, but that is orthogonal to our aim in this paper, namely amortized
complexity.

For the analysis of amortized complexity we formalize the potential method.
That is, our theory has another parameter:

Φ :: ′s ⇒ real is the potential of a state. We assume the potential is initially
0 (Φ init = 0) and never becomes negative (inv s =⇒ 0 ≤ Φ s).

The potential of the state represents the savings that can pay for future restruc-
turings of the data structure. Typically, the higher the potential, the more out
of balance the data structure is. Note that the potential is just a means to an
end, the analysis, but does not influence the actual operations.

Let us now analyze the complexity of a sequence of operations formalized
as a function of type nat ⇒ ′o. The sequence is infinite for convenience but of
course we only analyze the execution of finite prefixes. For this purpose we define
state f n, the state after the execution of the first n elements of f:

state :: (nat ⇒ ′o) ⇒ nat ⇒ ′s
state f 0 = init
state f (Suc n) = nxt (f n) (state f n)

Now we can define the amortized complexity of an operation as the actual time
it takes plus the difference in potential:

a :: (nat ⇒ ′o) ⇒ nat ⇒ real
a f i = t (f i) (state f i) + Φ (state f (i + 1)) − Φ (state f i)

By telescoping (i.e. induction) we obtain

(
∑

i<n t (f i) (state f i)) = (
∑

i<n a f i) + Φ (state f 0) − Φ (state f n)

where
∑

i<n F i is the sum of all F i with i < n. Because of the assumptions
on Φ this implies that on average the amortized complexity is an upper bound
of the real complexity:

(
∑

i<n t (f i) (state f i)) ≤ (
∑

i<n a f i)

To complete our formalization we add one more parameter:

U :: ′o ⇒ ′s ⇒ real is an explicit upper bound for the amortized
complexity of each operation (in a certain state), i.e. we assume that
inv s =⇒ t f s + Φ (nxt f s) − Φ s ≤ U f s.

Thus we obtain that U is indeed an upper bound of the real complexity:

(
∑

i<n t (f i) (state f i)) ≤ (
∑

i<n U (f i) (state f i))

Instantiating this theory of amortized complexity means defining the para-
meters and proving the assumptions, in particular about U.

Amortized Complexity Verified 313

4 Easy Examples

Unless noted otherwise, the examples in this section come from a standard text-
book [3].

4.1 Binary Counter

We start with the binary counter explained in the introduction. The state space
′s is just a list of booleans, starting with the least significant bit. There is just
one parameterless operation “increment”. Thus we can model type ′o with the
unit type. The increment operation is defined recursively:

incr [] = [True]
incr (False · bs) = True · bs
incr (True · bs) = False · incr bs

In complete analogy the running time function for incr is defined:

t incr [] = 1
t incr (False · bs) = 1
t incr (True · bs) = t incr bs + 1

Now we can instantiate the parameters of the amortized analysis theory:
init = [] nxt () = incr t () = t incr

inv s = True Φ s = |filter id s| U () s = 2

The key idea of the analysis is to define the potential of s as |filter id s|, the
number of True bits in s. This makes sense because the higher the potential, the
longer an increment may take (roughly speaking). Now it is easy to show that 2
is an upper bound for the amortized complexity: the requirement on U follows
immediately from this lemma (which is proved by induction):

t incr bs + Φincr (incr bs) − Φincr bs = 2

4.2 Stack with Multipop

The operations are

datatype ′a opstk = Push ′a | Pop nat

where Pop n pops n elements off the stack:

nxtstk (Push x) xs = x · xs
nxtstk (Pop n) xs = drop n xs

In complete analogy the running time function is defined:

tstk (Push x) xs = 1
tstk (Pop n) xs = min n |xs|

Now we can instantiate the parameters of the amortized analysis theory:
init = [] nxt = nxtstk t = tstk inv s = True
Φ = length U f s = (case f of Push x ⇒ 2 | Pop n ⇒ 0)

The necessary proofs are all automatic.

