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Abstract. The mixture of Gaussian Processes (MGP) is a powerful and fast
developed machine learning framework. In order to make its learning more
efficient, certain sparsity constraints have been adopted to form the mixture of
sparse Gaussian Processes (MSGP). However, the existing MGP and MSGP
models are rather complicated and their learning algorithms involve various
approximation schemes. In this paper, we refine the MSGP model and develop
the hard-cut EM algorithm for MSGP from its original version for MGP. It is
demonstrated by the experiments on both synthetic and real datasets that our
refined MSGP model and the hard-cut EM algorithm are feasible and can out-
perform some typical regression algorithms on prediction. Moreover, with
sparse technique, the parameter learning of our proposed MSGP model is much
more efficient than that of the MGP model.

Keywords: Mixture of Gaussian Processes - Sparsity - Hard-cut EM algorithm -
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1 Introduction

Gaussian process (GP) is a powerful model for a wide range of applications in machine
learning, including regression [1], classification [2], dimensionality reduction [3],
reinforcement learning [4], etc. Nevertheless, GP model fails to describe multimodality
dataset and the training of GP consumes O(N?) time for N training samples [5, 6]. In
order to solve these problems, Tresp [7] proposed the Mixture of Gaussian Processes
(MGP) in 2000, which was adjusted from Mixture of Experts. Since then, various MGP
models have been proposed, and the most of them are special cases of mixture of
experts where each expert is a GP.

Another useful way of reducing the time cost of training a GP is to adopt the model
of sparse Gaussian Process (SGP), which computes the GP likelihood with a pseudo
dataset being smaller than the training dataset in size [8]. To combine the advantages of
MGP and SGP, the Mixture of Sparse Gaussian Processes (MSGP) has been also
proposed, in which each component is a SGP instead of a GP to accelerate the
parameter learning [5, 6, 9-11].

For these MGP and MSGP models, there are three main training algorithms: Monte
Carlo Markov Chain (MCMC), variational Bayesian inference (VB), and EM algo-
rithm. Actually, MCMC approximated the posterior of parameters by sampling several
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long sequences of Markov Chains [12—19]. However, it was quite time consuming as
pointed out in [9]. VB tried to approximate the posterior of parameters with factorized
forms, which actually may deviate a lot from the true posterior [20-24].

Generally, EM algorithm is an effective approach to the learning of mixture models.
However, since the exact posterior of latent variables and the Q function are intractable
for MGP and MSGP models, several approximation strategies have been adopted. For
example, variational EM algorithm approximated the posterior in E step with varia-
tional inference [5, 911, 25], which had the same drawbacks as VB. In [26, 27], the Q
function was decomposed via leave-one-out cross-validation (LOOCV), which was a
complicated form involving much computation. Stachniss et al. [6] and Tresp [7]
attempted to simplify the learning process with the help of heuristic estimation in M
step. However, kernel parameters were predetermined without learning in [7], whereas
the parameters were sampled from data-irrelevant distributions in [6]. Therefore, both
learning processes in fact needed more guidance by datasets.

Recently, some hard-cut EM algorithms have also been adopted to improve the
learning efficiency, which partition each sample into the component with the maximum
posterior in E-step and learn the parameters of each component independently in
M-step [9, 28]. Moreover, in the same way, Yang and Ma [26] has adjusted its pro-
posed soft EM algorithm for MGP with the LOOCYV probability decomposition into a
hard-cut EM algorithm for MGP, which is here referred to as the LOOCV hard-cut EM
algorithm for convenience.

After all, these algorithms resorted to some approximation strategies since MGP
and MSGP models are usually very complex. Recently, Chen et al. [29] refined the
MGP model to a more simplified form, and strictly derived a precise hard-cut EM
algorithm for it. In this paper, we develop this approach by adding sparsity constraints
and adjusting the refined MGP model into the MSGP model. As a result, the parameter
learning becomes more efficient as the MSGP model is refined and the hard-cut EM
algorithm is still strictly derived. The experimental results demonstrates that our pro-
posed model and algorithm are feasible and can outperform some typical regression
algorithms.

