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Preface

Advances in Semantic Web and linked data research and standardization have established
formats and technologies for representing, sharing, and re-using knowledge on the Web.
The scale, velocity, and heterogeneous nature of Web data however, poses many chal-
lenges, and turns basic tasks such as query answering, data transformations, and
knowledge integration into complex reasoning problems. Rule-based systems and
rule-based extensions to Web languages have found numerous applications where the
ability to synthesize relevant knowledge from noisy, distributed, heterogeneous, dynamic,
incomplete, and possibly contradicting information is key.

The International Conference on Web Reasoning and Rule Systems has become a
major forum for discussion and dissemination of new results on relevant topics in these
areas, spanning research areas from computational intelligence and agent-based sys-
tems to Web technologies and information extraction.

This volume contains the proceedings of the 9th International Conference on Web
Reasoning and Rule Systems (RR 2015), held during August 4–5, 2015, in Berlin,
Germany. The conference program included presentations of five full research papers
and four technical communications, a more concise paper format that provides the
opportunity to present preliminary and ongoing work, systems, and applications that
are of interest to the RR audience. The conference program also included keynote talks
by Michael Genesereth, Benny Kimelfeld, Lora Aroyo, and Riccardo Rosati, covering
both the scientific and the industrial perspectives of Web reasoning and rule systems.
Extended abstracts of these talks are included in this volume. This year’s edition of RR
was organized in conjunction with the International Web Rule Symposium (RuleML),
and the talk by Michael Genesereth was a joint keynote with RuleML. The accepted
papers were selected out of 16 submissions, of which 11 were full papers and five were
technical communications. Each submission received at least three reviews. Five full
papers and two technical communications were accepted, and two full papers were
accepted as technical communications.

In order to foster the engagement of students and their precious contribution to the
research community, RR also hosted a doctoral consortium and a joint poster session.
The participation and contribution of students to the RR poster session have also been
fostered by the established co-location with the 11th edition of the Reasoning Web
Summer School, held just before RR.

We want to thank the invited speakers for their valuable contribution, and the local
organizer Adrian Paschke and his team who did a magnificent job with the organization
of the event. We would like to thank our general chair Wolfgang Faber, our doctoral
consortium chair Marco Montali, and our publicity chair Luca Pulina. We also thank
Marco Maratea for his very successful work as a sponsorship chair, and we gratefully
acknowledge the support of our sponsors. As usual, EasyChair provided a fantastic



support as conference management system and for the preparation of these proceedings.
Last but not least, we thank all authors and participants of RR 2015, the essential
constituents of the scientific community; we hope they had an enjoyable stay in Berlin.

May 2015 Balder ten Cate
Alessandra Mileo

VI Preface
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Truth Is a Lie: Rules and Semantics
from Crowd Perspectives

Lora Aroyo

VU University Amsterdam and Tagasauris, Inc.
lora.aroyo@vu.nl

Processing real-world data with the crowd leaves one thing absolutely clear — there is
no single notion of truth, but rather a spectrum that has to account for context, opinions,
perspectives and shades of grey. CrowdTruth is a new framework for processing of
human semantics drawn more from the notion of consensus than from set theory.

The quest for truth is the main drive behind research in the whole spectrum of
humanities and sciences. It is well accepted that statements about music, art, politics,
etc. have a range of interpretations and perspectives, and cannot easily be treated with a
simple binary notion of truth. Is Obama a good president? Did Picasso paint his
masterpieces in his blue period? It is not as well accepted that scientific statements in
domains such as medicine, physics, etc. have the same feature. Does antibiotics treat
typhus? Our experiments show just as much of a range of perspectives in answering
this question as any from the arts and humanities.

In both cases the quest for truth is influenced by context, which can be infinite in its
possibilities and expression. The treatment of typhus, for example, must account for
family history, patient history, drug availability, severity, and many more factors.
Ultimately, the need to account for and understand this medical context is no different
than seeking an account for what makes a good president. Nobody denies the presence
of context, but because context is so variable and so difficult to capture, in computer
science and AI we often simplify context by treating these base questions as if they had
true or false answers.

We can do better. The more recent development of crowdsourcing gives us better
access to the range of contextual possibilities. But in order to exploit this and properly
capture context we have to let go of our conditioned desire for a single truth and
embrace the power of disagreement. Our experiments have shown that, rather than
forcing people into a single point of agreement, simply allowing them to disagree by
asking the right questions exposes a richer set of possibilities that, with appropriate
mathematical frameworks, can finally give us a handle on identifying, processing and
understanding context.

CrowdTruth [1–3] is a new approach to understanding semantics, that harnesses the
power of the crowd to provide a multitude of perspectives. CrowdTruth uses this scale
and diversity to inform a vector space model of truth instead of a boolean, fuzzy, or
statistical model. Experimental results show that our approach provides a better way of
capturing context, and a more accurate way to predict and explain the way researchers
in the sciences and the humanities understand truth.
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The Herbrand Manifesto

Thinking Inside the Box

Michael Genesereth and Eric J.Y. Kao

Computer Science Department,
Stanford University

genesereth@stanford.edu

erickao@cs.stanford.edu

Abstract. The traditional semantics for (first-order) relational logic (sometimes
called Tarskian semantics) is based on the notion of interpretations of constants
in terms of objects external to the logic. Herbrand semantics is an alternative
that is based on truth assignments for ground sentences without reference to
external objects. Herbrand semantics is simpler and more intuitive than Tarskian
semantics; and, consequently, it is easier to teach and learn.

Moreover, it is more expressive than Tarskian semantics. For example,
while it is not possible to finitely axiomatize natural number arithmetic com-
pletely with Tarskian semantics, this can be done easily with Herbrand
semantics. Herbrand semantics even enables us to define the least fixed-point
model of a stratified logic program without any special constructs.

The downside is a loss of some familiar logical properties, such as com-
pactness and proof-theoretic completeness. However, there is no loss of infer-
ential power—anything that can be deduced according to Tarskian semantics
can also be deduced according to Herbrand semantics. Based on these results,
we argue that there is value in using Herbrand semantics for relational logic in
place of Tarskian semantics. It alleviates many of the current problems with
relational logic and ultimately may foster a wider use of relational logic in
human reasoning and computer applications. To this end, we have already
taught several sessions of the computational logic course at Stanford and a
popular MOOC using Herbrand semantics, with encouraging results in both
cases.



Extending Datalog Intelligence

Benny Kimelfeld

Technion, Israel

Abstract. Prominent sources of Big Data include technological and social
trends, such as mobile computing, blogging, and social networking. The means
to analyse such data are becoming more accessible with the development of
business models like cloud computing, open-source and crowd sourcing. But
that data have characteristics that pose challenges to traditional database sys-
tems. Due to the uncontrolled nature by which data is produced, much of it is
free text, often in informal natural language, leading to computing environments
with high levels of uncertainty and error. In this talk I will offer a vision of a
database system that aims to facilitate the development of modern data-centric
applications, by naturally unifying key functionalities of databases, text ana-
lytics, machine learning and artificial intelligence. I will also describe my past
research towards pursuing the vision by extensions of Datalog — a well studied
rule-based programming paradigm that features an inherent integration with the
database, and has a robust declarative semantics. These extensions allow for
incorporating information extraction from text, and for specifying statistical
models by probabilistic programming.

B. Kimelfeld—Taub Fellow – supported by the Taub Foundation.



Analysis and Debugging of Ontology-Based
Data Access Specifications

Riccardo Rosati

Dipartimento di Ingegneria informatica,
automatica e gestionale Sapienza Università di Roma

Ontology-based data access (OBDA) is a recent paradigm for accessing data sources
through an ontology that acts as a conceptual, integrated view of the data, and
declarative mappings that connect the ontology to the data sources. The framework of
OBDA has received a lot of attention in the last years: many theoretical studies have
paved the way for the construction of OBDA systems and the development of OBDA
projects for enterprise data management in various domains.

One important aspect in OBDA concerns the construction of a system specification,
i.e., defining the ontology and the mappings over an existing set of data sources.
Mappings are indeed the most complex part of an OBDA specification, since they have
to capture the semantics of the data sources and express such semantics in terms of the
ontology. More precisely, a mapping is a set of assertions, each one associating a query
over the source schema with a query over the ontology; the intuitive meaning of a
mapping assertion is that all the tuples satisfying the query over the source schema also
satisfy the query over the ontology.

The first experiences in the application of the OBDA framework in real-world
scenarios have shown that the semantic distance between the conceptual and the data
layer is often very large, because data sources are mostly application-oriented: this
makes the definition, debugging, and maintenance of mappings a hard and complex
task. Such experiences have clearly shown the need of tools for supporting the man-
agement of mappings. However, so far no specific approach has explicitly dealt with
the problem of mapping analysis and evolution in the context of OBDA. The work on
schema mappings in data exchange, probably the closest one to mapping management
in OBDA, has considered the problem of analyzing the formal properties of mappings,
but in a different framework and under different assumptions on the schema languages.

In this talk, we will present some recent results on mapping analysis and evolution
in OBDA obtained in the context of the Optique European project1. More precisely, we
will first introduce basic notions of mapping inconsistency and mapping redundancy in
an OBDA specification. Then, based on such notions, we will present a computational
analysis of the problem of checking the above anomalies in an OBDA specification, for
a wide range of ontology languages and for different mapping languages. Finally, we
will focus on mapping evolution in OBDA, providing formal definitions and compu-
tational results for the basic forms of mapping update when the ontology is changed.

1 www.optique-project.eu.

http://www.optique-project.eu


This is joint work with Domenico Lembo, José Mora, Domenico Fabio Savo, and
Evgenij Thorstensen. This research has been partially supported by the EU under FP7
project Optique (grant n. FP7-318338).
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Extending Datalog Intelligence

Benny Kimelfeld(B)

Technion, Haifa, Israel
bennyk@cs.technion.ac.il

Abstract. Prominent sources of Big Data include technological and
social trends, such as mobile computing, blogging, and social networking.
The means to analyse such data are becoming more accessible with the
development of business models like cloud computing, open-source and
crowd sourcing. But that data have characteristics that pose challenges
to traditional database systems. Due to the uncontrolled nature by which
data is produced, much of it is free text, often in informal natural lan-
guage, leading to computing environments with high levels of uncertainty
and error. In this talk I will offer a vision of a database system that aims
to facilitate the development of modern data-centric applications, by nat-
urally unifying key functionalities of databases, text analytics, machine
learning and artificial intelligence. I will also describe my past research
towards pursuing the vision by extensions of Datalog — a well studied
rule-based programming paradigm that features an inherent integration
with the database, and has a robust declarative semantics. These exten-
sions allow for incorporating information extraction from text, and for
specifying statistical models by probabilistic programming.

1 Introduction

The management and analysis of massive data volumes has been practiced in
the past decades by large organizations such as enterprises and governmental
agencies. In the Big Data era, massive volumes of data have become accessible
to the larger public. Technological and social trends, such as mobile computing,
blogging and social networking, result in data with a high potential value for a
plethora of domains, such as business intelligence, marketing, civil services, and
political movements. Moreover, contemporary business models, such as cloud
computing, open source and crowd sourcing, provide the means to analyse such
data without requiring the vast resources of grand enterprises. But that data
have characteristics that introduce new challenges to database management sys-
tems. The uncontrolled nature by which data is generated (e.g., people casually
post statements via mobile devices) implies that much of the data is free text in
informal natural language, where standard processors involve non-negligible lev-
els of error and uncertainty. The historical success of general-purpose database
systems is largely due to the access and query model, most notably SQL that
allows to phrase queries in a simple and intuitive language and, hence, facili-
tates data management for a large community of developers. But these systems

c© Springer International Publishing Switzerland 2015
B. ten Cate and A. Mileo (Eds.): RR 2015, LNCS 9209, pp. 1–10, 2015.
DOI: 10.1007/978-3-319-22002-4 1



2 B. Kimelfeld

fall short of providing the suitable means for nontrivial extraction of informa-
tion from text, and therefore, even basic operations in the analysis of Big Data
instances require integration with out-of-database paradigms.

More specifically, applications that involve text analytics often bundle
together functions for extracting text fragments from documents (usually by
means of scripting languages), statistical or machine-learning libraries to filter
out errors, and a relational database to incorporate the extracted data with
structured data [43,44]. The application of these different paradigms requires
different skills and development styles (e.g., script coding, database querying,
and machine-learning engineering), and is often carried out by different (groups
of) developers. This practice entails a complicated and laborious development.
For example, joining extracted data with structured data may reveal low recall
(coverage) in the extracted data, which may require the extraction phase to pro-
duce more data; so the extraction developers expand the extraction, but then this
expansion is found by the statistics developers to be overly costly for their com-
putation. This problem may often be solved if one knows to begin with what
the extracted data will later join with (and, hence, avoid irrelevant extracted
output); so the extraction developers are either importing structured data from
the database developers, or decide to integrate with the database before the
statistical phase. Similarly, when cleaning the extracted data via machine learn-
ing, feature engineering (commonly considered as the most challenging part in
developing a machine-learning solution [29,61]) requires repeated communica-
tion between the paradigms.

There are additional drawbacks to programming over separate paradigms
and platforms. One is the loss of opportunities for automatic optimization that
involve cross-component insights, as illustrated in past research [49,53]. For
example, the above early join (or filtering) could very well be carried out auto-
matically by a query planner, rather then the developer. Another drawback is
in limiting the ability to establish precise confidence estimation that requires
a holistic view of the execution. For example, it may be the case that a large
number of answers indicate some uncertain information (e.g., the sentiment of a
post), but they are all based on one early decision that itself has a low confidence.

This talk will describe a vision of a database system that naturally integrates
text extraction within a relational database system. The vision involves three
design principles that we believe are essential for such an integration: a unified
model, underspecification (i.e., the ability to allow machine learning to comple-
ment query specification), and a probabilistic interpretation. The vision is based
on extending Datalog, and the talk will describe our past research towards that.
Datalog is a purely declarative query (or database programming) language in a
strong sense: it constitutes a set of rules with semantics that is independent of
any execution order, and it is invariant under logical equivalence (i.e., if a rule
is already implied by others, then its inclusion/exclusion does not change the
program). Moreover, its inherent support of recursion allows to phrase compli-
cated programs quite easily and compactly. Datalog has been extensively studied
by the database-research community, and has several commercial instantiations,
such as LogicBlox [26].
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2 Frameworks for Information Extraction

The core operation required for querying textual data is that of Information
Extraction (IE). The goal in IE is to populate a predefined relational schema
that has predetermined underlying semantics, by correctly detecting the values
of records in a given text document (or a collection thereof). Popular tasks in
the space of IE include named entity recognition [54] (identify proper names in
text, and classify those into a predefined set of categories such as person and
organization), relation extraction [59] (extract tuples of entities that satisfy a
predefined relationship, such as person-organization), event extraction [2] (find
events of predefined types along with their key players, such as nomination and
nominee), temporal information extraction [20,37] (associate mentions of facts
with mentions of their validity period, such as nomination-date), and coreference
resolution [48] (match between phrases that refer to the same entity, such as
“Obama,” “the President,” and “him”).

Significant efforts have been put to design and establish development frame-
works for IE. Xlog [53] extends Datalog with special primitive types such as
documents (distinguished chunks of text) and spans (intervals of text within
a document), and matchers of regular expressions. One of the most commonly
used IE systems is the General Architecture for Text Engineering (GATE) [19],
an open-source project by the University of Sheffield, which is an instantiation
of the cascaded finite-state transducers [3]. In GATE, a document is processed
by a sequence of phases (cascades), each annotating spans with types by apply-
ing grammar rules over previous annotations. SystemT [15] is IBM’s principal
IE tool that features an SQL-like declarative language named AQL (Annota-
tion Query Language), along with a query-plan optimizer [49] and development
tooling [38]. This system is typically integrated within a larger software bundle
for data analytics. Other industrial data analytics tools that support IE devel-
opment include Attensity, Clarabridge, IBM BigInsights, HP Autonomy, Oracle
Collective Intellect, SAS, SAP, and more. Stanford’s DeepDive [44] supports a
language to combine various technologies, such as Python scripts for preliminary
IE, CSV readers, a PostgreSQL database, and an inference engine for Markov-
Logic Networks [47,50].

Development frameworks like XLog, GATE and SystemT provide different
mechanisms and languages to query text by means of rules. The underlying
assumption is that a solution for the IE task at hand can be phrased as a collec-
tion of operations that are deterministic in nature, fully specified, and manually
encoded. Often, however, the IE task and the underlying textual data have inher-
ent properties that violate this assumption. In particular, traditional rules can
hardly accommodate the flexibility by which natural language can be used to
express knowledge, alongside common human practices like informality, deceit
and sarcasm. The gap between this traditional programming philosophy and
the nature of the text of interest is typically managed by long chains of rules,
filters over rules, exceptions over filters, and so on. In contrast, the Natural Lan-
guage Processing (NLP) community has been focusing on statistical-modelling
techniques far more than rules-based approaches. Examples include näıve Bayes
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classifiers, and various kinds of probabilistic graphical models such as hidden
Markov models [9,10,24,36], maximum entropy Markov models [33,40], and
Conditional Random Fields (CRF) [14,35,58], that model the text and the anno-
tation as a probabilistic generative model with specified dependencies (edges).
A recent study by IBM researchers [16] highlights and quantifies this discrepancy
between the disregard of rule-based approaches in scientific publications on IE,
and their dominance in industrial solutions.

However, a toolkit of algorithmic techniques is far from being sufficient for
a general-purpose development framework, and in fact, systems such as GATE,
SystemT and Xlog have good reasons to prefer rules to the aforementioned sta-
tistical approaches. Significant skills in Computer Science are required to deploy,
adapt and scale up these techniques to the specific use case of interest. Moreover,
business considerations may require high flexibility in the behaviour of extrac-
tors, such as avoidance of specific types of mistakes; such flexibility is inherently
built in the rule-based approaches, while it is often a challenge to tweak a sta-
tistical solution, or generally to express different kinds of domain knowledge.
Gupta and Manning [27] explain that “[. . . ] rules are effective, interpretable,
and are easy to customize by non-experts to cope with errors.” Towards clos-
ing this gap, some data management systems (e.g., MADden [25]) have been
designed with specific built-in extractors (e.g., part-of-speech taggers, sentiment
detectors, and named-entity recognizers) that are implemented using statistical
models; these extractors aim to capture common IE needs, but are not designed
to enable developers to build special extractors for their own use case (e.g.,
finding specific chemical interactions mentioned in scientific manuscripts).

3 Design Principles

We envision a general-purpose database system that captures the nature of text-
centric data, in order to facilitate, expedite, and simplify the development of
applications thereof by a wide range of developers. Towards that, we propose
to fundamentally revise the basic models of database and querying. Instead of a
collection of rules that encode fully specified logical assertions, a query is a com-
bination of rigid rules, soft rules (or features), and unspecified rules (which are
placeholders for subqueries learned from training examples), with an inherent
access to text and auxiliary NLP machinery. In order to balance between preci-
sion and recall, the developer does not need to redesign the (typically complex)
query, but rather to adjust the probability by which answers are required to be
correct. From this goal we distill three fundamental design principles.

– Unified Model. This principle means that we pursue a data and query model
that will allow to easily query structured data and textual data in a unified and
elegant manner. In terms of the data model, this entails more than just storing
both types of data, but rather representing the intermediate information that
is crucial for text analysis (e.g., where in the text the extraction took place).
In terms of the query model, such a unification should allow for subqueries
that can join previously extracted data, generic NLP analysis, and structured
data.
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– Underspecification. This principle implies that the model should utilize
techniques of machine learning and artificial intelligence, rather than replace
them. We pursue a design that will allow to control the level of automation,
and to effectively integrate it with the manual rules. In particular, these tech-
niques will not necessarily take over the entire program, but will rather take
over subqueries that the developer believes can be more effectively pursued
by automated learning techniques. Moreover, the level of underspecification
should be flexible: the user may provide a complete set of features in one task,
and ask for automatic feature generation in another.

– Probabilistic Interpretation. This principle means that, conceptually, a
program produces not just answers to a query, but rather a probability space
of such answers. The probability space is defined using the precision of the
learning components, as well as the confidence levels provided by the generic
NLP executions.

Next, we discuss each of the three design principles in more detail.

3.1 Unified Model

We plan to pursue a unified data and query model by building on the recently
developed concept of document spanners (or simply spanners for short)
[22,23,30], which is inspired by SystemT [15]. In that formalism, primitive
extractors construct base relations over spans from the text, while a relational
query language (e.g., relational algebra or Datalog) manipulates these relations.
A common example of primitive extractors are regular expression with capture
variables, which we call a regex-formula. At the conceptual level, a spanner is
simply a function that maps a given document (string) into a relation, of a pre-
defined schema, over the document’s spans (that is, document intervals that are
identified by their beginning and ending index).

The spanner framework features a clean theoretical model, giving rise to a
nontrivial investigation via corresponding types of transducers. In particular, we
have defined simple extensions of nondeterministic (finite-state) automata that
are able to assign spans to variables as they run. We have further identified
such automata that capture precisely the closure of regex formulas under the
relational algebra, and under non-recursive Datalog.

The equivalence between the Datalog and the automata representation has
given rise to several fundamental results. For instance, it allowed us to explore
the implication of key extensions to the language, such as the complementation
operator and the string-equality predicate. Moreover, it allowed to draw strong
connections to past literature, such as string relations [7] and graph queries [8].
Finally, it was the basis of a more recent work [22] where we have shown that the
ad-hoc cleaning strategies in rule-based IE systems can be cast as instances of the
well studied concept of database repairs [4] in the presence of tuple priorities [55],
giving rise to fundamental analysis such as well definedness and expressive power.
The framework of prioritized repairs is fairly recent, and not much is known
about fundamental aspects such as the computational complexity it entails.
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In a recent work [21] we have studied that complexity in a traditional data-
base setting (that does not involve text analysis).

Our plan is to generalize the relational data model with span attributes that
reference strings in the database. This extension will allow us to extend Data-
log with spanners, and hence, establish a unified language to query structured
and textual data simultaneously and interchangeably. In traditional Datalog
terminology, we will extend the extensional database (i.e., the supplied relations
without the inferred relations) with spanners, and apply traditional inference
thereof. Spanners will come from various sources, including developer-phrased
regex formulas, and built-in algorithms for NLP. We note that such algorithms
may involve grammar correction (or normalization) to enable the usability of
linguistic parsers [60].

3.2 Underspecification

We identify two extremes of underspecified queries. The “easier” extreme is
where the developer specifies the parts of the data (textual or relational) that
should be considered to infer the desired relation, but she does not provide the
precise way of combining those parts into a query that carries out the actual
inference. Instead, she provides (positive and negative) examples of the desired
result. This is the vanilla setting in supervised machine learning, where those
parts are referred to as features. A learning algorithm is associated with a class
of functions (e.g., Datalog rules, decision trees, linear classifiers, and graphical
models), called models, and it aims to find in that class a model that fits the
examples, and more importantly, well generalizes to unseen examples. Naturally,
the model class has a crucial impact on the quality of the result, as well as on
the complexity of learning the model and evaluating it thereafter.

The “harder” extreme is where the developer provides only examples, and
no features. The system is then expected to use all of its available knowledge in
order to come up with both the features and model. We believe that this scenario
is quite common, as feature engineering is commonly regarded highly challenging
and laborious [29,61]. Fortunately, there has been a substantial research on tech-
niques to infer functions in the absence of features. These include rule induction
(or inductive logic programming) [17,54], graph-kernel methods [59,62], struc-
ture learning in statistical relational learning [34,41], and frequent subgraph min-
ing [13,39,45,51]. In a recent work [31], we have conducted a thorough study of
the complexity of frequent subgraph mining, and proposed a novel algorithmic
approach (based on the notion of hereditary graph properties [18]) that pro-
vides complexity guarantees that were are not featured in previous algorithms
(e.g., [28,57]). We plan to investigate the translation of this novel approach into
an effective implementation.

3.3 Probabilisitic Interpretation

While ordinary Datalog can be thought of as a deterministic function that maps
a given input database into an output database (or outcome), a probabilistic
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variant of Datalog maps the input database into a probability space over possible
outcomes. Here again there is a vast literature on such variants. These variants
are typically logical specifications of graphical models—directed models [5,42]
and undirected models [11,50].

One drawback of applying existing notions of probabilistic logic to Datalog
is that we are forced to compromise important benefits of the ordinary Datalog.
The notions that are driven by directed graphical models require an order of
rule execution, and hence, impose programs that are sensitive to the execution
order (in constrast to being only a set of rules). The models that are driven
by the undirected graphical models are sensitive to the specifics (e.g., number)
of grounding of each rule. This means, for instance, that adding a rule that is
equivalent to another rule may have a substantial impact on the semantics of
the program. Hence, such models violate invariance under logical equivalence.

A class of probabilistic logical models that retains the pure declarative nature
of Datalog includes [1,32,46,52]. These models are based on a separation between
the probabilistic choices and the rule specification, in the spirit of probabilistic
databases [56]; that is, execution is conceptually a two-step process: in the first
step a random database is bring generated by an external process, and in the
second phase logic is applied. In a recent work [6], we have proposed Probabilistic
Programming Datalog (PPDL), which is a framework that extends Datalog with
convenient mechanisms to include common numerical probability functions. In
particular, conclusions of rules may contain values drawn from such functions.
The framework is based on tuple-generating dependencies with existential vari-
ables [12], and it unifies the concepts of database integrity constraints and statis-
tical observations. PPDL is invariant under logical equivalence (by its definition),
and our analysis has shown that it is invariant under execution (chase) order.

4 Concluding Remarks

We described a vision of a system that elegantly incorporates text analysis
within structured-data management. We identified three design principles that
we believe are essential for such a system: unified model, underspecification, and
probabilistic interpretation. For each of these principles, we described our rele-
vant past research: document spanners, frequent subgraph mining, and PPDL,
respectively. By applying our past research and the vast knowledge acquired by
other systems (e.g., SystemT [15] and DeepDive [44]), our next steps will be to
establish a full system model, design, and implementation.
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Abstract. In this paper we present the conceptual layer of stole, our
ontology-based digital archive aiming at helping historical researchers
to organize data, extract information and derive new knowledge from
historical documents.

1 Context and Motivation

Historical documents are considered a rich and valuable source of information
related to, e.g., events and people used by researchers and scholars to investi-
gate history. In the last decades, the digitization of historical documents has been
mainly focused on developing applications that enable users to access, retrieve
and query information in a highly efficient way [1]. In fact, historical documents
are characterized by being syntactically and semantically heterogeneous, seman-
tically rich, multilingual, and highly interlinked. They are usually produced in a
distributed, open fashion by organizations like museums, libraries, and archives,
using their own established standards and best practices [2].

It is well-established that ontologies can offer a clear conceptual representa-
tion and they provide a valuable support to knowledge extraction, knowledge
discovering, and data integration. More, they can offer effective solutions about
design and implementation of user-friendly ways to access and query content
and meta-data – see [3] for a survey in the historical research domain.

In this paper we describe the stole1 ontology, that represents the conceptual
layer of our ontology-based digital archive. The main goal of the stole ontology
is to clearly model historical concepts and, at the same time, to gain insights
into this specific field, e.g., supporting historians to find out some unexplored
but useful aspects about a particular event or person. stole collects informa-
tion about some of the most relevant journal articles published between 1848
and 1946 concerning the legislative history of public administration in Italy.
These documents are regarded as an estimable source of information for histor-
ical research since through the study of these texts it is possible to trace the
course of Italian history.

1 stole is the acronym for the Italian “STOria LEgislativa della pubblica amminis-
trazione italiana”, that means “Legislative History of Italian Public Administration”.
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The rest of the paper is organized as follows: in Sect. 2 we provide some expla-
nations about the main steps and the key decisions which marked the ontology
design process, and we describe the stole ontology in detail. In Sect. 3 we briefly
describe the architecture of our ontology-based digital archive in order to pro-
vide an overall view of the system. Finally, we conclude the paper in Sect. 4 with
some final remarks and future work.

2 The STOLE Ontology

2.1 Design At-a-Glance

Narrative and statistical documents represent the main sources used by histo-
rians to conduct their research. Typically, historians want to extract the facts
from these documents in order to gather information for reconstructing specific
historical events.

Our design process derived from the needs of the researchers of Department of
History of the University of Sassari which, since the 1980s, have been involved in
a project designed to collect, digitalize and catalogue historical journals concern-
ing genesis and evolution of the Italian public administrations and institutions.
The research was conducted on a wide selection of magazines owned by the fol-
lowing Italian institutions’ libraries: Central Archives of the State, Chamber of
Deputies, Supreme Court of Cassation, University of Bologna and University of
Sassari. As a result, the arap2 archive of the University of Sassari was created
and it actually collects a large amount of narrative sources. Currently, historians
can access to several websites which allow them to flip between pages of relevant
documents, however effective analysis tools are rarely provided by these appli-
cations. Semantic web technologies can address some specific issues in historical
domain, since they allow to identify implicitly and explicitly knowledge included
in the documents. For example, reference to a historical person contained in
a historical source can be discovered and related to other entities, e.g., events
in which that person participated, providing a rich representation from which
historians can extract meaningful knowledge to their research [3].

In the following, we can summarize the main phases of the creation process:

1. Identification of key concepts.
2. Identification of the proper language and Tbox implementation.
3. Ontology population, i.e., filling the Abox with semantic annotations.

In the first step the domain experts have been involved in order to contribute
to the definition of key issues related to the application domain. In particular, we
detected the main categories of data expressed in the considered historical docu-
ments. The results of this process enabled us to compute a taxonomy composed
of the following three elements:

2 arap is the acronym for the Italian “Archivio di Riviste sull’Amministrazione Pub-
blica”, that means “Archive of Journals on Italian Public Administration”.
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Table 1. Tbox statistics about the stole ontology. These data are computed by
protégé [5] in the Metrics view.

Classes 14

Axioms 440

Object properties 30

Data properties 29

– Data concerning the author of the article, e.g., name, surname and biography.
– Data concerning the journal and the article, e.g., article title, journal name,

date and topics raised in the article.
– Data concerning some relevant facts and persons cited in the article, e.g.,

persons, historical events, institutions.

Historical analysis in this specific domain is based on the above informa-
tion and focused on the interrelations between these data. For example, the link
between an author and the people cited in an article provides valuable informa-
tion to historians, e.g., if an author has often referred to King Vittorio Emanuele
II probably it can easily be interpreted as favorable to the monarchy.

Regarding the second point, the Tbox of the stole ontology has been
designed building on some existing standards and meta-data vocabularies,
such as Dublin Core (http://dublincore.org), FOAF (http://www.foaf-project.
org), the Bio Vocabulary (http://vocab.org/bio/0.1), the Bibliographic Ontol-
ogy (http://bibliontology.com), and the Ontology of the Chamber of Deputies
(http://dati.camera.it/data/en). In particular, the latter is an ontology aiming
at modeling the domain of the Chamber during its history. It can be a relevant
source since, for example, most part of the authors in our archive were also
involved in government activities.

Concerning the modeling language, our choice fall to OWL2 DL [4]. This
language allows us to have proper expressivity, and to model the knowledge for
our application by means of constructs like cardinality restrictions and other role
constraints, e.g., functional properties.

2.2 Implementation

In the following, we describe main classes, object properties and data properties
of our ontology. Statistics are summarized in Table 1.

Article represents our library, namely the collection of historical journal arti-
cles. Every instance of this class has data properties such as articleTitle,
articleDate, pageStart, and pageEnd.

Jurisprudence is a subclass of Article and contains a series of verdicts which
are entirely written in the articles. Every individual of this subclass has the
following data properties: sentenceDate, sentenceTitle, and byCourt.

http://dublincore.org
http://www.foaf-project.org
http://www.foaf-project.org
http://vocab.org/bio/0.1
http://bibliontology.com
http://dati.camera.it/data/en
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Law is also a subclass of Article, and it contains a set of principles, rules, and
regulations set up by a government or other authority which are entirely
written in the articles. This subclass has data properties such as lawDate
and lawTitle.

Event denotes relevant events. It contains five subclasses modeling different
kinds of events: Birth and Death are subclasses related to a person’s life;
BeginPublication and EndPublication represent the publication period
of a journal; HistoricalEvent contains the most relevant events that have
marked the Italian history.

Journal denotes the collection of historical journals. This class has data prop-
erties such as journalArticle, publisher, and issn.

Person is the class representing people involved in the Italian legislative and
public administration history. This class contains one subclass, Author, that
includes the contributors of the articles. Every instance of this class has some
data properties as firstName, surname, and biography.

Place represents cities and countries related to people and events.
Subject is a class representing topics tackled in the historical journals.

Fig. 1. Example of individuals and their relationships in the stole ontology. Ellipses
denotes individuals, while information related to their data properties are reported in
boxes. Object properties (and their inverse) are denoted by arrows.

Concerning object properties, we describe in the following the ones related
to HistoricalEvent. The full documentation of the stole ontology is available
at http://visionlab.uniss.it/STOLE DOC. HistoricalEvent has a crucial role
in our ontology, and their relationships with other classes are extremely useful
for historical research in order to highlight connections between events, people,
and articles. In Fig. 1 we show a graphical example of these relations. Looking at
the figure, we can see that Unità d’Italia is an instance of HistoricalEvent,
and represents one of the most important historical event in Italian history.
This event is in relation to individuals in Article by the isMentionedIn prop-
erty: this relationship defines in which articles is mentioned the event Unità

http://visionlab.uniss.it/STOLE_DOC
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d’Italia. The hasWritten object property relates an article to its author, and
isPartOf shows in which journal has been published that specific article. With
reference to HistoricalEvent class, there are further interesting relationships
to emphasize:

– the takesPlaceIn object property makes explicit the event’s location – in the
example depicted in Fig. 1 is the city of Torino;

– InvolvedIn connects individuals in Person class to a particular event, taking
into account all people that played a role in a given historical event.

Summing up, the example shown in Fig. 1 hints at potentially interesting
relationships among elements that can be represented by the stole ontology.
Our ontology-based application – that will be described in the next section –
supports historians in their research, providing to them relations between events,
people and documents in an automated way.

Currently, there are no other examples of ontologies that model this particu-
lar domain. However, despite its specific nature, stole ontology can be used in
different application field that relates the history of the Italian administrations
and institutions.

Finally, the ontology has been populated leveraging a set of annotated his-
torical documents comprised into the arap archive. Semantic annotations were
provided by a team of domain experts and individuals were added to the ontology
by means of a JAVA program built on top of the OWL APIs [6].

Fig. 2. The architecture of stole.

3 System Architecture

In Fig. 2 we report the architecture of our ontology-based digital archive built
on top of the conceptual layer represented by the stole ontology. Looking at
the figure, we can see that it is composed of the modules listed in the following:
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Fig. 3. Screenshot of the stole web GUI.

Ontology is the ontology described in Sect. 2.2.
Inference Engine aims to accomplish both classification and consistency check-

ing tasks on the stole ontology. It interacts with the Ontology in order to
infer new knowledge to present to the user. Actually, we are using the Her-
miT reasoner [7].

