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Abstract. Numerous models of probabilistic systems are studied in the
literature. Coalgebra has been used to classify them into system types
and compare their expressiveness. In this work, we formalize the result-
ing hierarchy of probabilistic system types in Isabelle/HOL by modeling
the semantics of the different systems as codatatypes. This approach
yields simple and concise proofs, as bisimilarity coincides with equality
for codatatypes. On the way, we develop libraries of bounded sets and
discrete probability distributions and integrate them with the facility for
(co)datatype definitions.

1 Introduction

The framework of coalgebra provides a unified view on various ways of model-
ing (probabilistic) systems [2,20,21,24]. A system is represented as a function
of type σ⇒ σ F that describes the possible evolutions of a state of type σ.
Here, the functor F (written postfix) determines the type of the system. For
example, a non-deterministic labeled transition system corresponds to a func-
tion σ⇒ (α⇒ σ set), which returns the set of the possible successor states for
each label of type α. Similarly, a Markov chain can be characterized by a function
from a state to the probability distribution over the successor states. More com-
plicated types combine non-deterministic and probabilistic aspects in different
ways.

Bartels et al. [2] and Sokolova [21] compare the expressiveness of system types
found in the literature and arrange them in a hierarchy. They define a type of
systems to be at least as expressive as another if every system of the latter can be
mapped to a system of the former such that the mapping preserves and reflects
bisimilarity, where two systems are bisimilar iff they cannot be distinguished by
finite observations [17].

In this paper, we formalize the probabilistic system types (Sect. 5) and their
hierarchy (Sect. 6) in Isabelle/HOL. The salient feature is that we model the sys-
tem types as codatatypes (Sect. 2) rather than functions as done in the original
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proofs [21]. On codatatypes, bisimilarity coincides with equality, which allows
for convenient equational reasoning. This makes the proofs simple and concise,
i.e., highly automated and without lots of technical clutter. Our formalization is
publicly available [14].

To construct the codatatypes, we introduce new types to express non-
deterministic and probabilistic choice, namely bounded (non-empty) powerset
(Sect. 3) and discrete probability distributions (Sect. 4). We integrate them with
Isabelle’s new package for (co)datatypes [4,6,22]. Thus, we can define the codata-
types directly, which demonstrates the versatility of the new package. Moreover,
future formalizations [18,25] benefit, too, as recursion in (co)datatypes may now
occur under discrete distributions and bounded sets.

Our work is more than just an exercise in formalization. We extend the orig-
inal hierarchy with additional standard system types and discover new intercon-
nections by considering systems extended with an additional label (Sect. 6.3).
Moreover, the formalization has revealed a flaw in the original hierarchy proof.
We show that Vardi systems (also known as concurrent Markov chains [23]) do
not satisfy the assumptions required in [21] and therefore must be (partially)
dismissed from the hierarchy (Sect. 6.4).

2 Preliminaries: Codatatypes via Bounded Natural
Functors

The flexibility of Isabelle’s (co)datatype package originates from a semantic cri-
terion that defines where (co)recursion may appear on the right-hand side of a
(co)datatype declaration (in contrast to syntactic criteria employed by most if
not all other proof assistants including past versions of Isabelle).

The core of the semantic criterion relies on the notion of a bounded natural
functor (BNF) [4,22]. Here, we shortly introduce BNFs targeted at our applica-
tion. A (unary) BNF is a type expression α F with a type parameter α equipped
with a polymorphic map function mapF :: (α⇒ β) ⇒ α F ⇒ β F, a polymorphic
set function setF :: α F ⇒ α set, and an infinite cardinal bound bdF on the number
of elements returned by setF. Additionally, these constants must satisfy certain
properties (e.g., mapF is functorial, i.e., preserves identities and composition,
and setF is a natural transformation, i.e., commutes with mapF). For example,
the type of (finite) lists α list forms a BNF with the standard map function map
and the function set returning the set of the list’s elements.

The semantic criterion allows (co)recursion to occur nested under BNFs. For
example, the (co)datatypes α tree and α ltree of finitely branching trees nest the
(co)recursive occurrences of α tree and α ltree under the BNF list:

datatype α tree = Node α (α tree list)
codatatype α ltree = Node α (α ltree list)

While only trees of finite depth inhabit the datatype α tree, the codatatype
α ltree also hosts trees of infinite depth. For example, the full binary
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tree z containing 0 everywhere is defined by primitive corecursion [4]:
primcorec z :: nat ltree where z = Node 0 [z, z].

Users can register custom types as BNFs by supplying the required con-
stants and discharging the proof obligations for the BNF properties. Newly
registered BNFs can then participate in further (co)datatype declarations.
For example, after registering Isabelle’s type of finite sets α fset as a BNF,
we can define unordered finitely branching trees of potentially infinite depth:
codatatype α lftree = Node α (α lftree fset).

