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Abstract. This paper proposes an efficient fault diagnosis methodology based
on an improved one-against-all multiclass support vector machine (OAA-MCSVM)
for diagnosing faults inherent in rotating machinery. The methodology employs
time and frequency domain techniques to extract features of diverse bearing
defects. In addition, the proposed method introduces a new reliability measure
(SVMReM) for individual SVMs in the multiclass framework. The SVMReM
achieves optimum results irrespective of the test sample location by using a
new decision strategy for the proposed OAA-MCSVM based method. Finally,
each SVM is trained with optimized kernel parameters using a grid search
technique to enhance the classification accuracy of the proposed method.
Experimental results show that the proposed method is superior to conventional
approaches, yielding an average classification accuracy of 97 % for five dif-
ferent rotational speed conditions, eight different fault types and two different
crack sizes.
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1 Introduction

Reliable fault diagnosis of rolling element bearings (REBs) is a challenging task,
especially in industrial machinery. Bearing defects, if not detected in time, can even-
tually lead to machine failure and cause costly downtime. This has prompted research
into vibration analysis [1, 2], motor current signature analysis, and oil debris analysis
for fault diagnosis. Vibration analysis has been widely used because it provides
essential information about diverse bearing failures [2, 3]. Recently though, the use of
acoustic emissions [4] has found prominence in the detection and identification of
bearing defects because of its ability to capture low-energy signals that are charac-
teristic of low rotational speeds [4–6]. Specifically, Yoshioka et al. [6] showed that AE
could be used to identify bearing defects even before they appear in the range of
vibration acceleration, whereas vibration analysis can only to detect defects after they
appear on the bearing’s surface [3–7].

AE signal based fault diagnosis usually involves fault feature extraction from AE
signals, feature selection and fault classification. Fault feature extraction maps the
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original signal to statistical parameters that reflect the diverse symptoms of bearing
defects. The feature pool in this study includes 10 time-domain statistical parameters, 3
frequency-domain, and 9 complex envelope components. Once we extract features
from the AE signal, our problem reduces to achieving better classification accuracy.

Several classification methods including support vector machines (SVM) [8, 9, 12],
artificial neural networks (ANN) [4, 14], fuzzy sets theory, and expert systems have
been used in bearing fault diagnosis [3, 5]. SVM is a robust classification tool [13–15]
that classifies unknown data into multiple classes [9, 12] by decomposing an L-class
into a number of two class problems and constructing a binary classifier for each. In
this paper, an improved decision fusion based one-against-all (OAA) multi-class
support vector machine is designed for improved fault diagnosis in roller bearings.
OAA-MCSVM classifies an unknown feature vector based upon the binary classifier
with the largest value for the classifier decision rule. This approach ignores the com-
petence of individual classifiers and relies only on the value of the decision rule,
therefore it does not always yield the best results [8–10, 14]. In Fig. 1, which shows the
application of the one against all approach to a four class problem, the solid lines
separate class 1 and 2 by a definite margin from the remaining classes whereas the
dashed lines fail to achieve the same in case of class 3 and 4. Some regions (such as
region 3) of the feature space are undecided, where a sample is accepted by more than
one class or rejected by all. Individual SVMs are treated equally by the standard
OAA-MCSVM method despite differences in their quality, thus compromising the
overall classification accuracy. Therefore, it is advantageous to give due weight to each
SVM classifier on the basis of classification competence and formulate a new decision
strategy to achieve that. The contributions made in this paper are as follows:

• The OAA-MCSVM is modified to improve its classification performance, by
introducing a reliability measure, SVMReM, for each SVM and formulating a new
decision aggregation rule.

Fig. 1. OAA SVM. Solid lines show true boundary lines and dashed lines linear boundaries
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• The effectiveness of the proposed OAA-MCSVM is validated by accurately classify
multiple bearing defects under different load conditions and at different rotational
speeds.

The remaining parts of the paper is organized as follows. Section 2 explains the
experimental setup. Section 3 provides analytical grounds to support our proposition
under the framework of Dempster-Shafer (D-S) theory [12] and introduces a reliability
measure (SVMReM) for individual SVMs that achieves optimal value irrespective of
the test sample location in the feature space. Section 4 describes the proposed method
with feature extraction and detailed derivation of reliability measures. Section 5 pre-
sents the experimental results, and Sect. 6 concludes this paper.