Triple Store and SPARQL Endpoint are the modules devoted to store and
query the knowledge base, respectively. For these purposes, we are currently
using Open Virtuoso3.

STOLE Application is the module in which we implemented all functionalities
related to query the SPARQL Endpoint and to process the answer in order
to be presented to the user by means of the GUI.

GUI is devoted to the user-system interaction. This module is implemented on
top of the SIMILE Exhibit API [8], a set of JavaScript files that allows
to easily create rich interactive web pages including maps, timelines, and
galleries with very detailed client-side filtering. This kind of representations,
e.g. timeline of historical events, are widely used in the historical research
field. Exhibit allows to display the result of SPARQL queries in JSON format.
Figure 3 shows a screen-shot of the stole GUI.

4 Conclusions and Future Work

In this paper we described the development and implementation of an ontol-
ogy for historical research documents, and we presented a general architecture
overview about the related ontology-based archive.

Currently, we are dealing with a key issue for our domain experts, namely the
management of changing names of, e.g., institutions that changed name retaining
3 http://www.openlinksw.com/.

http://www.openlinksw.com/
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the same functions, across time and space. This particular point still represents
an open challenge in this application domain – see [3].

Furthermore, we are developing a data integration layer in order to exploit
information coming from relevant external sources, i.e. DBpedia [9] and the
Ontology of the Chamber of Deputies, and integrate them in the stole ontology.

Concerning data navigation and visualization, we also intend to offer different
ways to browse the stole resources, e.g., using interactive maps and LodLive4

data graph representation.
We are also designing a Graphical User Interface to support the ontology

population stage, in order to improve this process. More, concerning the ontology
population, we are studying solutions for its automatization on the basis of some
recent contributions – see, e.g., [10–12]. Finally, once the ontology will be fully
populated, we are planning to perform an experimental analysis on the stole
ontology involving state of the art DL reasoners on both classification and query
answering tasks.

Acknowledgments. The authors wish to thank the anonymous reviewers for their
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to thank Dott. Salvatore Mura and Prof. Francesco Soddu for the valuable discussions
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Abstract. Homogeneous unstructured data (HUD) are collections of
unstructured documents that share common properties, such as simi-
lar layout, common file format, or common domain of values. Building
on such properties, it would be desirable to automatically process HUD
to access the main information through a semantic layer – typically an
ontology – called semantic view. Hence, we propose an ontology-based
approach for extracting semantically rich information from HUD, by inte-
grating and extending recent technologies and results from the fields of
classical information extraction, table recognition, ontologies, text anno-
tation, and logic programming. Moreover, we design and implement a
system, named KnowRex, that has been successfully applied to curricu-
lum vitae in the Europass style to offer a semantic view of them, and be
able, for example, to select those which exhibit required skills.

Keywords: Unstructured data · Ontologies · Semantic information
extraction · Table recognition · Semantic views

1 Introduction

Context and Motivation. By its nature, the Web has been conceived as an
enormous distributed source of information which behaves as an open system
to facilitate data sharing. However, the concrete way how the Web has been
populated gave rise to a large amount of knowledge which is accessible only to
humans but not to computers. A large slice of this knowledge is destined to
remain only human-readable. But there is another relevant portion of it which
could be automatically manipulated to be processed by computers. This is the
case, for example, of homogeneous unstructured data (HUD) which are collections
of unstructured documents that share common properties, such as similar layout,
common file format, or common domain of values, just to mention a few.

Building on their common properties, it would be desirable to automatically
process HUD to access the main information they contain through a semantic
layer which is typically given in the form of an ontology, and that we call semantic
view. The problem of identifying and extracting information from unstructured
c© Springer International Publishing Switzerland 2015
B. ten Cate and A. Mileo (Eds.): RR 2015, LNCS 9209, pp. 19–29, 2015.
DOI: 10.1007/978-3-319-22002-4 3
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Fig. 1. Semantic Information Extraction with KnowRex.

documents is widely studied in the field of information and knowledge manage-
ment and is referred to as Information Extraction (IE) [2,3,6]. However, most of
the existing approaches to IE are mainly syntactic, and do not offer a uniform,
clear, and semantic view of the relevant information.

Contribution. To offer a semantic view of a collection of HUD (even if encoded
as pdf files), we propose and implement a system, named KnowRex, which splits
the entire process in two different phases, called design and runtime (see Fig. 1).
During the first one, the designer (i) defines the target schema for the semantic
view of the original data, (ii) fixes an object model to offer a structured rep-
resentation of the documents, (iii) arranges a suite of annotation units (such
as named entity extractors, natural language processing tools, and annotation
tools based on thesauri or regular expressions) to define the “leaves” of the
object model, (iv) chooses and calibrates one of the software programs that
partition unstructured documents into two-dimensional grids, and (v) provides
formal rules to structure the documents and to construct the semantic view.
During the runtime phase, the system processes the documents as prescribed
in the design phase to instantiate the object model first, and then the target
schema. In particular, the process that provides a structured representation of
the documents can be thought as a kind of IE task which is heavily driven by
domain knowledge and semantics, while the process that constructs the seman-
tic view from the structured version of the documents takes care of reorganizing
the extracted knowledge to facilitate data analysis. To sharpen our system, we
considered curriculum vitae in the Europass style to offer a semantic view of
them and be able, for example, to select those which exhibit required skills. The
main contributions of the paper are:

� We present an ontology-based approach to IE which allows for extracting
semantically rich information from unstructured data sharing some common
features. To this end, we integrate and extend recent technologies and results
from the fields of classical information extraction, table recognition, ontologies,
text annotation, and logic programming.
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� We design and implement a system, named KnowRex, which realizes our
ontology-based approach to IE, and provides access to HUD via semantic views.
� On the application side, we have successfully applied KnowRex to offer a

semantic view to curriculum vitae in the Europass style.

Related Work. The literature of the academic and commercial worlds offers
a variety of approaches and tools to IE that are either programmed manu-
ally, or learned by semi-automatically supervised systems while a user interacts
with example documents. A main shortcoming of these approaches, however,
is their lack of understanding of extracted information. More recently, some
works have shown the promise of deducing and encoding formal knowledge in the
form of ontologies [1,5,7,8]. These approaches use ontologies either to improve
the extraction phase as a way to present the results of the extraction, or to
allow matching different representations across sources. The notion of semantic
descriptors introduced in Sect. 3 has been inherited from HiLeX [9]. However,
we have refined and extended their shape. Our approach follows the line of com-
bining different techniques [4,10] to obtain comprehensive results. In KnowRex
we include the following annotation tools: Alchemy (http://www.alchemyapi.
com), DBpedia Spotlight (http://dbpedia.org/spotlight), Extractiv (http://
extractiv.com), OpenCalais (http://www.opencalais.com), Lupedia (http://
www.old.ontotext.com/lupedia), and StanfordNER (http://nlp.stanford.edu/
software/CRF-NER.shtml).

2 Automatic Curriculum Analysis

For testing our framework, we selected the European standard style for Cur-
riculum Vitae documents called Europass (see Fig. 2). This choice ensures that
the input documents have similar two-column layout and organization of data.
Despite some differences between single Europass CV documents, they can be
seen as a collection of HUD, and we can assume a certain template, which con-
sists in: (i) two-column layout, (ii) same file format (actually pdf, containing
no information about sections/subsections which must be reconstructed at run-
time), (iii) fixed set of labels (in the left column), (iv) common domain of values
(personal information, education, work experience etc.).

For the target database, we are allowed to describe only the portion of infor-
mation considered relevant. Let us assume the following target schema for the
considered use case: candidate(Id, Name, Surname, Phone, Email, Address, Gen-
der, Nationality, License); workExperience(Id, Company, BusinessSector, StartDate,
EndDate); candWE(IdCandidate, IdWorkExperience).

The problem of recruiters and the goal of our system is to extract appropriate
information from a collection of documents, and enter it into the target data-
base. Some information can be localized by identifying appropriate sections and
labels in the left column (e.g., name, surname, address etc.). Also, a part from
the driving license, all the information needed for relation candidate are grouped
together. For other information, it may be necessary to combine the knowledge
about the structure of the input with the semantics of data. For instance, for

http://www.alchemyapi.com
http://www.alchemyapi.com
http://dbpedia.org/spotlight
http://extractiv.com
http://extractiv.com
http://www.opencalais.com
http://www.old.ontotext.com/lupedia
http://www.old.ontotext.com/lupedia
http://nlp.stanford.edu/software/CRF-NER.shtml
http://nlp.stanford.edu/software/CRF-NER.shtml
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Fig. 2. Fragment of a Curriculum Vitae PDF-document in the Europass style.

work and education, it is possible to locate the institutions by analyzing the
labels in the first column and extracting everything that follows them on the
right. However, it would be beneficial to use also the semantic annotators that
can recognize particular phrases as names of schools or companies to get more
precise information. Finally, some information may be dispersed through the
document. For instance, one may want to extract information about the candi-
dates’ skills, and this may be given in several ways. There exist dedicated sections
in the Europass style, but these are not always filled by candidates. Thus, the
skills may be also extracted from the other parts of the document. For instance,
one may recognize “practical skills” as gained during the work experience, and
“theoretical skills”, if they are listed within the education section.

3 The Design Phase in KnowRex

During the design phase, a project is configured to perform operations on a col-
lection of HUD, to obtain information desired by user, in a particular form. To do
it, the designer should first identify the template (see Sect. 2), and then construct
the target schema. Based on the template, they define an object model of the
input, concepts of which will be recognized by different tools: two-dimensional
processing tools, annotators, and semantic descriptors. Then, they configure the
system and arranges the external tools so that the object model can be built.
Afterwards, the designer writes logic rules that map the object model into target
schema. The result of the design phase is used at runtime to process the actual
documents to create the semantic view.
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Definition of the Target Schema. This step is crucial for the definition of a
desired output of the system. In fact, the designer has to decide how to organize
the information that will be extracted from the documents. Two main options
are allows: target schema may be either a relational database or an ontology. And
this schema should be consistent and realistic i.e., it should be easy to populate
it manually, only by analyzing the input documents. In our running example,
the definition of the target schema has been given in Sect. 2.

Definition of the Object Model. By considering the template and the target
schema, the designer should fix an object model for some HUD, which consists
of a hierarchical forest-like structure. To define it, we uses the ontology lan-
guage OntoDLP [11] that offers a good balance between ontological and logic-
programming features. In OntDLP, one can define both object types, and rela-
tion types to express relationships between objects. Object types are preceded
by keyword entity, and the subclass relationship is expressed via the term isa.
Objects may have zero or more attributes which are specified in the type defini-
tion, by giving their names and types. By default, a class inherits attributes from
its superclass. Relation types can be defined by keyword relation, and giving a
name and attributes for this relation (see Sect. 4 for examples). One can also
state assertions about objects.

Within the object model, a few types of objects may be identified. First,
there are concepts that belong to an ontology representation of a document. This
representation is independent of the use case, it is present in KnowRex by default
and does not need any configuration. It contains one-dimensional objects such as
token (basic elements of text) and delimiters, such as start and end of a line. It
also provides two-dimensional concepts, empty and filled cells, to represent the
basic elements of the document structure, e.g.: entity ontologyObject. entity
1DObject isa ontologyObject. entity token isa 1DObject. entity delimiter isa
1DObject. entity 2DObject isa ontologyObject. entity cell isa 2DObject. entity
emptyCell isa cell. entity filledCell isa cell(value:string).

The second group of concepts is constituted by the categories that can be
identified within the content of the document. For a CV use case, we can think
of places, persons, companies, schools, skills, different professional terms, e.g.
names of programming languages, languages etc. This set of concepts is defined
by a designer and heavily depends on the use case, e.g.: entity semanticCate-
gory(value:string). entity person isa semanticCategory. entity place isa seman-
ticCategory. entity educationInstitution isa semanticCategory.

Finally, there is a group of concepts that describe domain-dependent elements
of the structure of the document. These are concepts typically appearing in the
considered HUD, such as section headlines, typical labels etc. These concepts
are also given by a designer, e.g.: entity domainObject. entity eucv label isa
domainObject. entity eucv name label isa eucv label. entity eucv label box isa
domainObject. entity eucv name label box isa eucv label box.

Arrangement of the Semantic Annotators. In this step, the designer selects
the annotators to be used, then chooses classes that should be searched for, and
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configures each annotator: provides a mapping from the tool’s output to the
object model, and sets the tool’s specific properties. In the case of Europass
CV analysis, we have selected: OpenCalais, StanfordNER, Lupedia, a custom
annotator for recognizing e-mail addresses and dates, and a label annotator
based on pattern recognition that recognizes labels typical for Europass CV.
Decisions about the arrangement of annotators are made by tries and errors
on exemplary input data. Sometimes, it is beneficial to use more than one tool
for recognizing the same category. The resulting potential redundancy is not
harmful, instead the recall of extraction may improve.

Two-dimensional Document Analysis. Knowing the context in which cer-
tain phrase appears is helpful for semantic information extraction. In some input
data formats, e.g. pdf documents, the information about the structure is lost;
while visible to human eye, it is not obvious for a machine. Thus, we need to
recover the structure to obtain a meaningful representation of the input docu-
ments. To this end, this step configures an external two-dimensional processor
and a refinement module inside KnowRex. As a two-dimensional processor, we
have used Quablo (http://www.quablo.eu/) that can recognize a set of regular
tables within a pdf document. The representation obtained from this tool is
then improved by a special module that works with domain concepts, such as
labels of the Europass template. The module produces improved structure, merg-
ing appropriate cells (for example, if a label spans across two cells, these cells
will be merged). Finally, one- and two-dimensional tokenizers (tools inside the
KnowRex core) are used to identify the basic one- and two-dimensional objects
of the document. In the end, we obtain a grid representation of the document
that consists of two-dimensional objects (cells) containing one-dimensional one
(text fragments, delimiters).

Semantic Descriptors Specification. While the semantic annotators identify
single words or phrases as belonging to specific classes (producing the “leaves”
of the object model), and the two-dimensional processing adds structure to the
input, the semantic descriptors can combine and use the above information to
build more complex objects. Semantic descriptors are rules that organize two-
dimensional and one-dimensional objects into descriptions to extract additional
information. This is done on several levels. To help the intuition, we illustrate
the semantic descriptors by examples.

First, a designer should identify parts of the document that will help to
localize other data portions, e.g.:

<eucv_email_label_box()> ::- <filledCell()> CONTAINS <eucv_email_label()>

With this simple descriptor, we intend to create a (two-dimensional) concept
eucv email label box that defines a cell in which there is a (one-dimensional)
eucv email label. The object we want to extract always resides on the left-hand-
side of the operator “::-” (in the head of a descriptor), while on the right (in
the body), there are objects that must be found in order to create it. In this
example, we look for a cell within which there is a particular domain concept, an

http://www.quablo.eu/
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eucv email label. If we find a cell with this label inside, the cell can be recognized
as a eucv email label box.

Descriptors can join several cells that appear in a document one after another
(horizontally or vertically). This is useful, if we want to say that there exist a
particular object, if there is a specific sequence of cells:

<candidateEmail(E)> ::- <eucv_email_label_box()>

(<filledCell(X)> CONTAINS <email(X)> {E:=X;})

This description should be read as: “A candidateEmail is a two-dimensional
object that captures two cells: the first is an eucv email label box and is followed
(horizontally) by a filledCell that contains a (one-dimensional) object email

with value X. The new object spans across both cells, and the value of the object
email becomes the value of candidateEmail.” By using the context (first there
is a box with an e-mail label, and then there is a cell with an e-mail address),
we ensure that, even if the CV contains a few e-mail addresses, we select the
correct one, because if the e-mail address appears in this place, it must be in the
Personal Information section and thus, it is the e-mail of the candidate.

We can also aggregate the concepts and attributes extracted by other seman-
tic descriptors to build more complex ones:

<personalInformation(N, S, A, P, E, Nt G)> ::|

<candidateName(X)> {N:=X;} <candidateSurname(X)> {S:=X;}

<candidateAddress(X)> {A:=X;} <candidatePhone(X)> {P:=X;}

<candidateNationality(X)> {Nt:=X;} <candidateGender(X)> {G:=X;}

This semantic descriptor aggregates results of other descriptors that extract
single information about a candidate. It describes a sequence of concepts that
must appear one after another vertically, which we mark with the “::|” operator.
This aggregation must reflect the order in which information is given in the
documents. The line breaks within a descriptor do not influence its semantics.

Within cells, we can create complex one-dimensional objects by using one-
dimensional operator “::”, a recurrence structure “(sequence of terms )+” and
a keyword “...” that allows to skip some objects, e.g.:

<list_of_skills(S)> :: {S:=[];} <startOfLine> ...

(<IndustryTerm(S1)> {S&=S1;} ...)+ <endOfLine>

This descriptor works for one-dimensional objects that are all located in one
cell (treated as a single line thanks to the two-dimensional processing). Here, we
want to create a list, so we initialize the attribute S:=[]. Then, we look for a
concept IndustryTerm, recognized by a semantic annotator, append its attribute
value to S({S&=S1;}), and place the term in a recurrence structure. The expression
(<IndustryTerm(S1)>{S&=S1;} ...)+ means that there may be some objects after
the IndustryTerm that we ignore, and if we find another object IndustryTerm,
we append its attribute value to the list again. By using the keyword “...”
before the recurrence, we say that we can skip some objects, i.e., the recurrence
structure may appear anywhere between the startOfLine and the endOfLine. The
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descriptor creates a new object list of skills that stores as an attribute a list
of IndustryTerm objects’ attributes.

Finally, semantic descriptors may use the information about the placement
of objects within the document (e.g. presence of a given object within specific
section) to produce new objects that are not explicitly present in text, e.g.:

<list_of_practical_skills(S)> ::- <eucv_work_act_resp_label_box()>

(<filledCell(X)> CONTAINS <list_of_skills(X)> {S:=X;})

In this example, we use a eucv work act resp label box, a domain concept that
represents a cell containing “Activities and Responsibilities” label for selected
Work Experience. This way, we look for lists of skills present only within the
Work Experience subsections (and not for example within Education ones) and
we can call them practical skills.

From Object Model to Target Schema. The design phase in KnowRex is
completed with the definition of a mapping from object model classes to the
concepts of the target schema. This mapping, written in a form of Datalog
rules, is used to automatically create a semantic view of the (structured) input
documents during the runtime phase. In the head of rules, there are concepts
from the target schema, and in the body – objects from the object model (and
auxiliary objects such as candidate ID). Partial mapping of the object model
presented in Sect. 3 to the target schema shown in Sect. 2 is as follows:

candidate(Id,N,S,P,E,A,G,Nt,D) :- ID:cv_candidate_id(Id),

PI:personalInformation(N,S,A,P,E,Nt,D,G),

CDL:candidateDrivingLicence(D).

workExperience(Id, Company, BusinessSector, Start, End) :-

WEID:work_experience_id(Id), C:company(Company,BusinessSector),

WED:workExperienceDates(Start,End).

During runtime, the rules instantiated for actual objects extracted from the
documents produce instances of the target schema. When the design phase ends,
all the configuration information is merged into a project main configuration file.

4 The Runtime Phase of the System

Once the design of the project is done, KnowRex can be run over a collection of
HUD. In the first stage of the document analysis, the two-dimensional structure
of the document is recognized. First, a two-dimensional processor is used. Its
output is then refined according to domain knowledge (specific labels, structure
elements or keywords). Subsequently, this improved structure is analyzed by
one- and two-dimensional tokenizers, tools hidden from a user, that identify the
atomic one- and two-dimensional components of a document (tokens and cells).

KnowRex uses internal two-dimensional representation of objects that helps
localize them within the documents. For each two-dimensional object, a relation
biPosition is added that specify the row and column on the document “grid”,
where the object appears. For all one-dimensional objects (that are located
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inside the two-dimensional cells), two relations are added: belongsTo that iden-
tifies the containing cell by its id, and onePosition which denotes the position of
the object within a cell. The definitions of these relations in OntoDLP are as
follows: relation position(obj:ontologyObject, start:int, end:int). relation onePo-
sition(obj:1DObject, start:int, end:int). relation biPosition(obj:2DObject, xs:int,
ys:int, xe:int, ye:int). relation belongsTo(obj:1DObject, obj2:2DObject).

At the end of the two-dimensional processing stage, an ontological model of
the document is obtained. It contains information about positions of the one- and
two-dimensional objects within the document. The whole document is divided
into cells, and the biPosition relations denote the coordinates (row and col-
umn) of the beginning and end of each cell, e.g.: filled19:filledCell(‘anna@w3.org’).
biPosition(filled19, 1, 8, 2, 9). For one-dimensional objects, we have the follow-
ing instances: tk123:token(‘manager’). onePosition(tk123, 0, 6). belongsTo(tk123,
filled80). tk124:token(‘of’). onePosition(tk124, 6, 7). belongsTo(tk124, filled80).
This representation is normalized i.e., the positions of blank spaces are omit-
ted and the tokens follow one another. Such a representation is a reference for
semantic annotators that may treat blank spaces differently.

Next, there is the annotation stage, in which selected semantic annotators are
run over the identified cells and label the parts of text as objects belonging to dif-
ferent classes (such as Places, Persons, IndustryTerms, etc.) The representation of
the identified objects (new logic facts that carry information about the annotator
that found the object) is added to the fact base, e.g.: ann2:email(‘anna@w3.org’).
onePosition(ann2, 0, 10). belongsTo(ann2, filled19).

Once the annotation stage is finished, the semantic descriptors which have
been compiled into logic rules are executed over the facts representing the objects
within a document. Each descriptor is transformed into a set of logical rules that
first extract the portion of the document complying to the descriptor body, and
then create a new object, specified in the descriptor head. At the end, a new
object in OntoDLP is created, together with its one- or two-dimensional position
(and optionally, belonging to a cell, if it is a one-dimensional object).

Finally, the identified objects of the object model are transformed into the
instances of the semantic view. With use of the mapping defined in the design
phase, the target schema is populated with instances extracted from the input

Fig. 3. A fragment of the semantic view of an Europass curriculum vitae.
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document. Technically, this is done by additional logic rules that transform the
objects to the target representation. Fragment of the semantic view for a set of
two test CV documents is given in Fig. 3.

5 Discussion and Conclusion

We have described an ontology-based approach for extracting and organizing
semantically rich information from HUD. This approach has been implemented
in a system called KnowRex, which has been tested on curricula in the Europass
style, stored as pdf files. Roughly, the design phase has been carried out in two
man-weeks. From our preliminary analysis over 80 CVs, it appeared that the two-
dimensional structure recognition and the recall of third-party annotators are the
main bottlenecks. With initial configuration for the Europass template, Quablo
worked well for about 50 % of documents. For further 20 % of documents, satis-
fying results were obtained by small adjustments of the tool (margin toleration
etc.). While the precision of the semantic annotators is satisfying, their some-
times low recall may be compensated by adjusting home-made dictionary-based
annotators. Logical rules (semantic descriptors and mapping rules) worked as
expected on the found objects without loss of precision. KnowRex is sufficiently
flexible and modular to be suitable for various scenarios in which HUD are
available. We are currently applying the system on Wiki sites to automatically
generate Semantic Wiki versions of them.

Acknowledgements. The work has been supported by Regione Calabria, programme
POR Calabria FESR 2007–2013, within project “KnowRex: Un sistema per il riconosci-
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Abstract. Answer Set Programming (ASP) is logic programming under
the stable model or answer set semantics. During the last decade, this
paradigm has seen several extensions by generalizing the notion of atom
used in these programs. Among these, there are dl-atoms, aggregate
atoms, HEX atoms, generalized quantifiers, and abstract constraints. In
this paper we refer to these constructs collectively as generalized atoms.
The idea common to all of these constructs is that their satisfaction
depends on the truth values of a set of (non-generalized) atoms, rather
than the truth value of a single (non-generalized) atom. Motivated by
several examples, we argue that for some of the more intricate generalized
atoms, the previously suggested semantics provide unintuitive results
and provide an alternative semantics, which we call supportedly stable
or SFLP answer sets. We show that it is equivalent to the major previ-
ously proposed semantics for programs with convex generalized atoms,
and that it in general admits more intended models than other seman-
tics in the presence of non-convex generalized atoms. We show that the
complexity of supportedly stable answer sets is on the second level of the
polynomial hierarchy, similar to previous proposals and to answer sets
of disjunctive logic programs.

1 Introduction

Answer Set Programming (ASP) is a widely used problem-solving framework
based on logic programming under the stable model semantics. The basic lan-
guage relies on Datalog with negation in rule bodies and possibly disjunction in
rule heads. When actually using the language for representing practical knowl-
edge, it became apparent that generalizations of the basic language are necessary
for usability. Among the suggested extensions are aggregate atoms (similar to
aggregations in database queries) [2–5] and atoms that rely on external truth
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valuations [6–9]. These extensions are characterized by the fact that deciding
the truth values of the new kinds of atoms depends on the truth values of a set
of traditional atoms rather than a single traditional atom. We will refer to such
atoms as generalized atoms, which cover also several other extensions such as
abstract constraints, generalized quantifiers, and HEX atoms.

Concerning semantics for programs containing generalized atoms, there have
been several different proposals. All of these appear to coincide for programs
that do not contain generalized atoms in recursive definitions. The two main
semantics that emerged as standards are the PSP semantics [10–12], and the
FLP semantics [13,14] (the latter coinciding with Ferraris stable models [15] for
the language considered in this paper). In a recent paper [16] the relationship
between these two semantics was analyzed in detail; among other, more intricate
results, it was shown that the semantics coincide up to convex generalized atoms.
It was already established earlier that each PSP answer set is also an FLP answer
set, but not vice versa. So for programs containing non-convex generalized atoms,
some FLP answer sets are not PSP answer sets. In particular, there are programs
that have FLP answer sets but no PSP answer sets.

In this paper, we argue that the FLP semantics is still too restrictive, and
some programs that do not have any FLP answer set should instead have
answer sets. In order to illustrate the point, consider a coordination game that
is remotely inspired by the prisoners’ dilemma. There are two players, each of
which has the option to confess or defect. Let us also assume that both players
have a fixed strategy already, which however still depends on the choice of the
other player as well. In particular, each player will confess exactly if both play-
ers choose the same option, that is, if both players confess or both defect. This
situation can be represented using two propositional atoms for “the first player
confesses” and “the second player confesses,” which must be derived true when
“both players choose the same option,” a composed proposition encoded by a
generalized atom. As will be explained later, the FLP semantics does not assign
any answer set to a program encoding this scenario, and therefore also the PSP
semantics will not assign any answer sets to such a program. We observe that
such a program is also incoherent according to a more recent refinement of the
FLP semantics [17], called well-justified FLP.

We point out that this is peculiar, as the scenario in which both players
confess seems like a reasonable one; indeed, even a simple inflationary opera-
tor would result in this solution: starting from the empty set, the generalized
atom associated with “both players choose the same option” is true; therefore,
the atoms associated with “the first player confesses” and “the second player
confesses” are derived true on the first application of the operator, which is also
its fixpoint.

Looking at the reason why this is not an FLP answer set, we observe that it
has two countermodels that prevent it from being an answer set, one in which
only the first player confesses, and another one in which only the second player
confesses (see Fig. 1). Both of these countermodels are models in the classical
sense, but they are weak in the sense that they are not supported, meaning
that there is no rule justifying their truth. This is a situation that does not
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{p1, p2)}

{p1} {p2}

∅

Fig. 1. Interpretations, supported (solid) and unsupported models (dashed) of the
prisoners’ dilemma example, where p1 and p2 are the propositions “the first player
confesses” and “the first player confesses,” respectively.

occur for programs without generalized atoms, which always have supported
countermodels. We argue that one needs to look at supported countermodels,
instead of looking at minimal countermodels. It turns out that doing this yields
the same results not only for programs without generalized atoms, but also for
programs containing convex generalized atoms, which we believe is the reason
why this issue has not been noticed earlier.

This paper is first of all a position paper, in which we argue that the existing
FLP and PSP semantics are too restrictive on the one hand, and that instead of
defining restricting conditions, some conditions need be relaxed. We then proceed
to define a new semantics along these lines and call it supportedly stable or
SFLP (supportedly FLP) semantics. It provides answer sets for more programs
than FLP and PSP, but is shown to be equal on convex programs. Analyzing
the computational complexity of the new semantics, we show that it is in the
same classes as the FLP and PSP semantics when considering polynomial-time
computable generalized atoms. However, it should also be mentioned that the
new semantics has its own peculiarities, for instance adding “tautological” rules
like p ← p can change the semantics of the program. These peculiarities suggest
that a stronger notion of support is required for obtaining a solid semantics
extending FLP.

The remainder of this paper is structured as follows. In Sect. 2, we present
the notation and FLP semantics for programs with generalized atoms. After
that, in Sect. 3 we analyze issues with the FLP semantics and define the SFLP
semantics. In Sect. 4, we prove several useful properties of the new semantics.
Finally, in Sect. 6, we discuss our results and provide outlines for future work.

2 Background

In this section we present the notation used in this paper and present the FLP
semantics [13,14]. To ease the presentation, we will directly describe a proposi-
tional language here. This can be easily extended to the more usual ASP nota-
tions of programs involving variables, which stand for their ground versions (that
are equivalent to a propositional program).
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2.1 Notation

Let B be a countable set of propositional atoms. A generalized atom A on B is
a pair (DA, fA), where DA ⊆ B is the domain of A, and fA is a mapping from
2DA to Boolean truth values {T,F}. To ease the presentation, we assume that
the domain of each generalized atom is a finite set.

Example 1. Let p1 represent the proposition “the first player confesses,” and
p2 represent the proposition “the second player confesses.” A generalized atom
A representing the composed proposition “both players choose the same option”
is such that DA = {p1, p2}, fA({}) = fA({p1, p2}) = T, and fA({p1}) =
fA({p2}) = F. �

A general rule r is of the following form:

H(r) ← B(r) (1)

where H(r) is a disjunction a1 ∨ · · · ∨ an (n ≥ 0) of propositional atoms in B
referred to as the head of r, and B(r) is a generalized atom on B called the
body of r. For convenience, H(r) is sometimes considered a set of propositional
atoms. A general program P is a set of general rules. Let At(P ) denote the set
of propositional atoms occurring in P .

It should be noted that this is a very abstract notation, aiming to be general
enough to encompass many concrete languages. Languages adopted in practical
systems will feature concrete syntax in place of generalized atoms, for exam-
ple aggregate atoms or dl-atoms. In the sequel, we will at times also use more
concrete notation in examples to ease reading.

2.2 FLP Semantics

An interpretation I is a subset of B. I is a model for a generalized atom A,
denoted I |= A, if fA(I ∩ DA) = T. Otherwise, if fA(I ∩ DA) = F, I is not a
model of A, denoted I �|= A. I is a model of a rule r of the form (1), denoted
I |= r, if H(r) ∩ I �= ∅ whenever I |= B(r). I is a model of a program P ,
denoted I |= P , if I |= r for every rule r ∈ P .

Note that the fact that rule bodies are forced to be a single generalized atom
is not really a limitation, and will ease the presentation of the results in the
paper. In fact, a single generalized atom is sufficient for modeling conjunctions,
default negation, aggregates and similar constructs.

Example 2. A conjunction p1 ∧ · · · ∧ pn of n ≥ 1 propositional atoms is equiv-
alently represented by a generalized atom A such that DA = {p1, . . . , pn}, and
fA(B) = T if and only if B = {p1, . . . , pn}.

A conjunction p1, . . . , pm,∼ pm+1, . . . ,∼ pn of literals, where n ≥ m ≥ 0,
p1, . . . , pn are propositional atoms and ∼ denotes negation as failure, is equiv-
alently represented by a generalized atom A such that DA = {p1, . . . , pn}, and
fA(B) = T if and only if {p1, . . . , pm} ⊆ B and B ∩ {pm+1, . . . , pn} = ∅.
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An aggregate COUNT ({p1, . . . , pn}) �= k, where n ≥ k ≥ 0, and p1, . . . , pn
are propositional atoms, is equivalently represented by a generalized atom A
such that DA = {p1, . . . , pn}, and fA(B) = T if and only if |B ∩ DA| �= k. �

In the following, when convenient, we will represent generalized atoms as
conjunctions of literals or aggregate atoms. Subsets of B mapped to true by such
generalized atoms will be those satisfying the associated conjunction.

Example 3. Consider the following rules:

r1 : a ← COUNT ({a, b}) �= 1 r2 : b ← COUNT ({a, b}) �= 1

The following are general programs that will be used for illustrating the differ-
ences between the semantics considered in this paper:

P1 := {r1; r2} P4 := {r1; r2; a ∨ b ←}
P2 := {r1; r2; a ← b; b ← a} P5 := {r1; r2; a ←∼ b}
P3 := {r1; r2;←∼ a;←∼ b}

Note that if a and b are replaced by p1 and p2, the aggregate COUNT ({a, b}) �= 1
is equivalent to the generalized atom A from Example 1, and therefore program
P1 encodes the coordination game depicted in the introduction. �

Generalized atoms can be partitioned into two classes, referred to as convex
and non-convex, according to the following definition: A generalized atom A is
convex if for all triples I, J,K of interpretations such that I ⊂ J ⊂ K, I |= A
and K |= A implies J |= A. A convex program is a general program whose
rules have convex bodies. Note that convex generalized atoms are closed under
conjunction, but not under disjunction or complementation. In more detail, the
conjunction of two generalized atoms A,A′, denoted A∧A′, is such that DA∧A′ =
DA ∪ DA′ , and for all I ⊆ DA∧A′ , fA∧A′(I) = fA(I ∩ DA) ∧ fA′(I ∩ DA′). The
disjunction DA∨A′ is defined similarly, and the complementation A of A is such
that DA = DA, and for all I ⊆ DA, fA(I) = ¬fA(I). To show that convex
generalized atoms are not closed under disjunction and complementation, an
example is sufficient. Let A,A′ be such that DA = DA′ = {a, b}, fA(I) = T if
and only if I = ∅, and fA′(I) = T if and only if I = {a, b}. Hence, A,A′ are
convex, but A ∨ A′ is not. However, its complement A ∨ A′ is convex because
true only for {a} and {b}. Closure with respect to conjunction is proved by the
following claim.

Lemma 1. The conjunction A∧A′ of two convex generalized atoms is a convex
generalized atom.

Proof. Let I ⊂ J ⊂ K be such that I |= A ∧ A′ and K |= A ∧ A′. Hence,
I |= A, K |= A, I |= A′, and K |= A′ by definition of A ∧ A′. Since A and A′

are convex, we have J |= A and J |= A′, which in turn imply J |= A ∧ A′. �

We now describe a reduct-based semantics, usually referred to as FLP, which
has been introduced and analyzed in [13,14].
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Definition 1 (FLP Reduct). The FLP reduct P I of a program P with respect
to I is defined as the set {r ∈ P | I |= B(r)}.
Definition 2 (FLP Answer Sets). I is an FLP answer set of P if I |= P
and for each J ⊂ I it holds that J �|= P I . Let FLP (P ) denote the set of FLP
answer sets of P .

