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Abstract. Answer Set Programming (ASP) is logic programming under
the stable model or answer set semantics. During the last decade, this
paradigm has seen several extensions by generalizing the notion of atom
used in these programs. Among these, there are dl-atoms, aggregate
atoms, HEX atoms, generalized quantifiers, and abstract constraints. In
this paper we refer to these constructs collectively as generalized atoms.
The idea common to all of these constructs is that their satisfaction
depends on the truth values of a set of (non-generalized) atoms, rather
than the truth value of a single (non-generalized) atom. Motivated by
several examples, we argue that for some of the more intricate generalized
atoms, the previously suggested semantics provide unintuitive results
and provide an alternative semantics, which we call supportedly stable
or SFLP answer sets. We show that it is equivalent to the major previ-
ously proposed semantics for programs with convex generalized atoms,
and that it in general admits more intended models than other seman-
tics in the presence of non-convex generalized atoms. We show that the
complexity of supportedly stable answer sets is on the second level of the
polynomial hierarchy, similar to previous proposals and to answer sets
of disjunctive logic programs.

1 Introduction

Answer Set Programming (ASP) is a widely used problem-solving framework
based on logic programming under the stable model semantics. The basic lan-
guage relies on Datalog with negation in rule bodies and possibly disjunction in
rule heads. When actually using the language for representing practical knowl-
edge, it became apparent that generalizations of the basic language are necessary
for usability. Among the suggested extensions are aggregate atoms (similar to
aggregations in database queries) [2–5] and atoms that rely on external truth
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valuations [6–9]. These extensions are characterized by the fact that deciding
the truth values of the new kinds of atoms depends on the truth values of a set
of traditional atoms rather than a single traditional atom. We will refer to such
atoms as generalized atoms, which cover also several other extensions such as
abstract constraints, generalized quantifiers, and HEX atoms.

Concerning semantics for programs containing generalized atoms, there have
been several different proposals. All of these appear to coincide for programs
that do not contain generalized atoms in recursive definitions. The two main
semantics that emerged as standards are the PSP semantics [10–12], and the
FLP semantics [13,14] (the latter coinciding with Ferraris stable models [15] for
the language considered in this paper). In a recent paper [16] the relationship
between these two semantics was analyzed in detail; among other, more intricate
results, it was shown that the semantics coincide up to convex generalized atoms.
It was already established earlier that each PSP answer set is also an FLP answer
set, but not vice versa. So for programs containing non-convex generalized atoms,
some FLP answer sets are not PSP answer sets. In particular, there are programs
that have FLP answer sets but no PSP answer sets.

In this paper, we argue that the FLP semantics is still too restrictive, and
some programs that do not have any FLP answer set should instead have
answer sets. In order to illustrate the point, consider a coordination game that
is remotely inspired by the prisoners’ dilemma. There are two players, each of
which has the option to confess or defect. Let us also assume that both players
have a fixed strategy already, which however still depends on the choice of the
other player as well. In particular, each player will confess exactly if both play-
ers choose the same option, that is, if both players confess or both defect. This
situation can be represented using two propositional atoms for “the first player
confesses” and “the second player confesses,” which must be derived true when
“both players choose the same option,” a composed proposition encoded by a
generalized atom. As will be explained later, the FLP semantics does not assign
any answer set to a program encoding this scenario, and therefore also the PSP
semantics will not assign any answer sets to such a program. We observe that
such a program is also incoherent according to a more recent refinement of the
FLP semantics [17], called well-justified FLP.

We point out that this is peculiar, as the scenario in which both players
confess seems like a reasonable one; indeed, even a simple inflationary opera-
tor would result in this solution: starting from the empty set, the generalized
atom associated with “both players choose the same option” is true; therefore,
the atoms associated with “the first player confesses” and “the second player
confesses” are derived true on the first application of the operator, which is also
its fixpoint.

