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Abstract. A rigorous numerical algorithm, formally verified with
Isabelle/HOL, is used to compute an accurate enclosure for the Lorenz
attractor.

Accurately enclosing the attractor is highly relevant: a similar non
verified computation is part of Tucker’s proof that the Lorenz attractor
is chaotic in a rigorous mathematical sense. This proof settled a conjec-
ture that Fields medalist Stephen Smale has put on his list of eighteen
important mathematical problems for the twenty-first century.
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1 Introduction

The Lorenz system of ordinary differential equation (ODEs) has become famous
as a classical example of chaotic dynamics since its introduction as a model
for atmospheric flows by Edward Lorenz in 1963. Numerical experiments sug-
gested chaotic behavior; in dynamical systems parlance, the existence of a strange
attractor. However, the existence of a strange attractor for the Lorenz equations
could not be proved until 1999 – shortly after Fields medalist Stephen Smale put
it on his list of eighteen unsolved mathematical problems for the 21st century.

The proof was accomplished by Warwick Tucker [8], and an interesting aspect
is that his proof relies on the output of a numerical program. His program
computes enclosures for the attractor and analytical properties of solutions on
the attractor.

These programs were written in C++ and not formally verified, Tucker even
discovered (and fixed) some bugs in it [7]. Formally verifying the numerical
results needed for the proof is therefore a worthwhile goal.

The contribution of this work is the computation of an accurate enclosure
for the Lorenz attractor with a formally verified ODE solver. The development
is available in the Archive of Formal Proofs [5].
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2 The Lorenz Attractor

We consider (like Tucker) the classical parameter values, for which the Lorenz
equations in Jordan normal form are approximately given by the right hand side
f(x, y, z) = (11.8x−0.29(x+y)z,−22.8y +0.29(x+y)z,−2.67z +(x+y)(2.2x−
1.3y)). It can be shown that the properties of interest are robust under small
perturbations of the parameters.

A solution ϕ : R → R
3 is any function with derivative ϕ̇(t) = f(ϕ(t)). With

an initial condition ϕ(0) = x0, the solution is unique. We denote with flow the
solution ϕ(x0, t) depending on initial condition x0 at time t.

Numerical simulations suggest the existence of a set A, the Lorenz attractor
(enclosures of which is depicted in Fig. 1) with the following 3 properties, which
make it a strange attractor.

Property 1. Solutions (of the Lorenz system) tend towards A.

The dynamics on A can be described as follows: solutions starting from Σ =
{(x, y, z) | z = 27 ∧ x ∈ [−5.5; 5.5]} flow downwards (towards lower values of z)
and enter either the left or right branch of the attractor in order to circle around
the “holes” around (±6, ·, 27) and return back to Σ. Depending on where they
return, they either stay in the same branch or switch to the other side in the
next revolution. Small initial sets approaching the fixed point (0, 0, 0) exhibit
strong expansion in the x-direction, which causes Property 2.

Property 2. Solutions on A exhibit sensitive dependence on initial conditions.

The expansion is strong enough for Property 3.

Property 3. Small initial sets eventually spread over the whole attractor A.

A standard approach in the analysis of dynamical systems is to provide sufficient
conditions for properties 1,2,3 by studying a so-called Poincaré map R, which
simplifies reasoning about the three-dimensional flow to reasoning about discrete
iterations of the two-dimensional map R. To define R for Tucker’s proof, consider
the return plane Σ as defined before. For any point x ∈ Σ, τ(x) is the first time
when x flows through Σ from above. The Poincaré map R is then defined as
R(x) := ϕ(x, τ(x)). The significance is that the equivalents of properties 1,2,3
for the iterations of the map R and its attractor A ∩ Σ carry over to the flow
ϕ and A. Tucker proved those with a combination of rigorous numerics and
analytical reasoning locally around the origin (0, 0, 0).

Rigorous Numerics. Property 1 can be shown by exhibiting a forward invari-
ant (i.e. R(N) ⊆ N) subset N of the return plane that contains the attractor:
A ∩ Σ ⊆ N ⊆ Σ.