Example 4. Consider the programs from Example 3:

– The models of P1 are {a}, {b} and {a, b}, none of which is an FLP answer
set. Indeed, P

{a}
1 = P

{b}
1 = ∅, which have the trivial model ∅, which is of

course a subset of {a} and {b}. On the other hand P
{a,b}
1 = P1, and so

{a} |= P
{a,b}
1 , where {a} ⊂ {a, b}. We will discuss in the next section why this

is a questionable situation.
– Concerning P2, it has one model, namely {a, b}, which is also its unique FLP

answer set. Indeed, P {a,b}
2 = P2, and hence the only model of P {a,b}

2 is {a, b}.
– Interpretation {a, b} is also the unique model of program P3, which however

has no FLP answer sets. Here, P {a,b}
3 = P1, hence similar to P1, {a} |= P

{a,b}
3

and {a} ⊂ {a, b}.
– P4 instead has two FLP answer sets, namely {a} and {b}, and a further model

{a, b}. In this case, P {a}
4 = {a ∨ b ←}, and no proper subset of {a} satisfies

it. Also P
{b}
4 = {a ∨ b ←}, and no proper subset of {b} satisfies it. Instead,

for {a, b}, we have P
{a,b}
4 = P4, and hence {a} |= P

{a,b}
4 and {a} ⊂ {a, b}.

– Finally, P5 has tree models, {a}, {b} and {a, b}, but only one answer set,
namely {a}. In fact, P {a}

5 = {a ←∼ b} and ∅ is not a model of the reduct. On
the other hand, ∅ is a model of P {b}

5 = ∅, and {a} is a model of P {a,b}
5 = P1.

Models and FLP answer sets of these programs are summarized in Table 1. �

3 SFLP Semantics

As noted in the introduction, the fact that P1 has no FLP answer sets is striking.
If we first assume that both a and b are false (interpretation ∅), and then apply a
generalization of the well-known one-step derivability operator, we obtain truth
of both a and b (interpretation {a, b}). Applying this operator once more again
yields the same interpretation, a fix-point. Interpretation {a, b} is also a sup-
ported model, that is, for all true atoms there exists a rule in which this atom
is the only true head atom, and in which the body is true.

It is instructive to examine why this seemingly robust model is not an FLP
answer set. Its reduct is equal to the original program, P {a,b}

1 = P1. There are
therefore two models of P1, {a} and {b}, that are subsets of {a, b} and therefore
inhibit {a, b} from being an FLP answer set. The problem is that, contrary to
{a, b}, these two models are rather weak, in the sense that they are not supported.
Indeed, when considering {a}, there is no rule in P1 such that a is the only true
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Table 1. (Supported) models and (S)FLP answer sets of programs in Example 3, where
A is the generalized atom COUNT ({a, b}) �= 1.

Rules Models FLP Supported Models SFLP

P1 a ← A b ← A {a}, {b}, {a, b} — {a, b} {a, b}
P2 a ← A b ← A {a, b} {a, b} {a, b} {a, b}

a ← b b ← a

P3 a ← A b ← A {a, b} — {a, b} {a, b}
←∼ a ←∼ b

P4 a ← A b ← A {a}, {b}, {a, b} {a}, {b} {a}, {b}, {a, b} {a}, {b}
a ∨ b ←

P5 a ← A b ← A {a}, {b}, {a, b} {a} {a}, {a, b} {a}, {a, b}
a ←∼ b

atom in the rule head and the body is true in {a}: The only available rule with
a in the head has a false body. The situation for {b} is symmetric.

It is somewhat counter-intuitive that a model like {a, b} should be inhibited
by two weak models like {a} and {b}. Indeed, this is a situation that normally
does not occur in ASP. For programs that do not contain generalized atoms,
whenever one finds a J ⊂ I such that J |= P I there is for sure also a K such
that J ⊆ K ⊂ I, K |= P I and K is supported. Indeed, we will show in Sect. 4
that this is the case also for programs containing only convex generalized atoms.
Our feeling is that since such a situation does not happen for a very wide set of
programs, it has been overlooked so far.

We will now attempt to repair this kind of anomaly by stipulating that one
should only consider supported models for finding inhibitors of answer sets. In
other words, one does not need to worry about unsupported models of the reduct,
even if they are subsets of the candidate. Let us first define supported models
explicitly.

Definition 3 (Supportedness). A model I of a program P is supported if for
each a ∈ I there is a rule r ∈ P such that I ∩ H(r) = {a} and I |= B(r). In
this case we will write I |=s P .

Example 5. Continuing Example 4, programs P1, P2, and P3 have one sup-
ported model, namely {a, b}. The model {a} of P1 is not supported because the
body of the the rule with a in the head has a false body with respect to {a}. For
a symmetric argument, model {b} of P1 is not supported either. The supported
models of P4, instead, are {a}, {b}, and {a, b}, so all models of the program are
supported. Note that both models {a} and {b} have the disjunctive rule as the
only supporting rule for the respective single true atom, while for {a, b}, the two
rules with generalized atoms serve as supporting rules for a and b. Finally, the
supported models of P5 are {a} and {a, b}. Supported models of these programs
are summarized in Table 1. �
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We are now ready to formally introduce the new semantics. In this paper we
will normally refer to it as SFLP answer sets or SFLP semantics, but also call
it supportedly stable models occasionally.

Definition 4 (SFLP Answer Sets). I is an SFLP answer set of P if I |=s P
and for each J ⊂ I it holds that J �|=s P I . Let SFLP (P ) denote the set of SFLP
answer sets of P .

Example 6. Consider again the programs from Example 3.

– Recall that P1 has only one supported model, namely {a, b}, and P
{a,b}
1 = P1,

but ∅ �|=s P
{a,b}
1 , {a} �|=s P

{a,b}
1 , and {b} �|=s P

{a,b}
1 , therefore no proper subset

of {a, b} is a supported model. Hence, it is an SFLP answer set.
– Concerning P2, it has one model, namely {a, b}, which is supported and also

its unique SFLP answer set. Indeed, recall that P
{a,b}
2 = P2, and hence no

proper subset of {a, b} can be a model (let alone a supported model) of P {a,b}
2 .

– Interpretation {a, b} is the unique model of program P3, which is supported
and also its SFLP answer set. In fact, P {a,b}

3 = P1.
– P4 has two SFLP answer sets, namely {a} and {b}. In this case, recall P {a}

4 =
{a∨b ←}, and no proper subset of {a} satisfies it. Also P

{b}
4 = {a∨b ←}, and

no proper subset of {b} satisfies it. Instead, for {a, b}, we have P
{a,b}
4 = P4,

hence since {a} |=s P
{a,b}
4 , and {b} |=s P

{a,b}
4 , we obtain that {a, b} is not an

SFLP answer set.
– Finally, P5 has two SFLP answer sets, namely {a} and {a, b}. In fact, P {a}

5 =
{a ←∼ b} and P

{a,b}
5 = P1.

The programs, models, FLP answer sets, supported models, and SFLP answer
sets are summarized in Table 1. �

An alternative, useful characterization of SFLP answer sets can be given in
terms of Clark’s completion [18]. In fact, it is well-known that supported models
of a program are precisely the models of its completion. We define this notion in
a somewhat non-standard way, making use of the concept of generalized atom.
We first define the completion of a propositional atom p with respect to a general
program P as a generalized atom encoding the supportedness condition for p.

Definition 5. The completion of a propositional atom p ∈ B with respect to a
general program P is a generalized atom A such that DA = At(P ), and for all
I ⊆ DA, fA(I) = T if and only if p ∈ I and there is no rule r ∈ P for which
I |= B(r) and I ∩ H(r) = {a}. Let comp(p, P ) denote the completion of p with
respect to P .

These generalized atoms are then used to effectively define a program whose
models are the supported model of P .

Definition 6. The completion of a general program P is a general program
comp(P ) extending P with a rule ← comp(p, P ) for each propositional atom
p ∈ At(P ).
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Example 7. Consider again the programs from Example 3.

– Program comp(P1) extends P1 with the following rules:

← a ∧ COUNT ({a, b}) = 1 ← b ∧ COUNT ({a, b}) = 1

– Program comp(P2) extends P2 with the following rules:

← a ∧ COUNT ({a, b}) = 1∧ ∼ b ← b ∧ COUNT ({a, b}) = 1∧ ∼ a

– Program comp(P3) is equal to comp(P1), and program comp(P4) extends P4

with the following rules:

← a ∧ COUNT ({a, b}) = 1 ∧ b ← b ∧ COUNT ({a, b}) = 1 ∧ a

– Program comp(P5) instead extends P5 with the following rules:

← a ∧ COUNT ({a, b}) = 1 ∧ b ← b ∧ COUNT ({a, b}) = 1

Note that the only model of comp(P1), comp(P2), and comp(P3) is {a, b}. As for
comp(P4), and comp(P5), their models are {a}, {b}, and {a, b}. �

Proposition 1. Let P be a general program, and I be an interpretation. Then,
I |=s P if and only if I |= comp(P ).

This characterization, which follows directly from [18], provides us with a
means for implementation that relies only on model checks, rather than sup-
portedness checks.

Proposition 2. Let P be a general program, and I be an interpretation. Then,
I is an SFLP answer set of P if I |= comp(P ) and for each J ⊂ I it holds that
J �|= comp(P I).

4 Properties

The new semantics has a number of interesting properties that we report in this
section. First of all, it is an extension of the FLP semantics, in the sense that
each FLP answer set is also an SFLP answer set.

Theorem 1. Let P be a general program. Then, FLP (P ) ⊆ SFLP (P ).

Proof. Let I be an FLP answer set of P . Hence, each J ⊂ I is such that J �|= P I .
Thus, we can conclude that J �|=s P I for any J ⊂ I. Therefore, I is a SFLP
answer set of P . �

The inclusion is strict in general. In fact, P1 is a simple program for which
the two semantics disagree (see Examples 3–6 and Table 1). On the other hand,
the two semantics are equivalent for a large class of programs, as shown below.

Theorem 2. If P is a convex program then FLP (P ) = SFLP (P ).
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Proof. FLP (P ) ⊆ SFLP (P ) holds by Theorem 1. For the other direction, con-
sider an interpretation I not being an FLP answer set of P . Hence, there is J ⊂ I
such that J |= P I . We also assume that J is a subset-minimal model of P I ,
that is, there is no K ⊂ J such that K |= P I . We shall show that J |=s P I . To
this end, suppose by contradiction that there is p ∈ J such that for each r ∈ P I

either J �|= B(r) or J ∩ H(r) �= {p}. Consider J \ {p} and a rule r ∈ P I such
that J \{p} |= B(r). Since r ∈ P I , I |= B(r), and thus J |= B(r) because B(r)
is convex. Therefore, J ∩H(r) �= {p}. Moreover, J ∩H(r) �= ∅ because J |= P I

by assumption. Hence, (J \ {p}) ∩ H(r) �= ∅, and therefore J \ {p} |= P I . This
contradicts the assumption that J is a subset-minimal model of P I . �

We will now focus on computational complexity. We consider here the prob-
lem of determining whether an SFLP answer set exists. We note that the only
difference to the FLP semantics is in the stability check. For FLP, subsets need to
be checked for being a model. For SFLP, instead, subsets need to be checked for
being a supported model. Intuitively, one would not expect that this difference
can account for a complexity jump, which is confirmed by the next result.

Theorem 3. Let P be a general program whose generalized atoms are polynomial-
time computable functions. Checking whether SFLP (P ) �= ∅ is in ΣP

2 in general;
it is ΣP

2 -hard already in the disjunction-free case if at least one form of non-convex
generalized atom is permitted. The problem is NP-complete if P is disjunction-free
and convex.

Proof. For the membership in ΣP
2 one can guess an interpretation I and check

that there is no J ⊂ I such that J |=s P . The check can be performed by a
coNP oracle. To prove ΣP

2 -hardness we note that extending a general program P
by rules p ← p for every p ∈ At(P ) is enough to guarantee that all models of any
reduct of P are supported. We thus refer to the construction and proof by [16].
If P is disjunction-free and convex then SFLP (P ) = FLP (P ) by Theorem 2.
Hence, NP-completeness follows from results in [19]. �

We would like to point out that the above proof also illustrates a peculiar
feature of SFLP answer sets, which it shares with the supported model semantics:
the semantics is sensitive to tautological rules like p ← p, as their addition can
turn non-SFLP answer sets into SFLP answer sets.

5 Discussion

Existing semantics for logic programs with generalized atoms do not yield
intended models under particular conditions. Specifically, the lack of intended
models seems to be ascribable to unsupported countermodels. In the FLP seman-
tics, the anomaly arises in connection with non-convex generalized atoms. As the
example in the introduction shows, the anomaly affects other semantics as well.
For example, it affects also description logic programs interpreted according to
the recent well-justified FLP semantics [17], which selects among FLP answer
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sets. Former semantics for description logic programs, referred to as strong and
weak stable models [7,8], behave differently. Without going into details, we use
the prisoners’ dilemma example from the introduction. Recall that there are two
prisoners who will confess if (and only if) both players choose the same option.
This situation can be represented using the following description logic program:

a(0) ← DL[A∩− a,B∩− b, A � a,B � b;Q](0)
b(0) ← DL[A∩− a,B∩− b, A � a,B � b;Q](0)

with the following ontology:

Q ≡ (A � B) � (¬A � ¬B).

Here, a(0) means that the first player confesses and b(0) means that the second
player confesses. The DL atoms transfer the extensions of a and b to A and B
of the ontology, making sure that constants that are not in the extension of a
will populate ¬A (likewise for b and ¬B); this is achieved by means of the � and
∩− operators. The ontology defines Q, which represents “good” situations (both
confess or both defect). The rule thus states that a(0) and b(0) should hold in
a “good” situation. An alternative encoding using ∪− instead of � is given by the
following program:

a(0) ← DL[A∩− a,B∩− b, C ∪− a,D∪− b;Q](0)
b(0) ← DL[A∩− a,B∩− b, C ∪− a,D∪− b;Q](0)

with the following ontology:

Q ≡ (¬A � ¬B) � (¬C � ¬D).

where operator ∪− increases ¬C and ¬D with the extension of a and b, respec-
tively. These programs correspond to P1 in Example 3, which just uses different
notation. Interpretation {a(0), b(0)} is both the only strong and weak answer
set of the above programs. However, these semantics suffer from other problems.
For example, if a fact a(0) is added to the above programs, {a(0), b(0)} would
still be both a strong and weak answer set, along with {a(0)}, which we consider
to be quite unintuitive.

Another semantics that selects among FLP answer sets, and is therefore
affected by the anomaly on unsupported countermodels, is PSP [10–12]. Analyz-
ing Fig. 2, we can better understand a common issue for PSP and well-justified
FLP: The adopted operator for fixpoint computation cannot “jump” over gaps
in the lattice of interpretations when establishing the truth value of a generalized
atom. Examining the figure, the fact that {a(0)} and {b(0)} both do not satisfy
the generalized atom prevents these operators from deriving {a(0), b(0)}. Yet
these two interpretations are not relevant for the example in the introduction.

We observe that other interesting semantics, such as the one by [20], are also
affected by the anomaly on unsupported models. In particular, the semantics
by [20] is presented for programs consisting of arbitrary set of propositional
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{a(0), b(0)}

{a(0)} {b(0)}

∅

Fig. 2. Satisfying (solid) and unsatisfying (dashed) interpretations of the description
logic programs in Sect. 5 encoding the prisoners’ dilemma.

formulas, and it is based on a reduct in which false subformulas are replaced by
⊥. Answer sets are then defined as interpretations being subset-minimal models
of their reducts. For the notation used in this paper, when rewriting generalized
atoms to an equivalent formula, the semantics by [20] coincides with FLP, which
immediately shows the anomaly. In [20] there is also a method for rewriting
aggregates, however COUNT ({a, b}) �= 1 is not explicitly supported, but should
be rewritten to ¬(COUNT ({a, b}) = 1). Doing this, one can observe that for
P1, P2, P3, and P5 the semantics of [20] behaves like SFLP (cf. Table 1), while
for P4 the semantics of [20] additionally has the answer set {a, b}, which is
not a supported minimal model of the FLP reduct. P4 therefore shows that
the two semantics do not coincide, even if generalized atoms are interpreted as
their negated complements, and the precise relationship is left for further study.
However, we also believe that rewriting a generalized atom into its negated
complement is not always natural, and we are also convinced that there should
be a semantic difference between a generalized atom and its negated complement.

6 Conclusion

In this paper, we have first studied conditions under which existing semantics for
logic programs with generalized atoms do not yield intended models, while they
arguably should. Analyzing the reasons, we argue that this seems to be connected
to a lack of support in countermodels. Motivated by this situation, we have then
defined a new semantics for programs with generalized atoms, called support-
edly stable models, supportedly FLP, or SFLP semantics. The new definition
overcomes the anomaly on unsupported countermodels, and provides a robust
semantics for programs with generalized atoms. We show several properties of
this new semantics. For example, it coincides with the FLP semantics (and thus
also the PSP semantics) on convex programs, and therefore also on standard
programs. Furthermore, the complexity of common reasoning tasks is equal to
the respective tasks using the FLP semantics. We also provide a characterization
of the new semantics by a Clark-inspired completion.

Concerning future work, implementing a reasoner supporting the new seman-
tics would be of interest, for example by compiling the new semantics in FLP,
so to use current ASP solvers such as dlv [21], cmodels [22], clasp [23], and
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wasp [24,25]. An application area would be systems that loosely couple OWL
ontologies with rule bases, for instance by means of HEX programs. As we have
shown earlier, HEX atoms interfacing to ontologies will in general not be con-
vex, and therefore using them in recursive definitions falls into our framework,
where the FLP and SFLP semantics differ. In fact, the solver dlvhex1 does not
produce any answer for the program and ontology provided in Sect. 5. We also
believe that it would be important to collect example programs that contain non-
convex generalized atoms in recursive definitions. We have experimented with a
few simple domains stemming from game theory (as outlined in the introduc-
tion), but we are not aware of many other attempts. Our intuition is that such
programs would be written in several domains that describe features with feed-
back loops, which applies to many so-called complex systems. Also computing
or checking properties of neural networks might be a possible application in this
area. Another area of future work arises from the fact that rules like p ← p are
not irrelevant for the SFLP semantics. To us, it is not completely clear how much
of a drawback this really is. However, we intend to study this along two avenues.
The first is trying to characterize programs for which this phenomenon occurs,
the second is to propose variants of the SFLP semantics that do not exhibit it.
Concerning the latter, one idea would be to require models or countermodels to
have level mappings as defined in [17].
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Abstract. Heuristic search is arguably the most successful paradigm in
Automated Planning, which greatly improves the performance of planning
strategies. However, adding heuristics usually leads to very complicated
planning algorithms. In order to study different properties (e.g. complete-
ness) of those complicated planning algorithms, it is important to use an
appropriate formal language and framework. In this paper, we argue that
Transaction Logic is just such a specification language, which lets one for-
mally specify both the heuristics, the planning algorithm, and also facili-
tates the discovery of more general and more efficient algorithms. To illus-
trate, we take thewell-known regression analysismechanismand show that
Transaction Logic lets one specify the concept of regression analysis eas-
ily and thus express RSTRIPS, a classical and very complicated planning
algorithm based on regression analysis. Moreover, we show that extensions
to that algorithm that allow indirect effects and action ramification are
obtained almost for free. Finally, a compact and clear logical formulation
of the algorithm lets us prove the completeness ofRSTRIPS—a result that,
to the best of our knowledge, has not been known before.

1 Introduction

Heuristic planning is an application of heuristic search to the domain of planning.
To find a plan, a heuristic planner relies on the information about the regions
of the search space in which a successful plan solution is likely to be found.
Planning algorithms can use such information to guide their search and thus
reduce the search space that will likely be explored in order to find a solution.

Most planners apply various sophisticated domain-independent heuristics
[3,15,21,25]. Other approaches [1,11,22,26,29] use declarative formalisms (e.g.
situation calculus or linear temporal logic) to express heuristic information.
Declarative heuristic information can be used to prune the search space [1,26]
or steer the search in promising directions [13,18]. Although the declarative rep-
resentation of heuristic information provides multiple advantages for specifying
and generalizing heuristics, many of the above approaches do not get as much
attention as the heuristic methods. There are several reasons for this:

– Declarative approaches typically propose a framework where a user can
specify some heuristics but they are not flexible enough for representing
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domain-independent heuristics. In contrast, non-declarative heuristic
approaches are very versatile [4,21,25] and provide ways to automatically
generate heuristic planners from descriptions of a planning problem.

– The declarative approaches are typically still too complex, and this often
defeats their stated goal of simplifying proofs of the different properties of the
planning algorithms, such as completeness and termination.

In this paper, we will argue that Transaction Logic (or T R) [8–10] provides mul-
tiple advantages for specifying and generalizing planning heuristics. Specifically,
we will show that sophisticated planning heuristics, such as regression analysis,
can be naturally represented in T R and that such representation can be used
to express complex planning strategies such as RSTRIPS.

Transaction Logic is an extension of classical logic with dedicated support
for specifying and reasoning about actions, including sequential and parallel
execution, atomicity of transactions, and more. To illustrate the point, we take
the regression analysis heuristic and a related planning algorithm RSTRIPS
[23,28], and show that both the heuristics and the planning algorithm naturally
lend themselves to compact representation in Transaction Logic. The resulting
representation opens up new possibilities and, in particular, lets us prove the
completeness of RSTRIPS. Clearly, existing formalizations of regression analysis
and goal regression [24] are too complicated to be used as formal frameworks of
such proofs. In contrast, the clear and compact form used to represent RSTRIPS
in T R enables us to both implement and analyze RSTRIPS in a declarative
framework, which is also much less complicated than its implementations even
in Prolog [28] (which is not declarative).

The present paper continues the line of work in [2], where we (plain) STRIPS
was represented in T R declaratively, extended, and made into a complete strat-
egy. One can similarly apply T R to other heuristics proposed for planning algo-
rithms [3]. As in [2], because RSTRIPS is cast here as a purely logical problem
in a suitable general logic, a number of otherwise non-trivial extensions become
easily achievable, and we get them almost for free. In particular, RSTRIPS plan-
ning can be naturally extended with derived predicates defined by rules. This
endows the framework with the ability to express indirect effects of actions, but
the resulting planning algorithm is still complete.

This paper is organized as follows. Section 2 reviews the STRIPS planning
framework and extends it with the concept of regression of actions. Section 3
briefly overviews Transaction Logic in order to make this paper self-contained.
Section 4 shows how regression of literals through actions can be computed.
Section 5 shows how T R can represent RSTRIPS planning algorithm. Section 6
concludes the paper.

2 Extended STRIPS-Style Planning

In this section we first remind some standard concepts in logic and then introduce
the STRIPS planning problem extended with the concept of regression.
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We assume denumerable pairwise disjoint sets of variables V, constants C,
extensional predicate symbols Pext, and intensional predicate symbols Pint. As
usual, atoms are formed by applying predicate symbols to ordered lists of con-
stants or variables. Extending the logical signature with function symbols is
straightforward in this framework, but we will not do it, as this is tangential to
our aims. An atom is extensional if p ∈ Pext and intensional if p ∈ Pint.
A literal is either an atom P or a negated extensional atom ¬P . Negated inten-
sional atoms are not allowed (but such an extension is possible). In the original
STRIPS, all predicates were extensional, and the addition of intentional pred-
icates to STRIPS is a major enhancement, which allows us to deal with the
so-called ramification problem [14], i.e., with indirect consequences of actions.
Table 1 shows the syntax of our language.

Table 1. The syntax of the language for representing STRIPS planning problems.

Extensional predicates represent database facts: they can be directly manip-
ulated (inserted or deleted) by actions. Intensional predicate symbols are used
for atomic statements defined by rules—they are not affected by actions directly.
Instead, actions make extensional facts true or false and this indirectly affects
the dependent intensional atoms. These indirect effects are known as action
ramifications in the literature.

A fact is a ground (i.e., variable-free) extensional atom. A set S of literals
is consistent if there is no atom, atm, such that both atm and ¬atm are in S.

A rule is a statement of the form head ← body where head is an intensional
atom and body is a conjunction of literals. A ground instance of a rule, R,
is any rule obtained from R by a substitution of variables with constants from
C such that different occurrences of the same variable are always substituted
with the same constant. Given a set S of literals and a ground rule of the form
atm ← �1 ∧ · · · ∧ �m, the rule is true in S if either atm ∈ S or {�1, . . . , �m} �⊆ S.
A (possibly non-ground) rule is true in S if all of its ground instances are true
in S.

Definition 1 (State). Given a set R of rules, a state is a consistent set
S = Sext ∪ Sint of literals such that

1. For each fact atm, either atm ∈ Sext or ¬atm ∈ Sext.
2. Every rule in R is true in S. �
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Definition 2 (STRIPS Action). A STRIPS action is a triple of the form
α = 〈pα(X1, ...,Xn), P reα, Eα〉, where

– pα(X1, ...,Xn) is an intensional atom in which X1, ...,Xn are variables and
pα ∈ Pint is a predicate that is reserved to represent the action α and can be
used for no other purpose;

– Preα, called the precondition of α, is a set that may include extensional as
well as intensional literals;

– Eα, the effect of α, is a consistent set that may contain extensional literals
only;

– The variables in Preα and Eα must occur in {X1, ...,Xn}.1 �

Note that the literals in Preα can be both extensional and intensional, while the
literals in Eα can be extensional only.

Definition 3 (Execution of a STRIPS Action). A STRIPS action α is exe-
cutable in a state S if there is a substitution θ : V −→ C such that θ(Preα) ⊆ S.
A result of the execution of α with respect to θ is the state, denoted θ(α)(S),
defined as (S \ ¬θ(Eα)) ∪ θ(Eα), where ¬E = {¬� | � ∈ E}. In other words,
θ(α)(S) is S with all the effects of θ(α) applied. When α is ground, we simply
write α(S). �

Note that S′ is well-defined since θ(Eα) is unique and consistent. Observe
also that, if α has variables, the result of an execution, S′, depends on the chosen
substitution θ.

The following simple example illustrates the above definition. We follow the
standard logic programming convention whereby lowercase symbols represent
constants and predicate symbols. The uppercase symbols denote variables that
are implicitly universally quantified outside of the rules.

Example 1. Consider a world consisting of just two blocks and the action
pickup = 〈pickup(X,Y ), {clear(X)}, {¬on(X,Y ), clear(Y )}〉. Consider also the
state S = {clear(a),¬clear(b), on(a, b),¬on(b, a)}. Then the result of the execu-
tion of pickup at state S with respect to the substitution {X → a, Y → b}
is S′ = {clear(a), clear(b),¬on(a, b),¬on(b, a)}. It is also easy to see that
pickup cannot be executed at S with respect to any substitution of the form
{X →b, Y → ...}. �

Definition 4 (Planning Problem). A planning problem 〈R, A, G,S〉 con-
sists of a set of rules R, a set of STRIPS actions A, a set of literals G, called
the goal of the planning problem, and an initial state S. A sequence of actions
σ = α1, . . . , αn is a planning solution (or simply a plan) for the planning
problem if:

– α1, . . . , αn ∈ A; and

1 Requiring all variables in Preα to occur in {X1, ..., Xn} is not essential: we can easily
extend our framework and consider the extra variables to be existentially quantified.
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– there is a sequence of states S0,S1, . . . ,Sn such that
• S = S0 and G ⊆ Sn (i.e., G is satisfied in the final state);
• for each 0 < i ≤ n, αi is executable in state Si−1 and the result of that

execution (for some substitution) is the state Si.
In this case we will also say that S0,S1, . . . ,Sn is an execution of σ. �

Definition 5 (Non-redundant Plan). Given a planing problem 〈R, A, G,S〉
and a sequence of actions σ = α1, . . . , αn, we call σ a non-redundant plan for
〈R, A, G,S〉 if and only if:

– σ is a planning solution for 〈R, A, G,S〉;
– None of σ’s sub-sequences is a planning solution for the given planning prob-

lem.

In other words, removing any action from σ either makes the sequence non-
executable at S or G is not satisfied after the execution. �

In this section, we give a formal definition of the regression of literals through
STRIPS actions. Section 4 shows how one can compute the regression of a literal
through an action.

Definition 6 (Regression of a STRIPS Action). Consider a STRIPS
action α = 〈p(X), P re,E〉 and a consistent set of fluents L. The regression
of L through α, denoted R(α,L),2 is a set of actions such that, for every
β ∈ R(α,L), β = 〈p(X), P reβ , E〉, where Preβ ⊇ Pre is a minimal (with
respect to �) set of fluents satisfying the following condition: For every state
S and substitution θ such that θ(α)(S) exists, if S |= θ(Preβ) ∧ θ(L), then
θ(α)(S) |= θ(L). In other words, β has the same effects as α, but its precondi-
tion is more restrictive and it preserves (does not destroy) the set of literals L.

Each action in R(α,L) will also be called a regression of L via α. �

The minimal set of fluents in this definition is, as noted, with respect to
subset, i.e., there is no action β′ = 〈p(X), P reβ′ , E〉 such that Preβ′ � Preβ

and β′ satisfies the conditions of Definition 6.
Consider β ∈ R(α,L) and let β̌ = 〈p(X), P reβ ∪ L,E〉. We will call β̌ a

restricted regression of L through α and denote the set of such actions by
Ř(α,L). We will mostly use the restricted regressions of actions in the represen-
tation of RSTRIPS planning algorithm.

3 Overview of Transaction Logic

To make this paper self-contained, we provide a brief introduction to the relevant
subset of T R [5,7–10] needed for the understanding of this paper.

2 We simply write R(α, �) whenever L just contains a single literal �.



50 R. Basseda and M. Kifer

As an extension of first-order predicate calculus, T R shares much of its
syntax with that calculus. One of the new connectives that T R adds to the
calculus is the serial conjunction , denoted ⊗. It is binary associative, and
non-commutative. The formula φ ⊗ ψ represents a composite action of execu-
tion of φ followed by an execution of ψ. When φ and ψ are regular first-order
formulas, φ ⊗ ψ reduces to the usual first-order conjunction, φ ∧ ψ. The logic
also introduces other connectives to support hypothetical reasoning, concurrent
execution, etc., but these are not going to be used here.

To take the frame problem out of many considerations in T R, it has an exten-
sible mechanism of elementary updates (see [6,7,9,10]). Due to the definition
of STRIPS actions, we just need the following two types of elementary updates
(actions): +p(t1, . . . , tn) and −p(t1, . . . , tn), where p(t1, . . . , tn) denotes an exten-
sional atom. Given a state S and a ground elementary action +p(a1, . . . , an), an
execution of +p(a1, . . . , an) at state S deletes the literal ¬p(a1, . . . , an) and adds
the literal p(a1, . . . , an). Similarly, executing −p(a1, . . . , an) results in a state
that is exactly like S, but p(a1, . . . , an) is deleted and ¬p(a1, . . . , an) is added.
If p(a1, . . . , an) ∈ S, the action +p(a1, . . . , an) has no effect, and similarly for
−p(a1, . . . , an).

We define complex actions using serial rules, which are statements of
the form

h ← b1 ⊗ b2 ⊗ . . . ⊗ bn. (1)

where h is an atomic formula denoting the complex action and b1, ..., bn are
literals or elementary actions. This means that h is a complex action and one
way to execute h is to execute b1 then b2, etc., and finally to execute bn. Note
that we have regular first-order as well as serial-Horn rules. For simplicity, we
assume that the sets of intentional predicates that can appear in the heads of
regular rules and those in the heads of serial rules are disjoint. Extensional atoms
and intentional atoms that can appear in the states (see Definition 1) will be
called fluents. Note that a serial rule all of whose body literals are fluents is
essentially a regular rule, since all the ⊗-connectives can be replaced with ∧.
Therefore, one can view the regular rules as a special case of serial rules.

The following example illustrates the above concepts where we continue to use
the standard logic programming convention regarding capitalization of variables,
which are assumed to be universally quantified outside of the rules. It is common
practice to omit quantifiers.

move(X,Y ) ← (on(X,Z) ∧ clear(X)
∧ clear(Y ) ∧ ¬tooHeavy(X))⊗

−on(X,Z) ⊗ +on(X,Y )⊗
−clear(Y ).

tooHeavy(X) ← weight(X,W ) ∧ limit(L)∧
W < L.

? − move(blk1, blk15) ⊗ move(SomeBlk, blk1).

Here on, clear, tooHeavy, weight, etc., are fluents and move is an action. The pred-
icate tooHeavy is an intentional fluent, while on, clear, and weight are extensional
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fluents. The actions +on(...), −clear(...), and −on(...) are elementary and the
intentional predicate move is a complex action. This example illustrates several
features of Transaction Logic. The first rule is a serial rule defining a complex
action of moving a block from one place to another. The second rule defines the
intensional fluent tooHeavy, which is used in the definition of move (under the
scope of default negation). As the second rule does not include any action, it is
a regular rule.

The last statement above is a request to execute a composite action, which
is analogous to a query in logic programming. The request is to move block blk1
from its current position to the top of blk15 and then find some other block and
move it on top of blk1. Traditional logic programming offers no logical seman-
tics for updates, so if after placing blk1 on top of blk15 the second operation
(move(SomeBlk, blk1)) fails (say, all available blocks are too heavy), the effects
of the first operation will persist and the underlying database becomes corrupted.
In contrast, Transaction Logic gives update operators a logical semantics of an
atomic database transaction. This means that if any part of the transaction fails,
the effect is as if nothing was done at all. For example, if the second action in our
example fails, all actions are “backtracked over” and the underlying database
state remains unchanged.

T R’s semantics is given in purely model-theoretic terms and here we will
just give an informal overview. The truth of any action in T R is determined
over sequences of states—execution paths—which makes it possible to think
of truth assignments in T R’s models as executions. If an action, ψ, defined by a
set of serial rules, P, evaluates to true over a sequence of states D0, . . . ,Dn, we
say that it can execute at state D0 by passing through the states D1, ..., Dn−1,
ending in the final state Dn. This is captured by the notion of executional
entailment , which is written as follows:

P,D0 . . .Dn |= ψ (2)

Due to lack of space, we put more examples about T R in the full report.3

Various inference systems for serial-Horn T R [7] are similar to the well-known
SLD resolution proof strategy for Horn clauses plus some T R-specific inference
rules and axioms. Given a set of serial rules, P, and a serial goal, ψ (i.e., a formula
that has the form of a body of a serial rule such as (1), these inference systems
prove statements of the form P,D · · · � ψ, called sequents. A proof of a sequent
of this form is interpreted as a proof that action ψ defined by the rules in P can
be successfully executed starting at state D.

An inference succeeds iff it finds an execution for the transaction ψ.
The execution is a sequence of database states D1, . . . , Dn such that
P,DD1 . . .Dn � ψ. We will use the following inference system in our planning
application. For simplicity, we present only a version for ground facts and rules.
The inference rules can be read either top-to-bottom (if top is proved then bottom
is proved) or bottom-to-top (to prove bottom one needs to prove top).

