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    Chapter 8   
 Bacterial Communities Associated with Junco 
Preen Glands: Preliminary Ramifi cations 
for Chemical Signaling       

       Danielle     J.     Whittaker      and     Kevin     R.     Theis   

8.1            Introduction 

 Renewed interest in the role of  symbiotic bacteria   in animal behavior—and particularly 
in producing chemical signals—has led to new insights and questions about the 
evolution of animal communication and host-symbiont coevolution (Archie and 
Theis  2011 ). The fermentation hypothesis for chemical recognition, fi rst proposed 
in the 1970s (Albone et al.  1974 ; Gorman et al.  1974 ), suggests that symbiotic bac-
teria in mammalian scent glands produce volatile odorants that are used as recogni-
tion cues by the host animals and that variation in these bacterial communities 
contributes to variation in the animal scents. Support for this hypothesis has been 
demonstrated in several mammalian species, including spotted hyenas (Theis et al. 
 2012 ,  2013 ), meerkats (Leclaire et al.  2014 ), European badgers (Sin et al.  2012 ), 
North American porcupines (Roze et al.  2010 ), and greater sac-winged bats (Voigt 
et al.  2005 ). This hypothesis has rarely been applied outside of mammals and 
insects, although studies in birds and other taxa suggest that bacteria are present in 
glands related to chemical signaling (Ezenwa and Williams  2014 ). In this chapter, 
we explore whether symbiotic bacteria may play a role in manufacturing chemical 
signals in a songbird, the dark-eyed junco. 
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  Chemical communication   among birds, especially songbirds, is a long-neglected 
area of study due primarily to the persistent belief that most birds have little to no 
sense of smell. However, recent studies have revealed a potentially signifi cant role 
for intraspecifi c chemical communication in avian behavior (Caro and Balthazart 
 2010 ). The best-studied source of volatile odors in birds is preen oil secreted by the 
uropygial or “preen” gland, the largest exocrine gland in most birds (Jacob and 
Ziswiler  1982 ). While preening, birds spread preen oil on their feathers, which pro-
tects them in a number of ways, including enhancing their insulative capacity, main-
taining feather condition, and defense against pathogenic bacteria and fungi (Jacob 
and Ziswiler  1982 ; Moyer et al.  2003 ; Giraudeau et al.  2010 ). Symbiotic bacteria 
associated with the gland appear to provide some of these services, by producing 
antimicrobial compounds that help protect against feather-degrading bacteria and 
other pathogenic microbes (Shawkey et al.  2003 ; Martín-Vivaldi et al.  2009 ,  2010 ; 
Soler et al.  2010 ). Preen oil also emits volatile and semivolatile compounds that 
contribute to a bird’s odor profi le and thereby potentially function in communica-
tion (Mardon et al.  2010 ; Whittaker et al.  2010 ). These compounds vary among bird 
species (Soini et al.  2013 ), and within species, they can vary with individual identity 
(Mardon et al.  2010 ; Whittaker et al.  2010 ), sex (Soini et al.  2007 ; Whittaker et al. 
 2010 ), age (Shaw et al.  2011 ), and breeding condition (Whittaker et al.  2011b ). In 
some bird species, they also reliably predict genetic and social reproductive success 
(Whittaker et al.  2013 ) and provide information about the relative quality of male 
rivals (Amo et al.  2012 ). Therefore, preen oil compounds may fi gure prominently in 
avian mate competition and choice. Importantly, many of these compounds, which 
include linear alcohols, methyl ketones, and carboxylic acids, are known to be end 
products of bacterial metabolism in other environments (Madigan et al.  2010 ; Agler 
et al.  2011 ), suggesting that the fermentation hypothesis for chemical recognition 
could explain the presence of these compounds in preen oil. 

