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Abstract. In this paper we consider programmable matter consisting
of simple computational elements, called particles, that can establish
and release bonds and can actively move in a self-organized way, and
we investigate the feasibility of solving fundamental problems relevant
for programmable matter. As a model for such self-organizing particle
systems, we will use a generalization of the geometric amoebot model first
proposed in [21]. Based on the geometric model, we present efficient local-
control algorithms for leader election and line formation requiring only
particles with constant size memory, and we also discuss the limitations
of solving these problems within the general amoebot model.

1 Introduction

A central problem for programmable matter is shape formation, and various
solutions have already been found for that problem using different approaches
like DNA tiles [34], moteins [14], or nubots [39]. We are studying shape formation
using the amoebot model which was first proposed in [21]. In order to determine
how decentralized shape formation can be handled, we are particularly interested
in the connection between leader election and shape formation. In the leader
election problem we are given a set of particles, and the problem is to select one
of these as the leader. Many problems like the consensus problem (all particles
have to agree on some output value) can easily be solved once the leader election
problem can be solved. The same has also been observed for shape formation,
as most shape formation algorithms depend on some seed element. However, the
question is whether shape formation can even be solved in circumstances where
leader election is not possible. The aim of this paper is to shed some light on
the dependency between leader election and shape formation by focusing on the
special problem of forming a line of particles. Before we present our results, we
first give a formal definition of the model and the problems we intend to study.

Z. Derakhshandeh and A.W. Richa—Supported in part by the NSF under Awards
CCF-1353089 and CCF-1422603.
R. Gmyr, T. Strothmann and C. Scheideler—Supported in part by DFG grant SCHE
1592/3-1.

c© Springer International Publishing Switzerland 2015
A. Phillips and P. Yin (Eds.): DNA 2015, LNCS 9211, pp. 117–132, 2015.
DOI: 10.1007/978-3-319-21999-8 8



118 Z. Derakhshandeh et al.

1.1 Models

We use two models throughout this work. Firstly, we consider a generalization
of the amoebot model [21] which abstracts from any geometry information. We
call this model the general amoebot model. Secondly, we consider a model that
is essentially equivalent to the original amoebot model presented in [21] but is
defined based on the general amoebot model. We refer to this second model as
the geometric amoebot model.

In the general amoebot model, programmable matter consists of a uniform set
of simple computational units called particles that can move and bond to other
particles and use these bonds to exchange information. The particles act asyn-
chronously and they achieve locomotion by expanding and contracting, which
resembles the behavior of amoeba.

As a base of this model, we assume that we have a set of particles that aim
at maintaining a connected structure at all times. This is needed to prevent the
particles from drifting apart in an uncontrolled manner like in fluids and because
in our case particles communicate only via bonds. The shape and positions of
the bonds of the particles mandate that they can only assume discrete positions
in the particle structure. This justifies the use of a possibly infinite, undirected
graph G = (V,E), where V represents all possible positions of a particle (relative
to the other particles in their structure) and E represents all possible transitions
between positions.

Each particle occupies either a single node or a pair of adjacent nodes in G,
i.e., it can be in two different shapes, and every node can be occupied by at most
one particle. Two particles occupying adjacent nodes are connected, and we refer
to such particles as neighbors. Particles are anonymous but the bonds of each
particle have unique labels, which implies that a particle can uniquely identify
each of its outgoing edges. Each particle has a local memory, and any pair of
connected particles has a shared memory that can be read and written by both
particles.

Particles move through expansions and contractions: If a particle occupies
one node (i.e., it is contracted), it can expand to an unoccupied adjacent node
to occupy two nodes. If a particle occupies two nodes (i.e., it is expanded), it
can contract to one of these nodes to occupy only a single node. Performing
movements via expansions and contractions has various advantages. For exam-
ple, it would easily allow a particle to abort a movement if its movement is in
conflict with other movements. A particle always knows whether it is contracted
or expanded and this information will be available to neighboring particles. In
a handover, two scenarios are possible: a) a contracted particle p can “push”a
neighboring expanded particle q and expand into the neighboring node previ-
ously occupied by q, forcing q to contract, or b) an expanded particle p can “pull”
a neighboring contracted particle q to a cell occupied by it thereby expanding
that particle to that cell, which allows p to contract to its other cell. The abil-
ity to use a handover allows the system to stay connected while particles move
(e.g., for particles moving in a worm-like fashion). Note that while expansions
and contractions may represent the way particles physically move in space, they
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can also be interpreted as a particle “looking ahead”and establishing new logical
connections (by expanding) before it fully moves to a new position and severs
the old connections it had (by contracting).

