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Preface

This volume contains the papers presented at DNA 21: the 21st International
Conference on DNA Computing and Molecular Programming. The conference was
held at the Wyss Institute for Biologically Inspired Engineering, Harvard University,
Massachusetts, USA, during August 17–21, 2015, and organized under the auspices
of the International Society for Nanoscale Science, Computation and Engineering
(ISNSCE). The DNA conference series aims to draw together mathematics, computer
science, physics, chemistry, biology, and nanotechnology to address the analysis,
design, and synthesis of information-based molecular systems.

Presentations were sought in all areas that relate to biomolecular computing,
including, but not restricted to: algorithms and models for computation on biomolec-
ular systems; computational processes in vitro and in vivo; molecular switches, gates,
devices, and circuits; molecular folding and self-assembly of nanostructures; analysis
and theoretical models of laboratory techniques; molecular motors and molecular
robotics; studies of fault-tolerance and error correction; software tools for analysis,
simulation, and design; synthetic biology and in vitro evolution; applications in
engineering, physics, chemistry, biology, and medicine.

Authors who wished to present their work were asked to select one of two sub-
mission tracks: Track A (full paper) or Track B (one-page abstract with supplementary
document). Track B is primarily for authors submitting experimental results who plan
to submit to a journal rather than publish in the conference proceedings. We received
63 submissions for oral presentations: 26 submissions in Track A and 37 submissions
in Track B. Each submission was reviewed by at least three reviewers, with an average
of four reviewers per paper. The Program Committee accepted 13 papers in Track A
and 15 papers in Track B. This volume contains the papers accepted for Track A.

We express our sincere appreciation to our invited speakers: George Church, Sharon
Glotzer, Lila Kari, Paul Rothemund, Leslie Valiant, and Chris Voigt. We would also
like to thank all of the authors who contributed papers to these proceedings, and who
presented papers and posters during the conference. Last but not least, the editors
would like to thank the members of the Program Committee and the additional invited
reviewers for their hard work in reviewing the papers and providing constructive
comments to authors.

August 2015 Andrew Phillips
Peng Yin
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Dominance and T-Invariants for Petri Nets
and Chemical Reaction Networks

Robert Brijder1,2(B)

1 Hasselt University, Hasselt, Belgium
2 Transnational University of Limburg, Hasselt, Belgium

robert.brijder@uhasselt.be

Abstract. Inspired by Anderson et al. [J. R. Soc. Interface, 2014] we
study the long-term behavior of discrete chemical reaction networks
(CRNs). In particular, using techniques from both Petri net theory and
CRN theory, we provide a powerful sufficient condition for a structurally-
bounded CRN to have the property that none of the non-terminal reac-
tions can fire for all its recurrent configurations. We compare this result
and its proof with a related result of Anderson et al. and show its con-
sequences for the case of CRNs with deficiency one.

1 Introduction

Chemical reaction network (CRN) theory studies the behavior of chemical sys-
tems. Traditionally, the primary focus is on continuous CRNs, where mass action
kinetics is assumed, see, e.g., [2,8–10]. In this setting a state is determined by
the concentration of each species and the system evolves through ordinary differ-
ential equations. However, in scenarios where the number of molecules is small
one needs to resort to discrete CRNs. In a discrete CRN a state (also called con-
figuration) is determined by the counts of each species, and one often associates
a probability to each reaction. In this paper we consider only discrete CRNs,
and so, from now on, by CRN we will always mean a discrete CRN.

A CRN essentially consists of a finite set of reactions such as A + B →
2B, which means that during this reaction one molecule of species A and one
molecule of species B are consumed and as a result two molecules of species B
are produced. We may depict a CRN as a graph, the reaction graph, where the
vertices are the left-hand and right-hand sides of reactions and the edges are
the reactions, see Fig. 1 for an example. We focus in this paper on the long-term
behavior of CRNs for which the number of molecules cannot grow unboundedly.
For such CRNs, called structurally-bounded CRNs, each configuration eventually
reaches a configuration c such that c is reachable from any configuration c′

reachable from c (i.e., we can always go back to c). Such configurations are
called recurrent. The CRN N of Fig. 1 is structurally-bounded.

Now, let us consider the CRN N ′ obtained from N by replacing every vertex
by one molecule of a distinct species Xi, see Fig. 2. We easily observe that for
N ′, the recurrent configurations are exactly those without molecules of species

c© Springer International Publishing Switzerland 2015
A. Phillips and P. Yin (Eds.): DNA 2015, LNCS 9211, pp. 1–15, 2015.
DOI: 10.1007/978-3-319-21999-8 1
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A + B
α1

2B
α2

B + C

α3

B
α5

A

α6

D
α7

2C

α4

Fig. 1. The reaction graph of a CRN N .

X1
β1

X2
β2

X3

β3

X5
β5

X6

β6

X7

β7

X4

β4

Fig. 2. The reaction graph of the CRN N ′ obtained from N by introducing a distinct
species Xi for each vertex.

X1 or X5. In other words, the reactions β1 and β5 cannot fire for any recurrent
configuration of N ′. Notice that the reaction graph of N ′ has two strongly-
connected components without outgoing edges: one having the vertices X2, X3,
and X4 and one having the vertices X6 and X7. The reactions outside these
two strongly-connected components are called non-terminal. Thus N ′ has the
property that none of the non-terminal reactions can fire for all its recurrent
configurations. But what about the original CRN N? The dynamics of N are
clearly more involved since we can go, for example, from configuration A + B
back to A + B by firing reaction α1 followed by firing reaction α5.

The main result of this paper, cf. Theorem 1, is a sufficient condition for a
structurally-bounded CRN to have the property that none of the non-terminal
reactions can fire for all its recurrent configurations (we recall the notion of
non-terminal reaction in Sect. 3). Those CRNs have relatively simple long-term
behavior. The sufficient condition of Theorem 1 (when formulated in terms of so-
called T-invariants in Corollary 2) is structural/syntactical and can be checked
for many CRNs in a computationally-efficient way. Various non-trivial CRNs
from the literature satisfy the sufficient condition of Theorem 1 (see, e.g., the
CRNs given in [1]), and so it can make non-trivial predictions about the long-
term behavior of those CRNs. In particular, the CRN N of Fig. 1 satisfies the
sufficient condition. Moreover, this result can also be used as a tool for engineer-
ing CRNs that perform deterministic computations (independent of the proba-
bilities), such as in the computational model of [5]. Indeed, such CRNs generally
require relatively simple long-term behavior which may be partially verified by
Theorem 1.

Theorem 1 is inspired by the main technical result of [1] (which in turn was
inspired by the main result of [16]), which provides another sufficient condition for
the non-applicability of non-terminal reactions for recurrent configurations. How-
ever, there are a number of differences between both results. First, Theorem 1 is
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derived in a basic combinatorial setting using notions from Petri net theory such
as the notion of T-invariant, without considering stochastics. In contrast, the intri-
cate proof of the main result of [1] is derived in a very different setting that uses
non-trivial arguments from both mass action kinetics and stochastics. Secondly,
we show examples where the main result of [1] is silent, while Theorem 1 makes
a prediction. In fact, we conjecture that the main result of [1] is a special case of
Theorem 1. We compare both results in detail in Sect. 4. While we focus in this
paper on recurrent configurations of CRNs, we mention that the related concept
of recurrent CRN has been investigated in [14].

While formulated in terms of CRNs, the results in this paper equally apply to
Petri nets, which is a very well studied model of parallel computation, see, e.g.,
[15]. Using the “dictionary” provided for the reader with a Petri net background
(see Subsect. 2.2), it is straightforward to reformulate the results in this paper
in terms of Petri nets.

Due to space constraints, proofs of the results are omitted and a corollary
concerning CRNs of deficiency one is omitted. They can be found in the full
version of this paper [4].

2 Standard Graph and CRN/Petri Net Notions

2.1 Preliminaries

Let N = {0, 1, . . .}. Let X and Y be arbitrary sets. The set of vectors indexed
by X with entries in Y (i.e., the set of functions ϕ : X → Y ) is denoted by Y X .
For v, w ∈ N

X , we write v ≤ w if v(x) ≤ w(x) for all x ∈ X. Moreover, we write
v < w if v ≤ w and v �= w. The support of v, denoted by supp(v), is the set
{x ∈ X | v(x) > 0}. For finite sets X and Y , a X × Y matrix A is a matrix
where the rows and columns are indexed by X and Y , respectively.

We consider digraphs G = (V,E, F ) where V and E are finite sets of vertices
and edges and F : E → V 2 assigns to each edge e ∈ E an ordered vertex pair
(u, v). We denote V by V (G) and E by E(G). The incidence matrix of G is the
V (G) × E(G) matrix A where for e ∈ E with F (e) = (v, w) we have entries
A(v, e) = −1, A(w, e) = 1, and A(u, e) = 0 for all u ∈ V \ {v, w} if v �= w,
and A(u, e) = 0 for all u ∈ V if v = w. The number of connected components
of a digraph G is denoted by c(G). It is well known that the rank r(A) of the
incidence matrix A of a digraph G is equal to |V | − c(G) (where it does not
matter over which field the rank is computed [13, Proposition 5.1.2]). From now
on we let the field Q of rational numbers be the field in which we compute.

A walk π in G is described by (particular) strings over E. Let Φ(π) denote the
Parikh image of π, i.e., Φ(π) ∈ N

E where (Φ(τ))(e) is the number of occurrences
of e in π. We write supp(π) = supp(Φ(π)), i.e., supp(π) is the set of elements
that occur in π. The vectors v of ker(A) ∩N

E describe the cycles of G, i.e., they
describe the Parikh images of closed walks in G.

For convenience we identify a digraph G with its V (G) × E(G) incidence
matrix. Hence, we may for example speak of the rank r(G) of G. We say that
e ∈ E(G) is a bridge if e is not contained in any closed walk of G. The induced
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subgraph G′ of G with respect to X ⊆ V (G) is the digraph G′ = (X,E′, F ′)
where E′ is the preimage of X2 under F and F ′ is the restriction of F to E′.
A strongly connected component (SCC, for short) is an induced subgraph G′ of
G with respect to X ⊆ V (G) such that G′ contains no bridge and X is largest
(with respect to inclusion) with this property.

2.2 CRNs and Petri Nets

We now recall the notion of a chemical reaction network.

Definition 1. A chemical reaction network (or CRN for short) N is a 3-tuple
(S,R, F ) where S and R are finite sets and F is a function that assigns to each
r ∈ R an ordered pair F (r) = (v, w) where v, w ∈ N

S. Vector v is denoted by
in(r) and w by out(r).

The elements of S are called the species of N , the elements of R are called the
reactions of N , and F is called the reaction function. For a reaction r, in(r) and
out(r) are called the reactant vector and product vector of r, respectively.

It is common in the literature of CRNs to omit the function F and have R
as a set of tuples (v, w). However, this would not allow two different reactions
to have the same reactant and product vectors (such situations are common in
Petri net theory).

In CRN theory, it is common to write vectors in additive notation, so, e.g.,
if S = {A,B,C}, then A + 2B denotes the vector v with v(A) = 1, v(B) = 2,
and v(C) = 0.

Example 1. Consider the CRN N = (S,R, F ) with S = {A,B}, R = {a, b},
F (a) = (A + B, 2B) and F (b) = (B,A). This CRN is taken from [16] (see also
[1]). This example is the running example of this section.

We now define a natural digraph for a CRN N , called the reaction graph of
N . The name is from [11], and the concept is originally defined in [8].

Definition 2. Let N = (S,R, F ) be a CRN. The reaction graph of N , denoted
by RN , is the labeled digraph (V,R, F ) with V = {in(r) | r ∈ R} ∪ {out(r) | r ∈
R}.
Note that in the reaction graph each reactant and product vector becomes a sin-
gle vertex. The vertices of the reaction graph are called complexes. The reaction
graph of the CRN N of our running example (Example 1) is depicted in Fig. 3.

A + B
a

2B B
b

A

Fig. 3. The reaction graph of the CRN of Example 1.

A configuration c of N is a vector c ∈ N
S . Let r ∈ R. We say that r can fire

on c if in(r) ≤ c. In this case we also write c →r c′ where c′ = c − in(r) + out(r).
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Note that c′ is a configuration as well. Moreover, we write c → c′ if c →r c′ for
some r ∈ R. For τ ∈ R∗ (as usual, R∗ is Kleene star on R) we write c →τ c′ if
c →τ1 c1 · · · →τn c′ where τ = τ1 · · · τn and τi ∈ R for all i ∈ {1, . . . , n}. The
reflexive and transitive closure of the relation → is denoted by →∗. If c →∗ c′,
then we say that c′ is reachable from c. We say that a configuration c is recurrent
if for all c′ with c →∗ c′ we have c′ →∗ c. Note that if c is recurrent and c →∗ c′,
then c′ is recurrent.

Example 2. Consider again the running example. We have, e.g., 2A + B →aabb

2A+B. However, 2A+B is not recurrent as 2A+B →b 3A and in configuration
3A no reaction can fire. In fact, the recurrent configurations of N are precisely
those that do not contain any B. Indeed, assume c is recurrent. Then we can fire
b until we obtain a configuration c′ that does not contain any B. No reaction
can fire for c′ and so c = c′ since c is recurrent.

The definition of a CRN is equivalent to that of a Petri net [15]. In a Petri Net,
species are called places p, reactions are called transitions, and configurations
are called markings. A Petri net is often depicted as a graph with two types of
vertices, one type for the places and one for the transitions. The Petri net-style
depiction of the running example is given in Fig. 4. The round vertices are the
places and the rectangular vertices are the transitions. We use in this paper
several standard Petri net notions, which are recalled in the next subsection.

A

B

a b

2

Fig. 4. The Petri net-style depiction of the running example.

2.3 P/T-Invariants

The notions of this subsection are all taken from Petri net theory [15]. We first
recall the notion of an incidence matrix of a CRN, which is not to be confused
with the notion of an incidence matrix of a digraph (as recalled above). In fact,
we will compare in the next subsection the incidence matrix of a CRN with the
incidence matrix of its reaction graph.

Definition 3. For a CRN N = (S,R, F ), the incidence matrix of N , denoted
by IN , is the S × R matrix A where for each r ∈ R the column of A belonging
to r is equal to out(r) − in(r).
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Example 3. Consider again the CRN N of the running example. Then

IN =
( a b

A −1 1
B 1 −1

)
.

Note that if c →τ c′, then c′ = c + INΦ(τ), where Φ(τ) denotes again the
Parikh image of τ .

A v ∈ N
S is called a P-invariant of N if vT IN = 0 (here 0 denotes a zero

vector of suitable dimension indexed by R). Similarly, v ∈ N
R is called a T-

invariant of N if INv = 0, i.e., v ∈ ker(IN ).1 A P-invariant or T-invariant are
also sometimes called P-semiflow and T-semiflow, respectively, in the literature.
Observe that if c →τ c′, then Φ(τ) is a T-invariant if and only if c′ = c. A CRN
N is called conservative if there is a P-invariant v such that supp(v) = S. Also,
N is called consistent if there is a T-invariant v such that supp(v) = R.

A CRN N is said to be structurally bounded when for every configuration c,
there is a kc ∈ N such that for each configuration c′ with c →∗ c′ we have that
each entry of c′ is at most kc. Note that for a structurally-bounded CRN, the
number of different configurations reachable from a given configuration is finite,
and so for each configuration c, there is a recurrent configuration reachable from
c. In this way, one often informally views the recurrent configurations as the
possible states of the CRN in “the long term”.

The following result is well known.

Proposition 1 ([12]). Let N be a CRN. If N is conservative, then N is struc-
turally bounded.

Example 4. The CRN N of the running example is both conservative and consis-
tent. Indeed, any v ∈ N

S with v(A) = v(B) ≥ 1 is a P-invariant with supp(v) = S
and any w ∈ N

R with v(a) = v(b) ≥ 1 is T-invariant with supp(v) = R.

2.4 Deficiency

The notions that we recall in this subsection are originally from chemical reaction
theory (and are less studied within Petri net theory).

Let N = (S,R, F ) be a CRN and let V = {in(r) | r ∈ R} ∪ {out(r) | r ∈ R}.
We denote by YN the S ×V matrix with for all s ∈ S and v ∈ V , entry YN (s, v)
is equal to v(s).

The next lemma relates the incidence matrix IN of a CRN N with the
incidence matrix of the reaction graph RN of N .

Lemma 1 (Sect. 6 of [9]). Let N = (S,R, F ) be a CRN. Then IN = YNRN .

1 The P and T in P/T-invariant are short for Place and Transition (from Petri net the-
ory). We choose to use these well-known names instead of calling them “S-invariant”
and “R-invariant” for Species and Reaction, respectively.
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In the above equality, RN denotes the incidence matrix RN and not the graph.
As a corollary to Lemma 1, we have the following.

Corollary 1 ([11]). Let N = (S,R, F ) be a CRN. Then ker(RN ) ⊆ ker(IN ).

The vectors v of ker(RN ) ∩ N
R, which are T-invariants by Corollary 1, are

called closed T-invariants [3]. Recall that the vectors v of ker(RN )∩N
R describe

the cycles of RN , and so for each closed T-invariant v of N , supp(v) does not
contain any bridge of RN . Since each of the entries of a T-invariant is nonnega-
tive, the linear space ker(IN ) does not necessarily have a basis consisting of only
T-invariants, see Example 5 below.

The deficiency δ(N) of a CRN N is r(RN ) − r(IN ). By Corollary 1, δ(N)
is non-negative. Thus, one may view δ(N) as a measure of the difference in
dimensions between ker(RN ) and ker(IN ). The former is determined only by
the structure of the reaction graph (ignoring the identity of the vertices), while
the latter also incorporates the relations that rely on the identities of the vertices
of the reaction graph.

Recall from Subsect. 2.1 that r(RN ) = |V (RN )| − c(RN ). Hence, we have
δ(N) = |V (RN )| − c(RN ) − r(IN ) [8,10]. Note that if δ(N) = 0, then every
T-invariant of N is closed and ker(RN ) = ker(IN ).

A + B
a

2B A
b

B

Fig. 5. The reaction graph of a CRN discussed in Example 5.

Example 5. In the running example, ker(RN ) only contains the zero vector,
while ker(IN ) contains all scalar multiples of the vector w with w(a) = w(b) = 1.
Thus ker(IN ) has a basis consisting of only T-invariants. Moreover, δ(N) = 1.
Alternatively, the reaction graph RN has 4 vertices and 2 connected components
and r(IN ) = 1. Thus, δ(N) = 4 − 2 − 1 = 1.

If we consider the CRN N ′ of Fig. 5, then ker(RN ′) also only contains the
zero vector, while ker(IN ′) contains all scalar multiples of the vector w with
w(a) = −w(b) = 1. Again, δ(N ′) = 1, however the only T-invariant of ker(IN ′)
is the zero vector.

3 Dominance and Non-closed T-Invariants

Note that there is a natural partial order for the set of SCCs of a graph: for
SCCs X and Y , we have X � Y if there is a path from a vertex of Y to a vertex
of X. We now consider a different partial order, denoted by ≤d, for the SCCs of
a reaction graph of a CRN.

Let N be a CRN. For SCCs X and Y of RN we write X ≤d Y if there are
vertices x of X and y of Y such that x ≤ y.
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Lemma 2. Let N = (S,R, F ) be a structurally-bounded CRN. Then the ≤d

relation between SCCs of RN is a partial order.

For SCCs X and Y we write X <d Y if X ≤d Y and X �= Y . We say that X
dominates Y when X <d Y . For a set S of SCCs, we let min≤d

(S) ⊆ S be the
set of elements of S that are minimal with respect to the ≤d relation among all
the elements of S.

Let us define for a SCC X of RN , out(X) = {r ∈ E(RN ) | in(r) ∈
V (X), out(r) /∈ V (X)}. We call X terminal if out(X) = ∅. We call a reaction
r (complex x, resp.) terminal if r ∈ E(X) (x ∈ V (X), resp.) for some terminal
SCC X of RN .

We will consider the minimal set X of non-terminal SCCs that dominates all
other non-terminal SCCs. In other words, if we let N be the set of non-terminal
SCCs, then X = min≤d

(N ).
Let B be the set of bridges of RN . The exit set of a set S of non-terminal

SCCs, is a set Z ⊆ B with both |Z| = |S| and |Z ∩ out(X)| = 1 for all X ∈ S.
In other words, Z contains exactly one bridge of out(X) for each X ∈ S.

Assuming the existence of a non-terminal reaction that can fire for some
recurrent configuration c, the main result of this paper ensures the existence of
certain sequences τ with c′ →τ c′ for some configuration c′ reachable from c. For
each exit set Z, there exists such a τ that avoids all bridges outside Z and, at
the same time, uses the bridges of Z whenever possible. As a consequence, each
of the sequences τ corresponds to a T-invariant v = Φ(τ) that have zero entries
for the bridges outside Z and nonzero entries for some of the bridges inside Z.
We will show that for various CRNs this necessary condition allows one to show
that only terminal reactions can fire for all its recurrent configurations.

The proof idea is the following. Let us start with a recurrent configuration c.
While traversing the configuration space by applying reactions starting from c,
we need never choose a bridge of RN going out of a SCC X that is dominated
by some Y (i.e., Y <d X). Indeed, if x ∈ V (X) and y ∈ V (Y ) with y < x, then
we may walk inside X to x and y < x implies that any reaction r with in(r) = y
can fire for x. In this way we also avoid taking a reaction r′ with in(r′) = x.
Moreover, walking out of Y can be done by taking any of the bridges. We choose
the one from the exit set Z. Now, eventually, our path inside RN will lead to
a terminal vertex. However, since c is recurrent, we can go back to c. If a non-
terminal reaction can fire for c, then this means that we can iterate this process
(walking along bridges, etc.). Structural boundedness finally ensures that the
configuration space is finite and so, we must eventually repeat a configuration
that closes the “circuit”.

We are now ready to formulate the main result of this paper.

Theorem 1. Let N = (S,R, F ) be a structurally-bounded CRN, and let X =
min≤d

(N ), where N is the set of non-terminal SCCs of RN . Let B be the set of
bridges of RN . Let L be the set of all non-terminal reactions r of RN such that
there is a non-terminal reaction r′ of RN with in(r′) < in(r).

If some non-terminal reaction can fire for some recurrent configuration c,
then for each exit set Z of X , there is a τ ∈ R∗ such that
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1. τ contains no reactions from (B \ Z) ∪ L,
2. τ = π1σ1 · · · πnσn where each πi is a path in RN from a non-terminal vertex

to a terminal vertex and each σi is a sequence of terminal reactions, and
3. c′ →τ c′ for some recurrent configuration c′ reachable from c.

A
a

E C
b

D E + D
d

A + C

Fig. 6. The reaction graph of the CRN of Example 6.

We illustrate Theorem 1 through a couple of examples.

Example 6. Consider the CRN N of Fig. 6. It is easy to verify that c = A + C is
a recurrent configuration. Moreover, there is a non-terminal reaction r that can
fire for this configuration (take r = a or r = b). Note that there is only one exit
set Z for X , which is Z = B = {a, b, d}. By Theorem 1, there is a τ ∈ R∗ such
that (1) τ contains no reactions from (B \ Z) ∪ L, (2) τ is a sequence of paths,
each going to a terminal vertex, and (3) c′ →τ c′ for some recurrent configuration
c′ reachable from c. Indeed, we can choose, e.g., τ = abd and c′ = A + C.

A + C
a

E + C E + D
b

A + D

Fig. 7. The reaction graph of the CRN of Example 7.

We now give another example.

Example 7. Consider the CRN N of Fig. 7. It is easy to verify that c = A+C+D
is a recurrent configuration. Moreover, there is a non-terminal reaction r that
can fire for this configuration (take r = a). We have that Z = B = {a, b} is the
unique exit set Z for X . We notice that τ = ab and c′ = A + C + D satisfy the
conditions of Theorem 1. Indeed, we have τ = τ1σ1τ2σ2 with τ1 = a, σ1 = ε
(the empty string), τ2 = b, and σ2 = ε. Note that if N contained the additional
reaction A + D →d E + D, then τ = ab and c′ = A + C + D would again satisfy
the conditions of Theorem 1, where τ = τ1σ1 with τ1 = a and σ1 = b.

Considering the non-closed T-invariant v = Φ(τ) with τ from Theorem 1, we
have the following corollary to Theorem 1. Note that Condition 2 of Theorem 1
implies that supp(v) contains a bridge, and therefore v(z) �= 0 for some z ∈ Z.

Corollary 2. Let N , X , B, and L be as in Theorem 1.
Assume there is an exit set Z of X such that there is no non-closed T-

invariant v with (1) v(x) = 0 for all x ∈ (B \ Z) ∪ L and (2) v(z) �= 0 for some
z ∈ Z.

Then no non-terminal reaction can fire for any recurrent configuration of N .
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We remark that, in view of Theorem 1, Corollary 2 can be strengthened
by replacing the condition v(z) �= 0 for some z ∈ Z with the stronger (but
more involved) condition that says that the (occurrences of the) non-terminal
reactions of v form a set of paths where each path ends in a terminal vertex.

Note that since closed T-invariants v cannot contain bridges, we may without
loss of generality remove the condition that v is “non-closed” in Corollary 2.

We use Corollary 2 to determine whether no non-terminal reaction can fire
for any recurrent configuration of a CRN. While non-closed T-invariants have a
central role in Corollary 2, curiously, this notion from [3] has been given only
modest attention in both the Petri net theory and the CRN theory.

For a given exit set Z of X , one can verify using linear programming in
polynomial time whether or not there is a non-closed T-invariant v with the
properties of Corollary 2. While in general there may be an exponential number
of exit sets (exponential in the number of reactions) to check, in many cases
the number of exit sets is severely constraint and in these cases the sufficient
condition of Corollary 2 is computationally efficient.

A
a

J
b

c

C
d

e
D D + E

f
J + H

A + H
g

A + E C + H
h

C + E

Fig. 8. The reaction graph of the CRN of Example 8.

We now give some examples to illustrate Corollary 2.

Example 8. Consider the CRN N of Fig. 8. This CRN is a simplification of a
CRN from biology studied in [16] (see also [1]). We have

IN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b c d e f g h

A −1 1 0 0 0 0 0 0
J 1 −1 −1 1 0 1 0 0
C 0 0 1 −1 −1 0 0 0
D 0 0 0 0 1 −1 0 0
E 0 0 0 0 0 −1 1 1
H 0 0 0 0 0 1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easy to verify that the sum of the rows of IN is the zero vector and so N is
conservative. Consequently, N is structurally bounded. It turns out that ker(IN )
is of dimension 4 and is spanned by T-invariants. In fact, one can verify that
ker(IN ) is spanned by the two closed T-invariants w1 = Φ(ab) and w2 = Φ(cd)
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together with the two non-closed T-invariants v1 = Φ(gfce) and v2 = Φ(hfce).
We remark that A+H +D →gfce A+H +D and C +H +D →hfce C +H +D.
Thus δ(N) = 2. Note that B = {e, f, g, h} is the set of bridges of RN . Let X
be the set of non-terminal SCCs of RN that are minimal with respect to ≤d.
We notice that Z = {e, f} is the only exit set of X . Also L = {g, h}. Now,
the non-closed T-invariants v1 and v2 are witnesses that there is no non-closed
T-invariant v with both (1) v(g) = v(h) = 0 (note that (B \Z)∪L = {g, h}) and
(2) either v(e) or v(f) nonzero. By Corollary 2, for every recurrent configuration
no non-terminal reaction can fire. Since every reaction is non-terminal, for every
recurrent configuration no reaction can fire.

A + B
a

2B B + C
b

A + C

Fig. 9. The reaction graph of the CRN of Example 9.

The next example shows that the converse of Theorem 1 does not hold.

Example 9. Consider the CRN N of Fig. 9. We show that no reaction can fire
for any recurrent configuration of N . Let c be a recurrent configuration. If c does
not contain any C, then we can fire reaction a until we obtain a configuration
c′ for which no more reactions can fire. Since c is recurrent, c = c′ and we are
done. If c contains at least one C, then we can apply reaction b until we obtain a
configuration c′′ with only A’s and C’s. Hence no reaction can fire for c′′. Since
c is recurrent, we have c = c′′ and we are done.

However, for c = A + B + C we have c →τ c with τ = ab. We notice that
Z = {a, b} is the only exit set of X and (B \Z)∪L = ∅. Thus τ trivially contains
no reactions from (B \Z)∪L and τ = π1π2 with paths π1 = a and π2 = b in RN

from non-terminal vertices to terminal vertices. This shows that the converse of
Theorem 1 does not hold.

We remark that if we remove species C from reaction b (in this way obtaining
the running example of Sect. 2), then Corollary 2 (and Theorem 1) would have
been applicable to show that no (non-terminal) reaction can fire for any recurrent
configuration of N .

4 Using Rates

This paper is inspired by the main technical result of [1] (cf. Theorem 3.3 of the
supplementary material of [1]). In this section we recall its result. First we recall
a particular matrix. Let R≥0 (R>0, resp.) be the set of nonnegative (positive,
resp.) real numbers.

Definition 4. Let N = (S,R, F ) be a CRN. Let V = V (RN ) and let κ ∈ R
R
>0.

We denote by KN,κ the S × V matrix where for each x ∈ V the column of KN,κ

belonging to x is equal to
∑

r∈R,in(r)=x κ(r) · (out(r) − in(r)).
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The value κ(r) in Theorem 2 may be interpreted as the “rate” of reaction r.
Note that the definition of KN,κ is closely related to the definition of IN

(Definition 3).
We are now ready to formulate the main technical result of [1].

Theorem 2 ([1]). Let N = (S,R, F ) be a conservative CRN and V = V (RN ).
Let L be the set of non-terminal vertices v of RN such that there is a non-
terminal vertex v′ of RN with v′ < v. Assume that L �= ∅.

If some non-terminal reaction can fire for some recurrent configuration c,
then for all κ ∈ R

R
>0, there is a w ∈ ker(KN,κ) ∩ R

V
≥0 with supp(w) ∩ L = ∅ and

there is a non-terminal vertex x with x ∈ supp(w).

Theorem 2 is proved in [1] using both intricate probabilistic arguments and
methods from mass action kinetics. In [1], the theorem is unnecessarily stated
in a probabilistic fashion using the notion of “positive recurrent configuration”
for stochastically modeled CRNs: it can be stated in a deterministic way (see
Theorem 2 above) by realizing that the configuration space is finite for a given
initial configuration in a structurally-bounded CRN. This deterministic formu-
lation and the discrete model (in contrast to mass action) triggered the search
of this paper for a combinatorial explanation of this result. We invite the reader
to compare the proof techniques used to prove Theorem 2 in [1] and Theorem 1
in this paper.

2B A + B
ab

2A

Fig. 10. The reaction graph of the CRN of Example 10.

Note that if L = ∅, then Theorem 2 is silent. We now show an example with
L = ∅ where Corollary 2 can be applied.

Example 10. Consider the CRN N of Fig. 10. Note that N is conservative with
w(A) = w(B) = 1 as a witness. The only T-invariants v of N are those where
v(a) = v(b). Let Z = {a} be an exit set of X . Then there is no non-closed T-
invariant v with v(b) = 0 and v(a) �= 0. By Corollary 2, no non-terminal reaction
can fire for any recurrent configuration c of N . Since all reactions of N are non-
terminal, no reaction can fire for any recurrent configuration c of N . Indeed,
one observes that the recurrent configurations of N are those configurations
containing either only A’s or only B’s, for which a and b cannot fire.

We conjecture that the assumption L �= ∅ can be removed from Theorem 2.
In case L �= ∅ is removed from Theorem 2, then Theorem 2 also predicts that
no non-terminal reaction can fire for any recurrent configuration of the CRN of
Example 10. Next, we give an example with L �= ∅, where Corollary 2 can be
applied but Theorem 2 is silent.
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A + D
a

B + D
b

c
C + D B + E

d

A + E
e

f
C + E

2A + D
g

3F

Fig. 11. The reaction graph of the CRN of Example 11.

Example 11. Consider the CRN N of Fig. 11. Note that N is conservative with
w(X) = 1 for all species X as a witness. Note that A + D < 2A + D and so
L �= ∅ in Theorem 2. Let κ ∈ R

R
>0. We have KN,κ =

⎛
⎜⎜⎜⎜⎜⎜⎝

A + D B + D B + E A + E 2A + D C + D C + E 3F

A −κ(a) κ(b) κ(d) −κ(e) − κ(f) −2κ(g) 0 0 0
B κ(a) −κ(b) − κ(c) −κ(d) κ(e) 0 0 0 0
C 0 κ(c) 0 κ(f) 0 0 0 0
D 0 0 0 0 −κ(g) 0 0 0
E 0 0 0 0 0 0 0 0
F 0 0 0 0 3κ(g) 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let w ∈ R
V
≥0 with κ(a)w(A+D) = κ(d)w(B +E) > 0 and w(x) = 0 for all other

x ∈ V . Then w ∈ ker(KN,κ) ∩ R
V
≥0 with x ∈ supp(w) for some non-terminal

vertex x and supp(w) ∩ L = ∅. Thus Theorem 2 is silent. On the other hand,
none of the non-closed T-invariants of N contains a bridge and so by Corollary 2,
no non-terminal reaction can fire for any recurrent configuration of N .

Conversely, despite trying numerous examples, we could not find an example
where Theorem 2 predicts that no non-terminal reaction can fire for any recurrent
configuration, but where Theorem 1 is silent.

5 Discussion

Based on structural properties of CRNs, the main result of this paper (cf.
Theorem 1) provides a sufficient condition to analyze the long-term behavior
of CRNs. While its proof is using basic combinatorial arguments, the result is
powerful enough to apply to a large class of CRNs. Also, the sufficient condition
is computationally-efficient to verify for many CRNs. Another such sufficient
condition is shown in [1], cf. Theorem 2. We have shown examples of CRNs
where Theorem 1 is applicable while Theorem 2 is silent.

Given that discrete CRNs are equivalent to Petri nets, it is curious that the
corresponding research areas of CRN theory and Petri net theory have evolved
almost independently. In this paper we shown that notions from Petri net theory
(in particular, T-invariance) are useful for CRN theory. Similarly, notion such
as deficiency, originating from CRN theory, are useful for Petri net theory. At
the interface of these two notions is the scarcely-studied notion of non-closed
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T-invariant, which is crucial in the sufficient condition of Corollary 2. This illus-
trates that both research areas can significantly profit from each other.

An open problem is resolving whether Theorem 2 is indeed a special case
of Theorem 1. Another open problem is to somehow strengthen Theorem 1 in
a natural way to make it applicable for CRNs such as the one presented in
Example 9.

A further research direction is to incorporate probabilities. One may asso-
ciate a probability to each T-invariant by multiplying the probabilities of the
corresponding reactions. An open problem is to find a probabilistic version of
Theorem 1 to make predictions about long-term behavior of probabilistic com-
putational models of CRNs, such as the models of [6,7,17].
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Abstract. We consider how to generate chemical reaction networks
(CRNs) from functional specifications. We propose a two-stage approach
that combines synthesis by satisfiability modulo theories and Markov
chain Monte Carlo based optimisation. First, we identify candidate CRNs
that have the possibility to produce correct computations for a given
finite set of inputs. We then optimise the reaction rates of each CRN
using a combination of stochastic search techniques applied to the chem-
ical master equation, simultaneously improving the probability of correct
behaviour and ruling out spurious solutions. In addition, we use tech-
niques from continuous time Markov chain theory to study the expected
termination time for each CRN. We illustrate our approach by identify-
ing CRNs for majority decision-making and division computation, which
includes the identification of both known and unknown networks.