2 Experimental Setup and Data Acquisition Details

The experimental test rig used for this study is shown in Fig. 2. The AE fault signal is
acquired using a general purpose, wideband AE sensor (WS α from Physical Acoustics
Corporation) [3–6, 8], placed on top of the bearing housing as shown in Fig. 2. AE
sensors are designed to capture high frequency acoustic emissions emanating from
periodic impact events involving bearing faults.

In this study, one normal and seven different AE fault signals are obtained;
(i) (DFN) the normal condition, (ii) (BCO) bearing with outer race crack, (iii) (BCR)
bearing with roller crack; (iv) (BCI) bearing with inner race crack, (v) (BCIO) bearing
with cracks on inner and outer raceways, (vi) bearing with inner and roller cracks
(BCIR), (vii) (BCOR) bearing with roller and outer cracks, and (viii) (BCIOR) bearing
with inner, outer, and roller cracks.

AE Sensor

Signal Acquisi-
tion

Bearing 
House

Fig. 2. A self-designed test rig for obtaining AE signals of bearing defects

540 M.M.M. Islam et al.



3 Reliable One-Against-All (OAA) Multiclass Support Vector
Machine (SVM)

The OAA-MCSVM method for an L-class problem creates L binary SVM classifiers to
separate each class from the remaining L-1 classes. If we consider a classification
problem with P training samples x1; y1f g; . . .; xp; yp

� �
, where xj 2 RDim is a

Dim-dimensional feature vector of the jth training sample and yj 2 1; 2; 3; . . .; Lf g is
the class to which it belongs. The jth SVM solves the optimization problem given in
Eq. (1) [11–14], which provides the jth decision value function.

Min L w, dkj

� �
¼ 1

2
wk k2þ c

Xp

j¼1

dkj ; subjected; y
0
j wj �/ xj

� �þ bj
� �� 1� dkj ; d

k
j � 0

ð1Þ

Where y
0
j ¼ 1 if yj ¼ L; otherwise yj ¼ �1. In the classification stage, a test sample

x is classified to be in class k such that the decision function Zk has the highest value as
given in Eq. (2).

Zk xð Þ ¼ wk � u xkð Þ þ bkð Þ;where; k ¼ argmax
k¼1;...;L Zk xð Þ ð2Þ

3.1 Improving the Standard OAA-MCSVM Using Dempster-Shafer
Belief Theory

The proposed approach improves the standard OAA MCSVM using Dempster-Shafer
(D-S) evidence theory [12, 16]. Consider a test sample x, a set of L OAA multiclass
classifiers SVMk each with a decision function Zk and a set of hypotheses X ¼ LKf g
for 1 ≤ k ≥ L, where the kth hypothesis asserts that the sample belongs to class k. When
each SVMk is applied to x, the result is a part of evidence supporting a certain
proposition [8, 10, 15]. We define a basic belief assignment function (BBA) referred to
as belief mass mk on hypothesis Ω [10]. It is actually based on the result of the kth
classification. When sign (Zk) = 1, it is logical to enhance belief in SVMk proportional
to the value of Zk, because “x fits into class k”. This piece of evidence alone does not
guarantee the truth of hypothesis Lk, only part of it is committed to the belief in
hypothesis Lk. The remaining part of the evidence provided by the value of Zk is
assigned to the belief in hypothesis Ω as a whole which asserts that “x does not belong
to class k”. The basic belief assignment (BBA) function mk is defined for an SVM with
a positive response.

mk fxgð Þ ¼
1� expð� Zk xð Þjj ¼ kk; if ; x ¼ Lkf g
expð� Zk xð Þjj ¼ 1� kk; if ; x ¼ X
0; else

8<
: ð3Þ
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When sign (Zk) = −1, SVMk classifies x as not belonging to class k. Then, the belief
mass function mk, for such SVMs with negative responses, is defined by (4).

mk fxgð Þ ¼
1� expð� Zk xð Þjj ¼ kk; if ; x ¼ Lkf g
expð� Zk xð Þjj ¼ 1� kk; if ; x ¼ X
0; else