Summing up over all assumptions above, the state of a particle is uniquely
determined by its shape, the contents of its local memory, the edges it has to
neighboring particles, the contents of their shared memory (which may allow a
particle to obtain further information about the neighboring particles beyond
their shape), and finally the shape of the neighboring particles. The state of
the particle system (or short, system state) is defined as the combination of all
particle states. We say a particle system in a system state in which the particle
occupy a set of nodes A ⊆ V is connected if the graph G|A induced by A
is connected. We assume the standard asynchronous computation model, i.e.,
only one particle can be active at a time. Whenever a particle is active, it can
perform an action (governed by some fixed, finite size program controlling it)
consisting of a finite amount of computation (involving its local memory, the
shared memories with its neighboring particles, and random bits) followed by no
or a single movement. Hence, a computation of a particle system is a potentially
infinite sequence of actions A1, A2, . . . based on some initial system state s0,
where action Ai transforms system state si−1 into system state si. The (parallel)
time complexity of a computation is usually measured in rounds, where a round
is over once every particle has been given the chance to perform at least one
action.

Let S be the set of all system states in which the particle system is connected.
In general, a computational problem P for the particle system is specified by a
set S ′ ⊆ S of permitted initial system states and a mapping F : S ′ → 2S ,
where F (s) ⊆ S determines the set of permitted final states for any initial state
s ∈ S ′. A particle system solves problem P = (S ′, F ) if for any initial system
state s ∈ S ′, all computations of the particle system eventually reach a system
state in F (s) without losing connectivity, and whenever such a system state is
reached for the first time, the system stays in F (s). If for all computation a
final state is reached in which all particles decided to halt (i.e., they decided not
to perform any further actions, irrespective of future events), then the particle
system is also said to decide problem P . Note that being in a final state does not
necessarily mean that all particles decided to halt. If S ′ = S, so any initial state
is permitted (including arbitrary faulty states, as long as the particle system is
connected), then a particle system solving P is also said to be self-stabilizing. It
is well-known that in general a distributed system solving a problem P cannot
decide it and also be self-stabilizing because if so, it would often be possible to
come up with an initial state s where a member of the system decides to halt
prematurely, disallowing the system to eventually reach a state in F (s).

Besides the general amoebot model, we will also consider the geometric amoe-
bot model. The geometric amoebot model is a specific variant of the general
amoebot model in which the underlying graph G is defined to be the equilateral
triangular graph Geqt (see Fig. 1), and the bonds of the particles are labeled in a
consecutive way in clockwise orientation around a particle so that every particle
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Fig. 1. The left part shows an example of a particle structure in the geometric amoebot
model. A contracted particle is depicted as a black dot, and an expanded particle is
depicted as two black dots connected by an edge. The right part shows a particle
structure with 3 borders. The outer border is shown as a solid line and the two inner
borders are shown as dashed lines.

has the same sense of clockwise orientation. However, we do not assume that the
labeling is uniform, so the particles do not necessarily share a common sense of
direction in the grid.

1.2 Problems

In this paper we consider the following two problems. For both problems we
define the set of initial system states as the set of all states such that the particle
system is connected and all memories are empty.

For the leader election problem the set of final system states contains any state
in which the particles form a connected structure and exactly one particle is a
leader (i.e., only this particle is in a leader state while the remaining particles are
in a non-leader state). Our goal will be to come up with a distributed algorithm
that allows a particle system to decide the leader election problem. Note that
the leader election problem is well defined for both the general amoebot model
and the geometric amoebot model.

In a shape formation problem, the set of final states consists of those system
states where the particle structure forms the desired shape. As a specific example
of a shape formation problem, we consider the line formation problem. In the
geometric amoebot model, the shape the particles have to form is a straight line
in the equilateral triangular grid and all particles have to be contracted in a
final system state. Of course, in the general amoebot model a straight line is not
well-defined. Hence, for this model the set of final states for the line formation
problem is defined to consist of all system states in which the particles form a
simple path in G.

Throughout the paper, we assume for the sake of simplicity that in an ini-
tial state all particles are contracted. Our algorithms can easily be extended to
dispose of this assumption.

