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Abstract. We consider how to generate chemical reaction networks
(CRNs) from functional specifications. We propose a two-stage approach
that combines synthesis by satisfiability modulo theories and Markov
chain Monte Carlo based optimisation. First, we identify candidate CRNs
that have the possibility to produce correct computations for a given
finite set of inputs. We then optimise the reaction rates of each CRN
using a combination of stochastic search techniques applied to the chem-
ical master equation, simultaneously improving the probability of correct
behaviour and ruling out spurious solutions. In addition, we use tech-
niques from continuous time Markov chain theory to study the expected
termination time for each CRN. We illustrate our approach by identify-
ing CRNs for majority decision-making and division computation, which
includes the identification of both known and unknown networks.

Keywords: Chemical reaction networks · Program synthesis · Para-
meter optimisation · Chemical master equation · Satisfiability modulo
theories · Markov chain Monte Carlo

1 Introduction

A central goal of molecular programming is to be able to implement arbitrary
dynamical behaviours. Chemical reaction networks (CRNs) are a popular for-
malism for describing biochemical systems, such as protein interaction networks,
gene regulatory networks, synthetic logic circuits and molecular programs built
from DNA. Extensive theoretical understanding exists about the behaviour of a
multitude of CRNs, and the behaviour of some networks has been exhaustively
explored [1]. Besides describing chemical systems, CRNs provide a common lan-
guage for expressing problems studied in computer science theory (e.g. Petri nets,
network protocols) as well as control theory and engineering. Methods exist to
convert CRNs into equivalent physical implementations, based on DNA strand
displacement [2,3] the DNA toolbox system [4] and genelets [5]. Therefore, we
sought to develop a methodology for proposing candidate CRNs that exhibit a
pre-specified behaviour.

The computational power of CRNs has been extensively studied [6]. It is
known that error-free (stably computing [7]) CRNs compute exactly the class of
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semi-linear functions [8,9]. However, if the stability restriction is relaxed and we
allow the CRN to sometimes compute the wrong answer then it is possible to
implement a register machine, that is, CRNs with error can compute functions
beyond the semi-linear class (indeed they are equivalent in power to Turing
machines) [6,10].

Although there are procedures to generate CRNs for semi-linear func-
tions [8,10], primitive recursive functions [6], or even from arbitrary Turing
machines [6], the proposal of practical (i.e. experimentally implementable) CRNs
that compute a given function has thus far mostly been a manual effort. In this
work, we attempt to automate the proposal of CRNs, by formally specifying a
behaviour and automatically identifying CRNs that satisfy the desired behaviour
with high probability. First, we formalise the problem of identifying CRNs that
have the capacity to produce correct, finite computations for a given finite set
of inputs. This corresponds to a synthesis problem, as opposed to verification,
where the goal is to determine the correctness of a given CRN [11]. We express
CRN synthesis as a satisfiability modulo theories (SMT) problem, which can be
addressed using solvers such as Z3 [12]. This allows us to generate a number
of candidate CRNs or to prove that no such CRN of a given size (in terms of
numbers of reactions, species and computation lengths) exists. However, while
the existence of correct computations is guaranteed for each generated CRN, the
probability of these computations might be low.

To determine whether correct computations can occur with high probabil-
ity, we next optimise the reaction rates of each generated CRN. To solve the
optimisation problem, we combine stochastic search strategies based on Markov
chain Monte Carlo (MCMC) with numerical integration of the chemical master
equation (CME). This part of the problem was recently addressed in [13,14],
though applied only to a single input.

In this paper, we specifically focus on uniform CRNs, those that have a fixed
number of species and reactions for all input sizes.We also restrict our atten-
tion to bimolecular CRNs, where there are precisely 2 reactants and 2 products
in every reaction. Bimolecular CRNs are equivalent to Population Protocols
(PPs) [7] and also guarantee that mass is conserved in the system. We applied
our two-step approach first to majority decision-making, in which the network
seeks to identify which of two inputs is in an initial majority. Majority networks
are well-studied in the literature, and there are many known CRNs that give
approximate solutions [15–17]. We then applied our approach to division, a non-
linear function which has been relatively less studied. We show a range of CRNs
for majority and division identified automatically using our method, some of
which have been identified and characterised previously, though some of which
are entirely novel. This illustrates the potential for automatically determining
CRNs with a specified behaviour.

