
Refinement to Imperative/HOL

Peter Lammich(B)

Technische Universität München, Munich, Germany
lammich@in.tum.de

Abstract. Many algorithms can be implemented most efficiently with
imperative data structures that support destructive update. In this paper
we present an approach to automatically generate verified imperative
implementations from abstract specifications in Isabelle/HOL. It is based
on the Isabelle Refinement Framework, for which a lot of abstract algo-
rithms are already formalized.

Based on Imperative/HOL, which allows to generate verified imper-
ative code, we develop a separation logic framework with automation to
make it conveniently usable. On top of this, we develop an imperative
collection framework, which provides standard implementations for sets
and maps like hash tables and array lists. Finally, we define a refinement
calculus to refine abstract (functional) algorithms to imperative ones.

Moreover, we have implemented a tool to automate the refinement
process, replacing abstract data types by efficient imperative implemen-
tations from our collection framework. As a case study, we apply our tool
to automatically generate verified imperative implementations of nested
depth-first search and Dijkstra’s shortest paths algorithm, which are con-
siderably faster than the corresponding functional implementations. The
nested DFS implementation is almost as fast as a C++ implementation
of the same algorithm.

1 Introduction

Using the Isabelle Refinement Framework (IRF) [13,17], we have verified sev-
eral graph and automata algorithms (e.g. [14,23]), including a fully verified LTL
model checker [6]. The IRF features a stepwise refinement approach, where an
abstract algorithm is refined, in possibly many steps, to a concrete implementa-
tion. This approach separates the correctness proof of the abstract algorithmic
ideas from the correctness proof of their implementation. This reduces the proof
complexity, and makes larger developments manageable in the first place.

The IRF only allows refinement to purely functional code, while the most
efficient implementations of (model checking) algorithms typically require imper-
ative features like destructive update of arrays.

The goal of this paper is to verify imperative algorithms using a stepwise refine-
ment approach, and automate the canonical task of replacing abstract by concrete
data structures. We build on Imperative/HOL [2], which introduces a heap monad
in Isabelle/HOL and supports code generation for several target platforms (cur-
rently OCaml, SML, Haskell, and Scala). However, the automation provided by
c© Springer International Publishing Switzerland 2015
C. Urban and X. Zhang (Eds.): ITP 2015, LNCS 9236, pp. 253–269, 2015.
DOI: 10.1007/978-3-319-22102-1 17

254 P. Lammich

Imperative/HOL is limited, and it has rarely been used for verification projects
so far. Thus, we have developed a separation logic framework that comes with a
verification condition generator and some automation that greatly simplifies rea-
soning about programs in Imperative/HOL.

Based on the separation logic framework, we formalize imperative data struc-
tures and integrate them into an imperative collection framework, which, similar
to the Isabelle Collection Framework [15], defines interfaces for abstract data
types and instantiates them with concrete implementations.

Next, we define a notion of data refinement between an IRF program and an
Imperative/HOL program, which supports mixing of imperative and functional
data structures, and provide proof rules for the standard combinators (return,
bind, recursion, while, foreach, etc.). We implement a tool which automatically
synthesizes an imperative program from an abstract functional one, selecting
appropriate data structures from both our imperative collection framework and
the (functional) Isabelle Collection Framework.

Finally, we present some case studies. We can use already existing abstract
formalizations for the IRF unchanged. In particular we use our tool to automat-
ically synthesize an imperative implementation of a nested DFS algorithm from
an existing abstract formalization, which is considerably faster than the original
purely functional implementation, and almost as fast as a C++ implementation
of the same algorithm. Our tool and the case studies are available at http://
www21.in.tum.de/∼lammich/refine imp hol.

The remainder of this paper is structured as follows: In Sect. 2 we present
our separation logic framework for Imperative/HOL. In Sect. 3, we describe
the imperative collection framework. The refinement from the IRF to Imper-
ative/HOL and its automation is described Sect. 4. Section 5 contains the case
studies, and, finally, Sect. 6, contains the conclusions, related work, and an out-
look to future research.

2 A Separation Logic for Imperative/HOL

Imperative/HOL provides a heap monad formalized in Isabelle/HOL, as well as
a code generator extension to generate imperative code in several target lan-
guages (currently OCaml, SML, Haskell, and Scala). However, Imperative/HOL
itself only comes with minimalistic support for reasoning about programs. In this
section, we report on our development of a separation logic framework for Imper-
ative/HOL. A preliminary version of this, which did not include frame inference
nor other automation, was formalized by Meis [19]. A more recent version is
available in the Archive of Formal Proofs [16].

2.1 Basics

We formalize separation logic [25] along the lines of Calcagno et al. [4].
We define a type pheap for a partial heap, which describes the content of a heap

at a specific set of addresses. An assertion is a predicate on partial heaps that

http://www21.in.tum.de/~lammich/refine_imp_hol
http://www21.in.tum.de/~lammich/refine_imp_hol

Refinement to Imperative/HOL 255

satisfies a well-formedness condition1. We define the type assn ⊂ pheap ⇒ bool of
assertions, and write h |= P if the partial heap h satisfies the assertion P .