In general, BNFs can have arbitrary arity and may depend on additional dead
type variables that are ignored by the map function. For example, the sum and
product types are binary BNFs, while the function type α⇒ β is a unary BNF
with the dead variable α (BNFs thereby disallow recursion through negative
positions [10]). Compositions of BNF are again BNFs. We say that a BNF α F
induces a codatatype CF

codatatype CF = CtrF (CF F)

with a single bijective constructor CtrF :: CF F ⇒ CF, its inverse destructor
DtrF :: CF ⇒ CF F and the associated coiterator unfoldF defined by primitive
corecursion:

primcorec unfoldF :: (α⇒ α F) ⇒ α⇒ CF where
DtrF (unfoldF s a) = mapF (unfoldF s) (s a)

Finally, induced codatatypes are equipped with a coinduction rule for proving
equality by exhibiting a bisimulation relation witness R:

R x y ∀x y. R x y −→ relF R (DtrF x) (DtrF y)
(x :: CF) = (y :: CF)

where the relator relF :: (α⇒ β⇒ bool) ⇒ α F ⇒ β F ⇒ bool lifts binary relations
over elements to binary relations over the functor F. It is defined for each BNF
canonically in terms of mapF and setF (where π1 and π2 denote the standard
product projections):

relF R x y = ∃z. setF z ⊆ {(x, y) | R x y} ∧ mapF π1 z = x ∧ mapF π2 z = y (1)

3 Bounded Powerset

In this and the next section we define three new types and register them as
BNFs. We start with the simpler two: bounded sets and non-empty bounded
sets, with which we will model non-determinism on a state space. Our new type
and its BNF structure generalize the existing BNFs for finite sets α fset and
countable sets α cset in Isabelle/HOL’s library. Note that Isabelle’s standard
type of unbounded sets α set is not a BNF, due to the absence of a cardinal
bound on the number of elements contained in a set.

As for bounded sets, we cannot directly express the dependence of a type on
a cardinal bound constant within the simply typed logic of Isabelle. A standard
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trick [11] is to let the type depend on a type κ (and thereby on κ’s cardinality)
instead. We obtain the following type definitions for the type α setκ of strictly
κ-bounded sets:

typedef α setκ = {A :: α set | |A| <o |UNIV :: κ set| +c ℵ0}
The operators | − |, <o, +c and the constant ℵ0 = |UNIV :: nat set| are part of
Isabelle’s library of cardinals [5]—their exact definition is irrelevant; they encode
the intuition that α setκ contains all sets of strictly smaller cardinality than κ if
κ is an infinite type (in which case |UNIV :: κ set| +c ℵ0 =o |UNIV :: κ set|) and all
finite sets otherwise (since |UNIV :: κ set| +c ℵ0 =o ℵ0 for finite κ). In other words:
If we instantiate κ with a finite or countable type, then α setκ is isomorphic to
α fset, and if we instantiate κ with the cardinal successor of ℵ0 [5], then α setκ is
isomorphic to α cset.

It is easy to define the map and set function for α setκ using the Lifting
tool [15]:

lift-definition mapset :: (α⇒ β) ⇒ α setκ ⇒ β setκ is image
lift-definition setset :: α setκ ⇒ α set is id

The map function only acts on the element type α, which implies that κ will
be a dead type variable of the following BNF structure. The bound for the set
size in the above typedef command serves as bound for the BNF, too.

bnf α setκ map: mapset set: setset bd: |UNIV :: κ set| +c ℵ0

To finish the registration of α setκ as a BNF, the bnf command requires the user
to discharge the following proof obligations. (The proofs of these properties are
straightforward generalizations of the ones for α fset.)

The first five being easy to discharge, the last proof obligation requires some
explanation: 	 denotes implication lifted to binary predicates and denotes the
relational composition of binary predicates. With this definition the last proof
obligation is equivalent to what in categorical jargon is called weak pullback
preservation. We can show that bounded sets preserve weak pullbacks iff the
bound on the number of elements is infinite or ≤ 2. In our case, the bound is
infinite due to the addition of ℵ0, therefore α setκ is a BNF. This corrects an
earlier claim that α setκ is a BNF for all κ [22].

Similarly to α setκ, we define (and prove being a BNF) the type α setκ1 of
nonempty strictly κ-bounded sets which will be used to model Markov decision
processes.

typedef α setκ1 = {A :: α set | A �= ∅ ∧ |A| <o |UNIV :: κ set| +c ℵ0}



A Formalized Hierarchy of Probabilistic System Types 207

4 Probability Mass Functions

We introduce a type of probability mass functions (pmf ) on a type α, representing
distributions of discrete random variables on α. There are two views on a pmf:
(1) as a non-negative real-valued function which sums up to 1, and (2) as a
discrete probability measure which has a countable set S which has probability
1. Both views are available in our formalization. In this paper, however, we only
present the measure view, as we lift all presented definitions from the existing
formalization of measure theory [13].