Keywords: Chemical reaction networks · Program synthesis · Para-
meter optimisation · Chemical master equation · Satisfiability modulo
theories · Markov chain Monte Carlo

1 Introduction

A central goal of molecular programming is to be able to implement arbitrary
dynamical behaviours. Chemical reaction networks (CRNs) are a popular for-
malism for describing biochemical systems, such as protein interaction networks,
gene regulatory networks, synthetic logic circuits and molecular programs built
from DNA. Extensive theoretical understanding exists about the behaviour of a
multitude of CRNs, and the behaviour of some networks has been exhaustively
explored [1]. Besides describing chemical systems, CRNs provide a common lan-
guage for expressing problems studied in computer science theory (e.g. Petri nets,
network protocols) as well as control theory and engineering. Methods exist to
convert CRNs into equivalent physical implementations, based on DNA strand
displacement [2,3] the DNA toolbox system [4] and genelets [5]. Therefore, we
sought to develop a methodology for proposing candidate CRNs that exhibit a
pre-specified behaviour.

The computational power of CRNs has been extensively studied [6]. It is
known that error-free (stably computing [7]) CRNs compute exactly the class of
c© Springer International Publishing Switzerland 2015
A. Phillips and P. Yin (Eds.): DNA 2015, LNCS 9211, pp. 16–33, 2015.
DOI: 10.1007/978-3-319-21999-8 2
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semi-linear functions [8,9]. However, if the stability restriction is relaxed and we
allow the CRN to sometimes compute the wrong answer then it is possible to
implement a register machine, that is, CRNs with error can compute functions
beyond the semi-linear class (indeed they are equivalent in power to Turing
machines) [6,10].

Although there are procedures to generate CRNs for semi-linear func-
tions [8,10], primitive recursive functions [6], or even from arbitrary Turing
machines [6], the proposal of practical (i.e. experimentally implementable) CRNs
that compute a given function has thus far mostly been a manual effort. In this
work, we attempt to automate the proposal of CRNs, by formally specifying a
behaviour and automatically identifying CRNs that satisfy the desired behaviour
with high probability. First, we formalise the problem of identifying CRNs that
have the capacity to produce correct, finite computations for a given finite set
of inputs. This corresponds to a synthesis problem, as opposed to verification,
where the goal is to determine the correctness of a given CRN [11]. We express
CRN synthesis as a satisfiability modulo theories (SMT) problem, which can be
addressed using solvers such as Z3 [12]. This allows us to generate a number
of candidate CRNs or to prove that no such CRN of a given size (in terms of
numbers of reactions, species and computation lengths) exists. However, while
the existence of correct computations is guaranteed for each generated CRN, the
probability of these computations might be low.

To determine whether correct computations can occur with high probabil-
ity, we next optimise the reaction rates of each generated CRN. To solve the
optimisation problem, we combine stochastic search strategies based on Markov
chain Monte Carlo (MCMC) with numerical integration of the chemical master
equation (CME). This part of the problem was recently addressed in [13,14],
though applied only to a single input.

In this paper, we specifically focus on uniform CRNs, those that have a fixed
number of species and reactions for all input sizes.We also restrict our atten-
tion to bimolecular CRNs, where there are precisely 2 reactants and 2 products
in every reaction. Bimolecular CRNs are equivalent to Population Protocols
(PPs) [7] and also guarantee that mass is conserved in the system. We applied
our two-step approach first to majority decision-making, in which the network
seeks to identify which of two inputs is in an initial majority. Majority networks
are well-studied in the literature, and there are many known CRNs that give
approximate solutions [15–17]. We then applied our approach to division, a non-
linear function which has been relatively less studied. We show a range of CRNs
for majority and division identified automatically using our method, some of
which have been identified and characterised previously, though some of which
are entirely novel. This illustrates the potential for automatically determining
CRNs with a specified behaviour.

2 Preliminaries

A chemical reaction network (CRN) is a tuple C = (Λ,R), where Λ = {s0, . . . , sn}
and R = {r0, . . . , rm} denote the finite sets of species and reactions, respectively.
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A reaction is a tuple r = (rr,pr, kr) where rr and pr are the reactant and product
stoichiometry vectors (rr

s ∈ N0 and pr
s ∈ N0 denote the stoichiometry of each

species s ∈ Λ), kr ∈ R≥0 denotes the rate of r and k denotes the vector of all
reaction rates. Given a reaction r = (rr,pr, kr), the set of reactants of r is {s ∈
Λ | rr

s > 0} and the set of products of r is {s ∈ Λ | pr
s > 0}. In this paper, we

focus on the class of bimolecular CRNs, where
∑

s∈Λ rr
s = 2 and

∑
s∈Λ pr

s = 2, for
all reactions r ∈ R.

The dynamical behaviour of bimolecular CRNs can be understood as fol-
lows. The set of all possible system states is X = N

|Λ|
0 , where a state x ∈ N

|Λ|
0

represents the number of molecules of each species. We denote the number of
molecules of species s ∈ Λ at state x by xs. Given a reaction r ∈ R where rr

s = 2
for some s ∈ Λ, the propensity1 of r at x is kr

x = kr · xs·(xs−1)
2 . If, on the other

hand, rr
s = rr

s′ = 1 for some species s, s′, the propensity of r is kr
x = kr · xs · xs′ .

The time at which reaction r would fire, once the system enters state x ∈ X,
is stochastic and follows an exponential distribution with a rate determined by
the reaction’s propensity kr

x. Assuming that reaction r is the first one to fire, the
state of the system is updated as x′

s = xs − rr
s + pr

s for all s ∈ Λ, where x and
x′ are the current and next states.

An abstraction of CRNs that preserves reachability but does not consider
reaction rates or time is given by the transition system T C = (X,T ), where the
transition relation T is defined as

∀x, x′ ∈ X . T (x, x′) ↔
∨

r∈R

∧
s∈Λ

(xs ≥ rr
s ∧ x′

s = xs − rr
s + pr

s) . (1)

In other words, the choice between reactions from R is non-deterministic but
enough molecules of each reactant must be present in state x for the reaction to
fire. The transition between states x and x′ happens when any reaction r ∈ R
fires and the number of molecules is updated accordingly. A path x0, x1, . . . of
T satisfies T (xi, xi+1) for i = 0, 1, . . . and, given an initial state x0 we call state
xf reachable from x0 if there exists a path x0, . . . , xf .

Given a CRN C, let X0 ⊆ X denote a finite set of initial states and Xr ⊆ X
denote the set of states reachable from X0. Assuming that Xr is finite, C can be
represented as a continuous time Markov chain (CTMC) that preserves infor-
mation about the transition probabilities and rates that determine the sto-
chastic behaviour of the system and the expected execution times. We define
a CTMC to be a tuple M = (Xr, π0,Q), where Xr is a finite set of states,
π0 : Xr → R is the initial distribution of molecule copy numbers of all species,
and Q : Xr × Xr → R is a matrix of transition propensities. While the set of
initial states is not represented explicitly, it is captured through the initial dis-
tribution, i.e. X0 = {x ∈ Xr | π0(x) > 0}. A CTMC MC is constructed from a
CRN C by first determining the set of reachable states, and then evaluating the
propensities of each reaction. The (i, j)th entry of Q, qij , represents a transition
from state xi to state xj . Accordingly, qii is the remaining probability mass,
1 We assume that the reaction volume is 1 to allow for later volume scaling e.g. kr

x/v
is the propensity for a reaction volume equal to v.
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equal to −∑
i�=j qij . The transient probability vector πt evolves according to

dπt

dt = πtQ, which is known as the chemical master equation (CME).
Following [13,14], a parametric CTMC (pCTMC) is a CTMC where the

reaction rates are parameterised by k, as above. Denote by P the parameter
space, P : RP

≥0, such that k is instantiated by a parameter point p ∈ P. Accord-
ingly, given a pCTMC M and parameter space P, an instantiated pCTMC
Mp = (X,π0,Qp) is an evaluation at point p ∈ P.

3 Problem Formulation

The main problem we consider in this paper, which we formalise in this section,
is the identification of CRNs that satisfy given properties. Specifically, we are
interested in finite reachability properties, which capture a range of interesting
CRN behaviours.

Let C = (Λ,R) be a given CRN and T C = (X,T ) and MC = (Xr, π0,Q)
denote its transition system abstraction and CTMC representation, as discussed
in Sect. 2. Let φ : X → B denote a state predicate, constructed using

φ : : = Eb

Eb : : = true | false | Ec | ¬Eb | Eb � Eb where � ∈ {∧,∨,⇒,⇔}
Ec : : = Ea � Ea where � ∈ {<,≤,=, >,≥}
Ea : : = s ∈ Λ | c ∈ Z | Ea � Ea where � ∈ {+,−, ∗}.

For example, if φ := s > 5, then φ(x) denotes that xs > 5.
In this paper, we consider path predicates Φ = (φ0, φF ), which are expressed

using two state predicates that must be satisfied at the initial (φ0) and at some
final (φF ) state of a path. Let K denote the number of steps we consider.

Definition 1. Given a finite path ρ : x0 . . . xK of T C we say that ρ satisfies
path predicate Φ = (φ0, φF ), denoted as ρ � Φ, if and only if φ0(x0) ∧ φF (xK)
evaluates to true and no reactions are enabled in xK (i.e. xK is a terminal
state).2

We define the probability of Φ, denoted PΦ, using MC as follows. Let X0 =
{x ∈ X | φ0(x)} denote the set of states that satisfy the initial state predicate.
We initialise MC with a uniform sample from the states that satisfy φ0, which
defines π0 as
2 We consider terminating computations by enforcing that no reactions are enabled at

the state that satisfies φF . Alternative strategies possible within our approach could
consider reaching a fix-point (i.e. the firing of any enabled reaction does not cause
a transition to a different state), or reaching a cycle along which φF is satisfied, to
guarantee that the correct output is eventually computed and remains unchanged
by any subsequent reactions.
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π0(x) =
{ 1

|X0| if x ∈ X0

0 otherwise

Similarly, XF = {x ∈ X | φF (x)} denotes the set of states satisfying the final
state predicate.

Definition 2. The probability of Φ is defined as

PΦ =
∑

x∈XF

πt(x),

where t denotes the maximal time we consider and πt is the probability vector at
time t computed using the CME introduced in Sect. 2. In other words, we define
PΦ as the average probability of the states satisfying φF at time t.

Note that it is possible to optimise for both speed and accuracy by, for example,
defining PΦ to be the integration of the probability mass of all states satisfying
φF from time 0 to time t.

Problem 1. Given a finite set of path predicates {Φ0, . . . ,Φn}, find a bimolecular
CRN C such that

1. for each Φi, there exists a path ρi of T C , such that ρi � Φi and
2. the average probability

∑n
i=0 PΦi

n+1 defined using MC is maximised.

4 Synthesis and Tuning of CRNs

We solve Problem 1 by addressing each of the two subproblems separately. First,
we generate a number of CRNs that satisfy the specifications from Problem1.1
using a satisfiability modulo theories (SMT)-based approach (Sect. 4.1). The
CRNs identified at that point are capable of producing a path that satisfy each
path predicate, which addresses Problem 1.1 but they might also include incor-
rect paths and the probability of correct computations might be low. Therefore,
we tune the reaction rates of these CRNs in order to maximise the average
probability (discussed in Sect. 4.2), which addresses Problem 1.2

4.1 SMT-Based Synthesis

Here, we present our approach to finding a bimolecular CRN C that satisfies
a specification expressed as path predicates {Φ0, . . . ,Φn} (Problem 1.1). We
address this problem by encoding T C symbolically for any possible bimolecu-
lar CRN C = (Λ,R) where |R| = M and |Λ| = N (i.e. the number of species and
reactions is given), together with the specification {Φ0, . . . ,Φn} for some finite
number of steps K, as a satisfiability modulo theories (SMT) problem. We then
use the SMT solver Z3 [12] to enumerate bimolecular CRNs that satisfy the spec-
ification or prove that no such CRNs exists for the given N , M , and K. Finally,
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we apply an incremental procedure to search for CRNs of increasing complexity
(larger N and M) or to provide more complete results by increasing K.

Using Z3’s theory of linear integer arithmetic, we represent the stoichiom-
etry of C as two symbolic matrices r ∈ N

M×N
0 and p ∈ N

M×N
0 (using integer

constraints to prohibit negative integers). Given a reaction r ∈ R and species
s ∈ Λ, rr

s (pr
s) defined in Sect. 2 is now encoded as a symbolic integer. We

ensure that only bimolecular CRNs are considered by asserting the constraints∧M−1
i=0

∑N−1
j=0 ri,j = 2 and

∧M−1
i=0

∑N−1
j=0 pi,j = 2. In addition, we introduce the

following constraints.

– We label a subset of the species ΛI ⊆ Λ as inputs and assert that∧
s∈ΛI

∨
r∈R rr

s > 0 to ensure all inputs are consumed by at least one reaction.
– We label a subset of the species ΛO ⊆ Λ as outputs and assert that∧

s∈ΛO

∨
r∈R pr

s > 0 to ensure all outputs are produced by at least one reac-
tion.

– We assert that
∧

r,r′∈R,r �=r′
∨

s∈Λ pr
s �= pr′

s ∨ rr
s �= rr′

s to ensure that two
reactions never have the same reactants and products and, therefore, all M
reactions are utilised.

– Finally, we assert that
∧

r∈R
∨

s∈Λ pr
s �= rr

s to ensure that the firing of each
reaction updates the state of the system.

Following an approach inspired by bounded model checking (BMC) [18], we
represent the finite path ρi = xi

0, . . . x
i
K for each Φi by defining each state as

a symbolic vector xi
j ∈ N

N
0 and “unrolling” the transition relation of TC (i.e.

asserting the constraint T (xi
j , x

i
j+1) for each i = 0 . . . n and j = 0 . . . K − 1).

For each path predicate Φi = (φ0, φF ) and path ρi we then assert the constraint
φ0(xi

0)∧φF (xi
K)∧Terminal(xi

K) according to Definition 1, where Terminal(x) �∧
r∈R

∨
s∈Λ xs < rr

s, i.e. no reactions are possible due to insufficient molecules
of at least one reactant.

The parameter K specifies the maximal trajectory length that is consid-
ered. The BMC approach is conservative, since computations that require more
than K steps (reaction firings) to reach a state satisfying φF will not be iden-
tified. Increasing K leads to a more complete search, and indeed the approach
becomes complete for a sufficiently large K determined by the diameter of a
system, but also increases the computational burden. To alleviate this, we follow
an approach from [11] and consider stutter transitions (corresponding to multi-
ple firings of the same reaction in a single step) by using the following modified
transition relation definition Tst (as opposed to T from Eq. 1)

∀x, x′ ∈ X . Tst(x, x′) ↔ (Terminal(x) ∧ x = x′) ∨
∃n ∈ N .

∨
r∈R

∧
s∈Λ

(xs ≥ rr
s ∧ xs ≥ n · (rr

s − pr
s) ∧ x′

s = xs + n · (pr
s − rr

s)) .

For any enabled reaction r (xs ≥ rr
s), Tst allows r to fire up to n times in

the stutter transition. n is limited by the consumption and production of the
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species needed for the reaction to fire (xs ≥ n · (rr
s − pr

s)). In many cases,
stutter transitions dramatically decreases the required trajectory lengths (K),
since multiple copies of the same species can react simultaneously. However, this
is not restrictive, since for n = 1 the original definition of T is recovered. In
addition to such stutter transitions, Tst allows self loops at terminal states, and
therefore computations that require less than K steps to reach a state satisfying
φF can also be identified.

The encoding strategy described so far allows us to represent CRN synthesis
as an SMT-problem and apply an SMT solver such as Z3 [12] to produce a CRN
that satisfies the specification or prove that no such CRN exists for the choice
of M , N and K. More specifically, a solution CRN C is represented through the
valuation of r and p, which are extracted from the model returned by Z3.

In general, we are interested in enumerating many (or all possible) CRNs
for the given class (defined by M , N and K), which ensures that no valid solu-
tions are omitted at that stage. To do so, we apply an incremental SMT-based
procedure, where at each step we assert an uniqueness constraint guaranteeing
that no previously discovered CRNs are generated. Given a concrete, previously
generated CRN C′ = (Λ,R′) and the new symbolic CRN C = (Λ,R) we are
searching for (both of which are defined using the same species Λ), we define
the constraint DifferentFrom(C′) � ¬∧

r∈R
∨

r′∈R′ r = r′, where r = r′ if and
only if rr

s = rr′
s ∧ pr

s = pr′
s for all s ∈ Λ. The new CRN C cannot simply be a

permutation of the same reactions3. We start by generating a solution C′ (if one
exists), asserting the constraint DifferentFrom(C′), and repeating this procedure
until the constraints become unsatisfiable, which corresponds to a proof that not
additional CRNs exists for the given N , M , and K.

4.2 Tuning CRNs with Parameter Optimisation

Here, we present our approach to optimising the reaction rates for CRNs satisfy-
ing {Φ0, . . . ,Φn}. This becomes a parameter synthesis problem over a pCTMC
set, analogous to parameter synthesis for a single pCTMC, as studied in [13,14].
In contrast to this work, we aggregate over the multiple input combinations, as
specified in Problem 1.2.

To obtain solutions for the probability at a specified time πt, we used numer-
ical integration of the CME. Specifically, we used the Visual GEC software
(http://research.microsoft.com/gec) to encode the CRNs and then integrate the
CME for each combination of inputs.

To solve the maximisation problem, we used a Markov chain Monte Carlo
(MCMC) method, as implemented in the Filzbach software (http://research.
microsoft.com/filzbach). Filzbach uses a variation of the Metropolis-Hastings
(MH) algorithm to perform Bayesian parameter inference. The MH algorithm is
used to approximate the posterior probability of a parameter set from a hypoth-
esised model taking on certain values, constrained by a likelihood function. The
3 At present, our uniqueness constraint does not consider other CRN isomorphisms

but certain species symmetries are broken by the specification Φi.

http://research.microsoft.com/gec
http://research.microsoft.com/filzbach
http://research.microsoft.com/filzbach
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probability of each parameter value is then approximated by constructing a
Markov chain of sampled parameter sets, such that a proposed parameter set
is accepted with some probability, based on the ratio of the likelihood func-
tion evaluated at current and proposal parameter sets. For more information
on MCMC methods, see [19]. MCMC methods, such as simulated annealing,
have also been shown to efficiently find solutions to combinatorial optimisation
problems [20], taking a stochastic search approach similar to the MH algorithm.
Stochastic search can provide benefits over gradient-based optimisers by main-
taining a nonzero probability of making up-hill moves, protecting against getting
stuck in poor local optima. To use Filzbach for providing solutions to optimi-
sation CRN parameters, it is sufficient to encode the argument of Problem1.2
as a likelihood function. Subsequently, we generate MCMC chains with suit-
ably many burn-in iterations and samples to obtain an approximate optimising
parameter set k.

4.3 Calculating Expected Time

To evaluate the temporal performance of a CRN algorithm C, we make use
of Markov chain theory to obtain the expected time until a terminal state is
reached. This is an exact measure of the expected running time for a given
pCTMC with inputs i ∈ I, as opposed to using the mean of many stochastic
simulations [10].

Let A ⊆ Xr be the absorbing states of a pCTMC MC
p = (X,π0,Qp) and let

τA be a vector of expected hitting times, corresponding to the expected time
of transitioning from a state x ∈ Xr to A. Then τA can be evaluated as the
solution to the equations (page 113 of [21])

τA
x = 0 for x ∈ A

−
∑

x′∈Xr

qx,x′τA
x′ = 1 for x /∈ A.

Numerical solutions can be obtained by forming a matrix W where the rows
and columns of Qp corresponding to the terminal states (A) have been removed.
Then, τA is the solution to WτA = 1, where 1 is the vector of 1’s. Numerical
solutions can be obtained using Gaussian elimination.

Note that the time complexity analysis of CRNs typically assumes a volume
n equal to the maximum number of molecules in the system at any time [8]
(equivalent to parallel time in PPs [10]). This volume can be included by dividing
each propensity by n before calculating expected time (see Sect. 2). In the case
of bimolecular CRNs this is equivalent to multiplying τA by n.

5 Case Studies

5.1 Approximate Majority

Approximate Majority is one of the most analysed functions in distributed com-
puting. It is the approximate version of the majority problem, which cannot be
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exactly computed by bimolecular CRNs (or population protocols) with less than
4 species [22]. For CRNs with 2 and 3 species there are known optimal (in terms
of reaction firings) approximate algorithms [15,16].

We specify the majority problem using the path predicate (see Sect. 2):
ΦAM (a, b) := (φ0(a, b), φF (a, b)), where

φ0(a, b) :=

{
A = a ∧ B = b if N = 2,

A = a ∧ B = b ∧ X = 0 if N = 3

φF (a, b) :=

⎧⎪⎨
⎪⎩

Am
a,b if a > b

Bm
a,b if a < b

Am
a,b ∨ Bm

a,b otherwise

where Am
a,b := A = a + b ∧ B = 0 and

Bm
a,b := A = 0 ∧ B = a + b

We used inputs a, b ∈ [1 . . . 5]2 ∪ [6 . . . 10]2 for both optimisation and synthe-
sis. We applied the SMT approach to identify all CRNs with 2 to 4 reactions and
2 or 3 species that satisfy ΦAM for K ≤ 5 stutter steps (for N species and M

reactions, there are
(
N2(N2−1)

M

)
total possible CRNs). We used a short optimisa-

tion (20 burn-in, 20 samples) and sorted these solutions by the value of PΦAM

for each. We then applied a longer optimisation (700 burn-in, 700 samples) to
the top 10 CRNs (Fig. 1).
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Fig. 1. Performance of approximate majority circuits. The SMT-based method
was applied to the approximate majority specification for CRNs with 2, 3 and 4 reac-
tions. For each category, the top 10 CRNs satisfying ΦAM are ordered by their average
probability after a short optimisation (20 burn-in, 20 samples; red bars). A longer
optimisation (700 burn-in, 700 samples; green bars) was also performed. We also show
the average probabilities before optimisation (all rates equal to 1.0; blue bars). The
dashed line is the average probability of CRN AM3,4 #448 after the longer optimisa-
tion, 0.8999, the maximum average probability in this trail.
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Fig. 2. Response of Approximate Majority algorithms to varied inputs. For each input
combination, specified as initial copies of species A and species B, the probability
that both have the correct molecule count after 100 time units is reported. Results
are shown for a variety of networks that performed well following optimisation (see
Fig. 1). The performance of each CRN is compared both before optimisation (all rates
equal to 1.0; left panels) and after long optimisation (central panels). The grey boxes
show the input ranges used for both generation and optimisation. The expected time
until the CTMC reaches a terminal state is calculated for varying total molecule counts
(n) (right panels). These times consider rates scaled as if occurring in a volume n
(see Sect. 4.3). The completion times for three alternative initial configurations (initial
copies of A were 10 %, 60 % and 90 % of n respectively) were calculated, illustrating
minor differences in circuit completion times (× marks systems using optimised rates
and • marks systems using 1.0 for all rates).
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Using our approach, we found 1 CRN with 2 reactions and 2 species, the
known direct competition (DC) network [23] (Fig. 2a). Out of 59,640 possible
CRNs with 3 species and 3 reactions, the SMT solver found 39 CRNs where
ΦAM was satisfied, 2 of which with probability over 0.696 after the short opti-
misation (see Fig. 1). These two networks (AM3,3 #24 and AM3,3 #28) are
the dual of each other and behave asymmetrically but perform well owing to a
compensatory asymmetric parameterisation (Fig. 2c). One might expect that we
should discover the known approximate majority circuit [15,17], (see Fig. 2b).
However, this CRN does not satisfy the specification ΦAM since, for input
(A = 1, B = 1,X = 0) the network terminates in the state (A = 0, B = 0,X = 2)
and thus fails to make a decision. If we remove this single problematic input
from the specification ΦAM , then this CRN is indeed discovered. We include it
for comparison as AM3,3 #39. Note that it scores a 0 on inputs A = 1, B = 1.

By increasing the number of reactions to 4, the SMT solver found 515 sat-
isfying networks out of the 1,028,790 possible ones. The top 5 networks, AM3,4

#448, #328, #445, #333, and #257 have the same rules as the 3 reaction net-
work AM3,3 #39 but each has a different 4th reaction. The network AM3,4 #162
had a lower performance than AM3,3 #39 before optimisation and was almost
as good following optimisation. This network was also asymmetric, with a corre-
sponding asymmetric parameterisation after optimisation (Fig. 2d). The known
4 reaction network AM3,4 #174 [17] (Fig. 2e) is also identified in 10th position.

Finally, we analysed the expected time until termination for each circuit,
using the procedure in Sect. 4.3 (right-hand panels of Fig. 2). Note that Defi-
nition 2 does not reward circuits that reach a high probability before the final
time tf = 100. However, in nearly all cases, the estimated hitting time of each
system was improved by optimisation.

Computation Times. The computation times of our procedure depend on the
size of the circuit (M and N), length of considered computations (K) and exact
specification Φ (including the number of given path predicates). We illustrate the
computation times required for the SMT-based synthesis part of our approach
with the majority decision-making CRNs (Fig. 3).

To determine how the CME calculation used in our method scales with mole-
cular copy numbers, we first ran calculations of the CME for the established
3-reaction approximate majority CRN (system AM3,3 #39). The calculation
was initialised with 0.6n copies of A and 0.4n copies of B, and all rates were
set to 1. As increasing the copy number decreases the simulation time inter-
val over which there are transient dynamics, we integrated the CME over the
time interval

[
0, 100

n

]
, where n is the total copy number. We calculated transient

probabilities at 500 output points, with n ∈ [10, 1000]. This led to state-spaces
of varying size, up to 106, with all calculations completing within 7200 s (2 h)
(Fig. 4). Smaller examples took only a few seconds.

We can approximate the total run-time for parameter tuning as a func-
tion of the number of iterations of the MCMC algorithm and the number of
input combinations assessed. For example, doing 200 iterations over 10 input
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Fig. 3. Computation times for the SMT-based synthesis of majority
decision-making CRNs. Panel (a) shows the time required to generate a number of
solutions (candidate CRNs) for ΦAM for N species and M reactions (denoted AMN,M )
for N, M ∈ {3, 4}2. The computation was halted after 2 h. Panel (b) shows the number
of solutions found as K (the length of considered computations with stutter transitions)
increases.
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Fig. 4. Transient probability calculation times for CRN AM3,3 #39. Times
indicated include the enumeration of the state-space, construction of a sparse matrix,
then numerical integration in the interval [0, 100

n
], where n is the total molecule count.

A single calculation was conducted for each value of n.

combinations which all have below 30 total molecules (�1 s each) suggests a
tuning procedure of no more than 2,000 s.

5.2 Division

Division is a non-semi-linear function and therefore it cannot be stably computed
by CRNs [8]. However, CRNs have been proposed that might implement the
calculation of a ratio [24], which allows plants to ration starch reserves during
seasonally changing nights.
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We specify the division problem using the path predicate (see Sect. 2):

ΦDiv(a, b) := (φ0(a, b), φF (a, b), where

φ0(a, b) :=

{
A = a ∧ B = b ∧ X = 0 if N = 3
A = a ∧ B = b ∧ X = 0 ∧ Y = 0 if N = 4

φF (a, b) := X =
⌊a

b

⌋

We chose the input ranges a, b ∈ [1, . . . , 10]2 for synthesis and optimisation to
give diverse selection of responses and to reinforce that �a

b � = 0 when a < b. We
applied the SMT approach to CRNs that satisfied ΦDiv with K < 20 (without
stutter transitions). For 3 species and 3 reactions, 22 CRNs were discovered.
For 4 species and 3 reactions, 34 CRNs were discovered. For 4 species and 4
reactions the first 105 CRNs were discovered. Of these, only one CRN DIV4,3

# 29 exceeded an average probability of 0.5, though in most cases, optimisation
improved performance substantially (Fig. 5). For many of the generated circuits,
high performance was observed only for b > a, which should always evaluate to
0, with poor performance for the nonzero output cases of a > b (Fig. 6a, b). Note
that Div4,3 #29 is so far the top scoring divider CRN in this class. Clearly, none
of these circuits can be considered as good algorithms for computing division,
though our procedure was able to detect some very simple yet mediocre circuits in
an automated way. It is possible that better circuits will be found by considering
CRNs with more reactions, species, and longer computation paths.
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Fig. 5. Performance of division circuits. The SMT-based method was applied
to the division specification for CRNs with N species and M reactions for N, M ∈
{(3, 3), (3, 4), (4, 4)}. This figure shows the optimisation results for the top 7 CRNs in
each category. The results are ranked and sorted by their average probability of being
correct in the grey shaded zone after being optimised for 50 MCMC sample and burn-
in steps (red bars). If a CRN scored an average probability of over 0.5 then it was
optimised for a further 200 MCMC burn-in and sample steps. The average probability
is shown for satisfying CRNs before optimisation (all rates equal to 1.0; blue bars).
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Fig. 6. Response of Division algorithms to varied inputs. For each input com-
bination, specified as initial copies of species A and species B, the probability that the
molecule count of X is �A/B� after 100 time units is reported. Results are shown for
the top network in each combination of species and reactions (see Fig. 5). The perfor-
mance of each CRN is compared both before optimisation (all rates equal to 1.0; left
panels) and after optimisation (right panels).

6 Discussion

In this paper, we presented a computational approach for the synthesis and
parameter tuning of CRNs, given a specification of the system’s correctness. We
focused on the sub-class of bimolecular CRNs due to their importance as repre-
sentations of various molecular algorithms and population protocols. However,
our approach is more general and could also be applied directly to the synthe-
sis of CRNs from other classes (e.g. unimolecular, trimolecular, etc.), which are
defined through different stoichiometry constraints. The CRNs we synthesize can
be converted into equivalent physical implementations, for example using DNA
strand displacement (DSD) [2,3]. However, our approach could also be applied
directly to synthesize DSD systems through additional structural constraints.
This could lead to simpler designs than the ones obtained through direct trans-
lation of CRNs.

We considered simple reachability properties defined in terms of predicates
on the initial and final states of a computation which are sufficient to express var-
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ious logical and arithmetic functions and operations. More general specifications,
for example where intermediate states along computations are specified, are also
currently possible within our approach but extensions to more expressive lan-
guages, such as the probabilistic temporal logics used with other methods [14],
remains a direction for future work.

An alternative approach to the problem of realising arbitrary behaviour in
biochemical systems is to use directed evolution [25,26] In silico evolutionary
search strategies might scale to larger CRNs and address the synthesis and para-
meter optimisation sub-problems using a single, combined procedure. However,
this comes at the cost of completeness, where the absence of a solution does
not mean a solution does not exist. In contrast, our method addresses the sub-
problems separately and uses the SMT solver and theorem prover Z3 to identify
CRNs that satisfy a given specification (kinetics are ignored at this first stage).
Since the results provided by Z3 are complete (for a sufficiently large K), the
termination of the procedure with no solutions is a “proof” that no CRNs exist
in the given class. Thus, besides providing a practical tool for the identification
of CRNs with given behaviour, the completeness property means our approach
could also help explore the theoretical limits of CRN computation (e.g. no CRNs
with less than M species and N reactions that compute a given function exists).
For many applications, elements of our method could be complementary with
evolutionary algorithms. For example, the exact CTMC methods we use to assess
the probability of correct computations in a given CRN could provide a useful
fitness function for evolutionary search, compared to alternative approximate
methods based on stochastic simulation.

The fully automated generation of “good” CRNs is a challenging problem and
certain scalability limitations of our current method must be addressed to provide
a more complete solution. Firstly, the SMT-based synthesis procedure we propose
may represent large or infinite state spaces and handle systems with large mole-
cule numbers. However, currently this method is limited to relatively small CRNs
with few reactions, species, and which have short computation paths. Secondly,
the CTMC methods we apply require an explicit representation of the state space,
which must be finite (which is always the case for biomolecular CRNs initialised
with a finite number of molecules) and contain few reachable states — this makes
the method suitable for systems involving relatively few species and numbers of
molecules. To circumvent the need for an explicit representation of the state space,
stochastic dynamical behaviour could be approximated by averaging multiple tra-
jectories from Gillespie’s stochastic simulation algorithm [27], using fluid or central
limit approximations [28], or using ordinary differential equations. Depending on
the specification, and the nature of the CRN, some of these approaches might be
appropriate, but none are free of their own documented limitations. Finally, the
large number of solutions identified at the synthesis stage of our approach makes
the parameter tuning phase challenging and indicates that additional constraints
describing more accurately the structure and dynamics of “good” solutions could
improve the method.
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For tuning reaction rates, alternative cost functions could be used that reward
solutions that are “nearly” correct, e.g. using a mean-squared error. This would
be most appropriate in high copy number situations, where a precise number of
molecules is not integral. Our approach is more appropriate for systems operating
at low copy numbers, offering an exact characterisation of the probability that a
specific predicate is satisfied. Our results were shown for calculations at tf = 100
time units, a transient probability, rather than at the stationary distribution.
While the selection of tf is subjective, it allows a circuit programmer to specify
how long they are willing to wait for a computation. Circuits that reach high
probability at t > tf will not be rewarded. However, a natural extension to
the presented method would be to reward circuits that reach high probability
at t < tf , both imposing an upper bound on time and optimising within that
range. This could be achieved by integrating our metric over the interval [0, tf ].

Automating the search for CRNs that compute the solution for a specified
problem would be beneficial to both theoretical and experimental molecular pro-
grammers. Our method can be used to show the existence or absence of CRNs
of a certain size and also suggest CRNs that can be tuned for a specific input
range, and so become candidate designs for experimental construction. Prior to
construction, more in-depth analysis of the candidate CRNs produced is benefi-
cial, including parameter sensitivity/robustness analysis and bifurcation analysis
(where appropriate). Future work could also incorporate notions of robustness
into the proposed method, for example by using interval-based methods [14]. Our
results illustrate the potential of this approach on several examples, including
the majority and division functions discussed here.

Acknowledgements. We thank Dan Alistarh and Luca Cardelli for helpful discus-
sions on the development and applications of our methodology.
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Abstract. Tile-based self-assembly and chemical reaction networks
provide two well-studied models of scalable DNA-based computation.
Although tile self-assembly provides a powerful framework for describ-
ing Turing-universal self-assembling systems, assembly logic in tile self-
assembly is localized, so that only the nearby environment can affect
the process of self-assembly. We introduce a new model of tile-based
self-assembly in which a well-mixed chemical reaction network interacts
with self-assembling tiles to exert non-local control on the self-assembly
process. Through simulation of multi-stack machines, we demonstrate
that this new model is efficiently Turing-universal, even when restricted
to unbounded space in only one spatial dimension. Using a natural notion
of program complexity, we also show that this new model can produce
many complex shapes with programs of lower complexity. Most notably,
we show that arbitrary connected shapes can be produced by a pro-
gram with complexity bounded by the Kolmogorov complexity of the
shape, without the large scale factor that is required for the analogous
result in the abstract tile assembly model. These results suggest that
controlled self-assembly provides additional algorithmic power over tile-
only self-assembly, and that non-local control enhances our ability to
perform computation and algorithmically self-assemble structures from
small input programs.