We define the basic assertions true, false, emp for the empty heap, p �→r v
for a heap storing value v at address p, and p �→a l for a heap storing an array2

with values l :: α list at address p. Moreover we define the pure assertion ↑ Φ,
which holds if the heap is empty and the predicate Φ holds.

On assertions, we define the standard Boolean connectives, and show that
they form a Boolean algebra. We also define universal and existential quan-
tification. Moreover, we define the separation conjunction P ∗ Q, which holds
if the heap can be split into two disjoint parts, such that P holds on the
first, and Q on the second part. Finally, we define entailment as P =⇒A Q
iff ∀h. h |= P =⇒ h |= Q.

We prove standard properties on assertions and use them to set up Isabelle’s
proof tools to work seamlessly with assertions. For example, the simplifier pulls
existential quantifiers to the front, groups together pure assertions, and checks
pointer assertions (�→r and �→a) for consistency.

Example 1. The simplifier rewrites the assertion P∗ ↑ Φ ∗ (∃p. p �→r v∗ ↑ Ψ) to
∃p. P ∗p �→r v∗ ↑ (Φ∧Ψ), and the assertion P∗ ↑ Φ∗ (∃p. p �→r v∗ ↑ Ψ ∗p �→r w)
is rewritten to False (as p would have to point to two separate locations).

2.2 Hoare Triples

Having defined assertions, we are ready to define a separation logic on programs.
Imperative/HOL provides a shallow embedding of heap-manipulating programs
into Isabelle/HOL. A program is encoded in a heap-exception monad, i.e. it has
type α Heap = heap ⇒ (α × heap) option. Intuitively, a program takes a heap
and either produces a result of type α and a new heap, or fails.

We define the Hoare triple 〈P 〉 c 〈Q〉 to hold, iff for all heaps that satisfy
P , program c returns a result x such that the new heap satisfies Q x.3 When
reasoning about garbage collected languages, one has to frequently specify that
an operation may allocate some heap space for internal use. For this purpose,
we define 〈P 〉 c 〈Q〉t as a shortcut for 〈P〉 c 〈λx. Q x ∗ true〉.

For Hoare triples, we prove rules for the basic heap commands (allocation,
load/store from/to pointer and array, get array length), rules for the standard
combinators (return, bind, recursion, if, case, etc.), as well as a consequence and
a frame rule. Note that the frame rule, 〈P〉 c 〈Q〉 =⇒ 〈P ∗ F〉 c 〈λx. Q x ∗ F〉,
is crucial for modular reasoning in separation logic. Intuitively, it states that a
program does not depend on the content of the heap that it does not access.

1 For technical reasons, we formalize a partial heap as a full heap with an address range.
Assertions must not depend on heap content outside this address range.

2 The distinction between values and arrays is dictated by Imperative/HOL.
3 Again, for technical reasons, we additionally check that the program does not modify

addresses outside the heap’s address range, and that it does not deallocate memory.

256 P. Lammich

2.3 Automation

Application of these rules can be automated. We implement a verification con-
dition generator that transforms a Hoare triple to verification conditions, which
are plain HOL propositions and do not contain separation logic. The basic strat-
egy for verification condition generation is simple: Compute a strong enough
postcondition of the precondition and the program, and show that it entails
the postcondition of the Hoare triple. In Isabelle/HOL, this is implemented by
using a schematic variable as postcondition (i.e. a unification variable that can
be instantiated on rule application). However, there are two cases that cannot
be fully automated: frame inference and recursion.

Frame Inference. When applying a rule for a command c, say 〈P 〉c〈Q〉, the
current goal has the form 〈P ′〉c〈?R〉, where P ′ is the precondition describing the
current heap, and ?R is the unification variable that shall take the postcondition.
In order to apply the rule for c, we have to find a part of the heap that satisfies P .
In other words, we have to find a frame F such that P ′ =⇒A P ∗F . Then, we use
the frame rule to prove 〈P ∗ F ′〉c〈λx. Qx ∗ F ′〉, and with the consequence rule
we instantiate ?R to λx. Q x ∗F . A detailed discussion about automating frame
inference can be found in [28]. We implement a quite simple but effective method:
After some initial simplifications to handle quantifiers and pure predicates, we
split P and P ′ into P = P1 ∗ . . . ∗ Pn and P ′ = P ′

1 ∗ . . . ∗ P ′
n. Then, for every

Pi, we find the first P ′
j that can be unified with Pi. If we succeed to match up

all Pis, without using a P ′
j twice, we have found a valid frame, otherwise the

heuristic fails and frame inference has to be performed manually.

Recursion. Recursion over the heap monad is modeled as least fixed point over
an adequate CCPO [10]. Proving a Hoare triple for a recursive function requires
to perform induction over a well-founded ordering that is compatible with the
recursion scheme. Coming up with an induction ordering and finding a gener-
alization that is adequate for the induction proof to go through is undecidable
in general. We have not attempted to automate this, although there exist some
heuristics [3].