Looking at the reason why this is not an FLP answer set, we observe that it
has two countermodels that prevent it from being an answer set, one in which
only the first player confesses, and another one in which only the second player
confesses (see Fig. 1). Both of these countermodels are models in the classical
sense, but they are weak in the sense that they are not supported, meaning
that there is no rule justifying their truth. This is a situation that does not
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{p1, p2)}
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Fig. 1. Interpretations, supported (solid) and unsupported models (dashed) of the
prisoners’ dilemma example, where p1 and p2 are the propositions “the first player
confesses” and “the first player confesses,” respectively.

occur for programs without generalized atoms, which always have supported
countermodels. We argue that one needs to look at supported countermodels,
instead of looking at minimal countermodels. It turns out that doing this yields
the same results not only for programs without generalized atoms, but also for
programs containing convex generalized atoms, which we believe is the reason
why this issue has not been noticed earlier.

This paper is first of all a position paper, in which we argue that the existing
FLP and PSP semantics are too restrictive on the one hand, and that instead of
defining restricting conditions, some conditions need be relaxed. We then proceed
to define a new semantics along these lines and call it supportedly stable or
SFLP (supportedly FLP) semantics. It provides answer sets for more programs
than FLP and PSP, but is shown to be equal on convex programs. Analyzing
the computational complexity of the new semantics, we show that it is in the
same classes as the FLP and PSP semantics when considering polynomial-time
computable generalized atoms. However, it should also be mentioned that the
new semantics has its own peculiarities, for instance adding “tautological” rules
like p ← p can change the semantics of the program. These peculiarities suggest
that a stronger notion of support is required for obtaining a solid semantics
extending FLP.

The remainder of this paper is structured as follows. In Sect. 2, we present
the notation and FLP semantics for programs with generalized atoms. After
that, in Sect. 3 we analyze issues with the FLP semantics and define the SFLP
semantics. In Sect. 4, we prove several useful properties of the new semantics.
Finally, in Sect. 6, we discuss our results and provide outlines for future work.

2 Background

In this section we present the notation used in this paper and present the FLP
semantics [13,14]. To ease the presentation, we will directly describe a proposi-
tional language here. This can be easily extended to the more usual ASP nota-
tions of programs involving variables, which stand for their ground versions (that
are equivalent to a propositional program).
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2.1 Notation

Let B be a countable set of propositional atoms. A generalized atom A on B is
a pair (DA, fA), where DA ⊆ B is the domain of A, and fA is a mapping from
2DA to Boolean truth values {T,F}. To ease the presentation, we assume that
the domain of each generalized atom is a finite set.

Example 1. Let p1 represent the proposition “the first player confesses,” and
p2 represent the proposition “the second player confesses.” A generalized atom
A representing the composed proposition “both players choose the same option”
is such that DA = {p1, p2}, fA({}) = fA({p1, p2}) = T, and fA({p1}) =
fA({p2}) = F. �

A general rule r is of the following form:

H(r) ← B(r) (1)

where H(r) is a disjunction a1 ∨ · · · ∨ an (n ≥ 0) of propositional atoms in B
referred to as the head of r, and B(r) is a generalized atom on B called the
body of r. For convenience, H(r) is sometimes considered a set of propositional
atoms. A general program P is a set of general rules. Let At(P ) denote the set
of propositional atoms occurring in P .

It should be noted that this is a very abstract notation, aiming to be general
enough to encompass many concrete languages. Languages adopted in practical
systems will feature concrete syntax in place of generalized atoms, for exam-
ple aggregate atoms or dl-atoms. In the sequel, we will at times also use more
concrete notation in examples to ease reading.

2.2 FLP Semantics

An interpretation I is a subset of B. I is a model for a generalized atom A,
denoted I |= A, if fA(I ∩ DA) = T. Otherwise, if fA(I ∩ DA) = F, I is not a
model of A, denoted I �|= A. I is a model of a rule r of the form (1), denoted
I |= r, if H(r) ∩ I �= ∅ whenever I |= B(r). I is a model of a program P ,
denoted I |= P , if I |= r for every rule r ∈ P .