8<
: ð4Þ

After finding the BBA values for all the samples and using D-S rule of combination
to obtain the combined BBA, the belief function can be computed using Eq. (5) and
finally a test sample x is labeled as class k* with the highest belief.

k� ¼ argmax
k ¼ 1; :. . .; L

Bel Lkf gð Þ ¼ argmax
k ¼ 1; :. . .; L

kk ¼ argmin
k ¼ 1; :. . .; L

zk xð Þ

¼ argmax
k ¼ 1; :. . .; L

zk xð Þj j; ð5Þ

Similar to Eq. (5), if at least one or more SVMk generates a positive response, the
belief function can be defined by Eq. (6)

k� ¼ argmax
k ¼ 1; :. . .; L

Bel Lkf gð Þ ¼ argmax
zk xð Þ� 0

kk ¼ argmin
k ¼ zk xð Þ� 0

zk xð Þ

¼ argmax
k ¼ 1; :. . .; L

zk xð Þj j ð6Þ

However, it is not prudent to place the entire belief in decisions made by the
SVMk’s. When the independent sources of evidence cannot be fully believed, the BBA
should be weakened by a certain factor [16]. Thus an appropriate degree to quantify the
amount of belief in every SVMk is proposed and defined in the following section.

4 Methodology

The proposed diagnosis method as shown in Fig. 3, includes feature calculation,
reliability calculation of each SVMk, and a new decision strategy for the proposed
OAA MCSVMs which are then used for fault classification.

4.1 Feature Calculation

The feature pool is produced based on 10 time domain statistical features, 3 frequency
domain features, and 9 envelope spectrum RMS features. Such a rich feature pool
minimizes the risk of missing important aspects of the data, and it can achieve greater
discrimination among various fault conditions. The time and frequency domain
parameters are enumerated in the Table 1, where ‘x’ is the original time-domain signal
with N data samples and “f” is a spectral component of the signal ‘x’. We divide 10 s
AE signals into different samples of one time period length each. In every revolution,
bearing faults give rise to impact signals depending upon their defect frequencies.
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Fig. 3. The proposed fault diagnosis model

Table 1. Multi-domain feature extraction from AE signals
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Three types of defects are detected on a bearing depending on their location on the
bearing surface. Bearing defect frequency could be measured on the basis of bearing
parameters and rotational speed and frequency, for respective defect.

Figure 4 shows the typical signals produced by confined faults in rolling bearing,
corresponding envelope signals are calculated using amplitude demodulation [2, 8].

The defect region for the extraction of features can be determined using Gaussian
window method [10, 14], however, it completely ignores the effects of sidebands
during defect region calculation [10]. An enveloping spectrum is sensitive to very low
impact related events such as sidebands. Thus, we construct a rectangular window
around the defect frequency, to overcome problems with Gaussian windows and extract
root mean square (RMS) features from the envelope spectrum. A distribution of the
extracted features is given in Fig. 5.
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Fig. 4. Complex envelope analysis based on a unique feature extraction method
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Fig. 5. 3D visualization results of the discriminative fault features: all feature samples of data set
#1 (3 MM_300 RPM) for 8 fault conditions (left) and training sample (right)
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4.2 Reliability Calculation for Individual SVMs

The effectiveness of a classifier can be calculated using the generalization error R rate,
restated as R = E[y = sign (Z(x))], where y 2 �1; 1f g is the label of true class x and Z
is the decision function. A classifier can be measured as more reliable if it provides a
smaller value for R [10, 15, 16]. As investigated in [14], when the amount of training
sets is relatively small comparing with the dimension of the feature space x, then the
small value of Remp will not always ensure a small value regularization error R [11]. In
this case, the upper bound of R is defined in [10, 11], and one benefit of SVM is to
minimize this objective function value, also minimizes this upper bound of function. In
other words, the smaller values of the objective function means smaller regularization
errors, and thus it ensures a reliable classifier. So, we restate the objective function for
the reliability calculation based on the SVM upper bound optimization equation in (7).