2 Preliminaries

A chemical reaction network (CRN) is a tuple C = (Λ,R), where Λ = {s0, . . . , sn}
and R = {r0, . . . , rm} denote the finite sets of species and reactions, respectively.
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A reaction is a tuple r = (rr,pr, kr) where rr and pr are the reactant and product
stoichiometry vectors (rr

s ∈ N0 and pr
s ∈ N0 denote the stoichiometry of each

species s ∈ Λ), kr ∈ R≥0 denotes the rate of r and k denotes the vector of all
reaction rates. Given a reaction r = (rr,pr, kr), the set of reactants of r is {s ∈
Λ | rr

s > 0} and the set of products of r is {s ∈ Λ | pr
s > 0}. In this paper, we

focus on the class of bimolecular CRNs, where
∑

s∈Λ rr
s = 2 and

∑
s∈Λ pr

s = 2, for
all reactions r ∈ R.

The dynamical behaviour of bimolecular CRNs can be understood as fol-
lows. The set of all possible system states is X = N

|Λ|
0 , where a state x ∈ N

|Λ|
0

represents the number of molecules of each species. We denote the number of
molecules of species s ∈ Λ at state x by xs. Given a reaction r ∈ R where rr

s = 2
for some s ∈ Λ, the propensity1 of r at x is kr

x = kr · xs·(xs−1)
2 . If, on the other

hand, rr
s = rr

s′ = 1 for some species s, s′, the propensity of r is kr
x = kr · xs · xs′ .

The time at which reaction r would fire, once the system enters state x ∈ X,
is stochastic and follows an exponential distribution with a rate determined by
the reaction’s propensity kr

x. Assuming that reaction r is the first one to fire, the
state of the system is updated as x′

s = xs − rr
s + pr

s for all s ∈ Λ, where x and
x′ are the current and next states.

An abstraction of CRNs that preserves reachability but does not consider
reaction rates or time is given by the transition system T C = (X,T ), where the
transition relation T is defined as

∀x, x′ ∈ X . T (x, x′) ↔
∨

r∈R

∧

s∈Λ

(xs ≥ rr
s ∧ x′

s = xs − rr
s + pr

s) . (1)

In other words, the choice between reactions from R is non-deterministic but
enough molecules of each reactant must be present in state x for the reaction to
fire. The transition between states x and x′ happens when any reaction r ∈ R
fires and the number of molecules is updated accordingly. A path x0, x1, . . . of
T satisfies T (xi, xi+1) for i = 0, 1, . . . and, given an initial state x0 we call state
xf reachable from x0 if there exists a path x0, . . . , xf .

Given a CRN C, let X0 ⊆ X denote a finite set of initial states and Xr ⊆ X
denote the set of states reachable from X0. Assuming that Xr is finite, C can be
represented as a continuous time Markov chain (CTMC) that preserves infor-
mation about the transition probabilities and rates that determine the sto-
chastic behaviour of the system and the expected execution times. We define
a CTMC to be a tuple M = (Xr, π0,Q), where Xr is a finite set of states,
π0 : Xr → R is the initial distribution of molecule copy numbers of all species,
and Q : Xr × Xr → R is a matrix of transition propensities. While the set of
initial states is not represented explicitly, it is captured through the initial dis-
tribution, i.e. X0 = {x ∈ Xr | π0(x) > 0}. A CTMC MC is constructed from a
CRN C by first determining the set of reachable states, and then evaluating the
propensities of each reaction. The (i, j)th entry of Q, qij , represents a transition
from state xi to state xj . Accordingly, qii is the remaining probability mass,
1 We assume that the reaction volume is 1 to allow for later volume scaling e.g. kr

x/v
is the propensity for a reaction volume equal to v.
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equal to −
∑

i�=j qij . The transient probability vector πt evolves according to
dπt

dt = πtQ, which is known as the chemical master equation (CME).
Following [13,14], a parametric CTMC (pCTMC) is a CTMC where the

reaction rates are parameterised by k, as above. Denote by P the parameter
space, P : RP

≥0, such that k is instantiated by a parameter point p ∈ P. Accord-
ingly, given a pCTMC M and parameter space P, an instantiated pCTMC
Mp = (X,π0,Qp) is an evaluation at point p ∈ P.

3 Problem Formulation

The main problem we consider in this paper, which we formalise in this section,
is the identification of CRNs that satisfy given properties. Specifically, we are
interested in finite reachability properties, which capture a range of interesting
CRN behaviours.