 To our knowledge, no studies have yet tested whether bacteria play a role in 
avian chemical communication. However, several researchers have described rela-
tionships between preen glands and bacteria, including the effects of preen oil on 
feather-degrading bacteria, for example, in house fi nches (Shawkey et al.  2003 ), and 
benefi cial bacteria found in breeding European hoopoe (Martín-Vivaldi et al.  2010 ) 
and wood hoopoe (Law-Brown and Meyers  2003 ) preen glands. Experimental work 
demonstrated that symbiotic bacteria in hoopoe uropygial glands produce preen oil 
volatile compounds with potent antimicrobial properties, though that study did not 
identify the symbiotic bacteria (Martín-Vivaldi et al.  2010 ). Shawkey and col-
leagues ( 2006 ) characterized the bacterial assemblages found on the plumage of 
several bird species and suggested that bacteria unique to the crested auklet could be 
a potential source for that species’ distinctive tangerine odor, but did not explore 
potential links between auklet bacteria and odors (Hagelin et al.  2003 ; Shawkey 
et al.  2006 ). In this chapter, we bring together data on bacteria and preen oil volatile 
compounds in the context of chemical communication in a songbird. 

 One of the best characterized  songbird   chemical communication systems is that 
of the dark-eyed junco ( Junco hyemalis ), a widespread North American sparrow 
whose behavior, ecology, and physiology are well understood (Nolan et al.  2002 ). 
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Thirty-nine volatile and semivolatile compounds have been identifi ed in junco preen 
oil, 17 of which varied seasonally or differed in relative concentration between the 
sexes and were selected for further research in subsequent studies: linear alcohols 
1-decanol through 1-octadecanol, methyl ketones 2-undecanone through 
2- pentadecanone, and carboxylic acids dodecanoic acid, tetradecanoic acid, and 
hexadecanoic acid (Soini et al.  2007 ; Whittaker et al.  2010 ). These 17 compounds 
vary with many aspects of junco biology, including population of origin, sex, hor-
mone levels, and reproductive success (Soini et al.  2007 ; Whittaker et al.  2010 , 
 2011b ,  2013 ). Furthermore, juncos are able to detect and differentiate among preen 
oil odors from different individuals, sexes, and species (Whittaker et al.  2009 , 
 2011a ). These qualities make preen oil volatiles reliable candidate cues for mate 
assessment and choice, yet their mechanism of production remains unknown. 

 To begin evaluating whether the fermentation hypothesis for chemical recogni-
tion can account for variation in junco odor profi les, here we characterize the bacte-
rial communities associated with the preen glands of breeding adult dark-eyed 
juncos and determine whether the taxa present would logically contribute to junco 
chemical signals. We compare diversity in bacterial community composition and 
structure among nesting pairs and between sexes. Finally, we consider the ramifi ca-
tions of our fi ndings for future studies of chemical communication, mate choice, 
and kin recognition in birds.  

8.2     Methods 

   We sampled  the   preen gland bacterial communities of wild adult Carolina dark-
eyed juncos ( J. h. carolinensis ) at Mountain Lake Biological Station in Pembroke, 
VA. In this region of the Appalachian Mountains, juncos are primarily altitudinal 
migrants, moving down into the valleys during the winter and returning to higher 
elevations to breed. Males typically arrive on the breeding grounds in March, with 
females arriving about 2 weeks later (Nolan et al.  2002 ). Juncos are socially monog-
amous, typically forming pair bonds that are maintained throughout the breeding 
season (May to August). Juncos also demonstrate appreciable levels of extra-pair 
fertilization, with about 28 % of all offspring being sired by a male other than their 
mother’s social mate (Ketterson et al.  1997 ; Gerlach et al.  2012 ). Juncos display 
biparental care, with females incubating the eggs and brooding the hatchlings, and 
both pair mates provisioning the young (Nolan et al.  2002 ). 