Note that the fact that rule bodies are forced to be a single generalized atom
is not really a limitation, and will ease the presentation of the results in the
paper. In fact, a single generalized atom is sufficient for modeling conjunctions,
default negation, aggregates and similar constructs.

Example 2. A conjunction p1 ∧ · · · ∧ pn of n ≥ 1 propositional atoms is equiv-
alently represented by a generalized atom A such that DA = {p1, . . . , pn}, and
fA(B) = T if and only if B = {p1, . . . , pn}.

A conjunction p1, . . . , pm,∼ pm+1, . . . ,∼ pn of literals, where n ≥ m ≥ 0,
p1, . . . , pn are propositional atoms and ∼ denotes negation as failure, is equiv-
alently represented by a generalized atom A such that DA = {p1, . . . , pn}, and
fA(B) = T if and only if {p1, . . . , pm} ⊆ B and B ∩ {pm+1, . . . , pn} = ∅.
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An aggregate COUNT ({p1, . . . , pn}) �= k, where n ≥ k ≥ 0, and p1, . . . , pn
are propositional atoms, is equivalently represented by a generalized atom A
such that DA = {p1, . . . , pn}, and fA(B) = T if and only if |B ∩ DA| �= k. �

In the following, when convenient, we will represent generalized atoms as
conjunctions of literals or aggregate atoms. Subsets of B mapped to true by such
generalized atoms will be those satisfying the associated conjunction.

Example 3. Consider the following rules:

r1 : a ← COUNT ({a, b}) �= 1 r2 : b ← COUNT ({a, b}) �= 1

The following are general programs that will be used for illustrating the differ-
ences between the semantics considered in this paper:

P1 := {r1; r2} P4 := {r1; r2; a ∨ b ←}
P2 := {r1; r2; a ← b; b ← a} P5 := {r1; r2; a ←∼ b}
P3 := {r1; r2;←∼ a;←∼ b}

Note that if a and b are replaced by p1 and p2, the aggregate COUNT ({a, b}) �= 1
is equivalent to the generalized atom A from Example 1, and therefore program
P1 encodes the coordination game depicted in the introduction. �

Generalized atoms can be partitioned into two classes, referred to as convex
and non-convex, according to the following definition: A generalized atom A is
convex if for all triples I, J,K of interpretations such that I ⊂ J ⊂ K, I |= A
and K |= A implies J |= A. A convex program is a general program whose
rules have convex bodies. Note that convex generalized atoms are closed under
conjunction, but not under disjunction or complementation. In more detail, the
conjunction of two generalized atoms A,A′, denoted A∧A′, is such that DA∧A′ =
DA ∪ DA′ , and for all I ⊆ DA∧A′ , fA∧A′(I) = fA(I ∩ DA) ∧ fA′(I ∩ DA′). The
disjunction DA∨A′ is defined similarly, and the complementation A of A is such
that DA = DA, and for all I ⊆ DA, fA(I) = ¬fA(I). To show that convex
generalized atoms are not closed under disjunction and complementation, an
example is sufficient. Let A,A′ be such that DA = DA′ = {a, b}, fA(I) = T if
and only if I = ∅, and fA′(I) = T if and only if I = {a, b}. Hence, A,A′ are
convex, but A ∨ A′ is not. However, its complement A ∨ A′ is convex because
true only for {a} and {b}. Closure with respect to conjunction is proved by the
following claim.

Lemma 1. The conjunction A∧A′ of two convex generalized atoms is a convex
generalized atom.