2.4 All-in-one Method

Finally, we combine the verification condition generator, frame inference and
Isabelle/HOL’s auto tactic into a single proof tactic sep auto, which is able to
solve many subgoals involving separation logic completely automatically. More-
over, if it cannot solve a goal it returns the proof state at which it got stuck.
This is a valuable tool for proof exploration, as this stuck state usually hints
to missing lemmas. The sep auto method allows for very straightforward and
convenient proofs. For example, the original Imperative/HOL formalization [2]
contains an example of in-place list reversal. The correctness proof requires about
100 lines of quite involved proof text. Using sep auto, the proof reduces to 6 lines
of straightforward proof text [16].

Refinement to Imperative/HOL 257

3 Imperative Collection Framework

We use our separation logic framework to implement an imperative collection
framework along the lines of [15]: For each abstract data type (e.g. set, map)
we define a locale that fixes a refinement assertion that relates abstract values
with concrete values (which may be on the heap). This locale is polymorphic in
the concrete data type ′s, and is later instantiated for every implementation. For
each operation, we define a locale that includes the locale of the abstract data
type, fixes a parameter for the operation, and assumes a Hoare triple stating the
correctness of the operation.

Example 2. The abstract set data type is specified by the following locale:

locale imp set = fixes is set :: ′a set ⇒′s ⇒ assn
assumes precise: precise is set

Here, the predicate precise describes that the abstract value is uniquely deter-
mined by the concrete value.

The insert operation on sets is specified as follows:

locale imp set ins = imp set + fixes ins :: ′a ⇒′s ⇒′s Heap
assumes ins rule: 〈is set s p〉 ins a p 〈λr. is set ({a} ∪ s) r〉t

Note that this specifies a destructive update of the set, as the postcondition does
not contain the original set p any more.

Example 3. Finite sets of natural numbers can be implemented by bitvectors.
We define a corresponding refinement assertion, and instantiate the set locale:

definition is bv :: nat set ⇒ bool array ⇒ assn [. . .]
interpretation bv: imp set is bv [. . .]

Then, we define the insert operation, and instantiate the locale imp set ins:

definition bv ins :: nat ⇒ bool array ⇒ bool array Heap [. . .]
interpretation bv: imp set ins is bv bv ins [. . .]

Using the approach sketched above, we have defined more standard data
structures for sets and maps, including hash sets, hash maps and array maps.

4 Refinement to Imperative/HOL

In the last section, we have described how to formalize imperative collection
data structures. In order to use these data structures in efficient algorithms, we
develop a refinement technique that allows us to refine a formalization of the
algorithm over abstract data types to one that uses efficient data structures.

With the Isabelle Refinement Framework [17], we have already developed a
formalism to describe and prove correct algorithms on an abstract level and then
refine them to use efficient purely functional data structures. With the Autoref
tool [13], we have even automated this process. In this section, we extend these
techniques to imperative data structures.

258 P. Lammich

4.1 Isabelle Refinement Framework

We briefly review the Isabelle Refinement Framework. For a more detailed
description, we refer to [12,17]. Programs are described via a nondeterminism
monad over the type ′a nres, which is defined as follows:

datatype ′a nres = res (′a set) | fail
fun ≤ :: ′a nres ⇒ ′a nres ⇒ bool
where ≤ fail | fail �≤ res | res X ≤ res Y iff X ⊆ Y

fun return :: ′a ⇒ ′a nres where return x ≡ res {x}
fun bind :: ′a nres ⇒ (′a ⇒ ′b nres) ⇒ ′b nres
where bind fail f ≡ fail | bind (res X) f ≡ SUP x ∈ X. f x

The type ′a nres describes nondeterministic results, where res X describes the
nondeterministic choice of an element from X, and fail describes a failed asser-
tion. On nondeterministic results, we define the refinement ordering ≤ by lifting
the subset ordering, setting fail as top element. The intuitive meaning of a ≤ b
is that a refines b, i.e. results of a are also results of b. Note that the refinement
ordering is a complete lattice with top element fail and bottom element res {}.

Intuitively, return x denotes the unique result x, and bindm f denotes
sequential composition: Select a result from m, and apply f to it.

Non-recursive programs can be expressed by these monad operations and
Isabelle/HOL’s if and case-combinators. Recursion is encoded by a fixed point
combinator rec :: (′a ⇒ ′b nres) ⇒ ′a ⇒ ′b nres, such that rec F is the great-
est fixed point of the monotonic functor F wrt. the flat ordering of result sets
with fail as the top element. If F is not monotonic, rec F is defined to be fail:

rec F x ≡ if (mono′ F) then (flatf gfp F x) else fail

Here, mono′ denotes monotonicity wrt. both the flat ordering and the refinement
ordering. The reason is that for functors that are monotonic wrt. both orderings,
the respective greatest fixed points coincide, which is useful to show proof rules
for refinement.

Functors that only use the standard combinators described above are
monotonic by construction. This is also exploited by the Partial Function Pack-
age [10], which allows convenient specification of recursive monadic functions.

Building on the combinators described above, the IRF also defines while
and foreach loops to conveniently express tail recursion and folding over the
elements of a finite set.

Example 4. Listing 1 displays the IRF formalization of a simple depth-first
search algorithm that checks whether a directed graph, described by a (finite) set
of edges E, has a path from source node s to target node t: With the tool support
provided by the IRF, it is straightforward to prove this algorithm correct, and
refine it to efficient functional code (cf. [13,17]).