1.3 Our Contributions

In this paper we focus on the problem of solving leader election and shape
formation for particles with constant memory. For shape formation, we just
focus on the already mentioned line formation problem.
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For the general amoebot model, we can show that neither leader election
nor shape formation can be decided by any distributed algorithm. Suppose that
there is a distributed algorithm solving the line formation problem in the general
amoebot model (when starting in a well-initialized state). Since in this case it is
possible to decide when G|A′ forms a line, it is also possible to design a protocol
that solves the leader election problem: once the line has been formed, its two
endpoints contend for leadership using tokens with random bits sent back and
forth until one of them wins. On the other hand, one can deduce from [28] that
in the general amoebot model there is no distributed algorithm that can decide
when a leader has been elected (with any reasonable success probability). More
concretely, in [28] the authors show that for the ring of anonymous nodes there
is no algorithm that can correctly decide the leader election problem (or in their
words, that can solve the leader election problem with distributive termination)
with any probability α > 0, i.e., for any algorithm in which the particles are
guaranteed to halt, the error probability is unbounded. Since in the general
amoebot model G can be any graph, we can set G to be a ring whose size is
the number of particles and the result of [28] is directly applicable. Hence, there
cannot be a distributed algorithm deciding the line formation problem (with
any reasonable success probability) in the general amoebot model, and therefore
not even an algorithm for solving it since a protocol solving the problem could
easily be transformed into a protocol deciding it. However, for the geometric
amoebot model we show that there is a distributed algorithm that can decide
the leader election problem, i.e., at the end we have exactly one leader and the
leader knows that it is the only leader left. Moreover, the runtime for our leader
election algorithm is worst-case optimal in a sense that it needs at most O(L)
rounds on expectation, where L is the maximum length of a border between
the particle structure and an empty region (inside or outside of it) in Geqt.
Based on the leader election algorithm, we present a distributed algorithm that
solves the line formation problem. Both algorithms assume that the system is
in a well-initialized state. It would certainly be desirable to have algorithms
that can tolerate any initial state, but at the end of the paper we show that
there are certain limitations to solving leader election and line formation in a
self-stabilizing fashion.

1.4 Related Work

Many approaches related to programmable matter have recently been proposed.
One can distinguish between active and passive systems. In passive systems the
particles either do not have any intelligence at all (but just move and bond
based on their structural properties or due to chemical interactions with the
environment), or they have limited computational capabilities but cannot con-
trol their movements. Examples of research on passive systems are DNA comput-
ing [1,8,14,20,37], tile self-assembly systems in general (e.g., see the surveys in
[22,34,38]), population protocols [3], and slime molds [9,32]. We will not describe
these models in detail as they are only of little relevance for our approach. On
the other hand in active systems, computational particles can control the way
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they act and move in order to solve a specific task. Robotic swarms, and modular
robotic systems are some examples of active programmable matter systems.

In the area of swarm robotics it is usually assumed that there is a collection of
autonomous robots that have limited sensing, often including vision, and commu-
nication ranges, and that can freely move in a given area. They follow a variety of
goals, for example graph exploration (e.g., [23]), gathering problems (e.g., [2,16]),
shape formation problems (e.g., [24,35]), and to understand the global effects of
local behavior in natural swarms like social insects, birds, or fish (see e.g., [7,11]).
Surveys of recent results in swarm robotics can be found in [30,33]; other samples
of representative work can be found in e.g., [4,6,17–19,27,31]. While the analytical
techniques developed in the area of swarm robotics and natural swarms are of some
relevance for this work, the individual units in those systems have more powerful
communication and processing capabilities than in the systems we consider.

The field of modular self-reconfigurable robotic systems focuses on intra-
robotic aspects such as the design, fabrication, motion planning, and control
of autonomous kinematic machines with variable morphology (see e.g., [25,40]).
Metamorphic robots form a subclass of self-reconfigurable robots that share some
of the characteristics of our geometric model [15]. The hardware development
in the field of self-reconfigurable robotics has been complemented by a number
of algorithmic advances (e.g., [10,35,36]), but so far mechanisms that automati-
cally scale from a few to hundreds or thousands of individual units are still under
investigation, and no rigorous theoretical foundation is available yet.

