
Planning with Regression Analysis
in Transaction Logic

Reza Basseda(B) and Michael Kifer

Stony Brook University, Stony Brook, NY 11794, USA
{rbasseda,kifer}@cs.stonybrook.edu

Abstract. Heuristic search is arguably the most successful paradigm in
Automated Planning, which greatly improves the performance of planning
strategies. However, adding heuristics usually leads to very complicated
planning algorithms. In order to study different properties (e.g. complete-
ness) of those complicated planning algorithms, it is important to use an
appropriate formal language and framework. In this paper, we argue that
Transaction Logic is just such a specification language, which lets one for-
mally specify both the heuristics, the planning algorithm, and also facili-
tates the discovery of more general and more efficient algorithms. To illus-
trate, we take thewell-known regression analysismechanismand show that
Transaction Logic lets one specify the concept of regression analysis eas-
ily and thus express RSTRIPS, a classical and very complicated planning
algorithm based on regression analysis. Moreover, we show that extensions
to that algorithm that allow indirect effects and action ramification are
obtained almost for free. Finally, a compact and clear logical formulation
of the algorithm lets us prove the completeness ofRSTRIPS—a result that,
to the best of our knowledge, has not been known before.

1 Introduction

Heuristic planning is an application of heuristic search to the domain of planning.
To find a plan, a heuristic planner relies on the information about the regions
of the search space in which a successful plan solution is likely to be found.
Planning algorithms can use such information to guide their search and thus
reduce the search space that will likely be explored in order to find a solution.

Most planners apply various sophisticated domain-independent heuristics
[3,15,21,25]. Other approaches [1,11,22,26,29] use declarative formalisms (e.g.
situation calculus or linear temporal logic) to express heuristic information.
Declarative heuristic information can be used to prune the search space [1,26]
or steer the search in promising directions [13,18]. Although the declarative rep-
resentation of heuristic information provides multiple advantages for specifying
and generalizing heuristics, many of the above approaches do not get as much
attention as the heuristic methods. There are several reasons for this:

– Declarative approaches typically propose a framework where a user can
specify some heuristics but they are not flexible enough for representing

This work was supported, in part, by the NSF grant 0964196.

c© Springer International Publishing Switzerland 2015
B. ten Cate and A. Mileo (Eds.): RR 2015, LNCS 9209, pp. 45–60, 2015.
DOI: 10.1007/978-3-319-22002-4 5

46 R. Basseda and M. Kifer

domain-independent heuristics. In contrast, non-declarative heuristic
approaches are very versatile [4,21,25] and provide ways to automatically
generate heuristic planners from descriptions of a planning problem.

– The declarative approaches are typically still too complex, and this often
defeats their stated goal of simplifying proofs of the different properties of the
planning algorithms, such as completeness and termination.

In this paper, we will argue that Transaction Logic (or T R) [8–10] provides mul-
tiple advantages for specifying and generalizing planning heuristics. Specifically,
we will show that sophisticated planning heuristics, such as regression analysis,
can be naturally represented in T R and that such representation can be used
to express complex planning strategies such as RSTRIPS.

Transaction Logic is an extension of classical logic with dedicated support
for specifying and reasoning about actions, including sequential and parallel
execution, atomicity of transactions, and more. To illustrate the point, we take
the regression analysis heuristic and a related planning algorithm RSTRIPS
[23,28], and show that both the heuristics and the planning algorithm naturally
lend themselves to compact representation in Transaction Logic. The resulting
representation opens up new possibilities and, in particular, lets us prove the
completeness of RSTRIPS. Clearly, existing formalizations of regression analysis
and goal regression [24] are too complicated to be used as formal frameworks of
such proofs. In contrast, the clear and compact form used to represent RSTRIPS
in T R enables us to both implement and analyze RSTRIPS in a declarative
framework, which is also much less complicated than its implementations even
in Prolog [28] (which is not declarative).

The present paper continues the line of work in [2], where we (plain) STRIPS
was represented in T R declaratively, extended, and made into a complete strat-
egy. One can similarly apply T R to other heuristics proposed for planning algo-
rithms [3]. As in [2], because RSTRIPS is cast here as a purely logical problem
in a suitable general logic, a number of otherwise non-trivial extensions become
easily achievable, and we get them almost for free. In particular, RSTRIPS plan-
ning can be naturally extended with derived predicates defined by rules. This
endows the framework with the ability to express indirect effects of actions, but
the resulting planning algorithm is still complete.

This paper is organized as follows. Section 2 reviews the STRIPS planning
framework and extends it with the concept of regression of actions. Section 3
briefly overviews Transaction Logic in order to make this paper self-contained.
Section 4 shows how regression of literals through actions can be computed.
Section 5 shows how T R can represent RSTRIPS planning algorithm. Section 6
concludes the paper.

2 Extended STRIPS-Style Planning

In this section we first remind some standard concepts in logic and then introduce
the STRIPS planning problem extended with the concept of regression.

Planning with Regression Analysis in Transaction Logic 47

We assume denumerable pairwise disjoint sets of variables V, constants C,
extensional predicate symbols Pext, and intensional predicate symbols Pint. As
usual, atoms are formed by applying predicate symbols to ordered lists of con-
stants or variables. Extending the logical signature with function symbols is
straightforward in this framework, but we will not do it, as this is tangential to
our aims. An atom is extensional if p ∈ Pext and intensional if p ∈ Pint.
A literal is either an atom P or a negated extensional atom ¬P . Negated inten-
sional atoms are not allowed (but such an extension is possible). In the original
STRIPS, all predicates were extensional, and the addition of intentional pred-
icates to STRIPS is a major enhancement, which allows us to deal with the
so-called ramification problem [14], i.e., with indirect consequences of actions.
Table 1 shows the syntax of our language.