ObjFunc ¼ 1=2 w 2 þ C
�� Xn

k¼1

1� yk z xkð Þð Þþ
����� ð7Þ

To calculate the ObjFunc, we introduce the unconstrained optimization [9, 10]
problem over ‘w’ in the training stage. Our problem is quadratic; to get a globally
optimum solution for ‘w’, we utilize QP [9]. The objective function would ensure a
minimum value of R with the widest margin for all samples in the training stage.

d

SVMReM¼exp �ObjcFunc=hð Þ¼exp �
1=2 wk k2þC

PP
k¼1

1�yk z xkð Þð Þþ
2CP

0
@

1
A

2
6666664

3
7777775

ð8Þ

In order to get the reliability measure for each class, and kernel function in Eq. (8),
which yields an optimum value for all samples in the feature space. Furthermore, the
margin of the classifier is 2

wk k, a smaller value of wk k ensures a larger margin, and thus

more accurate generalization. The value θ = CP is used as a regulation factor to
compensate the consequence of C, penalty parameter, P, number of training samples.

4.3 Derivation of Proposed Decision Strategy for Reliable OAA-MCSVM

With the reliability measure δSVMReM in place, we design a new decision function for our
proposed one-against-all multiclass SVM (OAA-MCSVM. First, Zk values of the binary
SVMs are calculated for all the given test samples using Eq. (2). Then, a decision fusion is
done for all samples. After that, the L class BBAmk is generated based on Eqs. (5) and (6)
for all the decisions, where all decisions are considered as information from an inde-
pendent source. The evidence value that is produced by each classifier SVMk is granted
more belief if SVMk is also more reliable, and our calculated competence measures are
directly used as a belief factor in Eqs. (9) and (10). The final decision rules as follows:
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1. If all the SVMk produce negative responses,

k� ¼ argmin
k ¼ 1; . . .L

dSVMReM kð Þ 1� exp� Zk xð Þj j
� �

ð9Þ

2. If one or more SVMk produce positive responses,

k� ¼ argmax
Zk xð Þ� 0

dSVMReM kð Þ 1� exp� Zk xð Þj j
� �

ð10Þ

δ SVM Re M (k) is the reliability measure for SVMk, and Eqs. (9) and (10) can be
merged into one based on Eq. (11).

k� ¼ argmax
1; . . .L

dSVMReM kð Þ sign Zk xð Þð Þ 1� exp� Zk xð Þj j
� �n oh i

ð11Þ

The value of sign codes the hard decision rule whether “x belongs to class k or not”
and the magnitude defines the strength of the decision function value.

4.4 Fault Classification

A SVM discriminates test samples into one of two categories, and subsequently we
need multi-class SVMs (MCSVMs) to identify multiple bearing defects. In the OAA
multiclass support vector machine approach, each SVM separates one category from
the rests, and the final decision is by choosing an SVM that produces the maximum
decision value for a given sample. We compare our proposed OAA-MCSVM using a
new decision rule with the standard OAA-MCSVM.

5 Experimental Validation

The proposed method is tested on multi-class fault data sets obtained from the
experimental setup. The proposed method delivers superior classification performance
over its standard counterpart.

5.1 Configuration of the Training and Test Data

The proposed method is evaluated over ten data sets with 90 feature vectors each. Data
set for each fault condition, is randomly divided into two subsets for training and
testing. The training subset includes 40 randomly-selected feature vectors whereas the
remaining 50 feature vectors makeup the testing subset. In the training phase of every
SVM, the precision is assessed by several kernel parameters [16] (C = 2−5, 2−3, 2−1. . .,
215), and (γ = 2−15, 2−13. . . , 23) and the best one is chosen using a grid search method
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[16] for performance comparison. Consequently, classification accuracy is computed
for the standard OAA-MCSVMs and the proposed (reliable) OAA-MCSVMs on the
testing datasets; the final classification performance is the average value of the accu-
racies achieved for each feature vector in the testing dataset.

5.2 Performance Evaluation

To ensure the effectiveness of this proposed OAA-MCSVM method, this experimental
analysis compares its classification performance with the standard variant. We use
confusion matrix [16] and AUC-ROC based performance analysis for the comparison.