A measure M :: α measure consists of aσ-algebra of measurable sets sets M and
a measure function μ M that is non-negative and countably-additive on sets M.
A probability distribution M assigns 1 to the whole space (μ M UNIV = 1). It is
discrete iff every set is measurable (sets M = UNIV) and there exists a countable
set S with μ M S = 1.

typedef α pmf = {M :: α measure |
μ M UNIV = 1 ∧ sets M = UNIV ∧ (∃S . countable S ∧ μ M S = 1)}

The command typedef generates a representation functionmeasurepmf :: α pmf⇒
α measure . By declaring it as a coercion function, we can omit it in most cases.
In particular, we write μ p A for μ (measurepmf p) A. So, the probability mass of
a value x is the measure of its singleton set {x}. We lift the support set from the
measure definition:

lift-definition setpmf :: α pmf ⇒ α set is λM. {x | μ M {x} �= 0}
Next, we lift the monadic operators bindpmf and returnpmf from the Giry monad

on measure spaces [8] to pmfs. The map function mappmf is then defined in a stan-
dard way as a combination of these monadic operators.

lift-definition bindpmf :: α pmf ⇒ (α⇒ β pmf) ⇒ β pmf is bind

lift-definition returnpmf :: α⇒ α pmf is return (count-space UNIV)
definition mappmf :: (α⇒ β) ⇒ α pmf ⇒ β pmf where

mappmf f M = bindpmf M (λx. returnpmf ( f x))

When working with general measure spaces, all functions must be shown to be
measurable. In our restricted discrete setting all function are trivially measurable,
hence characteristic theorems about bindpmf and returnpmf carry no measurability
assumptions:

bindpmf (bindpmf M f ) g = bindpmf M (λx. bindpmf ( f x) g)
bindpmf (returnpmf x) f = f x
bindpmf M returnpmf = M

The behavior of bindpmf and returnpmf under setpmf is as expected:

setpmf (bindpmf M f ) =
⋃

x∈setpmf M setpmf ( f x)
setpmf (returnpmf x) = {x}
(∀x ∈ setpmf M. f x = g x) −→ bindpmf M f = bindpmf M g
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Another standard construction in probability theory is the conditional prob-
ability Pr(X ∈ A | X ∈ B) = Pr(X ∈ A ∧ X ∈ B)/Pr(X ∈ B), i.e. the probabil-
ity that the random variable X has a result in A under the assumption that X is
in B. This requires that X being in B has positive probability. In Isabelle’s mea-
sure theory, the function uniform-measure expresses a conditional probability. It
returns a probability space when the measure of the set B is positive. Clearly, lift-
ing uniform-measure to pmfs works only if we restrict B to such sets. Therefore, we
fix a pmf p and a set B with the assumption setpmf p ∩ B �= ∅, which is equivalent
to μ p B �= 0.

lift-definition condpmf :: α pmf is uniform-measure (measurepmf p) B

Whenever setpmf p ∩ B �= ∅ holds we will from now on write condpmf p B.
We then have μ (condpmf p B) A = μ p (A ∩ B) / μ p B and hence setpmf(condpmf p B) =

setpmf p ∩ B.

Probability Mass Functions as a BNF. We now prove that α pmf is a BNF such that
the codatatypes for the probabilistic systems can recurse through α pmf. To that
end, we define the relator relpmf on pmfs and prove that setpmf, mappmf, and relpmf

satisfy the BNF properties. The definition of relpmf R p q is canonical as in (1). The
existentially quantified z corresponds to a matrix of non-negative reals with a row
and a column for each element in the support of p and q, respectively, such that (i)
summing over a row i or a column j yields the mass of p or q concentrated in i or j,
and (ii) positive entries are only at cells (i, j) for which R i j holds. We call such a
matrix an R-lifting matrix for p and q.

With the lemmas about bindpmf, returnpmf, setpmf and the definition of mappmf

we immediately derive the functorial BNF properties for pmfs with the cardi-
nal bound ℵ0. Only distributivity with composition has interesting proof, i.e.,

. That is, given an R-lifting matrix z1 for pmfs
p and q and an S -lifting matrix z2 for q and r, we have to construct an -
lifting matrix z for p and r. In the course of this work, we have formalized a series
of three different constructions for z, each of which made the previous proof sim-
pler and more concise. The steps are recorded in the changesets (mentioned below)
of the Isabelle repository at http://isabelle.in.tum.de/repos/isabelle. This process
illustrates how pmfs provide abstraction and lead to shorter proofs.

Initially, we followed Sokolova’s construction [21]. She defines the matrix z as
the sum of matrices z j over j ∈ setpmf q where each z j is a T j-lifting matrix for the
jth column of z1 and the jth row of z2 (we ignore that the rows and columns do
not sum to 1) where T j i k = R i j ∧ S j k. An iterative algorithm constructs the
matrix z j by walking on a path from the upper left corner to the lower right and
setting each entry to the maximum such that neither the row sum nor the column
sum is exceeded. If the row sum is matched after setting the entry, the path con-
tinues down, if the column sum is matched, it goes to the left, if both are matched,
it goes diagonally to the right and down. Her proof that z is an -lifting
matrix for p and r requires five pages on paper [21, Lemmas 3.5.5, 3.5.6]. Our HOL
formalization of a recursive version of the algorithm and the proof of the distribu-
tivity property is arduous and takes 577 lines (4999a616336c). By switching from

http://isabelle.in.tum.de/repos/isabelle
http://isabelle.in.tum.de/repos/isabelle/diff/4999a616336c/src/HOL/Probability/Probability_Mass_Function.thy
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real-valued functions to pmfs and using mappmf in the construction of z from the
z j, we were able to shorten the proof to 406 lines (43e07797269b). Still, most of
the proof script dealt with showing the equality of different summations.