314 T. Nipkow

4.3 Dynamic Tables

Dynamic tables are tables where elements are added and deleted and the table
grows and shrinks accordingly. We ignore the actual elements because they are
irrelevant for the complexity analysis. Therefore the operations

datatype optb = Ins | Del

do not have arguments. Similarly the state is merely a pair of natural numbers
(n, l) that abstracts a table of size l with n elements. This is how the operations
behave:

nxt tb Ins (n, l) = (n + 1, if n < l then l else if l = 0 then 1 else 2 ∗ l)
nxt tb Del (n, l) =
(n − 1, if n = 1 then 0 else if 4 ∗ (n − 1) < l then l div 2 else l)

If the table overflows upon insertion, its size is doubled. If a table is less than
one quarter full after deletion, its size is halved. The transition from and to the
empty table is treated specially.

This is the corresponding running time function:

t tb Ins (n, l) = (if n < l then 1 else n + 1)
t tb Del (n, l) = (if n = 1 then 1 else if 4 ∗ (n − 1) < l then n else 1)

The running time for the cases where the table expands or shrinks is determined
by the number of elements that need to be copied.

Now we can instantiate the parameters of the amortized analysis theory. We
start with the system itself:

init = (0, 0) nxt = nxt tb t = t tb
inv (n,l) = (if l = 0 then n = 0 else n ≤ l ∧ l ≤ 4 ∗ n)

This is the first time we have a non-trivial invariant. The potential is also more
complicated than before:

Φ (n,l) = (if 2 ∗ n < l then l / 2 − n else 2 ∗ n − l)

Now it is automatic to show the following amortized complexity:

U f s = (case f of Ins ⇒ 3 | Del ⇒ 2)

4.4 Queues

Queues have one operation for enqueueing a new item and one for dequeueing
the oldest item:

datatype ′a opq = Enq ′a | Deq

We ignore accessing the oldest item because it is a constant time operation in
our implementation.

The simplest possible implementation of functional queues (e.g. [10]) consists
of two lists (stacks) (xs, ys):

Amortized Complexity Verified 315

nxtq (Enq x) (xs, ys) = (x · xs, ys)
nxtq Deq (xs, ys) = (if ys = [] then ([], tl (rev xs)) else (xs, tl ys))

tq (Enq x) (xs, ys) = 1
tq Deq (xs, ys) = (if ys = [] then |xs| else 0)

Note that the running time function counts only allocations of list cells and that
it assumes rev is linear. Now we can instantiate the parameters of the amortized
analysis theory to show that the average complexity of both Enq and Deq is 2.
The necessary proofs are all automatic.

init = ([], []) nxt = nxtq t = tq inv s = True
Φ (xs,ys) = |xs| U f s = (case f of Enq x ⇒ 2 | Deq ⇒ 0)

In the same manner I have also verified [9] a modified implementation where
reversal happens already when |xs| = |ys| + 1; this improves the worst-case
behaviour but (using Φ(xs,ys) =2 ∗ |xs|) the amortized complexity of Enq
increases to 3.

5 Skew Heaps

This section analyzes a beautifully simple data structure for priority queues: skew
heaps [13]. Heaps are trees where the least element is at the root. We assume
that the elements are linearly ordered. The central operation on skew heaps is
meld, that merges two skew heaps and swaps children along the merge path:

meld h1 h2 =
(case h1 of 〈〉 ⇒ h2

| 〈l1, a1, r1〉 ⇒
case h2 of 〈〉 ⇒ h1

| 〈l2, a2, r2〉 ⇒
if a1 ≤ a2 then 〈meld h2 r1, a1, l1〉 else 〈meld h1 r2, a2, l2〉)

We consider the two operations of inserting an element and removing the minimal
element:

datatype ′a oppq = Insert ′a | Delmin

They are implemented via meld as follows:

nxtpq (Insert a) h = meld 〈〈〉, a, 〈〉〉 h
nxtpq Delmin h = del min h

del min 〈〉 = 〈〉
del min 〈l , m, r〉 = meld l r

For the functional correctness proofs see [9].
The analysis by Sleator and Tarjan is not ideal as a starting point for a

formalization. Luckily there is a nice, precise functional account by Kaldewaij
and Schoenmakers [8] that we will follow (although their meld differs slightly
from ours). Their cost measure counts the number of calls of meld, Insert and
Delmin:

316 T. Nipkow

tmeld 〈〉 h = 1
tmeld h 〈〉 = 1
tmeld 〈l1, a1, r1〉 〈l2, a2, r2〉 =
(if a1 ≤ a2 then tmeld 〈l2, a2, r2〉 r1 else tmeld 〈l1, a1, r1〉 r2) + 1

tpq (Insert a) h = tmeld 〈〈〉, a, 〈〉〉 h + 1
tpq Delmin h = (case h of 〈〉 ⇒ 1 | 〈t1, a, t2〉 ⇒ tmeld t1 t2 + 1)

Kaldewaij and Schoenmakers prove a tighter upper bound than Sleator and
Tarjan, replacing the factor of 3 by 1.44. We are satisfied with verifying the bound
by Sleator and Tarjan and work with the following simple potential function
which is an instance of the one by Kaldewaij and Schoenmakers: it counts the
number of “right heavy” nodes.