4.2 Connection to Imperative/HOL

In this section, we describe how to refine a program specified in the nondeter-
minism monad of the IRF to a program specified in the heap-exception monad

Refinement to Imperative/HOL 259

Listing 1. Simple DFS algorithm formalized in the IRF

definition dfs :: (′v ×′v) set ⇒′v ⇒′v ⇒ bool nres where
dfs E s t ≡ do {

(,r) ← rec (λdfs (V,v).
if v ∈ V then return (V,False)
else do {
let V = insert v V;
if v = t then return (V,True)
else foreach ({v′. (v,v′) ∈ E}) (λ(,brk). ¬brk)

(λv′ (V,). dfs (V,v′)) (V,False)
}

) ({},s);
return r

}

of Imperative/HOL. The main challenge is to refine abstract data to concrete
data that may be stored on the heap and updated destructively.

At this point, we have a design choice: One option is to formalize a nondeter-
ministic heap-exception monad, in which we encode an abstract program with
a heap containing abstract data. In a second step, this program is refined to a
deterministic program with concrete data structures. The other option is to omit
the intermediate step, and directly relate abstract nondeterministic programs to
concrete deterministic ones.

Due to limitations of the logic underlying Isabelle/HOL, we need a single HOL
type that can encode all types we want to store on the heap. In Imperative/HOL,
this type is chosen as N, and thus only countable types can be stored on the heap.
As long as we store concrete data structures, this is no real problem. However,
abstract data types are in general not countable, nor does there exist a type in
Isabelle/HOL that could encode all other types. This would lead to unnatural and
clumsy restrictions on abstract data types, contradicting the goal of focusing the
abstract proofs on algorithmic ideas rather than implementation details.

Thus, we opted for directly relating nondeterministic results with heap-
modifying programs. We define the predicate hnr (short for heap-nres refine-
ment) as follows:

hnr Γ c Γ ′ R m ≡
m �= fail −→ 〈Γ 〉 c 〈λr. Γ ′ ∗ (∃x. R x r ∗ ↑(return x ≤ m))〉t

Intuitively, for an Imperative/HOL program c, hnr Γ c Γ ′ R m states that on a
heap described by assertion Γ , c returns a value that refines the nondeterministic
result m wrt. the refinement assertion R. Additionally, the new heap contains Γ ′.

In order to prove refinements, we derive a set of proof rules for the hnr pred-
icate, including a frame rule, consequence rule, and rules relating the combina-
tors of the heap monad with the combinators of the nondeterminism monad. For

260 P. Lammich

example, the consequence rule allows us to strengthen the precondition, weaken
the postcondition, and refine the nondeterministic result:

[[Γ1 =⇒A Γ ′
1; hnr Γ ′

1 c Γ2 R m; Γ2 =⇒A Γ ′
2; m ≤ m′]] =⇒ hnr Γ1 c Γ ′

2 R m′

For recursion, we get the following rule4:

assumes
∧

cf af ax px. [[∧
ax px. hnr (Rx ax px ∗ Γ) (cf px) (Γ ′ ax px) Ry (af ax)]]

=⇒ hnr (Rx ax px ∗ Γ) (Fc cf px) (Γ ′ ax px) Ry (Fa af ax)
assumes (

∧
x. mono Heap (λf. Fc f x))

assumes precise Ry
shows hnr (Rx ax px ∗ Γ) (heap.fixp fun Fc px) (Γ ′ ax px) Ry (rec Fa ax)

Intuitively, we have to show that the concrete functor Fc refines the abstract
functor Fa , assuming that the concrete recursive function cf refines the abstract
one af. The argument of the call is refined by the refinement assertion Rx and
the result is refined by Ry. Additionally, the heap may contain Γ >, and is
transformed to Γ ′ ax px. Here, the ax and px that are attached to Γ ′ denote that
the new heap may also depend on the argument to the recursive function.

Note that a refinement assertion needs not necessarily relate heap content to
an abstract value. It can also relate a concrete non-heap assumes a Hoare triple.
For a relation R :: (′c ×′a) set we define:

pure R ≡ (λa c. ↑((c,a) ∈ R))

This allows us to mix imperative data structures with functional ones. For exam-
ple, the refinement assertion pure int rel describes the implementation of integer
numbers by themselves, where int rel ≡ Id::(int×int) set.

4.3 Automation

Using the rules for hnr, it is possible to manually prove refinement between an
Imperative/HOL program and a program in the Isabelle Refinement Framework,
provided they are structurally similar enough. However, this is usually a tedious
and quite canonical task, as it essentially consists of manually rewriting the
program from one monad to the other, thereby unfolding expressions into monad
operations if they depend on the heap.

For this reason, we focused our work on automating this process: Given some
hints which imperative data structures to use, we automatically synthesize the
Imperative/HOL program and the refinement proof. The idea is similar to the
Autoref tool [13], which automatically synthesizes efficient functional programs,
and, indeed, we could reuse parts of its design for our tool.

In the rest of this section, we describe our approach to automatically syn-
thesize imperative programs, focusing on the aspects that are different from
the Autoref tool. The process of synthesizing consists of several consecutive
phases: Identification of operations, monadifying, linearity analysis, translation,
and cleaning up.
4 Specified in Isabelle’s long goal format, which is more readable for large propositions.