Table 1. The syntax of the language for representing STRIPS planning problems.

Extensional predicates represent database facts: they can be directly manip-
ulated (inserted or deleted) by actions. Intensional predicate symbols are used
for atomic statements defined by rules—they are not affected by actions directly.
Instead, actions make extensional facts true or false and this indirectly affects
the dependent intensional atoms. These indirect effects are known as action
ramifications in the literature.

A fact is a ground (i.e., variable-free) extensional atom. A set S of literals
is consistent if there is no atom, atm, such that both atm and ¬atm are in S.

A rule is a statement of the form head ← body where head is an intensional
atom and body is a conjunction of literals. A ground instance of a rule, R,
is any rule obtained from R by a substitution of variables with constants from
C such that different occurrences of the same variable are always substituted
with the same constant. Given a set S of literals and a ground rule of the form
atm ← �1 ∧ · · · ∧ �m, the rule is true in S if either atm ∈ S or {�1, . . . , �m} �⊆ S.
A (possibly non-ground) rule is true in S if all of its ground instances are true
in S.

Definition 1 (State). Given a set R of rules, a state is a consistent set
S = Sext ∪ Sint of literals such that

1. For each fact atm, either atm ∈ Sext or ¬atm ∈ Sext.
2. Every rule in R is true in S. �

48 R. Basseda and M. Kifer

Definition 2 (STRIPS Action). A STRIPS action is a triple of the form
α = 〈pα(X1, ...,Xn), P reα, Eα〉, where

– pα(X1, ...,Xn) is an intensional atom in which X1, ...,Xn are variables and
pα ∈ Pint is a predicate that is reserved to represent the action α and can be
used for no other purpose;

– Preα, called the precondition of α, is a set that may include extensional as
well as intensional literals;

– Eα, the effect of α, is a consistent set that may contain extensional literals
only;

– The variables in Preα and Eα must occur in {X1, ...,Xn}.1 �

Note that the literals in Preα can be both extensional and intensional, while the
literals in Eα can be extensional only.

Definition 3 (Execution of a STRIPS Action). A STRIPS action α is exe-
cutable in a state S if there is a substitution θ : V −→ C such that θ(Preα) ⊆ S.
A result of the execution of α with respect to θ is the state, denoted θ(α)(S),
defined as (S \ ¬θ(Eα)) ∪ θ(Eα), where ¬E = {¬� | � ∈ E}. In other words,
θ(α)(S) is S with all the effects of θ(α) applied. When α is ground, we simply
write α(S). �

Note that S′ is well-defined since θ(Eα) is unique and consistent. Observe
also that, if α has variables, the result of an execution, S′, depends on the chosen
substitution θ.

The following simple example illustrates the above definition. We follow the
standard logic programming convention whereby lowercase symbols represent
constants and predicate symbols. The uppercase symbols denote variables that
are implicitly universally quantified outside of the rules.

Example 1. Consider a world consisting of just two blocks and the action
pickup = 〈pickup(X,Y), {clear(X)}, {¬on(X,Y), clear(Y)}〉. Consider also the
state S = {clear(a),¬clear(b), on(a, b),¬on(b, a)}. Then the result of the execu-
tion of pickup at state S with respect to the substitution {X → a, Y → b}
is S′ = {clear(a), clear(b),¬on(a, b),¬on(b, a)}. It is also easy to see that
pickup cannot be executed at S with respect to any substitution of the form
{X →b, Y → ...}. �

Definition 4 (Planning Problem). A planning problem 〈R, A, G,S〉 con-
sists of a set of rules R, a set of STRIPS actions A, a set of literals G, called
the goal of the planning problem, and an initial state S. A sequence of actions
σ = α1, . . . , αn is a planning solution (or simply a plan) for the planning
problem if:

– α1, . . . , αn ∈ A; and

1 Requiring all variables in Preα to occur in {X1, ..., Xn} is not essential: we can easily
extend our framework and consider the extra variables to be existentially quantified.

Planning with Regression Analysis in Transaction Logic 49

– there is a sequence of states S0,S1, . . . ,Sn such that
• S = S0 and G ⊆ Sn (i.e., G is satisfied in the final state);
• for each 0 < i ≤ n, αi is executable in state Si−1 and the result of that

execution (for some substitution) is the state Si.
In this case we will also say that S0,S1, . . . ,Sn is an execution of σ. �

Definition 5 (Non-redundant Plan). Given a planing problem 〈R, A, G,S〉
and a sequence of actions σ = α1, . . . , αn, we call σ a non-redundant plan for
〈R, A, G,S〉 if and only if:

– σ is a planning solution for 〈R, A, G,S〉;
– None of σ’s sub-sequences is a planning solution for the given planning prob-

lem.

In other words, removing any action from σ either makes the sequence non-
executable at S or G is not satisfied after the execution. �

In this section, we give a formal definition of the regression of literals through
STRIPS actions. Section 4 shows how one can compute the regression of a literal
through an action.