 Throughout May 2012, we identifi ed junco nests during egg laying or incubation 
and monitored them through the nestling phase to fl edging (day 11 or 12 post- 
hatching). On the morning of fl edging day, we captured the adult female and male 
at the nest using mist nets. For this study, we captured 25 juncos from 13 nests (one 
nest did not have an attendant male). From each junco, we sampled the bacterial 
communities associated with the preen gland by rubbing the tip of the gland using a 
sterile cotton swab. This rubbing motion mimics the birds’ own preen oil collection 
behavior when preening and is similar to that used to stimulate preen oil secretion 
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for collection in capillary tubes (Whittaker et al.  2010 ). This collection method 
ensured that our samples included a small amount of preen oil and microbes from 
inside and outside the gland, which represent the mixture that birds collect on their 
bills in preparation for preening. We stored the samples at −80 °C until analysis. 

 We extracted DNA from the bacteria on swabs using  MO BIO PowerSoil ®    DNA 
isolation kits (MO BIO Laboratories, Inc., Carlsbad, CA). We followed the manu-
facturer’s recommended protocol, except we added an initial 10 min saturation step 
during which the swab bathed in bead solution within the bead tube, and we subse-
quently vigorously vortexed the bead tube for 1 min before removing the swab and 
proceeding to the step in which solution 1 is added. Each DNA extraction yielded a 
discernible band, consistent with 16S rDNA, on an agarose gel following PCR 
amplifi cation of the 16S rRNA gene. Aliquots of the original DNA extractions were 
provided to the Michigan State University Research Technology Support Facility’s 
Genomics Core, where the V4 region of the 16S gene was targeted for sequencing 
on the Illumina MiSeq platform. Sample preparation, sequencing, and preliminary 
quality fi ltering were completed using previously published protocols (Caporaso 
et al.  2011 ,  2012 ). 

 We processed the MiSeq run fi les using mothur software, v. 1.31.2 (Schloss et al. 
 2009 ; Kozich et al.  2013 ). Specifi cally, we removed all sequences that (1) contained 
any ambiguous base calls, (2) had homopolymer runs longer than eight bases, (3) 
did not start and end at our specifi c V4 primer positions when aligned to the Silva 
bacterial database, (4) were deemed chimeric by mothur’s uchime tool, or (5) were 
classifi ed as originating from mitochondria, chloroplasts, archaea, eukaryotes, or 
other nonbacterial sources using the Ribosomal Database Project’s trainset9_032012 
(Wang et al.  2007 ; Claesson et al.  2009 ). This process revealed that the preen sam-
ple of one male junco was not successfully sequenced, so data from this sample 
were discarded. Each of the 24 remaining samples were subsampled to a depth of 
6000 sequences, and these sequences were binned into operational taxonomic units 
(OTUs) using mothur’s average neighbor split-clustering algorithm and a 97 % 
sequence similarity cutoff. We then removed all singleton and doubleton OTUs 
from the data set and derived a consensus taxonomy for each of the remaining OTUs 
using a conservative 80 % confi dence threshold (Claesson et al.  2009 ). 

 We generated a Clearcut cladogram, v 1.0.9, in mothur to illustrate the phyloge-
netic and taxonomic relationships among the prominent (i.e., widespread) OTUs in 
samples (Sheneman et al.  2006 ). We then used this information in conjunction with 
data on the typical production of volatiles by bacterial taxa, available through the 
mVOC database (Lemfack et al.  2014 ), to determine whether the prominent OTUs 
associated with junco preen glands are likely to manufacture any of the 17 volatile 
compounds of interest. Variation in the OTU profi les of samples among nests and 
between sexes was visualized via two-dimensional, principle coordinates analyses 
(PCoA) and statistically evaluated using nonparametric MANOVA with 10,000 per-
mutations (Anderson  2001 ). We conducted these analyses using Dice and Bray- 
Curtis similarity indices, refl ecting similarities in bacterial community membership 
and structure, respectively (Hammer  2011 ). Community membership addresses the 
shared presence or absence of OTUs, while community structure further considers 
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similarities in their relative abundances. Prior to conducting community structure 
analyses, OTU abundance data were log10 ( x  + 1) transformed (Ramette  2007 ). All 
analyses were completed using PAST software, v 2.17 (Hammer et al.  2001 ; 
Hammer  2011 ).    