2 The Mixture of Sparse Gaussian Processes

2.1 Gaussian Process (GP)

A GP model for regression is mathematically defined by

fi m(x;) K(xi,x1) K(x,x) - K(x,xy)
bH m(xy) K(x2,x1) K(xa,x2) -+ K(x2,xn)
F= ~N :
: : : : . : ;o (1)
fv m(xn) K(xn,x1) K(xn,x2) -+ K(xn,xy)
Vi NN(fh 02)
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where x;, f, and y, denote the input, latent response and output of a training sample,
respectively, K(u, v) is a mercer kernel function, and a2 denotes the noise intensity. As
in most cases, we adopt zero mean function (m = 0) and the most popular kernel
function—the squared exponential (SE) kernel [30]:

d
K(”v V) =r 28Y [_ %;bi(uk - Vk)2‘| ) (2)

where d is the dimensionality of inputs and each dimension has a different weight by to
realize automatic feature selection.

There are several ways for learning the hyper-parameters of a GP model, including
the approaches of maximum likelihood estimation (MLE), maximizing a posteriori
(MAP), surrogate predictive probability (GPP), cross validation (CV), etc. [31].

With the estimated hyper-parameters, the predictive distribution of the output at a
test input x* can be obtained as follows:

p(y|X) ~N|K(x*, X)K(X,X) "y, K(x*, x*) — K(x*,X)K(X,X)_lK(X,x*)}, (3)

where K(x*, X) = [K(x*, x))]1xn: KX, x*) = [K(X;, x*)Inx1, KX, X) = [K(x;, X)) Inxn
are kernel matrices [30].

2.2 Mixture of Gaussian Processes (MGP)

MGEP is a special mixture model in which each component is just a Gaussian process,
and these components are independent in most existing MGP models. Denote z, = c iff
(X, yo) belongs to the c-th GP, and denote
/" I

X = [Xr(.(mxz,(z), “ s X (Ne) Y. = [yt(.(1)7yt((2)a “ sy Vi (N,)

as the inputs and outputs from the c-th GP, respectively, where N is the number of
samples in the c-th GP. Therefore, the output likelihood is mathematically given by

YCNN[O7K(XC’XC|0(') + 0-(21]76' = 1727 A Ca (4)

where the SE kernel given by Eq. (2) is parameterized by 0. = {l., 0.} U{bx :
k=1,2,---,d} for the c-th GP.

MGP has two main advantages over a single GP. Firstly, MGP can capture the
heterogeneity among different input locations by fitting them with different GPs. For
example, the toy dataset used by some MGP models [12, 17, 26, 29] was generated by
4 continuous functions with Gaussian noise, as is shown in Fig. 1. Therefore, it is better
to fit the Toy dataset by MGP with four GPs than only one GP. Secondly, the com-
putational cost can be reduced by dividing the large kernel matrix of one GP into small
matrices of components.
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Fig. 1. Toy dataset

2.3 Sparse Gaussian Process (SGP)

Another good scaling technique for GP is to use the model of Sparse Gaussian Process.
The main idea of SGP is to approximate N training samples with M pseudo samples
(M<<N) [32]. Mathematically, we denote inputs of the training data, test data and pseudo

data X = [x,xp,---,xy]"s X* = [x0,x5, -, x5]", U =[ur,up,---,up]" respectively,
and their corresponding latent responses are denoted as F = [fi,f, -, fN]T, F* =
it ,fL*]T and V = [vy, vy, -, vM]T, respectively. Almost, the sparse GP models

can be mathematically defined by the following equations [32]:

V ~N[0,K(U,U)), (5)
p(F,F'|V) = q(F|V)q(F*|V), (6)
wilfi ~N(fi, 0%) iid., (7)
Y~ N 6% did., (8)

where Eq. (5) means the latent pseudo outputs V fulfill a GP, as in Egs. (1), and (6)
gives the crucial assumption of SGP, i.e., the latent responses for training dataset and
test dataset are conditionally independent given V. In Eq. (6), q(F|V) and q(F*|V) can
be approximations of the following GP predictive distributions

p(F*|V) ~N[K(X*, UK (U, UV, KX, X) — K(X*, U)K(U, U)’lK(U,X*)}
p(F|V)~N [K(X, U K(U,U)"'V,K(X,X) — K(X, U)K(U, U)”K(U,X)] ,
)

respectively, and the forms of q(F|V) and q(F*|V) determine the kind of SGP models,
including SoR, DTC, FITC and PITC models [32]. Among these models, the Fully
Independent Training Conditional (FITC) model proposed in [8] was highly recom-
mended in [32], due to its rich covariance. Experimental results have shown the great
advantage of FITC over the other sparse GPs on predictive accuracy, whereas the
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increase on time consumption is trivial [8]. Therefore, we will use FITC as each
component for our proposed mixture of sparse Gaussian Processes model (MSGP).