Φ 〈〉 = 0
Φ 〈l , , r〉 = Φ l + Φ r + (if |l | < |r | then 1 else 0)

To prove the amortized complexity of meld we need some further notions that
capture the ideas of Sleator and Tarjan in a concise manner:

rheavy 〈l , , r〉 = (|l | < |r |)
lpath 〈〉 = []
lpath 〈l , a, r〉 = 〈l , a, r〉 · lpath l

rpath 〈〉 = []
rpath 〈l , a, r〉 = 〈l , a, r〉 · rpath r

Γ h = |filter rheavy (lpath h)|
Δ h = |filter (λp. ¬ rheavy p) (rpath h)|

Two easy inductive properties:

Γ h ≤ log2 |h|1 (1) Δ h ≤ log2 |h|1 (2)

Now the desired logarithmic amortized complexity of meld follows:

tmeld t1 t2 + Φ (meld t1 t2) − Φ t1 − Φ t2
≤ Γ (meld t1 t2) + Δ t1 + Δ t2 + 1 by induction on meld
≤ log2 |meld t1 t2|1 + log2 |t1|1 + log2 |t2|1 + 1 by (1), (2)
= log2 (|t1|1 + |t2|1 − 1) + log2 |t1|1 + log2 |t2|1 + 1

because |meld t1 t2| = |t1| + |t2|
≤ log2 (|t1|1 + |t2|1) + log2 |t1|1 + log2 |t2|1 + 1
≤ log2 (|t1|1 + |t2|1) + 2 ∗ log2 (|t1|1 + |t2|1) + 1

because log2 x + log2 y ≤ 2 ∗ log2 (x + y) if x, y ≥ 1
= 3 ∗ log2 (|t1|1 + |t2|1) + 1

Now it is easy to verify the following amortized complexity for Insert and Delmin
by instantiating our standard theory with

U (Insert) h = 3 ∗ log2 (|h|1 + 2) + 2
U Delmin = 3 ∗ log2 (|h|1 + 2) + 4

Note that Isabelle supports implicit coercions, in particular from nat to real,
that are inserted automatically [15].

Amortized Complexity Verified 317

6 Splay Trees

A splay tree [12] is a subtle self-adjusting binary search tree. It achieves its
amortized logarithmic complexity by local rotations of subtrees along the access
path. Its central operation is splay of type ′a ⇒ ′a tree ⇒ ′a tree that rotates
the given element (of a linearly ordered type ′a) to the root of the tree. Most
presentations of splay confine themselves to this case where the given element is
in the tree. If the given element is not in the tree, the last element found before
a 〈〉 was met is rotated to the root. The complete definition is shown in Fig. 1.

Given splaying, searching for an element in the tree is trivial: you splay with
the given element and check if it ends up at the root. For insertion and deletion,
algorithm texts typically show pictures only. In contrast, we show the code only,
in Figs. 2–3. To insert a, you splay with a to see if it is already there, and if it is not,
you insert it at the top (which is the right place due to the previous splay action).

splay a 〈〉 = 〈〉
splay a 〈cl , c, cr〉 =
(if a = c then 〈cl , c, cr〉
else if a < c

then case cl of 〈〉 ⇒ 〈cl , c, cr〉
| 〈bl , b, br〉 ⇒

if a = b then 〈bl , a, 〈br , c, cr〉〉
else if a < b

then if bl = 〈〉 then 〈bl , b, 〈br , c, cr〉〉
else case splay a bl of

〈al , a ′, ar〉 ⇒ 〈al , a ′, 〈ar , b, 〈br , c, cr〉〉〉
else if br = 〈〉 then 〈bl , b, 〈br , c, cr〉〉