Next, we realized that taking a path through the matrix and setting the entries
to maximum values was needlessly convoluted. Instead, we fill the ith row of z j by
distributing z1’s value at (i, j) over the columns according to the jth row of z2. This
eliminates all the inductions and several bijections between the support sets and
natural numbers, which were needed for the recursion. This is the proof by Jonsson
et al. [16] formalized in 101 lines (922d31f5c3f5, 922d31f5c3f5). Zanella [26] has
previously formalized this proof for CertiCrypt using Audebaud’s and Mohring’s
library [1]. His proof script needs 337 lines of Coq.

Finally, we noted that the distribution over the columns and the summation
over the z j yields a conditional probability. So, we now define z simply as

z = bindpmf z1 (λ(i, j). bindpmf (condpmf z2 {( j′, k) | j′ = j}) (λ( , k). returnpmf(i, k)))

Thus, only one conjunct is shown with summations, namely of mappmf π1 z = p.
The others are discharged by reasoningwith the laws about setpmf, bindpmf, condpmf,
and returnpmf. The following law is particularly useful. It generalizes the law of total
probability, which states Pr(A) =

∑
n Pr(A | Bn) · Pr(Bn) for a countably indexed

partition B. Note that bindpmf expresses the sum and R relates the events of a and b.

relset R (setpmf a) (setpmf b)
∀x ∈ setpmf a. ∀y ∈ setpmf b. R x y −→ μ a {x | R x y} = μ b {y | R x y}

bindpmf b (λy. condpmf a {x | R x y}) = a
(2)

Here, the set relator relset R A B denotes (∀a∈A.∃b∈ B. R a b) ∧ (∀b∈ B.
∃a∈A. R a b). (Using the same notation for bounded and unbounded sets,
this characterization also holds for the relator of bounded sets.) We use this
law to show mappmf π2 z = r. Observe that mappmf π2 z = mappmf π2 (bindpmf

q (λy. condpmf z2 {(y′, z) | y′ = y})). Applying the law to the right-hand side yields
mappmf π2 z2, which equals r by assumption.

In the end, our proof is just 46 lines, which includes 18 lines for the proof of Eq. 2
(224741ede5ae). This confirms in our eyes that our pmf library is well designed.
Also, we argue that the proof has gained in clarity from the reduction in size. We
eliminated most of the technical transformations of sums and express them more
abstractly.

5 Probabilistic Systems

Probabilistic Systems as Probabilistic Automata. First, we review the approach
of modeling probabilistic systems as probabilistic automata. These automata fall
into different classes depending on whether they make use of probabilistic and non-
deterministic choice,where labels are placed, andwhether transitions generate out-
put for the environment or receive input from it.

Labeled Markov chains are a very simple class of probabilistic automata. Here
each state has a label and specifies a probability distribution over the successor

http://isabelle.in.tum.de/repos/isabelle/diff/43e07797269b/src/HOL/Probability/Probability_Mass_Function.thy
http://isabelle.in.tum.de/repos/isabelle/diff/922d31f5c3f5/src/HOL/Probability/Probability_Mass_Function.thy
http://isabelle.in.tum.de/repos/isabelle/diff/922d31f5c3f5/src/HOL/Probability/Probability_Mass_Function.thy
http://isabelle.in.tum.de/repos/isabelle/diff/224741ede5ae/src/HOL/Probability/Probability_Mass_Function.thy
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Fig. 1. Two labeled Markov chains (the dotted lines represent a bisimulation relation)

Fig. 2. Three probabilistic automata with non-deterministic and probabilistic choice

states. Figure 1 shows two labeled Markov chains. In our figures, � or � denote
labels and numbers between 0 and 1 denote probabilities. The Markov chain on
the right stores in the state only whether the system has reached the label �. In
contrast, the one on the left additionally records in its states how many steps have
been taken to reach �.

When modeling systems with probabilistic automata, we usually care only
about the labels, not the states. In that respect, both Markov chains produce the
same observations with the same probabilities. Thus, it is sensible to consider the
two chains as being equivalent. Bisimulation captures this equivalence by identify-
ing states which cannot be distinguished by observing the labels in any behavior
originating from these states. For labeled Markov chains, a bisimulation relation is
an equivalence relation R on the states such that whenever s and t are related by R,
then their labels are the same and for all equivalence classesC of R, the probabilities
of going to C from s and t are the same. In Fig. 1, the dotted lines show a bisimu-
lation relation between the two chains. We say that labeled Markov chains on the
same state space are bisimilar if the initial states are related in some bisimulation
relation.