Definition 6 (Regression of a STRIPS Action). Consider a STRIPS
action α = 〈p(X), P re,E〉 and a consistent set of fluents L. The regression
of L through α, denoted R(α,L),2 is a set of actions such that, for every
β ∈ R(α,L), β = 〈p(X), P reβ , E〉, where Preβ ⊇ Pre is a minimal (with
respect to �) set of fluents satisfying the following condition: For every state
S and substitution θ such that θ(α)(S) exists, if S |= θ(Preβ) ∧ θ(L), then
θ(α)(S) |= θ(L). In other words, β has the same effects as α, but its precondi-
tion is more restrictive and it preserves (does not destroy) the set of literals L.

Each action in R(α,L) will also be called a regression of L via α. �

The minimal set of fluents in this definition is, as noted, with respect to
subset, i.e., there is no action β′ = 〈p(X), P reβ′ , E〉 such that Preβ′ � Preβ

and β′ satisfies the conditions of Definition 6.
Consider β ∈ R(α,L) and let β̌ = 〈p(X), P reβ ∪ L,E〉. We will call β̌ a

restricted regression of L through α and denote the set of such actions by
Ř(α,L). We will mostly use the restricted regressions of actions in the represen-
tation of RSTRIPS planning algorithm.

3 Overview of Transaction Logic

To make this paper self-contained, we provide a brief introduction to the relevant
subset of T R [5,7–10] needed for the understanding of this paper.

2 We simply write R(α, �) whenever L just contains a single literal �.

50 R. Basseda and M. Kifer

As an extension of first-order predicate calculus, T R shares much of its
syntax with that calculus. One of the new connectives that T R adds to the
calculus is the serial conjunction , denoted ⊗. It is binary associative, and
non-commutative. The formula φ ⊗ ψ represents a composite action of execu-
tion of φ followed by an execution of ψ. When φ and ψ are regular first-order
formulas, φ ⊗ ψ reduces to the usual first-order conjunction, φ ∧ ψ. The logic
also introduces other connectives to support hypothetical reasoning, concurrent
execution, etc., but these are not going to be used here.

To take the frame problem out of many considerations in T R, it has an exten-
sible mechanism of elementary updates (see [6,7,9,10]). Due to the definition
of STRIPS actions, we just need the following two types of elementary updates
(actions): +p(t1, . . . , tn) and −p(t1, . . . , tn), where p(t1, . . . , tn) denotes an exten-
sional atom. Given a state S and a ground elementary action +p(a1, . . . , an), an
execution of +p(a1, . . . , an) at state S deletes the literal ¬p(a1, . . . , an) and adds
the literal p(a1, . . . , an). Similarly, executing −p(a1, . . . , an) results in a state
that is exactly like S, but p(a1, . . . , an) is deleted and ¬p(a1, . . . , an) is added.
If p(a1, . . . , an) ∈ S, the action +p(a1, . . . , an) has no effect, and similarly for
−p(a1, . . . , an).

We define complex actions using serial rules, which are statements of
the form

h ← b1 ⊗ b2 ⊗ . . . ⊗ bn. (1)

where h is an atomic formula denoting the complex action and b1, ..., bn are
literals or elementary actions. This means that h is a complex action and one
way to execute h is to execute b1 then b2, etc., and finally to execute bn. Note
that we have regular first-order as well as serial-Horn rules. For simplicity, we
assume that the sets of intentional predicates that can appear in the heads of
regular rules and those in the heads of serial rules are disjoint. Extensional atoms
and intentional atoms that can appear in the states (see Definition 1) will be
called fluents. Note that a serial rule all of whose body literals are fluents is
essentially a regular rule, since all the ⊗-connectives can be replaced with ∧.
Therefore, one can view the regular rules as a special case of serial rules.

The following example illustrates the above concepts where we continue to use
the standard logic programming convention regarding capitalization of variables,
which are assumed to be universally quantified outside of the rules. It is common
practice to omit quantifiers.

move(X,Y) ← (on(X,Z) ∧ clear(X)
∧ clear(Y) ∧ ¬tooHeavy(X))⊗

−on(X,Z) ⊗ +on(X,Y)⊗
−clear(Y).

tooHeavy(X) ← weight(X,W) ∧ limit(L)∧
W < L.

? − move(blk1, blk15) ⊗ move(SomeBlk, blk1).

Here on, clear, tooHeavy, weight, etc., are fluents and move is an action. The pred-
icate tooHeavy is an intentional fluent, while on, clear, and weight are extensional

Planning with Regression Analysis in Transaction Logic 51

fluents. The actions +on(...), −clear(...), and −on(...) are elementary and the
intentional predicate move is a complex action. This example illustrates several
features of Transaction Logic. The first rule is a serial rule defining a complex
action of moving a block from one place to another. The second rule defines the
intensional fluent tooHeavy, which is used in the definition of move (under the
scope of default negation). As the second rule does not include any action, it is
a regular rule.

The last statement above is a request to execute a composite action, which
is analogous to a query in logic programming. The request is to move block blk1
from its current position to the top of blk15 and then find some other block and
move it on top of blk1. Traditional logic programming offers no logical seman-
tics for updates, so if after placing blk1 on top of blk15 the second operation
(move(SomeBlk, blk1)) fails (say, all available blocks are too heavy), the effects
of the first operation will persist and the underlying database becomes corrupted.
In contrast, Transaction Logic gives update operators a logical semantics of an
atomic database transaction. This means that if any part of the transaction fails,
the effect is as if nothing was done at all. For example, if the second action in our
example fails, all actions are “backtracked over” and the underlying database
state remains unchanged.