Proof. Let I ⊂ J ⊂ K be such that I |= A ∧ A′ and K |= A ∧ A′. Hence,
I |= A, K |= A, I |= A′, and K |= A′ by definition of A ∧ A′. Since A and A′

are convex, we have J |= A and J |= A′, which in turn imply J |= A ∧ A′. �

We now describe a reduct-based semantics, usually referred to as FLP, which
has been introduced and analyzed in [13,14].
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Definition 1 (FLP Reduct). The FLP reduct P I of a program P with respect
to I is defined as the set {r ∈ P | I |= B(r)}.
Definition 2 (FLP Answer Sets). I is an FLP answer set of P if I |= P
and for each J ⊂ I it holds that J �|= P I . Let FLP (P ) denote the set of FLP
answer sets of P .

Example 4. Consider the programs from Example 3:

– The models of P1 are {a}, {b} and {a, b}, none of which is an FLP answer
set. Indeed, P

{a}
1 = P

{b}
1 = ∅, which have the trivial model ∅, which is of

course a subset of {a} and {b}. On the other hand P
{a,b}
1 = P1, and so

{a} |= P
{a,b}
1 , where {a} ⊂ {a, b}. We will discuss in the next section why this

is a questionable situation.
– Concerning P2, it has one model, namely {a, b}, which is also its unique FLP

answer set. Indeed, P {a,b}
2 = P2, and hence the only model of P {a,b}

2 is {a, b}.
– Interpretation {a, b} is also the unique model of program P3, which however

has no FLP answer sets. Here, P {a,b}
3 = P1, hence similar to P1, {a} |= P

{a,b}
3

and {a} ⊂ {a, b}.
– P4 instead has two FLP answer sets, namely {a} and {b}, and a further model

{a, b}. In this case, P {a}
4 = {a ∨ b ←}, and no proper subset of {a} satisfies

it. Also P
{b}
4 = {a ∨ b ←}, and no proper subset of {b} satisfies it. Instead,

for {a, b}, we have P
{a,b}
4 = P4, and hence {a} |= P

{a,b}
4 and {a} ⊂ {a, b}.

– Finally, P5 has tree models, {a}, {b} and {a, b}, but only one answer set,
namely {a}. In fact, P {a}

5 = {a ←∼ b} and ∅ is not a model of the reduct. On
the other hand, ∅ is a model of P {b}

5 = ∅, and {a} is a model of P {a,b}
5 = P1.

Models and FLP answer sets of these programs are summarized in Table 1. �

3 SFLP Semantics

As noted in the introduction, the fact that P1 has no FLP answer sets is striking.
If we first assume that both a and b are false (interpretation ∅), and then apply a
generalization of the well-known one-step derivability operator, we obtain truth
of both a and b (interpretation {a, b}). Applying this operator once more again
yields the same interpretation, a fix-point. Interpretation {a, b} is also a sup-
ported model, that is, for all true atoms there exists a rule in which this atom
is the only true head atom, and in which the body is true.

It is instructive to examine why this seemingly robust model is not an FLP
answer set. Its reduct is equal to the original program, P {a,b}

1 = P1. There are
therefore two models of P1, {a} and {b}, that are subsets of {a, b} and therefore
inhibit {a, b} from being an FLP answer set. The problem is that, contrary to
{a, b}, these two models are rather weak, in the sense that they are not supported.
Indeed, when considering {a}, there is no rule in P1 such that a is the only true
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Table 1. (Supported) models and (S)FLP answer sets of programs in Example 3, where
A is the generalized atom COUNT ({a, b}) �= 1.

Rules Models FLP Supported Models SFLP

P1 a ← A b ← A {a}, {b}, {a, b} — {a, b} {a, b}
P2 a ← A b ← A {a, b} {a, b} {a, b} {a, b}

a ← b b ← a

P3 a ← A b ← A {a, b} — {a, b} {a, b}
←∼ a ←∼ b

P4 a ← A b ← A {a}, {b}, {a, b} {a}, {b} {a}, {b}, {a, b} {a}, {b}
a ∨ b ←

P5 a ← A b ← A {a}, {b}, {a, b} {a} {a}, {a, b} {a}, {a, b}
a ←∼ b

atom in the rule head and the body is true in {a}: The only available rule with
a in the head has a false body. The situation for {b} is symmetric.