In FITC model, the conditional distribution of the latent test outputs is the exact GP
predictive distribution:

q(F*|V) = p(F'[V)

10
~N[K(, U KW,0) YK X) - K, 0K 0) k@)
whereas the latent training outputs are assumed to be conditionally independent given
the latent pseudo output V, as suggested by the name “Fully Independent Training
Conditional”, i.e.

g(FIV) ~N[K(X, U)K(U,U)"'V. A, (11)

where A = diag [K(X,X) — K(X, U)K(U, U)*IK(U,X)]

It can be inferred that the marginal likelihood for the outputs is
p(Y)NN[O,K(X7 U)K(U, U)flK(U,X)—f—A—Fazl}7 (12)
and the predictive distribution can be derived as follows.

p(Y|Y) NN{K(X*, U)O'K(U, X*)(A + 621)'Y, ;
K(X*,X*) — K(X*, U)[K(U,U)"" — 07K (U,X*) + 021}, 13

where O = K(U,U) + K(U,X)(A + ¢*I) 'K (X, U).

The crucial issue on training a SGP is to find appropriate pseudo inputs. One
method is to greedily select a fixed number of training inputs one by one with a certain
criterion [33-36]. Snelson and Ghahramani [32] have extended the range of pseudo
inputs from the training sets to the whole Euclidean space, and learnt pseudo inputs and
the hyper parameters together by maximizing the likelihood, which is more flexible
than greedy selection and has better performance in experiments.

2.4 The FITC Mixture Model

As the MGP model proposed in [29] is refined and can be trained by the precise
learning algorithm, we can inherit its general framework for our MSGP model. The
only difference is that SGP is adopted for each component for higher speed in the
training process.

As in [29], we adopt the following gating function and Gaussian inputs.
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Pr(zy =c¢)=n;5c=1~Ciidfort =1~N, (14)
p(xilzs = ¢)~N(p,,S);c=1~C, iid for t=1~N. (15)

Furthermore, for each component, we use the FITC model due to its advantages
mentioned in Sect. 2.3 to describe the SGP input-output relation

PYelXe, Uy 00) ~ N[0, K (Xe, Uel00)K (U, Uel0) ™K (Ues Xel0) + A + 21, (16)
where U, denotes the pseudo inputs in the c-th component,
Ae = diag[K (X, X100) = K (Xe, 0K (Ue, Uol00) ' K (U XJ0) |, (17)

and X, Y., 0. follow the meanings in Sect. 2.2.

Our MSGP model can be fully described by Egs. (14)—(16), and it has fewer
parameters than previous MSGP models [5, 6, 9-11]. However, it still retains the
advantages of combining sparse GPs with the mixture model. For this refined model,
we strictly derive its training algorithm, called the precise hard-cut EM algorithm.

3 The Hard-Cut EM Algorithm for the FITC Mixtures

Since the outputs from both MGP and MSGP models are dependent, the computational
complexity of Q function is exponential with summation over multiple labels. In order
to avoid such an expensive computation, a hard-cut EM algorithm can be adopted by
partitioning the training samples into the corresponding component with the maximum
posterior in E-step, so that the parameters of each component can be learnt separately
via the MLE in M-step. Because our model is developed from the MGP model in [29],
where the precise hard-cut EM algorithm was strictly derived and performed quite well
on both the prediction accuracy and the learning efficiency, we adjust its general
learning framework to train the FITC mixture.

It can be easily derived that the marginal output likelihood for each sample in fact
remains exactly the same as [29], i.e.

p(ilxi, 2 = €) = N [yi[0, K (x1,%10.) + 02| = N(3[0,2 + 7), (18)
so, the same posterior in E-step can be derived using the Bayesian formula:

TN (x| ey Se )N lf + af
Pr(z = c|xi, y;) = C Loln NG ) . (19)

> N (x| e SN (04| 2 + 02)
k=1

However, in M-step, the GP likelihood in [29] can be replaced by the FITC like-
lihood given by Eq. (16) with less computation, thus pseudo inputs are added during
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the learning of the hyper-parameters. With such an adjustment from [29], we obtain the
procedure of our proposed precise hard-cut EM algorithm as follows.