The nubot model [12,13,39] by Woods et al. aims at providing the theo-
retical framework that would allow for a more rigorous algorithmic study of
biomolecular-inspired systems, more specifically of self-assembly systems with
active molecular components. While bio-molecular inspired systems share many
similarities with our self-organizing particle systems, there are many differences
that do not allow us to translate the algorithms and other results under the
nubot model to our systems — e.g., there is always an arbitrarily large supply
of “extra” particles that can be added to the system as needed, and the system
allows for an additional (non-local) notion of rigid-body movement.

2 Leader Election in the Geometric Amoebot Model

In this section we show how the leader election problem can be decided in the geo-
metric amoebot model. Our approach organizes the particle system into a set of
cycles and executes an algorithm on each cycle independently. For simplicity and
ease of presentation we first assume that particles have a global view of the cycle
they are part of, that agents act synchronously, and that their local memory is
unbounded. However, in the local-control protocol none of these assumptions are
needed. In particular, the particles only require a constant amount of memory. In
Sect. 2.5 we highlight some of the techniques used in the local-control protocol,
which relies heavily on token passing. However, due to space constraints the full
local-control protocol cannot be presented in detail.
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2.1 Organization into Cycles

Let A ⊆ V be any initial distribution of contracted particles such that Geqt|A
is connected. Consider the graph Geqt|V \A induced by the unoccupied nodes in
Geqt. We call a connected component of Geqt|V \A an empty region. Let N(R)
be the neighborhood of an empty region R in Geqt. Then all nodes in N(R) are
occupied and we call the graph Geqt|N(R) a border. Since Geqt|A is a connected
finite graph, exactly one empty region has infinite size while the remaining empty
regions have finite size. We define the border corresponding to the infinite empty
region to be the unique outer border and refer to a border that corresponds to
a finite empty region as an inner border, see Fig. 1.

The particles occupying a border can instantly (i.e., without communication)
organize themselves into a cycle using only local information: Consider a border
corresponding to an empty region R. Let p be a particle occupying a node v
of the border. By definition there exists a non-occupied node w ∈ R that is a
adjacent to v in the graph Geqt. The particle p iterates over the neighboring
nodes of v in clockwise orientation around v starting at w. Consider the first
occupied node it encounters; the particle occupying that node is the successor of
p in the cycle corresponding to that border. Analogously, p finds its predecessor
in the cycle by traversing the neighborhood of v in counter-clockwise orientation.

Note, that a particle can belong to up to three borders at once. Furthermore,
a particle cannot locally decide whether two empty regions it sees (i.e., maximal
connected components of non-occupied nodes in the neighborhood of v) are
distinct. We circumvent these problems by letting a particle treat each empty
region in its local view as distinct. For each such empty region, a particle executes
an independent instance of the same algorithm. Hence, we say a particle acts
as a number of distinct agents. For each of its agents a particle determines the
predecessor and successor as described above. This effectively connects the set
of all agents into disjoint cycles as depicted in Fig. 2. Observe that from a global
perspective the cycle of the outer border is oriented clockwise while a cycle of
an inner border is oriented counter-clockwise. This is a direct consequence of the
way the predecessors and successors of an agent are defined.

2.2 Algorithm

The leader election algorithm operates independently on each cycle. At any given
time, some subset of agents on a cycle will consider themselves candidates, i.e.
potential leaders of the system. Initially, every agent considers itself a candidate.
Between any two candidates on a cycle there is a (possibly empty) sequence of
non-candidate agents. We call such a sequence a segment. For a candidate c
we refer to the segment coming after c in the direction of the cycle as seg(c)
and refer to its length by |seg(c)|. We refer to the candidate coming after c as
the succeeding candidate (succ(c)) and to the candidate coming before c as the
preceding candidate (pred(c)) (see Fig. 3). We drop the c in parentheses if it is
clear from the context. We define the distance d(c1, c2) between candidates c1
and c2 as the number of agents between c1 and c2 when going from c1 to c2
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Fig. 2. The depicted particle system is the same as in the right part of Fig. 1. In this
figure particles are depicted as gray circles. The black dots inside of a particle represent
its agents. As in Fig. 1 the outer border is solid and the two inner borders are dashed.