It is somewhat counter-intuitive that a model like {a, b} should be inhibited
by two weak models like {a} and {b}. Indeed, this is a situation that normally
does not occur in ASP. For programs that do not contain generalized atoms,
whenever one finds a J ⊂ I such that J |= P I there is for sure also a K such
that J ⊆ K ⊂ I, K |= P I and K is supported. Indeed, we will show in Sect. 4
that this is the case also for programs containing only convex generalized atoms.
Our feeling is that since such a situation does not happen for a very wide set of
programs, it has been overlooked so far.

We will now attempt to repair this kind of anomaly by stipulating that one
should only consider supported models for finding inhibitors of answer sets. In
other words, one does not need to worry about unsupported models of the reduct,
even if they are subsets of the candidate. Let us first define supported models
explicitly.

Definition 3 (Supportedness). A model I of a program P is supported if for
each a ∈ I there is a rule r ∈ P such that I ∩ H(r) = {a} and I |= B(r). In
this case we will write I |=s P .

Example 5. Continuing Example 4, programs P1, P2, and P3 have one sup-
ported model, namely {a, b}. The model {a} of P1 is not supported because the
body of the the rule with a in the head has a false body with respect to {a}. For
a symmetric argument, model {b} of P1 is not supported either. The supported
models of P4, instead, are {a}, {b}, and {a, b}, so all models of the program are
supported. Note that both models {a} and {b} have the disjunctive rule as the
only supporting rule for the respective single true atom, while for {a, b}, the two
rules with generalized atoms serve as supporting rules for a and b. Finally, the
supported models of P5 are {a} and {a, b}. Supported models of these programs
are summarized in Table 1. �
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We are now ready to formally introduce the new semantics. In this paper we
will normally refer to it as SFLP answer sets or SFLP semantics, but also call
it supportedly stable models occasionally.

Definition 4 (SFLP Answer Sets). I is an SFLP answer set of P if I |=s P
and for each J ⊂ I it holds that J �|=s P I . Let SFLP (P ) denote the set of SFLP
answer sets of P .

Example 6. Consider again the programs from Example 3.

– Recall that P1 has only one supported model, namely {a, b}, and P
{a,b}
1 = P1,

but ∅ �|=s P
{a,b}
1 , {a} �|=s P

{a,b}
1 , and {b} �|=s P

{a,b}
1 , therefore no proper subset

of {a, b} is a supported model. Hence, it is an SFLP answer set.
– Concerning P2, it has one model, namely {a, b}, which is supported and also

its unique SFLP answer set. Indeed, recall that P
{a,b}
2 = P2, and hence no

proper subset of {a, b} can be a model (let alone a supported model) of P {a,b}
2 .

– Interpretation {a, b} is the unique model of program P3, which is supported
and also its SFLP answer set. In fact, P {a,b}

3 = P1.
– P4 has two SFLP answer sets, namely {a} and {b}. In this case, recall P {a}

4 =
{a∨b ←}, and no proper subset of {a} satisfies it. Also P

{b}
4 = {a∨b ←}, and

no proper subset of {b} satisfies it. Instead, for {a, b}, we have P
{a,b}
4 = P4,

hence since {a} |=s P
{a,b}
4 , and {b} |=s P

{a,b}
4 , we obtain that {a, b} is not an

SFLP answer set.
– Finally, P5 has two SFLP answer sets, namely {a} and {a, b}. In fact, P {a}

5 =
{a ←∼ b} and P

{a,b}
5 = P1.

The programs, models, FLP answer sets, supported models, and SFLP answer
sets are summarized in Table 1. �

An alternative, useful characterization of SFLP answer sets can be given in
terms of Clark’s completion [18]. In fact, it is well-known that supported models
of a program are precisely the models of its completion. We define this notion in
a somewhat non-standard way, making use of the concept of generalized atom.
We first define the completion of a propositional atom p with respect to a general
program P as a generalized atom encoding the supportedness condition for p.