3 http://ewl.cewit.stonybrook.edu/planning/RSTRIPS-TR-full.pdf.

http://ewl.cewit.stonybrook.edu/planning/RSTRIPS-TR-full.pdf
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Definition 7 (T R Inference System). Let P be a set of rules (serial or reg-
ular) and D, D1, D2 denote states.

– Axiom: P,D · · · � (), where () is an empty clause (which is true at every
state).

– Inference Rules
1. Applying transaction definition: Suppose t ← body is a rule in P.

P,D · · · � body ⊗ rest

P,D · · · � t ⊗ rest
(3)

2. Querying the database: If D |= t then

P,D · · · � rest

P,D · · · � t ⊗ rest
(4)

3. Performing elementary updates: If the elementary update t changes the
state D1 into the state D2 then

P,D2 · · · � rest

P,D1 · · · � t ⊗ rest
(5)

A proof of a sequent, seqn, is a series of sequents, seq1, seq2, . . . , seqn−1,
seqn, where each seqi is either an axiom-sequent or is derived from earlier
sequents by one of the above inference rules. This inference system has been
proven sound and complete with respect to the model theory of T R [7]. This
means that if φ is a serial goal, the executional entailment P,D0 D1 . . .Dn |= φ
holds if and only if there is a proof of P,D0 · · · � φ over the execution path
D0,D1, . . . ,Dn. In this case, we will also say that such a proof derives P,D0

D1 . . .Dn � φ.

4 Computation of Regression

In this section, we briefly explain how the previously introduced regression of
actions (Definition 6) can be computed. This computation is a key component
of the RSTRIPS planning algorithm.

In the following we will be using an identity operator, =, which will be
treated as an immutable extensional predicate, i.e., a predicate defined by a
non-changeable set of facts: For any state S and a pair of constants or ground
fluents � and �′, (� = �′) ∈ S if and only if � and � are identical. Similarly,
non-identity is defined as follows: � �= �′ ∈ S if and only if �, �′ are distinct.

To illustrate regression, consider a STRIPS action copy =
〈copy(Src,Dest, V ), {value(Src, V )}, {¬value(Dest, V ′), value(Dest, V )}〉 from
the Register Exchange example in [2]. For convenience, this example is also
found in the full report4 along with RSTRIPS planning rules. Here, copy ∈
4 http://ewl.cewit.stonybrook.edu/planning/RSTRIPS-TR-full.pdf.

http://ewl.cewit.stonybrook.edu/planning/RSTRIPS-TR-full.pdf
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R(copy, value(Src, V )) since for every state S and substitution θ such that
θ(copy)(S) exists, if S |= θ(value(Src, V )), then θ(α)(S) |= θ(value(Src, V )).
This example is a special case of the following property of regression, which
directly follows from the definitions: if � is an extensional literal and α =
〈p(X), P re,E〉 is a STRIPS action,

– R(α, �) = ∅ if and only if, for every ground substitution, ¬θ(�) ∈ θ(E).
– R(α, �) = {α} if and only if, for every ground substitution ¬θ(�) /∈ θ(E).

The following proposition and lemmas present a method to compute regres-
sion. The method is complete for extensional literals; for intentional literals, it
yields some, but not always all, regressions.

Proposition 1 (Regression of Sets of Literals). Given a set of literals L =
L1∪L2 and a STRIPS action α = 〈p(X), P reα, Eα〉, let β1 ∈ R(α,L1) and β2 ∈
R(α,L2), where β1 = 〈p(X), P reβ1 , Eα〉 and β2 = 〈p(X), P reβ2 , Eα〉. There is
some β = 〈p(X), P reβ , Eα〉 such that Preβ ⊆ Preβ1 ∪Preβ2 and β ∈ R(α,L).

Proof. From the assumptions, it follows that for every state S and substitu-
tion θ such that θ(α)(S) exists, if S |= θ(Preβ1 ∪ Preβ2) ∧ θ(L), then
θ(α)(S) |= θ(L).

To find a minimal subset of Preβ1 ∪Preβ2 satisfying the regression property,
one can repeatedly remove elements from Preβ1 ∪Preβ2 and check if the regres-
sion property still holds. When no removable elements remain, we get a desired
set Preβ . �

Lemma 1. (Regression of Extensional Literals). Consider an extensional
literal � and a STRIPS action α = 〈p(X), P re,E〉 where α and � do not share
variables. Let Preβ = Pre ∪ { � �= e |¬e ∈ E ∧ ∃θ s.t. θ(e) = θ(�) }.
Then β ∈ R(α,L), where β = 〈p(X), P reβ , E〉.
Proof. Let S be a state and there is θ such that θ(α)(S) exists. Clearly, if
S |= θ(Preβ), there is no ¬e ∈ E such that θ(e) = θ(�). Therefore, if
S |= θ(Preβ) ∧ θ(�), then θ(α)(S) |= �.

We need to show that Preβ is a minimal set of literals satisfying the above
property. Assume, to the contrary, that there is some Preβ′ , Pre ⊆ Preβ′ �

Preβ , such that for every state S and substitution θ, if θ(α)(S) exists and
S |= θ(Preβ′) ∧ θ(�), then θ(α)(S) |= θ(�). Since Preβ′ ⊂ Preβ , there must
be (� �= e) ∈ Preβ \ Preβ′ . Let θ1 be a substitution such that θ1(e) = θ1(�). In
that case for every S such that θ1(α)(S) exists, S |= θ1(Preβ′) ∧ θ1(�) but
θ1(α)(S) � θ(�), since θ1(¬�) = θ(¬e) ∈ θ1(E). This contradicts the assumption
that θ1(�) ∈ S. Thus Preβ is a minimal set of fluents satisfying the regression
condition for �, so β ∈ R(α, �). �

To illustrate the lemma, consider an extensional literal value(R, V ′′) and
the STRIPS action copy = 〈copy(S,D, V ), P recopy, Ecppy〉, where Precopy =
{value(S, V )} and Ecopy = {¬value(D,V ′), value(D,V )}. Then β ∈ R(copy,
value(R, V ′′)), where β = 〈copyβ(S,D, V ), P reβ , Ecopy〉 and Preβ = Precopy ∪
{value(R, V ′′) �= value(D,V ′)}.
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Lemma 2 (Regression of Intensional Literals). Consider a set of rules R,
an intensional literal �, and a STRIPS action α = 〈p(X), P re,E〉, where α
and � do not share variables. Let L be a minimal set of extensional literals such
that R ∪ L ∪ {← �} has an SLD-refutation [19]. Then for every β ∈ R(α,L) of
the form β = 〈p(X), P reβ , E〉, there is Lβ ⊆ Preβ ∪L such that 〈p(X), Lβ , E〉 ∈
R(α, �).

Proof. By Definition 6, for every state S and substitution θ such that θ(α)(S)
exists, if S |= θ(Preβ) ∧ θ(L), then θ(α)(S) |= θ(L). Due to the soundness
of SLD-refutation [19], if S |= θ(Preβ) ∧ θ(L) then S |= θ(�); and if
θ(α)(S) |= θ(L) then θ(α)(S) |= θ(�). Therefore, for every state S and
substitution θ such that θ(α)(S) exists, if S |= θ(Preβ) ∧ θ(L) ∧ θ(�), then
θ(α)(S) |= θ(�). Therefore, Preβ ∪ L satisfies the conditions for regressing
� through α except, possibly, minimality. To get the minimality, we can start
removing elements from this set, as in Proposition 1, until a minimal set is
reached. �

Definition 8. (Regression Deterministic Action). A STRIPS action α =
〈p(X), P reα, E〉 is called regression-deterministic if for every set of literals
L, one of the following holds:

– There exists β ∈ R(α,L) such that Preβ \Preα is a set of literals of the form
� = e or � �= e.

– R(α,L) = ∅.
Similarly, a set of actions A is regression-deterministic if all of its actions
are regression-deterministic. �

Clearly, if a set of actions A is regression-deterministic, one can find an action
β ∈ R(α,L) for every α ∈ A and set of literals L using Lemmas 1 and 2. From
now on, we assume that the set of actions A is regression-deterministic and is
closed under regression and restricted regression.

5 The RSTRIPS Planner

The idea of using T R as a planning formalism and an encoding of STRIPS
as a set of T R rules first appeared informally in the unpublished report [7].
The encoding did not include ramification and intensional predicates. Based on
that encoding, we proposed a non-linear and complete planning algorithm in
[2]. In this paper, we extend the original method with regression analysis and
use T R to represent the RSTRIPS planning algorithm. This also generalizes the
original RSTRIPS with intentional predicates and we prove the completeness of
the resulting planner. To the best of our knowledge, completeness of RSTRIPS
has not been proven before.

Regression analysis of literals, as a search heuristic for planners, can be used
to improve the performance of planning strategies. The idea behind planning
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with regression is that the already achieved goals should be protected so that
subsequent actions of the planner would not “unachieve” those goals [27].

To keep our encoding simple, we assume a built-in 3-ary predicate regress
such that, for any state S, regress(L, pα(X), pα′(X)) is true (on any path) if
and only if α′ ∈ (R(α,L)∪ Ř(α,L)∪{α}). During plan construction, RSTRIPS
may consider a subgoal that cannot be achieved without unachieving an already
achieved goal [28]. Instead of checking for unachieved goals after performing
actions (and undoing these actions when an unachieved goal is found), RSTRIPS
verifies that no unachieving will take place before performing each action by
modifying action preconditions using regression.

Definition 9 (Enforcement Operator). Let G be a set of extensional liter-
als. We define Enf(G) = {+p | p ∈ G} ∪ {−p | ¬p ∈ G}. In other words, Enf(G)
is the set of elementary updates that makes G true. �

Next we introduce a natural correspondence between STRIPS actions and
T R rules.

Definition 10 (Actions as T R Rules). Let α = 〈pα(X), P reα, Eα〉 be a
STRIPS action. We define its corresponding T R rule, tr(α), to be a rule of
the form

pα(X) ← (∧�∈Preα
�) ⊗ (⊗u∈Enf(Eα)u). (6)

Note that in (6) the actual order of action execution in the last component,
⊗u∈Enf(Eα)u, is immaterial, since all such executions happen to lead to the same
state.

We now define a set of T R clauses that simulate the well-known RSTRIPS
planning algorithm and extend this algorithm to handle intentional predicates
and rules. The reader familiar with the RSTRIPS planner may notice that these
rules are essentially a natural, more concise, and more general verbalization of
the classical RSTRIPS algorithm [12]. These rules constitute a complete planner
when evaluated with the T R proof theory.

Definition 11 (T R Planning Rules with Regression Analysis). Let Π =
〈R, A, G,S〉 be a STRIPS planning problem (see Definition 4). We define a set
of T R rules, P

r(Π ), which simulates the RSTRIPS planning algorithm. P
r(Π )

has three disjoint parts: P
r
R
, P

r
A
, and P

r
G, as described below.

– The P
r
R

part: for each rule p(X) ← p1(X1) ∧ · · · ∧ pn(Xn) in R, P
r
R

is a set of
rules of the following form—one rule per permutation 〈i1, . . . , in〉:

achiever
p(X,L) ← achiever

pi1
(Xi1 , L) ⊗

achiever
pi2

(Xi2 , L ∪ {pi1(Xi1)}) ⊗ . . . ⊗
achiever

pin
(Xin

, L ∪ {pi1(Xi1), . . . , pin−1(Xin−1)})
(P1)

Rule (P1) extends the classical RSTRIPS setting with intentional predicates
and ramification of actions.
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– The part P
r
A

= P
r
actions ∪ P

r
atoms ∪ P

r
achieves is constructed out of the actions

in A as follows:
• P

r
actions: for each α ∈ A, P

r
actions has a rule of the form

pα(X) ← (∧�∈Preα
�) ⊗ (⊗u∈Enf(Eα)u). (P2)

This is the T R rule that corresponds to the action α, introduced in Defin-
ition 10.

• P
r
atoms = P

r
achieved ∪ P

r
enforced has two disjoint parts as follows:

– P
r
achieved: for each extensional predicate p ∈ Pext, P

r
achieved has the

rules

achiever
p(X,L) ← p(X).

achiever
not p(X,L) ← ¬p(X).

(P3)

These rules say that if an extensional literal is true in a state then
that literal has already been achieved as a goal.
– P

r
enforced: for each action α = 〈pα(X), P reα, Eα〉 in A and each

e(Y ) ∈ Eα, P
r
enforced has the following rule:

achiever
e(Y ,L) ← regress(L, pα(X), pα′(X))

⊗ executer
pα′ (X,L). (P4)

This rule says that one way to achieve a goal that occurs in the effects
of an action is to execute that action after regressing the “protected”
literals L through that action.

• P
r
achieves: for each action α = 〈pα(X), P reα, Eα〉 in A where Preα =

{p1(X1), . . . , pn(Xn)}, P
r
achieves is a set of rules of the following form,

one per permutation 〈i1, . . . , in〉:

executer
pα

(X,L) ← achiever
pi1

(Xi1 , L) ⊗ s

achiever
pi2

(Xi2 , L ∪ {pi1(Xi1)}) ⊗ . . . ⊗

achiever
pin

(Xin
, L ∪ {pi1(Xi1), . . . , pin−1(Xin−1)})

⊗ pα(X).

(P5)

This means that to execute an action, one must first achieve the precondi-
tion of the action while making sure to not unachieve the already achieved
parts of the precondition.

– P
r
G: Let G = {g1, ..., gk}. Then P

r
G is a set of the following rules, one per

permutation 〈i1, . . . , in〉:

achieveG ← achiever
gi1

(L)
⊗ achiever

gi2
(L ∪ {gi1}) ⊗ . . .

⊗ achiever
gin

(L ∪ {gi1 , . . . , gin−1}).
(P6)
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Due to space limitation, we cannot include an example of T R-based RSTRIPS
planning here. Instead, we refer the reader to Example 3 in the full report.5

Given a set R of rules, a set A of STRIPS actions, an initial state S, and a
goal G, Definition 11 gives a set of T R rules that specify a planning strategy for
that problem. To find a solution for that planning problem, one simply needs to
place the request

? − achieveG . (7)

at a desired initial state and use the T R’s inference system of Sect. 3 to find a
proof. The inference system in question is sound and complete for serial clauses
[5,7,9], and the rules in Definition 11 satisfy that requirement.

As mentioned before, a solution plan for a STRIPS planning problem is a
sequence of actions leading to a state that satisfies the planning goal. Such a
sequence can be extracted by picking out the atoms of the form pα from a
successful derivation branch generated by the T R inference system. Since each
pα uniquely corresponds to a STRIPS action, this provides us with the requisite
sequence of actions that forms a plan.

Suppose seq0, . . . , seqm is a deduction by the T R inference system. Let
i1, . . . , in be exactly those indexes in that deduction where the inference rule
(3) was applied to some sequent using a rule of the form tr(αir

) introduced in
Definition 10. We will call αi1 , . . . , αin

the pivoting sequence of actions. The
corresponding pivoting sequence of states Di1 , . . . ,Din

is a sequence where
each Dir

, 1 ≤ r ≤ n, is the state at which αir
is applied. We will prove that the

pivoting sequence of actions is a solution to the planning problem. The proofs
are found in the full report.

Theorem 1 (Soundness of T R Planning Solutions). Consider a STRIPS
planning problem Π = 〈R, A, G,D0〉 and let P

r(Π ) be the corresponding set of
T R rules, as in Definition 11. Then any pivoting sequence of actions in the
derivation of the sequent P

r(Π ),D0 . . .Dm � achieveG is a solution plan.

Completeness of a planning strategy means that, for any STRIPS planning
problem, if there is a solution, the planner will find at least one plan.

Theorem 2 (Completeness of T R Planning). Given a STRIPS planning
problem Π = 〈R, A, G,D0〉, let P

r(Π ) be the corresponding set of T R rules as
in Definition 11. If there is a plan for Π then T R inference system will fins
some plan using the rules P

r(Π ), as described in Definition 11.

Theorem 3 (Decidability). T R-based planners for RSTRIPS always termi-
nates.

6 Conclusion

This paper has demonstrated that the use of Transaction Logic accrues signif-
icant benefits in the area of planning. As an illustration, we have shown that
5 http://ewl.cewit.stonybrook.edu/planning/RSTRIPS-TR-full.pdf.

http://ewl.cewit.stonybrook.edu/planning/RSTRIPS-TR-full.pdf
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sophisticated planning heuristics and algorithms, such as regression analysis and
RSTRIPS, can be naturally represented in T R and that the use of this power-
ful logic opens up new possibilities for generalizations and proving properties of
planning algorithms. For instance, just by using this logic, we were able to extend
RSTRIPS with action ramification almost for free. Furthermore, benefiting from
the proof theory, we were able to establish the completeness and termination of
the resulting strategy. In the full report,6 we also present our experiments that
show that RSTRIPS can be orders of magnitude better than STRIPS both in
time and space. These non-trivial insights were acquired merely due to the use
of T R and not much else. The same technique can be used to cast even more
advanced strategies such as GraphPlan, ABSTRIPS [23], and HTN [20] as T R
rules.

There are several promising directions to continue this work. One is to inves-
tigate other planning strategies and, hopefully, accrue similar benefits. Other
possible directions include non-linear plans and plans with loops [16,17,30]. For
instance non-linear plans could be represented using Concurrent Transaction
Logic [8], while loops are easily representable using recursive actions in T R.

Acknowledgments. We are thankful to the anonymous referees for their thorough
reviews and suggestions.
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Abstract. In this paper we use results from Computable Set Theory as
a means to represent and reason about description logics and rule lan-
guages for the semantic web.

Specifically, we introduce the description logic DL〈4LQSR〉(D)–
allowing features such as min/max cardinality constructs on the left-
hand/right-hand side of inclusion axioms, role chain axioms, and
datatypes–which turn out to be quite expressive if compared with
SROIQ(D), the description logic underpinning the Web Ontology
Language OWL. Then we show that the consistency problem for
DL〈4LQSR〉(D)-knowledge bases is decidable by reducing it, through
a suitable translation process, to the satisfiability problem of the strat-
ified fragment 4LQSR of set theory, involving variables of four sorts
and a restricted form of quantification. We prove also that, under
suitable not very restrictive constraints, the consistency problem for
DL〈4LQSR〉(D)-knowledge bases is NP-complete. Finally, we provide
a 4LQSR-translation of rules belonging to the Semantic Web Rule Lan-
guage (SWRL).

1 Introduction

Computable Set Theory is a research field started in the late seventies with the
purpose of studying the decidability of the satisfiability problem for fragments
of set theory. The most efficient decision procedures designed in this area have
been implemented within the reasoner Ætnanova/Referee [19] and constitute its
inferential core. A wide collection of decidability results obtained up to 2001 can
be found in the monographs [2,10].

Most of the decidability results and applications in computable set theory
concern one-sorted multi-level syllogistics, namely collections of formulae admit-
ting variables of one sort only, which range over the Von Neumann universe
of sets. Only a few stratified syllogistics, where variables of multiple sorts are
allowed, have been investigated, despite the fact that in many fields of computer
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science and mathematics one often has to deal with multi-sorted languages. For
instance, in Description Logics one has to consider entities of different types such
as individual elements, concepts, namely sets of individuals, and roles, namely
binary relations over elements.

Recently, one-sorted multi-level fragments of set theory allowing one to
express constructs related to multi-valued maps have been studied (see [3–5])
and applied in the realm of knowledge representation. In [7], for instance, an
expressive description logic, called DL〈MLSS×

2,m〉, has been introduced and the
consistency problem for DL〈MLSS×

2,m〉-knowledge bases has been proved NP-
complete. DL〈MLSS×

2,m〉 has been extended with additional description logic
constructs and SWRL rules in [4], proving that the decision problem for the
resulting description logic, called DL〈∀π

0,2〉, is still NP-complete under certain
conditions. Finally, in [3] DL〈∀π

0,2〉 has been extended with some metamodelling
features. However, none of the above-mentioned description logics provides any
functionality to deal with datatypes, a simple form of concrete domains that are
relevant in real-world applications.

In this paper we introduce an expressive description logic, DL〈4LQSR〉(D)
(more simply referred to as DL4

D in the rest of the paper), that can be repre-
sented in the decidable four-level stratified fragment of set theory 4LQSR. The
logic DL4

D supports datatypes, and admits concept constructs such as full nega-
tion, union and intersection of concepts, concept domain and range, existential
quantification and min cardinality on the left-hand side of inclusion axioms. It
also supports role constructs such as role chains on the left hand side of inclu-
sion axioms, union, intersection, and complement of roles, and properties on
roles such as transitivity, symmetry, reflexivity, and irreflexivity.

We shall prove that the consistency problem for DL4
D-knowledge bases is

decidable via a reduction to the satisfiability problem for formulae of 4LQSR.
The latter problem was proved decidable in [8]. We shall also show that the con-
sistency problem for DL4

D-knowledge bases involving only suitably constrained
DL4

D-formulae is NP-complete. Such restrictions are not very limitative: in fact,
it turns out that the constrained logic allows one to represent real world ontolo-
gies such as Ontoceramic, designed for ancient ceramic cataloguing in collabora-
tion with archaeological experts (see [9,18]).

The logic DL4
D is not an extension of SROIQ(D), the description logic upon

which the W3C standard OWL 2 DL is based, as it admits existential (resp.,
universal) quantification only on the left-hand (resp., right-hand) side of inclu-
sion axioms. However, DL4

D allows one to express chain axioms not supported
by SROIQ(D), as they can involve roles that are not subject to any regular-
ity restriction. Moreover, Boolean combination of roles is admitted even on the
right-hand side of chain axioms. The latter fact is particularly relevant to the
problem of expressing rules in OWL. We will briefly illustrate how 4LQSR can
be used to express SWRL rules in Sect. 3.1.

The paper is organized as follows. In Sect. 2 we review the syntax and seman-
tics of the set-theoretic fragment 4LQSR and of the logic SROIQ(D). Then,
in Sect. 3, we present the description logic DL4

D and prove that the decidability
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of the consistency problem for DL4
D-knowledge bases can be reduced to the sat-

isfiability problem for 4LQSR-formulae. In particular, in Sect. 3.1 we show that
SWRL rules can be represented within the 4LQSR-fragment. Finally, in Sect. 4
we draw our conclusions and give some hints to future work.

2 Preliminaries

In this section we introduce concepts and notions that will be used in the paper.

2.1 The Set-Theoretic Fragment 4LQSR

In order to define the fragment 4LQSR, it is convenient to first introduce the
syntax and semantics of a more general four-level quantified language, denoted
4LQS. Then we provide some restrictions on quantified formulae of 4LQS that
characterize 4LQSR. We recall that the satisfiability problem for 4LQSR has
been proved decidable in [8].

4LQS involves the four collections of variables V0, V1, V2, V3, where:
- V0 contains variables of sort 0, denoted by x, y, z, ...;
- V1 contains variables of sort 1, denoted by X1, Y 1, Z1, ...;
- V2 contains variables of sort 2, denoted by X2, Y 2, Z2, ...;
- V3 contains variables of sort 3, denoted by X3, Y 3, Z3, ... .

In addition to variables, 4LQS involves also pair terms of the form 〈x, y〉, for
x, y ∈ V0. 4LQS-quantifier-free atomic formulae are classified as:

– level 0: x = y, x ∈ X1, 〈x, y〉 = X2, 〈x, y〉 ∈ X3, where x, y ∈ V0, 〈x, y〉 is a
pair term, X1 ∈ V1, X2 ∈ V2, X3 in V3;

– level 1: X1 = Y 1, X1 ∈ X2, with X1, Y 1 ∈ V1, X2 in V2;
– level 2: X2 = Y 2, X2 ∈ X3, with X2, Y 2 ∈ V2, X3 in V3.

4LQS purely universal formulae are classified as:

– level 1: (∀z1)...(∀zn)ϕ0, where z1, .., zn ∈ V0 and ϕ0 is any propositional com-
bination of quantifier-free atomic formulae of level 0;

– level 2: (∀Z1
1 )...(∀Z1

m)ϕ1, where Z1
1 , .., Z1

m ∈ V1 and ϕ1 is any propositional
combination of quantifier-free atomic formulae of levels 0 and 1 and of purely
universal formulae of level 1;

– level 3: (∀Z2
1 )...(∀Z2

p)ϕ2, where Z2
1 , .., Z2

p ∈ V2 and ϕ2 is any propositional
combination of quantifier-free atomic formulae and of purely universal formu-
lae of levels 1 and 2.

4LQS-formulae are all the propositional combinations of quantifier-free atomic
formulae of levels 0, 1, 2 and of purely universal formulae of levels 1, 2, 3.

Let ϕ be a 4LQS-formula. Without loss of generality, we can assume that
ϕ contains only ¬, ∧, ∨ as propositional connectives. Further, let Sϕ be the
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syntax tree for a 4LQS-formula ϕ,1 and let ν be a node of Sϕ. We say that a
4LQS-formula ψ occurs within ϕ at position ν if the subtree of Sϕ rooted at ν
is identical to Sψ. In this case we refer to ν as an occurrence of ψ in ϕ and to
the path from the root of Sϕ to ν as its occurrence path. An occurrence of ψ
within ϕ is positive if its occurrence path deprived by its last node contains an
even number of nodes labelled by a 4LQS-formula of type ¬χ. Otherwise, the
occurrence is said to be negative.

A 4LQS-interpretation is a pair M = (D,M) where D is any non-empty
collection of objects (called domain or universe of M) and M is an assignment
over variables in V0, V1, V2, V3 such that:

- Mx ∈ D, for each x ∈ V0; MX1 ∈ pow(D), for each X1 ∈ V1;
- MX2 ∈ pow(pow(D)), for each X2 ∈ V2;
- MX3 ∈ pow(pow(pow(D))), for each X3 ∈ V3

(we recall that pow(s) denotes the powerset of s).
We assume that pair terms are interpreted à la Kuratowski, and therefore we
put M〈x, y〉 =Def {{Mx}, {Mx,My}}. The presence of a pairing operator in
the language is very useful for the set-theoretic representation of the logic DL4

D

and of SWRL rules introduced in Sects. 3 and 3.1, respectively. Moreover, even
though several pairing operators are available (see [12]), encoding ordered pairs
à la Kuratowski turns out to be quite straightforward, at least for our purposes.

Next, let
- M = (D,M) be a 4LQS-interpretation,
- x1, ....xn ∈ V0, X1

1 , ...X1
m ∈ V1, X2

1 , ...X2
p ∈ V2,

- u1, ...un ∈ D, U1
1 , ...U1

m ∈ pow(D), U2
1 , ...U2

p ∈ pow(pow(D)).
By M[x1/u1, ..., xn/un,X1

1/U1
1 , ...X1

m/U1
m,X2

1/U2
1 , ...X2

p/U2
p ], we denote the

interpretation M′ = (D,M ′) such that M ′xi = ui, for i = 1, ..., n, M ′X1
j = U1

j ,
for j = 1, ...,m, M ′X2

k = U2
k , for k = 1, ..., p, and which otherwise coincides with

M on all remaining variables. Let ϕ be a 4LQS-formula and let M = (D,M)
be a 4LQS-interpretation. The notion of satisfiability of ϕ by M (denoted by
M |= ϕ) is defined inductively over the structure of ϕ. Quantifier-free atomic
formulae are evaluated in a standard way according to the usual meaning of the
predicates ‘∈’ and ‘=’, and purely universal formulae are evaluated as follows:

– M |= (∀z1)...(∀zn)ϕ0 iff M[z1/u1, ..., zn/un] |= ϕ0, for all u1, ...un ∈ D;
– M |= (∀Z1

1 )...(∀Z1
m)ϕ1 iff M[Z1

1/U1
1 , ..., Z1

n/U1
n] |= ϕ1, for all U1

1 , ...U1
m ∈

pow(D);
– M |= (∀Z2

1 )...(∀Z2
m)ϕ2 iff M[Z2

1/U2
1 , ..., Z2

n/U2
n] |= ϕ2, for all U2

1 , ...U2
m ∈

pow(pow(D)).

Finally, compound formulae are interpreted according to the standard rules of
propositional logic. If M |= ϕ, then M is said to be a 4LQS-model for ϕ. A

1 The notion of syntax tree for 4LQS-formulae is similar to the notion of syntax tree
for formulae of first-order logic. A precise definition of the latter can be found in
[11].
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4LQS-formula is said to be satisfiable if it has a 4LQS-model. A 4LQS-formula
is valid if it is satisfied by all 4LQS-interpretations.

Next we present the fragment 4LQSR of 4LQS of our interest, namely the
collection of the formulae ψ of 4LQS fulfilling the restrictions:

1. for every purely universal formula (∀Z1
1 ), ..., (∀Z1

m)ϕ1 of level 2 occurring in
ψ and every purely universal formula (∀z1), ..., (∀zn)ϕ0 of level 1 occurring
negatively in ϕ1, the condition

¬ϕ0 →
n∧

i=1

m∧

j=1

zi ∈ Z1
j

is a valid 4LQS-formula (in this case we say that (∀z1), ..., (∀zn)ϕ0 is linked
to the variables Z1

1 , ..., Z1
m);

2. for every purely universal formula (∀Z2
1 ), ..., (∀Z2

p)ϕ2 of level 3 in ψ:
– every purely universal formula of level 1 occurring negatively in ϕ2 and

not occurring in a purely universal formula of level 2 is only allowed to be
of the form

(∀z1), ..., (∀zn)¬(
n∧

i=1

n∧

j=1

〈zi, zj〉 = Y 2
ij),

with Y 2
ij ∈ V2, for i, j = 1, ..., n;

– purely universal formulae (∀Z1
1 ), ..., (∀Z1

m)ϕ1 of level 2 may occur only
positively in ϕ2.

Restriction 1 has been introduced for technical reasons concerning the decid-
ability of the satisfiability problem for the fragment. In fact it guarantees that
satisfiability is preserved in a suitable finite submodel of ψ. Restriction 2 allows
one to express binary relations and several operations on them while keeping
simple, at the same time, the decision procedure (for space reasons details are
not included here but can be found in [8]).

We observe that the semantics of 4LQSR plainly coincides with that of 4LQS.
In the 4LQSR-fragment one can express several set-theoretic constructs such

as a restricted variant of the set former, which in turn allows one to express other
significant set operators such as binary union, intersection, set difference, the sin-
gleton operator, the powerset operator, etc. Within the fragment 4LQSR, it is
also possible to define binary relations over elements of a domain together with
conditions on them (i.e., reflexivity, transitivity, weak connectedness, irreflexiv-
ity, intransitivity) which characterize accessibility relations of well-known modal
logics. In particular, the normal modal logic K45 can be translated in the 4LQSR-
fragment. The interested reader is referred to [8] for details. The modal logic S5
can be represented in 4LQSR much in a similar way.

2.2 Description Logics

Description Logics (DL) are a family of formalisms widely used in the field
of Knowledge Representation to model application domains and to reason on
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them [1]. DL knowledge bases describe models that are based on individual
elements (or, more simply, individuals), classes whose elements are individual
names, and binary relationships between individuals. One of the leading appli-
cation domains for DL is the semantic web. In fact, the most recently developed
semantic web language, namely OWL 2, is based on a very expressive description
logic with datatypes D, called SROIQ(D). Extensions of DL with datatypes
have been studied and analyzed in [14,17].

The logic SROIQ(D) is briefly introduced in the next section (the interested
reader is referred to [13] for details).

2.2.1 The Description Logic SROIQ(D)

Let D = (ND, NC , NF , ·D) be a datatype map in the sense of [17], where ND is
a finite set of datatypes, NC is a function assigning a set of constants NC(d) to
each datatype d ∈ ND, NF is a function assigning a set of facets NF (d) to each
d ∈ ND, and ·D is a function assigning a datatype interpretation dD to each
datatype d ∈ ND, a facet interpretation fD ⊆ dD to each facet f ∈ NF (d), and
a data value eDd ∈ dD to every constant ed ∈ NC(d). We shall assume that the
interpretations of the datatypes in ND are nonempty pairwise disjoint sets.

A facet expression for a datatype d ∈ ND is a formula ψd constructed from
the elements of NF (d) ∪ {�d,⊥d} by applying a finite number of times the
connectives ¬, ∧, and ∨. The function ·D is extended to facet expressions for
d ∈ ND by putting �D

d = dD, ⊥D
d = ∅, (¬f)D = dD \fD, (f1 ∧f2)D = fD

1 ∩fD
2 ,

and (f1 ∨ f2)D = fD
1 ∪ fD

2 , for f, f1, f2 ∈ NF (d).
A data range dr for D is either a datatype d ∈ ND, or a finite enumeration

of datatype constants {ed1 , . . . , edn
}, with edi

∈ NC(di) and di ∈ ND, or a facet
expression ψd, for d ∈ ND, or their negation.

Let RA, RD, C, I be denumerable pairwise disjoint sets of abstract role
names, concrete role names, concept names, and individual names, respectively.
The set of abstract roles is defined as RA ∪ {R− | R ∈ RA} ∪ U , where U is the
universal role and R− is the inverse role of R. A role inclusion axiom (RIA) is an
expression of the form w � R, where w is a finite string of roles not including U
and R is an abstract role name distinct from U . An abstract role hierarchy RH

a

is a finite collection of RIAs. A concrete role hierarchy RH
D is a finite collection

of concrete role inclusion axioms Ti � Tj , where Ti, Tj ∈ RD. A role assertion is
an expression of one of the types: Ref(R), Irref(R), Sym(R), Asym(R), Tra(R),
and Dis(R,S), where R,S ∈ RA ∪ {R− | R ∈ RA}.

Given an abstract role hierarchy RH
a and a set of role assertions RA without

transitivity or symmetry assertions (Sym(R) can be represented by a RIA of type
R− � R and Tra(R) by RR � R), the set of roles that are simple in RH

a ∪ RA is
inductively defined as follows: (a) a role name is simple if it does not occur on
the right hand side of a RIA in RH

a , (b) an inverse role R− is simple if R is, and
(c) if R occurs on the right hand of a RIA in RH

a , then R is simple if, for each
w � R ∈ RH

a , w = S, for a simple role S.
A set of role assertions RA is called simple if all roles R, S appearing in role

assertions of the form Irref(R), Asym(R), or Dis(R,S) are simple in RA.
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An SROIQ(D)-RBox is a set R = RH
a ∪RH

D ∪RA such that RH
a is a regular

abstract role hierarchy, RH
D is a concrete role hierarchy, and RA is a finite simple

set of role assertions. A formal definition of regular abstract role hierarchy can
be found in [13].

Before introducing the formal definitions of TBox and of ABox, we define
the set of SROIQ(D)-concepts as the smallest set such that:

– every concept name and the constants �, ⊥ are concepts;
– if C, D are concepts, R is an abstract role (possibly inverse), S is a simple

role (possibly inverse), T is a concrete role, dr is a data range for D, a is
an individual, and n is a non-negative integer, then C � D, C � D, ¬C, {a},
∀R.C, ∃R.C, ∃S.Self , ∀T.dr, ∃T.dr, ≥ nS.C, and ≤ nS.C are also concepts.

A general concept inclusion axiom (GCI) is an expression C � D, where C,
D are SROIQ(D)-concepts. An SROIQ(D)-TBox T is a finite set of CGIs.