T R’s semantics is given in purely model-theoretic terms and here we will
just give an informal overview. The truth of any action in T R is determined
over sequences of states—execution paths—which makes it possible to think
of truth assignments in T R’s models as executions. If an action, ψ, defined by a
set of serial rules, P, evaluates to true over a sequence of states D0, . . . ,Dn, we
say that it can execute at state D0 by passing through the states D1, ..., Dn−1,
ending in the final state Dn. This is captured by the notion of executional
entailment , which is written as follows:

P,D0 . . .Dn |= ψ (2)

Due to lack of space, we put more examples about T R in the full report.3

Various inference systems for serial-Horn T R [7] are similar to the well-known
SLD resolution proof strategy for Horn clauses plus some T R-specific inference
rules and axioms. Given a set of serial rules, P, and a serial goal, ψ (i.e., a formula
that has the form of a body of a serial rule such as (1), these inference systems
prove statements of the form P,D · · · � ψ, called sequents. A proof of a sequent
of this form is interpreted as a proof that action ψ defined by the rules in P can
be successfully executed starting at state D.

An inference succeeds iff it finds an execution for the transaction ψ.
The execution is a sequence of database states D1, . . . , Dn such that
P,DD1 . . .Dn � ψ. We will use the following inference system in our planning
application. For simplicity, we present only a version for ground facts and rules.
The inference rules can be read either top-to-bottom (if top is proved then bottom
is proved) or bottom-to-top (to prove bottom one needs to prove top).

3 http://ewl.cewit.stonybrook.edu/planning/RSTRIPS-TR-full.pdf.

http://ewl.cewit.stonybrook.edu/planning/RSTRIPS-TR-full.pdf

52 R. Basseda and M. Kifer

Definition 7 (T R Inference System). Let P be a set of rules (serial or reg-
ular) and D, D1, D2 denote states.

– Axiom: P,D · · · � (), where () is an empty clause (which is true at every
state).

– Inference Rules
1. Applying transaction definition: Suppose t ← body is a rule in P.

P,D · · · � body ⊗ rest

P,D · · · � t ⊗ rest
(3)

2. Querying the database: If D |= t then

P,D · · · � rest

P,D · · · � t ⊗ rest
(4)

3. Performing elementary updates: If the elementary update t changes the
state D1 into the state D2 then

P,D2 · · · � rest

P,D1 · · · � t ⊗ rest
(5)

A proof of a sequent, seqn, is a series of sequents, seq1, seq2, . . . , seqn−1,
seqn, where each seqi is either an axiom-sequent or is derived from earlier
sequents by one of the above inference rules. This inference system has been
proven sound and complete with respect to the model theory of T R [7]. This
means that if φ is a serial goal, the executional entailment P,D0 D1 . . .Dn |= φ
holds if and only if there is a proof of P,D0 · · · � φ over the execution path
D0,D1, . . . ,Dn. In this case, we will also say that such a proof derives P,D0

D1 . . .Dn � φ.

4 Computation of Regression

In this section, we briefly explain how the previously introduced regression of
actions (Definition 6) can be computed. This computation is a key component
of the RSTRIPS planning algorithm.

In the following we will be using an identity operator, =, which will be
treated as an immutable extensional predicate, i.e., a predicate defined by a
non-changeable set of facts: For any state S and a pair of constants or ground
fluents � and �′, (� = �′) ∈ S if and only if � and � are identical. Similarly,
non-identity is defined as follows: � �= �′ ∈ S if and only if �, �′ are distinct.

To illustrate regression, consider a STRIPS action copy =
〈copy(Src,Dest, V), {value(Src, V)}, {¬value(Dest, V ′), value(Dest, V)}〉 from
the Register Exchange example in [2]. For convenience, this example is also
found in the full report4 along with RSTRIPS planning rules. Here, copy ∈
4 http://ewl.cewit.stonybrook.edu/planning/RSTRIPS-TR-full.pdf.

http://ewl.cewit.stonybrook.edu/planning/RSTRIPS-TR-full.pdf

Planning with Regression Analysis in Transaction Logic 53

R(copy, value(Src, V)) since for every state S and substitution θ such that
θ(copy)(S) exists, if S |= θ(value(Src, V)), then θ(α)(S) |= θ(value(Src, V)).
This example is a special case of the following property of regression, which
directly follows from the definitions: if � is an extensional literal and α =
〈p(X), P re,E〉 is a STRIPS action,

– R(α, �) = ∅ if and only if, for every ground substitution, ¬θ(�) ∈ θ(E).
– R(α, �) = {α} if and only if, for every ground substitution ¬θ(�) /∈ θ(E).

The following proposition and lemmas present a method to compute regres-
sion. The method is complete for extensional literals; for intentional literals, it
yields some, but not always all, regressions.

Proposition 1 (Regression of Sets of Literals). Given a set of literals L =
L1∪L2 and a STRIPS action α = 〈p(X), P reα, Eα〉, let β1 ∈ R(α,L1) and β2 ∈
R(α,L2), where β1 = 〈p(X), P reβ1 , Eα〉 and β2 = 〈p(X), P reβ2 , Eα〉. There is
some β = 〈p(X), P reβ , Eα〉 such that Preβ ⊆ Preβ1 ∪Preβ2 and β ∈ R(α,L).

Proof. From the assumptions, it follows that for every state S and substitu-
tion θ such that θ(α)(S) exists, if S |= θ(Preβ1 ∪ Preβ2) ∧ θ(L), then
θ(α)(S) |= θ(L).