Definition 5. The completion of a propositional atom p ∈ B with respect to a
general program P is a generalized atom A such that DA = At(P ), and for all
I ⊆ DA, fA(I) = T if and only if p ∈ I and there is no rule r ∈ P for which
I |= B(r) and I ∩ H(r) = {a}. Let comp(p, P ) denote the completion of p with
respect to P .

These generalized atoms are then used to effectively define a program whose
models are the supported model of P .

Definition 6. The completion of a general program P is a general program
comp(P ) extending P with a rule ← comp(p, P ) for each propositional atom
p ∈ At(P ).
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Example 7. Consider again the programs from Example 3.

– Program comp(P1) extends P1 with the following rules:

← a ∧ COUNT ({a, b}) = 1 ← b ∧ COUNT ({a, b}) = 1

– Program comp(P2) extends P2 with the following rules:

← a ∧ COUNT ({a, b}) = 1∧ ∼ b ← b ∧ COUNT ({a, b}) = 1∧ ∼ a

– Program comp(P3) is equal to comp(P1), and program comp(P4) extends P4

with the following rules:

← a ∧ COUNT ({a, b}) = 1 ∧ b ← b ∧ COUNT ({a, b}) = 1 ∧ a

– Program comp(P5) instead extends P5 with the following rules:

← a ∧ COUNT ({a, b}) = 1 ∧ b ← b ∧ COUNT ({a, b}) = 1

Note that the only model of comp(P1), comp(P2), and comp(P3) is {a, b}. As for
comp(P4), and comp(P5), their models are {a}, {b}, and {a, b}. �

Proposition 1. Let P be a general program, and I be an interpretation. Then,
I |=s P if and only if I |= comp(P ).

This characterization, which follows directly from [18], provides us with a
means for implementation that relies only on model checks, rather than sup-
portedness checks.

Proposition 2. Let P be a general program, and I be an interpretation. Then,
I is an SFLP answer set of P if I |= comp(P ) and for each J ⊂ I it holds that
J �|= comp(P I).

4 Properties

The new semantics has a number of interesting properties that we report in this
section. First of all, it is an extension of the FLP semantics, in the sense that
each FLP answer set is also an SFLP answer set.

Theorem 1. Let P be a general program. Then, FLP (P ) ⊆ SFLP (P ).

Proof. Let I be an FLP answer set of P . Hence, each J ⊂ I is such that J �|= P I .
Thus, we can conclude that J �|=s P I for any J ⊂ I. Therefore, I is a SFLP
answer set of P . �

The inclusion is strict in general. In fact, P1 is a simple program for which
the two semantics disagree (see Examples 3–6 and Table 1). On the other hand,
the two semantics are equivalent for a large class of programs, as shown below.

Theorem 2. If P is a convex program then FLP (P ) = SFLP (P ).
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Proof. FLP (P ) ⊆ SFLP (P ) holds by Theorem 1. For the other direction, con-
sider an interpretation I not being an FLP answer set of P . Hence, there is J ⊂ I
such that J |= P I . We also assume that J is a subset-minimal model of P I ,
that is, there is no K ⊂ J such that K |= P I . We shall show that J |=s P I . To
this end, suppose by contradiction that there is p ∈ J such that for each r ∈ P I

either J �|= B(r) or J ∩ H(r) �= {p}. Consider J \ {p} and a rule r ∈ P I such
that J \{p} |= B(r). Since r ∈ P I , I |= B(r), and thus J |= B(r) because B(r)
is convex. Therefore, J ∩H(r) �= {p}. Moreover, J ∩H(r) �= ∅ because J |= P I

by assumption. Hence, (J \ {p}) ∩ H(r) �= ∅, and therefore J \ {p} |= P I . This
contradicts the assumption that J is a subset-minimal model of P I . �

We will now focus on computational complexity. We consider here the prob-
lem of determining whether an SFLP answer set exists. We note that the only
difference to the FLP semantics is in the stability check. For FLP, subsets need to
be checked for being a model. For SFLP, instead, subsets need to be checked for
being a supported model. Intuitively, one would not expect that this difference
can account for a complexity jump, which is confirmed by the next result.