Let C = (Λ,R) be a given CRN and T C = (X,T ) and MC = (Xr, π0,Q)
denote its transition system abstraction and CTMC representation, as discussed
in Sect. 2. Let φ : X → B denote a state predicate, constructed using

φ : : = Eb

Eb : : = true | false | Ec | ¬Eb | Eb � Eb where � ∈ {∧,∨,⇒,⇔}
Ec : : = Ea � Ea where � ∈ {<,≤,=, >,≥}
Ea : : = s ∈ Λ | c ∈ Z | Ea � Ea where � ∈ {+,−, ∗}.

For example, if φ := s > 5, then φ(x) denotes that xs > 5.
In this paper, we consider path predicates Φ = (φ0, φF ), which are expressed

using two state predicates that must be satisfied at the initial (φ0) and at some
final (φF ) state of a path. Let K denote the number of steps we consider.

Definition 1. Given a finite path ρ : x0 . . . xK of T C we say that ρ satisfies
path predicate Φ = (φ0, φF ), denoted as ρ � Φ, if and only if φ0(x0) ∧ φF (xK)
evaluates to true and no reactions are enabled in xK (i.e. xK is a terminal
state).2

We define the probability of Φ, denoted PΦ, using MC as follows. Let X0 =
{x ∈ X | φ0(x)} denote the set of states that satisfy the initial state predicate.
We initialise MC with a uniform sample from the states that satisfy φ0, which
defines π0 as
2 We consider terminating computations by enforcing that no reactions are enabled at

the state that satisfies φF . Alternative strategies possible within our approach could
consider reaching a fix-point (i.e. the firing of any enabled reaction does not cause
a transition to a different state), or reaching a cycle along which φF is satisfied, to
guarantee that the correct output is eventually computed and remains unchanged
by any subsequent reactions.
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π0(x) =
{ 1

|X0| if x ∈ X0

0 otherwise

Similarly, XF = {x ∈ X | φF (x)} denotes the set of states satisfying the final
state predicate.

Definition 2. The probability of Φ is defined as

PΦ =
∑

x∈XF

πt(x),

where t denotes the maximal time we consider and πt is the probability vector at
time t computed using the CME introduced in Sect. 2. In other words, we define
PΦ as the average probability of the states satisfying φF at time t.

Note that it is possible to optimise for both speed and accuracy by, for example,
defining PΦ to be the integration of the probability mass of all states satisfying
φF from time 0 to time t.

Problem 1. Given a finite set of path predicates {Φ0, . . . ,Φn}, find a bimolecular
CRN C such that

1. for each Φi, there exists a path ρi of T C , such that ρi � Φi and
2. the average probability

∑n
i=0 PΦi

n+1 defined using MC is maximised.

4 Synthesis and Tuning of CRNs

We solve Problem 1 by addressing each of the two subproblems separately. First,
we generate a number of CRNs that satisfy the specifications from Problem1.1
using a satisfiability modulo theories (SMT)-based approach (Sect. 4.1). The
CRNs identified at that point are capable of producing a path that satisfy each
path predicate, which addresses Problem 1.1 but they might also include incor-
rect paths and the probability of correct computations might be low. Therefore,
we tune the reaction rates of these CRNs in order to maximise the average
probability (discussed in Sect. 4.2), which addresses Problem 1.2

4.1 SMT-Based Synthesis

Here, we present our approach to finding a bimolecular CRN C that satisfies
a specification expressed as path predicates {Φ0, . . . ,Φn} (Problem 1.1). We
address this problem by encoding T C symbolically for any possible bimolecu-
lar CRN C = (Λ,R) where |R| = M and |Λ| = N (i.e. the number of species and
reactions is given), together with the specification {Φ0, . . . ,Φn} for some finite
number of steps K, as a satisfiability modulo theories (SMT) problem. We then
use the SMT solver Z3 [12] to enumerate bimolecular CRNs that satisfy the spec-
ification or prove that no such CRNs exists for the given N , M , and K. Finally,
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we apply an incremental procedure to search for CRNs of increasing complexity
(larger N and M) or to provide more complete results by increasing K.

Using Z3’s theory of linear integer arithmetic, we represent the stoichiom-
etry of C as two symbolic matrices r ∈ N

M×N
0 and p ∈ N

M×N
0 (using integer

constraints to prohibit negative integers). Given a reaction r ∈ R and species
s ∈ Λ, rr

s (pr
s) defined in Sect. 2 is now encoded as a symbolic integer. We

ensure that only bimolecular CRNs are considered by asserting the constraints∧M−1
i=0

∑N−1
j=0 ri,j = 2 and

∧M−1
i=0

∑N−1
j=0 pi,j = 2. In addition, we introduce the

following constraints.