1 Introduction

Biological systems are capable of remarkable self-organization directed by
information-carrying molecules and the complex biochemical networks that
interpret them. Even more remarkably, these systems are able to modify them-
selves and reconfigure their structure in response to changes in the surrounding
environment. In many areas of nanotechnology, we seek to emulate biological
systems by implementing self-assembly processes and dynamical systems at the
nanoscale.

Because of its relatively rigid, well-understood structure and the specificity of
Watson-Crick hybridization, DNA is a common substrate for work in nanotech-
nology. So far, work in the field has been loosely divided into two classes: struc-
tural DNA nanotechnology, which involves self-assembly of small DNA subunits
c© Springer International Publishing Switzerland 2015
A. Phillips and P. Yin (Eds.): DNA 2015, LNCS 9211, pp. 34–54, 2015.
DOI: 10.1007/978-3-319-21999-8 3
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into larger structures [18,25], and dynamic DNA nanotechnology, which seeks to
implement the behavior of dynamical systems through fluctuating quantities of
chemical species [34]. Both classes of DNA nanotechnology have been explored
extensively, now offering scalable methods for engineering complex nanoscale
structures from small components [3,14,21,23,31] and both analog and digi-
tal circuits for a variety of tasks [7,20,24,32,35]. Furthermore, both classes have
well-studied theoretical models, including a variety of self-assembly models based
on Wang tiling [11,16] and models of abstract chemical reaction networks for
chemical dynamics [6,8,27,28].

Despite the well-established results in these fields, little theoretical work has
considered interactions between structural and dynamic DNA nanotechnology,
suggesting that current theoretical models do not capture the full computa-
tional power of biomolecular systems. In biological systems, structure influ-
ences dynamics, and dynamics influences structure: the two are inextricably
linked together. Recently, work by Zhang et al. [33] proposed and experimen-
tally demonstrated a method for controlling the formation of DNA nanotubes
from double-crossover tiles using an upstream catalytic circuit implemented as a
DNA strand displacement system. However, there is currently little theoretical
understanding of the computational power of interacting dynamic and structural
biomolecular computing systems.

Some hints come from studies of the computational power of chemical sys-
tems involving linear polymers that can store information, which in theory can
perform efficient and error-free Turing-universal computation [4,5,19]. In partic-
ular, a plausible theoretical implementation of Turing-universal stack machines
using dynamic DNA nanotechnology showed that, at least for linear polymers,
DNA strand displacement systems can control the assembly and disassembly of
nanostructures in a very general and programmable way [19].

Here, we are interested in the ability of biomolecular systems to implement
computation and construction tasks in two dimensions (or more): for the former,
our goal is to perform a computation and report the answer, while in the lat-
ter, our goal is produce a particular nanostructure. Although tile self-assembly
permits Turing-universal computation [22] and Kolmogorov-optimal construc-
tion (up to scale) [29], the assembly logic in tile self-assembly is local; only the
immediate surroundings of a tile can influence its binding. In contrast, chemical
reaction networks are usually formulated with a “well-mixed” assumption under
which chemical species have no position within the reaction vessel. Although
this allows highly non-local information transfer, it precludes the possibility
of assembling large complexes. Consequently, we aim to leverage the non-local
information transfer offered by chemical reaction networks to exercise non-local
control over a two-dimensional (or, in principle, three-dimensional) tile assembly
process.

Thus, we introduce the chemical reaction network-controlled tile assembly
model (CRN-TAM), a formal model of molecular computing that uses chemical
reaction networks to provide non-local control over a tile self-assembly process.
In doing so, we formalize and generalize the type of biomolecular computing sys-
tems demonstrated experimentally by Zhang et al. [33] and explored theoretically
by Qian et al. [19], allowing us to reason mathematically about the capabilities
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of such systems in comparison to other models of molecular programming. We
show that the CRN-TAM subsumes models of stochastic chemical reaction net-
works and the abstract tile assembly model, and we establish a number of useful
“building blocks” for CRN-TAM programs.

Through the Turing-universality of the aTAM, we demonstrate that the
CRN-TAM is Turing-universal. Furthermore, we show that the CRN-TAM per-
mits the efficient construction of multi-stack machines, proving that the CRN-
TAM is also Turing-universal when restricted to unbounded space in only one
spatial dimension, unlike other models of tile-based self-assembly.

Using a natural notion of program complexity, we then turn to bounding
the complexity of a minimal CRN-TAM program that constructs a specified
algorithmic shape. By explicit construction, we show that there is a CRN-TAM
program that constructs every shape S at scale 2, with complexity bounded by
the Kolmogorov complexity of S. We show that this bound is tight by providing
a matching lower bound.

2 Defining the CRN-TAM

We begin by outlining a formal definition of the chemical reaction network-
controlled tile assembly model and providing a number of useful definitions.

Definition 1. A tile is an oriented square with a bond on each side; the bond
positions are called “north,” “south,” “east,” and “west.” Each bond has a dis-
tinct label and a strength, which is a non-negative integer. Formally, a bond
is a tuple (�, s) with label � and strength s ∈ N. For compactness, we often
express a bond (�, 1) evocatively as −� and a bond (�, 2) as =�. A tile is a four-
tuple t = (N,E, S,W ) of bonds for the north, east, south, and west sides,
respectively. Throughout this paper, tiles are denoted by symbols surrounded by
boxes, as above.

Definition 2. An assembly is a function A : Z
2 → (T ∪{ε}) that gives the type

of tile that occupies each site of the 2D lattice, where ε corresponds to an empty
site. If A(x, y) = ε, then the site is said to be unoccupied, since there is no tile
there. To be a valid assembly at temperature τ , A must satisfy these properties:

– The origin must be occupied by a tile A(0, 0) �= ε, which we call the seed of
the assembly.

– The occupied sites of the assembly must be connected.
– The total binding strength of each tile in the assembly is at least τ .

Throughout this paper, assemblies are denoted by symbols surrounded by dou-

ble boxes, e.g. A , or shown in a different color from tiles.

The definitions given in Definitions 1 and 2 are identical to those in previous
models of tile-based self-assembly derived from the abstract tile assembly model
[2,16,22,29]. Although it was implicit in previous “single-crystal” models such
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as the aTAM, here we explicitly distinguish between free tiles in solution and
growing assemblies, even those that contain only a single tile. This ensures for-
mally that free tiles only attach to “activated” assemblies, and not to each other,
which is convenient for avoiding issues of spontaneous nucleation and essential
for uniform treatment of the “removal signal” reactions described below. Further,
it provides a natural way for our model to allow for multiple crystals growing
within the same system.

In tile self-assembly, a molecular program is specified by a set T of tiles
and their associated bond strengths, an initial seed tile, and a temperature.
Analogously, we can define the structural form of a CRN-TAM program:

Definition 3. A program under the chemical reaction network-controlled tile
assembly model is a tuple (S, T,R, τ, I) where

– S is a finite set of identified signal species.
– T is a finite set of tuples

(
t , t∗

)
, where t is a tile and t∗ is either ε or some

signal species in S. The species t∗, if it exists, is called the removal signal for
tile t . No tile may appear in more than one tuple.

– R is a set of reactions, each of the form:
• A+B

k−→ C+D for signals A,B,C,D ∈ {ε}∪S. These are the “normal”
CRN reactions.

• A + T
k−→ C + D for signals A,C,D ∈ {ε} ∪ S and tile T . These are

tile deletion reactions.
• A + B

k−→ T + C or A + B
k−→ T + T ′ for signals A,B,C ∈ {ε} ∪ S

and tiles T and T ′ . These are tile creation reactions.

• A + T
k−→ B + T ′ for signals A,B ∈ {ε} ∪ S and tiles T and T ′ .

These are tile relabelling reactions.

• A + X
k−→ X + X∗, where A ∈ {ε} ∪ S and

(
X ,X∗

)
∈ T . This tile

activation reaction converts a free tile into the seed of a new assembly.

• X + X∗ k−→ A + X , where A ∈ {ε} ∪ S and
(

X ,X∗
)

∈ T . This tile

deactivation reaction converts a seed tile assembly into a free tile.
In all of these reactions, k is some rate constant. All of the constructions
in this paper are independent of rate constant, and so it is often omitted for
notational simplicity. In all cases where a rate constant is omitted, it can be
assumed to be 1. When any reactant or product is taken to be ε, the interpre-
tation is that the reactant or product does not exist; for example, a reaction
A + ε

k−→ ε + D is just A
k−→ D.

– τ ∈ N is the temperature, or minimum binding strength, typically 0, 1, or 2.
– I is an initial state, which is a multiset of tiles and signals that are initially

present. Often we will treat I as a function I : (S ∪ T ) → N where I(z) is the
count of species z in the multiset. No assemblies are initially present.

The elements of the set S of signal species are analogous to “normal” species
in a chemical reaction network and the set T of tiles is analogous to an aTAM tile
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Fig. 1. Example reactions for a CRN-TAM program. (a) Normal chemical reaction
network reactions and tile creation reactions. (b) Tile deletion and relabelling reactions.
(c) Tile activation, deactivation, addition, and removal reactions.

set (except in that tile concentrations are held constant in the aTAM, while in
the CRN-TAM discrete counts of tiles are tracked and may change as reactions
proceed). As in the aTAM, tiles may interact with assemblies to form larger
structures. However, in the CRN-TAM, each assembly step is accompanied by
the release of the tile’s associated removal species, and the reaction may be
reversible if the removal species is not ε. As a result, the behavior of a CRN-
TAM program will be dictated not only by the explicitly specified reactions R
as above, but also the tile addition and removal reactions:

Definition 4. A tile addition reaction has the form

α + t
1−→ β + t∗

wherever α and β are valid assemblies that differ by exactly one tile, t , that is

in β but not in α, where the tuple
(

t , t∗
)

∈ T . Since β is valid, t formed new
bonds with total strength at least τ . The corresponding removal reaction

β + t∗ 1−→ α + t

may occur only when t is bound by exactly strength τ .

We add the condition that a tile removal can only occur if the tile is bound
with strength exactly τ based on the principle that reversible reactions should
be roughly energetically balanced. As a side effect, it prevents a removal signal
from “ripping out” a tile from the middle of an assembly, and thus enforces that
only tiles at the boundary can be removed, which corresponds naturally with
tile removal in the kinetic tile assembly model.

Together, the contents of a reaction vessel—including free species and
assemblies—completely specify the state of a CRN-TAM program at any point:
A non-exhaustive sample of allowed reaction types is illustrated in Fig. 1.

Definition 5. A state L of a CRN-TAM program P is a multiset of signals,
tiles, and assemblies.
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Definition 6. The propensity of a reaction is the product of its rate constant
and the count of each of its reactants. The possible reactions of a state L of a
CRN-TAM program P = (S, T,R, τ, I) are all of the reactions in R with non-zero
propensity and all tile addition or removal reactions with non-zero propensity.

Over time, the program evolves from the initial state according to stochastic
Gillespie dynamics: that is, reactions occur at a rate proportional to their cur-
rent propensity [13]. The time evolution of the state of a CRN-TAM program
therefore forms a continuous-time Markov chain.

Definition 7. An assembly is terminal with respect to a state if there can be no
possible tile addition or removal reactions involving that assembly in the future.

While proving that an assembly is terminal can occasionally be done by
examination of just the assembly itself (showing that there is no location where
a tile may be added or removed, whether or not the tile or removal signal exists
in solution), showing that an assembly is terminal is generally undecidable.

Definition 8. Although the time evolution of the state of a CRN-TAM system
evolves stochastically, we may speak of deterministic CRN-TAM systems: sys-
tems for which there is at most one possible forward reaction, and at most one
possible reverse reaction, for every state. That is, the system state space is a
one-dimensional line.

Definition 9. A CRN-TAM program acting on an initial state L stops if the set
of reachable states is finite and reaches a state with no possible further reactions
with probability one.

Definition 10. A CRN-TAM program constructs a shape S if the program stops
with precisely one terminal assembly, and that assembly has shape S.

To give a natural notion of the “size” of a CRN-TAM program, we introduce
a notion of program complexity. This notion is analogous to the tile set size
under the aTAM, or the number of signals and reactions in a CRN.

Definition 11. The complexity of an initial state I : (S ∪ T ) → N is

|I| =
∑

z∈(S∪T )

log2(I(z) + 1)

This definition is natural since it is the number of bits needed to specify a
general initial state I, up to small constant multiplicative and additive factors.

Definition 12. Let P = (S, T,R, τ, I) be a CRN-TAM program (with unit reac-
tion rate constants). The complexity of P with respect to temperature τ is

Kτ
CT(P ) = |S| + |T | + |R| + |I| = |S| + |T | + |R| +

∑
z∈(S∪T )

log2(I(z) + 1)

Each of the terms is related, up to logarithmic factors, to the amount of
information needed to specify that component of a CRN-TAM program.
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3 Preliminary Results

The CRN-TAM is based on its eponymous models: abstract chemical reaction
networks and the abstract tile assembly model. As one would hope, it subsumes
both of these models. Subsuming models of stochastic CRNs is trivial:

Theorem 1. For any chemical reaction network C with species S and reac-
tions R (each of which has at most two reactants and two products), there is a
CRN-TAM program P = (S, ∅, R, 0, L) with dynamics identical to those of C
acting on L.

In contrast, the abstract tile assembly model requires an unbounded supply
of each tile type. Thankfully, it is straightforward to generate this supply with
a CRN-TAM program:

Theorem 2. Let T be a set of tiles for the abstract tile assembly model at tem-
perature τ , and suppose that T0 ∈ T is the designated seed tile. There is a
CRN-TAM program P that simulates the operation of T , in terms of reachable
assemblies, with complexity Kτ

CT(P ) ∈ Θ(|T |).
Proof. For each tile t ∈ T , we introduce the species Ct and the catalytic reac-

tion Ct → Ct + t . The removal signal of every tile is ε to enforce irreversibility

of tile addition. Our initial state consists of one of each Ct and the seed tile T0 .

The reaction T0 → T0 initiates the assembly process. ��

Next, we introduce a number of basic constructions that demonstrate the
flavor of CRN-TAM programs. The most important of these gives an efficient
way to run a broad-class of CRN-TAM programs a certain number of times.

Definition 13. A CRN-TAM program C is a handshake subroutine with respect
to a set of data molecules D if it satisfies:

Data-Inertness Property: In any state consisting only of molecules in D, no
reaction may occur.

Single-Entry Property: There is a species S that initiates the operation of
C. That is, no reaction will take place until a single molecule of species S
appears, and that molecule is consumed in the first reaction of C.

Single-Exit Property: There is a species F that signifies the completion of
C’s operation; we say that F terminates C. That is, F does not appear while
reactions of C are still possible, and F is produced by the last reaction of C
that can happen.

Intuitively, handshake subroutines are programs that we can choose to start
and can know have stopped. The definition does not require that C always stops,
but in typical usage there will be an argument that it does.
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Lemma 1. Let k be a nonnegative integer and P be a handshake subroutine that
is initiated by species PS and terminated by species PF. There exists a handshake
subroutine powerCounter(k,A,B, P ), initiated by A and terminated by B, with
Θ(k) additional chemical species and Θ(k) additional chemical reactions that
runs P exactly 2k − 1 times.

Proof. Let #(a) be the number of molecules of species a at a specified time.
We introduce the sequences of species X0,X1, . . . , Xk−1, S1, . . . , Sk, and

Y0, Y1, . . . , Yk−1, all of which do not appear in P (i.e. are “new” species). We
construct our counting circuit as a binary counter, where the pair (Xi, Yi) is
a dual-rail representation of the state of the ith bit of the counter; that is, if
#(Xi) = 1, then #(Yi) = 0, and if #(Xi) = 0, then #(Yi) = 1. By convention,
the value of #(Xi) is the value of the bit. The Si species will serve as (single-rail)
digit carry markers. For k-bit counting, we produce a new program as follows:

1. For each bit i, we introduce the reactions

Si + Yi → Xi + PS, Si + Xi → Yi + Si+1

2. Add the reaction PF → S0, to continue counting after C runs once.
3. Add the reaction A → PS to start the binary counting.
4. Add the reaction Sk → B to indicate that the counting is finished.

The initial state of our binary counting program is the full collection of species
Y0, . . . , Yk−1, one copy each, indicating that the counter starts at 0.

Notice that the structure of the reactions ensures that the following properties
hold by simple induction:

– At every time between the consumption of A and the creation of B, there
is exactly one of the Si carry species at all times, since every other reaction
consumes one of these and produces one of these.

– At any time, exactly one of {Xi, Yi} is present, since every reaction “flips a
bit” by consuming one {Xi, Yi} and producing the other.

– The reactions implement precisely the carry behavior of a binary counter with
k bits.

– At any time, there is only one reaction that can take place, by the above
properties, and so the program works deterministically.

– The initiation signal PS is released and consumed precisely once for every one
of the 2k − 1 values that the counter’s species’ can encode.

– Between successive releases of S0, the program P is run exactly once.

Observe that in our constructed k-bit counter, we introduce Θ(k) species and
Θ(k) reactions beyond those of the original program. Thus, the program—which
we call powerCounter(k,A,B, P )—has the desired properties. ��

We can easily modify this construction to run a handshake subroutine exactly
n ∈ N times, using Θ(log n) signals and reactions:
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Theorem 3. Let n be a positive integer and P be a handshake subroutine that
is initiated by species PS and terminated by species PF. There exists a handshake
subroutine binaryCounter(n,A,B, P ), initiated by A and terminated by B, with
Θ(log n) additional species and Θ(log n) additional bimolecular reactions that
runs P exactly n times.

Proof. By Lemma 1, we can construct a handshake subroutine that runs P a total
of 2�log n� −1 times using Θ(�log n	) = Θ(log n) additional species and reactions.
Extending this to run P one more time using the reactions S�log n� → PS and
PF → B instead of S�log n� → B, we have a handshake subroutine that runs P a
total of 2�log n� times.

We further modify our construction from Lemma1 by adding a differ-
ent initial state. Let b0b1 · · · b�log n� be the unique binary representation of
2�log n� − n ≥ 0, by definition. Then, our initial state (instead of a full sequence
of “off” bits Yi) will be, for all i, #(Xi) = bi and #(Yi) = 1 − bi.

In effect, our �log n	-bit counter starts with a value of 2�log n� − n, which we
identify as “zero”, and ends in the state 2�log n�, which is therefore identified as
2�log n� − 2�log n� + n = n. This construction adds only Θ(1) complexity beyond
that from Lemma 1 so our program still has Θ(log n) additional complexity. ��

It is intuitively useful to consider the initial state I of a CRN-TAM program
P . However, the following theorem shows that the addition of the initial state
does not provide extra algorithmic power over the model with no additional
state.

Theorem 4. Let P = (S, T,R, τ, I) be any CRN-TAM program that cannot
start until some species F is released. We define a special signal Q∗ and let
our initial state I ′ = {Q∗}. There exists a program P ′ = (S′, T ′, R′, τ, I ′) with
Kτ

CT(P ′) ∈ Θ(Kτ
CT(P )) that has the same graph of possible states after Θ(|I|)

initial states.

Proof. Let Z ⊆ (S ∪ T ) be the set of s ∈ (S ∪ T ) with I(s) > 0, and let
Z̃ = (z1, z2, . . . , z|Z|) be an arbitrary ordered sequence of Z.

For each zi, let Ci be the chemical reaction network Qi → zi+Hi, and note that
C is a handshake subroutine that simply creates one zi. We construct P ′ by aug-
menting P with signal Q|Z|+1, reactions Hi → Qi+1, Q∗ → Q1, and Q|Z|+1 → F ,
and for each zi, a new signal Qi and a CRN binaryCounter(I(zi), Qi,Hi, Ci) that
uses new species each time for its internal operation.

This construction is illustrated in Fig. 2. By Theorem 3, each binary counter
will produce precisely I(zi) of each species zi when Qi is present.

We can now show that when Qi+1 is released, we have the correct “initial
state” counts of all species zj , j ≤ i. In the base case, notice that the presence
of Q∗ caused the release of Q1, which will cause the release of I(z1) of species
z1. Now, suppose that when Qk+1 is released, we have the correct counts of all
species zj , j ≤ k. Then, notice that the release of Qk+1 initiates the release of
exactly I(zk+1) of zk+1, and also the release of Qk+2. By induction, when species
Q|Z|+1 is released, all of the species zi ∈ Z will have the correct initial counts.
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Fig. 2. Conceptual illustration of the construction for Theorem 4. Starting with the
singleton “starter species”, we use the binary-counting CRNs from Theorem 3 to pro-
duce the correct number of each initial species (as indicated above each stage). When
each binary counter finishes, it starts the binary counter for the next species.

Since Ci requires a constant number of species and reactions, by Theorem3,
each binary counter and the associated reactions contribute Θ(log I(zi)) com-
plexity. Thus, by construction, P ′ has complexity:

Kτ
CT(P ′) = |S| + |{Qi}k

i=1| + |T | + |R| + Θ(1) +
k∑

j=1

Θ(log I(zj))

= |S| + |T | + |R| +
k∑

j=1

Θ(log I(zj)) = Θ(Kτ
CT(P )) ��

So long as our CRN-TAM program is deterministic at its starting state,
the initial state does not enable asymptotic reduction in program complexity.
A careful reader will notice that the notion of program equivalence introduced
in Theorem 4 is a restriction of the notion of weak bisimulation, which rigorously
establishes a notion of equivalence for concurrent systems. In this paper, all of
our constructions use deterministic CRN-TAM programs, and so this theorem
will always apply.

This theorem also has a very simple corollary that immediately tells us that
the CRN-TAM is in some ways more powerful than the aTAM:

Corollary 1. A 1 × n rectangle can be constructed by a program P with only a
singleton initial state with Kτ

CT(P ) = O(log n).

Proof. Let P =
(

{S},
{(

x , ε
)}

,

{
S + x → x

}
, 1, I

)
where I

(
x

)
= n,

I(S) = 1, and x is simply a tile with the same strength-1 glue on two opposite
sides (say, east and west). Clearly, P assembles a 1 × n rectangle. By definition,
Kτ

CT(P ) = O(log n), and note that this program will not start building until a
seed tile is release. By Theorem 4, there exists a program P ′ that assembles the
1 × n rectangle using only a singleton initial state with Kτ

CT(P ′) = O(log n). ��
In contrast, the size of a tile set (the notion of program complexity for the

aTAM) that produces a 1 × n rectangle is Θ(n) [2]. Similar bounds have been
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established for other models of tile self-assembly, including the negative glues
model [17]. In this example, the lower complexity achieved by the CRN-TAM
comes from the explicit control over the number of tiles of a particular type
that are present in solution. One can imagine a formulation of the aTAM where
similar exact counts of tiles are tracked as they are consumed; in such a model, a
program with an initial state consisting of exactly n copies of tile x will construct
a 1×n rectangle with O(1) tile types. However, Theorem 4 shows that the CRN-
TAM can generate its initial state without changing the program complexity,
while the analogous result for the modified aTAM would not hold (if program
complexity is still taken to be just the number of tile types).

The CRN-TAM also permits the construction of exactly m copies of a shape
that can be constructed deterministically:

Theorem 5. Given a deterministic CRN-TAM program P at temperature τ that
constructs a shape S, there is a CRN-TAM program P ′ that constructs m copies
of S with complexity Kτ

CT(P ′) = O(Kτ
CT(P ) + log m).

Proof (sketch). Since P constructs S deterministically, at each time there is at
most one possible tile addition. Furthermore, the tile addition must be done
with a handshake (e.g. X → t + W , W + t∗ → Y ) because otherwise whether
the assembly step or the next reaction occurs first would be non-deterministic.
We construct P ′ by replacing the release and handshake of a single tile by P
with a binary counter that, m times, releases the tile and waits for it to attach
before continuing. That is, we invoke binaryCounter(m,X, Y, {S → t +W,W +
t∗ → F}). Note that the first release tile must be able to attach in a unique
location on the m identical assemblies, because otherwise P would not have
been deterministic. To ensure that each subsequent released tile attaches to a
distinct assembly, rather than two or more of them attaching to each other
on the same assembly, we label all of the tiles in P with the color red, and
introduce an identical set of tiles with color black. We adjust the bonds so that
red tiles may only bond to black tiles, and black tiles may only bond to red tiles.
At each step, depending on the color of the tile we are trying to bind to, we
release a tile of the appropriate color. This creates a checkerboard, and ensures
proper assembly. Since P is deterministic, we only need a constant number of
binary counters, one for each tile type. By Theorem3, this takes O(log m) extra
complexity. Similarly, each step of P that creates a new seed assembly must
instead create m seed assemblies. ��

In defining the model, we introduced the condition that a removal reaction
may only occur when the corresponding tile is bound to the rest of the assembly
with strength exactly the temperature τ . The next theorem shows that this
prevents assemblies from “falling apart” once they have been constructed, except
in an order that is approximately the reverse of the order of addition.

Definition 14. A site (i, j) containing tile x is dependent on site (i′, j′) con-

taining tile x′ if x was added to the assembly after x′ and either shares a

bond with x′ or shares a bond with a tile that is dependent on x′ .
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This recursive definition of dependency imposes an implicit directed, acyclic
graph of dependencies. To disassemble and assembly, we must recursively remove
tiles from the leaves of the dependency DAG:

Theorem 6. If Q is the set of all sites that are dependent on a site (a, b), then
for any site (i, j) ∈ Q, the tile at site (i, j) cannot be removed until the tiles at
all other sites in Q have been removed. That is, a tile at a site cannot be removed
until the tiles at all dependent sites have been removed.

One (limiting) consequence of Theorem 6 is the impossibility of creating
“temporary scaffolding”: a CRN-TAM program cannot build permanent parts
of an assembly that are dependent on parts that are to be removed later, or it
will be impossible to remove the scaffolding.

4 Turing-Universality

With these preliminaries, we consider the ability of CRN-TAM programs to
simulate the operation of a Turing machine—which allows it to perform arbitrary
computation—under various circumstances.

Theorem 7. The CRN-TAM is Turing-universal at temperature τ = 2.

Proof. Given an aTAM tile set T , we may construct a CRN-TAM program
P = (∅, T, ∅, 2, Iseed) that simulates it at temperature 2. Thus, the CRN-TAM
is Turing-universal by the Turing-universality of the aTAM [22]. ��
Since the CRN-TAM subsumes the aTAM, Theorem 7 is far from surprising.
However, the construction used to show the Turing-universality of the aTAM
relies critically on the ability for Wang tilings to represent computation histo-
ries: the state of the Turing machine tape at each step. Importantly, this requires
potentially unbounded space in both spatial dimensions. Through clever use of
DNA strand displacement polymers, Qian et al. [19] showed the Turing univer-
sality of polymer reaction networks by constructing multi-stack machines. Since
each stack is one-dimensional, the construction requires unbounded space in only
one spatial dimension to provide Turing universality. A related construction for
the CRN-TAM provides an analogous result:

Lemma 2. Consider a (deterministic or non-deterministic) stack machine
M = (Q,Σ, δ, n, q0), consisting of a finite set of states Q, a symbol alphabet
Σ, an integer n giving the number of stacks, an initial state q0 ∈ Q, and a set
of transition rules δ where each element of δ is one of:

1. α1 → α2 for states α1, α2 ∈ Q.
2. α1

popj=σ−−−−−→ α2, σ ∈ Σ for states α1, α2 ∈ Q, corresponding to popping a symbol
off of stack j.

3. α1

pushj(σ)−−−−−→ α2 for states α1, α2 ∈ Q and symbol σ ∈ Σ, corresponding to
pushing a symbol σ onto stack j.
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Fig. 3. Conceptual illustrations of the push and pop operations for a stack machine.
On the left, the push operation “state A goes to state B, pushing symbol N onto stack
1” is shown. During a push operation, a stack-specific symbol is released, along with
an intermediate species A′. The finite control waits for the stack- (but not symbol-)
specific removal signal 1∗ before continuing. On the right, the pop operation “from
state A, pop a symbol from stack 1. If it is an N , go to state B” is shown. The pop
operation is basically the reverse of the push operation. In both diagrams, D represents
a network of other reactions, not just a single signal.

There is a CRN-TAM program P = (S, T,R, 1, I) that simulates M with
K1

CT(P ) = O(|Q| + |Σ| + |δ|). Furthermore, it requires unbounded space in only
one geometric dimension, and runs in constant space in the other.

Proof. We show the result by construction, showing how to “compile” a stack
machine M into a CRN-TAM program P . Our construction, based on the one
used by [19] and illustrated in Fig. 3, is:

– For each state αi ∈ Q, we introduce the species Si and S′
i, including the initial

state q0 (represented by S0).
– For each stack k, we introduce:

• A “stack query species” Qk

• For each symbol σ ∈ Σ, a tile σk = (∅,−k, ∅,−k), each with the same
removal signal Qk

• A tile λk = (∅,−k, ∅, ∅) that represents the “bottom-of-stack”, with
removal signal ε.

– For each transition in δ:
1. Implement transitions of the form αi → αj with the reaction

Si → Sj

2. Implement transitions of the form αi
pop�=σ−−−−→ αj with the reactions

Si → Q� + S′
i, σ� + S′

i → Sj

3. Implement transitions of the form αi
push�(σ)−−−−−→ αj with the reactions

Si → σ� + S′
i, S′

i + Q� → Sj

– Include as initial state one of each λk and one of species S0. Include the

reactions λk → λk to produce the initial assemblies.
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The idea behind this construction is to represent the finite state with the
presence of one of the Si signals, and use tiles to construct a physical “stack”
assembly of tiles for each stack in the stack machine. By identifying each tile
with a stack’s identity, we are able to restrict the symbol to interactions with
the desired stack. To show correctness, we demonstrate that the transitions are
correct, and argue that the possible reactions at each point are precisely the
valid transitions from the current state in δ.

Clearly, reactions of type (1) are correct, since the reaction Si → Sj is a
direct implementation of the transition αi → αj .

Reactions that perform pushes and pops are somewhat more complicated. To
pop a symbol from stack �, we produce the stack query species Q� and the “state
storage species” S′

i that indicates that we are in the process of transitioning out
of state αi. Since Q� is the removal species of every one of the σ� ,∀σ ∈ Σ, this

will remove the tile at the only “exposed” site of stack �. Then, this tile σ� can
react with S′

i to produce the state transition to Sj .
Similarly, to push symbol σ onto stack �, we release σ� with the reaction

Si → σ� +S′
i, releasing S′

i to indicate that we are in the process of transitioning

out of state αi. When the tile σ� attaches to the assembly for stack �, it will
release its removal species Q�. The removal species will then react with S′

i, which
transitions to another state.

Lastly, note that at any point in time, exactly one of the Si or S′
i is present,

and every reaction both produces and consumes exactly one Si or S′
i. Thus, the

progress of the CRN is deterministic, except possibly where a single Si could
transition in several ways (if the original stack machine is non-deterministic).
We introduce a constant number of species and reaction to represent each state,
stack symbol, and transition rule, and so K1

CT(P ) = O(|Q| + |Σ| + |δ|). ��
Theorem 8. Let U be a Turing machine. There exists a CRN-TAM program
that simulates the operation of U , and requires unbounded space in only one
geometric dimension, while running in constant space in the other. That is, the
CRN-TAM is Turing-universal when running in one spatial dimension.

Proof. It is well known that multi-stack pushdown automata are equivalent to
Turing machines [26]. Observe that a multi-stack pushdown automaton can be
implemented using the same construction used in Lemma2. Thus, U may be
implemented by way of an equivalent multi-stack pushdown automaton. ��

There are two critical differences between Theorems 7 and 8. First, the aTAM
is Turing-universal only at temperature 2, since algorithmic self-assembly is
required for universality. In contrast, the CRN-TAM can simulate stack machines
at temperature 1, and is thus Turing-universal at all nonzero temperatures.
Although this is believed to be impossible for the temperature 1 aTAM, a 3D
generalization aTAM is Turing-universal at temperature 1; furthermore, the con-
struction requires only constant space in the third dimension [9].

Second, the CRN-TAM supports Turing-universal computation using
unbounded space in only one spatial dimension, while the aTAM requires
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unbounded space in both spatial dimensions for universality. Interestingly, neg-
ative glues also allow for a restricted version of this result, where assem-
blies can be split into one-dimensional assemblies but cannot be deconstructed
completely [12].

5 Optimal Encoding of Binary Strings

Having given efficient constructions for simulating Turing-universal computa-
tion, we now consider the related problem of efficiently encoding inputs for these
Turing machines as (binary) strings. Given our stack machine construction, we
aim to encode strings of length n as 1 × n tile assemblies, which can be used as
the input for a stack machine like in Lemma2.

Definition 15. A CRN-TAM program P encodes a binary string x if it con-
structs a 1 × |x| rectangular assembly of tiles representing the bits of x.

Of course, a binary string x of length n can be easily encoded by a CRN-
TAM program of Θ(n) unique tile types: one for each bit of x. However, just as
Adleman et al. [1] and Soloveichik and Winfree [29] encoded strings of length n
in smaller aTAM tile sets that self-assemble at temperature τ = 2 to unpack the
bits, in the CRN-TAM we can do substantially better at τ = 1 and using just
one dimension for self-assembly:

Theorem 9. For any binary string x of length n, there is a CRN-TAM
program P = (S, T,R, 1, I) that encodes x and has complexity K1

CT(P ) =
O(n/ log n).

Proof. Suppose that we represent x as a sequence of k binary words
(w1, w2, . . . , wk), each with size w = n/k. For convenience, define the functions
h(x) and t(x) to be the head and tail of a binary string x (i.e. the first bit, and
all the remaining bits, respectively).

Define the data tiles T0 = (∅,−, ∅,−) and T1 = (∅,−, ∅,−), encoding
the binary symbols zero and one, with removal signals 0∗ and 1∗, respectively.
Additionally, define the “bottom-of-stack” tile λ = (∅,−, ∅, ∅) that will create
the seed assembly through an activation reaction.

For every binary string a of length at most w, we introduce several signals:
Aa (the “construction signal”), A′

a (the “intermediate signal”), Wa (the “wait
signal”), and Ba (the “completion signal”). For any binary string a of length at
most w, define the following set Ra of reactions:

Ra = {Aa → A′
a + Th(w) , h(w)∗ + A′

a → Wa + At(w), Bt(w) + Wa → Bw}

By construction, the reactions in Ra push the first bit of a onto the stack, then
invoke the reaction gadget for the remaining bits of a. It waits to receive the
completion signal for the tail bits of a, and then issues its own completion signal.
Notice that Ra has constant size.
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To encode x, we can use k hard-coded tiles of distinct tile types that will
assemble together; each tile represents a w-bit word of x; equivalently, we could
use a hard-coded CRN producing unique signals for each word. We can then
include the tiles, signals, and reactions described above for every string of length
at most w, along with reactions that will repeatedly pop a word-tile representing
word a from the stack of word tiles, produce Aa, and wait to consume Ba before
popping the next word tile. These require only a constant number of reactions,
so the total program complexity is: K1

CT(P ) = Θ(k) + O(2w+1) since there are
2w+1 strings of length at most w.

Picking w = log(n/ log n), we get k = n/(log n− log log n) ∈ O(n/ log n), and
so Kτ

CT(P ) = O(n/ log n). ��

6 Kolmogorov-Optimal Assembly of Algorithmic Shapes

We now turn our attention to the problem of constructing a geometric shape S
using the CRN-TAM program of minimal complexity. Following [29], we can give
a formal definition of shape:

Definition 16. A shape S is a connected subset of the 2-dimensional lattice Z
2

under the equivalence relation S = S ′ if and only if S ′ is a translation of S.
A c-scaling of a shape S is the shape sc(S) that is obtained by replacing each
square of S with a c × c block of squares.