Any expression of one of the following forms: a : C, (a, b) : R, (a, ed) : T ,
(a, b) : ¬R, (a, ed) : ¬T , a = b, a �= b, where a, b are individuals, ed is a constant
in NC(d), R is a (possibly) inverse abstract role, P is a concrete role, and C is
a concept, is called an individual assertion. An SROIQ(D)-ABox A is a finite
set of individual assertions.

An SROIQ(D)-knowledge base is a triple K = (R, T ,A) such that R
is an SROIQ(D)-RBox, T an SROIQ(D)-TBox, and A an SROIQ(D)-
ABox. The semantics of SROIQ(D) is given by means of an interpretation
I = (ΔI,ΔD, ·I), where ΔI and ΔD are non-empty disjoint domains such that
dD ⊆ ΔD, for every d ∈ ND, and ·I is an interpretation function. For space
reasons, the definition of the interpretation of concepts and roles, axioms and
assertions is not reported here. However, it can be found in [6, Table 1].

Let R, T , and A be as above. An interpretation I = (ΔI,ΔD, ·I) is a D-
model of R (resp., T ), and we write I |=D R (resp., I |=D T ), if I satisfies each
axiom in R (resp., T ) according to the semantic rules in [6, Table 1]. Analogously,
I = (ΔI,ΔD, ·I) is a D-model of A, and we write I |=D A, if I satisfies each
assertion in A, according to the semantic rules in [6, Table 1].

An SROIQ(D)-knowledge base K = (A, T ,R) is consistent if there is an
interpretation I = (ΔI,ΔD, ·I) that is a D-model of A, T , and R.

Decidability of the consistency problem for SROIQ(D)-knowledge bases was
proved in [13] by means of a tableau-based decision procedure and its computa-
tional complexity was shown to be N2EXPTime-complete in [15].

3 The Logic DL〈4LQSR〉(D)

In this section we introduce the description logic DL〈4LQSR〉(D) (shortly
referred to as DL4

D) and prove that the consistency problem for DL4
D-knowledge

bases is decidable by reducing it to the satisfiability problem for 4LQSR-
formulae. Then we show that under certain restrictions the consistency prob-
lem for DL4

D-knowledge bases is NP-complete. Finally we briefly illustrate how
SWRL-rules can be translated into the language of 4LQSR.
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Let D, RA, RD, I, C be as in Sect. 2.2.1.
(a) DL4

D-datatype, (b) DL4
D-concept, (c) DL4

D-abstract role, and (d) DL4
D-

concrete role terms are constructed according to the following syntax rules:

(a) t1, t2 −→ dr | ¬t1 | t1 � t2 | t1 � t2 | {ed} ,
(b) C1, C2 −→ A | � | ⊥ | ¬C1 | C1�C2 | C1�C2 | {a} | ∃R.Self |∃R.{a}|∃P.{ed} ,
(c) R1, R2 −→ S | U | R−

1 | ¬R1 | R1�R2 | R1�R2 | RC1| | R|C1 | RC1 | C2 | id(C) ,
(d) P −→ T | ¬P | PC1| | P|t1 | PC1|t1 ,

where dr is a data range for D, t1, t2 are datatype terms, ed is a constant in
NC(d), a is an individual name, A is a concept name, C1, C2 are DL4

D-concept
terms, S is an abstract role name, R,R1, R2 are DL4

D-abstract role terms, T a
concrete role name, and P a DL4

D-concrete role term.
A DL4

D-knowledge base is a triple K = (R, T ,A) such that R is a DL4
D-

RBox, T is a DL4
D-TBox, and A a DL4

D-ABox. A DL4
D-RBox is a collection

of statements of the following forms: R1 ≡ R2, R1 � R2, R1 . . . Rn � Rn+1,
Sym(R1), Asym(R1), Ref(R1), Irref(R1), Dis(R1, R2), Tra(R1), Fun(R1), P1 ≡ P2,
P1 � P2, Fun(P1), where R1, R2 are DL4

D-abstract role terms and P1, P2 are
DL4

D-concrete role terms. A DL4
D-TBox is a set of statements of the types:

– C1 ≡ C2, C1 � C2, C1 � ∀R1.C2, ∃R1.C1 � C2, ≥nR1.C1 � C2,
C1 � ≤nR1.C2,

– t1 ≡ t2, t1 � t2, C1 � ∀P1.t1, ∃P1.t1 � C1, ≥nP1.t1 � C1, C1 � ≤nP1.t1,

where C1, C2 are DL4
D-concept terms, t1, t2 datatype terms, R1 a DL4

D-abstract
role term, P1 a DL4

D-concrete role term.
A DL4

D-ABox is a set of assertions of the forms: a : C1, (a, b) : R1, (a, b) :
¬R1, a = b, a �= b, ed : t1, (a, ed) : P1, (a, ed) : ¬P1, with C1 a DL4

D-concept
term, d a datatype, t1 a datatype term, R1 a DL4

D-abstract role term, P1 a
DL4

D-concrete role term, a, b individual names, and ed a constant in NC(d).
The semantics of DL4

D is similar to that of SROIQ(D). The interpretation
of terms, axioms, and assertions of DL4

D shared with SROIQ(D) is illustrated
in [6, Table 1], while the semantics of terms and statements specific to DL4

D is
described in [6, Table 2]. The notions of D-model of a DL4

D-RBox, DL4
D-TBox,

DL4
D-ABox, and the notion of consistency of a DL4

D-knowledge base are similar
to the ones described in [6, Table 1] for SROIQ(D).

In the following theorem we prove the decidability of the consistency problem
for DL4

D-knowledge bases.

Theorem 1. Let K be a DL4
D-knowledge base. Then, one can construct a

4LQSR-formula ϕK s. t. ϕK is satisfiable if and only if K is consistent.

Proof. As a preliminary step, observe that the statements of the DL4
D-knowledge

base K that need to be considered are those of the following types:

– C1 ≡ �, C1 ≡ ¬C2, C1 ≡ C2 � C3, C1 ≡ {a}, C1 � ∀R1.C2, ∃R1.C1 � C2,
≥nR1.C1 � C2, C1 � ≤nR1.C2, C1 � ∀P1.t1, ∃P1.t1 � C1, ≥nP1.t1 � C1,
C1 � ≤nP1.t1,
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– R1 ≡ U , R1 ≡ ¬R2, R1 ≡ R2 � R3, R1 ≡ R−
2 , R1 ≡ id(C1), R1 ≡ R2C1| ,

R1 . . . Rn � Rn+1, Ref(R1), Irref(R1), Dis(R1, R2), Fun(R1),
– P1 ≡ P2, P1 ≡ ¬P2, P1 � P2, Fun(P1), P1 ≡ P2C1| , P1 ≡ P2C1|t1 , P1 ≡ P2|t1 ,
– t1 ≡ t2, t1 ≡ ¬t2, t1 ≡ t2 � t3, t1 ≡ {ed},
– a : C1, (a, b) : R1, (a, b) : ¬R1, a = b, a �= b, ed : t1, (a, ed) : P1, (a, ed) : ¬P1.

In order to define the 4LQSR-formula ϕK, we shall make use of a mapping τ from
the DL4

D-statements (and their conjunctions) listed above into 4LQSR-formulae.
To prepare for the definition of τ , we map injectively individuals a and constants
ed ∈ NC(d) into level 0 variables xa and xed

, the constant concepts � and ⊥,
datatype terms t, and concept terms C into level 1 variables X1

�, X1
⊥, X1

t , X1
C ,

respectively, and the universal relation on individuals U , abstract role terms R,
and concrete role terms P into level 3 variables X3

U , X3
R, and X3

P , respectively.2

Then the mapping τ is defined as follows:
τ(C1 ≡ �) =Def (∀z)(z ∈ X1

C1 ↔ z ∈ X1
�),

τ(C1 ≡ ¬C2) =Def (∀z)(z ∈ XC1 ↔ ¬(z ∈ X1
C2)),

τ(C1 ≡ C2 	 C3) =Def (∀z)(z ∈ X1
C1 ↔ (z ∈ X1

C2 ∨ z ∈ X1
C3)),

τ(C1 ≡ {a}) =Def (∀z)(z ∈ X1
C1 ↔ z = xa),

τ(C1 � ∀R1.C2) =Def (∀z1)(∀z2)(z1 ∈ X1
C1 → (〈z1, z2〉 ∈ X3

R1 → z2 ∈ X1
C2)),

τ(∃R1.C1 � C2) =Def (∀z1)(∀z2)((〈z1, z2〉 ∈ X3
R1 ∧ z2 ∈ X1

C1) → z1 ∈ X1
C2),

τ(C1 ≡ ∃R1.{a}) =Def (∀z)(z ∈ X1
C1 ↔ 〈z, xa〉 ∈ X3

R1),

τ(C1 �≤nR1.C2) =Def (∀z)(∀z1) . . . (∀zn+1)(z ∈ X1
C1 →

(
n+1∧

i=1

(zi ∈ XC2 ∧ 〈z, zi〉 ∈ X3
R1) → ∨

i<j

zi = zj)),

τ(≥nR1.C1 � C2) =Def (∀z)(∀z1) . . . (∀zn)(
n∧

i=1

((zi ∈ X1
C1 ∧ 〈z, zi〉 ∈ X3

R1) →
∧

i<j

zi �= zj) → z ∈ X1
C2),

τ(C1 � ∀P1.t1) =Def (∀z1)(∀z2)(z1 ∈ X1
C1 → (〈z1, z2〉 ∈ X3

P1 → z2 ∈ X1
t1)),

τ(∃P1.t1 � C1) =Def (∀z1)(∀z2)((〈z1, z2〉 ∈ X3
P1 ∧ z2 ∈ X1

t1) → z1 ∈ X1
C1),

τ(C1 ≡ ∃P1.{ed}) =Def (∀z)(z ∈ X1
C1 ↔ 〈z, xed〉 ∈ X3

P1),

τ(C1 �≤nP1.t1) =Def (∀z)(∀z1) . . . (∀zn+1)(z ∈ X1
C1 →

(
n+1∧

i=1

(zi ∈ Xt1 ∧ 〈z, zi〉 ∈ X3
P1) → ∨

i<j

zi = zj)),

τ(≥nP1.t1 � C1) =Def

(∀z)(∀z1) . . . (∀zn)(
n∧

i=1

((zi ∈ X1
t1 ∧ 〈z, zi〉 ∈ X3

P1) → ∧

i<j

zi �= zj) → z ∈ X1
C1),

τ(R1 ≡ U) =Def (∀Z2)(Z2 ∈ X3
R1 ↔ Z2 ∈ X3

U ),

τ(R1 ≡ ¬R2) =Def (∀z1)(∀z2)(〈z1, z2〉 ∈ X3
R1 ↔ ¬(〈z1, z2〉 ∈ X3

R2)),

τ(R1 ≡ R2 	 R3) =Def (∀Z2)(Z2 ∈ X3
R1 ↔ (Z2 ∈ X3

R2 ∨ Z2 ∈ X3
R3)),

τ(R1 ≡ R−
2 ) =Def (∀z1)(∀z2)(〈z1, z2〉 ∈ X3

R1 ↔ 〈z2, z1〉 ∈ X3
R2)),

2 The use of level 3 variables to model abstract and concrete role terms is motivated by
the fact that their elements, that is ordered pairs 〈x, y〉, are encoded in Kuratowski’s
style as {{x}, {x, y}}, namely as collections of sets of objects. Variables of level 2
are used in the formulae ψ8 and ψ9 of the construction to model the fact that level
3 variables representing role terms are binary relations.
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τ(R1 ≡ id(C1)) =Def (∀z1)(∀z2)(〈z1, z2〉 ∈ X3
R1 ↔ (z1 ∈ X1

C1 ∧ z2 ∈ X1
C1 ∧ z1 = z2)),

τ(R1 ≡ R2C1|) =Def (∀z1)(∀z2)(〈z1, z2〉 ∈ X3
R1 ↔ (〈z1, z2〉 ∈ X3

R2 ∧ z1 ∈ X1
C1)),

τ(R1 . . . Rn � Rn+1) =Def (∀z)(∀z1) . . . (∀zn)

((〈z, z1〉 ∈ X3
R1 ∧ . . . ∧ 〈zn−1, zn〉 ∈ X3

Rn
) → 〈z, zn〉 ∈ X3

Rn+1
),

τ(Ref(R1)) =Def (∀z)(〈z, z〉 ∈ X3
R1),

τ(Irref(R1)) =Def (∀z)(¬(〈z, z〉 ∈ X3
R1)),

τ(Fun(R1)) =Def (∀z1)(∀z2)(∀z3)((〈z1, z2〉 ∈ X3
R1 ∧ 〈z1, z3〉 ∈ X3

R1) → z2 = z3),

τ(P1 ≡ P2) =Def (∀Z2)(Z2 ∈ X3
P1 ↔ Z2 ∈ X3

P2),

τ(P1 ≡ ¬P2) =Def (∀Z2)(Z2 ∈ X3
P1 ↔ ¬(Z2 ∈ X3

P2)),

τ(P1 � P2) =Def (∀Z2)(Z2 ∈ X3
P1 → Z2 ∈ X3

P2),

τ(Fun(P1)) =Def (∀z1)(∀z2)(∀z3)((〈z1, z2〉 ∈ X3
P1 ∧ 〈z1, z3〉 ∈ X3

P1) → z2 = z3),

τ(P1 ≡ P2C1|) =Def (∀z1)(∀z2)(〈z1, z2〉 ∈ X3
P1 ↔ (〈z1, z2〉 ∈ X3

P2 ∧ z1 ∈ X1
C1)),

τ(P1 ≡ P2|t1 ) =Def (∀z1)(∀z2)(〈z1, z2〉 ∈ X3
P1 ↔ (〈z1, z2〉 ∈ X3

P2 ∧ z2 ∈ X1
t1)),

τ(P1 ≡ P2C1|t1 ) =Def (∀z1)(∀z2)(〈z1, z2〉 ∈ X3
P1 ↔
(〈z1, z2〉 ∈ X3

P2 ∧ z1 ∈ X1
C1 ∧ z2 ∈ X1

t1)),

τ(t1 ≡ t2) =Def (∀z)(z ∈ X1
t1 ↔ z ∈ X1

t2),

τ(t1 ≡ ¬t2) =Def (∀z)(z ∈ X1
t1 ↔ ¬(z ∈ X1

t2)),

τ(t1 ≡ t2 	 t3) =Def (∀z)(z ∈ X1
t1 ↔ (z ∈ X1

t2 ∨ z ∈ X1
t3)),

τ(t1 ≡ t2 � t3) =Def (∀z)(z ∈ X1
t1 ↔ (z ∈ X1

t2 ∧ z ∈ X1
t3)),

τ(t1 ≡ {ed}) =Def (∀z)(z ∈ X1
t1 ↔ z = xed),

τ(a : C1) =Def xa ∈ X1
C1 , τ((a, b) : R1) =Def 〈xa, xb〉 ∈ X3

R1 ,

τ((a, b) : ¬R1) =Def ¬(〈xa, xb〉 ∈ X3
R1),

τ(a = b) =Def xa = xb, τ(a �= b) =Def ¬(xa = xb),

τ(ed : t1) =Def xed ∈ X1
t1 ,

τ((a, ed) : P1) =Def 〈xa, xed〉 ∈ X3
P1 , τ((a, ed) : ¬P1) =Def ¬(〈xa, xed〉 ∈ X3

P1),

τ(α ∧ β) =Def τ(α) ∧ τ(β).

Let K be our DL4
D-knowledge base, and let cptK, arlK, crlK, and indK be,

respectively, the sets of concept, of abstract role, of concrete role, and of indi-
vidual names in K. Moreover, let NK

D ⊆ ND be the set of datatypes in K, NK
F

a restriction of NF assigning to every d ∈ NK
D the set NK

F (d) of facets in NF (d)
and in K. Analogously, let NK

C be a restriction of the function NC associating
to every d ∈ NK

D the set NK
C (d) of constants contained in NC(d) and in K.

Finally, for every datatype d ∈ NK
D , let bfDK (d) be the set of facet expressions for

d occurring in K and not in NF (d) ∪ {�d,⊥d}. We define the 4LQSR-formula
ϕK expressing the consistency of K as follows:

ϕK =Def

12∧

i=1

ψi ∧
∧

H∈K
τ(H) ,

where

– ψ1 =Def (∀z)(z ∈ X1
I ↔ ¬(z ∈ X1

D)) ∧ (∀z)(z ∈ X1
I ∨ z ∈ X1

D)∧
¬(∀z)¬(z ∈ X1

I ) ∧ ¬(∀z)¬(z ∈ X1
D),

– ψ2 =Def ((∀z)(z ∈ X1
I ↔ z ∈ X1

�) ∧ (∀z)¬(z ∈ X⊥),
– ψ3 =Def

∧

A∈cptK
(∀z)(z ∈ X1

A → z ∈ X1
I ),
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– ψ4 =Def (
∧

d∈NK
D

((∀z)(z ∈ X1
d → z ∈ X1

D) ∧ ¬(∀z)¬(z ∈ X1
d))

∧(∀z)(
∧

(di,dj∈NK
D

,i<j)

(z ∈ X1
di

↔ ¬(z ∈ X1
dj
)))),

– ψ5 =Def

∧

d∈NK
D

((∀z)(z ∈ X1
d ↔ z ∈ X1

�d
) ∧ (∀z)¬(z ∈ X1

⊥d
)),

– ψ6 =Def

∧

d∈NK
D

∧

fd∈NK
F

(d)

(∀z)(z ∈ X1
fd

→ z ∈ X1
d),

– ψ7 =Def (∀z1)(∀z2)((z1 ∈ X1
I ∧ z2 ∈ X1

I ) ↔ 〈z1, z2〉 ∈ X3
U ),

– ψ8 =Def

∧

R∈arlK
((∀Z2)(Z2 ∈ X3

R → ¬(∀z1)(∀z2)¬(〈z1, z2〉 = Z2))

∧(∀z1)(∀z2)(〈z1, z2〉 ∈ X3
R → (z1 ∈ X1

I ∧ z2 ∈ X1
I ))),

– ψ9 =Def

∧

T∈crlK
((∀Z2)(Z2 ∈ X3

T → ¬(∀z1)(∀z2)¬(〈z1, z2〉 = Z2))

∧(∀z1)(∀z2)(〈z1, z2〉 ∈ X3
T → (z1 ∈ X1

I ∧ z2 ∈ X1
D))),

– ψ10 =Def

∧

a∈indK
(xa ∈ X1

I ) ∧ ∧

d∈NK
D

∧

ed∈NK
C

(d)

xed ∈ X1
d ,

– ψ11 =Def

∧

ed1 ,...,edn in K
(∀z)(z ∈ X1

{ed1 ,...,edn} ↔
n∨

i=1

(z = xedi
))

∧ ∧

a1,...,an in K
(∀z)(z ∈ X1

{a1,...,an} ↔
n∨

i=1

(z = xai)),

– ψ12 =Def

∧

d∈NK
D

∧

ψd∈bfDK (d)

(∀z)(z ∈ X1
ψd

↔ z ∈ σ(X1
ψd

)),

with σ the transformation function from 4LQSR-variables of level 1 to
4LQSR-formulae recursively defined, for d ∈ NK

D, by

σ(X1
ψd

) =Def

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X1
ψd

if ψd ∈ NK
F (d) ∪ {�d,⊥d}

¬σ(X1
χd

) if ψd = ¬χd

σ(X1
χd

) ∧ σ(X1
ϕd

) if ψd = χd ∧ ϕd

σ(X1
χd

) ∨ σ(X1
ϕd

) if ψd = χd ∨ ϕd .

In the above formulae, the variable X1
I denotes the set of individuals I, X1

d a
datatype d ∈ NK

D , X1
D a superset of the union of datatypes in NK

D , X1
�d

and X1
⊥d

the constants �d and ⊥d, and X1
fd

, X1
ψd

a facet fd and a facet expression ψd, for
d ∈ NK

D , respectively. In addition, X1
A, X3

R, X3
T denote a concept name A, an

abstract role name R, and a concrete role name T occurring in K, respectively.
Finally, X1

{ed1 ,...,edn} denotes a data range {ed1 , . . . , edn
} occurring in K, and

X1
{a1,...,an} a finite set {a1, . . . , an} of nominals in K.

Clearly, the constraints ψ1-ψ12 have been introduced to guarantee that each
model of ϕK can be easily transformed into a DL4

D-interpretation.
Next we show that the consistency problem for K is equivalent to the satis-

fiability problem for ϕK.
Let us first assume that ϕK is satisfiable. It is not hard to see that ϕK is

satisfied by a 4LQSR-model of the form M = (D1 ∪ D2,M), where:

- D1 and D2 are disjoint nonempty sets and
⋃

d∈NK
D

dD ⊆ D2,

- MX1
I =Def D1, MX1

D =Def D2, MX1
d =Def dD, for every d ∈ NK

D ,
- MX1

fd
=Def fD

d , for every fd ∈ NK
F (d), with d ∈ NK

D .
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Exploiting the fact that M satisfies the constraints ψ1-ψ12, it is then possible
to define a DL4

D-interpretation IM = (ΔI,ΔD, ·I), by putting ΔI =Def MX1
I ,

ΔD =Def MX1
D, AI =Def MX1

A, for every concept name A ∈ cptK, SI =Def MX3
S ,

for every abstract role name S ∈ arlK, T I =Def MX3
T , for every concrete role

name T ∈ crlK, and aI =Def Mxa, for every individual a ∈ indK.
Since M |= ∧

H∈K
τ(H) and, as can be easily checked, IM |=D H if and only

if M |= τ(H), for every statement H ∈ K, we plainly have IM |=D K, namely
K is consistent, as we wished to prove.

Conversely, let K be a consistent DL4
D-knowledge base. Then, there is a DL4

D-
interpretation I = (ΔI,ΔD, ·I) such that I |=D K. We show how to construct, out
of the datatype map D and the DL4

D-interpretation I, a 4LQSR-interpretation
MI,D = (DI,D,MI,D) which satisfies ϕK. Let us put DI,D =Def ΔI ∪ ΔD and
define MI,D by putting MI,DX1

I =Def ΔI, MI,DX1
D =Def ΔD, MI,DX3

U =Def U I,
MI,DX1

dr =Def drD, for every variable X1
dr in ϕ denoting a data range dr occur-

ring in K, MI,DX1
A =Def AI, for every X1

A in ϕ denoting a concept name in K,
and MI,DX3

S =Def SI, for every X3
S in ϕ denoting an abstract role name in K.

Variable X3
T , denoting concrete role names, and variables xa, xed

, denoting indi-
viduals and datatype constants, respectively, are interpreted in a similar way.
From the definitions of D and I, it follows easily that MI,D satisfies the formu-
lae ψ1-ψ12 and τ(H), for every statement H ∈ K, and, therefore, that MI,D is
a model for ϕK. ��

Some considerations on the expressive power of the logic DL4
D are in order.

Despite DL4
D allows one to express existential quantification and at-least number

restriction (resp., universal quantification and at-most number restriction) only
on the left- (resp., right-) hand side of inclusion axioms, it is more liberal than
SROIQ(D) in the construction of role inclusion axioms since the roles involved
are not required to be subject to any ordering relationship. For example, the
role hierarchy {RS � S,RT � R, V T � T, V S � V } presented in [13] and
not expressible in SROIQ(D) is admitted in the language of DL4

D. Moreover,
the notion of simple role is not needed in the definition of role inclusion axioms
and of axioms involving number restrictions. Also, Boolean operators on roles
are admitted and can be introduced in inclusion axioms such as, for instance,
R1 � R2 � R3 and R1 � ¬R2 � R3. Finally, DL4

D treats derived datatypes by
admitting datatype terms constructed from data ranges by means of a finite
number of applications of the Boolean operators. Basic and derived datatypes
can be used inside inclusion axioms involving concrete roles.

Remark 1. For a fixed positive integer h, a DL4
D-knowledge base K is said to be

h-restricted if an atom of any of the forms R1 . . . Rn1 � R, ≥n2R.C1 � C2, ≥n3

P.t1 � t2, C1 � ≤n4R.C2, t1 � ≤n5P.t2 occurs in K only if n1, n2, n3, n4, n5 ≤ h.
It turns out that by using the same function τ introduced in the proof of

Theorem 1 and some additional constraints, the consistency problem for a h-
restricted DL4

D-knowledge base K can be expressed by a formula ϕ′
K such that
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(i) ϕ′
K belongs to the sublanguage (4LQSR)h of 4LQSR, whose satisfiability

problem is NP-complete (see [8] for details), and
(ii) the size of ϕ′

K is polynomially related to that of K.

From (i) and (ii) above, and from the NP-completeness of the satisfiability prob-
lem for propositional logic, it follows immediately that the consistency problem
for h-restricted DL4

D-knowledge bases is NP-complete.
Notice also that h-restricted DL4

D-knowledge bases are quite expressive: for
instance, in [18] we have shown that the ontology Ontoceramic, for ceramics
classification, is representable in (4LQSR)3 and, much in the same way, it can
be shown that it is representable as a 3-restricted DL4

D-knowledge base.

3.1 Translating SWRL-rules into 4LQSR-formulae

The possibility of extending ontologies with rules has become a fundamental
requirement to increase the expressiveness and the reasoning power of OWL
knowledge bases. In a general sense, a rule is any sentence stating that if a set of
premises is satisfied in a given model, then a certain conclusion must be satisfied
in the same model. Although OWL is provided with several sorts of conditionals,
these are, however, very constrained. Moreover, it is not possible to mix directly
classes (concepts) and properties (roles) and include non-monotonic reasoning
such as negation as failure.3 Such considerations led to the definition of SWRL
[20], a rule language combining OWL with the Unary/Binary Datalog fragment
of the Rule Markup Language. SWRL allows users to write rules containing
OWL constructs providing more reasoning capabilities than OWL alone.

An SWRL-rule r has the form (∀x1, . . . , xn)(B =⇒ H), where:

– B (the body of r) and H (the head of r) are conjunctions of atoms of the
following types: x ∈ C, y ∈ t, 〈x, y〉 ∈ R, 〈x, y〉 ∈ T, x = y, x �= y, with
C a concept name, t a datatype, R an abstract role name, T a concrete role
name, and x, y either individuals or variables (in the specific cases of atoms

Table 1. Examples of rule translation.

Type of Rule Rule

SWRL-rule hasParent(X, Y ), hasBrother(Y, Z) : −hasUncle(X, Z).

4LQSR-rule (∀x)(∀y)(∀z)(〈x, y〉 ∈ X3
hasParent ∧ 〈y, z〉 ∈ X3

hasBrother → 〈x, z〉 ∈ X3
hasUncle)

SWRL-rule Location(X), Trauma(Y ), isLocationOf(X, Y ), isPartOf(X, Z)

:- isLocationOf(Z, Y )

4LQSR-rule (∀x)(∀y)(∀z)(x ∈ X1
Location ∧ y ∈ X1

Trauma ∧ 〈x, z〉 ∈ X3
isPartOf → 〈z, y〉 ∈ X3

isLocationOf)

SWRL-rule Person(X), hasAge(X, Y ), (Y ≥ 18) : −Adult(X)

4LQSR-rule (∀x)(∀y)(x ∈ X3
Person ∧ 〈x, y〉 ∈ X3

hasAge ∧ y ∈ X1
≥18 → x ∈ X1

Adult)

SWRL-rule Region(Y ), hasLocation(X, Y ) : −hasRegion(X, Y )

4LQSR-rule (∀x)(∀y)(y ∈ X3
Region ∧ 〈x, y〉 ∈ X3

hasLocation → 〈x, y〉 ∈ X3
hasRegion)

3 We recall that a logic is non-monotonic if some conclusions can be invalidated when
more knowledge is added.
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of the forms y ∈ t and 〈x, y〉 ∈ T , y can be either a datatype constant or a
variable), and

– Var(H) ⊆ Var(B) = {x1, . . . , xn}, where Var(H) and Var(B) are the sets of
variables occurring in H and in B, respectively.

In Table 1 we give some examples showing how SWRL-rules can be expressed
by 4LQSR-formulae. For space reasons we do not provide here a formal transla-
tion function. However, it is not hard to see that it could be easily constructed
by modifying the map τ introduced in the proof of Theorem 1.

4 Conclusions and Future Work

We have introduced the description logic DL4
D which admits, among other fea-

tures, datatype reasoning, role chain axioms without regularity conditions on
roles, min (resp., max) cardinality construct on the left-hand (resp., right-hand)
side of inclusion axioms extended to non-simple roles, constructs of full nega-
tion, union, and intersection for abstract roles. As discussed at the end of Sect. 3,
the logic DL4

D turns out to be quite expressive, if compared with SROIQ(D),
the logic underpinning the Web Ontology Language OWL. However, although
DL4

D is endowed with features not supported by SROIQ(D), it is not a proper
extension of it, as DL4

D admits existential (resp., universal) quantification only
on the left-hand (resp., right-hand) side of inclusion axioms.

Through a suitable translation process, we have then shown that the consis-
tency problem for DL4

D-knowledge bases can be effectively reduced to the sat-
isfiability problem for the decidable fragment of set theory 4LQSR. Moreover,
in the restricted case in which a DL4

D-knowledge base K can involve only role
chain axioms R1 . . . Rm � R and inclusion axioms ≥nR.C1 � C2, C1 � ≤pR.C2

such that m, n, and p do not exceed a fixed constant (hence independent of the
size of K), we have shown that the consistency problem is NP-complete, as it
can be polynomially reduced to the satisfiability problem for a subfragment of
4LQSR, whose decision problem is NP-complete. As pointed out in Remark 1,
such a restriction has a minimal impact on expressivity. Finally, we have also
translated SWRL-rules into the 4LQSR language.

We plan to introduce the constructs of union and intersection of concrete
roles and to extend our results to include also datatype groups (here we have
considered only a simple form of datatypes) and to admit Boolean operators on
concrete roles by defining a suitable strategy of datatype checking. Moreover,
we intend to extend the fragment 4LQSR with metamodelling capabilities [16],
so as to make it possible to define concepts containing other concepts and roles
(i.e., meta-concepts) and relationships between concepts or between roles (i.e.,
meta-roles). We also plan to extend our complexity results, currently regarding
only certain sublanguages of 4LQSR, concentrating on the complexity analysis
of reasoning problems related to the whole 4LQSR fragment. Finally, we intend
to implement efficient reasoners for suitable fragments of 4LQSR.
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Abstract. In the travel industry it is common for tour operators to
pre-book from service suppliers blocks of package tours, which are called
allotments in jargon. The selection of package tours is done according
to several preference criteria aimed at maximizing the expected earnings
given a budget. In this paper we formalize an allotment problem that
abstracts the requirements of a real travel agent, and we solve it using
Answer Set Programming. The obtained specification is executable, and
it implements an advanced feature of the iTravel+ system.

1 Introduction

In the travel industry it is common for tour operators to pre-book for the next
season blocks of package tours, which are called allotments in jargon [11,12]. This
practice is of help for both tour operators and service suppliers. Indeed, the first
have to handle possible market demand changes, whereas the seconds are subject
to the possibility that some package tours remain unsold, e.g., the rooms of a
hotel can remain empty in a given season. Therefore, service suppliers and tour
operators agree on sharing the economic risk of a potential low market demand
by signing allotment contracts [12]. The effectiveness of this form of supplying has
been studied in the economics literature under a number of assumptions on the
behavior of the contractors [11,21]. These studies, however, do not approach the
problem of providing a tool that helps travel agents in the act of selecting package
tours to be traded with service suppliers in the future market. Basically, given a
set of requirements on the properties of packages to be brought, budget limits,
and an offer of packages from several suppliers, the problem from the perspective
of the travel agent is to select a set of offers to be brought (or pre-booked) for the
next season so that the expected earnings are maximized [11]. Despite allotment
is –de facto– one of the most commonly-used supplying practices in the tourism
industry, the final selection of packages offered by travel suppliers is often done
in travel agencies more or less manually.

In this paper we approach the problem of automatic allotment of package
tours, and we formalize and solve it by using Answer Set Programming (ASP)
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[4,15,19]. ASP is a declarative rule-based programming paradigm for knowledge
representation and declarative problem-solving. The idea of ASP is to represent
a given computational problem by using a logic program, i.e., a set of logic
ruler, such that its answer sets correspond to solutions, and then, use an answer
set solver to find such solutions. The high knowledge-modeling power [4,15], and
the availability of efficient systems [1,2,18], make ASP suitable for implementing
complex knowledge-based applications. Indeed, ASP has been applied in several
fields ranging from Artificial Intelligence [3,5] to Knowledge Management [4],
and Information Integration [24]. In particular ASP has already been exploited
in the tourism domain for identification of package tours that best suit the
customers of an e-tourism system [27]. In this paper we follow this trend and we
describe a new application of ASP in the touristic domain. The contributions of
this paper can be summarized as follows:

– We abstract the requirements of a real travel agent that needs to solve an
allotment problem, and we solve it by using an ASP program.

– We model in ASP a number of additional preference criteria on packages
to be selected that, according to a travel agent advise, allow one to further
optimize the selection process by taking into account additional knowledge of
the domain.

– We report on the results of a preliminary experimental analysis using real-
word data that validates our approach.

A tool based on the ASP encoding described in this paper will be included as
an advanced service of the e-tourism platform developed under the iTravelPlus
project by the Tour Operator Top Class s.r.l. and the University of Calabria.

The paper is structured as follows: Sect. 2 overviews ASP syntax and seman-
tics; Sect. 3 exemplifies the requirements of an automatic allotment tool; Sect. 4
presents a formalization of the allotment problem in ASP; Sect. 5 presents the
results of an empirical evaluation of our approach; Sect. 6 discusses related work,
and Sect. 7 concludes the paper summarizing the obtained results.

2 Answer Set Programming

Answer Set Programming (ASP) [4,15,19] is a programming paradigm developed
in the field of nonmonotonic reasoning and logic programming. In this section we
overview the language of ASP, and we recall a methodology for solving complex
problems with ASP. More detailed descriptions and a more formal account of
ASP, including the features of the language employed in this paper, can be found
in [8,16,19], whereas a nice introduction to ASP can be found in [4]. Hereafter,
we assume the reader is familiar with logic programming conventions.

Syntax. The syntax of ASP is similar to the one of Prolog. Variables are strings
starting with uppercase letter and constants are non-negative integers or strings
starting with lowercase letters. A term is either a variable or a constant.
A standard atom is an expression p(t1, . . . , tn), where p is a predicate of arity
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n and t1, . . . , tn are terms. An atom p(t1, . . . , tn) is ground if t1, . . . , tn are con-
stants. A ground set is a set of pairs of the form 〈consts :conj〉, where consts is a
list of constants and conj is a conjunction of ground standard atoms. A symbolic
set is a set specified syntactically as {Terms1 : Conj1; · · · ;Termst : Conjt},
where t > 0, and for all i ∈ [1, t], each Termsi is a list of terms such that
|Termsi| = k > 0, and each Conji is a conjunction of standard atoms. A
set term is either a symbolic set or a ground set. Intuitively, a set term {X :
a(X, c), p(X);Y : b(Y,m)} stands for the union of two sets: The first one con-
tains the X-values making the conjunction a(X, c), p(X) true, and the second one
contains the Y -values making the conjunction b(Y,m) true. An aggregate func-
tion is of the form f(S), where S is a set term, and f is an aggregate function
symbol. Basically, aggregate functions map multisets of constants to a constant.
The most common functions implemented in ASP systems are the following:

– #min, minimal term, undefined for the empty set;
– #max, maximal term, undefined for the empty set;
– #count, number of terms;
– #sum, sum of integers.