Fig. 3. A cutout from a cycle that is oriented to the right. Non-candidate agents are
small black dots, candidates are bigger dots. The candidate c covers pred(c) since
|seg(c)| > d(pred(c), c).

in direction of the cycle. We say a candidate c1 covers a candidate c2 (or c2 is
covered by c1) if |seg(c1)| > d(c2, c1) (see Fig. 3). The leader election progresses in
phases. In each phase, each candidate executes Algorithm 1. A phase consists of
three synchronized subphases, i.e., agents can only progress to the next subphase
once all agents have finished the current subphase.

Consider the execution of Algorithm 1 by a candidate c. If the algorithm
returns “not leader”then c revokes its candidacy and becomes part of a segment.
If the algorithm returns “leader”, c will become the leader of the particle system.
The transferal of candidacy in subphase 2 means that c withdraws its own can-
didacy but at the same time promotes the agent at position pos (i.e., succ(c) in
subphase 1) to be a candidate. Once a candidate becomes a leader it broadcasts
this information such that all particles can halt.

2.3 Correctness

In order to show the correctness of our algorithm, we show that it satisfies the
following conditions, that relate to the entire particle system (not just a single
cycle):

1. Safety : There always exists at least one candidate.
2. Liveness: In each phase if there is more than one candidate, at least one

candidate withdraws leadership with a probability that is bounded below by
a positive constant.
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Algorithm 1. Leader Election for a candidate c

Subphase 1:
pos ← position of succ(c)
if covered by any candidate or |seg(c)| < |seg(pred(c))| then

return not leader

Subphase 2:
if coin flip results in heads then

transfer candidacy to agent at pos

Subphase 3:
if only candidate on border then

if outside border then
return leader

else
return not leader

Lemma 1. Algorithm1 satisfies the safety condition.

Proof. We will show by induction that on the cycle associated with the outer
border there will always be at least one candidate. Initially, this holds trivially.
So assume that it holds before a phase. Let c be the candidate with the longest
segment. Then there is no candidate covering c and also |seg(c)| < |seg(pred(c))|
cannot be true. Hence, c will not withdraw candidacy in subphase 1. In subphase
2, the candidacy of c might be transferred but will not vanish. Let c′ be the
agent that received the candidacy if it was transferred and c′ = c otherwise. In
subphase 3, c′ will not withdraw candidacy because it lies on the outer border.
Hence, there is still a candidate after the phase. ��
Lemma 2. Algorithm1 satisfies the liveness condition.

Proof. Assume that there are two or more candidates in the system. First we
consider the case that there is a cycle with two or more candidates. If there are
segments of different lengths on that cycle, we have |seg| < |seg(pred)| for at
least one candidate which will therefore withdraw its candidacy in subphase 1.
If all segments are of equal length, we have that in subphase 2 with probability
at least 1

4 there is a candidate c that transfers candidacy while succ(c) does
not. Hence, the number of candidates is reduced with probability at least 1

4 .
Now consider the case that all cycles have at most one candidate. Then there is
a cycle corresponding to an inner border that has exactly one candidate. That
candidate will withdraw candidacy in subphase 3 and thereby reduce the number
of candidates in the system. ��

The following Theorem is a direct consequence of Lemmas 1 and 2.

Theorem 1. Algorithm 1 decides the leader election problem in the geometric
amoebot model.
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2.4 Runtime Analysis

For a cycle of agents let L be the length of the cycle and let li be the longest
segment length before phase i of the execution of Algorithm 1. We define li = L
if there is no candidate on the cycle. It is easy to see that if li ≥ L/2 then in
phase i + 1 either the leader is elected (outer border) or all candidates on the
cycle vanish (inner border). For the case li < L/2, Lemma 3 provides the key
insight of our analysis.

Lemma 3. For any phase i such that li < L/2 it holds li+1 ≥ li in any case
and li+1 ≥ 2li with probability at least 1/4.

Let Lmax be the length of the longest cycle in the particle system. Based
on Lemma 3 it is easy to see that under complete synchronization of subphases
and with the agents having a global view of the cycle, our algorithm requires
on expectation O(log(Lmax)) phases to elect a leader. For now assume that our
algorithm can be realized as a local-control protocol such that phase i requires
O(li) rounds. Theorem 2 gives a bound on the number of rounds required by
the algorithm based on this assumption. The theorem also also holds for the
local-control protocol given the definition of a round from Sect. 1.1.

Theorem 2. Algorithm1 requires O(Lmax) rounds on expectation.