We follow the usual definition of the Kolmogorov complexity of a binary string
x with respect to a fixed universal Turing machine U as the minimal size of a
program for U that outputs x. We extend this notion to a shape S:

Definition 17. The Kolmogorov complexity of a shape S with respect to a uni-
versal Turing machine U is the minimal size of a program for U that outputs S
as a list of coordinates. We denote the Kolmogorov complexity of S by K(S).

Definition 18. The CRN-TAM complexity of a shape S at temperature τ is the
minimum complexity of any CRN-TAM program that constructs S. We denote
the CRN-TAM complexity of S at temperature τ as Kτ

CT(S).

Notice that since we may efficiently simulate low-temperature programs at
higher temperatures, Kτ

CT(S) ≥ Kτ+1
CT (S).

Theorem 10. For any shape S, the CRN-TAM complexity of s2(S) at any tem-
perature τ ≥ 1 satisfies:

Kτ
CT(s2(S)) ∈ Θ

(
K(S)

log K(S)

)

We will prove this theorem as two lemmas: Lemma 3 for the upper bound,
and Lemma 4 for the lower bound.
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Lemma 3. For any shape S, there is a CRN-TAM program P = (S, T,R, 1, I)
with

K1
CT(P ) ∈ O

(
K(S)

log K(S)

)

that constructs S at scale 2.

Proof. Inspired by Soloveichik and Winfree [29], our proof gives a construction
of a CRN-TAM program that satisfies the complexity bound. Our construction
uses a simulated Turing machine and a finite set of “path building” tiles.

In our construction, we reduce the problem of constructing S at scale 2 to
the problem of constructing a path around a spanning tree of S. To do this, we
use a set of tiles Tc that consists of all possible tiles with exactly two strength-1
bonds with the same label. These tiles can produce any path in the 2D lattice;
the specific path is determined by the sequence in which tiles are released.

Let U be a universal Turing machine, and define ψ to be a program for U
that outputs the Z

2 coordinates of each point in S. We construct a program ϕ
for U that does the following:

1. Run ψ to obtain the lattice points in S.
2. From some point in S, use a depth-first search to find a spanning tree of S.
3. Construct a path W ⊆ Z

2 through the (scale 2) lattice that walks around the
perimeter of the spanning tree.

Our CRN-TAM program uses the construction from Theorem 8 to simulate
U running ϕ. We may assume without loss of generality that U acts on a binary
alphabet. Then, using the implementation of U , the CRN-TAM program begins
at the start of path W and releases appropriate tiles one-by-one to fill in the
lattice sites occupied by W . This construction process is illustrated in Fig. 4.

Since every shape has a spanning tree, we may always find one with depth-
first search. Furthermore, notice that when we scale the spanning tree to scale
2, there is always space for a perimeter walk W . Thus, P will construct s2(S).

Now, suppose that ψ is a Kolmogorov-optimal Turing machine program that
outputs S, so that |ψ| = K(S). Since all parts of ϕ other than ψ are independent
of the shape S and thus constant, |ϕ| = Θ(|ψ|) = Θ(K(S)). By encoding ϕ using
the optimal encoding construction in Theorem9, which works at temperature 1,
we can encode and unpack ϕ in O(|ϕ|/ log |ϕ|) = O(K(S)/ log K(S)) CRN-TAM
program complexity. Using the construction from Theorem8, we may simulate
the universal Turing machine U with constant program complexity. The com-
plexity of P is the sum of the complexity of the universal Turing machine and
the encoding of the optimal program, so

K1
CT(P ) = O(1) + O

(
K(S)

log K(S)

)
= O

(
K(S)

log K(S)

)
��

Lemma 4. For any shape S, every CRN-TAM program P = (S, T,R, τ, I) that
constructs S at fixed scale m has Kτ

CT(P ) log Kτ
CT(P ) ∈ Ω(K(S)).
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Fig. 4. Conceptual illustration of the construction of a shape S at scale 2 using a
Kolmogorov-optimal CRN-TAM program.

Proof. First, note that there is a constant size Turing machine program psim that
takes a binary description of a CRN-TAM program and simulates its operation
by traversing the reachability graph of states. We construct our program so that
it will output the coordinates of the occupied squares of the final assembly if the
program constructs a shape. If the program stops without meeting this condition,
it indicates failure.

By efficiently encoding the signals, tiles, reactions, and initial state in binary,
we can represent a CRN-TAM program P = (S, T,R, τ, I) as input to our sim-
ulator in O(Kτ

CT(P ) log Kτ
CT(P )) bits. By definition,

K(S) ≤ |psim| + O(Kτ
CT(P ) log Kτ

CT(P )) = O(Kτ
CT(P ) log Kτ

CT(P ))

��
With Theorem 10, we demonstrate the algorithmic power of the CRN-TAM

over previous models of tile-based self-assembly. Although an analogous result
holds for the aTAM, it allows construction of a shape S only at a (possibly
very) large scale c, which is polynomial in the runtime of U on ψ [29]. Constant-
scale construction of algorithmic shapes with Kolmogorov-optimal tile sets is
possible with temperature programming; however, these results require a number
of temperature changes that is linear in the size of the shape [30]. The number
of temperature changes should be a part of the natural definition of program
complexity for temperature programming models. In contrast, the CRN-TAM
permits construction of shapes at scale 2 with a Kolmogorov-optimal program
complexity.
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In the full version of this paper, we will present a result that extends this
construction to give Kolmogorov-optimal assembly of a large class of shapes at
scale one. It remains open to show that all shapes can (or cannot) be constructed
by Kolmogorov-optimal CRN-TAM programs.

7 Open Questions

Although we have demonstrated the power and expressiveness of the CRN-TAM
for Turing-universal computation and Kolmogorov-optimal construction, many
open questions about the capabilities and limits of the CRN-TAM remain.

In our work, we have not considered the time complexity of computation or
construction. In fact, many of our constructions proceed quite slowly under Gille-
spie dynamics, primarily because they take one step at a time—according to the
rather limited notion of deterministic behavior used here to make our construc-
tions simple to analyze. There are therefore numerous open questions related
to the time complexity of CRN-TAM programs, such as how fast a shape can
be constructed or a computation can be performed. Chemistry is an inherently
parallel computational medium, yet all of our constructions have been designed
to engineer around this parallelism through carefully enforced determinism. How
to exploit the parallelism of chemistry to provide additional expressive power in
the CRN-TAM remains to be seen.

Lastly, an important task is to develop molecular motifs that can implement
CRN-TAM programs. While designs may build on the work by Zhang et al. [33],
in which a DNA strand displacement circuit controlled the activation of DNA
double-crossover tiles, there is a substantial difficulty with implementing the
CRN-TAM based on the crystal-growth mechanism inherent in simple tile self-
assembly: because (unlike in the aTAM) our model does not hold tile concentra-
tions constant, we cannot justify low-error rates based on assuming that growth
occurs near the (concentration-dependent) melting temperature for attachment
by τ bonds. A more suitable molecular implementation might be based on com-
ponents that become activated for further assembly by some configurational
change, such as the elegant one-dimensional hybridization chain reaction [10]
as generalized for a restricted class of signal tiles [15]. Such mechanisms are
well suited to τ = 1 seeded assembly, but have not yet been generalized for
two dimensional assembly or for τ = 2. We expect that the chief difficulty in a
molecular implementation of CRN-TAM programs will be enforcing the proper
interactions between tiles and their removal signals. However, previous work
on implementing stack machines with DNA strand displacement reactions [19]
proposed an implementation of a similar mechanism for handshaking assembly
steps when constructing one-dimensional assemblies. Known implementations for
many CRN-TAM features plausibly suggest the existence of a physical imple-
mentation of the CRN-TAM.
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Abstract. We define the Reflexive Tile Assembly Model (RTAM),
which is obtained from the abstract Tile Assembly Model (aTAM) by
allowing tiles to reflect across their horizontal and/or vertical axes. We
show that the class of directed temperature-1 RTAM systems is not com-
putationally universal, which is conjectured but unproven for the aTAM,
and like the aTAM, the RTAM is computationally universal at tempera-
ture 2. We then show that at temperature 1, when starting from a single
tile seed, the RTAM is capable of assembling n × n squares for n odd
using only n tile types, but incapable of assembling n × n squares for n
even. Moreover, we show that n is a lower bound on the number of tile
types needed to assemble n × n squares for n odd in the temperature-1
RTAM. The conjectured lower bound for temperature-1 aTAM systems
is 2n− 1. Finally, we give preliminary results toward the classification of
which finite connected shapes in Z

2 can be assembled (strictly or weakly)
by a singly seeded (i.e. seed of size 1) RTAM system, including a complete
classification of which finite connected shapes may be strictly assembled
by a mismatch-free singly seeded RTAM system.

1 Introduction

Self-assembly is the process by which disorganized components autonomously
combine to form organized structures. In DNA-based self-assembly, the combining
ability of the components is implemented using complementary strands of DNA
as the “glue”. In [23], Winfree introduced a useful mathematical model of self-
assembling systems called the abstract Tile Assembly Model (aTAM) where the
autonomous components are described as square tiles with specifiable glues on
their edges and the attachment of these components occurs spontaneously when
glues match. The aTAM provides a convenient way of describing self-assembling
systems and their resulting assemblies, and serves as the underpinning of many
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studies of the properties of self-assembling systems. For a comprehensive survey
of tile-based self-assembly including models other than the aTAM, see [5,16].

From the broad collection of results in the aTAM, one property of sys-
tems that has been shown to yield enormous power is cooperation. The notion
of cooperation captures the phenomenon where the attachment of a new tile
to a growing assembly requires it to bind to more than one tile (usually 2)
already in the assembly. The requirement for cooperation is determined by a
system parameter known as the temperature, and when the temperature is equal
to 1 (a.k.a. temperature-1 systems), there is no requirement for cooperation.
A long-standing conjecture is that temperature-1 aTAM systems are in fact not
capable of universal computation or efficient shape building, although it is well-
known that temperature ≥ 2 systems are. However, in actual laboratory imple-
mentations of DNA-based tiles [1,15,20,22,24], the self-assembly performed by
temperature-2 systems does not match the error-free behavior dictated by the
aTAM, but instead, a frequent source of errors is the binding of tiles using only
a single bond. Thus, temperature-1 behavior erroneously occurs and cannot be
completely prevented.

Many models of self-assembly can be thought of as extensions of the aTAM
(e.g. [2,4,6,8,9,17]), and for these models it is common to study the added power
that an extra property or constraint gives the extended model. For example,
in [2,6,8,17], it is shown that at temperature 1, when the aTAM is appropriately
extended, the resulting models are computationally universal and capable of
efficiently assembling shapes. In this paper, we take the opposite approach and
remove a constraint that the aTAM imposes with the goal of modelling physical
systems that may be incapable of enforcing these constraints. Tiles in the aTAM
are not allowed to flip or rotate prior to attachment to an existing assembly.
While this assumption is a realistic one for many implementations of DNA-
based tiles (e.g. [23]), for certain implementations of DNA-based building blocks
(e.g. nBLOCKs [13], where separate, disconnected strands of DNA are attached
to different sides of nanoparticles), it is unknown whether or not both of the
conditions of this assumption can be physically enforced. (See [3,10,12,18] for
more experimentally produced building blocks and systems.) When DNA is used
as the binding agent, single stranded DNA can be used to prevent relative tile
rotation by encoding a direction (north/south or east/west) in the DNA sequence
so that only strands with appropriately matching directions are complementary;
on the other hand, preventing tiles from flipping may not always be possible,
especially if the glues of different sides of a tile are encoded by disjoint DNA
complexes. Therefore, we consider a model based on the aTAM where tiles may
nondeterministically flip horizontally and/or vertically prior to attachment.

We introduce the Reflexive Tile Assembly Model (RTAM), which can be
thought of as the aTAM with the relaxed constraint that tiles in the RTAM
are allowed to flip horizontally and/or vertically. Also, unlike most formula-
tions of the aTAM where complementary strands of DNA are represented with
the same glue label, the RTAM explicitly specifies complementary glues. This
importantly prevents copies of tiles of the same type from being able to flip and
bind to each other, and is the actual reality with DNA-based tiles. (A simple
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example of an RTAM system can be seen in Fig. 1). We then show a series of
results within the RTAM. First we show that at temperature 1, the class of
directed RTAM systems – systems which yield a single pattern up to reflection
and ignoring tile orientation – are only capable of assembling patterns that are
essentially periodic. Then, following the thesis set forth in [7], we conclude that
the temperature-1 RTAM is not computationally universal. While the inability
of temperature-1 aTAM systems to compute is still only conjectured, we are
able to conclusively prove it for RTAM systems, specifically by using techniques
developed in [7] to study temperature-1 aTAM systems. We also show that like
the aTAM at temperature 2, the class of directed temperature-2 RTAM systems
is computationally universal. This shows a fundamental dividing line between the
powers of RTAM temperature-1 and temperature-2 directed systems. We then
turn our attention to the self-assembly of squares by singly seeded temperature-1
RTAM systems where we show that for even values of n ∈ N it is impossible
to self-assemble any n × n square. This is exceptional due to the fact that it
is the first demonstration of a model of tile assembly in which a finite shape is
proven the be impossible to self-assemble in a directed system. Typically, any
finite shape can be self-assembled by a trivial system in which a unique tile type
is created for each point of the shape. However, due to the ability of tiles in the
RTAM to flip, it is not possible for the RTAM systems to effectively constrain
the reflections of tiles to produce such even squares without the possibility of
tiles growing beyond the boundaries of the squares. However, for odd values of
n and m any n × m rectangle can be self-assembled using only n+m

2 tile types,
thus implying that for n odd, an n × n square can be self-assembled using only
n tile types. In addition, we also show that for n odd, an n × n square cannot
be self-assembled using less than n tile types (thus, n is the upper and lower
bound for square assembly). This is in contrast to the aTAM at temperature 1,
where the conjectured lower bound for assembling an n × n square is 2n − 1,
and hints that in certain situations the ability of RTAM tiles to attach in flipped
orientations can be effectively harnessed to more efficiently build shapes than
systems in the aTAM. Finally, we give preliminary results toward the classifi-
cation of the finite connected shapes in Z

2 that can be assembled (strictly or
weakly) by a singly seeded RTAM system, including a complete classification of
which finite connected shapes be strictly assembled by a mismatch-free singly
seeded temperature-1 RTAM system. We also show that arbitrary shapes with
scale factor 2 can be assembled in the singly seeded temperature-2 RTAM. These
combined results show that the ability of tiles to bind in flipped orientations is
sometimes provably limiting, while at other times can provide advantages, and
they provide a solid framework for the study of self-assembling systems composed
of molecular building blocks unable to enforce the constraints of the aTAM.

The layout of this paper is as follows. In Sect. 2 we present the definition of the
RTAM. Section 3 contains the proof that temperature-1 RTAM systems cannot
perform universal computation and that temperature-2 systems can. In Sect. 4 we
present our results related to the self-assembly of shapes in the RTAM, including
our results about assembling squares and classifying the finite connected shapes
that self-assemble in the RTAM. (Due to space constraints, full proofs of each
result can be found in [11]).
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(a) (b) (c) (d) (e)

Fig. 1. An example RTAM system. (a) Tile set, (b)–(e) the set of assemblies which
could grow from the seed consisting of an A tile. The assemblies of (b) and (c) are
considered to be the same assembly since one can be achieved from the other by a
horizontal reflection, as are those of (d) and (e). Note that the assembly of (b) is the
only assembly that could form in the aTAM, while in the RTAM this system makes
two distinct assemblies.

2 Definition of the Reflexive Tile Assembly Model

The Reflexive Tile Assembly Model (RTAM) is essentially equivalent to the
abstract Tile Assembly Model (aTAM) [14,19,21,23] but with the modification
that tiles are allowed to possibly “flip” across their horizontal and/or vertical
axes before attaching to an assembly. Also, as in some formulations of the aTAM,
it is assumed that glues bind to complementary versions of themselves (so that
two tiles of the same type but flipped relative to each other can’t simply bind to
each other along the same but reflected side). We now formally define the RTAM.
Our notation is similar (and where appropriate, identical) to that of [14].

We work in the 2-dimensional discrete space Z
2. Define the set U2 = {(0, 1),

(1, 0), (0,−1), (−1, 0)} to be the set of all unit vectors in Z
2. We also sometimes

refer to these vectors by their cardinal directions N , E, S, W , respectively. All
graphs in this paper are undirected. A grid graph is a graph G = (V,E) in which
V ⊆ Z

2 and every edge {a ,b} ∈ E has the property that a - b ∈ U2.
Intuitively, a tile type t is a unit square that can be translated and flipped

across its vertical and/or horizontal axes, but not rotated. This provides each tile
type with a pair of North-South (NS) sides and a pair of East-West (EW ) sides,
such that either side s ∈ NS may be facing north while the other is facing south
(and vice versa for the EW glues). For ease of discussion, however, we will talk
about tile types as being defined in fixed orientations, but then allow them to
attach to assemblies in possibly flipped orientations. Therefore, we define each
t as having a well-defined “side u” for each u ∈ U2. Each side u of t has a
“glue” with “label” labelt(u)–a string over some fixed alphabet–and “strength”
strt(u)–a nonnegative integer–specified by its type t. Let R = {D,V,H,B} be
the set of permissible reflections for a tile which is assumed to begin in the
default orientation, where D corresponds to no change from the default, V a
single vertical flip (i.e. a reflection across the x-axis), H a single horizontal
flip (i.e. a reflection across the y-axis), and B a single horizontal flip and a
single vertical flip. (Note that the ordering of flips for B does not matter as
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Fig. 2. Left to right: (1) Default orientation of an example tile type t, (2) t flipped
vertically, (3) t flipped horizontally, (4) t flipped across both axes

either ordering results in the same orientation, and also that all combinations
of possibly many flips across each axis result only in tiles of the orientations
provided by R.) See Fig. 2 for an example of each. Let S : R × U2 → U2 be a
function which takes a type of reflection r ∈ R and a side s ∈ U2, and which
returns the side of a tile in its default orientation which would appear on side s
of the tile when it has been reflected according to r. (E.g. for the tile type shown
in Fig. 2, S(H,W ) = E, and S(H,N) = N .) It is important to note that a glue
does not have any particular orientation along the edge on which it resides, and
so remains unchanged throughout reflections.

Two tiles t and t′ that are placed at the points a and a + u and reflected
by r ∈ R and r′ ∈ R, respectively, bind with strength strt (S(r,u)) if and only
if (labelt (S(r,u)) , strt (S(r,u))) =

(
labelt′ (S(r′,−u)), strt′ (S(r′,−u))

)
. That

is, the glues on adjacent edges of two tiles bind iff they have complementary
labels (usually specified by the same string with and without a trailing ′) and
the same strength.

In the following, given two partial functions f, g, we write f(x) = g(x) if f
and g are both defined and equal on x, or if f and g are both undefined on x.

Fix a finite set T of tile types. A T -assembly, sometimes denoted simply as an
assembly when T is clear from the context, is a partial function α : Z2 ��� T × R
defined on at least one input, with points x∈ Z

2 at which α(x ) is undefined
interpreted to be empty space, so that dom α is the set of points with oriented
tiles. We write |α| to denote |dom α|, and we say α is finite if |α| is finite.
For a given location v ∈ Z

2, we denote the tile in α at location v by α(v)
(if no tile exists there, α(v) is undefined). Let F be a function which takes
as input an assembly α, a reflection r ∈ R, and a translation vector v ∈ Z

2,
and which returns the assembly αr, corresponding to α reflected according to
r then translated by v . We say that two assemblies, α and β, are equivalent iff
there exists some reflection r ∈ R and translation vector v ∈ Z

2 such that for
β′ = F (β, r, v), |α| = |β′| and for all v ∈ |α|, α(v) = β′(v). That is, α and β are
equivalent iff one of them can be flipped and translated so that they perfectly
match at all locations. For assemblies α and α′, we say that α is a subassembly
of α′, and write α � α′, if dom α ⊆ dom α′ and α(x ) = α′(x ) for all x ∈ dom
α. An assembly α is τ -stable For some τ ∈ N, an assembly α is τ -stable if every
cut of the binding graph of α has weight at least τ , where the weight of an edge
is the strength of the glue it represents. When τ is clear from context, we say α
is stable.
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For a tile set T , we let pT : T × R → T be the projection map onto T (i.e.
pT ((t, r)) = t). A configuration given by an assembly α is defined to be the map
from Z

2 to T given by pT ◦ α.
Self-assembly begins with a seed assembly σ, in which each tile has a specified

and fixed orientation, and proceeds asynchronously and nondeterministically,
with tiles in any valid reflection in R adsorbing one at a time to the existing
assembly in any manner that preserves τ -stability at all times. A tile assembly
system (TAS) is an ordered triple T = (T, σ, τ), where T is a finite set of tile
types, σ is a seed assembly with finite domain in which each tile is given a fixed
orientation, and τ ∈ N is the temperature. A generalized tile assembly system
(GTAS) is defined similarly, but without the finiteness requirements. We write
A[T ] for the set of all assemblies that can arise (in finitely many steps or in the
limit) from T . An assembly α ∈ A[T ] is terminal, and we write α ∈ A�[T ], if
no tile can be τ -stably added to it. It is clear that A�[T ] ⊆ A[T ].

An assembly sequence in a TAS T is a (finite or infinite) sequence α =
(α0, α1, . . .) of assemblies in which each αi+1 is obtained from αi by the addition
of a single tile. The result res(α) of such an assembly sequence is its unique
limiting assembly. (This is the last assembly in the sequence if the sequence is
finite.) The set A[T ] is partially ordered by the relation −→ defined by

α −→ α′ iff there is an assembly sequence α = (α0, α1, . . .)
such that α0 = α and α′ = res(α).

We say that T is strongly directed if and only if either |A�[T ]| = 1 or if for every
pair of terminal assemblies α, β ∈ A�[T ], there exists a reflection r ∈ R and a
translation vector v ∈ Z

2 such that α = F (β, r, v). Furthermore, we say that T
is directed if and only if for all α, β ∈ T , there exists a reflection r ∈ R and a
translation vector v ∈ Z

2 such that pT ◦ α = pT ◦ F (β, r, v). In other words, all
of the assemblies of a directed systems give the same configuration.

A set X ⊆ Z
2 weakly self-assembles if there exists a TAS T = (T, σ, τ) and

a set B ⊆ T such that for each α ∈ A�[T ] there exists a reflection r ∈ R and a
translation v ∈ Z

2 such that αr = F (α, r, v) and α−1
r (B) = X holds. Essentially,

weak self-assembly can be thought of as the creation (or “painting”) of a pattern
of tiles from B (usually taken to be a unique “color” such as black) on a possibly
larger “canvas” of un-colored tiles.

A set X strictly self-assembles if there is a TAS T such that for each assembly
α ∈ A�[T ] there exists a reflection r ∈ R and a translation v ∈ Z

2 such that
αr = F (α, r, v) and dom αr = X. Essentially, strict self-assembly means that
tiles are only placed in positions defined by X. Note that if X strictly self-
assembles, then X weakly self-assembles. X in the definition of strict or weak
self-assembly is called a shape in Z

2.
In this paper, we also consider scaled-up versions of shapes. Formally, if

X is a shape and c ∈ N, then a c-scaling of X is defined as the set Xc ={
(x, y) ∈ Z

2
∣∣ (⌊

x
c

⌋
,
⌊

y
c

⌋) ∈ X
}
. Intuitively, Xc is the shape obtained by replac-

ing each point in X with a c× c block of points. We refer to the natural number
c as the scale factor.
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2.1 Paths in the Binding Graph and as Assemblies

Given an assembly α and locations x and y such that x , y ∈ dom α, we define
a path in α from x to y (or simply a path from x to y) as a simple directed
path in the binding graph of α with the first location being x and the last y . We
refer to such a path as πy

x, and for k = |πy
x| (i.e. k is the length of, or number of

tiles on, πy
x) and 0 ≤ i < k, let πy

x(i) be the ith location of πy
x. Thus, πy

x(0) = x ,
and πy

x(k − 1) = y . We can thus refer to the ith tile on πy
x and its reflection as

α(πy
x(i)), and as shorthand will often refer to locations and/or tiles along a path.

Regardless of the order in which the tiles of πy
x were placed in α, we define input

and output sides for each tile in πy
x (except for the first and last, respectively)

in relation to their position on πy
x. The input side of the ith tile of πy

x, α(πy
x(i)),

is that which binds to α(πy
x(i − 1)), and the output side is that which binds to

α(πy
x(i + 1)). We denote these sides as IN(πy

x(i)) and OUT (πy
x(i)), respectively.

(Thus, α(πy
x(0)) has no input side, and α(πy

x(k − 1)) has no output side.) Note
that in a temperature-1 system, an assembly α′ exactly representing πy

x would
be able to grow solely from α(πy

x(0)), in the order of πy
x, with each tile having

input and output sides as defined for πy
x.

3 The RTAM is Not Computationally Universal at τ = 1

In this section, we show that directed RTAM systems are not computationally
universal by showing that any shape weakly assembled by a directed RTAM
system is “simple”. We will first define our notion of simple. Many of the following
definitions can also be found in [7].

Definition 1. A set X ⊆ Z
2 is semi-doubly periodic if there exist three vectors

b, u, and v in Z
2 such that

X = { b + n · u + m · v | n,m ∈ N }.

Less formally, a semi-doubly periodic (a.k.a linear) set is a set that repeats
infinitely along two vectors (linearly independent vectors in the non-degenerate
case), starting at some base point b. Now, let T = (T, σ, 1) refer to a directed,
temperature-1 RTAM system. We show that any such T weakly self-assembles a
set X ⊆ Z

2 that is a finite union of semi-doubly periodic sets (a.k.a. semilinear).

Theorem 1. Let T = (T, σ, 1) be a directed RTAM system. If a set X ⊆ Z
2

weakly self-assembles in T , then X is a finite union of semi-doubly periodic sets.

Proof. (sketch) Here we give a high-level sketch of the proof of Theorem 1. See
[11] for a rigorous proof. The basic idea of the proof is as follows. For an RTAM
system T = (T, σ, 1) we consider all of the paths of n tiles (for n to be defined)
that can assemble from each exposed glue of σ such that each consecutive tile
that binds forming the path attaches via a north or west glue (and we say that
such a path “extends to the north-west”) (Fig. 3).
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Fig. 3. A depiction of tiles for a path that can assemble in T . The original path is on
the left. The path on the right is a modification to the path on the left that must also
be able to assemble in T . The blue tiles labeled v0 and v1 are of the same tile type
and orientation. The tiles labeled 1 through 6 can be repeated indefinitely as depicted
in Table 1(a).

Any finite path is trivially the union of semi-doubly periodic sets. Then, for
n sufficiently large, a path of n tiles that extends to the north-west must contain
two distinct tiles t1 and t2 of the same tile type in the same orientation. If
for every such path, every two distinct tiles t1 and t2 of the same tile type in
the same orientation lie on a horizontal or vertical line, then it can be argued
that the terminal configuration of T must consist of finitely many infinitely long
horizontal or vertical paths connected to σ, and is therefore the finite union of
semi-doubly periodic sets. On the other hand, if there is a path such that the
two distinct tiles t1 and t2 of the same tile type in the same orientation do not
lie on a horizontal or vertical path, then we argue that the terminal assembly of
T is the finite union of semi-doubly periodic sets as follows. First, we note that
for such a path, π say, the tiles between t1 and t2 can be repeated indefinitely.
This is shown in Table 1(a). Then we show how to modify π by reflecting tiles to
obtain an infinite family of paths. Examples of such modified paths are shown
in Table 1(b)–(h). Now, if a tile t belongs to one of these paths and has location
l say, then, since T is directed the terminal assembly of T must contain a tile
of the same type as t at each such location l. Finally, we note that all of these
paths taken together form a semi-doubly periodic set. This is depicted in Fig. 4a.
Continuing this line of reasoning, we show that the terminal assembly of T is
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the finite union of semi-doubly periodic sets. A portion of such an assembly is
shown in Fig. 4b. 	


Table 1. Each figure in this table depicts a possible path that can assemble in T . The
yellow tiles make up the seed and the green tiles are a path leading to the repeated
tile that allows the path to repeat.

An intuitive reason that Theorem 1 supports the conclusion that the RTAM
is not computationally universal is as follows. Let H = {(i, x) | program
i halts when run on input x} be the halting set and let M be a Turing machine
that outputs a 1 if (i, x) ∈ H. The typical way of expressing the computation of
M in tile assembly is as follows. For a fixed tileset T , a seed assembly σ encodes
an “input” to the computation, while the “output” of 1 by M corresponds to
the translation of some configuration being contained in the terminal assembly
ασ of (T, σ, 1). For this sense of computation, the following corollary says that
the set of seed assemblies that “output” a 1 is a recursive set (not just a recur-
sively enumerable set). This would contradict the fact that the halting set is not
recursive. This is stated in the following corollary. For a more formal statement
of this corollary and a proof, see [11].

Corollary 1. For any tileset T in the RTAM and fixed finite configuration C, let
S be the set of seed assemblies σ such that (1) the RTAM system (T, σ, 1) is directed
and (2) the terminal assembly of T contains C. Then, S is a recursive set.



64 J. Hendricks et al.

(a)

(b)

Fig. 4. (a) A configuration that can be thought of as the “union” of the type-consistent
assemblies depicted in Table 1. (b) A configuration of tiles that must weakly self-
assemble in T .
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3.1 Universal Computation at τ = 2

In this section give a theorem that states that universal computation is possible
in the RTAM at temperature 2. We give an example of simulating a binary
counter in the RTAM and give the general proof in [11].

Theorem 2. The RTAM is computationally universal at τ = 2. Moreover, the
class of directed RTAM systems is computationally universal at τ = 2.

First we note that given a Turing machine M , we use Lemma 7 of [2] to obtain
a tile set which simulates M using a zig-zag system. In fact, as noted in [17], we
can find a singly seeded compact zig-zag system T = (T, σ, 2) with A�[T ] = {α}
which simulates M . Then the proof of Theorem 2 relies on showing that any
compact zig-zag system in the aTAM at temperature 2 can be converted into a
directed RTAM system S that is “almost” compact zig-zag. The RTAM system
that we construct differs from a compact zig-zag system in that when the length
of a row of the growing zig-zag assembly increases by a tile, a strength-2 glue is
exposed that allows a tile to bind below the row. This results in the possibility
of a single “misplaced” tile per row, but nevertheless, this is enough to simulate
a Turing machine. The proof of Theorem 2 can be found in [11].

4 Self-assembly of Shapes in the RTAM

In this section, we discuss the self-assembly of shapes in the RTAM, especially
the commonly used benchmark of squares. At temperature 2, using a zig-zag
binary counter similar to that used in Sect. 3.1, n ×n squares can be built using
the optimal log n/(log log n) tile types following the construction of [21] with
only trivial modifications. Similarly, the majority of shapes which can be weakly
self-assembled in the temperature-2 aTAM can be built in the temperature-2
RTAM, although shapes with single-tile-wide branches which are not symmetric
are impossible to strictly self-assemble in the RTAM.

At temperature-1, however, the differences between the powers of the aTAM
and RTAM appear to increase. Here we will demonstrate that squares whose
sides are of even length cannot weakly (or therefore strictly) self-assemble in the
RTAM at τ = 1, although any square can strictly self-assemble in the τ = 1
aTAM. We then prove a tight bound of n tile types required to self-assemble an
n × n square for odd n in the RTAM at τ = 1. (Which is, interestingly, better
than the conjectured lower bound of 2n − 1 for the τ = 1 aTAM).

4.1 For Even n, No n×n Square Self-assembles in the τ = 1 RTAM

Theorem 3. For all n ∈ Z
+ where n is even, there exists no RTAM system

T = (T, σ, 1) where |σ| = 1 and T weakly (or strictly) self-assembles an n × n
square.
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Fig. 5. (a) Example paths in an 8 × 8 square (i.e. of even dimension). The path from
corners a and c is composed of tiles of different colors. The path from corner d to a
point on that path is dark grey. The path from the seed to that intersection is in black.
The path to be stretched out is outlined in red. (b) The stretched out version of the
paths (Color figure online).

Proof. (sketch) We prove Theorem 3 by contradiction, and here give a sketch of
the proof. (See [11] for the full proof.) Therefore, assume that for some n ∈ Z

+

such that (n mod 2) = 0, there exists an RTAM system T = (T, σ, 1) such that
|σ| = 1 and T weakly self-assembles an n × n square S. We take α ∈ A�[T ] and
consider the corners of the square which is weakly self-assembled.

There must exist a path which connects two diagonal corners (a to c in
Fig. 5 (a)), and that path must travel through 3 quadrants of the square since
the dimensions are even length and diagonal paths are not possible in the grid
graph of an assembly. We then find a path connecting the corner of the quad-
rant (possibly) unvisited by that path (e.g. d), and note that since α must be
connected that we can find a new path which connects the new corner (d) to
one of the original corners (a or c) via a path which crosses across the midpoint
of the square from either corner on the new path. Finally, we demonstrate that
there is an assembly sequence which starts from the seed and grows to that new
path, then builds that path in a way such that it is maximally “stretched” out
by appropriately flipping the tiles. (See Fig. 5(b) for an example.) This stretched
out path is producible by a valid assembly sequence but must grow beyond the
bounds of the square (by at least one position), so T does not weakly (or strictly)
self-assemble the square.

4.2 Tight Bounds on the Tile Complexity of Squares
of Odd Dimension

In this section, we prove tight bounds on the number of tiles necessary to self-
assemble a square of odd dimension.
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Theorem 4. For all n ∈ Z
+ where n is odd, an n × n square strictly self-

assembles in an RTAM system T = (T, σ, 1) where |T | = n and |σ| = 1.

We prove Theorem 4 by giving a scheme for obtaining the tileset for any
given n that exploits the fact that for n odd, an n×n square in Z

2 is symmetric
across a row and column points. Although Theorem 4 pertains to squares, a
simple modification of the proof shows the following corollary.

Corollary 2. For all n,m ∈ Z
+ where n is odd, an n × m square strictly self-

assembles in an RTAM system T = (T, σ, 1) where |T | = n+m
2 and |σ| = 1.

We also prove that the upper bound of Theorem 4 is tight, i.e. an n × n
square, where n is odd, cannot be self-assembled using less than n tile types.
The proof of this theorem can be found in [11].

Theorem 5. For all n ∈ Z
+ where n is odd, there exists no RTAM system

T = (T, σ, 1) where |T | < n and |σ| = 1 such that T weakly (or strictly) self-
assembles an n × n square.

4.3 Assembling Finite Shapes in the RTAM

In this section we first give a corollary of Theorem 4 showing that sufficiently
symmetric shapes weakly self-assemble in the RTAM. Then we prove 3 theorems
about assembling finite shapes in Z

2 in the RTAM. These theorems show that the
assembly of finite shapes in singly seeded RTAM systems is quite a bit different
than the assembly of finite shapes in the aTAM by singly seeded systems.

Given a shape S in Z
2, let χS denote the characteristic function of the set S.