e Stepl (Initialize the partition of the training data). Divide the vectors {[x/,y,] }iv:l
into C clusters, and set z<—the indicator of the t-th sample to the cluster.
e Step2 (M-step). Learn the parameters with MLE for each component:

N N N ,
=5 FZ Z=c)x,  Se Z a =)0 — pe) (% — 1)
(20)

(UC, éc) = argmax Inp(Y.|X., U, 0.), (21)

U0,
where N, is the number of samples in the c-th component, Eq. (20) is the same as
learning the parameters of the Gaussian mixture model and Eq. (21) follows from [8].

e Step3 (E-step). Repartition the samples into the corresponding component based on
the maximizing a posterior criterion:

7« argmax Pr(z = c|x;,y;) = arg max[m.N (x|, S )N (v | 1> + 62)] (22)

e Step4. Stop if the number of changed labels falls below 11 % of the number of
training samples (0 < n<10 is a threshold). Otherwise, return to Step 2.

After the learning process above, we have obtained the estimated parameters and
the partition of the training data. Then, for a test input x*, we can classify it into the z-th
component of the MSGP by maximizing the posterior as in [29]:

7" — argmax Pr(z* = ¢|D,x") = arg max[n.N(x*| 1, S¢)] (23)

According to this classification, we can predict the output of the test input via the z-th
component using Eq. (13).

4 Experimental Results

4.1 On a Small Synthetic Dataset from the MGP Model

In order to evaluate the validity and feasibility of the FITC mixture model and its
hard-cut EM algorithm, we generate a typical synthetic dataset from MGP model with
3 components. Actually, there are 500 training samples and 100 test samples in each
component and each input has 3 features. Then we compare our algorithms with the
following typical baselines for regression:
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The FITC model and its MLE algorithm [8].

The MGP model and its precise hard-cut EM algorithm [29].

The MGP model and its LOOCV hard-cut EM algorithm [26].

The mixture of sparse GPs model and its variational hard-cut EM algorithm [9].
Linear regression [37].

SVM regression with Gaussian kernel [38].

Sl

Each of these algorithms is implemented on this synthetic dataset five times, with
an Intel (R) Core (TM) i5 CPU and 4.00 GB of RAM running Matlab R2014b source
codes on Secure CRT. For each of these algorithms, the mean and standard deviation of
the root mean squared errors (RMSEs) for prediction and the training times are listed in
Table 1. In addition, to make the prediction of FITC and its mixture model more
accurate, we initialize the kernel parameters by training a GP model on 20 randomly
selected training samples before the MLE learning process, as did in [8].

Table 1. The mean and standard deviation of the predictive RMSEs and the training times for
each algorithm on the typical synthetic dataset from MGP model

RMSE Training time (s)
Our proposed precise hard-cut EM algorithm 0.5139 + 0.0222 27.0198 + 3.9183
for FITC mixture (C = 3 components, M = 20
pseudo inputs, threshold n % =5 %)
MLE for FITC model (M = 20) 0.6495 + 0.0994 22.2497 + 1.5894
Precise hard-cut EM algorithm for MGP 0.4963 + 0 190.4125 + 42.4939
(C=3)
LOOCYV hard-cut EM algorithm for MGP 04977 + 0 2552.0 + 559.5477
(C€=3)
Variational hard-cut EM algorithm (C = 3, 0.6086 + 0.1634 93.4882 + 11.3112
M = 20)
Linear regression 0.8514 0 0.0571 £ 0.1273
SVM 0.7109 + 0 221.1791 + 5.5132

It can be seen from Table 1 that on the synthetic dataset, our proposed algorithm is
much more accurate than the single FITC since the dataset is multimodal. With sparse
technique, our algorithm is much more efficient than the two EM algorithms of the
MGP models, whereas the loss of accuracy is trivial compared with the increase on
speed. The variational hard-cut EM algorithm makes a coarse conditionally indepen-
dent assumption to the posterior and thus it is not as accurate as our proposed algo-
rithm. Besides, the variational hard-cut EM algorithm also takes longer to train than our
proposed algorithm. Traditional regression algorithms like the linear regression and the
SVM are rough for such a non-linear synthetic dataset.

Furthermore, our proposed algorithm correctly partitions all the training samples
and test samples into their components each time, which, along with the results in
Table 1, means that our algorithm is feasible and effective.