To find a minimal subset of Preβ1 ∪Preβ2 satisfying the regression property,
one can repeatedly remove elements from Preβ1 ∪Preβ2 and check if the regres-
sion property still holds. When no removable elements remain, we get a desired
set Preβ . �

Lemma 1. (Regression of Extensional Literals). Consider an extensional
literal � and a STRIPS action α = 〈p(X), P re,E〉 where α and � do not share
variables. Let Preβ = Pre ∪ { � �= e |¬e ∈ E ∧ ∃θ s.t. θ(e) = θ(�) }.
Then β ∈ R(α,L), where β = 〈p(X), P reβ , E〉.

Proof. Let S be a state and there is θ such that θ(α)(S) exists. Clearly, if
S |= θ(Preβ), there is no ¬e ∈ E such that θ(e) = θ(�). Therefore, if
S |= θ(Preβ) ∧ θ(�), then θ(α)(S) |= �.

We need to show that Preβ is a minimal set of literals satisfying the above
property. Assume, to the contrary, that there is some Preβ′ , Pre ⊆ Preβ′ �

Preβ , such that for every state S and substitution θ, if θ(α)(S) exists and
S |= θ(Preβ′) ∧ θ(�), then θ(α)(S) |= θ(�). Since Preβ′ ⊂ Preβ , there must
be (� �= e) ∈ Preβ \ Preβ′ . Let θ1 be a substitution such that θ1(e) = θ1(�). In
that case for every S such that θ1(α)(S) exists, S |= θ1(Preβ′) ∧ θ1(�) but
θ1(α)(S) � θ(�), since θ1(¬�) = θ(¬e) ∈ θ1(E). This contradicts the assumption
that θ1(�) ∈ S. Thus Preβ is a minimal set of fluents satisfying the regression
condition for �, so β ∈ R(α, �). �

To illustrate the lemma, consider an extensional literal value(R, V ′′) and
the STRIPS action copy = 〈copy(S,D, V), P recopy, Ecppy〉, where Precopy =
{value(S, V)} and Ecopy = {¬value(D,V ′), value(D,V)}. Then β ∈ R(copy,
value(R, V ′′)), where β = 〈copyβ(S,D, V), P reβ , Ecopy〉 and Preβ = Precopy ∪
{value(R, V ′′) �= value(D,V ′)}.

54 R. Basseda and M. Kifer

Lemma 2 (Regression of Intensional Literals). Consider a set of rules R,
an intensional literal �, and a STRIPS action α = 〈p(X), P re,E〉, where α
and � do not share variables. Let L be a minimal set of extensional literals such
that R ∪ L ∪ {← �} has an SLD-refutation [19]. Then for every β ∈ R(α,L) of
the form β = 〈p(X), P reβ , E〉, there is Lβ ⊆ Preβ ∪L such that 〈p(X), Lβ , E〉 ∈
R(α, �).

Proof. By Definition 6, for every state S and substitution θ such that θ(α)(S)
exists, if S |= θ(Preβ) ∧ θ(L), then θ(α)(S) |= θ(L). Due to the soundness
of SLD-refutation [19], if S |= θ(Preβ) ∧ θ(L) then S |= θ(�); and if
θ(α)(S) |= θ(L) then θ(α)(S) |= θ(�). Therefore, for every state S and
substitution θ such that θ(α)(S) exists, if S |= θ(Preβ) ∧ θ(L) ∧ θ(�), then
θ(α)(S) |= θ(�). Therefore, Preβ ∪ L satisfies the conditions for regressing
� through α except, possibly, minimality. To get the minimality, we can start
removing elements from this set, as in Proposition 1, until a minimal set is
reached. �

Definition 8. (Regression Deterministic Action). A STRIPS action α =
〈p(X), P reα, E〉 is called regression-deterministic if for every set of literals
L, one of the following holds:

– There exists β ∈ R(α,L) such that Preβ \Preα is a set of literals of the form
� = e or � �= e.

– R(α,L) = ∅.

Similarly, a set of actions A is regression-deterministic if all of its actions
are regression-deterministic. �

Clearly, if a set of actions A is regression-deterministic, one can find an action
β ∈ R(α,L) for every α ∈ A and set of literals L using Lemmas 1 and 2. From
now on, we assume that the set of actions A is regression-deterministic and is
closed under regression and restricted regression.

5 The RSTRIPS Planner

The idea of using T R as a planning formalism and an encoding of STRIPS
as a set of T R rules first appeared informally in the unpublished report [7].
The encoding did not include ramification and intensional predicates. Based on
that encoding, we proposed a non-linear and complete planning algorithm in
[2]. In this paper, we extend the original method with regression analysis and
use T R to represent the RSTRIPS planning algorithm. This also generalizes the
original RSTRIPS with intentional predicates and we prove the completeness of
the resulting planner. To the best of our knowledge, completeness of RSTRIPS
has not been proven before.

Regression analysis of literals, as a search heuristic for planners, can be used
to improve the performance of planning strategies. The idea behind planning

Planning with Regression Analysis in Transaction Logic 55

with regression is that the already achieved goals should be protected so that
subsequent actions of the planner would not “unachieve” those goals [27].

To keep our encoding simple, we assume a built-in 3-ary predicate regress
such that, for any state S, regress(L, pα(X), pα′(X)) is true (on any path) if
and only if α′ ∈ (R(α,L)∪ Ř(α,L)∪{α}). During plan construction, RSTRIPS
may consider a subgoal that cannot be achieved without unachieving an already
achieved goal [28]. Instead of checking for unachieved goals after performing
actions (and undoing these actions when an unachieved goal is found), RSTRIPS
verifies that no unachieving will take place before performing each action by
modifying action preconditions using regression.