Proof. Let the random variable Xi describe the number of rounds during the
execution of Algorithm 1 such that li ∈ [2i−1, 2i). Then, under the assumption
that phase i requires O(li) rounds, the total runtime of our algorithm is

T =
�log(Lmax)�∑

i=1

Xi · O(2i).

Since E(Xi) ≤ 4 due to Lemma 3, the expected runtime is

E(T ) ≤
�log(Lmax)�∑

i=1

E(Xi) · O(2i) = O(Lmax).

��
Note that subphase 1 of the algorithm is not important in terms of correctness.
However, it is crucial to achieve a linear runtime in expectation. If agents would
only execute subphases 2 and 3, the runtime would degrade to O(Lmax log Lmax).

2.5 Asynchronous Local-Control Protocol

Here we present some details on how specific parts of the algorithm can be
realized as an asynchronous local-control protocol. We focus on the realization
of solitude verification and the inner outer border test of subphase 3.
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Solitude Verification. A candidate that wants to determine whether it is the
only candidate left, tests if its segment ends in another candidate or in itself.
To do so, it enforces its own orientation on all agents in its segment. Thereby,
every agent in the segment is able to determine the direction of its outgoing
edge in direction of the cycle. These edge directions can be seen as vectors in the
two dimensional plane and in case the segment is the whole cycle, the vectors
cancel out component wise (see Fig. 4). By a simple token passing scheme agents
will try match their edge directions component wise with an edge direction in
the opposing direction from another agent. Finally, the candidate inspects the
segment and if all agents are matched it is the only candidate left on the cycle.

Fig. 4. An example of solitude verification: the candidate (shown slighly bigger) has
enforced its orientation (x and y arrows) on all agents. All non-candidate agents deter-
mined the offset to the succeeding agent in direction of the cycle (arrows and numbers
at nodes).

Inner Outer Border Test. The last candidate of a cycle can decide whether its
cycle corresponds to an inner or the outer border as follows. A cycle correspond-
ing to an inner border has counter-clockwise rotation while a cycle correspond-
ing to the outer border has clockwise rotation, see Fig. 2. The candidate sends
a token along the cycle that sums the angles of the turns the cycle takes, see
Fig. 5. When the token returns to the candidate its value represents the external
angle of the polygon corresponding to the cycle while respecting the rotation
of the cycle. So it is −360◦ for an inner border and 360◦ for the outer border.
The token can represent the angle as an integer k such that the angle is k · 60◦.
Furthermore, to distinguish the two possible final values of k it is sufficient to
store the k modulo 5, so that the token only requires 3 bits of memory.

Fig. 5. The angle between the directions a token enters and exits an agent.
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3 Line Formation in the Geometric Amoebot Model

Next we consider the line formation problem in the geometric amoebot model.
We assume that initially we have an arbitrary connected structure of contracted
particles with a unique leader. The leader is used as the starting point for the
line of particles and specifies the direction in which this line will grow. As the line
grows, every particle touched by the line that is already in a valid line position
becomes part of the line. Any other particle connected to the line becomes the
root of a tree of particles. Every root aims at traveling around the line in a
clockwise manner until it joins the line. As a root particle moves, the other
particles in its tree follow in a worm-like fashion (i.e., via a series of handover
operations)1.

Before we give a detailed description of the algorithm, we provide some pre-
liminaries. We distinguish for the state of a particle between inactive, follower,
root, and retired (or halted). Initially, all particles are inactive, except the leader
particle, which is always in a retired state. In addition to its state, each particle p
may maintain a constant number of flags in its shared memory. For an expanded
particle, we denote the node the particle last expanded into as the head of the
particle and call the other occupied node its tail : In our algorithm, we assume
that every time a particle contracts, it contracts out of its tail.

The spanning forest algorithm, given in Algorithm2, is a basic building block
we use for shape formation problems. This algorithm aims at organizing the
particles as a spanning forest, where the particles that represent the roots of the
trees determine the direction of movement, whom the remaining particles follow.
Each particle p continuously runs Algorithm2 until p becomes retired. If particle
p is a follower, it stores a flag p.parent in its shared memory corresponding to
the edge adjacent to its parent p′ in the spanning forest (any particle q can
then easily check if p is a child of q). If p is the leader particle, then it sets
the flag p.linedir in the shared memories corresponding to two of its edges in
opposite directions (i.e., an edge i and the edge that appears three positions
after i in clockwise order), denoting that it would like to extend the line through
the directions given by these edges.