Combining non-deterministic and probabilistic choice, we get more compli-
cated models. Figure 2 shows three examples. In a Markov decision process, each
state has a label, but it may choose non-deterministically a distribution of the suc-
cessor states. Graphically, the transition edges split after having taken the non-
deterministic choice. In a simple Segala system, the label is attached to the
non-deterministic transitions rather than the states. So, the transition generates
the label instead of the state. And in a Segala system, the label is attached to the
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probabilistic choice rather than the non-deterministic one. For these more compli-
cated systems, the definition of bisimulation is analogous to Markov chains, but
more involved.

Coalgebraic View on Probabilistic Systems. Next, we switch perspective and out-
line the coalgebraic approach to modeling probabilistic systems [2,21,24]. We rec-
ollect the basic coalgebraic vocabulary (an in-depth introduction can be found else-
where [20]) and show how these notions are reflected in Isabelle/HOL.

Given a functor F, an F-coalgebra is defined as a pair (A, s) with the carrier set
A and the structural mapping s : A → F A. In our typed environment of HOL, we
restrict our attention to bounded natural functors and require the carrier set of a
coalgebra tobe theuniverse of a certain typeσ.Therefore, for us a coalgebra is just a
function s :: σ⇒ σ F for a BNFσ F. Intuitively, a coalgebra s :: σ⇒ σ F describes
a transition systemwhose states are inσ and each state x :: σ evolves into s x :: σ F.
For example, ifσ F = σ pmf, then s x :: σ pmf is a discrete probability distribution
over the next states and s taken as a whole denotes an unlabeled Markov chain.

Bisimilarity can be defined uniformly on coalgebras [12]: states x and y of
two systems s1 and s2 are F-bisimilar (written x s1∼s2

F y) iff there exists a rela-
tion R :: α⇒ β⇒ bool (called bisimulation) that relates x and y and for all
related pairs of states x and y their evolutions s1 x and s2 y are related by
relF R :: α F ⇒ β F ⇒ bool. Formally:

x s1∼s2
F y = ∃R. R x y ∧ (∀x y. R x y −→ relF R (s1 x) (s2 y))

It turns out that this generic notion coincides with the known concrete bisim-
ilarity notions for all systems F that we consider [2,21]. We should note that
for σ F = σ pmf all states of all systems are bisimilar: ∀s1 s2 x y. x s1∼s2

pmf y—the
bisimulation relation witness is R = λx y. True. This fact corresponds to the intu-
ition that bisimilarity can only distinguish states through observations along their
evolutions, while an unlabeled Markov chain does not produce anything observ-
able. For labeledMarkov chains and other systems bisimilarity is amore interesting
concept.

The last important notion is that of afinal F-coalgebra: anF-coalgebra forwhich
there exists a unique morphism from any other coalgebra. In our context, the final
coalgebra for a BNF F is the destructor DtrF :: CF ⇒ CF F of the codatatype CF

induced by F (states of the final coalgebra are of type CF) and the finality is wit-
nessed by the coiterator unfoldF mapping a coalgebra s :: σ⇒ σ F to the (unique)
function unfoldF s :: σ⇒ CF satisfying the characteristic equation of a coalgebra
morphism: DtrF ◦ unfoldF s = mapF (unfoldF s) ◦ s. The similarity of the coinduc-
tion rule for CF to the definition of bisimilarity is not a coincidence: codatatypes
are quotients modulo bisimilarity.

Modeled Systems. Table 1 lists the systems we consider and their BNFs. (The sta-
ndard type datatype α option = None | Some α is another BNF.) This list con-
tains all the systems from the original probabilistic hierarchy [21], except for
Vardi systems, which must be treated separately (Sect. 6.4). Moreover, popular
systems—labeled Markov chains and Markov decision processes—are new
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Table 1. List of formalized probabilistic systems

Name BNF Induced codatatype

Markov chain σ pmf MC

Labeled Markov chain α× σ pmf α LMC

Labeled Markov decision process α× σ pmf setκ1 α LMDPκ

Deterministic automaton α⇒ σ option α DLTS

Non-deterministic automatona (α× σ) setκ α LTSκ

Reactive system α⇒ σ pmf option α React

Generative system (α× σ) pmf option α Gen

Stratified system σ pmf + (α× σ) option α Str

Alternating system σ pmf + (α× σ) setκ α Altκ

Simple Segala system (α× σ pmf) setκ α SSegκ

Segala system (α× σ) pmf setκ α Segκ

Bundle system (α× σ) setκ pmf α Bunκ

Pnueli-Zuck system (α× σ) setκ1 pmf setκ2 α PZκ1 , κ2

Most general system (α× σ+ σ) setκ1 pmf setκ2 αMGκ1 , κ2
a The type (α× σ) setκ is isomorphic to the more standard α⇒ σ setκ for α set ≤ κ

additions. The third column assigns a name to the induced codatatype (e.g., for
labeled Markov decision processes, we write codatatype α LMDPκ = CtrLMDP

(α× α LMDPκ pmf setκ1) in Isabelle).