Definition 9 (Enforcement Operator). Let G be a set of extensional liter-
als. We define Enf(G) = {+p | p ∈ G} ∪ {−p | ¬p ∈ G}. In other words, Enf(G)
is the set of elementary updates that makes G true. �

Next we introduce a natural correspondence between STRIPS actions and
T R rules.

Definition 10 (Actions as T R Rules). Let α = 〈pα(X), P reα, Eα〉 be a
STRIPS action. We define its corresponding T R rule, tr(α), to be a rule of
the form

pα(X) ← (∧�∈Preα
�) ⊗ (⊗u∈Enf(Eα)u). (6)

Note that in (6) the actual order of action execution in the last component,
⊗u∈Enf(Eα)u, is immaterial, since all such executions happen to lead to the same
state.

We now define a set of T R clauses that simulate the well-known RSTRIPS
planning algorithm and extend this algorithm to handle intentional predicates
and rules. The reader familiar with the RSTRIPS planner may notice that these
rules are essentially a natural, more concise, and more general verbalization of
the classical RSTRIPS algorithm [12]. These rules constitute a complete planner
when evaluated with the T R proof theory.

Definition 11 (T R Planning Rules with Regression Analysis). Let Π =
〈R, A, G,S〉 be a STRIPS planning problem (see Definition 4). We define a set
of T R rules, P

r(Π), which simulates the RSTRIPS planning algorithm. P
r(Π)

has three disjoint parts: P
r
R
, P

r
A
, and P

r
G, as described below.

– The P
r
R

part: for each rule p(X) ← p1(X1) ∧ · · · ∧ pn(Xn) in R, P
r
R

is a set of
rules of the following form—one rule per permutation 〈i1, . . . , in〉:

achiever
p(X,L) ← achiever

pi1
(Xi1 , L) ⊗

achiever
pi2

(Xi2 , L ∪ {pi1(Xi1)}) ⊗ . . . ⊗
achiever

pin
(Xin

, L ∪ {pi1(Xi1), . . . , pin−1(Xin−1)})
(P1)

Rule (P1) extends the classical RSTRIPS setting with intentional predicates
and ramification of actions.

56 R. Basseda and M. Kifer

– The part P
r
A

= P
r
actions ∪ P

r
atoms ∪ P

r
achieves is constructed out of the actions

in A as follows:
• P

r
actions: for each α ∈ A, P

r
actions has a rule of the form

pα(X) ← (∧�∈Preα
�) ⊗ (⊗u∈Enf(Eα)u). (P2)

This is the T R rule that corresponds to the action α, introduced in Defin-
ition 10.

• P
r
atoms = P

r
achieved ∪ P

r
enforced has two disjoint parts as follows:

– P
r
achieved: for each extensional predicate p ∈ Pext, P

r
achieved has the

rules

achiever
p(X,L) ← p(X).

achiever
not p(X,L) ← ¬p(X).

(P3)

These rules say that if an extensional literal is true in a state then
that literal has already been achieved as a goal.
– P

r
enforced: for each action α = 〈pα(X), P reα, Eα〉 in A and each

e(Y) ∈ Eα, P
r
enforced has the following rule:

achiever
e(Y ,L) ← regress(L, pα(X), pα′(X))

⊗ executer
pα′ (X,L). (P4)

This rule says that one way to achieve a goal that occurs in the effects
of an action is to execute that action after regressing the “protected”
literals L through that action.

• P
r
achieves: for each action α = 〈pα(X), P reα, Eα〉 in A where Preα =

{p1(X1), . . . , pn(Xn)}, P
r
achieves is a set of rules of the following form,

one per permutation 〈i1, . . . , in〉:

executer
pα

(X,L) ← achiever
pi1

(Xi1 , L) ⊗ s

achiever
pi2

(Xi2 , L ∪ {pi1(Xi1)}) ⊗ . . . ⊗

achiever
pin

(Xin
, L ∪ {pi1(Xi1), . . . , pin−1(Xin−1)})

⊗ pα(X).

(P5)

This means that to execute an action, one must first achieve the precondi-
tion of the action while making sure to not unachieve the already achieved
parts of the precondition.

– P
r
G: Let G = {g1, ..., gk}. Then P

r
G is a set of the following rules, one per

permutation 〈i1, . . . , in〉:

achieveG ← achiever
gi1

(L)
⊗ achiever

gi2
(L ∪ {gi1}) ⊗ . . .

⊗ achiever
gin

(L ∪ {gi1 , . . . , gin−1}).
(P6)

Planning with Regression Analysis in Transaction Logic 57

Due to space limitation, we cannot include an example of T R-based RSTRIPS
planning here. Instead, we refer the reader to Example 3 in the full report.5

Given a set R of rules, a set A of STRIPS actions, an initial state S, and a
goal G, Definition 11 gives a set of T R rules that specify a planning strategy for
that problem. To find a solution for that planning problem, one simply needs to
place the request

? − achieveG . (7)

at a desired initial state and use the T R’s inference system of Sect. 3 to find a
proof. The inference system in question is sound and complete for serial clauses
[5,7,9], and the rules in Definition 11 satisfy that requirement.