– We label a subset of the species ΛI ⊆ Λ as inputs and assert that∧
s∈ΛI

∨
r∈R rr

s > 0 to ensure all inputs are consumed by at least one reaction.
– We label a subset of the species ΛO ⊆ Λ as outputs and assert that∧

s∈ΛO

∨
r∈R pr

s > 0 to ensure all outputs are produced by at least one reac-
tion.

– We assert that
∧

r,r′∈R,r �=r′
∨

s∈Λ pr
s �= pr′

s ∨ rr
s �= rr′

s to ensure that two
reactions never have the same reactants and products and, therefore, all M
reactions are utilised.

– Finally, we assert that
∧

r∈R
∨

s∈Λ pr
s �= rr

s to ensure that the firing of each
reaction updates the state of the system.

Following an approach inspired by bounded model checking (BMC) [18], we
represent the finite path ρi = xi

0, . . . x
i
K for each Φi by defining each state as

a symbolic vector xi
j ∈ N

N
0 and “unrolling” the transition relation of TC (i.e.

asserting the constraint T (xi
j , x

i
j+1) for each i = 0 . . . n and j = 0 . . . K − 1).

For each path predicate Φi = (φ0, φF ) and path ρi we then assert the constraint
φ0(xi

0)∧φF (xi
K)∧Terminal(xi

K) according to Definition 1, where Terminal(x) �∧
r∈R

∨
s∈Λ xs < rr

s, i.e. no reactions are possible due to insufficient molecules
of at least one reactant.

The parameter K specifies the maximal trajectory length that is consid-
ered. The BMC approach is conservative, since computations that require more
than K steps (reaction firings) to reach a state satisfying φF will not be iden-
tified. Increasing K leads to a more complete search, and indeed the approach
becomes complete for a sufficiently large K determined by the diameter of a
system, but also increases the computational burden. To alleviate this, we follow
an approach from [11] and consider stutter transitions (corresponding to multi-
ple firings of the same reaction in a single step) by using the following modified
transition relation definition Tst (as opposed to T from Eq. 1)

∀x, x′ ∈ X . Tst(x, x′) ↔ (Terminal(x) ∧ x = x′) ∨
∃n ∈ N .

∨

r∈R

∧

s∈Λ

(xs ≥ rr
s ∧ xs ≥ n · (rr

s − pr
s) ∧ x′

s = xs + n · (pr
s − rr

s)) .

For any enabled reaction r (xs ≥ rr
s), Tst allows r to fire up to n times in

the stutter transition. n is limited by the consumption and production of the
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species needed for the reaction to fire (xs ≥ n · (rr
s − pr

s)). In many cases,
stutter transitions dramatically decreases the required trajectory lengths (K),
since multiple copies of the same species can react simultaneously. However, this
is not restrictive, since for n = 1 the original definition of T is recovered. In
addition to such stutter transitions, Tst allows self loops at terminal states, and
therefore computations that require less than K steps to reach a state satisfying
φF can also be identified.

The encoding strategy described so far allows us to represent CRN synthesis
as an SMT-problem and apply an SMT solver such as Z3 [12] to produce a CRN
that satisfies the specification or prove that no such CRN exists for the choice
of M , N and K. More specifically, a solution CRN C is represented through the
valuation of r and p, which are extracted from the model returned by Z3.

In general, we are interested in enumerating many (or all possible) CRNs
for the given class (defined by M , N and K), which ensures that no valid solu-
tions are omitted at that stage. To do so, we apply an incremental SMT-based
procedure, where at each step we assert an uniqueness constraint guaranteeing
that no previously discovered CRNs are generated. Given a concrete, previously
generated CRN C′ = (Λ,R′) and the new symbolic CRN C = (Λ,R) we are
searching for (both of which are defined using the same species Λ), we define
the constraint DifferentFrom(C′) � ¬

∧
r∈R

∨
r′∈R′ r = r′, where r = r′ if and

only if rr
s = rr′

s ∧ pr
s = pr′

s for all s ∈ Λ. The new CRN C cannot simply be a
permutation of the same reactions3. We start by generating a solution C′ (if one
exists), asserting the constraint DifferentFrom(C′), and repeating this procedure
until the constraints become unsatisfiable, which corresponds to a proof that not
additional CRNs exists for the given N , M , and K.