That is, χS (x, y) = 1 if x ∈ S and χS (x, y) = 0 otherwise. Then, we say that a
shape S is odd-symmetric with respect to a horizontal line y = l (respectively,
vertical line x = l) for l ∈ Z

2 iff for all (a, b) ∈ Z
2, χS(a, l − b) = χS(a, l + b)

(respectively, χS(l − a, b) = χS(l + a, b)). If there exists a line such that a shape,
S, is odd-symmetric with respect to this line, we say that the shape is odd-
symmetric. Given a shape S, we call the smallest rectangle of points in Z

2

containing S the bounding-box for S.
Let R denote the bounding box of an odd-symmetric shape S, and let n and

m in N be the dimensions of R. A simple modification to the proof of Theorem 4
where a tile is labeled with a label B if and only if it corresponds to points in
S, shows that odd-symmetric shapes can weakly assemble in the RTAM.

Corollary 3. Given a shape S in Z
2, if S is odd-symmetric, then there exists

an RTAS T = (T, σ, τ) such that |σ| = 1, τ ≥ 1, and T weakly assemblies S.

Additionally, if one is willing to build 2 mirrored copies of the shape in each
assembly, then any finite shape can be weakly self-assembled in the RTAM at
τ = 1, along with its mirrored copy (at a cost of tile complexity approximately
equal to the number of points in the shape) by simply building a central column
(or row) from which identical copies of hardcoded rows (or columns) grow, so
that each side grows a reflected copy of the shape in hardcoded slices.



68 J. Hendricks et al.

We say that a TAS (in either the aTAM or the RTAM) T is called mismatch-
free if for every producible assembly α ∈ A[T ] with two neighboring tiles with
abutting edges e1 and e2, either e1 and e2 do not have glues or e1 and e2 have
glues with matching labels and strengths. Then, for singly seeded aTAM systems,
any finite connected shape can be strictly assembled by a mismatch-free system.
Theorems 6, 7, and 8 show that assembling shapes in the RTAM is more complex.
The proofs of these theorems can be found in [11].

Theorem 6. There exists a finite connected shape S in Z
2 that weakly self-

assembles in a singly seeded RTAM system such that there exists no singly seeded
RTAM system that strictly self-assembles S.

Theorem 7. There exists a finite shape S in Z
2 that can be strictly self-

assembled by some singly seeded RTAM system such that every singly seeded
RTAM system at temperature 1 which strictly self-assembles S is not directed.

Theorem 8. There exists a finite shape S in Z
2 such that every singly seeded

RTAM system that strictly self-assembles S is not mismatch-free.

4.4 Mismatch-Free Assembly of Finite Shapes in the RTAM

Given a shape S, i.e. a finite connected subset of Z2, we say that a graph of S
is a graph GS = (V,E) with a vertex at the center of each point in S and an
edge between every pair of vertices at adjacent points of S. A tree of S, TS , is
a graph of S which is a tree. (See Fig. 6 for examples of S, GS , and GT .) Given
a graph G = (V,E), we say that an axis of G is a horizontal or vertical line
of vertices such that there is an edge between each pair of adjacent points on
that line. Notice that two distinct axes can be collinear. Given an axis a, an
axial branch of TS is a branch of TS containing exactly one vertex v on a and
all vertices and edges of TS which are connected to a vertex that does not lie
on a and is adjacent to v. We say that the branch begins from v. Intuitively, an
axial branch is a connected component extending from an axis. (See the pink
highlighted portion of Fig. 6c for an example axial branch off the green axis).

(a) Example shape S (b) Graph of S, GS (c) Tree of S, TS

Fig. 6. An example ε-symmetric shape (Color figure online).

A tree TS is symmetric across an axis a if, for every vertex v contained on
a, the branches of a which begin from v are symmetric across a. A tree TS is
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off-by-one symmetric across an axis a if, for every vertex v except for at most 1,
the branches of a which begin from v are symmetric across a. See Fig. 6c for an
example of such a tree, with the axis a shown in green.

Definition 2. A tree T is ε-symmetric if and only if for any axis a of T , T is
off-by-one symmetric across a.

Definition 3. Given a shape S with graph GS, we say that S is ε-symmetric if
and only if there exists a spanning tree, TS, of GS such that TS is ε-symmetric.

For an example of an ε-symmetric shape S, see Fig. 6a. The tree TS is off-
by-one symmetric across the vertical green axis, the branches off of that axis
are symmetric across the horizontal yellow axes, and the branches off of those
axes are symmetric across the vertical blue axes. The following theorem gives
a complete classification of finite connected shapes which can be assembled by
temperature-1 singly seeded mismatch-free RTAM systems. The proof of this
theorem is given in [11].

Theorem 9. Let S ⊂ Z
2 be a finite connected shape. There exists a mismatch-

free RTAM system T = (T, σ, 1) with |σ| = 1 that strictly assembles S if and
only if S is ε-symmetric.

While Theorem 9 shows exactly which shapes can be assembled without coop-
eration or mismatches by singly seeded RTAM systems, the following theorem
shows that with cooperation, RTAM systems can assemble arbitrary scale factor
2 shapes. The proof of this theorem is in [11].

Theorem 10. Let S ⊂ Z
2 be a finite connected shape, and S2 be S at scale

factor 2. There exists a mismatch-free RTAM system T = (T, σ, 2) with |σ| = 1
that strictly self-assembles S2.
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Abstract. Working in a three-dimensional variant of Winfree’s abstract
Tile Assembly Model, we show that, for all N ∈ N, there is a tile set
that uniquely self-assembles into an N × N square shape at tempera-
ture 1 with optimal program-size complexity of O(logN/ log logN) (the
program-size complexity, also known as tile complexity, of a shape is the
minimum number of unique tile types required to uniquely self-assemble
it). Moreover, our construction is “just barely” 3D in the sense that it
works even when the placement of tiles is restricted to the z = 0 and
z = 1 planes. This result affirmatively answers an open question from
Cook, Fu, Schweller (SODA 2011). To achieve this result, we develop a
general 3D temperature 1 optimal encoding construction, reminiscent of
the 2D temperature 2 optimal encoding construction of Soloveichik and
Winfree (SICOMP 2007), and perhaps of independent interest.

1 Introduction

The simplest mathematical model of nanoscale tile self-assembly is Erik Win-
free’s abstract Tile Assembly Model (aTAM) [10]. The aTAM extends classical
Wang tiling [9] in that the former bestows upon the latter a mechanism for
sequential “growth” of a tile assembly. Very briefly, in the aTAM, the fundamen-
tal components are un-rotatable, translatable square “tile types” whose sides are
labeled with (alpha-numeric) glue “colors” and (integer) “strengths”. Two tiles
that are placed next to each other bind if both the glue colors and the strengths
on their abutting sides match and the sum of their matching strengths sum to at
least a certain (integer) “temperature”. Self-assembly starts from a “seed” tile
type, typically assumed to be placed at the origin, and proceeds nondeterminis-
tically and asynchronously as tiles bind to the seed-containing assembly one at
a time. In this paper, we work in a three-dimensional variant of the aTAM in
which tile types are unit cubes and growth proceeds in a noncooperative manner.
c© Springer International Publishing Switzerland 2015
A. Phillips and P. Yin (Eds.): DNA 2015, LNCS 9211, pp. 71–86, 2015.
DOI: 10.1007/978-3-319-21999-8 5
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Tile self-assembly in which tiles may be placed in a noncooperative fashion
is often referred to as “temperature 1 self-assembly”. Despite the arcane name,
this is a fundamental and ubiquitous form of growth: it refers to growth from
growing and branching tips in Euclidean space, where each new tile is added if
it can bind on at least one side. Note that a more general form of cooperative
growth, where some of the tiles may be required to bind on two or more sides,
leads to highly non-trivial behavior in the aTAM, e.g., Turing universality [10]
and the efficient self-assembly of N × N squares [1,7] and other algorithmically
specified shapes [8]. Doty, Patitz and Summers conjecture [3] that the shape or
pattern produced by any 2D temperature 1 tile set that uniquely produces a final
structure is “simple” in the sense of Presburger arithmetic [6]. However, their
conjecture is currently unproven and it remains to be seen if noncooperative
self-assembly in the aTAM can achieve the same computational and geometric
expressiveness as that of cooperative self-assembly. In this paper, we focus on a
(barely) 3D version of the problem of finding the minimum number of distinct
tile types required to self-assemble an N × N square, i.e., its tile complexity (or
program-size complexity), at temperature 1.

The tile complexity of an N × N square at temperature 1 has been studied
extensively. In 2000, Rothemund and Winfree [7] proved that the tile complexity
of an N × N square at temperature 1 is N2, assuming the final structure is
fully connected, and at most 2N − 1, otherwise (they also conjectured that the
lower bound, in general, is 2N − 1). A decade later, Manuch, Stacho and Stoll
[5] established that, assuming no strength/label mismatches between adjacent
glues are present in the final assembly, the tile complexity of an N ×N square at
temperature 1 is 2N −1. Shortly thereafter, and quite surprisingly, Cook, Fu and
Schweller [2] showed that the tile complexity of an N ×N square at temperature
1 is O(log N) if tiles are allowed to be placed in the z = 0 and z = 1 planes
(here, an N × N square is actually a full 2D square in the z = 0 plane with
additional tiles above it in the z = 1 plane).

Technically speaking, the aforementioned, just-barely-3D construction of
Cook, Fu and Schweller is actually a general transformation that takes as input
a 2D temperature 2 “zig-zag” tile set, say T , and outputs a corresponding 3D
temperature 1 tile set, say T ′, that simulates T . In this transformation from T
to T ′, the tile complexity increases by O(log g), where g is the number of unique
north/south glues in the input tile set T . Since the number of north/south glues
in the standard 2D aTAM base-2 binary counter is O(1), Cook, Fu and Schweller
use their transformation to produce several tile sets, which, when wired together
appropriately and combined with “filler” tiles, self-assemble into an N×N square
at temperature 1 in 3D with O(log N) tile complexity.

Of course, it is well-known that the tile complexity of an N ×N square at tem-
perature 2 is O

(
log N

log log N

)
[1], which, as Cook, Fu and Schweller point out in [2], is

achievable using a zig-zag counter with an optimally-chosen base, say b, which sat-
isfies log N

log log N ≤ b < 2 log N
log log N , rather than in base b = 2. However, using currently-

known techniques, counting in base b at temperature 2 requires having a tile set
with Θ(b) unique north/south glues, whence the zig-zag transformation of Cook,
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Fu and Schweller cannot be used to get O
(

log N
log log N

)
tile complexity for an N ×N

square at temperature 1 in 3D. Moreover, the optimal encoding scheme of Solove-
ichik and Winfree [8] and the base conversion technique of Adleman et al. [1] do not
work correctly at temperature 1 and they also cannot be simulated by the Cook,
Fu and Schweller construction without an Ω

(
log N

log log N

)
blowup in tile complex-

ity. Thus, Cook, Fu and Schweller, at the end of Sect. 4.4 in [2], pose the following
question: is it possible to achieve the tile complexity bound of O

(
log N

log log N

)
for an

N × N square at temperature 1 in 3D?
In Theorem 1, the main theorem of this paper, we answer the previous ques-

tion in the affirmative, i.e., we prove that the tile complexity of an N ×N square
at temperature 1 in 3D is O

(
log N

log log N

)
(in our construction, tiles are placed only

in the z = 0 and z = 1 planes of Z
3). Our tile complexity matches a corre-

sponding lower bound dictated by Kolmogorov complexity (see [4] for details on
Kolmogorov complexity), which was established by Rothemund and Winfree in
2000, and holds for all “algorithmically random” values of N [7]1. Thus, our con-
struction yields optimal tile complexity for the self-assembly of N × N squares
at temperature 1 in 3D, for all algorithmically random values of N . To achieve
optimal tile complexity, we adapt the optimal encoding technique of Soloveichik
and Winfree [8] (which, itself, is based on the base-conversion scheme of [1]) to
work at temperature 1 in 3D. Our 3D temperature 1 optimal encoding technique,
described in Sect. 3, is perhaps of independent interest.

2 Definitions: 3D Abstract Tile Assembly Model

In this section, we give a brief sketch of a 3-dimensional version of Winfree’s
abstract Tile Assembly Model.

Let Σ be an alphabet. A 3-dimensional tile type is a tuple t ∈ (Σ∗ ×N)6, i.e.,
a unit cube with six sides listed in some standardized order, each side having
a glue g ∈ Σ∗ × N consisting of a finite string label and a non-negative integer
strength. In this paper, all glues have strength 1. There is a finite set T of 3-
dimensional tile types but an infinite number of copies of each tile type, with
each copy being referred to as a tile.

A 3-dimensional assembly is a positioning of tiles on the integer lattice Z
3

and is described formally as a partial function α : Z
3 ��� T . Two adjacent

tiles in an assembly bind if the glue labels on their abutting sides are equal and
have positive strength. Each assembly induces a binding graph, i.e., a (square)
grid graph whose vertices are positions of tiles and whose edges connect any
two vertices whose corresponding tiles bind. If τ is an integer, we say that an
assembly is τ -stable if every cut of its binding graph has strength at least τ ,
where the strength of a cut is the sum of all of the individual glue strengths in
the cut.

1 Technically, Rothemund and Winfree established the 2D self-assembly case, but their
proof easily generalizes to 3D self-assembly.
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A 3-dimensional tile assembly system (TAS) is a triple T = (T, σ, τ), where
T is a finite set of tile types, σ : Z3 ��� T is a finite, τ -stable seed assembly,
and τ is the temperature. In this paper, we assume that |dom σ| = 1 and τ = 1.
An assembly α is producible if either α = σ or if β is a producible assembly and
α can be obtained from β by the stable binding of a single tile. In this case we
write β →T

1 α (to mean α is producible from β by the binding of one tile), and
we write β →T α if β →T ∗

1 α (to mean α is producible from β by the binding
of zero or more tiles). When T is clear from context, we may write →1 and →
instead. We let A [T ] denote the set of producible assemblies of T . An assembly
is terminal if no tile can be τ -stably bound to it. We let A� [T ] ⊆ A [T ] denote
the set of producible, terminal assemblies of T .

A TAS T is directed if |A� [T ]| = 1. Hence, although a directed system may
be nondeterministic in terms of the order of tile placements, it is deterministic in
the sense that exactly one terminal assembly is producible. For a set X ⊆ Z

3, we
say that X is uniquely produced if there is a directed TAS T , with A� [T ] = {α},
and dom α = X.

For N ∈ N, we say that S3
N ⊆ Z

3 is a 3D N × N square if {0, . . . , N − 1} ×
{0, . . . , N − 1} × {0} ⊆ S3

N ⊆ {0, . . . , N − 1} × {0, . . . , N − 1} × {0, 1}. In other
words, a 3D N × N square is at most two 2D N × N squares, one stacked on
top of the other.

In the spirit of [7], we define the tile complexity of a 3D N × N square
at temperature τ , denoted by Kτ

3DSA(N), as the minimum number of dis-
tinct 3D tile types required to uniquely produce it, i.e., Kτ

3DSA(N) =
min

{
n

∣∣T = (T, σ, τ) , |T | = n and T uniquely producesS3
N

}
2.

In the figures in this paper, we use big squares to represent tiles placed in
the z = 0 plane and small squares to represent tiles placed in the z = 1 plane.
A glue between a z = 0 tile and z = 1 tile is denoted as a small black disk.
Glues between z = 0 tiles are denoted as thick lines. Glues between z = 1 tiles
are denoted as thin lines.

3 Optimal Encoding at Temperature 1

A key problem in algorithmic self-assembly is that of providing input to a tile
assembly system (e.g., the size of a square, the input to a Turing machine, etc.).
In real-world laboratory implementations, as well as theoretical constructions,
input to a tile system is typically provided via a (possibly large) collection of
“hard-coded” seed tile types that uniquely assemble into a convenient “seed
structure,” such as a line of tiles that encodes some input value. Unfortunately,
in practice, it is more expensive to manufacture different types of tiles than it is
to create copies of each tile type. Thus, it is critical to be able to provide input
to a tile system using the smallest possible number of hard-coded seed tile types.

2 One subtle difference between our 3D definition of K and the original 2D definition
of the tile complexity of an N ×N square, given by Rothemund and Winfree in [7],
is that they assume a fully-connected final structure, whereas we do not.
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Consider the problem of constructing a tile set that uniquely self-assembles
from a single seed tile into a “seed row” that encodes an n-bit binary string,
say x. The most straightforward way to do this is to construct a set of n unique
tile types that deterministically assemble into a line of tiles of length n, where
each tile in the line represents a different bit of x. This simple construction
encodes one bit of x per tile, whence its tile complexity is O(n). Note that, in
this example, each tile type is an element of a set of size n, yet each tile type
encodes only 1 bit of information, instead of the optimal O(log n) bits. Is there
a more efficient encoding construction?

The optimal encoding constructions of Adleman et al. [1], and Soloveichik
and Winfree [8] are more efficient methods of encoding input to a tile set. These
constructions are based on the idea that each seed row tile type should encode
k = O(log n) bits – instead of a single bit – of x, which means that O(n/ log n)
unique tile types suffice to uniquely self-assemble into a seed row that encodes the
bits of x. Unfortunately, now the bits of x are no longer conveniently represented
in distinct tiles. Fortunately, if k is chosen carefully, then it is possible to use
a tile set of size O(n/ log n) to “extract” the bits of x into a more convenient
one-bit-per-tile representation, which can be used to seed a binary counter or a
Turing machine simulation.

Up until now, all known optimal encoding constructions (e.g., [1,8]) required
cooperative binding (that is, temperature τ ≥ 2). In what follows, we propose
an optimal encoding construction (based on the construction of Soloveichik and
Winfree [8]) that works at temperature τ = 1 and is “just barely” 3D, i.e., tiles
are only placed in the z = 0 and z = 1 planes.

3.1 Overview of the Construction

Let x = xn−1xn−2...x1x0 be the input string, where xi ∈ {0, 1}. Let m =
�n/k�, where k is the smallest integer satisfying 2k ≥ n/ log n. We write x =
w0w1...wm−2wm−1, where each wi is a k-bit block. Note that w0 is padded to
the left with leading 0’s, if necessary. In the figures in this section, a green tile
represents a starting point for some portion of an assembly sequence, and a red
tile represents an ending point.

We extract each of the m k-bit blocks within a roughly rectangular region
of space of width O(k) and height O(m). We refer to this region of space as a
“block extraction region” (or simply “extraction region”). For each 0 ≤ i < m,
we extract block wi in extraction region i. Each extraction region, other than
the first and last ones, assembles via a series of gadgets (small groups of tiles
that carry out a specific task).

We encode the k bits of a k-bit block as a series of geometric bumps along a
path of tiles that makes up the top border of an extraction region. A bump in
the z = 0 plane represents the bit 0 and a bump in the z = 1 plane represents
the bit 1. The end result of our construction is an assembly in which each bit of
x is encoded in its own bit-bump (see Fig. 10 for an example).

We extract the k-bit blocks in order, starting with the first block w0, which
represents the most significant bits of x. Normally, to carry out this sort of
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activity at temperature 1 (i.e., to enforce the ordering of tile placements), one
has to encode the order of placement directly into the glues of the tiles. However,
for our construction, this would essentially mean encoding the number of the
block that is being extracted into the glues of the tiles that fill in its extraction
region. Unfortunately, doing so, at least in the most straightforward way, results
in an increase in tile complexity from the optimal O(n/ log n) to Ω(n2/ log2 n).

Therefore, in our construction, we encode the number of the block that is
being extracted as a geometric pattern along a vertical path of tiles that runs
along the right side of each extraction region. We call this special geometric
pattern the “block number.” Then we use a special gadget called the “block-
number gadget” to search for this pattern.

Fig. 1. The perimeter of the first extraction region is hard-coded to self-assemble like
this. In this example, the four bumps along the top (from left to right) represent the
bits 1, 0, 0 and 1, respectively. The green tile (bottom tile in the penultimate column)
is the single seed tile for our entire optimal encoding construction (Color figure online).

Within an extraction region, the block number determines which block gets
extracted next. Basically, the path along which the block number is encoded
blocks the placement of m − 1 special tiles, each of which tries to initiate the
extraction of a particular k-bit block. We call these special tiles “extraction
tiles.” Since the first extraction region is hard-coded (see below), the first block
does not have an extraction tile associated with it. Within any given extraction
region, exactly one extraction tile will not be blocked. The one extraction tile
that is not blocked by the block number gadget will initiate the extraction of
the k bits of the block to which it corresponds.

In our construction, we hard-code the assembly of the first and last extraction
regions. What this means is that, in each of these extraction regions, a single-
tile-wide path assembles the perimeter and then we use O(1) filler tiles to fill
in the interior. For this step, it is crucial to first assemble the perimeter of the
extraction region and then use the O(1) filler tiles to tile the interior. Note
that, if one were to uniquely tile every location in the first (or last) extraction
region, then the tile complexity of the construction would be Ω(mk), which is
not optimal. Tiling the perimeter of either the first or last extraction region can
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(a) The block-number gadget determines
the next block to extract by “searching”
for the position of the block number (i.e.,
the position of the notch in which the red
tile is ultimately placed).

(b) The path initiated by the extraction
tile for w1 “jumps” over the block-number
gadget and grows a hook to block a sub-
sequent gadget.

(c) The path initiated by the extraction
tile for w1 continues growing upward and
eventually finds the top of the block-
number gadget. The upward growth of
this path is blocked by a portion of the
previous extraction region.

(d) Once at the top of the block-number
gadget, the path initiated by the extrac-
tion tile for w1 “jumps” over a portion of
the previous extraction region and starts
extracting the bits of w1 along the top of
the second extraction region.

Fig. 2. This sequence of figures shows how the position of the block number is found.
The black tiles correspond to tiles of the previous extraction region (Color figure
online).
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be done with O(m + k) unique tile types (see Fig. 1 for the example of the first
extraction region).

All extraction regions other than the first and last ones are constructed
using a general set of gadgets. In the second extraction region, which is the
first generally-constructed extraction region, the block-number gadget deter-
mines that w1 is the next block to be extracted by “searching” for the block
number position. When the block number is found, a path of tiles, initiated by
the extraction tile for w1, is allowed to assemble (see Fig. 2 for an example of
this process). In general, for extraction region i, for all 1 ≤ i < m − 1, the path
along which the block number is encoded geometrically hinders the placement
of all extraction tiles that correspond to blocks w1, ..., wi−1, wi+1, ..., wm−2.

Each extraction tile initiates the extraction of the k-bit block to which it
corresponds (see Fig. 3). We use a set of “bit-extraction” gadgets to extract a
k-bit block into a one-bit-per-bump representation (the bit extraction gadgets
are collectively referred to as the “extraction gadget”). Our bit extraction gad-
gets are basically 3D, temperature 1 versions of the “extract bit” tile types in
Fig. 5.7a appears in [8].

Fig. 3. The bits of the current block are represented as bumps along the top of the
extraction region that is currently being assembled.

After a block, say wi, for i > 0, is extracted, the block number is geometrically
“incremented”, i.e., its position is translated up by a small constant amount
(notice the position of the white “hook” at the bottom of Fig. 3). We do this in
two phases. First, the current position of the block number is found and then
it is incremented and translated. Figure 4 shows how the current position of the
block number is detected using a zig-zag path of tiles. Figure 5 shows how the
current position of the block number is geometrically incremented.

After the block number has been updated, a series of gadgets geometrically
propagate the position of the block number to the right through the remainder
of extraction region i so that it is advertised to extraction region i + 1. This is
shown in Figs. 6 and 7. Technically, we geometrically propagate the block num-
ber position through the rest of the extraction region using a series of gadgets.



Optimal Program-Size Complexity for Self-Assembly at Temperature 1 in 3D 79

Fig. 4. A path of tiles searches for the block number, represented by a notch in a
previous portion of the assembly. The red tile “knows” that it found the position of
the block number because it was allowed to be placed (Color figure online).

Fig. 5. The block number is geometrically incremented. The green tile “jumps” over
the previous gadget that found the position of the block number and grows a hook of
tiles to represent the updated block number. Notice that the new hook of tiles is two
tiles higher than the previous hook (shown in black), which corresponds to the two
rows of tiles that each block takes up in the block-number gadget (Color figure online).

Logically, however, we do this in two phases, which are iterated: “up” propaga-
tion and “down” propagation.

The “up” propagation phase grows from the position of the block number
up to (and is blocked by) a previous portion of the assembly. This is shown in
Fig. 6. The “down” propagation phase grows from the top of the previous (up)
propagation phase back down to the position of the block number. The upward
growth of each up propagation phase is blocked in the z = 0 plane but not in
the z = 1 plane. However, this is switched for the last up propagation phase.
In other words, the last up propagation phase may continue its upward growth,
which signals the end of the extraction region, but its z = 1 growth is blocked.
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Fig. 6. A series of gadgets geometrically propagate the position of the block number
through the rest of the extraction region. This figure shows two of the gadgets. The
first one assembles upward until it is blocked by a previous portion of the assembly.
The second one assembles horizontally and to the right as it jumps over the top row
of the previous gadget.

Fig. 7. The position of the block number is propagated through the rest of the extrac-
tion region.

In Fig. 8, the last up propagation phase is allowed to continue its upward growth
in the z = 0 plane.

The last up propagation phase initiates the assembly of a special gadget that
fills in the bottom row of the current extraction region before the next extraction
region begins. The reason we do this is to ensure that, when the entire extraction
process is done (i.e., when all n bits have been extracted into a one-bit-per-
bump representation), the bottom row of the assembly is completely filled in.
Figure 9 shows an example of how this gadget tiles the remaining perimeter of
an extraction region. Note that the tile complexity of this gadget is the size of
the perimeter of an extraction region, i.e., O(m).

The final extraction region, like the initial extraction region, is hard-coded
to assemble its perimeter via a single-tile-wide path. The tiles that comprise
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Fig. 8. The last up propagation phase detects when it has reached the end of the
extraction region and initiates a perimeter gadget (see Fig. 9) that will fill in the bottom
row of the current extraction region before the next extraction region begins.

Fig. 9. The bottom row of the extraction region is tiled by a special gadget with
O(m) tile complexity. After the bottom row of the extraction region is tiled, the next
extraction region is initiated. Notice that the red tile in this figure belongs to the same
row of tiles as the red tile in Fig. 1 but the position of the block number has moved up,
which means the extraction tile for the next block (in this case, w2) will be allowed to
assemble and all other extraction tiles will be blocked (Color figure online).

the final extraction region “know” to stop the extraction process and possibly
initiate the growth of some other logical component of a larger assembly, e.g., a
binary counter or a Turing machine simulation in which the extracted bits of x,
along the top of each of the m extraction regions, are used as input.

The end result of our optimal encoding construction is a roughly rectan-
gular assembly of tiles with height O(m) and width O(n), where each bit of
x is encoded as a bump (either in the z = 0 or z = 1 plane) along the top
of the rectangle, with four “spacer” tiles to the left and right of each bit-bump.
Figure 10 shows the result of our optimal encoding construction with four extrac-
tion regions.
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Fig. 10. This is an example of our optimal encoding construction using n = 16 and
k = 4. Note that this does not correspond to an actual instance of our optimal encoding
construction because if n = 16, then the smallest value of k satisfying 2k ≥ n/ logn
is k = 2. The bit string encoded along the top is 1001001100111000. All of the empty
spaces in the z = 0 plane are filled in with O(1) filler tiles.

The tile complexity of our construction is O(n/ log n), which is optimal for
all algorithmically random values of n.

4 Optimal Self-assembly of Squares at Temperature
1 in 3D

We use our 3D temperature 1 optimal encoding construction to prove the fol-
lowing theorem.

Theorem 1. K1
3DSA(N) = O

(
log N

log log N

)
.

Proof. Our proof is constructive. Figure 11a shows how we build an N×N square
using two counters C1 and C2 and two filler regions F1 and F2. Counter C1 is a
zig-zag counter whose construction is depicted in Fig. 13. Counter C2 is identical
to C1 after a 90-degree clockwise rotation. Each counter is seeded with a value
produced by an optimal encoding region (OER for short). The full construction
for F1 is depicted in Fig. 12. F2 is a smaller, mirror-image of F1 with minor
modifications to properly connect all of the pieces of the square. Both F1 and
F2 are essentially squares, except for two hooks needed to stop the horizontal and
vertical growths of each filler region, namely, one eight-tile hook encroaching on
and another one-tile hook protruding from each filler region (see Fig. 12). These
hooks require simple modifications of the OER regions (see Fig. 11b) that are all
located in the hard-coded (i.e., first and last) block extracting regions of OER1
and OER2. Note that F1 is also missing a two-tile wide rectangle region on
its left that is used up by the vertical connector that initiates the assembly of
OER2 immediately after the assembly of C1 terminates. Figure 11c shows the
assembly sequence for the whole square, while Fig. 11b zooms in on the region
of the square where OER1, F1, OER2 and F2 all interact.

First, we compute the tile complexity of our construction as the sum of the
tile complexities of all of the components that make up the N × N square.
Let n = �log N�. If k denotes the smallest integer satisfying 2k ≥ n/ log n and
m is defined as �n/k�, then the tile complexity of each OER is O(n/ log n).
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(a) Overall square construction.

(b) Detail of the region of the
square where OER1, F1, OER2

and F2 meet.

(c) The assembly sequence for the whole square is
shown with red arrows starting from the seed tile
(the red square located in OER1). The central re-
gion in this sub-figure is shown in more detail in
Figure 11b to the left.

Fig. 11. Construction of an N × N square, where m is O
(

logN
log logN

)
. The counters C1

and C2 (in medium gray) are identical up to rotation. So are their seed rows, each of
which is the output of an optimal extraction region (OER1 and OER2, respectively, in
light gray). F1 and F2 (in dark gray) are filler regions (Color figure online).

Furthermore, the tile complexity of each binary counter is O(1). Finally, the tile
complexity of each filler region is O(1), since each colored gadget in Fig. 12 has
tile complexity O(1). Therefore, the tile complexity of our square construction
is dominated by that of the OERs and is therefore O( n

log n ) = O
(

log N
log log N

)
.

Second, we need to prove that our tile system is directed and does produce
an N × N square. The assembly sequence depicted in Fig. 11c demonstrates
that our tile system uniquely produces a square. To make sure that this square
has width N , we need to pick the initial value i of the counters and adjust
the size of the filler regions as follows. The width of OER1, C1 and F2 in our
construction, and thus also the height of OER2, C2 and F2 is 6n+4. The height
of OER1, and thus also the width of OER2, is 2m+7 (see, for example, Fig. 10).
Therefore, the height of C1 (and thus also the width of C2) must be equal to
N − (2m + 7 + 6n + 4) = N − 2

⌈
�log N�

k

⌉
− 6�log N� − 11. Let us denote this

value by h(N). Our construction of the counters gives us two knobs to control



84 D. Furcy et al.

Fig. 12. Detailed construction for the F1 filler region in Fig. 11 (Color figure online)

Fig. 13. Detailed construction for the C1 counter in Fig. 11. The gray tiles at the
bottom of the counter are part of the optimal extraction region that produces the seed
value. The assembly of the counter starts at the orange glue in the bottom-right corner
of the figure (Color figure online).
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the height of any n-bit counter: the initial value i of the counter and the number
r of rooftop rows (the white tiles in Fig. 13), where r ∈ {1, 2, 3, 4}. Since each
value from i to the final value of the counter 2n − 1 (inclusive) takes up four
rows of tiles, we must have 	h(N)

4 
 = 2n − i and r = 1+h(N) mod 4. Therefore,
for both C1 and C2, the initial value of the counter is 2n − 	h(N)

4 
. Finally, the
correct height and width of F1 are obtained by setting the two knobs described
in Fig. 12 to 1+ (2m+7+h(N)− 1) mod 4 and 4− (2m+7+h(N)− 2) mod 2,
respectively. Similarly, the correct height and width of F2 are obtained by setting
the second knob to 4−(6n+4) mod 2 and the first knob to 1+(6n+4−1) mod 4.

The gray tiles in this figure do not belong to F1. They are all added to the N ×N
square assembly before F1 starts assembling and they determine the height and
width of F1, both of which are adjustable in the following way:

– The height of F1 is always a multiple of four (i.e., the total height of each pink
plus red gadget), plus the number of purple rows at the top, which can be
hard-coded to any value in {1, 3, 4}, together with a corresponding increase
in the height of the top-left (gray) hook.

– The width of F1 is always a multiple of two (i.e., the width of each pink gadget)
plus the width of each orange gadget, which is either three (by deleting the
column occupied by the white tiles) or four (as shown).

Therefore, this construction gives us two knobs, namely the number of purple
rows and the width of the orange gadget, to assemble filler regions of any height
and width, respectively.

5 Conclusion

In this paper, we developed a 3D temperature 1 optimal encoding construction,
based on the 2D temperature 2 optimal encoding construction of Soloveichik and
Winfree [8]. We then used our construction to answer an open question of Cook,
Fu and Schweller [2], namely, we proved that K1

3DSA(N) = O
(

log N
log log N

)
, which

is the optimal tile complexity for all algorithmically random values of N .
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Abstract. In this paper we introduce the robust coin flip problem in
which one must design an abstract tile assembly system (aTAM system)
whose terminal assemblies can be partitioned such that the final assem-
bly lies within either partition with exactly probability 1/2, regardless
of what relative concentration assignment is given to the tile types of
the system. We show that robust coin flipping is possible within the
aTAM, and that such systems can guarantee a worst case O(1) space
usage. As an application, we then combine our coin-flip system with
the result of Chandran, Gopalkrishnan, and Reif [3] to show that for
any positive integer n, there exists a O(log n) tile system that assembles
a constant-width linear assembly of expected length n that works for
all concentration assignments. We accompany our primary construction
with variants that show trade-offs in space complexity, initial seed size,
temperature, tile complexity, bias, and extensibility, and also prove some
negative results. Further, we consider the harder scenario in which tile
concentrations change arbitrarily at each assembly step and show that
while this is not solvable in the aTAM, this version of the problem can
be solved by more exotic tile assembly models from the literature.

1 Introduction

Self-assembly is the process by which local interactivity among unorganized,
autonomous units results in their amalgamation into compounds. One of the
premiere models for studying the theoretical possibilities of self-assembly is the
abstract tile assembly model (aTAM) [22] in which system monomers are 4-sided
Wang tiles that attach to a growing seed assembly whenever matching glues
present a sufficient bonding strength. The motivation for studying the aTAM
stems from the feasibility of a nanoscale DNA implementation [12], along with
the universal computational power of the model [19], which permits many fea-
tures including algorithmic self-assembly of general shapes [20], and more [8,17].
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A promising new direction in self-assembly is the consideration of randomized
self-assembly systems. In randomized self-assembly (a.k.a. nondeterministic self-
assembly), assembly growth is dictated by nondeterministic, competing assembly
paths yielding a probability distribution on a set of final, terminal assemblies.
By careful design of tile-sets and the relative concentration distributions of these
tiles, a number of new functionalities and efficiencies have been achieved that
are provably impossible without this non-determinism. For example, by precisely
setting the concentration values of a generic set of tile species, arbitrarily com-
plex strings of bits can be programmed into the system to achieve a specific shape
with high probability [9,15]. Alternately, if the concentration of the system is
assumed to be fixed at a uniform distribution, randomization still provides for
efficient expected growth of linear assemblies [3] and low-error computation at
temperature-1 [6]. Even in the case where concentrations are unknown, random-
ized self-assembly can build certain classes of shapes without error in a provably
more efficient manner than without randomization [2].