Tucker proves this by computing enclosures for R with rigorous numerics:
a function step(X) computes some set (by safely including e.g. round-off errors
into the result) that is reachable via the flow.

∀x ∈ X. ∃h > 0. ϕ(x, h) ∈ step(X)
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Fig. 1. Top left, top right, bottom left : projections of enclosures for Lorenz attrac-
tor. Bottom right : forward invariant subset N in black of the return plane Σ with
Tucker’s enclosure in gray; one half is omitted due to the symmetry (x, y, z) ∈ N ←→
(−x, −y, z) ∈ N

Overapproximations to the Poincaré map R can then be obtained by iterating
step(X) until the return plane Σ is reached:

poincare(X) :=
letY = step(X) in if Y ∩ Σ 	= ∅ then step-to-sigma(X) else poincare(Y )

Here step-to-sigma is like step but needs to satisfy step-to-sigma(X) ⊆ Σ. Now
if X ⊆ Σ, then R(X) ⊆ poincare(X). Tucker represents a candidate for the
forward invariant subset as a union of small rectangles N =

⋃
i≤k Ni, for which

computations confirm that poincare(Ni) ⊆ N for all i and therefore R(N) ⊆ N .
Tucker implements step as a function that propagates axis-parallel rectan-

gles by overapproximating the flow with the Euler method. Tucker implements
step-to-sigma by choosing an appropriate interval for the step size and projecting
the result onto the plane.

To quantify the dependence on initial conditions for Property 2, it is a stan-
dard approach to study the derivative DR of R. This can be done by adding
to step, which computes overapproximations to the flow ϕ, overapproximations



224 F. Immler

for the partial derivatives ∂ϕ
∂x , ∂ϕ

∂y , ∂ϕ
∂z , ∂ϕ

∂t of the flow. The overapproxima-
tions on DR can be used to prove that the Ni are expanded in some directions
and contracted in others (via a “forward invariant cone field” for DR). Tucker
can quantify the magnitude of the expansion as sufficiently large to establish
Property 3.

Local Theory Around the Origin. There is, however, one obstruction for
the numerical methods: some solutions tend towards the origin (0, 0, 0), and they
do so in infinite time. Any time discretization algorithm would therefore need
to take smaller and smaller steps but never reach the origin. Therefore, Tucker
derived a coordinate change (in about 25 pages in his article) that makes the flow
approximately linear in a cube with width 0.1 around the origin. Computations
can be interrupted upon reaching that cube. The solution inside the cube can
be propagated via an explicit formula, and the numerical computations can be
continued afterwards.

3 ODEs and Numerical Solutions in Isabelle/HOL

In Isabelle/HOL [6], ordinary differential equations are formalized together with
basic theorems for local existence/uniqueness (the Picard-Lindelöf theorem),
global unique solutions and basic properties of the flow, like continuity with
respect to initial conditions. Differentiability with respect to initial conditions is
still missing and would be needed for reasoning about DR.

We use the formalization in Isabelle/HOL of rigorous numerical algorithms
for ODEs [4]. The method we employ for step is slightly different from Tucker’s
approach: instead of the Euler method, we use the method of Heun, a two-
stage Runge-Kutta method (where the error in one step is cubic in the step
size) with adaptive step size control. Instead of rectangles we use zonotopes
(our algorithm is based on affine arithmetic [1] instead of interval arithmetic).
Numerical computations are carried out with software floating point numbers
m · 2e for (unbounded) integers m, e ∈ Z. Explicit round-off operations restrict
the size of m during the computations.

As detailed in the earlier paper [4], it turns out that reducing the reach-
able sets to two dimensions from time to time is crucial for maintaining pre-
cise enclosures and acceptable performance. For these reductions as well as for
step-to-sigma, it is necessary to compute intersections of reachable zonotopes
with intermediate planes or the return plane Σ, for which we use our formal-
ization [3] of Girard/Le Guernic’s geometric algorithm [2]. Tucker’s algorithm
achieves that implicitly because it propagates rectangles exclusively from plane
to plane.