else case splay a br of
〈al , a ′, ar〉 ⇒ 〈〈bl , b, al〉, a ′, 〈ar , c, cr〉〉

else case cr of 〈〉 ⇒ 〈cl , c, cr〉
| 〈bl , b, br〉 ⇒

if a = b then 〈〈cl , c, bl〉, a, br〉
else if a < b

then if bl = 〈〉 then 〈〈cl , c, bl〉, b, br〉
else case splay a bl of

〈al , a ′, ar〉 ⇒ 〈〈cl , c, al〉, a ′, 〈ar , b, br〉〉
else if br = 〈〉 then 〈〈cl , c, bl〉, b, br〉

else case splay a br of
〈al , x , xa〉 ⇒ 〈〈〈cl , c, bl〉, b, al〉, x , xa〉)

Fig. 1. Function splay

318 T. Nipkow

insertst a t =
(if t = 〈〉 then 〈〈〉, a, 〈〉〉
else case splay a t of

〈l , a ′, r〉 ⇒
if a = a ′ then 〈l , a, r〉
else if a < a ′ then 〈l , a, 〈〈〉, a ′, r〉〉 else 〈〈l , a ′, 〈〉〉, a, r〉)

deletest a t =
(if t = 〈〉 then 〈〉
else case splay a t of

〈l , a ′, r〉 ⇒
if a = a ′

then if l = 〈〉 then r else case splay max l of 〈l ′, m, r ′〉 ⇒ 〈l ′, m, r〉
else 〈l , a ′, r〉)

Fig. 2. Functions insertst and deletest

splay max 〈〉 = 〈〉
splay max 〈l , b, 〈〉〉 = 〈l , b, 〈〉〉
splay max 〈l , b, 〈rl , c, rr〉〉 =
(if rr = 〈〉 then 〈〈l , b, rl〉, c, 〈〉〉
else case splay max rr of 〈rrl , x , xa〉 ⇒ 〈〈〈l , b, rl〉, c, rrl〉, x , xa〉)

Fig. 3. Function splay max

set tree 〈〉 = ∅
set tree 〈l , a, r〉 = {a} ∪ (set tree l ∪ set tree r)

bst 〈〉 = True
bst 〈l , a, r〉 =
(bst l ∧ bst r ∧ (∀ x ∈ set tree l . x < a) ∧ (∀ x ∈ set tree r . a < x))

Fig. 4. Functions settree and bst

To delete a, you splay with a and if a ends up at the root, you replace it with the
maximal element removed from the left subtree. The latter step is performed by
splay max that splays with the maximal element.

6.1 Functional Correctness

So far we had ignored functional correctness but for splay trees we actually need
it in the verification of the complexity. To formulate functional correctness we

Amortized Complexity Verified 319

c
/ \
b T
/ \

R S

�

a
/ \

R1 b
/ \

R2 c
/ \

S T

Fig. 5. Zig-zig case for splay: a < b < c

need the two auxiliary functions shown in Fig. 4. Function set tree collects the
elements in the tree, function bst checks if the tree is a binary search tree accord-
ing to the linear ordering “<” on the elements. The key functional properties
are that splaying does not change the contents of the tree (it merely reorganizes
it) and that bst is an invariant of splaying:

set tree (splay a t) = set tree t
bst t =⇒ bst (splay a t)

Similar properties can be proved for insertion and deletion, e.g.,

bst t =⇒ set tree (deletest a t) = set tree t − {a}
Now we present two amortized analyses: a simpler one that yields the bounds

proved by Sleator and Tarjan [12] and a more complicated and precise one due
to Schoenmakers [11].

6.2 Amortized Analysis

The timing functions are straightforward and not shown. Roughly speaking, they
count only the number of splay steps: tsplay counts the number of calls of splay,
tsplay max counts the number of calls of splay max; tdelete counts the time for
both splay and splay max.