4.2 Tuning CRNs with Parameter Optimisation

Here, we present our approach to optimising the reaction rates for CRNs satisfy-
ing {Φ0, . . . ,Φn}. This becomes a parameter synthesis problem over a pCTMC
set, analogous to parameter synthesis for a single pCTMC, as studied in [13,14].
In contrast to this work, we aggregate over the multiple input combinations, as
specified in Problem 1.2.

To obtain solutions for the probability at a specified time πt, we used numer-
ical integration of the CME. Specifically, we used the Visual GEC software
(http://research.microsoft.com/gec) to encode the CRNs and then integrate the
CME for each combination of inputs.

To solve the maximisation problem, we used a Markov chain Monte Carlo
(MCMC) method, as implemented in the Filzbach software (http://research.
microsoft.com/filzbach). Filzbach uses a variation of the Metropolis-Hastings
(MH) algorithm to perform Bayesian parameter inference. The MH algorithm is
used to approximate the posterior probability of a parameter set from a hypoth-
esised model taking on certain values, constrained by a likelihood function. The
3 At present, our uniqueness constraint does not consider other CRN isomorphisms

but certain species symmetries are broken by the specification Φi.

http://research.microsoft.com/gec
http://research.microsoft.com/filzbach
http://research.microsoft.com/filzbach
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probability of each parameter value is then approximated by constructing a
Markov chain of sampled parameter sets, such that a proposed parameter set
is accepted with some probability, based on the ratio of the likelihood func-
tion evaluated at current and proposal parameter sets. For more information
on MCMC methods, see [19]. MCMC methods, such as simulated annealing,
have also been shown to efficiently find solutions to combinatorial optimisation
problems [20], taking a stochastic search approach similar to the MH algorithm.
Stochastic search can provide benefits over gradient-based optimisers by main-
taining a nonzero probability of making up-hill moves, protecting against getting
stuck in poor local optima. To use Filzbach for providing solutions to optimi-
sation CRN parameters, it is sufficient to encode the argument of Problem1.2
as a likelihood function. Subsequently, we generate MCMC chains with suit-
ably many burn-in iterations and samples to obtain an approximate optimising
parameter set k.

4.3 Calculating Expected Time

To evaluate the temporal performance of a CRN algorithm C, we make use
of Markov chain theory to obtain the expected time until a terminal state is
reached. This is an exact measure of the expected running time for a given
pCTMC with inputs i ∈ I, as opposed to using the mean of many stochastic
simulations [10].

Let A ⊆ Xr be the absorbing states of a pCTMC MC
p = (X,π0,Qp) and let

τA be a vector of expected hitting times, corresponding to the expected time
of transitioning from a state x ∈ Xr to A. Then τA can be evaluated as the
solution to the equations (page 113 of [21])

τA
x = 0 for x ∈ A

−
∑

x′∈Xr

qx,x′τA
x′ = 1 for x /∈ A.

Numerical solutions can be obtained by forming a matrix W where the rows
and columns of Qp corresponding to the terminal states (A) have been removed.
Then, τA is the solution to WτA = 1, where 1 is the vector of 1’s. Numerical
solutions can be obtained using Gaussian elimination.

Note that the time complexity analysis of CRNs typically assumes a volume
n equal to the maximum number of molecules in the system at any time [8]
(equivalent to parallel time in PPs [10]). This volume can be included by dividing
each propensity by n before calculating expected time (see Sect. 2). In the case
of bimolecular CRNs this is equivalent to multiplying τA by n.

5 Case Studies

5.1 Approximate Majority

Approximate Majority is one of the most analysed functions in distributed com-
puting. It is the approximate version of the majority problem, which cannot be
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exactly computed by bimolecular CRNs (or population protocols) with less than
4 species [22]. For CRNs with 2 and 3 species there are known optimal (in terms
of reaction firings) approximate algorithms [15,16].

We specify the majority problem using the path predicate (see Sect. 2):
ΦAM (a, b) := (φ0(a, b), φF (a, b)), where

φ0(a, b) :=

{
A = a ∧ B = b if N = 2,

A = a ∧ B = b ∧ X = 0 if N = 3

φF (a, b) :=

⎧
⎪⎨

⎪⎩

Am
a,b if a > b

Bm
a,b if a < b

Am
a,b ∨ Bm

a,b otherwise

where Am
a,b := A = a + b ∧ B = 0 and

Bm
a,b := A = 0 ∧ B = a + b

We used inputs a, b ∈ [1 . . . 5]2 ∪ [6 . . . 10]2 for both optimisation and synthe-
sis. We applied the SMT approach to identify all CRNs with 2 to 4 reactions and
2 or 3 species that satisfy ΦAM for K ≤ 5 stutter steps (for N species and M

reactions, there are
(
N2(N2−1)