The Hard-Cut EM Algorithm for Mixture of Sparse 21

4.2 On a Large Synthetic Dataset from the FITC Mixture Model

Moreover, to test the advantage of FITC mixture model and its hard-cut EM algorithm,
we generate a typical synthetic dataset from FITC mixture model with 100 compo-
nents. In each component, there are 200 training samples and 200 test samples, with 1
dimensional inputs. Then we compare our algorithm with the baselines above. The
computational environment and experimental details remain the same as above.

On such a big dataset (20000 training samples), some algorithms are prohibitively
slow and fail to converge, such as the SVM, the precise hard-cut EM algorithm and the
LOOCYV hard-cut EM algorithm of MGP, so we omit them in the experiment. It also
indicates that our proposed hard-cut EM algorithm is more efficient than the precise
hard-cut EM algorithm of the MGP model due to sparsity mechanism.

All the other algorithms are implemented on this synthetic dataset five times and the
mean and standard deviation of their RMSEs for prediction and training times are listed
in Table 2. Similarly, for FITC model and our proposed FITC mixture model, we
initialize the kernel parameters by training a GP model on 10 randomly selected
training samples before the MLE learning process, as in [8].

Table 2. The mean and standard deviation of the predictive RMSEs and the training times for
each algorithm on the typical synthetic dataset from FITC mixture model

RMSE Training time (s)

Our proposed precise hard-cut EM algorithm 0.1115 + 0.0106 86.9691 + 2.8167
for FITC mixture (C = 100, M = 10,
n%=5%)

MLE for FITC model (M = 10) 1.0149 + 0.0190 25.3531 + 12.8932

Variational hard-cut EM algorithm (C = 100, 0.8649 + 0.0339 [890.1411 + 159.3509
M = 10)

Linear regression 1.0492 £ 0 0.0006 + 0.0001

Table 2 indicates that for the synthetic dataset with much more components, our
proposed FITC mixture model has greater advantage than the FITC model, on both
predictive precision and learning efficiency. The conditionally independent assumption
of the variational hard-cut EM algorithm, as well as the linear assumption of the linear
regression, is not suitable for such a highly non-linear dataset with dependent samples.
Therefore, the two algorithms have big prediction errors on this dataset.

4.3 On Kin40k Dataset

Finally, we compare these algorithms on a popular real dataset called kin40k, which is
generated by a robot arm simulator, with 10000 training samples, 30000 test samples
and 9 attributes [34]. The computational environment and implementation details
remain the same as above. The mean and standard deviation of the predictive RMSEs
as well as the training times for each algorithm are listed in Table 3. Similarly, for FITC
and FITC mixture model, we initialize the kernel parameters by training a GP model on
500 randomly selected training samples before the MLE learning process.
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Table 3. The mean and standard deviation of the predictive RMSEs and the training times for
each algorithm on kin40k dataset

RMSE Training time (s)
Our proposed precise hard-cut EM 0.2007 + 0.0094 | 14358.4108 + 5321.6807
algorithm for FITC mixture (C = 4,
M =650, % =5 %)
MLE for FITC model (M = 650) 0.2823 + 0.0033 1547.4120 + 66.1614
Variational hard-cut EM algorithm for 0.2475 £+ 0.0269 2627.1 + 84.1696
MGP (C =4, M = 650)
Linear regression 1.0492 + 0 0.0006 + 0.0001

Still, on the large dataset, the SVM, the precise hard-cut EM algorithm and the
LOOCYV hard-cut EM algorithm of MGP are prohibitively slow and fail to converge.

From Table 3, we can observe that on the kin40 k dataset, our proposed algorithm
is more precise than the other algorithms due to fewer approximations. A possible
reason why our algorithm consumes so much time is that on a real dataset that doesn’t
come from a GP or MGP model, our algorithm needs much more iterations. Therefore,
a further improvement can be made by preprocessing a real dataset so that it is more
like a dataset simulated from a MGP. Linear regression is still rather coarse since the
kin40k dataset is highly non-linear [34].

In general, our algorithm is practical on the real dataset, and its computational cost
is acceptable with 10000 training samples.

5 Conclusion

We have refined the MSGP model and developed the hard-cut EM algorithm for its
parameter learning. The general framework is adapted from [29] whereas the learning
efficiency significantly improves with the sparsity mechanism. The experimental results
on both the synthetic dataset and the real dataset demonstrate that the developed
hard-cut EM algorithm for MSGP model is precise and efficient, and generally out-
performs the conventional linear regression, SVM and some other learning algorithms
for GP, MGP and MSGP models.
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