Motivated by the power of randomized self-assembly, along with the poten-
tial for even greater future impact, we focus on the development of the most
fundamental randomization primitive: the robust generation of a uniform ran-
dom bit. In particular, we introduce the problem of self-assembling a uniformly
random bit within O(1) space that is guaranteed to work for all possible con-
centration distributions. We define a tile system to be a coin flip system, with
respect to some tile concentration distribution, if the terminal assemblies of the
system can be partitioned such that each partition has exactly probability 1/2 of
assembling. We say a system is a robust coin flip system if such a partition exists
that guarantees 1/2 probability for all possible tile concentration distributions.
By designing systems that flip a fair coin for all possible (adversarially chosen)
concentration distributions, we achieve an intrinsically fair coin-flipping system
that is robust to the experimental realities of imprecise quantity measurements.
Such intrinsically fair systems may further allow for increased scalability of ran-
domized self-assembly systems in scenarios where exact concentrations of species
are either unknown or intractable to predict at successive assembly stages.

Our results. Our primary result is an aTAM construction that constitutes a
robust fair coin flip system which completes in a guaranteed O(1) space. We
apply our robust coin-flip construction to the result of Chandran, Gopalkrishnan,
and Reif [3] to show that for any positive integer n, there exists a O(log n) tile
system that assembles a constant width-4 linear assembly of expected length
n that works for all concentration assignments. We accompany this result with
a proof that such concentration independent assembly of width-1 assemblies
is not possible with fewer than n tile types. We further accompany our main
coin-flip construction with variant constructions that provide trade-offs among
standard aTAM metrics such as space, tile complexity, and temperature, as well
as new metrics such as coin bias, and the extensibility of the system, which is the
maximum number of distinct locations a single assembly of the system can add a
tile. We show that 1-extensible systems, while computationally universal, cannot
robustly coin-flip in bounded space without incurring a bias, but can robustly
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Table 1. τ represents the temperature of the system, |σ| represents the number of tiles
in the seed assembly, and k -ext denotes the extensibility of the system. p represents
the largest disparity in relative tile concentration between any pair of tile types in the
system for a given concentration distribution.

coin-flip in bounded expected space. We also consider the more extreme model in
which concentrations may change adversarially at each assembly step. We show
that the aTAM cannot robustly coin flip in bounded space within this model,
but a number of more exotic extensions of the aTAM from the literature are
able to robustly coin flip in O(1) space. We summarize our results in Table 1.
The problem of self-assembling random bits has been considered before [11], but
their technique, and in fact almost all randomized techniques to date, do not
work when arbitrary concentrations are considered.

2 Definitions and Model

2.1 Tiles, Assemblies, and Tile Systems

Consider some alphabet of glue types Π. A tile is a unit square with 4 edges
each assigned some glue type from Π. Further, each glue type g ∈ Π has some
non-negative integer strength str(g). Each tile may be assigned a finite length
string label, e.g., “black”,“white”,“0”, or “1”. Further, for simplicity, we assume
each tile center is located at a pixel p = (p1, p2) ∈ Z

2. For a given tile t, we
denote the tile center of t as its position. As notation, we denote the set of all
tiles that constitute all translations of the tiles in a set T as the set T ∗. An
assembly is a set of tiles each assigned unique coordinates in Z

2. For a given
assembly α, define the bond graph Gα to be the weighted graph in which each
element of α is a vertex, and each edge weight between tiles is str(g) if the
tiles share an overlapping glue g, and 0 otherwise. An assembly α is said to be
τ -stable for a positive integer τ if the bond graph Gα has min-cut at least τ ,
and τ -unstable otherwise. A tile system is an ordered triple Γ = (T, σ, τ) where
T is a set of tiles called the tile set (we refer to elements of T as tile types),
σ is an assembly called the seed and τ is a positive integer called the temperature.
When considering a tile a that is some translation of an element of a tile set T ,
we will use the term tile type of a to reference the element of T that a is a
translation of. Assembly proceeds by growing from assembly σ by any sequence
of single tile attachments from T so long as each tile attachment connects with
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strength at least τ . Formally, we define what can be built in this fashion as the
set of producible assemblies:

Definition 1 (Producibility). For a given tile system Γ = (T, σ, τ), the set
of producible assemblies for system Γ , PRODΓ , is defined recursively:

– (Base) σ ∈ PRODΓ

– (Recursion) For any A ∈ PRODΓ and b ∈ T ∗ such that C = A∪{b} is τ -stable,
then C ∈ PRODΓ .

As additional notation, we say A →Γ
1 B if A may grow into B through a

single tile attachment, and we say A →Γ B if A can grow into B through 0 or
more tile attachments. An assembly sequence for a tile system Γ is a sequence
(finite or infinite) −→α = 〈α1, α2, . . . 〉 in which α1 = σ, each αi+1 is a single-tile
extension of αi, and each αi is τ -stable. The frontier of an assembly α, written
as F (α, Γ ), is a partial function that maps an assembly α and a tile system Γ
to a set of tiles {t ∈ T ∗|α ∪ {t} ∈ PRODΓ ∧ t /∈ α}. We further define TERMΓ to
be the subset of PRODΓ consisting only of assemblies for which no further tile in
T may attach.

Definition 2 (Finiteness and Space). For a given tile assembly system Γ =
(T, σ, τ), we say Γ is finite iff ∀σ ∈ PRODΓ ,∃α ∈ TERMΓ : σ →Γ α. That is, each
producible assembly has a growth path ending in a finite, terminal assembly. If
Γ is not finite, we say it is infinite. Define the space of an assembly α as
|α|. Let the space of a tile assembly system be defined as the max

α∈TERMΓ

|α| iff

Γ is finite. If Γ is infinite, let space remain undefined. Note that a finite system
may have infinite/unbounded space.

Definition 3 (Extensibility). Consider a tile assembly system Γ = (T, σ, τ),
and assembly α ∈ PRODΓ . We denote the set of all locations at which a tile may
stably attach to α as Lα. More formally, Lα = {pt|t ∈ F (α, Γ )}. We say a tile
system Γ is k-extensible iff ∀α ∈ PRODΓ , |Lα| ≤ k. Informally, a tile assembly
system is k-extensible iff at any point in the assembly process, the assembly can
only grow in at most k locations.

2.2 Probability in Tile Assembly

We use the definition of probabilistic assembly presented in [1,3,6,9,15]. Let P
be a function denoting a concentration distribution over a tileset T repre-
senting the concentrations of each tile type with the restrictions ∀t ∈ T, P (t) > 0
and

∑
t∈T

P (t) = 1. For a tile t, we sometimes refer to P (t) as the concentra-

tion of t. Using a concentration distribution, we can consider probabilities for
certain events in the system. To study probabilistic assembly, we can consider
the assembly process as a Markov chain where each producible assembly is a
state and transitions occur with non-zero probability from assembly A to each
B whenever A →Γ

1 B. For each B that satisfies A →Γ
1 B, let tA→B denote the
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tile in T whose translation is added to A to get B. The transition probability
from A to B is defined to be

TRANS(A,B) =
P (tA→B)∑

{C|A→Γ
1 C} P (tA→C)

(1)

The probability that a tile system Γ terminally assembles an assembly A is
defined to be the probability that the Markov chain ends in state A. For each
A ∈ TERMΓ , let PROBP

Γ→A denote the probability that Γ terminally assembles A
with respect to concentration distribution P .

Definition 4 (Expected Space). For a given finite tile system Γ = (T, σ, τ),
let the expected space of Γ relative to a concentration distribution P be defined as

EXPECTEDSPACEΓ =
∑

α∈TERMΓ

|α| · PROBP
Γ→α (2)

Definition 5 (Coin Flipping). We consider a finite tile system Γ a coin
flip tile system with bias b with respect to a concentration distribution P
for some b ∈ R iff the set of terminal assemblies in PRODΓ is partitionable into

two sets X and Y such that

∣∣∣∣∣
∑

x∈X

PROBP
Γ→x − ∑

y∈Y

PROBP
Γ→y

∣∣∣∣∣ ≤ 2b. A fair coin

flip tile system is a coin flip tile system with bias 0. We consider a finite
tile system Γ a robust coin flip tile system with bias b iff the set of ter-
minal assemblies in PRODΓ is partitionable into two sets X and Y such that∣∣∣∣∣
∑

x∈X

PROBC
Γ→x − ∑

y∈Y

PROBC
Γ→y

∣∣∣∣∣ ≤ 2b for all concentration distributions C. A

robust fair coin flip tile system is a robust coin flip tile system with bias 0.

3 Robust Fair Coin Flipping in the aTAM

Fig. 1. A non-robust
fair coin flip for the
uniform concentra-
tion distribution.

In this section we show systems capable of robust fair coin
flips in the aTAM. Figure 1 shows a simple fair coin flip
aTAM system for the uniform concentration distribution.
To solve this problem for arbitrary concentration distrib-
utions, more involved techniques are required.

Theorem 1. There exists a O(1) space 2-extensible
robust fair coin flip tile system Γ = (T, σ, 1) in the
aTAM with |σ| = 7.

Proof. To show this we present a tile system Γ = (T, σ, 1)
in which two terminal states exist and are equiprobable
for all concentration distributions P . |T | = 9 and σ contains 7 tiles. The system
terminates nondeterministically and contains either 2 h tiles and 1 t tile or 2
t tiles and 1 h tile. The system leverages any difference in tile concentrations
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Fig. 2. Shown are the σ, h, and t tiles on the left, and the terminal states of the
assembly system representing heads and tails. A, B and C glues are strength 1. Non-
matching glues have 0 strength.

between h and t by ensuring that placement of a t tile increases the probability
of terminating in an assembly containing 2h tiles and vice versa. A graphical
representation of σ, the h and t tiles, and terminal states of the assembly system
is shown in Fig. 2. Without loss of generality, assume the leftmost bottom tile in
σ sits at position (0, 0). We will refer to each producible assembly sans σ by the
labels of the tiles in positions (1, 1), (2, 1) and (3, 1) as such: t, h , ht and so

forth. We now show that PROBP
Γ→hht =

1
2

for all concentration distributions P .
Let ch be the concentration of the tile labeled h and ct be the concentration of
the tile labeled t, then

PROBP
Γ→hht = TRANS(σ, t)·TRANS( t, ht)·TRANS( ht, hht)

+ TRANS(σ, t)·TRANS( t, h t)·TRANS(h t, hht)
+ TRANS(σ, h )·TRANS(h , h t)·TRANS(h t, hht)

=
ct

ct + ch
· ch

ch + ch
· ch

ch
+

ct

ct + ch
· ch

ch + ch
· ch

ct + ch

+
ch

ct + ch
· ct

ct + ct
· ch

ct + ch

=
ct

2 + 2ctch + ch
2

2ct
2 + 4ctch + 2ch

2
=

1
2
.

��

3.1 Extension to a Single-Seed

A common constraint in the aTAM is that σ contains only one tile. Thus, no seed
structure must be formed prior to the self-assembly process. The construction
shown in Fig. 3 addresses this constraint and works in a similar fashion as the
construction in Theorem 1. Note that this system requires τ = 2.

Theorem 2. There exists a O(1) space 2-extensible robust fair coin flip tile
system Γ = (T, σ, 2) in the aTAM with |σ| = 1.

Proof. Our tile set is shown in Fig. 3. Without loss of generality, assume σ sits
at position (0, 0). Until the tile labeled S (see Fig. 3) is placed, the assembly
process is deterministic. Upon attachment of S, cooperative binding locations
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Fig. 3. T is shown. Our seed, labeled σ, begins a deterministic attachment process
ending with the placement of the tile labeled S. Glues labeled {1, 2, 3, . . . , 11} are of
strength 2. Glues labeled {A, B, C, D} are of strength 1, ensuring that the nonde-
terministic attachments of tiles h and t do not begin until the cooperative binding
locations are opened by placement of the tile labeled S. The nondeterministic sequence
of attachments following the placement of S is similar to that of Theorem 1.

allow the attachment of tiles h and t nondeterministically. We denote the assem-
blies following the placement of S similarly to the proof of Theorem 1. We refer
to assemblies containing tile S by the labels of tiles in positions (1,−1), (1, 0) and
(2, 0) as t, h, ht and so forth. Reflecting the analysis shown in Theorem 1,
we have PROBP

Γ→hht = .5 for all concentration distributions P , which implies
PROBP

Γ→htt = .5 as there are two terminal assemblies ��.

3.2 1-Extensible Coin Flipping

The previous sections showcase 2-extensible solutions to the robust fair coin flip
problem. A natural question follows: is there a 1-extensible solution? Theorem 3
shows that there is no O(1) space solution in the aTAM. Using algorithms based
on John von Neumann’s randomness extractor [21] we can achieve an unbounded
space robust fair coin flip system (Theorem 4) as well as a O(1) space construc-
tion which incurs a small bias (Theorem 5).

Theorem 3. There does not exist a O(1) space 1-extensible robust fair coin flip
tile system in the aTAM.

Proof. We prove this by contradiction. Assume that there exists a O(1) space
1-extensible robust fair coin flip aTAM tile system Γ = (T, σ, τ). We now spec-
ify a concentration distribution for m tiles in T that contradicts this claim.
Assume that Γ generates assemblies of size at most h. Consider a series of phases
p1, . . . , pn such that pi+1 is derived from pi by the attachment of the tile in the
frontier of pi with the largest concentration. Select a parameter t = 10mn3, and
let c1 = 1 and ci+1 = tci for i = 1, . . . , m − 1. Let the concentration for each
ti ∈ T be ci

c1+c2+···+cm
.

For each assembly pi, let qi1 , . . . , qiu
be the set of tile types in the frontier

of pi listed in increasing order by their concentrations. Let ciu
denote the con-

centration of tile type qiu
. With probability ciu

ci1+···+ciu
, tile type qiu

is attached.
We have
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ciu

ci1 + · · · + ciu

≥ 1
(u−1)ciu−1

ciu
+ 1

(3)

≥ 1
(u−1)

t + 1
≥ 1

m
t + 1

(4)

≥ 1
1

10n3 + 1
. (5)

Therefore, with probability at least

(
1

1
10n3 + 1

)n

≥
(

1
1

10n3 + 1

)10n3· 1
10n2

(6)

≥
(

1
e

) 1
10n2

> 0.6 (7)

we follow the sequence p1, . . . , pn to generate an assembly. This is a contradiction.
Note that we use the facts that (1 + 1

x )x is an increasing function for all real
x > 1, and limx→+∞(1 + 1

x )x = e ≈ 2.17828. ��
In response to Theorem 3, we give a 1-extensible aTAM system capable of robust
fair coin flips in unbounded space in Theorem 4. In 1951, John von Neumann
gave a simple method for extracting a fair coin from a biased one [21]. We
show two algorithms based on the Von Neumann extractor. Algorithm 1 uses an
unbounded number of rounds to extract a fair coin flip. We use Algorithm 1 to
show that a fair coin flip extractor can be implemented in the aTAM to achieve
an unbounded space, 1-extensible, robust coin flip tile system. We extend this
method in Algorithm 2 to create a bounded fair coin flip extractor by adding a
parameter k which controls the maximum number of rounds allowed. This is a
bounded coin flip extractor that is implemented in the aTAM and achieves O(1)
space, is 1-extensible, and is a robust coin flip tile system with bounded bias.

Algorithm 1.Unbounded
1: procedure UnboundedFCFE(h, t)
2: coin = {heads, tails}
3: pdist = {h, t}
4: repeat
5: flip 1 ← flip(coin, pdist)
6: flip 2 ← flip(coin, pdist)
7: until flip 1 �= flip 2
8: return flip 2
9: end procedure

Algorithm 2. Bounded
1: procedure BoundedFCFE(h, t, k)
2: coin = {heads, tails}
3: pdist = {h, t}
4: round ← 1
5: while round ≤ k do
6: flip 1 ← flip(coin, pdist)
7: flip 2 ← flip(coin, pdist)
8: if flip 1 �= flip 2 then
9: return flip 2

10: end if
11: round ← round + 1
12: end while
13: return flip(coin, h, t)
14: end procedure
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Fig. 4. The tile labeled S is the seed of the tile assembly system and the temperature
is 2. The strength of the glues are as follows: str(0)=1, str(1)=1, str(A)=2, str(B)=2,
str(C)=1, str(D)=1, str(F)=1, str(G)=2, str(R)=2, and str(R’)=2.

We now describe our 1-extensible aTAM tile system that implements Algo-
rithm 1. In Algorithm 1, a coin is a set of cardinality 2 with possible values
heads and tails. flip is a function that selects and returns a heads or tails value
based on the probabilities h and t, where h, t ∈ (0, 1) and h + t = 1. In our
construction, calls to the flip function are carried out by a non-deterministic
competition for attachment between a 0 tile and a 1 tile. Aside from calls
to the flip function, the rest of the algorithm can be implemented by deter-
ministic tile placements. Figure 4 gives the tile set used in the construction.
Consider all tiles labeled H as HEADS tiles and all tiles labeled T as TAILS
tiles where their placement implies the returning of heads and tails, respectively.
Consider all tiles labeled E as ERR tiles. The set of tiles in Fig. 4(a) starts the
process and makes two non-deterministic placements of a 1 tile or a 0 tile. The
set of tiles in Fig. 4(b) checks the result of the two flips. If the order of the flips,
starting from the left, is 10, it outputs a HEADS tile. If the order of the flips
is 01, it outputs a TAILS tile. Otherwise, it outputs an ERR tile, which starts
another loop. Figure 5 shows examples of assemblies that can grow in Round 1
of the algorithm. This construction yields Theorem 4. The full analysis of this
construction is omitted in this version due to space.

Theorem 4. There exists a 1-extensible, robust coin flip tile system in the
aTAM. The tile system achieves O(1/pq) expected space, where p and q denote
the relative concentrations of the two tiles with the largest difference in concen-
tration for a given concentration distribution.

We now extend Algorithm 1 by adding a parameter k, which controls the
maximum number of rounds allowed (Algorithm 2). This bounded fair coin flip
extractor can be implemented in the aTAM to achieve a O(1) space, 1-extensible,
robust coin flip tile system with bounded bias. The bounded k-rounds can be
controlled by the implementation of a 1-extensible version the the aTAM counter
construction from [5] for a desired base, leading to a tradeoff in bias, space,
and tile complexity. We state the primary tradeoff in Theorem 5 between space
and bias, and omit the tradeoff in tile complexity in this version, as well as
construction details and analysis.
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Fig. 5. A sample of producible assemblies for round 1

Theorem 5. There exists a c space 1-extensible robust coin flip tile system in
the aTAM with bias less than p(c/2)+1, where p denotes the larger relative con-
centration of the pair of tiles with the largest difference in concentration for a
given concentration distribution.

4 Robust Simulation of Randomized Linear Assemblies

As an application of the primitive shown in Theorem 2, we show that a class of
randomized linear aTAM tile assembly systems can be simulated in a concen-
tration robust manner with a minor scale factor.

We first briefly describe a scale (m,n)-simulation of a given tile system, based
on the block replacement schemes of [4]. Consider an aTAM system Γ = (T, σ, τ)
and a proposed simulator system Γ ′ = (T ′, σ′, τ ′). Now consider the mapping
from TERMΓ to TERMΓ ′ obtained by replacing each tile in an assembly A ∈ TERMΓ

with a rectangular m × n block of tiles over U , according to some fixed m × n
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block mapping R. If there exists such a mapping M from TERMΓ to TERMΓ ′ that
is bijective, then we say that Γ ′ simulates the production of Γ at scale factor
(m,n). Further, we say that Γ robustly simulates Γ ′ for concentration distribu-
tion P if for all terminal assemblies A ∈ TERMΓ , PROBP

Γ→A = PROBC
Γ ′→M(A) for all

concentration distributions C over T ′, i.e., Γ ′ produces terminal assemblies with
probability independent of concentration assignment, and with exactly the same
probability distribution as the concentration dependent system it simulates.

We now define a class of linear assembly systems for which we can construct
robust, concentration independent simulations.

Definition 6 (Unidirectional Two-Choice Linear Assembly Systems).
A tile system Γ is a unidirectional two-choice linear assembly system iff:

1. Γ is 1-extensible,
2. ∀α ∈ PRODΓ , |F (α, Γ )| ≤ 2,
3. ∀β ∈ PRODΓ , β is a 1 × n line for some n ∈ N.

Theorem 6. For any unidirectional two-choice linear assembly system Γ =
(T, σ, τ) in the aTAM, there is an aTAM system Γs = (T ′, σ′, τ ′) that robustly
simulates Γ for the uniform concentration distribution at scale factor 5 × 4;
further, |T ′| = c|T | for some constant c.

Proof. Let Γ = (T, σ, τ) be a unidirectional two-choice linear assembly sys-
tem. Define an undecided assembly to be any assembly α ∈ PRODΓ such that
|F (α, Γ )| = 2. For each undecided assembly, we will construct a gadget utiliz-
ing the technique in Theorem 2. We call the two tiles of an undecided assembly’s
frontier h and t. Consider αh = α∪h and αt = α∪t. We simulate Γ in reference to a
uniform concentration distribution, so α transitions to αh with probability .5 and
to αt with probability .5. Figure 6 shows an example of utilizing a 5 × 4 gadget in
Γs to simulate the transition from α to αh or αt. By application of Theorem 2, the
gadget will grow into one of two possible states with probability .5 for any concen-
tration distribution. By chaining the gadgets together we can robustly simulate
the nondeterministic attachments in Γ . Each tile is simulated by a 5 × 4 block of
tiles, therefore |T ′| = c|T | for some constant c. ��
As a corollary to Theorem 6, we can create a tile system to build an expected
length n assembly for all concentration distributions with O(log n) tile complex-
ity. First, we will prove that there is no aTAM tile system which generates linear
(width-1) assemblies of expected length n for all concentration distributions ([3]
showed that this is possible for the uniform concentration distribution).

Theorem 7. There is no aTAM tile system to generate an assembly of width-1
and expected length n for all concentration distributions with less than n tile
complexity.

Proof. Towards a contradiction, assume a self-assembly system can generate a
linear assembly with expected length n and uses at most k < n tiles. There is at
least one assembly S that is of length at least n. Let S = t1 · · · ti−1ti · · · tmti...,
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Fig. 6. A simulation of one non-deterministic linear tile attachment. Each non-
determinstic attachment will require a 5 × 4 robust coin flip gadget shown in Fig. 3.
The assembly may continue after simulating a non-determinstic attachment by build-
ing another 5 × 4 robust coin flip gadget, building a deterministic 5 × 4 block, or
terminating.

where ti · · · tmti is the first cycle that appears in S since there are less than n
tiles. We define the concentration of the types of tiles as follows:

Let c1 = 1, cj = cj−1/n100 for j = 1, ..., k. The concentration of each type
ti is ci

c1+c2+···+ck
. Therefore, with probability at least ( 1

1+ 1
n99

)n, the assembly

t1 · · · ti−1ti · · · tmti, or one at least as long, will be generated. With probability
at least ( 1

1+ 1
n99

)n3
> 0.9, an assembly at least as long as t1 · · · ti−1(ti · · · tmti)n2

...

will be generated, which has length at least n2. This contradicts the assumption
that the expected length is n. ��
We now contrast the width-1 impossibility result of Theorem 7 with a result
showing that width-4 linear assemblies do allow for efficient growth to expected
length n in a concentration independent manner. To achieve this, we apply
Theorem 6 to the unidirectional two-choice linear assembly system presented
in [3], which yields the following result.

Corollary 1. There exists an aTAM tile system Γ = (T, σ, τ) which terminates
in a width-4 expected length n assembly for all concentration distributions. |T | =
O(log n).
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Proof. Let m be
⌊n

5

⌋
. Consider Γ = (T, σ, τ) to be a robust simulation at scale

factor 5× 4 of a unidirectional two-choice linear assembly system that terminates
in an expected length m linear assembly using O(log m) tile types. Note that such
a unidirectional two-choice linear assembly system exists as shown in [3] and can
be robustly simulated as shown by Theorem 6. If 5m = n, then Γ terminates in
an expected length n assembly with width-4; otherwise, we add n mod 5 length
deterministically. Since our scale factor is constant, |T | = O(log n). ��

5 Robust Fair Coins with Unstable Concentrations

As an extension to the idea of concentration independent solutions outlined in
this paper, we consider an adversarial model wherein the concentration distrib-
ution of tiles changes during each stage of the assembly process; in other words,
the concentrations are unstable.

Definition 7 (Unstable Concentrations Robust Fair Coin Flip). Let
an unstable concentration distribution P be a function mapping z ∈ Z

+ to
concentration distributions over a tile set T . Let Pi denote P (i). For each B
that satisfies A →Γ

1 B, let tA→B denote the tile in T whose translation is added
to A to get B. The transition probability from A to B is defined to be

TRANS(A,B) =
P|A|(tA→B)∑

{C|A→Γ
1 C} P|A|(tA→C)

(8)

We consider a finite tile system Γ an unstable concentrations robust fair
coin flip iff the set of terminal assemblies in PRODΓ is partitionable into two sets
X and Y such that

∑
x∈X

PROBC
Γ→x =

∑
y∈Y

PROBC
Γ→y for all unstable concentration

distributions C.

We now prove that there is no unstable concentration robust fair coin flip
system in the aTAM. First, we state and prove a lemma that will be useful in
our proof.

Lemma 1. For any producible assembly A ∈ PRODΓ and any tile type t ∈ T ,
there exists another assembly A∗ such that for any sequence of assemblies 〈A0 =
A,A1, A2, . . . , Ah〉 where Ai+1 is derived from Ai by attaching a tile of type t
(i = 0, 1, 2, · · · , h − 1), and tile type t cannot be attached to Ah, then Ah = A∗.

Proof. Let A∗ be the least-sized producible assembly such that A∗ \ A contains
only tiles of type t and the frontier of A∗ contains no tiles of type t. We will
show that A can only grow A∗ if only allowed to attach tile type t.

Towards a contradiction, assume there exists a sequence of assemblies from
A such that Ah �= A∗. If Ah is some subassembly of A∗, note that we may still
attach tiles of type t to reach A∗, implying that Ah does not fit the specified
requirements. Otherwise, let An be the first assembly in the sequence which
contains a tile not in A∗. Consider An−1. There is no tile of type t attachable to
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An−1 such that the tile is not in A∗. If there were, that tile of type t would be
attachable to A∗, contradicting the definition of A∗. Therefore no such An can
exist, implying that Ah must be A∗.

Theorem 8. There does not exist a O(1) space unstable concentrations robust
fair coin flip tile system in the aTAM.

Proof. Towards a contradiction, assume that a space-n solution does exist.
As the assembly process proceeds, the key point to consider is when the cur-

rent assembly enters a state in which multiple distinct positions may attach a
tile. In such a case select one type t of all attachable tiles, and increase its con-
centration to ensure, with high probability, that assembly proceeds by attaching
only tiles of type t up until there is no position to attach type t tiles. Such a
type t is called a dominate type. Let the concentration of the dominate tile type
t be (1− 1

100n2 ). For each step i, let ti denote the dominate type of concentration
(1 − 1

100n2 ).
When there is more than one position to attach the same type of tile t, we are

assured by Lemma 1 that a unique assembly will result after repeatedly placing
tiles of type t (in any order) until placement of t is no longer an option.

Given this setup, we have that at each step i, the assembly does not grow
with a dominate type with probability at most 1

10n2 . With probability at most
1

10n , there is a step i among n steps that the assembly does not grow with the
dominate type.

Therefore, there is a terminal assembly that will be generated with probabil-
ity at least 0.9. This is a contradiction. ��

Motivated by the impossibility of robust coin flipping in the aTAM under
unstable concentrations, we now consider some established extensions of the
aTAM from the literature. In particular, we show that robust coin flipping
with unstable concentrations is possible within the aTAM with negative glues
[10,18,22], the polyTAM [13], the hexTAM [7] with negative glues, and the
GTAM [14].

Fig. 7. The terminal assemblies representing “heads” in some alternate models. C is
a strength-τ glue and N is a strength-(−1) glue in (a) the aTAM tile system and (b)
the hexTAM tile system. (c) C is a strength-1 glue in a τ = 2 polyTAM tile system.
(d) C is a strength-1 glue in a τ = 1 GTAM tile system. The abutting geometry does
not allow two C tiles to attach.
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Theorem 9. There exists a O(1) space unstable concentration robust fair coin-
flip tile system in the aTAM with negative glues, polyTAM, hexTAM with nega-
tive glues, and the GTAM.

Proof. Consider a tile assembly system Γ = (T, σ, τ) with 3 producible assem-
blies: σ, a terminal assembly heads, and a terminal assembly tails. Further,
σ →Γ

1 heads and σ →Γ
1 tails. Let tσ→heads and tσ→tails be the same tile c, then

TRANS(σ, heads) = TRANS(σ, tails) = P (c)
2P (c) = 1

2 . Systems which meet these
characteristics within the mentioned models can be seen in Fig. 7. ��

6 Conclusions and Future Work

In this paper we have introduced the problem of designing robust, fair coin
flipping systems. Generating such coin flips is fundamental for the implemen-
tation of randomized self-assembly algorithms. By incorporating concentration
independent robustness into the design of such systems, we directly address the
practical issue of limited control over species concentrations. Our goal in this
work is to provide a stepping stone for the creation of general, robust random-
ized self-assembly systems. As evidence towards the feasibility of this goal, we
have shown how our gadgets can be applied to convert a large class of lin-
ear systems into equivalent systems with the concentration robustness property.
A more general open problem is as follows: given a general tile system, is it
possible to convert the system to an approximately equivalent system that is
concentration robust? If possible, how efficiently can this be accomplished in
terms of scale factor and approximation factor?

Another direction for future work is the consideration of generalizations of the
coin flip problem. Our partition definition for coin flip systems extends naturally
to distributions with more than two outcomes, as well as non-uniform distrib-
utions. What general probability distributions can be assembled in O(1) space,
and with what efficiency? We have also introduced the online variant of con-
centration robustness in which species concentrations may change at each step
of the self-assembly process. We have shown that when such changes are com-
pletely arbitrary, coin flipping is not possible in the aTAM. A relaxed version of
this robustness constraint could permit concentration changes to be bounded by
some fixed rate. In such a model, how close to a fair flip can a system guarantee
in terms of the given rate bound? As an additional relaxation, one could consider
the problem in which an initial concentration assignment may be approximately
set by the system designer, thereby modeling the limited precision an experi-
menter can obtain with a pipette.

A final line of future work focusses on applying randomization in self-
assembly to computing functions. The parallelization within the abstract tile
assembly model allows for substantially faster arithmetic than what is possi-
ble in non-parallel computational models [16]. Can randomization be applied to
solve these problems even faster? Moreover, there are a number of potentially
interesting problems that might be helped by randomization, such as primality
testing, sorting, or a general simulation of randomized boolean circuits.
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Abstract. We consider staged self-assembly systems, in which square-
shaped tiles can be added to bins in several stages. Within these bins,
the tiles may connect to each other, depending on the glue types of their
edges. Previous work by Demaine et al. showed that a relatively small
number of tile types suffices to produce arbitrary shapes in this model.
However, these constructions were only based on a spanning tree of the
geometric shape, so they did not produce full connectivity of the underly-
ing grid graph in the case of shapes with holes; designing fully connected
assemblies with a polylogarithmic number of stages was left as a major
open problem. We resolve this challenge by presenting new systems for
staged assembly that produce fully connected polyominoes in O(log2 n)
stages, for various scale factors and temperature τ = 2 as well as τ = 1.
Our constructions work even for shapes with holes and uses only a con-
stant number of glues and tiles. Moreover, the underlying approach is
more geometric in nature, implying that it promised to be more feasible
for shapes with compact geometric description.

1 Introduction

In self-assembly, a set of simple tiles form complex structures without any active
or deliberate handling of individual components. Instead, the overall construc-
tion is governed by a simple set of rules, which describe how mixing the tiles
leads to bonding between them and eventually a geometric shape.

The classic theoretical model for self-assembly is the abstract tile-assembly
model (aTAM). It was first introduced by Winfree [12,14]. The tiles used in this
model are building blocks , which are unrotatable squares with a specific glue on
each side. Equal glues have a connection strength and may stick together. The
glue complexity is the number of different glues, while the tile complexity is the
number of tile types. If an additional tile wants to attach to the existing assembly
by making use of matching glues, the sum of corresponding glue strengths needs
to be at least some minimum value τ , which is called the temperature.

A generalization of the aTAM called the two-handed assembly model (2HAM)
was introduced by Demaine et al. [4]. While in the aTAM, only individual tiles
c© Springer International Publishing Switzerland 2015
A. Phillips and P. Yin (Eds.): DNA 2015, LNCS 9211, pp. 104–116, 2015.
DOI: 10.1007/978-3-319-21999-8 7
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can be attached to an existing intermediate assembly, the 2HAM allows attaching
other partial assemblies. If two partial assemblies (“supertiles”) want to assem-
ble, then the sum of the glue strength along the whole common boundary needs
to be at least τ .

In this paper we consider the staged tile assembly model introduced in [4],
which is based on the 2HAM. In this model the assembly process is split into
sequential stages that are kept in separate bins, with supertiles from earlier
stages mixed together consecutively to gain some new supertiles. We can either
add a new tile to an existing bin, or we pour one bin into another bin, such that
the content of both get mixed. Hence, there are bins at each stage. Unassembled
parts get removed. The overall number of necessary stages and bins are the
stage complexity and the bin complexity. Demaine et al. [4] achieved several
results summarized in Table 1. Most notably, they presented a system (based on
a spanning tree) that can produce arbitrary polyomino shapes P in O(diameter)
many stages, O(log N) = O(log n) bins and a constant number of glues, where N
is the number of tiles of P , n is the size of a smallest square containing P , and the
diameter is measured by a shortest path within P , so it can be as big as N . The
downside is that the resulting shapes are not fully connected. For achieving full
connectivity, only the special case of monotone shapes was resolved by a system
with O(log n) stages; for hole-free shapes, they were able to give a system with
full connectivity, scale factor 2, but O(n) stages. This left a major open problem:
designing a staged assembly system with full connectivity, polylogarithmic stage
complexity and constant scale factor for general shapes.

Our Results. We show that for any polyomino, even with holes, there is a
staged assembly system with the following properties, both for τ = 2 and τ = 1.

1. polylogarithmic stage complexity,
2. constant glue and tile complexity,
3. constant scale factor,
4. full connectivity.

See Table 1 for an overview. The main novelty of our method is to focus on the
underlying geometry of a constructed shape P , instead of just its connectivity
graph. This results in bin numbers that are a function of k, the number of
vertices of P : while k can be as big as Θ(n2), n can be arbitrarily large for fixed
k, implying that our approach promises to be more suitable for constructing
natural shapes with a clear geometric structure.

Related Work. As mentioned above, our work is based on the 2HAM. There
is a variety of other models, e.g., see [2]. A variation of the staged 2HAM is the
Staged Replication Assembly Model by Abel et al. [1], which aims at reproducing
supertiles by using enzyme self assembly. Another variant is the Signal Tile
Assembly Model introduced by Padilla et al. [9].

Other related geometric work by Cannon et al. [3] and Demaine et al. [5]
considers reductions between different systems, often based on geometric prop-
erties. Fu et al. [7] use geometric tiles in a generalized tile assembly model to
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Table 1. Overview of results from [4] and this paper. The number of tiles of P is
denoted by N ∈ O(n2), n is the side length of a smallest bounding square, while k is
the number of vertices of the polyomino, with k ∈ Ω(1) and k ∈ O(N).

assemble shapes. Fekete et al. [6] study the power of using more complicated
polyominoes as tiles.

Using stages has also received attention in DNA self assembly. Reif [11] uses
a stepwise model for parallel computing. Park et al. [10] consider assembly tech-
niques with hierarchies to assemble DNA lattices. Somei et al. [13] use a stepwise
assembly of DNA tiles. Padilla et al. [8] include active signaling and glue activa-
tion in the aTAM to control hierarchical assembly of Robinson patterns. None
of these works considers complexity aspects.