Experiment # 1. This analysis was carried out on ten datasets at 5 rotational speeds
(300, 350, 400, 450, 500 RPM), two crack sizes (3 mm and 6 mm) and eight different
fault conditions. The support vector machines use the Gaussian radial basis kernel. The
results show that our proposed OAA-MCSVM is superior to the standard
OAA-MCSVM. The classification accuracy for different data sets is given in Table 2.
In addition, the results also validate our unique feature extraction process, which yields
classification accuracy of almost 100 % at higher RPMs and larger crack sizes, because

Table 2. Classification performance comparison between standard OAA MCSVMs and the
proposed OAA MCSVM for eight fault conditions using radial basis kernel machine (Unit: %)

Data set Method BCI BCIOR BCIR BCO BCOI BCOR BCR DFN Model
ACC.
(%)

3 MM
300 RPM

Standard 97.57 96.57 94.57 98.51 98.91 99.31 99.44 99.17 98.01
Proposed 100 100 96.00 98.93 99.33 99.73 99.87 99.47 99.17

3 MM
350 RPM

Standard 97.57 99.44 96.17 98.91 99.57 99.17 97.69 99.57 98.51
Proposed 100 99.43 99.71 99.14 99.86 99.00 99.86 100 99.63

3 MM
400 RMP

Standard 99.44 98.77 94.57 99.17 98.91 99.44 99.44 99.57 98.67
Proposed 99.87 99.20 100 99.60 99.33 99.73 99.87 100 99.70

3 MM
450 RPM

Standard 99.31 98.64 99.46 99.44 96.57 99.58 99.27 99.59 98.98
Proposed 99.87 99.20 100 99.73 100 99.73 99.73 100 99.78

3 MM
500 RPM

Standard 98.57 99.31 99.39 99.64 95.67 100 100 99.57 99.02
Proposed 100 99.73 100 99.87 100 100 100 100 99.95

12 MM
300 RPM

Standard 99.57 98.37 97.57 99.57 99.57 99.57 99.57 99.57 99.17
Proposed 100 100 100 100 100 100 100 100 100

12 MM
350 RPM

Standard 98.57 99.07 95.67 99.87 96.87 100 100 100 98.76
Proposed 100 100 100 100 100 100 100 100 100

12 MM
400 RPM

Standard 99.57 99.57 99.57 99.41 99.67 97.37 99.86 99.52 99.32
Proposed 100 100 100 100 100 100 100 100 100

12 MM
450 RPM

Standard 97.97 97.22 99.69 98.59 100 100 100 100 99.19
Proposed 100 100 100 100 100 100 100 100 100

12 MM
500 RPM

Standard 98.57 99.97 98.87 99.57 100 98.22 100 100 99.40
Proposed 100 100 100 100 100 100 100 100 100
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of good separation between fault features. In Fig. 6, we compare the overall perfor-
mance of Standard OAA MCSVMs and Proposed OAA MCSVMs over ten data sets
(in %) using three different kennel functions.

Experiment # 2. We perform the AUC-ROC based analysis of the proposed and
standard approaches for all the datasets to verify the robustness of our proposed
algorithm. AUC-ROC graph is actually a way of visualization, organization and
selection classifiers based on their performance. An area under the receiver operating
characteristics (AUC-ROC) analysis has been extended for use behavior analyzing of
fault diagnostic systems [14]. In addition, AUC-ROC curves for the proposed method
show that it delivers a more uniform performance in the diagnosis of all fault conditions
as compared to the standard approach, as shown in Fig. 7.

Fig. 6. Relative comparison of the accuracy of proposed and standard methods over three
different kennel machines.
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6 Conclusion

A reliable fault diagnosis methodology for rotating machinery was proposed and
evaluated, based upon a modified form of one-against-all multi-class support vector
machines, which utilizes individual reliability measures, SVMReM, of the binary
SVMs and an improved decision strategy based on the Dempster-Shafer (D-S) theory
of evidence. In addition to time and frequency domain analysis techniques, the
acquired data from the experiments was preprocessed using envelope analysis methods
to extract meaningful features from the fault signals. The experimental analysis dem-
onstrated that the proposed approach yields better classification performance for dif-
ferent fault conditions, at different rotational speeds and different kernel functions for
the SVMs. The proposed method yielded an average accuracy exceeding 99 %, 98 %,
and 95 % for ten data sets with SVM trained using RBF kernel, polynomial kernel, and
linear kernel, respectively.
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