An aggregate atom is of the form f(S) ≺ T , where f(S) is an aggregate
function, ≺ ∈ {<, ≤, >,≥} is a comparison operator, and T is a term called
guard. An aggregate atom f(S) ≺ T is ground if T is a constant and S is a
ground set. An atom is either a standard atom or an aggregate atom. A rule r
has the following form:

a1 | . . . | an : − b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , an are standard atoms, b1, . . . , bk are atoms, bk+1, . . . , bm are stan-
dard atoms, and n, k,m ≥ 0. A literal is either a standard atom a or its nega-
tion not a. The disjunction a1| . . . |an is the head of r, while the conjunction
b1, . . . , bk, not bk+1, . . . , not bm is its body. Rules with empty body are called
facts. Rules with empty head are called constraints. A variable that appears
uniquely in set terms of a rule r is said to be local in r, otherwise it is a global
variable of r. An ASP program is a set of safe rules. A rule r is safe if both
the following conditions hold: (i) for each global variable X of r there is a posi-
tive standard atom � in the body of r such that X appears in �; (ii) each local
variable of r appearing in a symbolic set {Terms :Conj} also appears in Conj.

A weak constraint [8] ω is of the form:

:∼ b1, . . . , bk, not bk+1, . . . , not bm.[w@l]

where w and l are the weight and level of ω. (Intuitively, [w@l] is read “as weight
w at level l”, where weight is the “cost” of violating the condition in the body
of w, whereas levels can be specified for defining a priority among preference
criteria). An ASP program with weak constraints is Π = 〈P,W 〉, where P is a
program and W is a set of weak constraints.

A standard atom, a literal, a rule, a program or a weak constraint is ground
if no variables appear in it.
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Semantics. Let P be an ASP program. The Herbrand universe UP and the Her-
brand base BP of P are defined as usual (see e.g.,[4]). The ground instantiation
GP of P is the set of all the ground instances of rules of P that can be obtained
by substituting variables with constants from UP .

An interpretation I for P is a subset I of BP . A ground literal � (resp.,
not �) is true w.r.t. I if � ∈ I (resp., � 	∈ I), and false (resp., true) otherwise. An
aggregate atom is true w.r.t. I if the evaluation of its aggregate function (i.e.,
the result of the application of f on the multiset S) with respect to I satisfies
the guard; otherwise, it is false.

A ground rule r is satisfied by I if at least one atom in the head is true w.r.t.
I whenever all conjuncts of the body of r are true w.r.t. I.

A model is an interpretation that satisfies all the rules of a program. Given a
ground program GP and an interpretation I, the reduct [16] of GP w.r.t. I is the
subset GI

P of GP obtained by deleting from GP the rules in which a body literal
is false w.r.t. I. An interpretation I for P is an answer set (or stable model [19])
for P if I is a minimal model (under subset inclusion) of GI

P (i.e., I is a minimal
model for GI

P ) [16].
Given a program with weak constraints Π = 〈P,W 〉, the semantics of Π

extends from the basic case defined above. Thus, let GΠ = 〈GP , GW 〉 be the
instantiation of Π; a constraint ω ∈ GW is violated by an interpretation I if all
the literals in ω are true w.r.t. I. An optimum answer set O for Π is an answer
set of GP that minimizes the sum of the weights of the violated weak constraints
in GW as a prioritized way.

Problem Solving in ASP. ASP can be used to encode problems in a declarative
way. The disjunctive rules allow for expressing combinatorial problems which are
in the second level of the polynomial hierarchy, and the (optional) separation
of a fixed, non-ground program from an input database allows one to obtain
uniform solutions over varying instances. More in detail, many problems of com-
paratively high computational complexity can be solved in a natural manner
by following a Guess&Check&Optimize programming methodology [22]. This
method requires that a database of facts is used to specify an instance of the
problem; a set of (usually) disjunctive rules, called “guessing part”, is used to
define the search space; admissible solutions are then identified by other rules,
called the “checking part”, which impose some admissibility constraints; finally
weak constraints are used to single out solutions that are optimal with respect to
some criteria, the “optimize part”. As an example, consider the well-known NP-
hard problem called the Traveling Salesman Problem (TSP). Given a weighted
graph G = 〈V,E〉, where V is the set of nodes and E is the set of edges with
integer labels, the problem is to find a path of minimum length containing all
the nodes of G. TSP can be encoded as follows:

vertex(v). ∀v ∈ V (1)
edge(i, j, w). ∀(i, j, w) ∈ E (2)
inPath(X,Y ) | outPath(X,Y ) : − edge(X,Y, ). (3)



Allotment Problem in Travel Industry: A Solution Based on ASP 81

: −node(X),#count{I : inPath(I,X)} 	= 1. (4)
: −node(X),#count{O : inPath(X,O)} 	= 1. (5)
: −node(X), not reached(X). (6)
reached(X) : − inPath(M,X),#min{N : node(N)} = M. (7)
reached(X) : − reached(Y ), inPath(Y,X). (8)
:∼ inPath(X,Y ), edge(X,Y,W ).[W@0] (9)

The first two lines introduce suitable facts, representing the input graph G.
Then, rule (3), which can be read as “each edge may or may not be part of the
path”, guesses a solution (a set of inPath atoms). Lines 4–6 select admissible
paths. In particular, rule in line (4) (resp., (5)) is satisfied if exactly one arc in
the solution enters in (resp., exits from) each node, indeed the body is satisfied
by solutions not having a count of one. Moreover, line (6) ensures that the
path traverses (say, reaches) all the nodes of G. Actually, this latter condition
is obtained by checking that there exists a path reaching all the nodes of G and
starting from the first node of V , say M. In particular, a node X is reached either
if there is an arc connecting M to X (rule (7)), or if there is an arc connecting
a reached node Y to X (rule (8)). The last line selects the solutions of minimal
weight. Indeed the weak constraint in rule (9) is violated with cost W each time
an arc of cost W is in the candidate solution.

3 Travel Agent Requirements

In this section we informally describe the requirements of a common problem in
the tourism industry, i.e. the problem of booking in advance blocks of package
tours for the next season. A travel agency usually selects a block of package tours
from several travel suppliers, which may apply several discounts if predetermined
amounts of their package tours are bought. In general, a critical requirement is
that the sum of prices of selected package tours must not exceed a limited budget.
This means that travel agencies are not allowed to buy all the package tours they
wish. Thus, their goal is to select package tours in order to maximize the expected
earnings. Moreover, depending on the specific needs, travel agencies might spec-
ify other preferences among the selected package tours. Those preferences are
not general. On the contrary, two different travel agencies usually have different
priorities among selected packages according to their experience and customer
base. In the following we detail several preferences that travel agencies might
specify according to their needs.

Preference of Suppliers According to Destination. Travel agencies might specify
a preference of suppliers for package tours involving particular destinations. For
instance, a supplier can be considered highly reliable for travels in Europe and
unreliable for travels in other countries.
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Preference of Suppliers According to the Type of Holidays. A supplier can be
considered also preferable for particular types of holidays. For instance, some
suppliers are specialized in holidays involving cruises, while others are specialized
in holidays involving sports activities.

Preference on Package Tours with the Highest Rating. After a trip, travelers
usually evaluate their holidays by assigning a numerical score. A package tour is
evaluated by looking at the rating assigned by the travelers. Thus, travel agencies
give priority to the package tours with the highest ratings.

Preferences on the Number of Package Tours to Buy. According to their typol-
ogy of customers travel agencies also express a preference on the number of pack-
age tours to buy. In particular, in case travel agencies obtain the same expected
earnings from two or more package tours then they can maximize or minimize the
number of bought package tours according to their customer base. For instance,
travel agencies working with wealthy customers may prefer to buy few package
tours with highest earnings, while travel agencies working with many customers
may prefer to maximize the number of package tours to buy.

Preference on the Amount of Money to Pay. Another important preference con-
cerns the amount of money to pay. In particular, in case travel agencies obtain
the same expected earnings from two or more package tours it is preferable to
select package tours with the lowest prices.

4 Specification in ASP

This section illustrates the ASP program which solves the allotment problem
specified in the previous section. First, the input data is described, then, the
ASP rules solving the allotment problem are presented. Finally, preferences that
can be specified by travel agencies are described.

4.1 Data Model

The input of the process is specified by means of the predicates described in this
section. The predicates representing the facts of our encoding are the following:

– Instances of the predicate availablePackage(pkId, supplier, destination, type,
sellingPrice, purchasePrice, rating, availableQuantity) represent stocks of
available package tours in the market, where pkId is the identifier of the tour
package, supplier is the identifier of the supplier selling the package tour, des-
tination is the destination of the package tour, type is the type of holiday,
sellingPrice is the price applied by the travel agency to their customers, pur-
chasePrice is the price applied by the supplier to the travel agency, rating is a
numerical score associated to the package tour representing the appreciation
of customers for this package tour, and availableQuantity corresponds to the
quantity of available package tours of this kind in the market.
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– Instances of the predicate requiredPackage(destination, type, minPrice, max-
Price, requiredQuantity) represent package tours required by a travel agency,
where destination is destination of the package tour required, type is the type
of holiday required, minPrice and maxPrice represents the range of prices the
travel agency is willing to pay for a given destination and type of holiday, and
requiredQuantity corresponds to the quantity of required package tours of this
kind.

– Instances of the predicate discount(supplier, quantity, percentageDiscount)
represent the discount applied by suppliers if a given amount of their pack-
age tours is bought, where supplier represents the identifier of the supplier,
quantity is the minimum quantity of bought package tours for applying the
discount, and percentageDiscount is the percentage discount applied.

– The only instance of the predicate budget(b) represents the maximum amount
of money the travel agency is willing to pay.

– Instances of the predicate evalSupplierDestination(supplier, destination, score)
represent the evaluations of suppliers according to destination, where supplier
is the identifier of the supplier, destination is the destination of the package
tour, and score is a numerical score representing the reliability of the supplier
for package tours involving the destination.

– Instances of the predicate evalSupplierType(supplier, type, score) represent
the evaluations of suppliers according to type of holiday, where supplier is the
identifier of the supplier, type is the type of holiday, and score is a numerical
score representing the reliability of the supplier for package tours concerning
the type of holiday.

4.2 Allotment Problem

In this section we describe the ASP rules used for solving the allotment problem.
We follow the Guess&Check&Optimize programming methodology [22]. In par-
ticular, the following disjunctive rule guesses a quantity to buy for each required
package:

buy(P,Q) | nBuy(P,Q) : − availablePackages(P, ,D, T, SP, PP, ,AvQ),
requiredPackages(D,T,MinP,MaxP,ReqQ),
0 ≤ Q ≤ ReqQ,

Q ≤ AvQ,

MinP ≤ SP ≤ MaxP.

(1)

The guess of the quantity is limited to available package tours which are requested
and their selling price is in the requested range. Then, assignments buying dif-
ferent quantities of the same package tour are filtered out by the following con-
straint:

: −#count{Q,P : buy(P,Q)} > 1, availablePackages(P, , , , , , , ). (2)
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Suppliers may apply one or more discounts if predetermined amounts of their
package tours are bought. In general several discounts are offered depending on
the volume of booked packages. In this case the maximum applicable discount
among them must be applied. All applicable discounts and the maximum dis-
count among them are computed by the following rules:

allDiscounts(S,D) : − discount(S,Q1,D),
#sum{Q,P : buy(P,Q)} ≥ Q1.

maxDiscount(S,Disc) : − discount(S, , ),
#max{D : allDiscounts(S,D)} = Disc.

(3)

The predicate allDiscounts(supplier, discount) stores the association between the
supplier and all the applicable discounts, while maxDiscount(supplier, discount)
stores the association between the supplier and the corresponding maximum
applicable discount. Then, the prices of the package tours are updated according
to the above-computed discounts. This behavior is achieved by employing the
following rule:

discountPrices(P, SP, PPD) : − availablePackages(P, S, , , SP, PP, , ),
maxDiscount(S,MD),
PPD = PP − (PP ∗ MD)/100.

(4)

The predicate discountPrices stores the original selling price and the purchase
price after the application of the discount for each package tour. This predicate
is then used to handle a critical requirement on the budget, i.e. the sum of prices
of selected package tours must not exceed a limited budget. This is expressed in
ASP by the following rule:

: −#sum{PP ∗ Q,P : buy(P,Q), discountPrices(P, , PP )} > B,

budget(B).
(5)

Finally, the last requirement is to maximize the earnings. This is obtained in our
encoding by means of the following weak constraint:

:∼ discountPrices(P, SP, PP ), buy(P,Q),
E = (SP − PP ) ∗ Q.[−E@�]

(6)

Intuitively, when a stock of package tours is bought the solution is associated with
a cost depending on the earnings obtained by buying those packages. The weight
of weak constraint is negative since weak constraints expresses the minimization
of the cost associated to a solution.1 The choice of the level � is explained in the
following section.
1 ASP solvers may have undefined behaviors in presence of negative weights. A work-

around is to augment the weight of the weak constraint by the maximum possible
earnings.
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4.3 Preferences (optional)

In this section, we describe preferences travel agencies might specify among the
selected package tours depending on their specific needs. Different travel agen-
cies usually have different priorities among selected package tours which are
expressed in our framework by means of weak constraints. In the weak con-
straints we use numerical values �1, . . . , �5 representing the levels of weak con-
straints. Then, an order on the preferences can be specified by properly assigning
a value to those levels. The only requirement is that the level � of the constraint
that maximizes earnings (6) is greater than all the other weak constraints that
are specified in the following.

Preference of Suppliers According to Destination. A travel agency might specify
a preference of suppliers according to the destination of a travel. The following
weak constraint expresses this preference:

:∼ evalSupplierDestination(S,D, SC),
availablePackages(P, S,D, , , , , ),

nBuy(P,Q).[SC ∗ Q@�1]
(7)

Intuitively, when a stock of package tours is not bought a numerical penalty is
associated to the solution. For each package tour which is not selected the cost
of the solution is increased by the score associated to the corresponding supplier
for the destination.

Preference of Suppliers According to the Type of Holidays. Similarly, the fol-
lowing weak constraint expresses a preference among suppliers according to the
type of holidays:

:∼ evalSupplierType(S, T, SC),
availablePackages(P, S, , T, , , , ),
nBuy(P,Q).[SC ∗ Q@�2]

(8)

For each package that is not selected the solution cost is increased by the score
associated to the corresponding supplier for the type of holiday. The effect is
to maximize the number of package tours in the solution that are provided by
preferred suppliers.

Preference on Package Tours with the Highest Rating. Travel agencies give pri-
ority to the package tours with the highest ratings. This preference is expressed
by the following weak constraint:

:∼ availablePackages(P, , , , , , R, ), nBuy(P,Q).[R ∗ Q@�3] (9)

Here, the cost of the solution is given by the sum of ratings of package tours
which are not bought. Thus we maximize the ratings of selected package tours.
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Preferences on the Number of Package Tours to Buy. In case a travel agency is
willing to minimize the number of packages to buy we apply the following weak
constraint:

:∼ buy(P,Q).[Q@�4] (10)

The cost of the solution is increased by the quantity of package tours which are
not bought. Otherwise, if a travel agency is willing to maximize the number of
packages to buy we apply the following weak constraint:

:∼ nBuy(P,Q).[Q@�4] (11)

Here, the cost of the solution is increased by the quantity of package tours which
are bought. Note that weak constraints (10) and (11) are never applied together
since travel agencies either maximize or minimize the number of package tours
to buy.

Preference on the Amount of Money to Pay. Finally, travel agencies may also
want to minimize the amount of money to pay. Note that this is different from the
earnings, since in this case travel agency minimizes the purchase prices without
considering their selling prices. This behavior is employed by the following weak
constraint:

:∼ discountPrices(P, , PP ), buy(P,Q).[PP ∗ Q@�5] (12)

Intuitively, the cost of the solution depends on sum of prices of package tours
which are bought. Hence, this has the effect to minimize the price of package
tours in the solution.

Specification of Preferences. As stated in Sect. 3, the preferences depend on the
specific needs of travel agencies, and can be applied selectively by simply adding
or ignoring some of the weak constraints described in Sect. 4.3. Moreover, a
travel agent must also specify a layering of preferences by properly assigning
values to �1, . . . , �5. As an example, consider a travel agent that wants to give
highest priorities on package tours with the highest ratings; and then maximize
the number of packages to buy. In the encoding those preferences are specified
by considering weak constraints (9) and (11) and by assigning integer values to
the levels such that �3 > �5, e.g., �3 = 2, and �5 = 1.

5 Empirical Validation

We validated our ASP-based solution running a preliminary experiment on real-
world data provided by the partners of the iTravelPlus project. In particular, we
obtained an instance of a database of package tours querying the database of the
iTravel+ system and properly encoding it by means of ASP facts. Moreover, we
generated a specification of the requested package tours by running a mining ser-
vices of the same system that generates a prediction based on the package tours
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sold in the past. Finally, we randomly generated a number of additional require-
ments to test the effects of the optional preferences of our solution. Concerning
the ASP solver we used wasp [2]. (For the sake of completeness, we report that
we also tried the ASP solver clasp [18] obtaining similar performance.) The
system was run on a four core Intel Xeon CPU X3430 2.4 GHz, with 16 GB of
physical RAM, each execution was limited to 600 seconds.

Table 1. Performance of the system for different available package tours.

Available Pkgs (Min-Max) #inst #solved #optima Time (no pref.) Time (all pref.)

DBx0.5 216–291 30 30 30 0.6 0.8

DBx1 445–584 30 30 26 48.5 147.8

DBx2 963–1093 30 30 14 11.7 33.41

Table 2. Performance of the system for different periods (in months).

Period Required Pkgs (Min-Max) #inst #solved #optima Search Space (avg)

2m 79–94 30 30 30 227

4m 174–182 30 30 24 254

6m 345–365 30 30 16 2110

The performance of the system for different sizes of the available packages
is reported in Table 1. In particular, the first column reports the sizes of the
considered DBs. We considered the original database (labeled DBx1) and then we
consider two more settings containing the first half of the same database (labeled
DBx0.5), a generated instance (labeled DBx2) having twice of the facts from
DBx1 obtained adding more suppliers. The second column reports the minimum
and the maximum available package tours among the instances considered. The
number of considered instances is reported in the third column together with the
number of instances in which the system found a (sub-optimal) solution (fourth
column) and the number of instances in which the system found the optimum
solution (fifth column). The sixth column reports the sum of execution times
(in seconds) elapsed for finding the optimum solution of the allotment problem
without optional preferences. The seventh column reports the sum of time in
seconds of finding the optimum solution of the allotment problem where all
preferences are enabled. As first observation we note that the system provides a
solution for all the instances considered within 10 min. The provided solutions
are usually either close to the optimum ones or are optimal but the system is not
able to prove their optimality within the timeout. Moreover, when we consider
half size of the DB size the system finds always the optimum solution, while
for the original size of the DB this is the case in the 87 % of the instances,
which is a performance considered fairly acceptable by our project partners.
The performance is still good in the case we double the size of the original DB,
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since the system is able to find the optimum for about half of the instances. In
addition, we also observe that adding the preference does not reduce either the
number of solved instances nor the number of instances in which the optimum
solution is found. As expected, we observe a constant slow down in the solving
time, which is approximately three times higher than the one measured with no
preferences.
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Fig. 1. Scalability w.r.t. the number of available package tours.

It is worth pointing out that the performance of the system does not heavily
depend on the quantity of available packages. In fact, rule (1) in Sect. 4.2 filters
out all the package tours which are not required. In order to confirm this observa-
tion, we increased the available quantities for each package tours in the database
by several factors. The result is reported in Fig. 1, in which, for a particular size
of the DB, a point (x, y) represents the solving time y where the availability of
package tours is x percent of the original size. The graph shows that the execu-
tion times grow until the offered packages are 120 % more than in the original
DB, and then performance has a constant trend that is not dependent on the
quantity of available packages.

Table 2 reports on the performance of the system for different periods of
request packages. In particular, the first column reports the considered period
expressed in months. The second column reports the minimum and the max-
imum required package tours among the instances considered. The number of
considered instances is reported in the third column together with the number
of instances in which the system found a solution (fourth column) and the num-
ber of instances in which the system found the optimum solution (fifth column).
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Fig. 2. Performance of the system depending on the budget.

The last column reports the average search space for the considered instances.
Also in this case, the system provides a solution for all the instances considered.
Moreover, when we consider a period of 2 months the system also finds always
the optimum solution, while if we considered a period of 4 months this is the
case in the 80 % of the instances. It is worth pointing out that, travel agencies
usually book package tours for one season, thus they consider a period of at most
3–4 months. Nonetheless, the performance is still good in the case we consider a
period of 6 months, since the system is able to find the optimum for about half
of the instances.

Finally, another observation concerns the budget allowed by the travel agency,
since the hardness of the instances depends on this parameter. In fact, is it easy
to see that instances with very low (resp. high) budgets w.r.t. to the one needed
to fulfill the request are likely easy, since they correspond to over-constrained
(resp. under-constrained) problems where the solution is to buy no package tours
(resp. to buy all required package tours). Thus, we also analyzed the behavior
of the system in case we consider different budgets. The result is reported for
DBx0.5 and a request of 6 months in Fig. 2, in which a point (x, y) represents
the solving time y if the budget is limited to x euro. The trend of the system
confirms our expectations, since the instance is trivially solved when the budget
is enough either to buy nothing or to buy everything. The maximum hardness
is reached when the allotted budget can cover about 40 % of the request in our
experiment, a setting that in real-world instances is not that common, since the
budget is usually enough to cover most of the requests.
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6 Related Work

In the literature there are solution to many e-tourism systems challenges includ-
ing: package tours search and assemblage, automatic holiday advisors, modeling
of general purpose ontologies of the touristic domain [6,9,10,14,23,25,26], etc.
These studies do not focus –to the best of our knowledge– on helping travel
agents in the act of selecting package tours to be traded with service suppliers
in the future market.

Concerning the applications of ASP, we mention that it has been used to
develop several industrial applications [20,28] and, in particular, it has already
been exploited in an e-tourism system [27]. Nonetheless, the problem considered
in [27] was to identify the package tours that best suit the needs of a customer
of an e-tourism platform; thus, [27] approaches a different problem of the one
considered here. This paper presents the first attempt to exploit ASP for assisting
tour operators in the allotment of packages.

It is important pointing out that other approaches, such as Constraint Pro-
gramming (CP) [29] and Mixed-Integer Programming (MIP) [13], could also
be good candidates for solving the problem considered in this paper. Despite
it would be interesting to investigate whether other solving technologies such
as CP or MIP are also successfully applicable, the goal of this research was to
demonstrate that ASP can be used for solving the allotment problem in practice,
and our ASP-based solution satisfied the stakeholder partners of the iTravelPlus
project. Comparison with other approaches can be an interesting research goal
to be developed in a separate work.

For the sake of completeness, we also mention a different way of dealing with
the problem of allotment [30]. This approach aims at acquiring directly and on-
demand from hotel management services the information about the hotel rooms
and facilities that suit the request of a tour operator, so to avoid the allotment
problem using agent technologies [30]. This is clearly a radically different app-
roach from ours that aims at optimizing the pre-booking of allotments for an
entire period of time.

7 Conclusion

In this paper we described an application of Answer Set Programming to the
problem of allotment in travel industry. We have formalized an allotment prob-
lem that abstracts the requirements of a real travel agent, by means of an ASP
programs. Since ASP programs are executable specifications we also obtained a
prototypical implementation of a tool for supporting a travel agent in selecting
the packages to be traded for next season. We experimented with our implemen-
tation on instances of the problem made of real-word data provided by the travel
agency Top Class s.r.l. The preliminary results that we obtained are promising
in terms of performance. Our ASP program will be included as an advanced rea-
soning service of the e-tourism platform developed under the iTravelPlus project
by the Tour Operator Top Class s.r.l. and the University of Calabria.
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As far as future work is concerned, we plan to study the computational
properties of the allotment problem, and to extend our formulation by modeling
additional preference criteria on the solutions. In this respect we will investigate
the adoption of more general frameworks for expressing preferences [7,17]. The
automatic allotment tool will be integrated in the system developed under the
iTravelPlus project that aims at developing several services for tour operators.

Acknowledgments. We are grateful to DLV SYSTEM s.r.l. for its support in the
development of the system and to Denise Angilica, Gianluigi Greco, and Gianni Laboc-
cetta for fruitful discussions on the specification of the problem.
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Abstract. Reasoning engines for ontological and rule-based knowledge
bases are becoming increasingly important in areas like the Semantic
Web or information integration. It has been acknowledged however that
judging the performance of such reasoners and their underlying algo-
rithms is difficult due to the lack of publicly available datasets with
large amounts of (real-life) instance data. In this paper we describe a
framework and a toolbox for creating such datasets, which is based on
extracting instances from the publicly available OpenStreetMap (OSM )
geospatial database. To this end, we give a formalization of OSM and
present a rule-based language to specify the rules to extract instance
data from OSM data. The declarative nature of the approach in com-
bination with external functions and parameters allows one to create
several variants of the dataset via small modifications of the specifica-
tion. We describe a highly flexible toolbox to extract instance data from
a given OSM map and a given set of rules. We have employed our tools
to create benchmarks that have already been fruitfully used in practice.

1 Introduction

Reasoning over ontological and rule-based knowledge bases (KBs) is receiving
increasing attention. In particular Description Logics (DLs), which provide the
logical foundations to OWL ontology languages, are a well-established family of
decidable logics for knowledge representation and reasoning. They offer a range
of expressivity well-aligned with computational complexity. Moreover, several
systems have been developed in the last decade to reason over DL KBs, which
usually consist of a TBox that describes the domain in terms of concepts and
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roles, and an ABox that stores information about known instances of concepts
and their participation in roles.

Naturally, classical reasoning tasks like TBox satisfiability and subsumption
under a TBox have received most attention and many reasoners have been
devoted to them. A different category are reasoners for ontology-based query
answering (OQA), which are designed to answer queries over DL KBs in the pres-
ence of large data instances (see e.g.Ontop [14], Pellet [19],and OWL-BGP [13]).
TBoxes in this setting are usually expressed in low complexity DLs, and are rela-
tively small in size compared to the instance data. These features make reasoners
for OQA different from classical (TBox) reasoners. The DL community is aware
that judging the performance of OQA reasoners and their underlying algorithms
is difficult due to the lack of publicly available benchmarks consisting of large
amounts of real-life instance data. In particular, the popular Lehigh University
Benchmark (LUBM) [10] only allows one to generate random instance data,
which provides only a limited insight into the performance of OQA systems.

In this paper, we consider publicly available geographic datasets as a source
of test data for OQA systems and other types of reasoners. For the bench-
mark creation, we need a framework and a toolbox for extracting and enhancing
instance data from OpenStreetMap (OSM ) geospatial data.1 The OSM project
aims to collaboratively create an open map of the world. It has proven hugely
successful and the map is constantly updated and extended. OSM data describes
maps in terms of (possibly tagged) points, geometries, and more complex aggre-
gate objects called relations. We believe the following features make OSM a
good source to obtain instance data for reasoners: (a) Datasets of different sizes
exist; e.g., OSM maps for all major cities, countries, and continents are directly
available or can be easily generated. (b) Depending on the location (e.g., urban
versus rural), the density, separation, and compactness of object location varies
strongly.2 (c) Spatial objects have an inherent structure of containment, border-
ing, and overlapping, which can be exploited to generate spatial relations (e.g.,
contains). (d) Spatial objects are usually tagged with semantic information like
the type of an object (e.g., park), or the cuisine of a restaurant. In the DL world
this information can be naturally represented in terms of concepts and roles.

Motivated by this, we present a rule-based framework and a toolbox to create
benchmark instances from OSM datasets. Briefly, the main contributions are the
following:

– We give a model-based formalization of OSM datasets which aims at abstract-
ing from the currently employed but rather ad-hoc XML or object-relational
representation. It allows one to view OSM maps as relational structures, pos-
sibly enriched with computable predicates like the spatial relations contains
or next.

– Building on the above formalization, we present a rule-based language to
extract information from OSM datasets (viewed as relational structures). In

1 http://www.openstreetmap.org.
2 E.g., visible in https://www.mapbox.com/osm-data-report/.

http://www.openstreetmap.org
https://www.mapbox.com/osm-data-report/
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particular, a user can specify declarative rules which prescribe how to trans-
form elements of an OSM map into ABox assertions. Different benchmark
ABoxes can be created via small modifications of external functions, input
parameter, and the rules of the specification.

– Our language is based on an extension of Datalog, which enjoys clear and
well accepted semantics [1]. It has convenient features useful for benchmark
generation.

– We have implemented a toolbox to create ABoxes from given input sources
(e.g. an OSM database) and a given set of rules. The toolbox is highly config-
urable and can operate on various input/output sources, like RDF datasets,
RDBMSs, and external functions. The input and result quality is measurable
using descriptive statistics.

– By employing the above generation toolbox, we show on a proof-of-concept
benchmark, how configurable and extensible the framework is. The toolbox
has been already fruitfully been used for two benchmarks [5,7].

Our framework and toolbox provide an attractive means to develop tailored
benchmarks for evaluating OQA systems, to gain new insights about them.

2 Formalization of OSM

In this section we formally describe our model for OSM data, which we
later employ to describe our rule-based language to extract instance data
from OSM data. Maps in OSM are represented using four basic constructs
(a.k.a. elements):3

– nodes, which correspond to points with a geographic location;
– geometries (a.k.a.ways), which are given as sequences of nodes;
– tuples (a.k.a. relations) are a sequences of nodes, geometries, and tuples;
– tags, which are used to describe metadata about nodes, geometries, and tuples.

Geometries are used in OSM to express polylines and polygons, in this way
describing streets, rivers, parks, etc. OSM tuples are used to relate several ele-
ments, e.g. to indicate the turn priority in an intersection of two streets.

To formalize OSM maps, which in practice are encoded in XML, we assume
infinite mutually disjoint sets Mnid,Mgid,Mtid and Mtags of node identifiers, geom-
etry identifiers, tuple identifiers and tags, respectively. We let Mid = Mnid∪Mgid∪
Mtid and call it the set of identifiers. An (OSM) map is a triple M = (D, E ,L)
as follows.

1. D ⊆ Mid is a finite set of identifiers called the domain of M.
2. E is a function from D such that:

(a) if e ∈ Mnid, then E(e) ∈ R × R;
(b) if e ∈ Mgid, then E(e) = (e1, . . . , em) with {e1, . . . , em} ⊆ D ∩ Mnid;
(c) if e ∈ Mtid, then E(e) = (e1, . . . , em) with {e1, . . . , em} ⊆ D.

3. L is a labeling function L : D → 2Mtags .

3 For clarity, we rename the expressions used in OSM.
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Intuitively, in a map M = (D, E ,L) the function E assigns to each node identifier
a coordinate, to each geometry identifier a sequence of nodes, and to each tuple
identifier a sequence of arbitrary identifiers.

Example 1. Assume we want to represent a bus route that, for the sake of sim-
plicity, goes in a straight line from the point with coordinate (0, 0) to the point
with coordinate (2, 0). In addition, the bus stops are at 3 locations with coor-
dinates (0, 0), (1, 0) and (2, 0). The names of the 3 stops are S0, S1, and S2,
respectively. This can be represented via the map M = (D, E ,L), where

– D = {n0, n1, n2, g, t} with {n0, n1, n2} ⊆ Mnid, g ∈ Mgid and t ∈ Mtid,
– E(n0) = (0, 0), E(n1) = (1, 0), E(n2) = (2, 0),
– E(g) = (n0, n2) and E(t) = (g, n0, n1, n2),
– L(n0) = {S0}, L(n1) = {S1} and L(n2) = {S2}.

The tuple (g, n0, n1, n2) encodes the stops n0, n1, n2 tied to the route given by g.

Enriching Maps with Computable Relations. The above formalizes the
raw representation of OSM data. To make it accessible to rules, we allow to
enrich maps with arbitrary computable relations over Mid. In this way, we sup-
port incorporation of information that need not be given explicitly but can be
computed from a map. Let Mrels be an infinite set of map relation symbols, each
with an associated nonnegative integer, called the arity. An enriched map is a
tuple M = (D, E ,L, ·M), where (D, E ,L) is a map and ·M is a partial function
that assigns to a map relation symbol R ∈ Mrels a relation RM ⊆ Dn, where
n is the arity of R. In this way, a map can be enriched with externally com-
puted spatial relations like the binary relations “is closer than 100m”, “inside
a country”, “reachable from”, etc. For the examples below, we assume that an
enriched map M as above always defines the unary relation Tagα for every tag
α ∈ Mtags. In particular, we let e ∈ TagM

α iff α ∈ L(e), where e ∈ D. We will also
use unary relations Point and Geom for points and geometries, and the binary
relation Inside, where Inside(x, y) will mean that the point x is located inside the
geometry y.

3 A Rule Language for Data Transformation

We define a rule-based language that can be used to describe how an ABox is
created from an enriched map. It is based on Datalog with stratified negation [1].

Let Drels be an infinite set of Datalog relation symbols, each with an associated
arity. For simplicity, and with a slight abuse of notation, we assume that DL
concept and role names form a subset of Datalog relations. Formally, we take
an infinite set Dconcepts ⊆ Drels of unary relations called concept names and an
infinite set Droles ⊆ Drels of binary relations called role names. Let Dvars be a
countably infinite set of variables. Elements of Mid ∪ Dvars are called terms.

An atom is an expression R(t) or not R(t), where R is a map or a Datalog
relation symbol of arity n, and t is an n-tuple of terms. We call R(t) and not R(t)
a positive atom and a negative atom, respectively. A rule r is an expression of



A Rule-based Framework for Creating Instance Data from OpenStreetMap 97

the form B1, . . . , Bn → H, where B1, . . . , Bn are atoms (called body atoms) and
H is a positive atom with a Datalog relation symbol (called the head atom).
We use body+(r) and body−(r) for the sets of positive and negative atoms in
{B1, . . . , Bn}, respectively. We assume (Datalog) safety, i.e. each variable of r
occurs in body+(r). A program P is any finite set of rules. A rule or program is
ground if it has no occurrences of variables. A rule r is positive if body−(r) = ∅.
A program P is positive if all rules of P are positive. A program P is stratified
if it can be partitioned into programs P1, . . . , Pn such that:

(i) If r ∈ Pi and not R(t) ∈ body−(r), then there is no j ≥ i such that Pj has
a rule with R occurring in the head.

(ii) If r ∈ Pi and R(t) ∈ body+(r), then there is no j > i such that Pj has a
rule with R occurring in the head.