2 Fully-Connected Constructions for τ = 2

In the following, we consider fully connected assemblies for temperature τ = 2.
We start by an approach for squares (Sect. 2.1). In Sect. 2.2 we describe how to
extend this basic idea to assembling general polyominoes.

2.1 n × n Squares, τ = 2

For τ = 2 assembly systems, it is possible to develop more efficient ways for
constructing a square. The construction is based on an idea by Rothemund
and Winfree [12], which we adapt to staged assembly. Basically, it consists of
connecting two strips by a corner tile, before filling up this frame; see Fig. 1.

Theorem 1. There exists a τ = 2 assembly system for a fully connected n × n
square with O(log n) stages, 4 glues, 14 tiles and 7 bins.
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Fig. 1. Construction of fully connected square using τ = 2 and a frame.

Proof. The construction is an easy result of combining known construction for
lines by staged assembly with filling in squares in the aTAM with temperature
τ = 2, as follows: First we construct the 1 × (n − 1) strips with strength-2 glues.
We know from [4] that a strip can be constructed in O(log n) stages, three glues,
six tiles and seven bins. Because both strips are perpendicular, they will not
connect. Therefore, we can use all seven bins to construct both strips in parallel.
For each strip we use tiles such that the edge toward the interior of the square
has a strength-1 glue. In the next stage we mix the single corner tile with the
two strips. Finally, we add a tile type with strength-1 glues on all sides. When
the square is filled, no further tile can still connect, as τ = 2.

Overall, we need O(log n) stages with four glues (three for the construction,
one for filling up the square), 14 tiles (six for each of the two strips, one for
the corner tile, one for filling up the square) and seven bins for the parallel
construction of the two strips. ��

2.2 Polygons with or Without Holes, τ = 2

Our method for assembling a polyomino P at τ = 2 generalizes the approach for
building a square that is described in Sect. 2.1. The key idea is to scale P by a
factor of 3, yielding 3P ; for this we first build a frame called the backbone, which
is a spanning tree based on the union of all boundaries of 3P . This backbone is
then filled up in a final stage by applying a more complex version of the flooding
approach of Theorem 1. In particular, there is not only one flooding tile, but a
constant set S of such distinct tiles.

Definition and Construction of the Backbone. In the following, we con-
sider a scaled copy 3P of a polyomino P , constructed by replacing each tile by
a 3 × 3 square of tiles. We define the backbone of 3P as follows; see Fig. 2 for an
illustration.

Definition 1. A tile of 3P is a boundary tile of 3P , if one of the tiles in its
eight (axis-parallel or diagonal) neighbor tiles does not belong to 3P . A boundary
strip of 3P is a maximal set of boundary tiles that forms a contiguous (vertical
or horizontal) strip, see Fig. 2(b). A boundary component C is a connected com-
ponent of boundary tiles; because of the scaling, an inside boundary component
corresponds to precisely one inside boundary of 3P (delimiting a hole), while the
outside boundary component corresponds to the exterior boundary of 3P , see
Fig. 2(c). Furthermore, each boundary component C has a unique decomposition
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Fig. 2. Stepwise construction of the backbone of a 3-scaled polyomino 3P .

into boundary strips: a circular sequence of boundary strips that alternate between
vertical and horizontal, with consecutive strips sharing a single (“corner”) tile.
For an inside boundary component C ′, its cut strip �(C ′) is the leftmost of its
topmost strips; for the outside boundary component, its cut strip �(C) is the
leftmost of its bottommost strips, see Fig. 2(d).

A boundary path of the outside boundary component C consists of the union
of all its strips, with the exception of �(C); for an inside boundary component C ′,
it consists of C ′ \ �(C ′); see Fig. 2(e). Furthermore, the connector strip c(C ′) for
an inside boundary component C ′ is the contiguous horizontal set of tiles of 3P
extending to the left from the leftmost bottommost tile of C ′ and ending with the
first encountered other boundary tile of 3P ; see Fig. 2(f). Then the backbone of
3P is the union of all boundary paths and the connector strips of inside boundary
components.

By construction, the backbone has a canonical decomposition into boundary
strips and connector strips; furthermore, a tile in the backbone of 3P is part of
three different strips if and only if it is an end tile of a connector strip. For h
holes, only 2h tiles in the backbone are part of three different strips.

Overall, this yields a hole-free shape that can be constructed efficiently.
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Lemma 1. Let k be the number of vertices of a 3-scaled polyomino 3P . The
corresponding backbone can be assembled in O(log2 n) stages with 4 glues, O(1)
tiles and O(k) bins.

Proof. The main idea is to give a recursive separation of the backbone into trivial
tiles such that its reversed order implies a staged self-assembly that fulfills the
required guarantees. For separating the backbone, we observe that it consists of
two types of components: strips and corner tiles (see Fig. 3). The degree of such
a corner tile is two or three, corresponding to the number of adjacent strips.

Fig. 3. (Left) A backbone of a polyomino. (Right) A backbone decomposed into strips
(green) and corner tiles (yellow) (Color figure online).

The corner tiles will be the splitting points of the separation. The separation
of the backbone can be described by three steps. In a first step, we decompose
the polyomino by recursively removing the corner tiles of degree three, until
only tiles with degree two are left in all components. In the second step, these
components are further decomposed via the corner tiles of degree two, such that
only strips remain. In a third and final step, the straight strips are decomposed,
until just trivial tiles are left.

Because each corner tile has either two or three adjacent strips, the recursive
separations of the backbone have a degree of at most three. The key ingredient for
an efficient separation, i.e., a polylogarithmic recursion depth, for all three steps,
is that the splitting points are chosen such that the sizes of the split components
are balanced. In particular, for each splitting, we ensure that the size of each
split component is at most the half of the size of the original component. This
can be obtained by picking the respective tree median of a remaining backbone
piece, i.e., at a corner whose removal leaves each connected component with
at most half the number of strips of the original tree. Performing this splitting
operation recursively yields a recursion depth of at most O(log k).

Proof details can be found in the full version of the paper.
For the overall backbone assembly, we use four glues, O(1) tiles and O(k)

bins within O(log n · log k) stages: we split at tree medians O(log k) times, and
use O(log n) stages for each strip. ��
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By applying the approach of the backbone, we construct any polyomino by
assembling its backbone and then flooding it by the set of tiles S, which is
illustrated in Fig. 4. To guarantee that flooding the backbone does not exceed the
original boundaries, we apply the following property of temperature-2 assemblies.

Lemma 2. Consider an arbitrary supertile P ′ and an arbitrary set of single tiles
S′, such that all non-bonded glues of P ′ and S′ have strength 1. Each position
p that is bounded (indirectly) by two parallel, non-glued sides of P ′ will not be
part of any supertile that can be assembled by P ′ and S′ at τ = 2.

Proof. Consider a position p that is bounded by two parallel, non-glued sides of
P ′ and that is adjacent to two sides of P ′. Then at most one of the two sides
of P ′ can have glues. If there is a tile in S′ that wants to attach there, the
connection strength cannot exceed 1. Hence, the tile cannot be attached to P ′.
This trivially holds for positions that are adjacent to one side of P ′ only and for
positions that are not adjacent to any side of P ′. Thus, Lemma 2 holds. ��
On the one hand, Lemma 2 ensures that no position outside of 3P is filled
by flooding the backbone. On the other hand, similar as in Theorem 1, the
following simple observation guarantees that all tiles of 3P that do not belong
to the backbone are filled by a single tile:

Property 1. In the configuration of Lemma 2, p is filled by a tile in a unique
self-assembly, if and only if there are sequences of collinear, adjacent tiles t1 and
t2 that fulfill the following:

– t1 and t2 are constructible from S′ and P ′,
– t1 and t2 meet in p, and
– t1 and t2 start from perpendicular unglued sides f1 and f2 of P ′ that bound

p (indirectly).

The flooding tiles of S are defined such that their combination with the not
bonded glues of the backbone meets the properties of Lemma 2 and Property 1.
Hence, by mixing the backbone and S in a single bin leads finally to a fully
connected version of 3P .

Theorem 2. Let P be an arbitrary polyomino with k vertices. Then there is a
τ = 2 staged assembly system that constructs a fully connected version of P in
O(log2 n) stages, with 7 glues, O(1) tiles, O(k) bins and scale factor 3.

Proof. For the staged self-assembly of P , we still need to give a set of flooding
tiles S and have to define how the sides of the backbone have to be marked by
glues such that the flooding leads to a fully connected version of P .

By Lemma 2 and Property 1, we know that every position that does not
belong to the polyomino needs to be bounded by at least two parallel unglued
sides and every tile of the polyomino must be bounded by at least two perpendic-
ular glued sides. We can construct the backbone while satisfying these properties
as follows: we cover each 3-scaled tile of P according to the glue chart, illustrated
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Fig. 4. Glue chart for 3 × 3 tiles for filling up the shape. Blue glue
∧
= g1, orange glue

∧
= g2 and red glue

∧
= g3 (Color figure online).

in Fig. 4 and mark each side of the backbone’s boundary, except for the poly-
omino’s and holes’ boundaries, by the glue that is induced by the glue chart (see
Fig. 5, middle).

An example for a correct placements of the glues can be found in Fig. 5.
Observe that there exist some strips that have a glue type on their end that
is different from the glue type that is used in the strip construction (see the
red circles in Fig. 5). For building those strips we have to modify the backbone
assembly. We assemble those strips completely, but without the last tile with
the different glue. Then we add a single tile such that the glue is on the correct
place.

Fig. 5. (Left) A scaled polyomino with one hole. (Middle) Construction of the glues
inside the backbone. (Right) Every tile of the backbone is furnished with glues. A strip
may have conflicts with glues while the strip is assembling (red circle) (Color figure
online).

Overall, we have four glue types for building the backbone, and three glue
types for the five strip types and the connection tiles if the side points to the
interior of the polyomino. Hence, we use a total of seven glue types and O(1)
tile types.

To fill up the polyomino, we mix the nine kinds of tiles (see Fig. 4) plus the
backbone in one bin. In total, we need O(log2 n) stages, seven glues, O(1) tiles
and O(k) bins to assemble a fully connected polyomino, scaled by a factor 3
from the target shape. ��
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As noted before, the number of degree-3 corner tiles depends on the number of
holes. We can describe the overall complexity in terms of h, the number of holes.
For the special case of hole-free shapes, we can skip some steps, reducing the
necessary number of stages. In particular, Corollary 1 follows from Theorem 2.

Corollary 1. The stage complexity of Theorem 2 can be quantified in the the
number of holes h such we get a stage complexity of O(log2 h + log n). In par-
ticular, Theorem 2 gives a staged self-assembly system for hole-free shapes with
O(log n) stages, seven glues, O(1) tiles, O(k) bins and a scale factor of 3.

3 Fully-Connected Constructions for τ = 1

In this section we describe approaches for assembling polyominoes at tempera-
ture τ = 1.

3.1 Hole-Free Shapes, τ = 1

We present a system for building hole-free polyominoes. The main idea is based
on [4], i.e., splitting the polyomino into strips. Each of these strips gets assembled
piece by piece; if there is a component that can attach to the current strip, we
create it and attach it.

Our geometric approach partitions the polyomino into rectangles and uses
them to assemble the whole polyomino. Even for complicated shapes with many
vertices, this number of rectangles is never worse than quadratic in the size of the
bounding box; in any case we get a large improvement in the stage complexity.

We first consider a building block, see Fig. 6.

Lemma 3. A 2n× 2m rectangle (with n ≥ m) with at most two tabs at top and
left side and at most two pockets at each bottom or right side (see Fig. 6) can be
assembled with O(log n) stages, 9 glues, O(1) tiles and O(1) bins at τ = 1.

Fig. 6. A square (green) with tabs on top and left side (orange) and pockets on bottom
and right side (Color figure online).
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Fig. 7. (Left) A modified square with tabs and pockets. (Right) A partition into com-
ponents.

Proof. First consider the 2n × 2m square, which we partition into (vertical)
rectangles of width 2. As shown in Fig. 7, these are joined by tabs and pockets
in rows n and n + 1. The glues on their sides are the same as for recursively
cutting a square according to the jigsaw technique of [4]. Now every component
has a maximum width of 3, even with the tabs. This allows us to use nine glues
to create each component with attached tabs and pockets as follows:

A component without a tab or pocket is cut between the (n − 1)st and the
nth row, as well as between the (n + 1)st and the (n + 2)nd row. Then we have
two strips of width 2 and one 2 × 2 square. The square can be assembled by
brute force with desired glues on its sides. The strips can also be decomposed
recursively like a 1×n strip with desired glues on the sides. Thus, for this kind of
component nine glues suffice and the component is built within O(log n) stages.
Note that we need O(1) bins to store every possible component of this kind, i.e.,
they use one out of three possible glue triples on each side.

A component with tabs and/or pockets is cut between rows, such that only
components without tabs and pockets and at most four components with tabs
and pockets exists. Note that the four components are either single tiles or 1× 2
strips. The other components are either strips of width two or similar to the
components above. Hence, we need at most O(log n) stages to build the biggest
component. Then we assemble all components by successively putting together
pairs. We observe that this kind of component appears at most six times. Thus,
we need six bins to store the components of this kind. Again the nine glues
suffice.

Now we have all components in O(1) bins, so we can assemble the components
in a pairwise fashion to the desired polyomino within O(log n) stages. Overall
our nine glues suffice, so we have O(1) tiles. ��
Theorem 3. Let P be a hole-free polyomino with k vertices. Then there is a
τ = 1 staged assembly system that constructs a fully connected version of P in
O(log2 n) stages, with 18 glues, O(1) tiles, O(k) bins and scale factor 4.

Proof. We cut the polyomino with horizontal lines, such that all cuts go through
reflex vertices, leaving a set of rectangles. If Vr is the set of reflex vertices in the
polyomino, we have at most |Vr| =: kr cuts and therefore O(k) rectangles. Now
we find one rectangle that forms a tree median in the rectangle adjacency tree
(i.e., a rectangle that splits the tree into connected components that have at
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most half the number of rectangles). Recursing over this splitting operation, we
get a tree decomposition of depth O(log k). On the pieces, we use a scale factor
of 2 for employing a jigsaw decomposition.

When removing a rectangle R, the remaining polyomino may be split into
a number of components; see Fig. 8. To connect all of them to R, we employ
another scale factor of 2, allowing us to split R in half with a horizontal line.
Each half is further subdivided vertically into jigsaw components, such that each
component can connect to a part of R independently from the others, as shown
in the figure. When all components have been attached to some part of R, we
can assemble both halves of R and then assemble these two together. Doing this
for all rectangles produces O(kr) new components. Hence, our decomposition
tree has at most O(kr) = O(k) leafs, where the leafs are rectangles that need
O(log n) for construction. This yields O(log k log n) stages overall; the rectangle
components consume O(k) bins. Similar to assembling a square, we need nine
glues to uniquely assemble all rectangles to the correct polyomino.

Fig. 8. (Left) A chosen rectangle (orange) that splits the polyomino into components
(green). (Middle) Decomposition of splitting rectangle. (Right) Decomposition of the
components (Color figure online).

By construction, every rectangle component has at most four adjacent rec-
tangle components; its size is 2w × 2h for some width w and height h. The
four adjacent components are all connected at different sides, so the left and
upper side each have two tabs, while the right and lower side have two pockets.
Thus, we can use the approach of Theorem 3 to assemble all rectangles with 9
additional glues and O(1) bins for each rectangle component.

Overall, we have O(log n) stages to assemble the O(k) rectangles with O(1)
bins for each rectangle, plus O(log2 n) stages to assemble the polyomino from
the rectangles, for a total of O(log2 n) stages and O(k) bins. For the rectangles
we need nine glues, along with nine glues for the remaining assembly, for a total
of 18 glues, with O(1) tile types. The overall scale factor is 4. ��

3.2 Polygons with Holes, τ = 1

Theorem 4. Let P be an arbitrary polyomino with k vertices. Then there is a
τ = 1 staged assembly system that constructs a fully connected version of P in
O(log2 n) stages, with 20 glues, O(1) tiles, O(n) bins and scale factor 6.
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Fig. 9. Separation of the polyomino P into the two shapes S1 and S2.

Proof. (Sketch) Complete details can be found in the full version of the paper;
see Fig. 9 for the overall construction. From a high-level point of view, the app-
roach constructs two supertiles S1 and S2 separately and finally glues them
together, see Fig. 9 for the overall construction. The first supertile S1 consists
of the boundaries of all holes, the boundary of the whole polyomino, and con-
nections between these boundaries. The second supertile S2 is composed of the
rest of the polyomino. A scale factor of 6 guarantees that S2 is hole-free, which
in turns allows employing the approach of Theorem 3. ��

4 Future Work

Our new methods have the same stage and bin complexity as previous work
about stage assemblies [4] and use just a small number of glues. Because the
bin complexity is in O(k) for a polyomino with k vertices, we may need many
bins if the polyomino has many vertices. Hence, all our methods are excellent
for shapes with a compact geometric description. This still leaves the interesting
challenge of designing a staged assembly system with similar stage, glue and
tile complexity, but a better bin complexity for polyominoes with many vertices,
e.g., for k ∈ Ω(n2)?
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Another interesting challenge is to develop a more efficient system for an arbi-
trary polyomino. Is there a staged assembly system of stage complexity o(log2 n)
without increasing the other complexities?
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Abstract. In this paper we consider programmable matter consisting
of simple computational elements, called particles, that can establish
and release bonds and can actively move in a self-organized way, and
we investigate the feasibility of solving fundamental problems relevant
for programmable matter. As a model for such self-organizing particle
systems, we will use a generalization of the geometric amoebot model first
proposed in [21]. Based on the geometric model, we present efficient local-
control algorithms for leader election and line formation requiring only
particles with constant size memory, and we also discuss the limitations
of solving these problems within the general amoebot model.

1 Introduction

A central problem for programmable matter is shape formation, and various
solutions have already been found for that problem using different approaches
like DNA tiles [34], moteins [14], or nubots [39]. We are studying shape formation
using the amoebot model which was first proposed in [21]. In order to determine
how decentralized shape formation can be handled, we are particularly interested
in the connection between leader election and shape formation. In the leader
election problem we are given a set of particles, and the problem is to select one
of these as the leader. Many problems like the consensus problem (all particles
have to agree on some output value) can easily be solved once the leader election
problem can be solved. The same has also been observed for shape formation,
as most shape formation algorithms depend on some seed element. However, the
question is whether shape formation can even be solved in circumstances where
leader election is not possible. The aim of this paper is to shed some light on
the dependency between leader election and shape formation by focusing on the
special problem of forming a line of particles. Before we present our results, we
first give a formal definition of the model and the problems we intend to study.
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1.1 Models

We use two models throughout this work. Firstly, we consider a generalization
of the amoebot model [21] which abstracts from any geometry information. We
call this model the general amoebot model. Secondly, we consider a model that
is essentially equivalent to the original amoebot model presented in [21] but is
defined based on the general amoebot model. We refer to this second model as
the geometric amoebot model.

In the general amoebot model, programmable matter consists of a uniform set
of simple computational units called particles that can move and bond to other
particles and use these bonds to exchange information. The particles act asyn-
chronously and they achieve locomotion by expanding and contracting, which
resembles the behavior of amoeba.

As a base of this model, we assume that we have a set of particles that aim
at maintaining a connected structure at all times. This is needed to prevent the
particles from drifting apart in an uncontrolled manner like in fluids and because
in our case particles communicate only via bonds. The shape and positions of
the bonds of the particles mandate that they can only assume discrete positions
in the particle structure. This justifies the use of a possibly infinite, undirected
graph G = (V,E), where V represents all possible positions of a particle (relative
to the other particles in their structure) and E represents all possible transitions
between positions.

Each particle occupies either a single node or a pair of adjacent nodes in G,
i.e., it can be in two different shapes, and every node can be occupied by at most
one particle. Two particles occupying adjacent nodes are connected, and we refer
to such particles as neighbors. Particles are anonymous but the bonds of each
particle have unique labels, which implies that a particle can uniquely identify
each of its outgoing edges. Each particle has a local memory, and any pair of
connected particles has a shared memory that can be read and written by both
particles.

Particles move through expansions and contractions: If a particle occupies
one node (i.e., it is contracted), it can expand to an unoccupied adjacent node
to occupy two nodes. If a particle occupies two nodes (i.e., it is expanded), it
can contract to one of these nodes to occupy only a single node. Performing
movements via expansions and contractions has various advantages. For exam-
ple, it would easily allow a particle to abort a movement if its movement is in
conflict with other movements. A particle always knows whether it is contracted
or expanded and this information will be available to neighboring particles. In
a handover, two scenarios are possible: a) a contracted particle p can “push”a
neighboring expanded particle q and expand into the neighboring node previ-
ously occupied by q, forcing q to contract, or b) an expanded particle p can “pull”
a neighboring contracted particle q to a cell occupied by it thereby expanding
that particle to that cell, which allows p to contract to its other cell. The abil-
ity to use a handover allows the system to stay connected while particles move
(e.g., for particles moving in a worm-like fashion). Note that while expansions
and contractions may represent the way particles physically move in space, they
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can also be interpreted as a particle “looking ahead”and establishing new logical
connections (by expanding) before it fully moves to a new position and severs
the old connections it had (by contracting).

Summing up over all assumptions above, the state of a particle is uniquely
determined by its shape, the contents of its local memory, the edges it has to
neighboring particles, the contents of their shared memory (which may allow a
particle to obtain further information about the neighboring particles beyond
their shape), and finally the shape of the neighboring particles. The state of
the particle system (or short, system state) is defined as the combination of all
particle states. We say a particle system in a system state in which the particle
occupy a set of nodes A ⊆ V is connected if the graph G|A induced by A
is connected. We assume the standard asynchronous computation model, i.e.,
only one particle can be active at a time. Whenever a particle is active, it can
perform an action (governed by some fixed, finite size program controlling it)
consisting of a finite amount of computation (involving its local memory, the
shared memories with its neighboring particles, and random bits) followed by no
or a single movement. Hence, a computation of a particle system is a potentially
infinite sequence of actions A1, A2, . . . based on some initial system state s0,
where action Ai transforms system state si−1 into system state si. The (parallel)
time complexity of a computation is usually measured in rounds, where a round
is over once every particle has been given the chance to perform at least one
action.

Let S be the set of all system states in which the particle system is connected.
In general, a computational problem P for the particle system is specified by a
set S ′ ⊆ S of permitted initial system states and a mapping F : S ′ → 2S ,
where F (s) ⊆ S determines the set of permitted final states for any initial state
s ∈ S ′. A particle system solves problem P = (S ′, F ) if for any initial system
state s ∈ S ′, all computations of the particle system eventually reach a system
state in F (s) without losing connectivity, and whenever such a system state is
reached for the first time, the system stays in F (s). If for all computation a
final state is reached in which all particles decided to halt (i.e., they decided not
to perform any further actions, irrespective of future events), then the particle
system is also said to decide problem P . Note that being in a final state does not
necessarily mean that all particles decided to halt. If S ′ = S, so any initial state
is permitted (including arbitrary faulty states, as long as the particle system is
connected), then a particle system solving P is also said to be self-stabilizing. It
is well-known that in general a distributed system solving a problem P cannot
decide it and also be self-stabilizing because if so, it would often be possible to
come up with an initial state s where a member of the system decides to halt
prematurely, disallowing the system to eventually reach a state in F (s).

Besides the general amoebot model, we will also consider the geometric amoe-
bot model. The geometric amoebot model is a specific variant of the general
amoebot model in which the underlying graph G is defined to be the equilateral
triangular graph Geqt (see Fig. 1), and the bonds of the particles are labeled in a
consecutive way in clockwise orientation around a particle so that every particle
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Fig. 1. The left part shows an example of a particle structure in the geometric amoebot
model. A contracted particle is depicted as a black dot, and an expanded particle is
depicted as two black dots connected by an edge. The right part shows a particle
structure with 3 borders. The outer border is shown as a solid line and the two inner
borders are shown as dashed lines.

has the same sense of clockwise orientation. However, we do not assume that the
labeling is uniform, so the particles do not necessarily share a common sense of
direction in the grid.

1.2 Problems

In this paper we consider the following two problems. For both problems we
define the set of initial system states as the set of all states such that the particle
system is connected and all memories are empty.

For the leader election problem the set of final system states contains any state
in which the particles form a connected structure and exactly one particle is a
leader (i.e., only this particle is in a leader state while the remaining particles are
in a non-leader state). Our goal will be to come up with a distributed algorithm
that allows a particle system to decide the leader election problem. Note that
the leader election problem is well defined for both the general amoebot model
and the geometric amoebot model.

In a shape formation problem, the set of final states consists of those system
states where the particle structure forms the desired shape. As a specific example
of a shape formation problem, we consider the line formation problem. In the
geometric amoebot model, the shape the particles have to form is a straight line
in the equilateral triangular grid and all particles have to be contracted in a
final system state. Of course, in the general amoebot model a straight line is not
well-defined. Hence, for this model the set of final states for the line formation
problem is defined to consist of all system states in which the particles form a
simple path in G.

Throughout the paper, we assume for the sake of simplicity that in an ini-
tial state all particles are contracted. Our algorithms can easily be extended to
dispose of this assumption.

1.3 Our Contributions

In this paper we focus on the problem of solving leader election and shape
formation for particles with constant memory. For shape formation, we just
focus on the already mentioned line formation problem.
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For the general amoebot model, we can show that neither leader election
nor shape formation can be decided by any distributed algorithm. Suppose that
there is a distributed algorithm solving the line formation problem in the general
amoebot model (when starting in a well-initialized state). Since in this case it is
possible to decide when G|A′ forms a line, it is also possible to design a protocol
that solves the leader election problem: once the line has been formed, its two
endpoints contend for leadership using tokens with random bits sent back and
forth until one of them wins. On the other hand, one can deduce from [28] that
in the general amoebot model there is no distributed algorithm that can decide
when a leader has been elected (with any reasonable success probability). More
concretely, in [28] the authors show that for the ring of anonymous nodes there
is no algorithm that can correctly decide the leader election problem (or in their
words, that can solve the leader election problem with distributive termination)
with any probability α > 0, i.e., for any algorithm in which the particles are
guaranteed to halt, the error probability is unbounded. Since in the general
amoebot model G can be any graph, we can set G to be a ring whose size is
the number of particles and the result of [28] is directly applicable. Hence, there
cannot be a distributed algorithm deciding the line formation problem (with
any reasonable success probability) in the general amoebot model, and therefore
not even an algorithm for solving it since a protocol solving the problem could
easily be transformed into a protocol deciding it. However, for the geometric
amoebot model we show that there is a distributed algorithm that can decide
the leader election problem, i.e., at the end we have exactly one leader and the
leader knows that it is the only leader left. Moreover, the runtime for our leader
election algorithm is worst-case optimal in a sense that it needs at most O(L)
rounds on expectation, where L is the maximum length of a border between
the particle structure and an empty region (inside or outside of it) in Geqt.
Based on the leader election algorithm, we present a distributed algorithm that
solves the line formation problem. Both algorithms assume that the system is
in a well-initialized state. It would certainly be desirable to have algorithms
that can tolerate any initial state, but at the end of the paper we show that
there are certain limitations to solving leader election and line formation in a
self-stabilizing fashion.

1.4 Related Work

Many approaches related to programmable matter have recently been proposed.
One can distinguish between active and passive systems. In passive systems the
particles either do not have any intelligence at all (but just move and bond
based on their structural properties or due to chemical interactions with the
environment), or they have limited computational capabilities but cannot con-
trol their movements. Examples of research on passive systems are DNA comput-
ing [1,8,14,20,37], tile self-assembly systems in general (e.g., see the surveys in
[22,34,38]), population protocols [3], and slime molds [9,32]. We will not describe
these models in detail as they are only of little relevance for our approach. On
the other hand in active systems, computational particles can control the way
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they act and move in order to solve a specific task. Robotic swarms, and modular
robotic systems are some examples of active programmable matter systems.

In the area of swarm robotics it is usually assumed that there is a collection of
autonomous robots that have limited sensing, often including vision, and commu-
nication ranges, and that can freely move in a given area. They follow a variety of
goals, for example graph exploration (e.g., [23]), gathering problems (e.g., [2,16]),
shape formation problems (e.g., [24,35]), and to understand the global effects of
local behavior in natural swarms like social insects, birds, or fish (see e.g., [7,11]).
Surveys of recent results in swarm robotics can be found in [30,33]; other samples
of representative work can be found in e.g., [4,6,17–19,27,31]. While the analytical
techniques developed in the area of swarm robotics and natural swarms are of some
relevance for this work, the individual units in those systems have more powerful
communication and processing capabilities than in the systems we consider.

The field of modular self-reconfigurable robotic systems focuses on intra-
robotic aspects such as the design, fabrication, motion planning, and control
of autonomous kinematic machines with variable morphology (see e.g., [25,40]).
Metamorphic robots form a subclass of self-reconfigurable robots that share some
of the characteristics of our geometric model [15]. The hardware development
in the field of self-reconfigurable robotics has been complemented by a number
of algorithmic advances (e.g., [10,35,36]), but so far mechanisms that automati-
cally scale from a few to hundreds or thousands of individual units are still under
investigation, and no rigorous theoretical foundation is available yet.

The nubot model [12,13,39] by Woods et al. aims at providing the theo-
retical framework that would allow for a more rigorous algorithmic study of
biomolecular-inspired systems, more specifically of self-assembly systems with
active molecular components. While bio-molecular inspired systems share many
similarities with our self-organizing particle systems, there are many differences
that do not allow us to translate the algorithms and other results under the
nubot model to our systems — e.g., there is always an arbitrarily large supply
of “extra” particles that can be added to the system as needed, and the system
allows for an additional (non-local) notion of rigid-body movement.

2 Leader Election in the Geometric Amoebot Model

In this section we show how the leader election problem can be decided in the geo-
metric amoebot model. Our approach organizes the particle system into a set of
cycles and executes an algorithm on each cycle independently. For simplicity and
ease of presentation we first assume that particles have a global view of the cycle
they are part of, that agents act synchronously, and that their local memory is
unbounded. However, in the local-control protocol none of these assumptions are
needed. In particular, the particles only require a constant amount of memory. In
Sect. 2.5 we highlight some of the techniques used in the local-control protocol,
which relies heavily on token passing. However, due to space constraints the full
local-control protocol cannot be presented in detail.
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2.1 Organization into Cycles

Let A ⊆ V be any initial distribution of contracted particles such that Geqt|A
is connected. Consider the graph Geqt|V \A induced by the unoccupied nodes in
Geqt. We call a connected component of Geqt|V \A an empty region. Let N(R)
be the neighborhood of an empty region R in Geqt. Then all nodes in N(R) are
occupied and we call the graph Geqt|N(R) a border. Since Geqt|A is a connected
finite graph, exactly one empty region has infinite size while the remaining empty
regions have finite size. We define the border corresponding to the infinite empty
region to be the unique outer border and refer to a border that corresponds to
a finite empty region as an inner border, see Fig. 1.

The particles occupying a border can instantly (i.e., without communication)
organize themselves into a cycle using only local information: Consider a border
corresponding to an empty region R. Let p be a particle occupying a node v
of the border. By definition there exists a non-occupied node w ∈ R that is a
adjacent to v in the graph Geqt. The particle p iterates over the neighboring
nodes of v in clockwise orientation around v starting at w. Consider the first
occupied node it encounters; the particle occupying that node is the successor of
p in the cycle corresponding to that border. Analogously, p finds its predecessor
in the cycle by traversing the neighborhood of v in counter-clockwise orientation.

Note, that a particle can belong to up to three borders at once. Furthermore,
a particle cannot locally decide whether two empty regions it sees (i.e., maximal
connected components of non-occupied nodes in the neighborhood of v) are
distinct. We circumvent these problems by letting a particle treat each empty
region in its local view as distinct. For each such empty region, a particle executes
an independent instance of the same algorithm. Hence, we say a particle acts
as a number of distinct agents. For each of its agents a particle determines the
predecessor and successor as described above. This effectively connects the set
of all agents into disjoint cycles as depicted in Fig. 2. Observe that from a global
perspective the cycle of the outer border is oriented clockwise while a cycle of
an inner border is oriented counter-clockwise. This is a direct consequence of the
way the predecessors and successors of an agent are defined.

2.2 Algorithm

The leader election algorithm operates independently on each cycle. At any given
time, some subset of agents on a cycle will consider themselves candidates, i.e.
potential leaders of the system. Initially, every agent considers itself a candidate.
Between any two candidates on a cycle there is a (possibly empty) sequence of
non-candidate agents. We call such a sequence a segment. For a candidate c
we refer to the segment coming after c in the direction of the cycle as seg(c)
and refer to its length by |seg(c)|. We refer to the candidate coming after c as
the succeeding candidate (succ(c)) and to the candidate coming before c as the
preceding candidate (pred(c)) (see Fig. 3). We drop the c in parentheses if it is
clear from the context. We define the distance d(c1, c2) between candidates c1
and c2 as the number of agents between c1 and c2 when going from c1 to c2
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Fig. 2. The depicted particle system is the same as in the right part of Fig. 1. In this
figure particles are depicted as gray circles. The black dots inside of a particle represent
its agents. As in Fig. 1 the outer border is solid and the two inner borders are dashed.

Fig. 3. A cutout from a cycle that is oriented to the right. Non-candidate agents are
small black dots, candidates are bigger dots. The candidate c covers pred(c) since
|seg(c)| > d(pred(c), c).

in direction of the cycle. We say a candidate c1 covers a candidate c2 (or c2 is
covered by c1) if |seg(c1)| > d(c2, c1) (see Fig. 3). The leader election progresses in
phases. In each phase, each candidate executes Algorithm 1. A phase consists of
three synchronized subphases, i.e., agents can only progress to the next subphase
once all agents have finished the current subphase.

Consider the execution of Algorithm 1 by a candidate c. If the algorithm
returns “not leader”then c revokes its candidacy and becomes part of a segment.
If the algorithm returns “leader”, c will become the leader of the particle system.
The transferal of candidacy in subphase 2 means that c withdraws its own can-
didacy but at the same time promotes the agent at position pos (i.e., succ(c) in
subphase 1) to be a candidate. Once a candidate becomes a leader it broadcasts
this information such that all particles can halt.

2.3 Correctness

In order to show the correctness of our algorithm, we show that it satisfies the
following conditions, that relate to the entire particle system (not just a single
cycle):

1. Safety : There always exists at least one candidate.
2. Liveness: In each phase if there is more than one candidate, at least one

candidate withdraws leadership with a probability that is bounded below by
a positive constant.
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Algorithm 1. Leader Election for a candidate c

Subphase 1:
pos ← position of succ(c)
if covered by any candidate or |seg(c)| < |seg(pred(c))| then

return not leader

Subphase 2:
if coin flip results in heads then

transfer candidacy to agent at pos

Subphase 3:
if only candidate on border then

if outside border then
return leader

else
return not leader

Lemma 1. Algorithm1 satisfies the safety condition.