Refinement to Imperative/HOL 261

Identification of Operations. Given an abstract program in Isabelle/HOL, it
is not always clear which abstract data types it uses. For example, maps are
encoded as functions ′a ⇒ ′b option, and so are priority queues or actual func-
tions. However, maps and priority queues are, also abstractly, quite different
concepts. The purpose of this phase is to identify the abstract data types (e.g.
maps and priority queues), and the operations on them. Technically, the iden-
tification is done by rewriting the operations to constants that are specific to
the abstract data type. For example, (f :: nat ⇒ nat option)x may be rewrit-
ten to op map lookup f x, provided that a heuristic identifies f as a map. If f
is identified as a priority queue, the same expression would be rewritten to
op get prio f x. The operation identification heuristic is already contained in the
Autoref tool, and we slightly adapted it for our needs.

Monadifying. Once we have identified the operations, we flatten all expressions,
such that each operation gets visible as a top-level computation in the monad.
This transformation essentially fixes an evaluation order (which we choose to be
left to right), and later allows us to translate the operations to heap-modifying
operations in Imperative/HOL’s heap monad.

Example 5. Consider the program letx = 1 ; return {x, x}.5 Note that {x, x}
is syntactic sugar for (insert x (insert x {})). A corresponding Imperative/HOL
program might be:

let x = 1; s ← bv new; s ← bv ins x s; bv ins x s

Note that the bv new and bv ins operations modify the heap, and thus have to be
applied as monad operations and cannot be nested into a plain HOL expression.
For this reason, the monadify phase flattens all expressions, and thus exposes all
operations as monad operations. It transforms the above program to6:

x ← return 1; s ← return {}; s ← return (insert x s); return (insert x s)

Note that operations that are not translated to heap-modifying operations will
be folded again in the cleanup phase.

Linearity Analysis. In order to refine data to be contained on the heap, and
destructively updated, we need to know whether the value of an operand may
be destroyed. For this purpose, we perform a program analysis on the monad-
ified program, which annotates each operand (which is a reference to a bound
variable) to be linear or nonlinear. A linear operand is not used again, and can
safely be destroyed by the operation, whereas a nonlinear operand needs to be
preserved.

Example 6. Consider the program from Example 5. Linearity analysis adds the
following annotations, where ·L means linear, and ·N means nonlinear:

x ← return 1; s ← return {}; s ← return (insert xN sL); return (insert xL sL)

5 Inserting x twice is redundant, but gives a nice example for our transformations.
6 We applied α-conversion to give the newly created variables meaningful names.

262 P. Lammich

That is, the insert operations may be translated to destructively update the
set, while at least the first insert operation must preserve the inserted value.

Translation. Let a be the monadified and annotated program. We now synthe-
size a corresponding Imperative/HOL program. Assume the program a depends
on the abstract parameters a1 . . . an, which are refined to concrete parameters
c1 . . . cn by refinement assertions R1 . . . Rn. We start with a proof obligation of
the form

hnr (R1 a1 c1 ∗ . . . ∗ Rn an cn) ?c ?Γ ′ ?R a

Recall that ? indicates schematic variables, which are instantiated during reso-
lution. We now repeatedly try to resolve with a set of syntax directed rules for
the hnr predicate. There are rules for each combinator and each operator. If a
rule would destroy an operand which is annotated as nonlinear, we synthesize
code to copy the operand. For this, the user must have defined a copy operation
for the operand’s concrete data type.

Apart from hnr-predicates, the premises of the rules may contain frame infer-
ence and constraints on the refinement assertions. Frame inference is solved by
a specialized tactic, which assumes that the frame consists of exactly one refine-
ment assertion per variable. The rules are designed to preserve this invariant.
If the content of a variable is destroyed, we still include a vacuous refinement
assertion invalid for it, which is defined as invalid ≡ λ . true.

Apart from standard frame inference goals, which have the form

Γ =⇒A R1 a1 c1 ∗ . . . ∗ Rn an cn ∗ ?F

we also have to solve goals of the form

R1 a1 c1 ∗ . . . ∗ Rn an cn ∨ R′
1 a1 c1 ∗ . . . ∗ R′

n an cn =⇒A ?Γ

These goals occur when merging the different branches of if or case combinators,
which may affect different data on the heap. Here, we keep refinement assertions
with Ri = R′

i, and set the others to invalid.

Example 7. The rule for the if combinator is

assumes P: Γ =⇒A Γ1 ∗ pure bool rel a a′

assumes RT: a =⇒ hnr (Γ1 ∗ pure bool rel a a′) b′ Γ2b R b
assumes RE: ¬a =⇒ hnr (Γ1 ∗ pure bool rel a a′) c′ Γ2c R c
assumes MERGE: Γ2b ∨A Γ2c =⇒A Γ ′

shows hnr Γ (if a′ then b′ else c′) Γ ′ R (if a then b else c)

Intuitively, it works as follows: We start with a heap described by the asser-
tion Γ . First, the concrete value for the condition a is extracted by a frame rule
(Premise P). Then, the then and else branches are translated (Premises RT and
RE), producing new heaps described by the assertions Γ2b and Γ2c, respectively.
Finally, these assertions are merged to form the assertion Γ ′ for the resulting
heap after the if statement (Premise MERGE).