The potential of a tree is defined as a sum of logarithms as follows:

ϕ t = log2 |t |1
Φ 〈〉 = 0
Φ 〈l , a, r〉 = Φ l + Φ r + ϕ 〈l , a, r〉

The amortized complexity of splaying is defined as usual:

A a t = tsplay a t + Φ (splay a t) − Φ t

Let subtrees yield the set of all subtrees of a tree:

subtrees 〈〉 = {〈〉}
subtrees 〈l , a, r〉 = {〈l , a, r〉} ∪ (subtrees l ∪ subtrees r)

320 T. Nipkow

The following logarithmic bound is proved by induction on t according to the
recursion schema of splay: if bst t and 〈l , a, r〉 ∈ subtrees t then

A a t ≤ 3 ∗ (ϕ t − ϕ 〈l , a, r〉) + 1 (3)

Let us look at one case of the inductive proof in detail. We pick the so-called
zig-zig case shown in Fig. 5. Subtrees with root x are called X on the left and
X ′ on the right-hand side. Thus the figure depicts splay a C = A ′ assuming the
recursive call splay a R = 〈R1, a, R2〉 =: R ′.

A a C = A a R + ϕ B ′ + ϕ C ′ − ϕ B − ϕ R ′ + 1
≤ 3 ∗ (ϕ R − ϕ 〈l , a, r〉) + ϕ B ′ + ϕ C ′ − ϕ B − ϕ R ′ + 2

by ind.hyp.
= 2 ∗ ϕ R + ϕ B ′ + ϕ C ′ − ϕ B − 3 ∗ ϕ 〈l , a, r〉 + 2

because ϕ R = ϕ R ′

≤ ϕ R + ϕ B ′ + ϕ C ′ − 3 ∗ ϕ 〈l , a, r〉 + 2
because ϕ B < ϕ R

≤ ϕ B ′ + 2 ∗ ϕ C − 3 ∗ ϕ 〈l , a, r〉 + 1
because 1 + log2 x + log2 y < 2 ∗ log2 (x + y) if x, y > 0

≤ 3 ∗ (ϕ C − ϕ 〈l , a, r〉) + 1 because ϕ B ′ ≤ ϕ C

This looks similar to the proof by Sleator and Tarjan but is different: they
consider one double rotation whereas we argue about the whole input-output
relationship; also our log argument is simpler.

From (3) we obtain in the worst case (l = r =〈〉):
If bst t and a ∈ set tree t then A a t ≤ 3 ∗ (ϕ t − 1) + 1.

In the literature the case a /∈ set tree t is treated informally by stating that it can
be reduced to a ′ ∈ set tree t: one could have called splay with some a ′ ∈ set tree t
instead of a and the behaviour would have been the same. Formally we prove by
induction that if t
= 〈〉 and bst t then

∃ a ′∈set tree t . splay a ′ t = splay a t ∧ tsplay a ′ t = tsplay a t

This gives us an upper bound for all binary search trees:

bst t =⇒ A a t ≤ 3 ∗ ϕ t + 1 (4)

The ϕ t − 1 was increased to ϕ t because the former is negative if t = 〈〉.
We also need to determine the amortized complexity Am of splay max

Am t = tsplay max t + Φ (splay max t) − Φ t

A derivation similar to but simpler than the one for A yields the same upper
bound: bst t =⇒ Am t ≤ 3 ∗ ϕ t + 1.

Now we can apply our amortized analysis theory:

Amortized Complexity Verified 321

datatype ′a opst = Splay ′a | Insert ′a | Delete ′a

nxtst (Splay a) t = splay a t tst (Splay a) t = tsplay a t
nxtst (Insert a) t = insertst a t tst (Insert a) t = tsplay a t
nxtst (Delete a) t = deletest a t tst (Delete a) t = tdelete a t

init = 〈〉 nxt = nxtst t = tst inv = bst Φ = Φ
U (Splay) t = 3 ∗ ϕ t + 1
U (Insert) t = 4 ∗ ϕ t + 2
U (Delete) t = 6 ∗ ϕ t + 2

The fact that the given U is indeed a correct upper bound follows from the
upper bounds for A and Am; for Insert and Delete the proof needs more case
distinctions and log-manipulations.