6 The FormalizedHierarchy

Howcanone compare the expressiveness of thedifferentprobabilistic systemtypes?
A natural criterion [21] is to exhibit a mapping between the types of systems that
preserves and reflects bisimilarity as a witness for an increase in expressiveness
along the mapping. Figure 3 shows our formalized hierarchy where arrows repre-
sent such mappings. New systems, not analyzed by Sokolova [21], are highlighted
with a gray background. Some arrows are annotated with necessary conditions on
the bounds of the involved bounded set types. We refer to our formalization [14] for
the definitions of all mappings.

Below, we first sketch our proof of the preservation and reflection of bisimilar-
ity abstractly for any mapping. Then we present our formal Isabelle proof for one
particular pair of system types and compare our formalized hierarchywith the orig-
inal [21].

6.1 The Abstract Proof

Formally, for two types of systems given as BNFs F and G, we consider G to be at
least as expressive as F, if there is a mapping G of F :: σ F ⇒ σ G that preserves
and reflects bisimilarity, i.e., satisfies

x s1∼s2
F y ←→ x (G of F◦s1)∼(G of F◦s2)

G y (3)
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Fig. 3. Probabilistic hierarchy

for all F-coalgebras s1, s2 :: σ⇒ σ F and states x, y :: σ. Note that by composing
the F-coalgebras with G of F we obtain G-coalgebras: G of F ◦ s1, G of F ◦ s2 ::
σ⇒ σ G.

For any mappingG of F :: σ F ⇒ σ G, we prove Eq. 3 in four steps starting from
the right-hand side:

x (G of F◦s1)∼(G of F◦s2)
G y

1←→ unfoldG (G of F ◦ s1) x = unfoldG (G of F ◦ s2) y
2←→ G of F (unfoldF s1 x) = G of F (unfoldF s2 y)
3←→ unfoldF s1 x = unfoldF s2 y
1←→ x s1∼s2

F y

whereG of F :: CF ⇒ CG abbreviates unfoldG (G of F ◦ DtrF). The first and the last
step (labeled with a 1) are both instances of the general fact that for any BNF
F, bisimilarity is equivalent to equality on the induced codatatype CF. Formally,
x s1∼s2

F y ←→ unfoldF s1 x = unfoldF s2 y.
In step 2 we perform equational reasoning. The diagram in Fig. 4 illustrates the

situation. Essentially it shows three commutative diagrams for the characteristic
property of the coiterators unfoldF and unfoldG: one for the F-coalgebra s in the
lower left rectangle; one for the G-coalgebra G of F ◦ s using the outermost arrows;
and one for the G-coalgebra G of F ◦ DtrF in the upper rectangle.

To make the overall diagram commute, the mapping G of F has to be a natural
transformation, i.e., commute with the map functions for F and G (lower right
rectangle). Once this is ensured we can deduce unfoldG (G of F ◦ s) = G of F◦
unfoldF s (leftmost “triangle”) and use this equation as a rewrite rule.

Step 3 holds universally iff G of F is injective (note that unfoldF is surjective,
since, e.g., unfoldF DtrF = id). In principle, injectivity of G of F can be further
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Fig. 4. Bisimilarity preservation and reflection via codatatypes

reduced to injectivity of G of F, which yields the nice abstract characterization
from the original hierarchy [2,21]: if G of F is an injective natural transformation
then it preserves and reflects bisimilarity. Instead of formalizing the reduction of
injectivity of G of F to the injectivity of G of F (which must be done for all con-
crete instances of G of F), we found it easier to prove the injectivity of G of F
directly by coinduction. Likewise, instead of chasing the above commutative dia-
gram, we also prove directly the equation unfoldG (G of F ◦ s) = G of F ◦ unfoldF s
by coinduction.

6.2 A Concrete Example

We consider a particular instantiation for the BNFs F andG: simple Segala systems
(F = (α× σ pmf) setκ) and Segala systems (G = (α× σ) pmf setκ) and define the
mapping G of F sseg = mapset (λ(a, p). mappmf (λs. (a, s)) p) sseg .

Next,we formally prove the properties ofG of F outlined in the previous section
by straightforward coinductions. We start with the detailed manual proof of the
commutation property (leftmost “triangle” in Fig. 4).