Refinement to Imperative/HOL 263

Another type of side conditions are constraints on the refinement assertions.
For example, some rules require a refinement assertion to be precise (cf. Sect. 3).
When those rules are applied, the corresponding refinement assertion may not
be completely known, but (parts of) it may be schematic and only instantiated
later. For this purpose, we keep track of all constraints during translation, and
solve them as soon as the refinement assertion gets instantiated.

Using the resolution with rules for hnr, combined with frame inference and
solving of constraints, we can automatically synthesize an Imperative/HOL
program for a given abstract program. While there is only one rule for each
combinator, there may be multiple rules for operators on abstract data types,
corresponding to the different implementations. In the Autoref tool [13], we have
defined some elaborate heuristic how to select the implementations. In our pro-
totype implementation here we use a very simplistic strategy: Take the first
implementation that matches the operation. By specifying the refinement asser-
tions for the parameters of the algorithm, and declaring the implementations
with specialized abstract types, this simplistic strategy already allows some con-
trol over the synthesized algorithm. In future work, we may adopt some more
elaborate strategies for implementation selection.

Sometimes, functional data structures are more adequate than imperative
ones, be it because they are accessed in a nonlinear fashion, or because we
simply have no imperative implementation yet. Pure refinement assertions allow
for mixing of imperative and functional data structures, and our tool can import
rules from the Isabelle Collection Framework, thus making a large amount of
functional data structures readily available.

Cleaning Up. After we have generated the imperative version of the program, we
apply some rewriting rules to make it more readable. They undo the flattening
of expressions performed in the monadify phase at those places where it was
unnecessary, i.e. the heap is not modified. Technically, this is achieved by using
Isabelle/HOL’s simplifier with an adequate setup.

Example 8. Recall the DFS algorithm from Example 4. With a few (<10) lines
of straightforward Isabelle text, our tool generates7 the imperative algorithm
displayed in Listing 2. From this, Imperative/HOL generates verified code in
its target languages (currently OCaml, SML, Haskell, and Scala). Moreover, our
tool proves the following refinement theorem:

hnr (is graph nat rel E Ei ∗ pure nat rel s si ∗ pure nat rel t ti)
(dfs impl Ei si ti)
(pure nat rel t ti ∗ invalid s si ∗ is graph nat rel E Ei)
(pure bool rel)
(dfs E s t)

7 Again, we applied α-conversion, to make the generated variable names more read-
able.

264 P. Lammich

Listing 2. Imperative DFS algorithm generated by our tool.

dfs impl Ei si ti ≡ do {
V ← bv new;
(,r) ← heap rec (λdfs (V,v). do {
visited ← bv memb v V;
if visited then return (V,False)
else do {
V ← bv ins v V;
if v = ti then return (V,True)
else do {
succ list ← succi Ei v;
imp nfoldli succ list (λ(, brk). return (¬ brk))

(λv (V,). dfs (V,v)) (V,False)
}

}
}) (V,si);
return r

}

If we combine this with the correctness theorem of the abstract DFS algorithm
dfs, we immediately get the following theorem, stating total correctness of our
imperative algorithm:

corollary dfs impl correct:
finite (reachable E s) =⇒
〈is graph nat rel E Ei〉

dfs impl Ei s t
〈λr. is graph nat rel E Ei ∗ ↑(r ←→ (s,t)∈E∗)〉t.

5 Case Studies

In this section, we present two case studies: We apply our method to a nested
depth-first search algorithm and Dijkstra’s shortest paths algorithm. Both algo-
rithms have already been formalized within the Isabelle Refinement Frame-
work [6,22,23], and we were able to reuse the existing abstract algorithms and
correctness proofs unchanged. The resulting Imperative/HOL algorithms are
considerably more efficient than the original functional versions.

5.1 Nested Depth-First Search

For the CAVA model checker [6], we have verified various nested depth-first
search algorithms [26]. Here, we pick a version from the examples that come
with the Isabelle Collection Framework [11]. It contains an improvement by

Refinement to Imperative/HOL 265

Holzmann et al. [8], where the search already stops if the inner DFS finds a path
back to a node on the stack of the outer DFS.

From the existing abstract formalization, it takes about 160 lines of mostly
straightforward Isabelle text to arrive at the generated SML code and the corre-
sponding correctness theorem, relating the imperative algorithm to its specifica-
tion. The main part of the required Isabelle text consists of declaring parametricity
rules for specific algebraic data types defined by the abstract formalization, and
could be automated.