As mentioned before, a solution plan for a STRIPS planning problem is a
sequence of actions leading to a state that satisfies the planning goal. Such a
sequence can be extracted by picking out the atoms of the form pα from a
successful derivation branch generated by the T R inference system. Since each
pα uniquely corresponds to a STRIPS action, this provides us with the requisite
sequence of actions that forms a plan.

Suppose seq0, . . . , seqm is a deduction by the T R inference system. Let
i1, . . . , in be exactly those indexes in that deduction where the inference rule
(3) was applied to some sequent using a rule of the form tr(αir

) introduced in
Definition 10. We will call αi1 , . . . , αin

the pivoting sequence of actions. The
corresponding pivoting sequence of states Di1 , . . . ,Din

is a sequence where
each Dir

, 1 ≤ r ≤ n, is the state at which αir
is applied. We will prove that the

pivoting sequence of actions is a solution to the planning problem. The proofs
are found in the full report.

Theorem 1 (Soundness of T R Planning Solutions). Consider a STRIPS
planning problem Π = 〈R, A, G,D0〉 and let P

r(Π) be the corresponding set of
T R rules, as in Definition 11. Then any pivoting sequence of actions in the
derivation of the sequent P

r(Π),D0 . . .Dm � achieveG is a solution plan.

Completeness of a planning strategy means that, for any STRIPS planning
problem, if there is a solution, the planner will find at least one plan.

Theorem 2 (Completeness of T R Planning). Given a STRIPS planning
problem Π = 〈R, A, G,D0〉, let P

r(Π) be the corresponding set of T R rules as
in Definition 11. If there is a plan for Π then T R inference system will fins
some plan using the rules P

r(Π), as described in Definition 11.

Theorem 3 (Decidability). T R-based planners for RSTRIPS always termi-
nates.

6 Conclusion

This paper has demonstrated that the use of Transaction Logic accrues signif-
icant benefits in the area of planning. As an illustration, we have shown that
5 http://ewl.cewit.stonybrook.edu/planning/RSTRIPS-TR-full.pdf.

http://ewl.cewit.stonybrook.edu/planning/RSTRIPS-TR-full.pdf

58 R. Basseda and M. Kifer

sophisticated planning heuristics and algorithms, such as regression analysis and
RSTRIPS, can be naturally represented in T R and that the use of this power-
ful logic opens up new possibilities for generalizations and proving properties of
planning algorithms. For instance, just by using this logic, we were able to extend
RSTRIPS with action ramification almost for free. Furthermore, benefiting from
the proof theory, we were able to establish the completeness and termination of
the resulting strategy. In the full report,6 we also present our experiments that
show that RSTRIPS can be orders of magnitude better than STRIPS both in
time and space. These non-trivial insights were acquired merely due to the use
of T R and not much else. The same technique can be used to cast even more
advanced strategies such as GraphPlan, ABSTRIPS [23], and HTN [20] as T R
rules.

There are several promising directions to continue this work. One is to inves-
tigate other planning strategies and, hopefully, accrue similar benefits. Other
possible directions include non-linear plans and plans with loops [16,17,30]. For
instance non-linear plans could be represented using Concurrent Transaction
Logic [8], while loops are easily representable using recursive actions in T R.

Acknowledgments. We are thankful to the anonymous referees for their thorough
reviews and suggestions.

References

1. Bacchus, F., Kabanza, F.: Using temporal logics to express search con-
trol knowledge for planning. Artif. Intell. 116(12), 123–191 (2000).
http://www.sciencedirect.com/science/article/pii/S0004370299000715

2. Basseda, R., Kifer, M., Bonner, A.J.: Planning with transaction logic. In:
Kontchakov, R., Mugnier, M.-L. (eds.) RR 2014. LNCS, vol. 8741, pp. 29–44.
Springer, Heidelberg (2014)

3. Bonet, B., van den Briel, M.: Flow-based heuristics for optimal planning: landmarks
and merges. In: Chien, S., Do, M.B., Fern, A., Ruml, W. (eds.) Proceedings of the
Twenty Fourth International Conference on Automated Planning and Schedul-
ing, ICAPS 2014. AAAI, Portsmouth (2014). http://www.aaai.org/ocs/index.php/
ICAPS/ICAPS14/paper/view/7933

4. Bonet, B., Geffner, H.: Planning as heuristic search. Artif. Intell. 129(1–2), 5–33
(2001). http://dx.doi.org/10.1016/S0004-3702(01)00108-4

5. Bonner, A., Kifer, M.: Transaction logic programming. In: International Conference
on Logic Programming, pp. 257–282. MIT Press, Budaspest (1993)

6. Bonner, A., Kifer, M.: Applications of transaction logic to knowledgerepresenta-
tion. In: Gabbay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. LNCS, vol. 827, pp. 67–81.
Springer, Heidelberg (1994)

7. Bonner, A., Kifer, M.: Transaction logic programming (or a logic of declarative
and procedural knowledge). Technical report CSRI-323, University of Toronto
(November 1995). http://www.cs.toronto.edu/∼bonner/transaction-logic.html

6 http://ewl.cewit.stonybrook.edu/planning/RSTRIPS-TR-full.pdf.

http://www.sciencedirect.com/science/article/pii/S0004370299000715
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7933
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7933
http://dx.doi.org/10.1016/S0004-3702(01)00108-4
http://www.cs.toronto.edu/~bonner/transaction-logic.html
http://ewl.cewit.stonybrook.edu/planning/RSTRIPS-TR-full.pdf