6.3 Improved Amortized Analysis

This subsection follows the work of Schoenmakers [11] (except that he confines
himself to splay) who improves upon the constants in the above analysis. His
analysis is parameterized by two constants α > 1 and β subject to three con-
straints where all the variables are assumed to be ≥ 1:

(x + y) ∗ (y + z)β ≤ (x + y)β ∗ (x + y + z)

α ∗ (l ′ + r ′) ∗ (lr + r)β ∗ (lr + r ′ + r)β

≤ (l ′ + r ′)β ∗ (l ′ + lr + r ′)β ∗ (l ′ + lr + r ′ + r)

α ∗ (l ′ + r ′) ∗ (l ′ + ll)β ∗ (r ′ + r)β

≤ (l ′ + r ′)β ∗ (l ′ + ll + r ′)β ∗ (l ′ + ll + r ′ + r)

The following upper bound is again proved by induction but this time with
the help of the above constraints: if bst t and 〈l , a, r〉 ∈ subtrees t then

A a t ≤ logα (|t |1 / (|l |1 + |r |1)) + 1

From this we obtain the following main theorem just like before:

A a t ≤ logα |t |1 + 1

Now we instantiate the above abstract development with α = 3
√

4 and β = 1/3
(which includes proving the three constraints on α and β above) to obtain a
bound for splaying that is only half as large as in (4):

bst t =⇒ A34 a t ≤ 3 / 2 ∗ ϕ t

The subscript 34 is our indication that we refer to the α = 3
√

4 and β = 1/3
instance. Schoenmakers additionally showed that this specific choice of α and β
yields the minimal upper bound.

A similar but simpler development leads to the same bound for Am34 as for
A34. Again we apply our amortized analysis theory to verify upper bounds for
Splay, Insert and Delete that are also only half as large as before:

322 T. Nipkow

U (Splay) t = 3 / 2 ∗ ϕ t + 1
U (Insert) t = 2 ∗ ϕ t + 3 / 2
U (Delete) t = 3 ∗ ϕ t + 2

The proofs in this subsection require a lot of highly nonlinear arithmetic.
Only some of the polynomial inequalities can be automated with Harrison’s
sum-of-squares method [5].

7 Splay Heaps

Splay heaps are another self-adjusting data structure and were invented by
Okasaki [10]. Splay heaps are organized internally like splay trees but they imple-
ment a priority queue interface. When inserting an element x into a splay heap,
the splay heap is first partitioned (by rotations, like splay) into two trees, one
≤ x and one > x, and x becomes the new root:

insert x h = (let (l , r) = partition x h in 〈l , x , r〉)
partition p 〈〉 = (〈〉, 〈〉)
partition p 〈al , a, ar〉 =
(if a ≤ p
then case ar of 〈〉 ⇒ (〈al , a, ar〉, 〈〉)

| 〈bl , b, br〉 ⇒
if b ≤ p then let (pl , y) = partition p br in (〈〈al , a, bl〉, b, pl〉, y)
else let (pl , pr) = partition p bl in (〈al , a, pl〉, 〈pr , b, br〉)

else case al of 〈〉 ⇒ (〈〉, 〈al , a, ar〉)
| 〈bl , b, br〉 ⇒

if b ≤ p then let (pl , pr) = partition p br in (〈bl , b, pl〉, 〈pr , a, ar〉)
else let (pl , pr) = partition p bl in (pl , 〈pr , b, 〈br , a, ar〉〉))

Function del min removes the minimal element and is similar to splay max:

del min 〈〉 = 〈〉
del min 〈〈〉, uu, r〉 = r
del min 〈〈ll , a, lr〉, b, r〉 =
(if ll = 〈〉 then 〈lr , b, r〉 else 〈del min ll , a, 〈lr , b, r〉〉)
In contrast to search trees, priority queues may contain elements multiple

times. Therefore splay heaps satisfy the weaker invariant bsteq:

bsteq 〈〉 = True
bsteq 〈l , a, r〉=
(bsteq l ∧ bsteq r ∧ (∀ x ∈ set tree l . x ≤ a) ∧ (∀ x ∈ set tree r . a ≤ x))

This is an invariant for both partition and del min:

If bsteq t and partition p t = (l , r) then bsteq 〈l , p, r〉.
If bsteq t then bsteq (del min t).

For the functional correctness proofs see [9].

Amortized Complexity Verified 323

a
/ \
b T
/ \

R S

�

⎛
⎜⎝

b
/ \

R S1

,
a
/ \

S2 T

⎞
⎟⎠

Fig. 6. Zig-zag case for partition: b ≤ p < a

7.1 Amortized Analysis

Now we verify the amortized analysis due to Okasaki. The timing functions
are straightforward and not shown: tpart and tdm count the number of calls
of partition and del min. The potential of a tree is defined as for splay trees in
Sect. 6.2. The following logarithmic bound of the amortized complexity
A p t = tpart p t + Φ l ′ + Φ r ′ − Φ t is proved by computation induction on
partition t : if bsteq t and partition p t = (l ′, r ′) then

A p t ≤ 2 ∗ ϕ t + 1

Okasaki [10] shows the zig-zig case of the induction, I show the zig-zag case in
Fig. 6. Subtrees with root x are called X on the left and X ′ on the right-hand
side. Thus Fig. 6 depicts partition p A = (B ′, A ′) assuming the recursive call
partition p S = (S 1, S 2).