We compile the generated code with MLton [20] and benchmark it against
the original functional refinement and an unverified implementation of the same
algorithm in C++, taken from material accompanying [26]. The algorithm is
run on state spaces extracted from the BEEM benchmark suite [24]: dining
philosophers and Peterson’s mutual exclusion algorithm. We have checked for
valid properties only, such that the search has to explore the whole state space.
The results are displayed in the table below:

Model Property #States Fun Fun* Imp Imp* C++ (O3) C++ (O0)

phils.4 φ1 353668 975 75 70 63 48 66

phils.5 517789 1606 120 113 108 83 112

phils.4 G(true) 287578 740 59 53 46 40 54

phils.5 394010 1156 83 77 71 64 85

peterson.3 φ2 58960 119 9 7 5 5 7

peterson.4 1120253 2476 184 142 110 111 158

peterson.3 G(true) 29289 55 4 3 2 3 4

peterson.4 576156 1314 88 70 55 54 78

where φ1 = G(one0 =⇒ one0 W eat0) and φ2 = G(wait0 =⇒ F (wait0) ∨ G(¬ncs0))

The first column displays the name of the model, the second column the
checked property, and the third column displays the number of states. The
remaining columns show the time in ms required by the different implemen-
tations, on a 2.2 GHz i7 quadcore processor with 8GiB of RAM. Fun denotes
a purely functional implementation with red-black trees. Fun* denotes a purely
functional implementation, relying on an unverified array implementation sim-
ilar to Haskell’s Array.Diff. Imp denotes the verified implementation generated
by our tool, which uses array lists. Imp* denotes a verified implementation gen-
erated after hinting our tool to preinitialize the array lists to the correct size
(which required 5 extra lines of Isabelle text), such that no array reallocation
occurs during the search. Finally, the C++ columns denote the unverified C++
implementation, which uses arrays of fixed size. It was compiled using gcc 4.8.2
with (O3) and without (O0) optimizations.

The results are quite encouraging: Our tool generates code that is more than
one order of magnitude faster than the purely functional code. We are also faster
than the Fun*-implementation, which depends on an unverified component, and
faster than the unoptimized C++ implementation. For the philosopher models,

266 P. Lammich

we come close to the optimized C++ implementation, and for the Peterson
models, we even catch up.

5.2 Dijkstra’s Shortest Paths Algorithm

We have performed a second case study, based on an existing formalization of
Dijkstra’s shortest paths algorithm [23]. The crucial data types in the exist-
ing formalization are a priority queue, a map from nodes to current paths and
weights, and a map from nodes to outgoing edges that represents the graph.
It took us about 130 lines of straightforward Isabelle text to set up our tool to
produce an imperative version of Dijkstra’s algorithm, using arrays for the maps.
Currently, we do not have an imperative priority queue data structure, so we
reused the existing functional one which is based on finger trees [7], demonstrat-
ing the capability of our tool to mix imperative and functional data structures.
We benchmark our implementation (Imp) against the original functional version
(Fun), and a reference implementation in Java (Java), taken from Sedgewick
et al. [27]. The inputs are complete graphs with random weights and 1300 and
1500 nodes (cl1300, cl1500), as well as two examples from [27] (medium, large).
The required times in ms are displayed in Fig. 1:

Name Fun Imp Java
cl1300 278 167 28
cl1500 378 219 29

medium 2 2 3
large 45606 28861 1490

Fig. 1. Dijkstra benchmark

The results show that a significant speedup
(factor 1.5–2) can be gained by replacing only
some of the functional data structures by imper-
ative ones. However, we are still one order of
magnitude slower than the reference implemen-
tation in Java. Our profiling results indicate
that most of the time in the Imperative/HOL
implementation is spent to manage the finger
tree-based priority queue, and we are currently

formalizing an array-based min-heap — the same data structure as used in the
Java implementation.

6 Conclusion

We have presented an Isabelle/HOL-based approach to automatically refine func-
tional programs specified over abstract data types to imperative ones using heap-
based data structures. Not only the program, but also the refinement proof is
generated, such that we get imperative programs verified in Isabelle/HOL.

Our approach is based on the Isabelle Refinement Framework, for which many
formalized algorithms already exist. These can now be refined to imperative
implementations, without redoing their correctness proofs.

We have implemented a prototype tool, which we applied to generate a ver-
ified nested DFS algorithm, which is almost as efficient as an unverified imple-
mentation of the same algorithm in C++. Moreover, our approach can mix
refinements to functional and imperative data structures, which we demon-
strated by a refinement of Dijkstra’s algorithm, where the priority queue is

Refinement to Imperative/HOL 267

functional, but the graph representation and some maps are imperative. We
gained a speedup of factor 1.5–2 wrt. the purely functional version, but are still
an order of magnitude slower than an unverified implementation in Java.

Apart from extending the imperative collection framework by more data
structures, future work includes improving the automation. Another interesting
direction is to allow sharing of read-only data on the heap, which also would
allow refinement of nested abstract data types, e.g. sets of sets to arrays of
pointers to arrays. Fractional permissions [1] may be the right tool to achieve
this.

6.1 Related Work

We are not aware of interactive theorem prover-based tools to automatically
refine functional to imperative programs.

Separation logic has been implemented for various interactive theorem provers,
e.g. [9,18,21,28]. The work closest to ours is probably the Ynot project [21]. They
formalize a heap monad, a separation logic, and imperative data structures in Coq.
Their code generator targets Haskell. However, we are not aware of any perfor-
mance benchmarks.

For Isabelle/HOL, there is a second separation logic framework [9], which
has been developed independently of ours. It can be instantiated to various heap
models, while ours is specialized to Imperative/HOL. However, the provided
automation is less powerful than ours.