8.3     Results and Discussion 

  Our   preliminary bacterial survey suggests that junco preen glands, like mammalian 
scent glands, harbor diverse communities of symbiotic odor-producing bacteria. 
Figure  8.1  shows a cladogram of the most common OTUs found in our samples. 
Sixteen OTUs were unclassifi ed, while 18 were assigned to 16 genera in the phyla 
Actinobacteria, Firmicutes, and Proteobacteria (classes Alphaproteobacteria, 
Betaproteobacteria, and Gammaproteobacteria). Several of these genera were previ-
ously found on the plumage of seabirds, chickens, and songbirds, including 
 Staphylococcus ,  Enterococcus ,  Pseudomonas , and  Acinetobacter ;  Burkholderia  
was found on the plumage of chickens and auklets (Shawkey et al.  2005 ,  2006 ). 
 Enterococcus  was also found in the preen glands and secretions of hoopoes and 
wood hoopoes (Martín-Vivaldi et al.  2009 ; Law-Brown and Meyers  2003 ). These 
fi ndings suggest that these genera may be commonly found on birds, as they are on 
mammals.

   Most of the bacterial genera associated with junco preen glands contain species 
that are known odor producers (Balkwill et al.  2006 ; Ezaki et al.  2006 ; Towner 
 2006 ; López del Castillo-Lozano et al.  2008 ; Blom et al.  2011 ; Latorre-Moratalla 
et al.  2011 ; Filipiak et al.  2012 ; Spraker et al.  2014 ). Most notably,  Burkholderia  
and  Pseudomonas , which can survive in a wide variety of habitats and utilize diverse 
nutrients, including oils (Haas and Défago  2005 ; Mahenthiralingam et al.  2005 ), 
can produce 9 of the 17 volatile compounds of interest (53 %) in juncos. Most of 
these nine volatile compounds are known to be produced by multiple species within 
each genus (e.g., nine species of  Burkholderia  and fi ve species of  Pseudomonas  
produce 2-tridecanone, Table  8.1 ). Thus, even without species-level identifi cation in 
this study, the available data suggest that  Burkholderia  and  Pseudomonas  are strong 
candidates for the production of volatile compounds involved in junco chemical 
communication. We have begun efforts to successfully cultivate and metabolically 
characterize these bacteria from junco preen oil to directly test this hypothesis.

   Not all of the identifi ed genera contain odor producers, or at least they are not 
known to produce volatile compounds described in junco preen oil. However, 
while mammalian scent glands are specialized for a single purpose, secretions 
from avian preen glands perform diverse functions in addition to chemical signal 
production, including parasite defense, feather protection, and thermoregulation. 
Several genera associated with junco preen glands have documented antifungal 
( Arthrobacter ,  Burkholderia ,  Pseudomonas ) or antibacterial ( Methylobacterium , 
 Enterococcus ,  Pseudomonas ) effects (Fernando et al.  2005 ; Haas and Défago  2005 ; 
Green  2006 ; Jones and Keddie  2006 ; Soler et al.  2008 ; Groenhagen et al.  2013 ), 
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  Fig. 8.1    Clearcut, relaxed neighbor-joining cladogram of the most common operational taxo-
nomic units (OTUs) associated with junco preen glands. All OTUs listed were found in at least 50 
% of birds sampled; those marked with  asterisks  were found in at least 75 % of the birds sampled. 
Taxonomic assignments were made using the Ribosomal Database Project’s classifi er tool in 
mothur, with an 80 % confi dence threshold       
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and  Burkholderia  and  Pseudomonas  species are also used for biocontrol in agricul-
ture and in bioremediation to clean up pollutants (Haas and Défago  2005 ; 
Mahenthiralingam et al.  2005 ). Therefore, these bacteria may be providing other 
valuable services to their junco hosts. 