Tucker’s and our implementation have in common that reachable sets are
split when their size exceeds some given threshold.

The following theorem for partial correctness, proved in Isabelle/HOL assures
that if poincare returns a result, this result is a safe overapproximation for the
flow of the Lorenz equations:

Theorem 4. poincare(X) ⊆ Σ ∧ ∀x ∈ X ∃t > 0. ϕ(x, t) ∈ poincare(X)
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4 Computing a Verified Enclosure for the Lorenz
Attractor

We only tackle the numerical computations needed for Property 1: we verify a
forward invariant set N for R (and in the process an enclosure for the Lorenz
attractor A, forward invariant under ϕ).

The set N used for our computations is plotted in the bottom right of Fig. 1 in
black. The enclosure that was verified by Tucker is depicted with gray rectangles
and one can see that our computations are at least as accurate. In our case, N
is a collection of 14816 squares Ni with width 2−8.

4.1 Parallelization on Supercomputer

The overall computation is embarassingly parallel, since the computations for
the 14816 initial rectangles Ni are independent. We extracted code for our ver-
ified algorithm poincare to Standard ML (SML) and compiled it with MLTon.
With this setup, integers Z from the formalization are mapped to the arbitrary-
precision integers from The GNU Multiple Precision Arithmetic Library (GMP).

Then we distributed the program for the different input data on 1024 cores
of the computer cluster SuperMUC. With a wall-clock time limit of 7 h, this
amounts to a total computation time of around 7000 h. Tucker’s original com-
putations (more than fifteen years ago) have been distributed on 20 computers
for about 100 h.

During reachability analysis, the program outputs a trace containing infor-
mation like enclosures during propagation, which allowed us to plot enclosures of
the Lorenz attractor (see Fig. 1) generated from the formally verified program.
Since every rectangle Ni returns within N , N is verified as forward invariant
under R.

Note that a small part of the attractor is missing: we interrupt computations
close to the origin (as is necessary in Tucker’s proof as well), but we do not
continue with a symbolic propagation from there. This only affects 16 reachable
sets (which do not expand much anymore after leaving the cube around the
origin) so the impact on overall computation time is negligible.

4.2 Parallelization with Isabelle/ML

If one wants to avoid running independent instances compiled outside of Isabelle,
it is also possible to compile and evaluate the code from within Isabelle.
Then Isabelle trusts the outcome of the computations after reconstructing
Isabelle/HOL terms from the result of the SML program. To exploit the par-
allelization, Isabelle/HOL’s library provides special combinators, for which the
generated code uses parallel combinators of Isabelle/ML (i.e. Par List.map).
Using these combinators, we tested running the initial rectangles Ni for 0 ≤ i ≤
32 on a 8 core machine, which gave a speedup of factor 6.1 compared to serial
execution. Evaluating in Isabelle gives us the following theorem (trusting the
code generation oracle).

Theorem 5. ∀x ∈ ⋃
i≤32 Ni. ∃t > 0. ϕ(x, t) ∈ N
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5 Conclusion

We took a first step towards a formal verification of the numerical part of Tucker’s
proof. However we do not track the derivative DR, because we have no formal-
ization of differentiability of the flow (and therefore R). It should increase the
computational efforts only by a constant factor (since in every step, one prop-
agates in addition to the flow on a reachable set just the derivative of the flow
on a cone field). Furthermore, we ignore the symbolic propagation at the origin
but this does not impact the overall computational effort too much.

Nevertheless we managed to obtain formally verified results on an important
and computationally intensive part of the proof, which we hope to be able to
extend with reasonable effort towards a propagation of DR.

Acknowledgments. I would like to thank Florian Haftmann for providing the the-
ories for parallelization with Isabelle/HOL and Makarius Wenzel for the underlying
infrastructure for parallel combinators in Isabelle/ML.
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