The proof shown in Fig. 5 gives a flavor of the proof obligations that
arise with coinduction. The coinduction method instantiates the free vari-
able R from the coinduction rule for α Segκ with the canonical bisimulation
witness λseg seg ′. ∃x. seg = unfoldG (G of F ◦ s) x ∧ seg ′ = (G of F ◦ unfoldF s) x
and performs some minimal postprocessing [4]. We are left to prove that
DtrG (unfoldG (G of F ◦ s) x) and DtrG (unfoldG (G of F ◦ s) x) are related by the
bisimulation witness lifted to the α Segκ-inducing BNF via its relator. This sub-
goal is easy to discharge by unfolding and resolution. All the used theorems with
a dot in their name are generated by the primrec and bnf commands. The theo-
rem unfoldF.simps is the characteristic property of the coiterator; theorems rel-map
(two theorems) and rel-refl follow from the BNF properties and are given below for
α pmf:

relpmf R (mappmf f p) q = relpmf (λx y. R ( f x) y) p q
(∀x. R x x) −→ relpmf R p prelpmf R p (mappmf g q) = relpmf (λx y. R x (g y)) p q

The proof can be automated by registering the appropriate rules as simplification
and introduction rules. Furthermore, it can be seen as a proof template: we have
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Fig. 5. Isar proof of the commutation property from simple Segala to Segala systems

to perform the same reasoning for all concrete mappings that we consider and the
only part that is changing is the relator. Fortunately, the Eisbach proof method
language [19] helps us to avoid repeating the proof by creating a dedicated proof
method, where we replace the manual unfolding and rule steps by fastforce. The
proof then collapses to a one-liner.

method-definition commute-prover =
rule ext,
match conclusion in u1 s1 x = ( f ◦ u2 s2) x for f u1 u2 s1 s2 x ⇒

(coinduction arbitrary: x, fastforce)
lemma unfoldG (G of F ◦ s) = G of F ◦ unfoldF s by commute-prover

We treat the injectivity of G of F and the fact that bisimilarity coincides with
equality on codatatypes for F and G in a similar fashion. As before, we omit some
essential simplification and introduction rules given as arguments to fastforce that
make the following degree of automation possible.

method-definition inj-prover =
rule injI,
matchconclusion in x = y for x y⇒ (coinduction arbitrary: x y, fastforce)

lemma inj G of F by inj-prover

method-definition ∼-alt-prover =
intro iffI, elim exE conjE,
match conclusion in u1 s1 x = u2 s2 y for u1 u2 s1 s2 x y ⇒

(coinduction arbitrary: x y, fastforce), fastforce
lemma x s1∼s2

F y ←→ unfoldF s1 x = unfoldF s2 y by ∼-alt-prover
lemma x s1∼s2

G y ←→ unfoldG s1 x = unfoldG s2 y by ∼-alt-prover

Overall, for each of the 14 considered probabilistic system types we prove the
alternative bisimilarity characterization by ∼-alt-prover and for each of the 22
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mappings (there are 25 arrows in Fig. 3, but e.g., the mapping from α option SSegκ

to α option Segκ is the same as the one from α SSegκ to α Segκ) we prove two state-
ments by a one-liner with one of our dedicated methods: commute-prover and
inj-prover. Finally, we state the 25 bisimilarity preservation and reflection prop-
erties (Eq. 3) and prove all of them by equational reasoning (i.e., one line of unfold-
ing). The whole hierarchy is formalized in 450 lines (including the codatatype
declarations).

6.3 Comparison to the Original Hierarchy

Our formalized hierarchy differs structurally from the original hierarchy [21] in
three aspects. First, ours omits the Vardi systems (also known as concurrent
Markov chains) for reasons we outline in a separate section (Sect. 6.4). Con-
versely, we have added two popular types of systems, namely labeled Markov
chains andMarkovdecision processes. Furthermore,we observe that theMostGen-
eral systems αMGκ1, κ2 , specifically introduced in the original hierarchy in order
to have a top element, are isomorphic to Pnuelli-Zuck systems extended with a
single additional label (which we model by using α option instead of just α, i.e.,
α option PZκ1, κ2). In other words, no new structurally different probabilistic sys-
tem is needed to get a top element if one allows additional labels. Following up on
this idea, we investigated adding new labels to various other systems in the hierar-
chy. As a result, Alternating systems α Altκ are placed below label-extended simple
Segala systems α option SSegκ and Bundle systems α option Bunκ, instead of just
below the top element αMGκ1, κ2 as in the original hierarchy.

Our usage of codatatypes (final coalgebras) caters for highly automatable
proofs. However, the resulting conciseness comes at a price: final coalgebras need
to exist. Concretely, this means that all our systems must be BNFs, in particular
bounded and weak pullback preserving. In contrast, the original hierarchy does not
require a boundedness assumption (basically allowing to useα set instead of α setκ)
and requires for each mapping only the system functor of the mapping’s domain to
preserveweakpullbacks.Whileweacknowledge the latter as a limitationof our app-
roach, we point out that the boundedness assumption is not a restriction in the set-
ting of the hierarchy, since the mappings are polymorphic in the type κ used as the
bound. That is, for any concrete system with unbounded non-determinism (α set)
expressible in HOL we can find an isomorphic bounded one, and the mapping will
showhowto transformthisbounded system intoone that is higher in thehierarchy.1

In contrast, the bounds being part of the types is in some sense more precise—for
example, we see that there are two ways of embedding α Altκ in αMGκ1, κ2 transi-
tively viaα option SSegκ orα option Bunκ and the cardinal bounds give a hint which
route was taken.
1 Clearly, this discussion is somewhat esoteric, since in practice one barely is interested

to look beyond countable sets. Still, we are interested in keeping the results as general
as possible.
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6.4 Vardi Systems