  Although   male and female juncos have signifi cantly different volatile profi les 
(Whittaker et al.  2010 ), we did not fi nd a consistent effect of sex on bacterial com-
munity composition or structure (NPMANOVA,  N  = 22, df = 1, Dice:  F  = 0.858, 
 p  = 0.7713, Bray-Curtis:  F  = 0.8024,  p  = 0.8511). Instead, paired males and females 
clustered together (Fig.  8.2 ). Similarly, in a study of captive zebra fi nches 
( Taeniopygia guttata ), bacteria applied to the feathers of one zebra fi nch were found 
in the cloaca of its pair mate 24 h later, most likely transmitted via copulation 
(Kulkarni and Heeb  2007 ). Humans—and their pet dogs—living in the same house-
hold have signifi cantly more similar skin microbiomes than those living in different 
households (Song et al.  2013 ), and individual human microbiomes quickly colonize 
the individual’s surroundings (Lax et al.  2014 ). Since we collected our samples in 
May, near the beginning of the breeding season, our data suggest that adult birds 
that spend time in close physical proximity or have frequent contact may develop 
similar microbial communities in a fairly short period of time.

   Previous studies have suggested that preen oil volatile compounds may be impor-
tant for mate recognition and assessment, as they vary with species, sex, and indi-
vidual identity (Soini et al.  2007 ; Mardon et al.  2010 ; Whittaker et al.  2010 ), and 
they predict reproductive success in juncos (Whittaker et al.  2013 ). These volatiles 
may also be important for recognizing kin (Leclaire et al.  2012 ) and one’s home nest 
or burrow (Bonadonna and Bretagnolle  2002 ; Caspers and Krause  2010 ). Cross 
infection of symbiotic microbes between mates and between parents and offspring 
may contribute to the development of a recognizable, “signature” home scent 
(Archie and Theis  2011 ).  

   Table 8.1    A count of how many species of   Burkholderia    and   Pseudomonas    have been found to 
emit junco volatile compounds   

  # of species producing compound  

 Volatile compound   Burkholderia    Pseudomonas  

 1-Decanol  0  4 
 1-Dodecanol  0  1 
 1-Heptadecanol  0  4 
 2-Undecanone  21  6 
 2-Dodecanone  1  0 
 2-Tridecanone  9  5 
 2-Pentadecanone  1  0 
 Dodecanoic acid  7  1 
 Tetradecanoic acid  5  3 
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  Fig. 8.2     Principal coordinates analyses (PCoA)   illustrating nest-specifi c variation in the ( a ) com-
position and ( b ) structure of bacterial communities associated with junco preen glands.  Symbol 
shape  and  color  are indicative of nest identity. Statistical reports are for one-way NPMANOVA 
( N  = 22, df = 10)       
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8.4     Conclusion 

 To our knowledge, this is the fi rst study to examine avian microbiomes in the 
context of chemical signaling. Previous studies of symbiotic bacteria on birds’ skin, 
feathers, or glands have focused on microbes that produce benefi cial, antibacterial 
substances (e.g., Martín-Vivaldi et al.  2010 ) or on pathogenic microbes, especially 
feather-degrading bacteria (e.g., Shawkey et al.  2003 ; Saranathan and Burtt  2007 ; 
Saag et al.  2011 ). Our study suggests that the fermentation hypothesis for chemical 
recognition, originally formulated for mammals, may apply to a much broader 
range of taxa and opens new pathways for research. Future studies should evaluate 
covariance between preen gland bacterial communities and odors, the effect of 
manipulating bacterial communities on odor profi les, and the extent to which sub-
sequent changes in odor profi les infl uence birds’ behavioral responses to preen oil. 
They should also further elucidate the effect of social behavior on the transmission 
of preen gland bacterial communities and determine the extent to which preen gland 
bacterial communities differ from those associated with other avian organs.     
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