Planning with Regression Analysis in Transaction Logic 59

8. Bonner, A., Kifer, M.: Concurrency and communication in transaction logic.
In: Joint International Conference and Symposium on Logic Programming,
pp. 142–156. MIT Press, Bonn, September 1996

9. Bonner, A., Kifer, M.: A logic for programming database transactions. In:
Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Systems,
pp. 117–166. Kluwer Academic Publishers, Norwell (1998). Chap. 5

10. Bonner, A.J., Kifer, M.: An overview of transaction logic. Theo. Comput. Sci. 133,
205–265 (1994)

11. Doherty, P., Kvarnström, J., Heintz, F.: A temporal logic-based planning and exe-
cution monitoring framework for unmanned aircraft systems. Auton. Agent. Multi-
Agent Syst. 19(3), 332–377 (2009). http://dx.doi.org/10.1007/s10458-009-9079-8

12. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artif. Intell. 2(34), 189–208 (1971)

13. Gerevini, A., Schubert, L.: Accelerating partial-order planners: some techniques for
effective search control and pruning. J. Artif. Intell. Res. (JAIR) 5, 95–137 (1996)

14. Giunchiglia, E., Lifschitz, V.: Dependent fluents. In: Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI), pp. 1964–1969 (1995)

15. Joslin, D., Pollack, M.E.: Least-cost flaw repair: A plan refinement strategy for
partial-order planning. In: Proceedings of the Twelth National Conference on Arti-
ficial Intelligence, vol. 2, pp. 1004–1009. American Association for Artificial Intelli-
gence, AAAI 1994, Menlo Park (1994). http://dl.acm.org/citation.cfm?id=199480.
199515

16. Kahramanogullari, O.: Towards planning as concurrency. In: Hamza, M.H. (ed.)
Artificial Intelligence and Applications, pp. 387–393. IASTED/ACTA Press,
Orlando (2005)

17. Kahramanoğulları,O.:On linear logic planningandconcurrency. In:Mart́ın-Vide,C.,
Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 250–262. Springer,
Heidelberg (2008)

18. Lin, F.: Applications of the situation calculus to formalizing control and strate-
gic information: the prolog cut operator. Artif. Intell. 103(1–2), 273–294 (1998).
http://dx.doi.org/10.1016/S0004-3702(98)00054-X

19. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag, New York (1984)
20. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice. Mor-

gan Kaufmann Publishers Inc., San Francisco (2004)
21. Nguyen, T.A., Kambhampati, S.: A heuristic approach to planning with incomplete

STRIPS action models. In: Chien, S., Do, M.B., Fern, A., Ruml, W. (eds.) ICAPS
2014. AAAI, Portsmouth (2014). http://www.aaai.org/ocs/index.php/ICAPS/
ICAPS14/paper/view/7919

22. de Nijs, F., Klos, T.: A novel priority rule heuristic: learning from justification. In:
Chien, S., Do, M.B., Fern, A., Ruml, W. (eds.) ICAPS 2014. AAAI, Portsmouth
(2014). http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7935

23. Nilsson, N.: Principles of Artificial Intelligence. Tioga Publication Co., Paolo Alto
(1980)

24. Pollock, J.L.: The logical foundations of goal-regression planning in autonomous
agents. Artif. Intell. 106(2), 267–334 (1998). http://dx.doi.org/10.1016/S0004-
3702(98)00100-3

25. Pommerening, F., Röger, G., Helmert, M., Bonet, B.: Lp-based heuristics for cost-
optimal planning. In: Chien, S., Do, M.B., Fern, A., Ruml, W. (eds.) ICAPS
2014. AAAI, Portsmouth (2014). http://www.aaai.org/ocs/index.php/ICAPS/
ICAPS14/paper/view/7892

http://dx.doi.org/10.1007/s10458-009-9079-8
http://dl.acm.org/citation.cfm?id=199480.199515
http://dl.acm.org/citation.cfm?id=199480.199515
http://dx.doi.org/10.1016/S0004-3702(98)00054-X
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7919
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7919
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7935
http://dx.doi.org/10.1016/S0004-3702(98)00100-3
http://dx.doi.org/10.1016/S0004-3702(98)00100-3
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7892
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7892

60 R. Basseda and M. Kifer

26. Reiter, R.: Knowledge in Action: Logical Foundations for Describing and Imple-
menting Dynamical Systems. MIT Press, Cambridge (2001)

27. Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial
Intelligence, IJCAI 2013, Beijing, China, August 3–9, 2013. IJCAI/AAAI (2013)

28. Shoham, Y.: Artificial Intelligence Techniques in Prolog. Morgan Kaufmann,
New York (2014)

29. Sierra-Santibáñez, J.: Declarative formalization of strategies for action selection:
applications to planning. In: Brewka, G., Moniz Pereira, L., Ojeda-Aciego, M.,
de Guzmán, I.P. (eds.) JELIA 2000. LNCS (LNAI), vol. 1919, p. 133. Springer,
Heidelberg (2000)

30. Srivastava, S., Immerman, N., Zilberstein, S., Zhang, T.: Directed search for gen-
eralized plans using classical planners. In: Proceedings of the 21st International
Conference on Automated Planning and Scheduling (ICAPS-2011). AAAI, June
2011

	Planning with Regression Analysis in Transaction Logic
	1 Introduction
	2 Extended STRIPS-Style Planning
	3 Overview of Transaction Logic
	4 Computation of Regression
	5 The RSTRIPS Planner
	6 Conclusion
	References