Vardi systems, also known as concurrent Markov chains [23], blend non-
deterministic and probabilistic transitions in a rather symmetric fashion. They are
similar to coalgebras of the binary BNF (α, σ) Varκ0 = (α× σ) pmf + (α× σ) setκ;
however there is a twist: Vardi systems identify the singleton bounded set {(a, s)}
with the singleton discrete distribution returnpmf (a, s). Formally, we define the
equivalence relation � inductively by the following three rules, where Inl and Inr
are the sum type embeddings.

v � v Inl (returnpmf (a, s)) � Inr {(a, s)} Inr {(a, s)} � Inl (returnpmf (a, s))

The type (α, σ) Varκ is then defined as a quotient of (α, σ) Varκ0 by �. Lifting
the functorial structure of (α, σ) Varκ0 to the quotient (α, σ) Varκ is straightfor-
ward and we omit the definitions. However, it turns out that the resulting quo-
tient is not a BNF: its canonical relator relVar does not distribute over relation
composition. We only try to convey the intuition behind this fact—a formal proof
can be found in our formalization. Figure 6 shows on the left two Vardi automata
that use only non-deterministic transitions and are related by relset R (lifted to
the sum type (α, σ) Varκ0 and further to the quotient type (α, σ) Varκ) where
R x y ←→ y = �. Similarly, the two automata on the right are related by relpmf S
where S x y ←→ x = �. The two middle automata are related by �, i.e., they are
equal on the quotient type (α, σ) Varκ. Distributivity of the relator requires the two
outermost automata to be related by relVar, but this is not the case.

Fig. 6. Intransitivity of Vardi systems

Since (α, σ) Varκ is not a BNF, our proof approach is not applicable. Not only
that, the above counterexample, found in the course of formalization, is easily
transferable into the general coalgebraic setting, allowing us to prove that the func-
torused in theoriginal hierarchy [21] doesnotpreserveweakpullbacks, andasa con-
sequencebisimilarity ofVardi systems is not an equivalence relation.Theweakpull-
backpreservation, however, is anecessary criterion for the original proofmethod for
two mappings from Vardi to Segala and Bundle systems. Those outgoing “arrows”
must be purged: there is no such bisimilarity preserving and reflecting mapping.

In contrast to our approach, the original proof still covers the two incoming
“arrows” from non-deterministic automata and generative systems to Vardi sys-
tems. We have formalized those bisimilarity preserving and reflecting mappings
separately, without going through codatatypes. The proofs are significantly longer
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(overall 145 lines for just two mappings, contrasting 450 lines for 25 mappings in
our hierarchy) and less suited for automation, because they require several non-
trivial quantifier instantiations. In summary, equational reasoning on codatatypes
proved superior whenever applicable.

7 Further RelatedWork

In the other sections of the paper, we have already referenced existing work
we build on, in particular Sokolova’s [2,21] and the Isabelle packages and tools
[4–6,13,15,19].

Our formalization of pmfs is similar to the work in Coq presented by Aude-
baud and Paulin-Mohring [1]. They introduce a monadic structure on subprob-
ability measures. They use integrals as representations of measures, while in our
case we directly lift measures from Isabelle’s measure theory. As their measures
are subprobabilities they also provide a fixed-point operator which is not available
in general for α pmf. Their formalization is also directed towards program verifica-
tion; they do not provide a functorial structure (i.e. mappmf and setpmf in our case)
on their type of measures.

Apart from process algebra [16], the relator relpmf is used in probabilistic rela-
tional Hoare logic, too [3]. In this context, Zanella [26] proved distributivity with
composition in Coq; see Sect. 4 for a comparison. Deng [7] collects further results
on the relator and its applications. Beyond (strong) bisimilarity, weak bisimilarity
compares systems modulo certain irrelevant invisible observations. Sokolova [21]
recasts weak bisimilarity as bisimilarity of translated systems, which in turn can
be hierarchized as presented here.

Mechanizations of category theory abound (see [9] for an overview), and the
hierarchy result could probably be formalized with some of them. Yet, we do not
formalize the general theory, but its application to concrete instances. Thus, our
system types are proper HOL types and can be used directly for modeling concrete
systems.

8 Conclusion

We have presented a formalization of the hierarchy of probabilistic system types
in Isabelle/HOL. The hierarchy stems from the coalgebraic framework, which
presents the various systems in a uniform fashion and caters for simple and concise
proofs. We model probabilistic systems as codatatypes, which enables conve-
nient equational reasoning and makes the proofs even more concise. This mod-
eling requires nested corecursion through bounded sets and discrete probability
distributions—a perfect match for demonstrating the flexibility of Isabelle’s new
codatatype facility. Finally, we have learned that weak pullback preservation is an
important but subtle property, by uncovering two mistakes in informal proofs.

Acknowledgment. WethankTobiasNipkow for supporting this collaboration andAna
Sokolova for confirming our findings regarding Vardi systems. Jasmin Blanchette, Ondřej
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