The semantics of a program P is given relative to an enriched map M.
Its ground program ground(P,M) can be obtained from P by replacing in all
possible ways the variables in rules of P with identifiers occurring in M or P .
We use a variant of the Gelfond-Lifschitz reduct [9] to get rid of map atoms
in a program. The reduct of P w.r.t. M is the program PM obtained from
ground(P,M) as follows:

(a) Delete from the body of every rule r every map atom not R(t) with t 	∈ RM.
(b) Delete every rule r whose body contains a map atom not R(t) with t ∈ RM.

Observe that PM is an ordinary stratified Datalog program with identifiers
acting as constants. We let PM(M, P ) denote the perfect model of the program
PM. See [1] for the construction of PM(M, P ) by fix-point computation along
the stratification. We are now ready to extract an ABox. Given a map M and
a program P , we denote by ABox(M, P ) the restriction of PM(M, P ) to the
atoms over concept and role names.

We next illustrate some features of our rule language. The basic available ser-
vice is to extract instances of concepts or roles by posing a standard conjunctive
query over an OSM map. F.i., the following rule collects in the role hasCinema
the cinemas of a city (we use sans-serif and typewriter font for map and Datalog
relations, respectively):

Point(x),Tagcinema(x),Geom(y),Tagcity(y), Inside(x, y) → hasCinema(y, x).

Negation in rule bodies can be used for default, closed-world conclusions.
E.g., the rule states that recreational areas include all parks that are not known
to be private:

Geom(x),Tagpark(x),not Tagprivate(x) → RecreationalArea(x)

Recursion is also useful and e.g., allows to deal with reachability, which
appears naturally and in many forms in the context of geographic data. E.g.,
suppose we want to collect pairs b1, b2 of bus stops such that b2 is reachable from
b1 using public buses. To this end, we can assume the availability of an external
binary relation hasStop which relates bus routes and their stops, i.e. hasStop(x, y)
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is true in case x is a geometry identifier corresponding to a bus route and y is a
point identifier corresponding to a bus stop in the route represented by x. Then
the desired pairs of bus stops can be collected in the role ReachByBus using the
following recursive rules:

hasStop(x, y1), hasStop(x, y2) → ReachByBus(y1, y2)
ReachByBus(y1, y2), ReachByBus(y2, y3) → ReachByBus(y1, y3).

Extending the Rule Language with ETL Features. We introduce a custom
language for the benchmark generation, which extends the Datalog language of
the previous paragraph with extract, transform, and load (ETL) features. The
combined language consists of Data Source Declarations, Mapping Axioms, and
Datalog Rules. Data Source Declarations contain general definitions like RDBMS
connection strings. A mapping axiom defines a single ETL step, where the syntax
is an extension of the Ontop mapping language. It is defined either as a pair of
source and target or as a triple of source, transform, and target : Each pair/triple
has a first column containing a constant, a second column referring to the data
source declarations, and a third column, which is modified depending on the
source, target, or transformation line, respectively.4

4 Benchmarking Framework

The rule language L of the previous section gives us the means to define the
data transformations. We combine the language with an OSM database S, an
input ontology O (a.k.a TBox), a set Q of conjunctive or SPARQL queries, the
generation parameters P, and external functions E . The benchmark framework is
denoted as F = 〈S,O,Q,L,P, E〉 and produces a set of ABox instances denoted
as A = (A1, . . . , An). Note that F might modify O slightly.

Workflow. The workflow of creating a benchmark and evaluating the respective
reasoners can be split into an initial and a repeating part. The initial part consists
of the following elements. First, one has to choose the ontology O and decide
which ontology language should be investigated. The ontology statistics gives
a first impression on the expressivity of the language such as DL-LiteR [4] or
EL [2]. Then, O has to be customized (e.g., remove axioms) and loaded to the
system. For Q, either handcrafted queries (related to a practical domain) have
to be built or synthetic queries have to be generated (e.g., Sygenia [11]). After
the initial part, we are able to generate the instance data for the fixed O and Q.
This part of the workflow can be repeated until certain properties are reached.
It has the following steps:

1. Creating an OSM database S with several instances, i.e., cities or countries;4

2. Applying dataset statistics to get a broad overview of the dataset, which leads
to the selection of “interesting” datasets from S;

4 See the detailed syntax, prerequisites, and tools on https://github.com/ghxiao/
city-bench.

https://github.com/ghxiao/city-bench
https://github.com/ghxiao/city-bench
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3. Creating the rules of L to define the transformation for the instance genera-
tion and defining the parameters P and choosing the needed external func-
tions of E ;

4. Calling the generation toolbox (see Sect. 5) and create the instances of A;
5. Using ABox statistics to evaluate A′s quality, if not useful, repeat

from 3.;

Descriptive Statistics. For the benchmark creation, descriptive statistics
serves two purposes. First, it gives a broad picture of the datasets, which is
important to formulate the mapping rules. Second, we use the statistics to guide
and fine-tune the instance generation. That is, for generating the next relation,
different distances can be calculated leading to different sizes of A. Descriptive
statistics can be applied on three levels. On the ontology level, ontology met-
rics regarding O can be produced using owl-toolkit5 to calculate the number of
concepts, roles, and axioms (e.g., sub-concept). On the dataset level, we provide
general information on the selected OSM database instance including the main
elements Points, Lines, Roads, and Polygons and details about frequent item
sets [3] of keys and tags. On the ABox level we provide the statistics of the
generated instances in A. For this, we count the assertion in A for every atomic
concept or role name of O. For future work, we aim to estimate the instances
based on the subsumption graph for the entire concept/role hierarchy.

External Functions and Parameters. External functions bridge the gap
between L and external computations. They allow us to develop dataset-specific
customization and functionalities, where the results (atoms) are associated with

5 https://github.com/ghxiao/owl-toolkit.

https://github.com/ghxiao/owl-toolkit
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Table 1. Available External Functions

Name Description Predicate

transformOSM generates from OSM tags atoms which represent
concepts/roles of O. It has to be customized
to the signature of O.

TagPark(x)

transformOSM-
Random

instead of generating directly from OSM tags, it
generates atoms according to a probabilities
P assigned to a set O of OSM tags, e.g.,
P (PublicPark)=0.8 and
P (PrivatePark)=0.2.

TagP,O(x)

generateSpatial-
Relation

generates the spatial relations contains or next,
where a threshold parameter for the object
distance can be given.

next10m(x, y)

generateStreet-
Graph

generates the road/transport graph by creating
instances for edges and vertices based on
streets and corners between them.

connected(x, y),
Tagcorner(x)

predicates of L. In Table 1, we list the available external functions. In addition,
we provide the functions deleteRandom and deleteByFilter which drop instances
randomly or filter out instances from A. The parameters are the means to fine-
tune the generation. They are often not directly observable, hence we need
the statistics tool to get a better understanding of them. From recent litera-
ture [16,20], we identified the following parameters for the instance generation:

– ABox Size: choice of the OSM instance (e.g., major cities or countries), but
also by applying deleteRandom and deleteByFilter ;

– Degree of ABox Saturation: can be indirectly manipulated by the use of Dat-
alog rules in L to generate instances which otherwise would be deduced.

– Distribution/Density of Nominal/Numeric Values: input for transformOSM-
Random;

– Selectivity of Concept/Role Assertions: input for transformOSM and trans-
formOSMRandom and choice of OSM instance;

– Graph Structure: choice of OSM instance and selected graph (e.g., road vs.
public transport network) for generateStreetGraph.

5 Implementation

We have developed for the framework a generation toolbox in Python 2.7, which
is called as follows: generate.py -m mapping.txt

Modes. We provide two different modes with different evaluation strategies.
The Direct mode is designed for simple bulk processing, where scalability and
performance is crucial and complex calculations are moved to custom exter-
nal scripts. We implemented the computation in a data streaming-based man-
ner. The mapping axioms are evaluated in sequential order, hence dependencies
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between sources and targets are not considered. The Datalog mode extends the
Direct mode and is designed for Datalog programs using the DLV system for
evaluation.6 The Datalog results are calculated in-memory and we follow a com-
putation in three stages: 1. Previous ETL steps are evaluated to create the fact
files for the EDB; 2. The defined Datalog programs (maintained in external
files) are evaluated on the EDB files with the DLV module; 3. The (filtered)
results (i.e., perfect models) are parsed and converted to tuples which then can
be used by any target component. For now, we only handle a single model due
to stratified Datalog.

Architecture. In Fig. 1, we show the architecture of the framework. It natu-
rally results from the two modes and the source and target components. The
following source and target components are implemented. For Text files, we use
the standard functions of Python for reading, writing, and evaluating regular
expressions. For RDF files, which are accessed by SPARQL queries, we lever-
age the functions of the rdflib library. At present for RDBMSs, we only include
access to the spatial-extended RDBMS PostGIS 2.12 (for PostgreSQL), which
is the most common system used for OSM.

External Functions and Statistics. Besides the main script, we implemented
Python scripts for the external functions from Sect. 4 for processing the (OSM)
data. The list of implemented functions (e.g., GenerateStreetGraph.py) is
available online.4 StatsOSM.py and StatsABox.py are the statistical scripts for
estimating the structure of the ABox and the main OSM elements. They calcu-
late the values for the most used field/tag combinations. Additionally, we find
the most frequent item sets using the FP-Growth algorithm.7 For the ABox, we
use the rdflib library to count and report the basic concept and role assertions.

6 Example Benchmark

In this section, we demonstrate how the framework can be applied to gener-
ate a proof-of-concept benchmark for OQA systems. All the mapping files, test
datasets, and statistics are available online.8

OSM Dataset and Ontology. There are different subsets of different sizes
and structures available for OSM. For this example, we chose the cities of Cork,
Riga, Bern, Vienna, and Berlin.9 Using the dataset statistics module for Vienna,
we observe for the field Shop 816 supermarkets, 453 hairdressers, 380 bakeries.
For the field Highway, we have 29 392 residential, 4 087 secondary, and 3 973
primary streets.

The DL-LiteR [4] benchmark ontology is taken from the MyITS project [6].
It is tailored to geospatial and project specific data sources (e.g., a restaurant

6 http://www.dlvsystem.com/dlv/.
7 https://github.com/enaeseth/python-fp-growth.
8 https://github.com/ghxiao/city-bench/tree/master/benchmarks/rr2015.
9 Downloaded on the 1.10.14 from http://download.bbbike.org/osm/bbbike/.

http://www.dlvsystem.com/dlv/
https://github.com/enaeseth/python-fp-growth
https://github.com/ghxiao/city-bench/tree/master/benchmarks/rr2015
http://download.bbbike.org/osm/bbbike/
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Table 2. Cities Dataset

City #Points #Lines #Poly

Cork 6 068 14 378 4 934

Riga 19 172 43 042 67 708

Bern 68 831 83 351 151 195

Vienna 245 107 151 863 242 576

Berlin 236 114 218 664 430 652

Table 3. Road Network Instances

#Road #Node #connect #Shop #opr #next50

6 476 45 459 46 013 278 36 750

6 620 35 107 37 007 827 102 1 408

17 995 130 849 134 670 1 539 120 10 285

40 915 191 220 207 429 5 259 506 23 151

46 320 204 342 226 554 9 791 588 81 911

guide). The ontology is for OQA systems of average difficulty having only a few
existential quantification on the right-hand side of the inclusion axioms. Due to
its size and concept and role hierarchy depth, it poses a challenge regarding the
rewritten query size.

Creation of a Road Network Benchmark. Besides creating the concept
assertions for banks and shops, we extract the road network of the cities using
the external function generateStreetGraph and encode the different roads into
a single road graph. The road graph is represented by nodes which are asserted
to the concept Point and by edges which are asserted to the role connected.
By increasing the distances (e.g., from 50 m to 100 m) we saturate the next
relation and generate more instances. Further, we use Datalog rules to calculate
all paths (i.e., the transitive closure) of the street graph. The ABox statistics
is shown in Tables 2 and 3; the cities are of increasing size, starting with Cork
(25 000 objects) and ending with Berlin (885 000 objects).

7 Related Work

In addition to the “de facto” standard benchmark LUBM [10] and extended
LUBM [16] with randomly generated instance data with a fixed ontology, sev-
eral other works deal with testing OQA systems. They can be divided along
conceptional reasoning, query generation, mere datasets, synthetic and real-life
instance generation. The benchmarks provided by [18] consist of a set of ontolo-
gies and handcrafted queries, tailored for testing query rewriting techniques.
These benchmarks are a popular choice for comparing the sizes of generated
queries. In [20], the authors have provided tools to generate ABoxes for estimat-
ing the incompleteness of a given OQA system. In a similar spirit is [11], which
provides tools to automatically generate conjunctive queries for testing correct-
ness of OQA systems. The same authors also provide a collection of benchmarks
for evaluating query rewriting systems [17], but they did not offer any novel
generation tool. The work of [15] for OBDA is designed based on real data from
the Norwegian Petroleum Directorate FactPages. However, it is focused solely on
a fixed DL-LiteR ontology and queries. None of the above benchmarks provide
large amounts of real-life instance data and an extended framework including
various parameters and external functions. Furthermore, most of the mentioned
approaches do not consider an iterative generation process using statistics to
guide the generation. In the area of Spatial Semantic Web systems, a couple of
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benchmarks have been proposed to test geospatial extensions of SPARQL includ-
ing the spatial extension of LUBM in [12] and the Geographica benchmark [8].
They are pre-computed and Queries geared towards testing spatial reasoning
capabilities of systems, but not designed with OQA in mind.

8 Conclusion and Outlook

We have presented a flexible framework for generating instance data from a
geospatial database for OQA systems. In particular, we have introduced a for-
malization of OSM and a Datalog-based mapping language as the formal under-
pinning of the framework. Datalog offers powerful features such as recursion and
negation for benchmark generation. We have implemented an instance generation
tool supporting the main Datalog mode and a simple Direct (extract-transform-
load) mode for several types of input sources. Finally, we have demonstrated our
approach on a proof-of-concept benchmark.

Future research is naturally directed to variants and extensions of the pre-
sented framework. We aim to extend the implementation to capture more
input and output sources, further parameters (e.g. various degrees of graph
connectedness) and services. Furthermore, a tighter integration of the Data-
log solver/engine and the source/target components using dlvhex10 is desired,
which leads to a more efficient evaluation and more advanced capabilities (e.g.,
creating different ABoxes using all calculated answer sets). Another issue is to
apply our framework to generate benchmarks for an extensive study of differ-
ent OQA reasoners with different underlying technologies. Finally, the instance
assertion statistics could be extended to the full subsumption graph.
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14. Kontchakov, R., Rezk, M., Rodŕıguez-Muro, M., Xiao, G., Zakharyaschev, M.:
Answering SPARQL queries over databases under OWL 2 QL entailment regime.
In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić,
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Abstract. Advances in the Internet of Things and the Web of Data
created huge opportunities for developing applications that can gener-
ate actionable knowledge out of streaming data. The trade-off between
scalability and expressivity is a key challenge in this setting, and more
investigation is required to identify what are the relevant features in
optimizing this trade-off, and what role do they have in the optimiza-
tion. In this paper we motivate the need for heuristics to design adaptive
solutions and, following an empirical approach, we highlight some key
concepts and ideas that can guide the design of heuristics for adaptive
optimization of Web Stream Reasoning.

Keywords: Stream reasoning · Logic programming · Semantic Web

1 Introduction and Background

Web Stream Reasoning has emerged as a research field that explores advances
in Semantic Web technologies for representing and processing data streams on
one hand, and emerging approaches to perform complex rule-based inference
over dynamic and changing environments on the other hand. Advances in the
Internet and Sensor technologies converging to the Internet of Things (IoT) have
also contributed to the creation of a plethora of new applications that require
to process and make sense of web data streams in a scalable way.

In the Semantic Web and Linked Data realm, technologies such as RDF,
OWL, SPARQL have been recently extended to provide mechanisms for process-
ing semantic data streams [1–3]. However a variety of real-world applications in
the IoT space require reasoning capabilities that can handle incomplete, diverse
and unreliable input and extract actionable knowledge from it. Non-monotonic
stream reasoning techniques for the (Semantic) Web have potential impact on
tackling them.

Semantic technologies for handling data streams can not exhibit complex rea-
soning capabilities such as the ability of managing defaults, common-sense, pref-
erences, recursion, and non-determinism. Conversely, logic-based non-monotonic
c© Springer International Publishing Switzerland 2015
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reasoners can perform such tasks but are suitable for data that changes in low
volumes at low frequency.

To reach the goal of combining the advantages of these two approaches in the
last years a few works have been proposed; some tried to develop extensions of
ASP [4] in order to deal with dynamic data [5–7], others tried to combine seman-
tic stream query processing and non-monotonic reasoning [8,9]. The StreamRule
framework [9] is an example which provides a baseline for exploring the applica-
bility of complex reasoning on Semantic Web Streams.

The conceptual idea behind StreamRule is to process data streams at dif-
ferent levels of abstraction and granularity, in such a way to guarantee that
the amount of relevant data is filtered (and therefore reduced in size) as the
complexity of the reasoning increases.1 This has in principle a high potential in
making complex reasoning on semantic streams feasible and scalable. However,
the one-directional processing pipeline in StreamRule from query evaluation to
non-monotonic reasoning is a strong limitation in exploring the expressivity vs.
scalability trade-off: the dynamic nature of web streams and their changing rate,
quality and relevance makes it impossible to specify at design time what is the
correct throughput and reasoning complexity the system can support and what
window size and time-decay model is most suitable.

The main goal of this paper is to provide a preliminary analysis on how we
can improve the scalability of expressive stream reasoning for the Semantic Web
combining continuous query processing and Answer Set Programming (ASP).
We rely on the StreamRule [9] system as an instance of such an approach for
implementation and testing, and we aim at providing general insights that holds
for any ASP-based stream reasoning system.

The main idea we present in this paper relies on concepts that can help
make the StreamRule processing pipeline bi-directional or adaptive, so that the
expressivity vs. scalability trade-off can be optimized in changing environments.

We start our investigation by identifying in Sect. 2 which the key features can
potentially affect the expressivity vs. scalability trade-off in a 2-tier web stream
reasoning system like StreamRule. The correlation between such features and
their impact on scalability are empirically evaluated in Sect. 3 by our practical
analysis of performance and correlation between streaming rate, window size,
properties of the input streams and complexity of the reasoning. Some hints for
discussion are presented based on our empirical results.

2 Core Concepts for Analysis

The key contribution of this position paper is to report on initial investigation on
how to perform complex reasoning on web data streams maintaining scalability.
We refer to scalability as to the ability to provide answers in an acceptable time
with increasing input size and when the reasoning gets computationally intensive.
1 Note that in ASP, the expressivity of the language is strictly related to the computa-

tional complexity, therefore we refer to expressivity and (computational) complexity
interchangeably throughout the paper.
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We will introduce some key concepts that can later guide the design of heuristics
for systems like StreamRule (which we will consider as a reference model in the
remainder of this paper), where query processing and non-monotonic reasoning
features are adapted to continuously improve the expressivity versus scalability
trade-off in changing environments. The conceptual architecture of StreamRule
is based on a 2-tier approach to web stream reasoning where query processing
(first tier) is used to filter semantic data elements, while non-monotonic reasoning
(second tier) is used for computationally intensive tasks as shown in Fig. 1.

Fig. 1. 2-tier approach

We define the following concepts and notation:

Unit of Time (U). The unit of time is the time interval to which collected
inputs are sent to the system (we will assume this as fixed in our analysis).

Reasoning complexity (C). We refer to the reasoning complexity as the com-
putational complexity required to perform a given reasoning task involving a
set of ASP rules. As mentioned earlier in this paper, the computational com-
plexity is strictly related to the language expressivity in ASP; in fact, more
expressive language constructs in ASP correspond to higher computational
complexity. The type of rules used within the ASP program affects ground-
ing (which also affects memory consumption) and solving (which is related
to computational complexity), and therefore has an impact on scalability.
For simplicity we assume in our analysis that the reasoning complexity is
fixed (based on the rules in the program). However, this aspect deserves a
more formal characterization to be able to used the reasoning complexity
as a feature to design adaptive heuristics for optimization, and we plan to
investigate this in future work.

Streaming size (S). The streaming size is the number of input elements sent
to the reasoning component every Unit of Time.

Window size (W ). The (tuple based) window size2 is the size of the input the
reasoning component processes per computation.

Reasoning time (Rt). The reasoning time is considered as the time needed by
the nonmonotonic reasoner (second tier only) to compute a solution.3

2 In this paper we only consider non-overlapping windows. For overlapping windows,
the formula Tω(S,W ) should hold also when duplicating events in overlapping parts.

3 Note that this is different from the total processing time, which includes the time
required for query processing (first tier). In this paper, we mainly focus on the
reasoning time only, relying on the extensive evaluation of query processing engines
for the query processing time [1].
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T (N) is the time needed by the reasoner to process N input elements.
Tω(S,W ) is the time needed by the reasoner to process a streaming size S

dividing (and processing) it into windows of size W . The number of win-
dows (and therefore the number of computations needed) is � S

W �. Formally
Tω(S,W ) = � S

W � × T (W ).
Su is the number of elements that can be processed by the reasoner in one unit

of time.4 Formally Su = N s.t. T (N) = 1.
Sl is the maximum number of elements that can be processed within one unit

of time using a proper windows size W .

The question summarizing our problem is as follows: Given a fixed streaming
size S with fixed complexity C and unit of time U , find a window size W such
that

Tω(S,W ) ≤ U (Q1)

Finding this window size and being able to adapt it to changing streaming
rates would reduce the bottleneck between the two tiers, since it will ensure that
the nonmonotonic reasoner can keep up with the results produced by the query
processing engine without the cumulative delay experienced in StreamRule. Pre-
vious experiments in [9] showed that the current implementation of StreamRule
with CQELS [1] as query processor and Clingo [5] as ASP reasoner encounters a
bottleneck when the non-monotonic reasoner returns results after the next input
arrives from the stream query processing component, thus cumulating a delay
that makes the system not scalable. Making the process bi-directional requires
to dynamically provide answers to Q1.

We can observe that if T (N) is monotonically increasing, we have that

∀S′ where Su ≤ S′ ≤ Sl, ∃W ′ s.t. Tω(S′,W ′) ≤ U

This is our case, as illustrated in our empirical evaluation.

3 Experiments and Discussion

In this section, we are presenting the scenario, dataset, ruleset, and platform
we used for the empirical evaluation of our trade-off analysis and discuss our
findings.

Scenario. Consider a user moving on a path. She wants to know real-time
events that affect her travel plan to react accordingly. The stream reasoning
system receives events as Linked Data Streams that indicate changes in the real
world (such as accidents, road traffic, flooding, road diversions and so on) and
updates on the user’s current status (such as user’s location and activity).

4 Note that this is different from the streaming size.
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With this information as input stream, the Web Stream Reasoning system
is in charge of (i) selecting among the list of events, which are the ones that
are really relevant according to the user’s context, and (ii) continuously ranking
their level of criticality with respect to the user task and context5, in order to
decide whether a new path needs to be computed.

The query processing component filters out events which are unrelated to
the user, e.g. events are not on the user’s path, thus limiting the input size for
the nonmonotonic reasoner. The reasoner receives as input filtered events and
an instance of the context ontology related to the activities and status of the
user, provides ranked critical events as output. The event includes 4 attributes:
type, value, time, and location. For example:

event(weather, strong-wind, 2014-11-26T13:00:00, 38011736-121867224)

describes the condition of weather being strong wind at a certain time and a
given location.

Dataset. For our experiment, we generate traffic events based on 10 types
of events such as: roadwork, obstructions, incident, sporting events, disasters,
weather, traffic conditions, device status, visibility air quality, incident response
status. Each type of events has more than 2 values, e.g. traffic condition has
values: good, slow, congested. In addition to that we create a small instance of
the context ontology which describes the effect of events on certain activities.

Ruleset. The ASP rule set we used for this experiment includes 10 rules which
have 2 negated atoms (using negation-as-failure). Since the complexity of the
reasoning is fixed and related to a specific program in our setup, we do not
quantify the complexity in this initial investigation.

Platform. We used the state-of-the-art ASP reasoner Clingo 4.3.0 and Java 1.7.
The experiment were conducted over a machine running Debian GNU/Linux
6.0.10, containing 8-cores of 2.13 GHz processor and 64 GB RAM.

Empirical Results. We evaluated the same ASP program with varying input
size S (from 100 to 30000 events) and measured the reasoning time of the system
(T (S)). We trigger the reasoner 20 times for each S and then we computed the
interquartile mean (IQM) to smooth results. These values are plotted in Fig. 2.

Given U = 1 s, the graph shows Su = 17520 events. In other words, for this
particular case (and fixed Ruleset and Platform), the stream reasoning system
will be “stable” if the streaming size of the ASP reasoner is smaller than 17520
events. For streaming size bigger than 17520 events, the system will cumulate a
delay that will cause a bottleneck. Giving our function is monotonically increas-
ing, there are some streaming sizes bigger than Su that can be processed in less

5 In the current implementation we evaluate criticality mainly based on how close an
event is to the user location, and how fast is the user moving. In future work we
plan to extend this contextual characterization to consider not only location but also
other features such as the user transportation type, user’s health condition etc.



110 S. Germano et al.

Fig. 2. Reasoning time

than 1 U . We then investigated the idea of dividing events in windows, assuming
we can find a split such that the correctness of the result won’t be affected6.

The easiest way to perform this split is to consider several windows of the
same size. For example, consider S = 20000 events, it will take 1232ms for the
reasoner process all 20000 events in one computation (T (20000) = 1232ms). The
whole system will combine a delay in each computation and therefore will crash
at some point. However, if we use the window size W = 5000 events (T (5000) =
216ms), the reasoner will take Tω(20000, 5000) = � 20000

5000 � × T (5000) = 4 ×
216ms = 864ms for processing S, using 4 computations. So we have found a
proper window size (W ) such that Tω(S,W ) ≤ U ; in other words we have found
a split for which the system remain stable.

Moreover, if we divide S into windows of size W = 2000 events, the reasoning
time for S will be Tω(20000, 2000) = 720ms, so also in this case Tω is less than
or equal to 1 U . Therefore, in general, there could be more than one way to split
the events.

For any given S, a proper value7 for W such that Tω(S,W ) ≤ U can be found
in a trivial way just checking for each streaming size (S′) less than Su the time
required (T (S′)) and verifying that Tω(S, S′) = � S

S′ �×T (S′) ≤ U ; when we find
such S′, we can put W = S′.

Running this algorithm increasing S up to the point where we cannot find
any streaming size S′ less than Su such that Tω(S, S′) ≤ U , we can compute
the value of Sl. Based on this we found that for this experiment the value of Sl

is 23350 events. It means that the system can scale if the streaming size is less
than or equal to 23350 events.

6 Algorithms to perform such splits are under investigation and will be the subject of
future work.

7 Note that our goal is not to find the minimum, we just want to find one split.
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We can also apply these algorithms to the trend line function that fit the data
in order to have a more precise result. In our experiment we found an Order 2
polynomial trend line which fit very well our data with an R-squared value of
0.99979 and we have used this to find the values of Su and Sl.

Discussion and Conclusions. Based on our experiments, we observe that:

– Given a unit of time and a particular ASP program, we can find an optimal
window size for a given streaming size for reducing the processing time of the
system.

– This conclusion holds if there is no dependency between input events for the
reasoning component8.

We are currently investigating how to generalize our empirical results to
set the basis for designing adaptive heuristics for Web Stream Reasoning. An
improvement to this approach, for some scenarios, is to find the value of W that
minimize Tω(S,W ). A key aspect we are also considering is to provide a formal
characterization that helps relaxing the assumption of independence between
input events, in order to determine how to find an optimal number of window for
a given streaming rate and a given ASP program. Since we started our empirical
evaluation based on a given ASP program, another interesting directions will
be to investigate more in-depth how the complexity of the reasoning affects our
analysis.
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Abstract. Event-Condition-Action languages are the commonly
accepted paradigm to express and model the behavior of reactive sys-
tems. While numerous Event-Condition-Action languages have been pro-
posed in the literature, differing e.g. on the expressivity of the language
and on its operational behavior, existing Event-Condition-Action lan-
guages do not generally support the action component to be formulated
as a transaction. In this paper, sustaining that it is important to exe-
cute transactions in reactive languages, we propose an Event-Condition-
Transaction language, based on an extension of Transaction Logic. This
extension, called Transaction Logic with Events (T Rev), combines rea-
soning about the execution of transactions with the ability to detect
complex events. An important characteristic of T Rev is that it takes a
choice function as a parameter of the theory, leaving open the behav-
ioral decisions of the logic, and thereby allowing it to be suitable for a
wide-spectrum of application scenarios like Semantic Web, multi-agent
systems, databases, etc. We start by showing how T Rev can be used as an
Event-Condition-Action language where actions are considered as trans-
actions, and how to differently instantiate this choice function to achieve
different operational behaviors. Then, based on a particular operational
instantiation of the logic, we present a procedure that is sound and com-
plete w.r.t. the semantics and that is able to execute T Rev programs.

1 Introduction and Motivation

Most of today’s applications are highly dynamic, as they produce, or depend on
data that is rapidly changing and evolving over time. This is especially the case
of Web-based applications, which normally have to deal with large volumes of
data, with new information being added and updated constantly. In fact, with
the amount of online data increasing exponentially every year, it is estimated
that the annual IP traffic will reach the zettabyte threshold in 20151.

This sheer amount of information forced us to dramatically change the way
we store, access, and reason with data on the web, and led to the development
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of several research areas. Among them, the Semantic Web, which started about
15 years ago, aims to enrich the Web with machine-understandable information
by promoting a collaborative movement where users publish data in one of the
standard formats, RDF or OWL, designed to give a precise semantic mean-
ing to web data. On the other hand, research areas like Event Processing (EP)
and Stream Reasoning deal with the problem of handling and processing a high
volume of events (also called a stream), and reason with them to detect mean-
ingful event patterns (also known as complex events). Although EP started in
the 1990 s within the database community, today we can find a number of EP
solutions based on Semantic Web technologies like RDF, SPARQL and OWL
[3,17,20]. These EP solutions deal with the challenge of detecting event pat-
terns on a stream of atomic events. But detecting these patterns is only part of
what one has to do to deal with the dynamics of data. In fact, detecting event
patterns is only meaningful if we can act upon the knowledge of their occurrence.

Event-Condition-Action (ECA) languages solve this by explicitly defining
what should be the reaction of a system, when a given event pattern is detected.
For that, ECA-rules have the standard form: on event if condition do action,
where whenever an event is known to be true, the condition is checked to hold
in the current state and, if that is the case, the action is executed. Initially
introduced to support reactivity in database systems, numerous ECA languages
have been proposed e.g. in the context of the Semantic Web [6,10,19], multi-
agent systems [12,15,18], conflict resolution [11]. Moreover, although all these
languages share the same reactive paradigm, they often vary on the expressivity
of the language and the connectives available, but also on their operational
behavior, namely on the event consumption details, and on the response policy
and scheduling. While ECA languages started in the database context, and many
solutions exist supporting rich languages for defining complex actions, most ECA
languages do not allow the action component to be defined as a transaction, or
when they do, they either lack from a declarative semantics (e.g. [19]), or can only
be applied in a database context since they only detect atomic events defined as
primitive insertions/deletes on the database (e.g. [16,24]).

Originally proposed to make database operations reliable, transactions ensure
several properties, like consistency or atomicity, over the execution of a set of
actions. We sustain that in several situations ECA languages are indeed required
to execute transactions in response to events, where either the whole transaction
is executed or, if anything fails meanwhile, nothing is changed in the knowledge
base (KB). As an application scenario, consider the case where the local gov-
ernment wants to control the city’s air quality by restricting vehicles more than
15 years old to enter certain city areas. For that, the city needs to identify the
plates of the cars crossing these areas, and issue fines for the unauthorized vehi-
cles. In this case, whenever a vehicle enters the controled area (the event), we
need to check if that vehicle has access to the area (the condition), and if not,
issue a fine and notify the driver for the infraction. Clearly, some transactional
properties regarding these actions must be ensured, as it can never be the case
that a fine is issued and the driver is not notified, or vice-versa.
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Transaction Logic (T R) is a general logic proposed in [8] to deal with trans-
actions, by allowing us to reason about their behaviors but also to execute them.
For that, T R provides a general model theory that is parametric on a pair of
oracles defining the semantics of states and updates of the KB (e.g. relational
databases, action languages, description logics). With it, one can reason about
the sequence of states (denoted as paths) where a transaction is executed, inde-
pendently of the semantics of states and primitive actions of the KB. Addition-
ally, T R also provides a proof-theory to execute a subclass of T R programs that
can be formulated as Horn-like clauses. However, T R cannot simultaneously deal
with complex events and transactions, and for that we have previously proposed
T Rev in [14]. T Rev is an extension of T R that, like the original T R, can reason
about the execution of transactions, but also allows for the definition of complex
events by combining atomic (or other complex) events. In T Rev, atomic events
can either be external events, which are signalled to the KB, or the execution
of primitive updates in the KB (similarly e.g. to the events “on insert” in data-
bases). Moreover, as in active databases, transactions in T Rev are constrained
by the events that occur during their execution, as a transaction can only suc-
cessfully commit when all events triggered during its execution are addressed.
Importantly, T Rev is parameterized with a pair of oracles as in the original T R,
but also with a choice function abstracting the semantics of a reactive language
from its response policies decisions. T Rev is a first step to achieve a reactive lan-
guage that combines the detection of events with the execution of transactions.
However, it leaves open how the ECA paradigm can be encoded and achieved in
T Rev, but also, how can one execute such reactive ECA rules.

In this paper we show how one can indeed use T Rev as the basis for an Event-
Condition-Transaction language, illustrating how different response policies can
be achieved by correctly instantiating the choice functions. Then, to make the
logic useful in practice, we provide a proof procedure sound and complete with
the semantics, for a Horn-like subset of the logic, and for a particular choice
function instantiation.

2 Background: T Rev

Transaction Logic [8], T R, is a logic to execute and reason about general changes
in KB, when these changes need to follow a transactional behavior. In a nutshell2,
The T R syntax extends that of first order logic with the operators ⊗ and ♦,
where φ ⊗ ψ denotes the action composed by an execution of φ followed by an
execution of ψ, and ♦φ denotes the hypothetical execution of φ, i.e. a test to
see whether φ can be executed but leaving the current state unchanged. Then,
φ ∧ ψ denotes the simultaneous execution of φ and ψ; φ ∧ ψ the execution of φ
or ψ; and ¬φ an execution where φ is not executed.