The HOLFoot tool [28] implements a separation logic framework in HOL4.
While it provides more powerful automation than our framework, its simplistic
imperative language is less convenient for formalizing complex algorithms.

In Coq, various imperative OCaml programs, including Dijkstra’s shortest
paths algorithm, have been verified with characteristic formulas [5]. Apart from
the genuine characteristic formula technique, the main difference to our work is
that we use a top-down approach, refining an abstract algorithm down to exe-
cutable code, while they use a bottom-up approach, starting with a translation
of the OCaml code to characteristic formulas.

Acknowledgements. We thank Rene Meis for formalizing the basics of separation
logic for Imperative/HOL. Moreover we thank Thomas Tuerk for interesting discussions
about automation of separation logic.

References

1. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL, pp. 259–270. ACM (2005)

2. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative func-
tional programming with isabelle/HOL. In: Mohamed, O.A., Muñoz, C., Tahar, S.
(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 134–149. Springer, Heidelberg (2008)

3. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: POPL 2009, pp. 289–300 (2009)

268 P. Lammich

4. Calcagno, C., O’Hearn, P., Yang, H.: Local action and abstract separation logic.
LICS 2007, 366–378 (2007)

5. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams. In: ICFP, pp. 418–430. ACM (2011)

6. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013)

7. Hinze, R., Paterson, R.: Finger trees: A simple general-purpose data structure. J.
Funct. Program. 16(2), 197–217 (2006)

8. Holzmann, G., Peled, D., Yannakakis, M.: On nested depth first search. In: SPIN.
Discrete Mathematics and Theoretical Computer Science, vol. 32, pp. 23–32.
American Mathematical Society (1996)

9. Klein, G., Kolanski, R., Boyton, A.: Mechanised separation algebra. In: Beringer,
L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 332–337. Springer, Heidelberg
(2012)

10. Krauss, A.: Recursive definitions of monadic functions. In: Proceedings of PAR,
vol. 43, pp. 1–13 (2010)

11. Lammich, P.: Collections framework. In: Archive of Formal Proofs, Dec 2009.
http://afp.sf.net/entries/Collections.shtml. Formal proof development

12. Lammich, P.: Refinement for monadic programs. In: Archive of Formal Proofs
(2012). http://afp.sf.net/entries/Refine Monadic.shtml. Formal proof development

13. Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 84–99. Springer, Heidelberg
(2013)

14. Lammich, P.: Verified efficient implementation of gabow’s strongly connected com-
ponent algorithm. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558,
pp. 325–340. Springer, Heidelberg (2014)

15. Lammich, P., Lochbihler, A.: The isabelle collections framework. In: Kaufmann, M.,
Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 339–354. Springer, Heidelberg
(2010)

16. Lammich, P., Meis, R.: A separation logic framework for imperative hol. In:
Archive of Formal Proofs, Nov 2012. http://afp.sf.net/entries/Separation Logic
Imperative HOL.shtml. Formal proof development

17. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to
hopcroft’s algorithm. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406,
pp. 166–182. Springer, Heidelberg (2012)

18. Marti, N., Affeldt, R.: A certified verifier for a fragment of separation logic. In:
PPL-Workshop (2007)

19. Meis, R.: Integration von Separation Logic in das Imperative HOL-Framework.
Master Thesis, WWU Münster (2011)

20. MLton Standard ML compiler. http://mlton.org/
21. Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: Rea-

soning with the awkward squad. In: ICFP (2008)
22. Neumann, R.: A framework for verified depth-first algorithms. In: Workshop on

Automated Theory Exploration (ATX 2012), pp. 36–45 (2012)
23. Nordhoff, B., Lammich, P.: Formalization of Dijkstra’s algorithm. In: Archive of

Formal Proofs, Jan 2012. http://afp.sf.net/entries/Dijkstra Shortest Path.shtml.
Formal proof development

24. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

http://afp.sf.net/entries/Collections.shtml
http://afp.sf.net/entries/Refine_Monadic.shtml
http://afp.sf.net/entries/Separation_Logic_Imperative_HOL.shtml
http://afp.sf.net/entries/Separation_Logic_Imperative_HOL.shtml
http://mlton.org/
http://afp.sf.net/entries/Dijkstra_Shortest_Path.shtml

Refinement to Imperative/HOL 269

25. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proceedings of Logic in Computer Science (LICS), pp. 55–74. IEEE (2002)

26. Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190.
Springer, Heidelberg (2005)

27. Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley, Boston (2011)
28. Tuerk, T.: A separation logic framework for HOL. Technical report UCAM-CL-

TR-799, University of Cambridge, Computer Laboratory, June 2011

	Refinement to Imperative/HOL
	1 Introduction
	2 A Separation Logic for Imperative/HOL
	2.1 Basics
	2.2 Hoare Triples
	2.3 Automation
	2.4 All-in-one Method

	3 Imperative Collection Framework
	4 Refinement to Imperative/HOL
	4.1 Isabelle Refinement Framework
	4.2 Connection to Imperative/HOL
	4.3 Automation

	5 Case Studies
	5.1 Nested Depth-First Search
	5.2 Dijkstra's Shortest Paths Algorithm

	6 Conclusion
	6.1 Related Work

	References