M

)
total possible CRNs). We used a short optimisa-

tion (20 burn-in, 20 samples) and sorted these solutions by the value of PΦAM

for each. We then applied a longer optimisation (700 burn-in, 700 samples) to
the top 10 CRNs (Fig. 1).
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Fig. 1. Performance of approximate majority circuits. The SMT-based method
was applied to the approximate majority specification for CRNs with 2, 3 and 4 reac-
tions. For each category, the top 10 CRNs satisfying ΦAM are ordered by their average
probability after a short optimisation (20 burn-in, 20 samples; red bars). A longer
optimisation (700 burn-in, 700 samples; green bars) was also performed. We also show
the average probabilities before optimisation (all rates equal to 1.0; blue bars). The
dashed line is the average probability of CRN AM3,4 #448 after the longer optimisa-
tion, 0.8999, the maximum average probability in this trail.
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Fig. 2. Response of Approximate Majority algorithms to varied inputs. For each input
combination, specified as initial copies of species A and species B, the probability
that both have the correct molecule count after 100 time units is reported. Results
are shown for a variety of networks that performed well following optimisation (see
Fig. 1). The performance of each CRN is compared both before optimisation (all rates
equal to 1.0; left panels) and after long optimisation (central panels). The grey boxes
show the input ranges used for both generation and optimisation. The expected time
until the CTMC reaches a terminal state is calculated for varying total molecule counts
(n) (right panels). These times consider rates scaled as if occurring in a volume n
(see Sect. 4.3). The completion times for three alternative initial configurations (initial
copies of A were 10 %, 60 % and 90 % of n respectively) were calculated, illustrating
minor differences in circuit completion times (× marks systems using optimised rates
and • marks systems using 1.0 for all rates).
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Using our approach, we found 1 CRN with 2 reactions and 2 species, the
known direct competition (DC) network [23] (Fig. 2a). Out of 59,640 possible
CRNs with 3 species and 3 reactions, the SMT solver found 39 CRNs where
ΦAM was satisfied, 2 of which with probability over 0.696 after the short opti-
misation (see Fig. 1). These two networks (AM3,3 #24 and AM3,3 #28) are
the dual of each other and behave asymmetrically but perform well owing to a
compensatory asymmetric parameterisation (Fig. 2c). One might expect that we
should discover the known approximate majority circuit [15,17], (see Fig. 2b).
However, this CRN does not satisfy the specification ΦAM since, for input
(A = 1, B = 1,X = 0) the network terminates in the state (A = 0, B = 0,X = 2)
and thus fails to make a decision. If we remove this single problematic input
from the specification ΦAM , then this CRN is indeed discovered. We include it
for comparison as AM3,3 #39. Note that it scores a 0 on inputs A = 1, B = 1.

By increasing the number of reactions to 4, the SMT solver found 515 sat-
isfying networks out of the 1,028,790 possible ones. The top 5 networks, AM3,4

#448, #328, #445, #333, and #257 have the same rules as the 3 reaction net-
work AM3,3 #39 but each has a different 4th reaction. The network AM3,4 #162
had a lower performance than AM3,3 #39 before optimisation and was almost
as good following optimisation. This network was also asymmetric, with a corre-
sponding asymmetric parameterisation after optimisation (Fig. 2d). The known
4 reaction network AM3,4 #174 [17] (Fig. 2e) is also identified in 10th position.

Finally, we analysed the expected time until termination for each circuit,
using the procedure in Sect. 4.3 (right-hand panels of Fig. 2). Note that Defi-
nition 2 does not reward circuits that reach a high probability before the final
time tf = 100. However, in nearly all cases, the estimated hitting time of each
system was improved by optimisation.

Computation Times. The computation times of our procedure depend on the
size of the circuit (M and N), length of considered computations (K) and exact
specification Φ (including the number of given path predicates). We illustrate the
computation times required for the SMT-based synthesis part of our approach
with the majority decision-making CRNs (Fig. 3).

To determine how the CME calculation used in our method scales with mole-
cular copy numbers, we first ran calculations of the CME for the established
3-reaction approximate majority CRN (system AM3,3 #39). The calculation
was initialised with 0.6n copies of A and 0.4n copies of B, and all rates were
set to 1. As increasing the copy number decreases the simulation time inter-
val over which there are transient dynamics, we integrated the CME over the
time interval

[
0, 100

n

]
, where n is the total copy number. We calculated transient

probabilities at 500 output points, with n ∈ [10, 1000]. This led to state-spaces
of varying size, up to 106, with all calculations completing within 7200 s (2 h)
(Fig. 4). Smaller examples took only a few seconds.