A p A = A p S + 1 + ϕ B ′ + ϕ A ′ − ϕ B − ϕ A
≤ 2 ∗ ϕ S + 2 + ϕ B ′ + ϕ A ′ − ϕ B − ϕ A by ind.hyp.
= 2 + ϕ B ′ + ϕ A ′ because ϕ S < ϕ B and ϕ S < ϕ A
≤ 2 ∗ log2 (|R|1 + |S 1|1 + |S 2|1 + |T |1 − 1) + 1

because 1 + log2 x + log2 y ≤ 2 ∗ log2 (x + y − 1) if x, y ≥ 2
= 2 ∗ ϕ A + 1 because |S 1| + |S 2| = |S |
The proof of the amortized complexity of del min is similar to the one for

splay max: tdm t + Φ (del min t) − Φ t ≤ 2 ∗ ϕ t + 1. Now it is routine to
verify the following amortized complexities by instantiating our standard theory
with U (Insert) t = 3 ∗ log2 (|t |1 + 1) + 1 and U Delmin t = 2 ∗ ϕ t + 1.

Acknowledgement. Berry Schoenmakers patiently answered many questions about
his work whenever I needed help.

References

1. Atkey, R.: Amortised resource analysis with separation logic. Logical Methods
Comput. Sci. 7(2), 33 (2011)

2. Charguéraud, A., Pottier, F.: Machine-checked verification of the correctness and
amortized complexity of an efficient union-find implementation. In: Urban, C.,
Zhang, X. (ed.) ITP 2015. LNCS, vol. 9236, pp. 137–154. Springer, Heidelberg
(2015)

324 T. Nipkow

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, New York (1990)

4. Fredman, M.L., Sedgewick, R., Sleator, D.D., Tarjan, R.E.: The pairing heap: A
new form of self-adjusting heap. Algorithmica 1(1), 111–129 (1986)

5. Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: Schneider,
K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 102–118. Springer,
Heidelberg (2007)

6. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
ACM Trans. Program. Lang. Syst. 34(3), 14 (2012)

7. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. In: Proceedings of the 30th ACM Symposium Principles of Pro-
gramming Languages, pp. 185–197 (2003)

8. Kaldewaij, A., Schoenmakers, B.: The derivation of a tighter bound for top-down
skew heaps. Inf. Process. Lett. 37, 265–271 (1991)

9. Nipkow, T.: Amortized complexity verified. Archive of Formal Proofs (2014).
http://afp.sf.net/entries/Amortized Complexity.shtml. Formal proof development

10. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press,
Cambridge (1998)

11. Schoenmakers, B.: A systematic analysis of splaying. Inf. Process. Lett. 45, 41–50
(1993)

12. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–
686 (1985)

13. Sleator, D.D., Tarjan, R.E.: Self-adjusting heaps. SIAM J. Comput. 15(1), 52–69
(1986)

14. Tarjan, R.E.: Amortized complexity. SIAM J. Alg. Disc. Meth. 6(2), 306–318
(1985)

15. Traytel, D., Berghofer, S., Nipkow, T.: Extending hindley-milner type inference
with coercive structural subtyping. In: Yang, H. (ed.) APLAS 2011. LNCS, vol.
7078, pp. 89–104. Springer, Heidelberg (2011)

http://afp.sf.net/entries/Amortized_Complexity.shtml

	Amortized Complexity Verified
	1 Introduction
	1.1 Related Work

	2 Lists and Trees
	3 Amortized Analysis Formalized
	4 Easy Examples
	4.1 Binary Counter
	4.2 Stack with Multipop
	4.3 Dynamic Tables
	4.4 Queues

	5 Skew Heaps
	6 Splay Trees
	6.1 Functional Correctness
	6.2 Amortized Analysis
	6.3 Improved Amortized Analysis

	7 Splay Heaps
	7.1 Amortized Analysis

	References