Theorem 3. Let P be a general program whose generalized atoms are polynomial-
time computable functions. Checking whether SFLP (P ) �= ∅ is in ΣP

2 in general;
it is ΣP

2 -hard already in the disjunction-free case if at least one form of non-convex
generalized atom is permitted. The problem is NP-complete if P is disjunction-free
and convex.

Proof. For the membership in ΣP
2 one can guess an interpretation I and check

that there is no J ⊂ I such that J |=s P . The check can be performed by a
coNP oracle. To prove ΣP

2 -hardness we note that extending a general program P
by rules p ← p for every p ∈ At(P ) is enough to guarantee that all models of any
reduct of P are supported. We thus refer to the construction and proof by [16].
If P is disjunction-free and convex then SFLP (P ) = FLP (P ) by Theorem 2.
Hence, NP-completeness follows from results in [19]. �

We would like to point out that the above proof also illustrates a peculiar
feature of SFLP answer sets, which it shares with the supported model semantics:
the semantics is sensitive to tautological rules like p ← p, as their addition can
turn non-SFLP answer sets into SFLP answer sets.

5 Discussion

Existing semantics for logic programs with generalized atoms do not yield
intended models under particular conditions. Specifically, the lack of intended
models seems to be ascribable to unsupported countermodels. In the FLP seman-
tics, the anomaly arises in connection with non-convex generalized atoms. As the
example in the introduction shows, the anomaly affects other semantics as well.
For example, it affects also description logic programs interpreted according to
the recent well-justified FLP semantics [17], which selects among FLP answer
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sets. Former semantics for description logic programs, referred to as strong and
weak stable models [7,8], behave differently. Without going into details, we use
the prisoners’ dilemma example from the introduction. Recall that there are two
prisoners who will confess if (and only if) both players choose the same option.
This situation can be represented using the following description logic program:

a(0) ← DL[A∩− a,B∩− b, A � a,B � b;Q](0)
b(0) ← DL[A∩− a,B∩− b, A � a,B � b;Q](0)

with the following ontology:

Q ≡ (A � B) � (¬A � ¬B).

Here, a(0) means that the first player confesses and b(0) means that the second
player confesses. The DL atoms transfer the extensions of a and b to A and B
of the ontology, making sure that constants that are not in the extension of a
will populate ¬A (likewise for b and ¬B); this is achieved by means of the � and
∩− operators. The ontology defines Q, which represents “good” situations (both
confess or both defect). The rule thus states that a(0) and b(0) should hold in
a “good” situation. An alternative encoding using ∪− instead of � is given by the
following program:

a(0) ← DL[A∩− a,B∩− b, C ∪− a,D∪− b;Q](0)
b(0) ← DL[A∩− a,B∩− b, C ∪− a,D∪− b;Q](0)

with the following ontology:

Q ≡ (¬A � ¬B) � (¬C � ¬D).

where operator ∪− increases ¬C and ¬D with the extension of a and b, respec-
tively. These programs correspond to P1 in Example 3, which just uses different
notation. Interpretation {a(0), b(0)} is both the only strong and weak answer
set of the above programs. However, these semantics suffer from other problems.
For example, if a fact a(0) is added to the above programs, {a(0), b(0)} would
still be both a strong and weak answer set, along with {a(0)}, which we consider
to be quite unintuitive.

Another semantics that selects among FLP answer sets, and is therefore
affected by the anomaly on unsupported countermodels, is PSP [10–12]. Analyz-
ing Fig. 2, we can better understand a common issue for PSP and well-justified
FLP: The adopted operator for fixpoint computation cannot “jump” over gaps
in the lattice of interpretations when establishing the truth value of a generalized
atom. Examining the figure, the fact that {a(0)} and {b(0)} both do not satisfy
the generalized atom prevents these operators from deriving {a(0), b(0)}. Yet
these two interpretations are not relevant for the example in the introduction.