In T R all formulas are read as transactions which are evaluated over sequences
of KB states known as paths, and satisfaction of formulas means execution.
2 For lack of space, and since T Rev is an extension of T R (cf. [14]) we do not make

a thorough overview of T R here. For complete details see e.g. [8,14].
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I.e., a formula (or transaction) φ is true over a path π iff the transaction success-
fully executes over that sequence of states. T R makes no particular assumption
on the representation of states, or on how states change. For that, T R requires
the existence of two oracles: the data oracle Od abstracting the representation
of KB states and used to query them, and the transition oracle Ot abstracting
the way states change. For example, a KB made of a relational database [8] can
be modeled by having states represented as sets of ground atomic formulas, where
the data oracle simply returns all these formulas, i.e., Od(D) = D. Moreover, for
each predicate p in the KB, the transition oracle defines p.ins and p.del, repre-
senting the insertion and deletion of p, respectively (where p.ins ∈ Ot(D1,D2)
iff D2 = D1 ∪ {p} and, p.del ∈ Ot(D1,D2) iff D2 = D1\{p}). We will use this
relational database oracle definition in our example (Example 1).

The logic provides the concept of a model of a T R theory, which allows one
to prove properties of transactions that hold for every possible path of execution;
and the notion of executional entailment, in which a transaction φ is entailed by
a theory given an initial state D0 and a program P (denoted as P,D0− |= φ), if
there is a path D0,D1 . . . , Dn starting in D0 on which the transaction, as a whole,
succeeds. Given a transaction and an initial state, the executional entailment
provides a means to determine what should be the evolution of states of the KB,
to succeed the transaction in an atomic way. Non-deterministic transactions
are possible, and in this case several successful paths exist. Finally, a proof
procedure and corresponding implementation exist for a special class of T R
theories, called serial-Horn programs, which extend definite logic programs with
serial conjunction.

T Rev extends T R in that, besides dealing with the execution of transaction,
it is also able to raise and detect complex events. For that, T Rev separates the
evaluation of events from the evaluation of transactions. This is reflected in its
syntax, and on the two different satisfaction relations – the event satisfaction
|=ev and the transaction satisfaction |=. The alphabet of T Rev contains an
infinite number of constants C, function symbols F , variables V and predicate
symbols P. Furthermore, predicates in T Rev are partitioned into transaction
names (Pt), event names (Pe), and oracle primitives (PO). Finally, formulas are
also partitioned into transaction formulas and event formulas.

Event formulas are formulas meant to be detected and are either an event
occurrence, or an expression defined inductively as ¬φ, φ ∧ ψ, φ ∨ ψ, or φ ⊗ ψ,
where φ and ψ are event formulas. We further assume φ;ψ, which is syntactic
sugar for φ ⊗ path ⊗ ψ (where path is just any tautology, cf. [9]), with the
meaning: “φ and then ψ, but where arbitrary events may be true between φ and
ψ”. An event occurrence is of the form o(ϕ) s.t. ϕ ∈ Pe or ϕ ∈ PO (the latter
are events signaling changes in the KB, needed to allow reactive rules similar to
e.g. “on insert” triggers in databases).

Transaction formulas are formulas that can be executed, and are either a
transaction atom, or an expression defined inductively as ¬φ, ♦φ, φ∧ψ, φ∨ψ, or
φ⊗ψ. A transaction atom is either a transaction name (in Pt), an oracle defined
primitive (in PO), the response to an event (written r(ϕ) where ϕ ∈ PO ∪Pe), or
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an event name (in Pe). The latter corresponds to the (trans)action of explicitly
triggering/raising an event directly in a transaction. Finally, rules have the form
ϕ ← ψ and can be transaction or (complex) event rules. In a transaction rule
ϕ is a transaction atom and ψ a transaction formula; in an event rule ϕ is an
event occurrence and ψ is an event formula. A program is a set of transaction
and event rules.

Example 1. Consider the example from the introduction, and a relational KB
with information about license plates registration, drivers addresses, and fines.
The transaction of processing an unauthorized access of a vehicle V, at a given
time T, and city area A (written processUnAccess(V, T, A)) can be defined in
T Rev (and in T R) as:3

processUnAccess(V, T, A) ←
fineCost(A, Cost) ⊗ unAccess(V, T, A, Cost).ins ⊗ notifyFine(V, T, A, Cost)

notifyFine(V, T, A, Cost) ←
isDriver(D, V) ⊗ hasAddress(D, Addr) ⊗ sendLetter(D, A, V, T, A, Cost)

One can also define complex events. E.g., a vehicle is said to enter the city from
a given entrance E1, if it is detected by the two sensors of that entrance, first by
sensor 1 and then by sensor 2, with a time difference less than 0.5s:

o(enterCityE1(V, T2)) ←
((o(sensor1E1(V, T1).ins);o(sensor2E2(V, T2).ins)) ∧ T2 − T1 < 0.5)

For simplicity, in this example we assume that sensors’ data is directly inserted
in the application’s database, where the semantics of .ins is as defined by the
relational oracle above. However, other paradigms can be used to represent and
reason about sensor’s data. Namely, and given some recent works in the field of
Sensor Networks [21,22], we could have alternatively assumed a Semantic Sensor
Network to publish data in RDF, and have defined the oracle Od to query this
data using SPARQL. This would allow us to use Od to integrate RDF data with
the government’s database.

Central to the theory of T Rev is the correspondence between o(ϕ) and r(ϕ).
As a transactional system, the occurrence of an event constrains the satisfac-
tion path of the transaction where the event occurs, and a transaction can only
“commit” if all the occurring events are answered. More precisely, a transaction
is only satisfied on a path, if all the events occurring over that path are properly
responded to. This behavior is achieved by evaluating event occurrences and
transactions differently, and by imposing r(ϕ) to be true in the paths where
o(ϕ) holds. For dealing with cases where more than one occurrence holds simul-
taneously, T Rev takes as parameter, besides T R’s data and transition oracles,
a choice function selecting what event should be responded at a given time, in
case of conflict. This function abstracts the operational decisions from the logic,
and allows T Rev to be useful for a wide spectrum of applications.
3 Without loss of generality (cf. [9]), we consider Herbrand instantiations of the lan-

guage.
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As in T R, formulas of T Rev are evaluated over paths (sequence of states),
and the theory allows us to reason about how does the KB evolve in a trans-
actional way, based on an initial KB state. In addition, a path in T Rev is of
the form D0

O1→ . . . On→ Dn, and where each Oi is a primitive event occur-
rence that holds in the state transition Di−1,Di. As a reactive system, T Rev

receives a series (or a stream) of external events which may cause the execution
of transactions in response.

This is defined as P,D0− |= e1 ⊗ . . . ⊗ ek, where D0 is the initial KB state
and e1 ⊗ . . . ⊗ ek is the sequence of external events that arrived. Then, we want
to know what is the path D0

O1→ . . . On→ Dn encoding a KB evolution that
responds to e1 ⊗ . . . ⊗ ek.

As usual, satisfaction of formulas is based on interpretations which define
what atoms are true over what paths, by mapping every possible path to a set
of atoms. If a transaction (resp. event) atom φ belongs to M(π) then φ is said
to execute (resp. occur) over path π given interpretation M . However, only the
mappings compliant with the specified oracles are considered as interpretations:

Definition 1 (Interpretation). An interpretation is a mapping M assigning
a set of atoms (or 	4) to paths, with the restrictions (where Dis are states, and
ϕ an atom):

1. ϕ ∈ M(〈D〉) if ϕ ∈ Od(D)
2. {ϕ,o(ϕ)} ⊆ M(〈D1

o(ϕ)→D2〉) if ϕ ∈ Ot(D1, D2)
3. o(e) ∈ M(〈D o(e)→D〉)

Satisfaction of formulas requires the definition of operations on paths. E.g., φ⊗ψ
is true on a path if φ is true up to some point in the path, and ψ is true from
that onwards.

Definition 2 (Path Splits, Subpaths and Prefixes). Let π be a k-path,
i.e. a path of length k of the form 〈D1

O1→ . . . Ok−1→ Dk〉. A split of π is any
pair of subpaths, π1 and π2, s.t. π1 = 〈D1

O1→ . . . Oi−1→ Di〉 and π2 = 〈Di
Oi→ . . . Ok−1→Dk〉 for some i (1 ≤ i ≤ k). In this case, we write π = π1 ◦ π2.
A subpath π′ of π is any subset of states of π where both the order of the states
and their annotations is preserved. A prefix π1 of π is any subpath of π sharing
the initial state.

Satisfaction of complex formulas is different for event formulas and transac-
tion formulas. While the satisfaction of event formulas concerns the detection
of an event, the satisfaction of transaction formulas concerns the execution of
actions in a transactional way. As such, when compared to the original T R,
transactions in T Rev are further required to execute all the responses of the
events occurring in the original execution path of that transaction. In other
words, a transaction ϕ is satisfied over a path π, if ϕ is executed on a prefix
π1 of π (where π = π1 ◦ π2), and all events occurring over π1 are responded
4 For not having to consider partial mappings, besides formulas, interpretations can

also return the special symbol 
. The interested reader is referred to [8] for details.
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over π2. This requires a non-monotonic behavior of the satisfaction relation of
transaction formulas, making them dependent on the satisfaction of events.

Definition 3 (Satisfaction of Event Formulas). Let M be an interpreta-
tion, π a path and φ a formula. If M(π) = 	 then M,π |=ev φ; else:

1. Base Case: M, π |=ev φ iff φ ∈ M(π) for every event occurrence φ
2. Negation: M, π |=ev ¬φ iff it is not the case that M, π |=ev φ
3. Disjunction: M, π |=ev φ ∨ ψ iff M, π |=ev φ or M, π |=ev ψ.
4. Serial Conjunction: M, π |=ev φ⊗ψ iff there is a split π1◦π2 of π s.t. M, π1 |=ev φ

and M, π2 |=ev ψ
5. Executional Possibility: M, π |=ev ♦φ iff π is a 1-path of the form 〈D〉 for some

state D and M, π′ |=ev φ for some path π′ that begins at D.

Definition 4 (Satisfaction of Transaction Formulas). Let M be an inter-
pretation, π a path, φ transaction formula. If M(π) = 	 then M,π |= φ; else:

1. Base Case: M, π |= p iff there is a prefix π′ of π s.t. p ∈ M(π′) and π is an
expansion of path π′ w.r.t. M , for every transaction atom p s.t. p ∈ Pe.

2. Event Case: M, π |= e iff e ∈ Pe and there is a prefix π′ of π s.t. M, π′ |=ev o(e)
and π is an expansion of path π′ w.r.t. M .

3. Negation: M, π |= ¬φ iff it is not the case that M, π |= φ
4. Disjunction: M, π |= φ ∨ ψ iff M, π |= φ or M, π |= ψ.
5. Serial Conjunction: M, π |= φ ⊗ ψ iff there is a prefix π′ of π and a split π1 ◦ π2

of π′ s.t. M, π1 |= φ and M, π2 |= ψ and π is an expansion of path π′ w.r.t. M .
6. Executional Possibility: M, π |= ♦φ iff π is a 1-path of the form 〈D〉 for some

state D and M, π′ |= φ for some path π′ that begins at D.

The latter definition depends on the notion of expansion of a path. An expansion
of a path π1 w.r.t. to an interpretation M is an operation that returns a new
path π2 where all events occurring over π1 (and also over π2) are completely
answered. Formalizing this expansion requires the prior definition of what it
means to answer an event:

Definition 5 (Path response). For a path π1 and an interpretation M we
say that π is a response of π1 iff choice(M,π1) = e and we can split π into
π1 ◦ π2 s.t. M,π2 |= r(e).

The choice of what unanswered event should be picked at each moment is
given by an event function choice. This function has the role to decide what
events are unanswered over a path π w.r.t. an interpretation M and, based on a
given criteria, select what event among them should be responded to first. Just
like T R is parametric to a pair of oracles (Od and Ot), T Rev takes the choice
function as an additional parameter. For now, we leave the definition and role of
this function open until Sect. 3. Nevertheless, and importantly, if all events that
occur on a path π are answered on π w.r.t. M , then choice(M,π) = ε. We can
now define what is an expansion of a path.

Definition 6 (Expansion of a path). A path π is completely answered w.r.t.
to an interpretation M iff choice(M,π) = ε. π is an expansion of the path π1

w.r.t. M iff:
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– π is completely answered w.r.t. M , and
– either π = π1; or there is a sequence of paths π1, . . . , π, starting in π1 and

ending in π, s.t. each πi in the sequence is a response of πi−1 w.r.t. M .

The latter definition specifies how to expand a path π1 in order to obtain
another path π where all events satisfied over subpaths of π are also answered
within π. This must perforce have some procedural nature: it must start by
detecting which are the unanswered events; pick one of them, according to some
criteria given by a choice function, that for now is seen as a parameter; then
expand the path with the response of the chosen event. Each path πi of the
sequence π1, π2, . . . , π is a prefix of the path πi+1, and where at least one of the
events unanswered on πi is now answered on π′; otherwise, if all events occurring
over πi are answered, then πi = π, and the expansion is complete. We can now
define the notion of model of formulas and programs.

Definition 7 (Models and Minimal Models). An interpretation M is a
model of a transaction (resp. event) formula φ iff for every path π, M,π |= φ
(resp. M,π |=ev φ). M is a model of a program P (denoted M |= P ) iff it is a
model of every rule in P . We say that a model is minimal if it is a ⊆-minimal
model.

This notion of models can be used to reason about properties of transaction
and event formulas that hold for every possible path of execution. However, to
know if a formula succeeds on a particular path, we need only to consider the
event occurrences supported by that path, either because they appear as occur-
rences in the transition of states, or because they are a necessary consequence
of the program’s rules given that path. Because of this, executional entailment
in T Rev is defined w.r.t. minimal models.

Definition 8 (T Rev Executional Entailment). Let P be a program, φ a
transaction formula and D1

O0→ . . . On→Dn a path. Then P, (D1
O0→ . . . On→

Dn) |= φ (�) iff for every minimal model M of P , M, 〈D1
O0→ . . . On→Dn〉 |= φ.

P,D1− |= φ is said to be true, if there is a path D1
O0→ . . . On→Dn that makes

(�) true.

3 T Rev as an Event-Condition-Transaction and the
choice function

In the previous section, we provided the logical background for a reactive lan-
guage that can express and reason about both transactions and complex events.
Next we show how T Rev can indeed be used as an Event-Condition-Transaction
language, and how several ECA behaviors can be embedded in the semantics
by providing the right translation into T Rev, and the right instantiations of the
choice function.

As mentioned, an ECA language follows the basic paradigm on event if
condition do action, defining that, whenever the event is learned to occur, the
condition is tested, and, if it holds, the action is executed. As such, an ECA



A Procedure for an Event-Condition-Transaction Language 121

rule is said to be active whenever the event holds and, to satisfy it, either the
condition does not hold before the execution of the action, or the action is issued
for execution. Moreover, in an Event-Condition-Transaction language, this action
needs not only to be executed, but to be executed as a transaction. This means
that we need to guarantee that either the whole of the transaction is executed
or, if anything fails meanwhile, the KB is left unchanged.

Since T Rev forces every formula r(ev) to be true whenever o(ev) is learnt to
be true, this behavior can be simply encoded as:

r(ev) ← ♦cond ⊗ action
r(ev) ← ¬♦cond

(1)

where ♦cond is a test (and which necessarily does not cause changes in the KB)
to determine if the condition cond holds, and if this is the case, the action is
executed in the KB. Moreover, if one wants to define the event ev as a complex
event, then one should add a rule stating the event pattern definition: o(ev) ←
body.

Example 2. Recall the example in the introduction and the transaction defined in
Example 1 for processing unauthorized accesses.Then event-condition-transaction
rule triggering that transaction can be written as:

o(enterCity(V, T, e1)) ← o(enterCityE1(V, T))
r(enterCity(V, , A)) ← authorized(V, A)
r(enterCity(V, T, A)) ← unauthorized(V, A) ⊗ processUnAccess(V, T, A)

where, since authorized and unauthorized are queries to the KB (i.e., they cause
no change in the database), we can drop the ♦ constructor.

Moreover, the definition of an ECA language requires the specification of an
operational behaviors, which in turn, involves two majors decisions: 1) in which
order should events be responded when more than one event is detected simulta-
neously; and 2) how should an event be responded to. In order to make T Rev as
flexible as possible, its model theory was abstracted from these decisions, encap-
sulating them in a choice function. This function is required as a parameter of
the theory (similarly to the oracles Ot and Od) and precisely defines what is the
next event that still needs to be responded.

Definition 9 (choice function). Let M be an interpretation and π be a path.
Then:
choice(M,π) = firstUnans(M,π, order(M,π)).

Matching these two major decisions, our definition of the choice function is
partitioned in two functions: the order function specifying the sorting criteria of
events, and a firstUnans function which checks what events are unanswered and
returns the first one based on the previous order. The former decision defines
the handling order of events, i.e. given a set of occurring events, what should
be responded first. This ordering can be defined e.g. based on when they have
occurred (temporal order), on a priority list, or any other criteria. This decision
defines the response policy of an ECA-language, i.e. how should an event be
responded. We start by illustrating the order function:
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Example 3 (Ordering-Functions). Let 〈e1, . . . , en〉 be a sequence of events, π a
path, and M an interpretation.

Temporal Ending Order order(M, π) = 〈e1, . . . , en〉 iff ∀ei s.t. 1 ≤ i ≤ n then ∃πi

subpath of π where M, πi |=ev o(ei) and ∀ej s.t. i < j and then ej occurs after ei

w.r.t. π.
Temporal Starting Order order(M, π) = 〈e1, . . . , en〉 iff ∀ei s.t. 1 ≤ i ≤ n then

∃πi subpath of π where M, πi |=ev o(ei) and ∀ej s.t. i < j then ej starts before ei

w.r.t. π.
Priority List Order Let L be a priority list where events are linked with numbers

starting in 1, where 1 is the event with higher priority. orderL(M, π) = 〈e1, . . . , en〉
iff ∀ei ∃πi subpath of π s.t. M, πi |=ev o(ei) and ∀ej where 1 ≤ i < j ≤ n, πj is
subpath of π and M, πj |=ev o(ej) then L(ei) ≤ L(ej).

All these examples require the notion of event ordering, which can be defined
as:

Definition 10 (Ordering of Events). Let e1, e2 be events, π a path, and M
an interpretation. e2 occurs after e1 w.r.t. π and M iff ∃π1, π2 subpaths of π s.t.
π1 = 〈Di

Oi→ . . . Oj−1→Dj〉, π2 = 〈Dn
On→ . . . Om−1→Dm〉, M,π1 |=ev o(e1),

M,π2 |=ev o(e2) and Dj ≤ Dm w.r.t. the ordering in π. e1 starts before e2 w.r.t.
π if Di ≤ Dn

Choosing the appropriate event ordering obviously depends on the application
in mind. For instance, in system monitoring applications there may exist alarms
with higher priority over others that need to be addressed immediately, while
in a webstore context it may be more important to treat events in the temporal
orders in which they are detected.

It remains to be defined the response policy, i.e., what requisites should be
imposed w.r.t. the response executions. This is done by appropriately instanti-
ating the firstUnans function. Here we illustrate two alternative instantiations.
In the first, encoded in Relaxed Response, the function simply retrieves the first
event e such that its response is not satisfied in a path after the occurrence.
With it, if an event occurs more than once, it is sufficient to respond to it once.
Alternative definitions are possible, e.g. where responses are issued explicitly for
each event. This is encoded in the Explicit Response, where we verify whether
r(ei) is satisfied but always w.r.t. its correct order.

Example 4 (Answering Choices). Let π be a path, M an interpretation, and
〈e1, . . . , en〉 a sequence of events.

Relaxed Response firstUnans(M, π, 〈e1, . . . , en〉) = ei if ei is the first event in
〈e1, . . . , en〉 s.t. ∃π′ subpath of π where M, π′ |=ev o(e) and ¬∃π′′ s.t. π′′ is also a
subpath of π, π′′ is after π′ and M, π′′ |= r(e).

Explicit Response firstUnans(M, π, 〈e1, . . . , en〉) = ei if ei is the first event in
〈e1, . . . , en〉 s.t. ∃π′ subpath of π where M, π′ |=ev o(e) and if ∃π′′ subpath of
π that is after π′ where M, π′′ |= r(ei) then ∃π1, π2 subpaths of π and π2 is after
π1 where M, π1 |=ev o(ej), M, π2 |= r(ej), j < i and π′′ starts before the ending
of π2
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4 Procedure for Serial-T Rev

To make T Rev useful in practice, we propose a proof procedure for executing
Event-Condition-Transaction rules that is sound and complete w.r.t. T Rev’s
executional entailment. Given a T Rev program and a KB state, the procedure
takes a stream of events that are known to occur, and finds a KB evolution
where all the (possibly complex) events resulting from the direct and indirect
occurrence of this stream, are responded to as a transaction. More precisely, the
procedure finds solutions for statements of the form P,D0− |= e1 ⊗ . . . ⊗ ek, by
finding paths (which encode a KB evolution) where the formula P,D0

O0→ . . .
On−1→Dn |= e1 ⊗ . . .⊗ ek holds. Regarding the (procedural) choices discussed in
the previous section, this procedures fixes an event ordering based on a priority
list, and assumes Explicit Response (cf. Example 4).

The procedure is partitioned into two major parts: the execution of actions
(based on a top-down computation), and the detection of event patterns (based
on a bottom-up computation). The detection of event patterns is inspired by the
ETALIS detection algorithm [4], where event rules are first pre-processed using
a binarization of events. In other words, event rules are first transformed so that
all their bodies have at most two atoms. If we have a body with more than
2 atoms, e.g. o(e) ← o(a) OP o(b) OP o(c) and if we assume a left-associative
operator, the binarization of this rule leads to replacing it by ie1 ← o(a) OP o(b)
and o(e) ← ie1 OP o(c), and where OP can be any binary T Rev operator. This
is done without loss of generality since:

Proposition 1 (Program equivalence). Let P1 and P2 be programs, π be a
path and φ a formula defined in both P1 and P2 alphabet. We say that P1 ≡ P2

if:

M1, π |= φ iff M2, π |= φ

where M1 (resp. M2) is the set of minimal models of P1 (resp. P2).
Let P be a program with rule: e ← e1 OP e2 OP e3 for any events e1-e3 and

operator OP, and let P ′ be obtained from P by removing that rule and adding
ie1 ← e1 OP e2 and e ← ie1 OP e3. Then P ≡ P ′.

Besides binarization, and as it is usual in EP systems, we restrict the use
of negation in the procedure. The problem with negation is that it is hard to
detect the non-presence of an event pattern in an unbounded interval. Due to
this, EP systems like [1,4] always define negation bounded to two other events
as in not(e3)[e1, e2]. This holds if e3 does not occur in the interval defined by the
occurrence of e1 and e2. This is captured in T Rev by: e1⊗¬(path⊗e3⊗path)⊗e2,
and we restrict negation to this pattern.

The execution of actions is based on T R proof-theory [8,13] which is only
defined for a subclass of programs where transactions can be expressed as serial-
Horn goals. As such, the execution of transactions in this procedure is defined
for this fragment, which resembles Horn-clauses of logic programming. A serial
goal is a transaction formula of the form a1 ⊗ a2 ⊗ . . . ⊗ an where each ai is an
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atom and n ≥ 0. When n = 0 we write () which denotes the empty goal. Finally,
a serial-Horn rule has the form b ← a1 ⊗ . . . ⊗ an, where the body a1 ⊗ . . . ⊗ an

is a serial goal and b is an atom.
The procedure starts with a program P , an initial state D, a serial goal

e1 ⊗ . . . ⊗ ek and iteratively manipulates resolvents. At each step, the proce-
dure non-deterministically applies a series of rules of Definition 11 to the current
resolvent until it either reaches the empty goal and succeeds, or no more rules
are applicable and the derivation fails. Moreover, if the procedure succeeds, it
also returns a path in which the goal succeeds. To cater for this last require-
ment, resolvents contain the path obtained so far. A resolvent is of the form
π,ESet �id

P ′ φ, where φ is the current transaction goal to be executed, π is
the path obtained by the procedure so far, ESet is the set of events that were
previously triggered and still need to be addressed, and id is an auxiliar state
count identifier (whose usage is made clear below). Finally, P ′ is the current
program, containing all the rules from the original program P plus temporary
event rules to help deal with the detection of event patterns. A successful deriva-
tion for P,D− |= e1 ⊗ . . . ⊗ ek starts with the resolvent 〈D〉, ∅ �1

P e1 ⊗ . . . ⊗ ek
and ends in the resolvent π, ∅ �id

P ′ (). If such a derivation exists, then we write
P, π � e1 ⊗ . . . ⊗ ek. Most derivation rules have a direct correspondence with
T R’s proof theory [8], but now incorporating the notion of path expansion and
event detection. Rule 1 replaces a transaction atom L by the Body of a program
rule whose head is L; rule 2 deals with a query to the oracle deleting it from
the set of goals whenever this query is true in the current state (i.e., the last
state of π); rule 3 executes actions according to the transition oracle definition
(i.e., if an action A can be executed in the last state D1 of path π, reaching the
state D2, then we add the path D1

o(A)→D2 to our current path, but also the
path expansion, cf. Definition 12, resulting from answering the events that have
directly or indirectly become true because of o(A)); finally, rule 4 deals with the
triggering of explicit events – if an event e is explicitly triggered and D1 is the
last state of the current path π, then we add the information that o(e) occurred
in state D1 to our path, and expand it with the KB evolution needed to answer
all events that are now true because of e’s occurrence.

Definition 11 (Execution). A derivation for a serial goal φ in a program P
and state D is a sequence of resolvents starting with 〈D〉, ∅ �1

P φ, and obtained
by non-deterministically applying the following rules.

Let π,ESet �id
P1

L1 ⊗ L2 ⊗ . . . ⊗ Lk be a resolvent. The next resolvent is:

1. Unfolding of Rule:
π, ESet �id

P1 Body ⊗ L2 ⊗ . . . ⊗ Lk if L1 ← Body ∈ P
2. Query:

π, ESet �id
P1 L2 ⊗ . . . ⊗ Lk if last(π) = D1 and Od(D1) |= L1

3. Update primitive:
π ◦ 〈D1

o(L1)→D2
O2→ . . . Oj−1→Dj〉, ESet′ �id′

P2 L2 ⊗ . . . ⊗ Lk if:
– last(π) = D1 and Ot(D1, D2) |= L1

– ExpandPath(P1, L1, π, ESet, id) = (P2, 〈D2
O2→ . . . Oj−1→Dj), ESet′, id′)

4. Explicit event request:
π ◦ 〈D1

o(L1)→D1
O1→ . . . Oj−1→Dj〉, ESet′ �id′

P2 L2 ⊗ . . . ⊗ Lk if:
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– last(π) = D1 and L1 ∈ Pe

– ExpandPath(P1, L1, π, ESet, id) = (P2, π ◦ 〈D1
O1→ . . . Oj−1→Dj), ESet′, id′)

An execution for φ in program P , and state D is successful if it ends in a
resolvent of the form π, ∅ �id′

P ′ (). In this case we write P, π � φ.

The ExpandPath function is called in the procedure above whenever an event
A (either an explicit event or a the execution of a primitive action) occurs, and
is responsible for expanding the current path with the responses of the events
made true. Moreover, given the event rules in the program, it may be the case
that other event occurrences become true, and these other events need also to
be responded by this function. The set of events that become true due to the
occurrence of A are computed by the Closure function (Definition 14), and the
process is iterated until there are no more unanswered events:

Definition 12 (Expand Path).
Input: program P , primitive A, path π, event set ESet, id
Output: program P ′, path π′, event set ESet’, id′

Define ESet′ := ESet ∪ {o(A){id, id + 1}}, π′ := π, id′ := id + 1, P ′ := P
while needResponse(ESet′, id, id′) = ∅ {

1. Let (ESettemp, Ptemp) = Closure(ESet′, P ′, id′)
2. Let o(e) = FirstInOrder(needResponse(ESettemp, id, id′))
3. Let D be the final state of π′, and consider a derivation starting in 〈D〉, ∅ �id′

Ptemp
r(e)

and ending in πf , ESetf �idf

Pf
(); if no such derivation exists return failure

4. Define π′ := π′ ◦πf , id′ := idf , P ′ := Pf , ESet′ := (ESettemp ∪ESetf ) \ {o(e)} }
If needResponse(ESet′, id, id′) = ∅ then the computation is said to be successful.

In this case return (P ′, π′, ESet′, id′); otherwise return failure.

The ESet′ variable in the latter definition contains, at each moment, the
set of events that have happened during the execution. Each event in this set
is associated to a pair {idi, idf} specifying the exact interval where the event
happened. One can then recast the path of occurrence based on these ids.
If e{idi, idf} ∈ ESet, and π = 〈D1

O1→ . . . Ok−1→Dk〉 is the current path, then
event e is said to occur in π<idi,idf>, where π<idi,idf> is the path obtained from
π by trimming it from state Didi

to state Didf
: 〈Didi

Oidi→ . . . Oidf−1→Didf
〉.

At each iteration ExpandPath collects all the events in ESet′ which need to
be responded to w.r.t. that iteration. I.e., the events whose occurrence holds on
a path starting after the initial state of the function call:

Definition 13 (needResponse(ESet, idi, idj)). Let id1, id2, idi be identifiers and
ESet a set of events of the form e{id1, id2}, where id1 and id2 define the starting
and ending of e, respectively. needResponse(ESet, idi, idj) is the subset of ESet
s.t. idi ≤ id1 ≤ id2 ≤ idj.

FirstInOrder function simply sorts the events w.r.t. the chosen order func-
tion, according to the semantics (cf. Example 3), and returns the first event in
that order.
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Finally, the Closure computation, crucial for this procedure, is responsible
for detecting event patterns. Given a pre-processed program where all event-
rules are binary, Closure matches events to bodies of event rules, produces new
temporary rules containing information about what events still need to occur
to trigger an event pattern, and returns a new set of (complex) events that are
true. During this procedure, the event component of the program is partitioned
between permanent rules and temporary rules. Permanent rules have the form
o(e) ← body and come from pre-processing the original program. They can never
expire and are always available for activation. Temporary rules have the form
o(e)OP id2←

id1
body and arise from partially satisfying a permanent rule. They are

valid only for some particular iterations (unless as we shall see, if their ids are
not open). Then, they are either deleted (in case they are expired without being
satisfied) or transformed (if they are partially satisfied). We say these rules are
expired if the difference between the current global id and the rule’s ending id is
greater than 1. Moreover, temporary rules also have the information about the
operation OP which defines the constraints needed to satisfy an event pattern.

Definition 14 (Closure).
Input: ESet, P

Output: ESet′, P ′

repeat {
Define ESet′ := ESet, P ′ := P

For each o(e){idi, idf} ∈ ESet:
}until ESet = ESet′

For each: rulej¬ id2∗←
id1

o(e) ∈ P ′ and o(e){idi, idf} ∈ ESet do:

P ′ := P ′ \ {rulej¬ id2∗←
id1

o(e), rulej}
Return ESet′, P ′
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Note that, the expression path is used to expand the interval where an event
pattern holds, and is instrumental to define complex event operators as shown
in [14]. E.g., o(e) ← o(a.ins) ⊗ path makes o(e) true in all paths D1

a.ins→D2

where o(a.ins) holds, but also in all paths obtained by expanding D1
a.ins→D2

to the right. Conversely, o(e) ← path ⊗ o(a.ins) makes o(e) true in all paths
obtained by expanding D1

a.ins→D2 to the left. To cope with this, the procedure
deals with the open ids: ∗id, id∗ and ∗, where ∗ states that the right or left interval
of an event pattern occurrence is unknown and ∗id (resp. id∗) states that the
starting (resp. ending) of an event is any point before (resp. after) or equal to
id. Since these ids can propagate to several events, we also say that ∀id. id = ∗,
id = ∗id1 if id ≤ ∗id1 and finally, id = id∗

1 if id ≥ id1.
Also, recall that the negation not(o(e3))[o(e1),o(e2)] can appear in the body

of an event pattern rule as syntactic sugar for o(e1) ⊗ ¬(path⊗ o(e3) ⊗ path) ⊗
o(e2). Such an event starts when o(e1){idi, idf} is added to ESet, and then

we add two rules to the program: h⊗ id∗
f←

idi

o(e2) and (h⊗ id∗
f←

idi

o(e2))¬
id∗

f←
idi

o(e3). The

former rule says that the not-event becomes true when o(e2) appears in the ESet.
The latter rule checks if o(e3) appears in the ESet (before o(e2)), and in that
case, the first temporary rule is removed, so that a later occurrence of e2 does
not make the not-event true. Importantly, the removal of temporary rules that
arise from such negation patterns is performed after the fixed point is achieved,
separating the monotonic construction of the ESet, from the non-monotonic
behavior of the rule ¬←.

Theorem 1 (Soundness and Completeness of the Procedure). Let P be
a program, π a path, and φ a transaction formula. P, π |= φ iff P, π � φ

5 Discussion and Final Remarks

Our work can be compared to solutions that deal with the detection of events,
and with the execution of (trans)actions. Event Processing (EP) systems,
e.g. [1,4,23], offer very expressive event algebras and corresponding procedures to
efficiently detect complex event patterns over large streams of events. As shown
in [14], T Rev can express most event patterns of SNOOP [1] algebra, failing
only to translate the expressions requiring the explicit specification of time. Our
procedure is inspired on the one from ETALIS [4] algebra, namely the idea of
rule binarization, and program transformation. ETALIS has some roots in T R,
sharing some of its syntax and connectives, and a similar translation result can
be achieved for this algebra (but omitted for lack of space). However ETALIS,
as all EP systems, does not deal with the execution of (trans)actions. As such,
one can see the procedure presented herein as an extension of ETALIS algo-
rithm with the ability to execute transactions in reaction to the events detected.
Moreover, EP-SPARQL [3] is an interesting stream reasoning solution, based
on ETALIS, that provides a means to integrate RDF data with event streams
for the Semantic Web. We believe that with the correct oracles instantiations, a
similar behavior could be achieved in T Rev, and leave this as a future direction.
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Several solutions based on action theories exist to model very expressively
the effects of transactions that react to events, as [5,7]. However, these are
based on active databases, and events are restricted to simple actions like “on
insert/delete”, thereby failing to encode complex events as defined in EP alge-
bras and T Rev. The work of [11] proposes a policy description language where
policies are formulated as sets of ECA rules, and conflicts between policies are
captured by logic programs. It ensures transaction-like actions if the user pro-
vides the correct specification for conflict rules. Yet, only a relaxed model of
transactions can be achieved and it requires a complete low-level specification
of the transaction conflicts by the user. In multi-agent systems, [12,15] propose
logic programming languages that react and execute actions in response to com-
plex events. Unfortunately, actions fail to follow any kind of transaction model.

Several ECA languages have been proposed in the literature like [2,10,11]
with very expressive event and action algebras. However, ECA languages
normally do not allow the action to be defined as a transaction, and when they
do, they lack from a declarative semantics as [19]; or they are based on active
databases and can only detect atomic events defined as insertions/deletes [16,24].
As shown in this paper, with the appropriate instantiations of the choice func-
tion, T Rev can be used as an ECA language where the action is guaranteed to
execute as a transaction, and offer different operational behaviors depending on
the application needs. Moreover, the procedure presented herein gives an impor-
tant contribution to implement such an Event-Condition-Transaction language,
and closing the existing gap to use it in real scenarios.
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