We have the following theorem, where work is defined as the number of
expansions and contractions executed by all particles in the system:

Theorem 3. Algorithm2 solves the line formation problem in worst-case opti-
mal O(n) number of rounds and O(n2) work.

4 Self-stabilizing Leader Election and Shape Formation

Consider the variant of the geometric amoebot model in which faults can occur
that arbitrarily corrupt the local memory of a particle. Recall that for an algo-
rithm to solve the leader election problem in a self-stabilizing manner, it has to
1 For a simulation video of the Line Formation Algorithm please see http://sops.cs.

upb.de.

http://sops.cs.upb.de
http://sops.cs.upb.de
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Algorithm 2. Line Formation Algorithm
SpanningForest (p):
Particle p acts as follows, depending on its current state:
inactive: If p is connected to a retired particle, then p becomes a root particle. Other-

wise, if an adjacent particle p′ is a root or a follower, p sets the flag p.parent
on the shared memory corresponding to the edge to p′ and becomes a fol-
lower. If none of the above applies, it remains inactive.

follower: If p is contracted and connected to a retired particle, then p becomes a
root particle. Otherwise, it considers the following three cases: (i) if p is
contracted and p’s parent p′ (given by the flag p.parent) is expanded, then
p expands in a handover with p′, adjusting p.parent to still point to p′ after
the handover; (ii) if p is expanded and has a contracted child particle p′,
then p executes a handover with p′; (iii) if p is expanded, has no children,
and p has no inactive neighbor, then p contracts.

root: Particle p may become retired following CheckRetire (p). Otherwise, it
considers the following three cases: (i) if p is contracted, it tries to expand
in the direction given by LineDir(p); (ii) If p is expanded and has a child
p′, then p executes a handover contraction with p′; (iii) if p is expanded and
has no children, and no inactive neighbor, then p contracts.

retired: p performs no further action.

CheckRetire (p):

if p is a contracted root then
if p has an adjacent edge i to p′ with a flag p′.linedir, where p′ is retired then

Let i′ be the edge opposite to i in clockwise order
p sets the flag p.linedir in the shared memory of edges i and i′

p becomes retired.

LineDir(p):

Let i be the label of an edge connected to a retired particle.
while edge i points to a retired particle do

i ← label of next edge in clockwise direction

return i

satisfy the following requirements: First, from any initial system state (in which
the particle structure is connected) the particle system eventually reaches a final
system state while preserving connectivity, i.e., eventually a unique leader will
be established. Second, once a final system state is reached, the system has to
remain in that state as long as no faults occur. Analogous requirements have to
be satisfied for self-stabilizing shape formation.

Our leader election algorithm can be extended to a self-stabilizing leader
election algorithm with O(log∗ n) memory using the results of [5,29] (i.e., we use
their self-stabilizing reset algorithm on every cycle in order to recover from failure
states). However, it is not possible to design a self-stabilizing algorithm for the
line formation. The reason for this is that even a much simpler problem called
movement problem cannot be solved in a self-stabilizing manner. It is easy to see
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that if the movement problem cannot be solved in a self-stabilizing manner, then
also the line formation problem cannot be solved in a self-stabilizing manner.

In the movement problem we are given an initial distribution A of particles
that can be in a contracted as well as expanded state, and the goal is to change
the set of nodes occupied by the particles without causing disconnectivity. For
the ring of expanded particles it holds that for any protocol P there is an initial
state so that P does not solve the movement problem. To show this we consider
two cases: suppose that there is any state s for some particle in the ring that
would cause that particle to contract. In this case set two particles on opposite
sides of the ring to that state, and the ring will break due to their contractions.
Otherwise, P would not move any particle of the ring, so also in this case it
would not solve the movement problem in a self-stabilizing manner.

5 Conclusion

We think that the algorithms presented for the geometric amoebot model can
be extended for the case that G is a different regular grid graph embedded
in the two-dimensional Euclidean plane. As future work, we would like to identify
the minimum set of key geometric properties that G must have in order for
the proposed algorithms to work. Also, if in the geometric amoebot model, the
particles had a common sense of direction, we would like to investigate whether
leader election could be solved deterministically using a slight modification of
our algorithm: for each border the last remaining candidate is deterministically
chosen to be the “east-most”particle of the set of the “south-most” particles.
This algorithm would be similar to the one proposed in [26] for tile self-assembly
systems.
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