We observe that other interesting semantics, such as the one by [20], are also
affected by the anomaly on unsupported models. In particular, the semantics
by [20] is presented for programs consisting of arbitrary set of propositional
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{a(0), b(0)}

{a(0)} {b(0)}

∅

Fig. 2. Satisfying (solid) and unsatisfying (dashed) interpretations of the description
logic programs in Sect. 5 encoding the prisoners’ dilemma.

formulas, and it is based on a reduct in which false subformulas are replaced by
⊥. Answer sets are then defined as interpretations being subset-minimal models
of their reducts. For the notation used in this paper, when rewriting generalized
atoms to an equivalent formula, the semantics by [20] coincides with FLP, which
immediately shows the anomaly. In [20] there is also a method for rewriting
aggregates, however COUNT ({a, b}) �= 1 is not explicitly supported, but should
be rewritten to ¬(COUNT ({a, b}) = 1). Doing this, one can observe that for
P1, P2, P3, and P5 the semantics of [20] behaves like SFLP (cf. Table 1), while
for P4 the semantics of [20] additionally has the answer set {a, b}, which is
not a supported minimal model of the FLP reduct. P4 therefore shows that
the two semantics do not coincide, even if generalized atoms are interpreted as
their negated complements, and the precise relationship is left for further study.
However, we also believe that rewriting a generalized atom into its negated
complement is not always natural, and we are also convinced that there should
be a semantic difference between a generalized atom and its negated complement.

6 Conclusion

In this paper, we have first studied conditions under which existing semantics for
logic programs with generalized atoms do not yield intended models, while they
arguably should. Analyzing the reasons, we argue that this seems to be connected
to a lack of support in countermodels. Motivated by this situation, we have then
defined a new semantics for programs with generalized atoms, called support-
edly stable models, supportedly FLP, or SFLP semantics. The new definition
overcomes the anomaly on unsupported countermodels, and provides a robust
semantics for programs with generalized atoms. We show several properties of
this new semantics. For example, it coincides with the FLP semantics (and thus
also the PSP semantics) on convex programs, and therefore also on standard
programs. Furthermore, the complexity of common reasoning tasks is equal to
the respective tasks using the FLP semantics. We also provide a characterization
of the new semantics by a Clark-inspired completion.

Concerning future work, implementing a reasoner supporting the new seman-
tics would be of interest, for example by compiling the new semantics in FLP,
so to use current ASP solvers such as dlv [21], cmodels [22], clasp [23], and
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wasp [24,25]. An application area would be systems that loosely couple OWL
ontologies with rule bases, for instance by means of HEX programs. As we have
shown earlier, HEX atoms interfacing to ontologies will in general not be con-
vex, and therefore using them in recursive definitions falls into our framework,
where the FLP and SFLP semantics differ. In fact, the solver dlvhex1 does not
produce any answer for the program and ontology provided in Sect. 5. We also
believe that it would be important to collect example programs that contain non-
convex generalized atoms in recursive definitions. We have experimented with a
few simple domains stemming from game theory (as outlined in the introduc-
tion), but we are not aware of many other attempts. Our intuition is that such
programs would be written in several domains that describe features with feed-
back loops, which applies to many so-called complex systems. Also computing
or checking properties of neural networks might be a possible application in this
area. Another area of future work arises from the fact that rules like p ← p are
not irrelevant for the SFLP semantics. To us, it is not completely clear how much
of a drawback this really is. However, we intend to study this along two avenues.
The first is trying to characterize programs for which this phenomenon occurs,
the second is to propose variants of the SFLP semantics that do not exhibit it.
Concerning the latter, one idea would be to require models or countermodels to
have level mappings as defined in [17].
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