We can approximate the total run-time for parameter tuning as a func-
tion of the number of iterations of the MCMC algorithm and the number of
input combinations assessed. For example, doing 200 iterations over 10 input
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Fig. 3. Computation times for the SMT-based synthesis of majority
decision-making CRNs. Panel (a) shows the time required to generate a number of
solutions (candidate CRNs) for ΦAM for N species and M reactions (denoted AMN,M )
for N, M ∈ {3, 4}2. The computation was halted after 2 h. Panel (b) shows the number
of solutions found as K (the length of considered computations with stutter transitions)
increases.
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Fig. 4. Transient probability calculation times for CRN AM3,3 #39. Times
indicated include the enumeration of the state-space, construction of a sparse matrix,
then numerical integration in the interval [0, 100

n
], where n is the total molecule count.

A single calculation was conducted for each value of n.

combinations which all have below 30 total molecules (�1 s each) suggests a
tuning procedure of no more than 2,000 s.

5.2 Division

Division is a non-semi-linear function and therefore it cannot be stably computed
by CRNs [8]. However, CRNs have been proposed that might implement the
calculation of a ratio [24], which allows plants to ration starch reserves during
seasonally changing nights.
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We specify the division problem using the path predicate (see Sect. 2):

ΦDiv(a, b) := (φ0(a, b), φF (a, b), where

φ0(a, b) :=

{
A = a ∧ B = b ∧ X = 0 if N = 3
A = a ∧ B = b ∧ X = 0 ∧ Y = 0 if N = 4

φF (a, b) := X =
⌊a

b

⌋

We chose the input ranges a, b ∈ [1, . . . , 10]2 for synthesis and optimisation to
give diverse selection of responses and to reinforce that �a

b � = 0 when a < b. We
applied the SMT approach to CRNs that satisfied ΦDiv with K < 20 (without
stutter transitions). For 3 species and 3 reactions, 22 CRNs were discovered.
For 4 species and 3 reactions, 34 CRNs were discovered. For 4 species and 4
reactions the first 105 CRNs were discovered. Of these, only one CRN DIV4,3

# 29 exceeded an average probability of 0.5, though in most cases, optimisation
improved performance substantially (Fig. 5). For many of the generated circuits,
high performance was observed only for b > a, which should always evaluate to
0, with poor performance for the nonzero output cases of a > b (Fig. 6a, b). Note
that Div4,3 #29 is so far the top scoring divider CRN in this class. Clearly, none
of these circuits can be considered as good algorithms for computing division,
though our procedure was able to detect some very simple yet mediocre circuits in
an automated way. It is possible that better circuits will be found by considering
CRNs with more reactions, species, and longer computation paths.
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Fig. 5. Performance of division circuits. The SMT-based method was applied
to the division specification for CRNs with N species and M reactions for N, M ∈
{(3, 3), (3, 4), (4, 4)}. This figure shows the optimisation results for the top 7 CRNs in
each category. The results are ranked and sorted by their average probability of being
correct in the grey shaded zone after being optimised for 50 MCMC sample and burn-
in steps (red bars). If a CRN scored an average probability of over 0.5 then it was
optimised for a further 200 MCMC burn-in and sample steps. The average probability
is shown for satisfying CRNs before optimisation (all rates equal to 1.0; blue bars).
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Fig. 6. Response of Division algorithms to varied inputs. For each input com-
bination, specified as initial copies of species A and species B, the probability that the
molecule count of X is �A/B� after 100 time units is reported. Results are shown for
the top network in each combination of species and reactions (see Fig. 5). The perfor-
mance of each CRN is compared both before optimisation (all rates equal to 1.0; left
panels) and after optimisation (right panels).

6 Discussion

In this paper, we presented a computational approach for the synthesis and
parameter tuning of CRNs, given a specification of the system’s correctness. We
focused on the sub-class of bimolecular CRNs due to their importance as repre-
sentations of various molecular algorithms and population protocols. However,
our approach is more general and could also be applied directly to the synthe-
sis of CRNs from other classes (e.g. unimolecular, trimolecular, etc.), which are
defined through different stoichiometry constraints. The CRNs we synthesize can
be converted into equivalent physical implementations, for example using DNA
strand displacement (DSD) [2,3]. However, our approach could also be applied
directly to synthesize DSD systems through additional structural constraints.
This could lead to simpler designs than the ones obtained through direct trans-
lation of CRNs.

We considered simple reachability properties defined in terms of predicates
on the initial and final states of a computation which are sufficient to express var-
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ious logical and arithmetic functions and operations. More general specifications,
for example where intermediate states along computations are specified, are also
currently possible within our approach but extensions to more expressive lan-
guages, such as the probabilistic temporal logics used with other methods [14],
remains a direction for future work.

An alternative approach to the problem of realising arbitrary behaviour in
biochemical systems is to use directed evolution [25,26] In silico evolutionary
search strategies might scale to larger CRNs and address the synthesis and para-
meter optimisation sub-problems using a single, combined procedure. However,
this comes at the cost of completeness, where the absence of a solution does
not mean a solution does not exist. In contrast, our method addresses the sub-
problems separately and uses the SMT solver and theorem prover Z3 to identify
CRNs that satisfy a given specification (kinetics are ignored at this first stage).
Since the results provided by Z3 are complete (for a sufficiently large K), the
termination of the procedure with no solutions is a “proof” that no CRNs exist
in the given class. Thus, besides providing a practical tool for the identification
of CRNs with given behaviour, the completeness property means our approach
could also help explore the theoretical limits of CRN computation (e.g. no CRNs
with less than M species and N reactions that compute a given function exists).
For many applications, elements of our method could be complementary with
evolutionary algorithms. For example, the exact CTMC methods we use to assess
the probability of correct computations in a given CRN could provide a useful
fitness function for evolutionary search, compared to alternative approximate
methods based on stochastic simulation.

The fully automated generation of “good” CRNs is a challenging problem and
certain scalability limitations of our current method must be addressed to provide
a more complete solution. Firstly, the SMT-based synthesis procedure we propose
may represent large or infinite state spaces and handle systems with large mole-
cule numbers. However, currently this method is limited to relatively small CRNs
with few reactions, species, and which have short computation paths. Secondly,
the CTMC methods we apply require an explicit representation of the state space,
which must be finite (which is always the case for biomolecular CRNs initialised
with a finite number of molecules) and contain few reachable states — this makes
the method suitable for systems involving relatively few species and numbers of
molecules. To circumvent the need for an explicit representation of the state space,
stochastic dynamical behaviour could be approximated by averaging multiple tra-
jectories from Gillespie’s stochastic simulation algorithm [27], using fluid or central
limit approximations [28], or using ordinary differential equations. Depending on
the specification, and the nature of the CRN, some of these approaches might be
appropriate, but none are free of their own documented limitations. Finally, the
large number of solutions identified at the synthesis stage of our approach makes
the parameter tuning phase challenging and indicates that additional constraints
describing more accurately the structure and dynamics of “good” solutions could
improve the method.
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For tuning reaction rates, alternative cost functions could be used that reward
solutions that are “nearly” correct, e.g. using a mean-squared error. This would
be most appropriate in high copy number situations, where a precise number of
molecules is not integral. Our approach is more appropriate for systems operating
at low copy numbers, offering an exact characterisation of the probability that a
specific predicate is satisfied. Our results were shown for calculations at tf = 100
time units, a transient probability, rather than at the stationary distribution.
While the selection of tf is subjective, it allows a circuit programmer to specify
how long they are willing to wait for a computation. Circuits that reach high
probability at t > tf will not be rewarded. However, a natural extension to
the presented method would be to reward circuits that reach high probability
at t < tf , both imposing an upper bound on time and optimising within that
range. This could be achieved by integrating our metric over the interval [0, tf ].

Automating the search for CRNs that compute the solution for a specified
problem would be beneficial to both theoretical and experimental molecular pro-
grammers. Our method can be used to show the existence or absence of CRNs
of a certain size and also suggest CRNs that can be tuned for a specific input
range, and so become candidate designs for experimental construction. Prior to
construction, more in-depth analysis of the candidate CRNs produced is benefi-
cial, including parameter sensitivity/robustness analysis and bifurcation analysis
(where appropriate). Future work could also incorporate notions of robustness
into the proposed method, for example by using interval-based methods [14]. Our
results illustrate the potential of this approach on several examples, including
the majority and division functions discussed here.

Acknowledgements. We thank Dan Alistarh and Luca Cardelli for helpful discus-
sions on the development and applications of our methodology.
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