Proof. We will show by induction that on the cycle associated with the outer
border there will always be at least one candidate. Initially, this holds trivially.
So assume that it holds before a phase. Let c be the candidate with the longest
segment. Then there is no candidate covering c and also |seg(c)| < |seg(pred(c))|
cannot be true. Hence, c will not withdraw candidacy in subphase 1. In subphase
2, the candidacy of c might be transferred but will not vanish. Let c′ be the
agent that received the candidacy if it was transferred and c′ = c otherwise. In
subphase 3, c′ will not withdraw candidacy because it lies on the outer border.
Hence, there is still a candidate after the phase. ��
Lemma 2. Algorithm1 satisfies the liveness condition.

Proof. Assume that there are two or more candidates in the system. First we
consider the case that there is a cycle with two or more candidates. If there are
segments of different lengths on that cycle, we have |seg| < |seg(pred)| for at
least one candidate which will therefore withdraw its candidacy in subphase 1.
If all segments are of equal length, we have that in subphase 2 with probability
at least 1

4 there is a candidate c that transfers candidacy while succ(c) does
not. Hence, the number of candidates is reduced with probability at least 1

4 .
Now consider the case that all cycles have at most one candidate. Then there is
a cycle corresponding to an inner border that has exactly one candidate. That
candidate will withdraw candidacy in subphase 3 and thereby reduce the number
of candidates in the system. ��

The following Theorem is a direct consequence of Lemmas 1 and 2.

Theorem 1. Algorithm 1 decides the leader election problem in the geometric
amoebot model.
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2.4 Runtime Analysis

For a cycle of agents let L be the length of the cycle and let li be the longest
segment length before phase i of the execution of Algorithm 1. We define li = L
if there is no candidate on the cycle. It is easy to see that if li ≥ L/2 then in
phase i + 1 either the leader is elected (outer border) or all candidates on the
cycle vanish (inner border). For the case li < L/2, Lemma 3 provides the key
insight of our analysis.

Lemma 3. For any phase i such that li < L/2 it holds li+1 ≥ li in any case
and li+1 ≥ 2li with probability at least 1/4.

Let Lmax be the length of the longest cycle in the particle system. Based
on Lemma 3 it is easy to see that under complete synchronization of subphases
and with the agents having a global view of the cycle, our algorithm requires
on expectation O(log(Lmax)) phases to elect a leader. For now assume that our
algorithm can be realized as a local-control protocol such that phase i requires
O(li) rounds. Theorem 2 gives a bound on the number of rounds required by
the algorithm based on this assumption. The theorem also also holds for the
local-control protocol given the definition of a round from Sect. 1.1.

Theorem 2. Algorithm1 requires O(Lmax) rounds on expectation.

Proof. Let the random variable Xi describe the number of rounds during the
execution of Algorithm 1 such that li ∈ [2i−1, 2i). Then, under the assumption
that phase i requires O(li) rounds, the total runtime of our algorithm is

T =
�log(Lmax)�∑

i=1

Xi · O(2i).

Since E(Xi) ≤ 4 due to Lemma 3, the expected runtime is

E(T ) ≤
�log(Lmax)�∑

i=1

E(Xi) · O(2i) = O(Lmax).

��
Note that subphase 1 of the algorithm is not important in terms of correctness.
However, it is crucial to achieve a linear runtime in expectation. If agents would
only execute subphases 2 and 3, the runtime would degrade to O(Lmax log Lmax).

2.5 Asynchronous Local-Control Protocol

Here we present some details on how specific parts of the algorithm can be
realized as an asynchronous local-control protocol. We focus on the realization
of solitude verification and the inner outer border test of subphase 3.
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Solitude Verification. A candidate that wants to determine whether it is the
only candidate left, tests if its segment ends in another candidate or in itself.
To do so, it enforces its own orientation on all agents in its segment. Thereby,
every agent in the segment is able to determine the direction of its outgoing
edge in direction of the cycle. These edge directions can be seen as vectors in the
two dimensional plane and in case the segment is the whole cycle, the vectors
cancel out component wise (see Fig. 4). By a simple token passing scheme agents
will try match their edge directions component wise with an edge direction in
the opposing direction from another agent. Finally, the candidate inspects the
segment and if all agents are matched it is the only candidate left on the cycle.

Fig. 4. An example of solitude verification: the candidate (shown slighly bigger) has
enforced its orientation (x and y arrows) on all agents. All non-candidate agents deter-
mined the offset to the succeeding agent in direction of the cycle (arrows and numbers
at nodes).

Inner Outer Border Test. The last candidate of a cycle can decide whether its
cycle corresponds to an inner or the outer border as follows. A cycle correspond-
ing to an inner border has counter-clockwise rotation while a cycle correspond-
ing to the outer border has clockwise rotation, see Fig. 2. The candidate sends
a token along the cycle that sums the angles of the turns the cycle takes, see
Fig. 5. When the token returns to the candidate its value represents the external
angle of the polygon corresponding to the cycle while respecting the rotation
of the cycle. So it is −360◦ for an inner border and 360◦ for the outer border.
The token can represent the angle as an integer k such that the angle is k · 60◦.
Furthermore, to distinguish the two possible final values of k it is sufficient to
store the k modulo 5, so that the token only requires 3 bits of memory.

Fig. 5. The angle between the directions a token enters and exits an agent.
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3 Line Formation in the Geometric Amoebot Model

Next we consider the line formation problem in the geometric amoebot model.
We assume that initially we have an arbitrary connected structure of contracted
particles with a unique leader. The leader is used as the starting point for the
line of particles and specifies the direction in which this line will grow. As the line
grows, every particle touched by the line that is already in a valid line position
becomes part of the line. Any other particle connected to the line becomes the
root of a tree of particles. Every root aims at traveling around the line in a
clockwise manner until it joins the line. As a root particle moves, the other
particles in its tree follow in a worm-like fashion (i.e., via a series of handover
operations)1.

Before we give a detailed description of the algorithm, we provide some pre-
liminaries. We distinguish for the state of a particle between inactive, follower,
root, and retired (or halted). Initially, all particles are inactive, except the leader
particle, which is always in a retired state. In addition to its state, each particle p
may maintain a constant number of flags in its shared memory. For an expanded
particle, we denote the node the particle last expanded into as the head of the
particle and call the other occupied node its tail : In our algorithm, we assume
that every time a particle contracts, it contracts out of its tail.

The spanning forest algorithm, given in Algorithm2, is a basic building block
we use for shape formation problems. This algorithm aims at organizing the
particles as a spanning forest, where the particles that represent the roots of the
trees determine the direction of movement, whom the remaining particles follow.
Each particle p continuously runs Algorithm2 until p becomes retired. If particle
p is a follower, it stores a flag p.parent in its shared memory corresponding to
the edge adjacent to its parent p′ in the spanning forest (any particle q can
then easily check if p is a child of q). If p is the leader particle, then it sets
the flag p.linedir in the shared memories corresponding to two of its edges in
opposite directions (i.e., an edge i and the edge that appears three positions
after i in clockwise order), denoting that it would like to extend the line through
the directions given by these edges.

We have the following theorem, where work is defined as the number of
expansions and contractions executed by all particles in the system:

Theorem 3. Algorithm2 solves the line formation problem in worst-case opti-
mal O(n) number of rounds and O(n2) work.

4 Self-stabilizing Leader Election and Shape Formation

Consider the variant of the geometric amoebot model in which faults can occur
that arbitrarily corrupt the local memory of a particle. Recall that for an algo-
rithm to solve the leader election problem in a self-stabilizing manner, it has to
1 For a simulation video of the Line Formation Algorithm please see http://sops.cs.

upb.de.

http://sops.cs.upb.de
http://sops.cs.upb.de
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Algorithm 2. Line Formation Algorithm
SpanningForest (p):
Particle p acts as follows, depending on its current state:
inactive: If p is connected to a retired particle, then p becomes a root particle. Other-

wise, if an adjacent particle p′ is a root or a follower, p sets the flag p.parent
on the shared memory corresponding to the edge to p′ and becomes a fol-
lower. If none of the above applies, it remains inactive.

follower: If p is contracted and connected to a retired particle, then p becomes a
root particle. Otherwise, it considers the following three cases: (i) if p is
contracted and p’s parent p′ (given by the flag p.parent) is expanded, then
p expands in a handover with p′, adjusting p.parent to still point to p′ after
the handover; (ii) if p is expanded and has a contracted child particle p′,
then p executes a handover with p′; (iii) if p is expanded, has no children,
and p has no inactive neighbor, then p contracts.

root: Particle p may become retired following CheckRetire (p). Otherwise, it
considers the following three cases: (i) if p is contracted, it tries to expand
in the direction given by LineDir(p); (ii) If p is expanded and has a child
p′, then p executes a handover contraction with p′; (iii) if p is expanded and
has no children, and no inactive neighbor, then p contracts.

retired: p performs no further action.

CheckRetire (p):

if p is a contracted root then
if p has an adjacent edge i to p′ with a flag p′.linedir, where p′ is retired then

Let i′ be the edge opposite to i in clockwise order
p sets the flag p.linedir in the shared memory of edges i and i′

p becomes retired.

LineDir(p):
Let i be the label of an edge connected to a retired particle.
while edge i points to a retired particle do

i ← label of next edge in clockwise direction

return i

satisfy the following requirements: First, from any initial system state (in which
the particle structure is connected) the particle system eventually reaches a final
system state while preserving connectivity, i.e., eventually a unique leader will
be established. Second, once a final system state is reached, the system has to
remain in that state as long as no faults occur. Analogous requirements have to
be satisfied for self-stabilizing shape formation.

Our leader election algorithm can be extended to a self-stabilizing leader
election algorithm with O(log∗ n) memory using the results of [5,29] (i.e., we use
their self-stabilizing reset algorithm on every cycle in order to recover from failure
states). However, it is not possible to design a self-stabilizing algorithm for the
line formation. The reason for this is that even a much simpler problem called
movement problem cannot be solved in a self-stabilizing manner. It is easy to see
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that if the movement problem cannot be solved in a self-stabilizing manner, then
also the line formation problem cannot be solved in a self-stabilizing manner.

In the movement problem we are given an initial distribution A of particles
that can be in a contracted as well as expanded state, and the goal is to change
the set of nodes occupied by the particles without causing disconnectivity. For
the ring of expanded particles it holds that for any protocol P there is an initial
state so that P does not solve the movement problem. To show this we consider
two cases: suppose that there is any state s for some particle in the ring that
would cause that particle to contract. In this case set two particles on opposite
sides of the ring to that state, and the ring will break due to their contractions.
Otherwise, P would not move any particle of the ring, so also in this case it
would not solve the movement problem in a self-stabilizing manner.

5 Conclusion

We think that the algorithms presented for the geometric amoebot model can
be extended for the case that G is a different regular grid graph embedded
in the two-dimensional Euclidean plane. As future work, we would like to identify
the minimum set of key geometric properties that G must have in order for
the proposed algorithms to work. Also, if in the geometric amoebot model, the
particles had a common sense of direction, we would like to investigate whether
leader election could be solved deterministically using a slight modification of
our algorithm: for each border the last remaining candidate is deterministically
chosen to be the “east-most”particle of the set of the “south-most” particles.
This algorithm would be similar to the one proposed in [26] for tile self-assembly
systems.
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Abstract. While current experimental demonstrations have been lim-
ited to small computational tasks, DNA strand displacement systems
(DSD systems) [25] hold promise for sophisticated information process-
ing within chemical or biological environments. A DSD system encodes
designed reactions that are facilitated by three-way or four-way toehold-
mediated strand displacement. However, such systems are capable of
spurious displacement events that lead to leak : incorrect signal produc-
tion. We have identified sources of leak pathways in typical existing DSD
schemes that rely on toehold sequestration and are susceptible to toe-
less strand displacement (i.e. displacement reactions that occur despite
the absence of a toehold). Based on this understanding, we propose a
simple, domain-level motif for the design of leak-resistant DSD systems.
This motif forms the basis of a number of DSD schemes that do not rely
on toehold sequestration alone to prevent spurious displacements. Spuri-
ous displacements are still possible in our systems, but require multiple,
low probability events to occur. Our schemes can implement combinato-
rial Boolean logic formulas and can be extended to implement arbitrary
chemical reaction networks.

1 Introduction

Although biological in origin, nucleic-acids have proven to be versatile mate-
rials for de novo engineered molecular systems. In particular, cascades of pre-
scribed molecular events can be systematically constructed with so-called strand
displacement reactions (DNA strand displacement, abbreviated as DSD). In a
basic DSD cascade, one nucleic-acid molecule hybridizes with a partially double-
stranded complement, releasing the original binding partner, which in turn trig-
gers a downstream strand displacement event [17]. These interactions can be
readily programmed by designing strands to have appropriate complementarity.
Dynamic molecular systems like logic circuits [15], amplification schemes [23,26],
neural networks [16], as well as mechanical devices like motors [11] have all been
experimentally realized [25]. DSD cascades can also emulate any chemical reac-
tion network (CRN, system of chemical reaction equations obeying mass-action
rate laws) [1,4,19]. By realizing an appropriate CRN, DSD systems can generate
temporal patterns, perform signal processing, remember states, compute distrib-
uted algorithms, as well as other tasks that have been studied in the language
of CRNs.
c© Springer International Publishing Switzerland 2015
A. Phillips and P. Yin (Eds.): DNA 2015, LNCS 9211, pp. 133–153, 2015.
DOI: 10.1007/978-3-319-21999-8 9
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However, to move beyond relatively small proof-of-principle demonstrations,
we must tackle an important issue — one that has up to now limited the scale
of strand displacement systems. DSD systems have been observed to be suscep-
tible to various levels of leak : the triggering of undesired strand displacement
reactions.

A number of ideas have been proposed to combat leak. For example, design-
ing sequences to have strong C-G bonds at the ends of helixes decreases the rate
of fraying, and thus impedes the toeless displacement responsible for leak (see
Sect. 2). By further securing helix ends, “clamp” domains of 1 to 3 nucleotides
can decrease certain kinds of unintended displacements (see Sect. 3) [15,17,23].
Another approach involves adding small quantities of “threshold gates” that
preferentially consume leaked strands before they have a chance to interact
downstream [15,17]. The idea is that small leaks get neutralized, but when the
desired displacement occurs, the threshold gates are saturated and the signal
propagates. Although such thresholding can be effective in the context of digital
on/off behavior, it is not fitting for analog or dynamical systems, where infor-
mation is carried in the temporally varying amount of released signal strands.
In particular, the existing leak mitigation options are insufficient for the imple-
mentations of CRNs. Not only are such systems strongly analog, but the large
concentration differences between “fuel” (aka auxiliary) complexes and signal
strands may result in the situation that the amount of leak is comparable to the
amount of signal. Other leak reduction strategies include introducing Watson-
Crick mismatches [10], and physically segregating different complexes [21].

We are interested in a systematic method capable of reducing leak to arbi-
trary desired limits. In the form of our argument, we are motivated by “proof-
reading” in algorithmic self-assembly, where constructing the same pattern at
larger scales (with increasing redundancy) in principle arbitrarily decreases the
error rate [2,22]. Similarly, we describe an ensemble of constructions with differ-
ent levels of redundancy (parameter N).

The simplest non-trivial DSD operation is sequence translation: a cascade
of strand displacement reactions that upon initiation by a strand with sequence
X, results in the release of a strand with sequence Y , such that sequences X
and Y are unrelated. Note that the output strand can contain some additional
“left-over” domains from X as long as these are insufficient to trigger unintended
displacement. A pair of translators Y := W and Y := X can be thought as a log-
ical Y = OR(W,X) operation, since either W or X is sufficient to produce Y . In
the context of implementing CRNs, translators serve as unimolecular reactions.
Thus we start by analyzing regular translators, as well as their “leakproof” coun-
terparts. We later describe AND gates: DSD modules that produce output Y only
when both inputs W and X are present. Together with translators, such AND
gates are sufficient to implement “dual-rail” Boolean formulas (where abstract
signal X = 1 is indicated by the presence of active strand X1 and absence of
active strand X0, and vice versa) [17]. At the end of this paper, we discuss the
generalization to leakless CRNs.

We argue that with the smallest non-trivial redundancy parameter (N = 2),
the leakless translator (“double-long domain” (DLD) scheme) exhibits signifi-
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Fig. 1. DNA strand displacement events and conventions.

cantly less leak than a regular translator (“single-long domain” (SLD) scheme).
Specifically we show a significant improvement at the usual experimental con-
centrations (e.g. 100 nM, where the leak is expected to be about five orders of
magnitude less), as well as analyze the leak’s concentration scaling. If the con-
centrations decrease by a factor of α, the ratio of the leak of the DLD scheme
compared to the SLD scheme is expected to decrease by a factor of α. The
rates of the intended reactions are not significantly different for the SLD and
DLD translator schemes. To estimate specific leak rates, and to verify that we
have not missed any substantial leak pathways, we rely on an automated strand
displacement reaction enumerator [9]. The scaling of leak with concentration is
obtained analytically.

We then consider more generally translators and AND gates with arbitrary
redundancy parameter N . Using a combinatorial argument, we prove that leak
requires the joining of N initially separate complexes. We use this to argue that
even at thermodynamic equilibrium, the amount of activated reporter (i.e. net
leak) decreases exponentially with N . Importantly, the thermodynamic argu-
ment does not make strong assumptions on the types of reactions possible, or
the types of admissible structures. For example, leaks that result in pseudoknots
are not excluded. Our proof applies directly to a hypothetical experiment in
which a translator or AND gate is composed with a reporter complex (which
reports on the output via a fluorescence signal). However, more work is needed
to extend this proof to arbitrary composition of leakless gates in networks.

2 Preliminary

We briefly summarize the DNA strand displacement conventions adopted in
this paper, which are illustrated in Fig. 1. A detailed overview of these sys-
tems, including 3-way and 4-way DNA strand displacement can be found else-
where [5,25]. We study strand displacement systems at the domain level of
abstraction. Domains have a defined length, and are an abstract representation
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of sequences of that length. We define X∗ to be the complement of domain X.
Complementary domains can bind while non-complementary domains cannot.
Complementary domains bound only by a single grid unit in length, called toe-
hold domains, are reversibly bound (i.e., they can spontaneously disassociate).
Complementary domains bound by at least two grid units in length, called long
domains, are considered irreversibly bound (in reality long domains can be arbi-
trarily longer than the toehold domains – our graphical notation is just for
convenience). Valid strand displacement events include ends of bound domains
fraying (exposing base pairs that can bind to other domains), 3-way branch
migration and 4-way branch migration. Binding of complementary domains can
lead to two complexes combining into one, while branch migration (possibly fol-
lowed by toehold unbinding) can lead to one complex separating into two. Unless
otherwise qualified, the term strand displacement refers to the binding of a toe-
hold domain followed by 3-way branch migration of the neighboring long domain
(in other words, toehold mediated strand displacement). We use the term toeless
strand displacement to refer to 3-way branch migration that is not preceded by
binding of toehold-length domains. Rather it mechanistically occurs when dou-
ble stranded long domains fray, followed by binding of a complementary invading
strand to the momentarily opened bases and subsequent branch migration.

For the DNA strand displacement schemes proposed in this paper, we adopt
the convention that each long domain Xi can be decomposed into a number of
one grid unit parts labelled Xia, Xib, Xic, etc. We use the subscript to denote
when a domain is a proper suffix or prefix of Xi. For example, domain Xiab con-
sists of the concatenation of Xia and Xib. Note that since Xiab is two grid units, it
is itself a long domain, and thus irreversibly bound. By standard convention, also
followed here, the molecules initially present in a strand displacement system can
be classified as either signal strands or fuel complexes. Signal strands, or signals,
propagate information through a system; these are typically at relatively low
concentrations. Fuel complexes, typically held at a higher concentration, facili-
tate reactions by consuming input signals and producing output signals, via a
sequence of strand displacement events and intermediate molecules. This process
is initiated when input signals displace other strands on a fuel complex. As part
of a multistranded complex, we say a signal strand is sequestered (or inactive) if
it is unable to displace other strands. External signal strands carry information
from component to component, and intermediate signal molecules (strands or
complexes) carry information within a single component (e.g. between different
fuel molecules). During strand displacement waste species can be created and
are considered inert.

3 The Single Long Domain (SLD) Motif

Leak in typical DSD systems occurs when the following condition holds: The
unbound part of strand A shares a long domain with the bound part of strand
B, but strand A is not currently supposed to displace B. In the SLD motif,
every sequestered strand is bound to a complex by at most one long domain
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Fig. 2. A typical SLD implementation scheme of the translator Y := X that uses
clamp domains to help combat leak. F1 and F2 are fuel complexes. The output signal
Y is sequestered on F2 and should only be displaced in the presence of input X. R
is a downstream reporter complex that is designed to interact with output signal Y .
(a) The intended pathway when X is present consisting of two strand displacement
reactions. (b) A leak pathway when X is not present: (reaction a) fraying of the clamp,
(reaction b) fraying of the Y1 long domain, (reaction c) toeless strand displacement via
the fleetingly exposed 1-nt toehold at the left of Y1. When Y is spuriously produced it
can successfully interact with downstream reporter complex, R.

and one toehold. Thus when the above condition holds, strand A can toelessly
displace strand B. Although this rate is significantly slower than properly toehold
mediated strand displacement, it nonetheless occurs at a non-negligible rate for
relevant reaction regimes.

Consider a typical translator in a hypothetical experiment in which it is
composed with a downstream reporter (Fig. 2a). The reporter emits an experi-
mentally measurable fluorescence signal when the fluorophore (F) is dissociated
from the quencher (Q). More generally, the reporter represents downstream com-
plexes which receive input from this translator in a larger circuit. The intended
pathway when input X is present is illustrated in Fig. 2a, consisting of two strand
displacement reactions.

In the absence of input signal X it is still possible for output signal Y to be
produced spuriously. Specifically, fuel F1 can toelessly displace Y . Similarly, a
toeless displacement interaction between F2 and the reporter R can produce a
fluorescence signal in the absence of X. Short clamp domains help mitigate these
events, but they cannot eliminate them altogether due to fraying of the clamps.
One of a number of leak pathways of the translator is illustrated in Fig. 2b.

Enumerator Analysis of the Leak. To systematically analyze the kinetics of
the leak pathways we employed an automatic enumerator of strand displacement
reactions which can be configured to capture 3-way and 4-way branch migration,
toeless and remote toehold displacement, and cooperative hybridization [8,9].
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(Since the enumerator ignores interactions forming pseudoknotted structures,
and prunes reactions based on a number of assumptions, there could be plau-
sible leak pathways that are not enumerated.) The enumerator input files for
systems in this paper are included in the standard release of the enumerator [8].
Using size 5 toeholds, size 15 long domains, and size 2 clamps, the enumerator
computes that the net leak rate between F1 and F2 resulting in free Y strand is
58 M−1 s−1[F1] · [F2]. Additionally, there is also a leak between F2 and reporter
R that occurs with rate 13 M−1 s−1[F2] · [R]. For comparison, the intended path
in the presence of X consists of three strand displacement reactions which the
enumerator predicts occur with rate constants between 4 · 105 M−1 s−1 and
8 ·105 M−1 s−1 using the same parameters. The enumerator’s rate constant pre-
dictions are order-of-magnitude plausible compared to experimentally measured
values of 1.4 M−1 s−1 and 9.6 · 105 M−1 s−1 for toeless strand displacement and
displacement via length-5 toeholds, respectively [27].

4 The Double Long Domain (DLD) Motif

The double long domain (DLD) motif dictates that sequestered signal strands
are necessarily bound by at least two consecutive long domains. Schemes that use
the DLD motif can be designed to satisfy the following DLD scheme invariant:
If a strand A is not intended to displace another strand B then any consecutive,
unbound sequence of A differs from the bound sequence of B by at least one
long domain (i.e. two grid units in our diagrams). In other words: there is never
sufficient unbound sequence on a single strand to displace another that should
not be displaced. This contrasts with typical SLD schemes that rely solely on
the absence of open toehold domains to prevent certain reactions.

A DLD translator implemenation is shown in Fig. 3a. In the absence of input
signal X, it is not possible to fully displace output signal Y (without breaking
bonds between long domains). The main leak pathway rather involves domains
Y1 and Y2 becoming transiently unbound on the same strand due to the inter-
action of F1 and F2. So in the absence of input signal X, reaching a state where
the reporter is triggered requires multiple low probability and quickly reversible
events to occur, and then not undo before the reporter has a chance to interact.

One possible leak pathway is illustrated in Fig. 3b. First, (reaction a) the
clamp of F2 must fray, then (reaction b) the bound domain Y1 must fray, (reac-
tion c) fuel F1 can now form a first base pair, and then (reaction d) proceed to
toelessly displace domain Y1 with 3-way branch migration. At this point con-
secutive domains Y1 and Y2 are open and available to react with the reporter
(i.e. signal Y is active). Reactions e and f show two other states in which both
domains of the signal Y are active. In reaction e domain X2bc on the signal
strand can become bound to the invading complex via “open toehold” 4-way
branch migration, which requires initiation by a slow loop-closing event [5]. In
reaction f domain X2a induces 3-way branch migration. Importantly, all these
reactions are reversible and the states in which Y is active are transient. Then
the triggering of the reporter requires catching the fuels in such an active Y
state.
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Fig. 3. An implementation of the translator Y := X that uses the DLD motif. (a) The
intended pathway when X is present consisting of two strand displacement reac-
tions. R is a downstream reporter complex designed to interact with output signal Y.
(b) Low probability leak pathway when input signal X is not present. See text for the
description of reactions a−f . Transient complexes that have a functional Y signal and
can successfully interact with downstream reporter complex, R, are shown outlined in
yellow.

Enumerator Analysis of the Leak. The full DLD translator plus reporter
system is too large for the current version of the enumerator to analyze at the
necessary level of detail for evaluating leaks. As a result we decomposed the
enumeration of the leak into two sub-problems: reversibly generating a complex
with Y1 and Y2 domains open, and then the reaction of this complex with the
reporter.
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The enumerator reports that the net rate at which F1 and F2 react to produce
a complex (call it ER) capable of reacting with the reporter is 3 ·10−6 M−1 s−1 ·
[F1] · [F2]. The reverse reaction occurs with rate constant 4.7 · 10−4 s−1. The
reaction with the reporter is predicted to occur at 5.7 · 105 M−1 s−1 · [ER] · [R].
Since we can upper bound the concentration of complex ER by its equilibrium
value, the overall rate at which leak is produced can be estimated to be:

3400M−2s−1 · [F1] · [F2] · [R].

The enumerator also confirms that no interactions between the reporter and
either fuel individually can result in the separation of the two reporter strands.

Both the existence (or non-existance) of reaction pathways and their rates
will depend on the the assumptions used by the enumerator.1 We adjusted enu-
merator parameters to strike a balance between ensuring that potential leak
pathways were explored and yet combinatorial complexity remained tractable –
which, on top of the uncertainty in the rate formulas, suggests that enumerator
results should be regarded as provisional.

Comparing SLD and DLD Leak Rates. For typical 100 nM concentra-
tions of fuels and reporter, SLD leak rate is roughly five orders of magnitude
larger than DLD leak rate. Further, consider how the leak scales with the
concentrations of the fuel complexes and the reporter. The SLD leak is a prod-
uct of two concentrations, while the DLD leak scales as a product of three —
the DLD leak effectively acts as a trimolecular reaction. The intended reaction
pathway is bimolecular for both SLD and DLD schemes. Since the leak path-
way is bimolecular for the SLD scheme, decreasing or increasing concentrations
should not change the ratio of leak to intended rates. However, for the DLD
scheme, decreasing the concentrations should linearly decrease the ratio of leak
to intended rates.

DLD AND Gates. Going beyond translators, the basic computational DSD
primitive has historically been the AND gate. We give two distinct AND gate
constructions that maintain the DLD scheme invariant. Both are AND gates in
the sense that signal X is produced (i.e. domains X1 and X2 are unbound) if
and only if both input signals A and B are present. They also have the property
that if one input is missing, the other input is not permanently consumed. The
first scheme is simpler, while the second scheme has the potential advantage of
better scaling to low concentrations.

1 These assumptions include the approximate rate formulas for domain-level steps
such as hybridization, fraying, 3-way and 4-way branch migration. There are also
parameters set by the user that control the potential combinatorial explosion of
the enumeration process, such as the granularity of domains (dividing a domain
into subdomains allows the enumerator to explore more potential leak pathways,
but makes the combinatorics worse), and the relevant time scales (opening a long
double-stranded domain is “too slow to consider” and will not be enumerated, while a
branch migration pathway may be “too fast” for considering bimolecular interactions
prior to the end point).
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Fig. 4. An implementation of X := AND(A,B) using the DLD motif and cooperative
hybridization.

The scheme of Fig. 4 employs “cooperative” strand displacement [24]. Input
signals A and B cooperate to displace the intermediate signal strand from fuel
F1, which in turn displaces the output signal strand X bound to F2. The overall
process is driven forward since the final state contains three additional bound
toeholds and maintains the same number of complexes as the initial state. Note,
however, that the cooperative step (input signals A and B displacing the inter-
mediate signal from fuel F1) is effectively trimolecular.2 Thus, in contrast to the
DLD translator, the intended displacement rate for the cooperative DLD AND
gate (i.e. when both inputs are present) decreases just as quickly as the leak rate
as concentrations are decreased.

The scheme of Fig. 5 employs “associative” strand displacement [3,7,13]. Two
consecutive strand displacements (first with input A and then with input B)
must occur on fuel complex F1 to create a displacing complex with open domains
A1 and B3, capable of displacing the intermediate signal sequestered in F2. In
other words these two strand displacement reactions “glue” (or “associate”)
domains A1 and B3 together. The subsequent interaction with F3 and F4 is
similar to a DLD translator, except the last step involves opening of a loop.
The structure of F4 is designed to ensure that another invariant is maintained:
there is no signal strand that has open domains X1 and X2 but not X3. This
invariant ensures that when the second reaction occurs in a downstream complex,
it can only occur with the full X1,X2,X3 signal strand, and does not become
irreversibly blocked without properly gluing X3. The overall process is driven
forward since the final state contains 4 additional bound toeholds and maintains
the same number of complexes as the initial state. Although somewhat more
complex, the associative scheme has the advantage that it lacks trimolecular

2 Each partial displacement is reversible and quickly reaches a pseudo-equilibrium
proportional to two concentrations (F1 and an input). The second input then reacts,
for an overall rate proportional to the product of [F1] · [A] · [B].
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Fig. 5. An implementation of X := AND(A,B) using the DLD motif and associative
hybridization.

steps,3 and thus the associative AND gate should be faster than the cooperative
AND gate in low concentration regimes.

The Triple Long Domain (TLD) Motif. The DLD motif can naturally be
generalized to the triple long domain (TLD) motif, where each active signal
is represented by three consecutive unbound long domains. The TLD transla-
tor is shown in Fig. 6b, and an example leak pathway is shown in Fig. 6c. In
3 Note that although the first reaction is reversible, the reverse reaction is bimolecular

as opposed to unimolecular as is the case with the partial displacement by one input
in the cooperative AND gate. Thus it is not as readily reversible, especially in low
concentration regimes, and the associative gate avoids effectively trimolecular steps.
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Fig. 6. An implementation of the translator Y := X that uses the triple long domain
(TLD) motif. (For simplicity, we show this scheme without clamps.) (a) Input signal
and output signal format, and downstream reporter complex, R. (b) Fuel complexes.
(c) A coarse grained leak pathway showing only bimolecular reactions.

this pathway, the reporter interacts with a transient structure (called Y123) in
which domains Y1, Y2 and Y3 are open. Intuitively, all three fuel complexes come
together in a transient structure (Y123) — a process which is more unlikely than
two fuel complexes coming together in the DLD motif. Indeed, this idea is nat-
urally generalized to signals represented by N long domains as described in the
next section.

5 The N Long Domain (NLD) Motif

In this section, with the goal of decreasing the leak arbitrarily, we generalize
the DLD motif to the NLD motif (“N -long domains”, with arbitrary redun-
dancy parameter N). We show constructions for translators and AND gates,
and develop an asymptotic thermodynamic argument supporting the claim of
leak reduction. In contrast to the main contributions of the previous section,
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Fig. 7. Reaction implementations that use the N long domain (NLD) motif. (a) Input
signal and output signal for translator Y := X, and downstream reporter complex,
R. (b) Fuel complexes for translator Y := X. When input is present, at each step of
the intended pathway, the intermediate signals that propagate through the cascade
lose one X domain and gain one Y domain. (c) Input signal and output signal for
Z := AND(X,Y ), and downstream reporter complex, R. (d) Fuel complexes for Z :=
AND(X,Y ). When both inputs are present, at each step of the intended pathway, the
intermediate signals that propagate through the cascade lose one X domain and one
Y domain and gain one Z domain (which is initially in a loop on the fuel complex).

the leak pathway does not necessarily require toeless displacement.4 Rather, the
argument more generally reflects the decreasing likelihood of a sequence of ther-
modynamically unfavorable reactions. Since the argument is thermodynamic, it
makes few assumptions on types of reactions and types of structures possible.
The analysis even extends to leaks that involve pseudoknots.

4 For example, in the NLD AND gate described below, if input X is present, then
there is a sequence of toehold-mediated reactions that can trigger the reporter. In
particular, X displaces the top strand of F1 from the left up to the hairpin, which
in turn displaces the top strand of F2 from the left up to the hairpin, and so forth.
However, each of these reactions would quickly reverse because the partial displace-
ment leaves each top strand attached. The associative hybridization AND gate of
Fig. 5 also exhibits this behavior.
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Figure 7b and d show the general NLD (i.e. redundancy N) translator and
AND gates. The intended operation of the NLD translator when the input is
present consists of a cascade of N strand displacement reactions. (The thermo-
dynamic driving force is the formation of N new toehold bonds. The number
of separate molecules before and after is the same, and thus there is no effec-
tive entropic driving force or penalty.) The intended operation of the AND gate
when both inputs are present consists of cooperative strand displacement on F1,
followed by a cascade of N − 1 toehold mediated strand displacement reactions.
(The thermodynamic driving force is the formation of N +1 new toehold bonds.
While the number of separate molecules decreases by 1 as a result of cooperative
strand displacement, this entropic penalty is overcome by the enthalpic gain of
the toehold bonds.) With increasing N we expect the kinetics of the desired
pathway to slow down quadratically with N .5

What about the leak pathway? Unlike for the DLD scheme, we do not exam-
ine the kinetics of the pathway. Rather we found we can bound the total amount
of leak as we increase N , even if we allow the system to operate indefinitely
(and reach thermodynamic equilibrium). In the rest of the section we develop
an asymptotic thermodynamic argument examining the enthalpic and entropic
driving and opposing forces for the leak in the general NLD scheme, leading to
the conclusion that leak decreases exponentially with N .

5.1 Thermodynamics of Leak with Increasing N

The thermodynamic argument in this section relies on two assumptions about
toehold and long domains. (1) The binding of two separate molecules is thermo-
dynamically unfavorable if only one new toehold bond forms (ΔG > 0, bounded
away from 0 independently of N). (2) The binding of long domains is effectively
irreversible (ΔG � 0). The span of the regime where these assumptions are
valid is determined by the concentrations involved, by the temperature, and by
the length and sequence composition of the domains. Keeping these parameters
fixed, we consider an asymptotic argument on increasing N .

In this section, we say bottom strand to refer to the strands that are illus-
trated on the bottom of their complex in Fig. 7b–d (and analogously top strand.)
Similarly, we say a domain is a bottom domain if it occurs on a bottom strand
and is therefore written as starred. Likewise top domains occur on top strands
and are unstarred.

Imagine hypothetical experiments in which an NDL translator Y := X, or
AND gate Z := AND(X,Y ), are paired with a reporter reading out their output.
In the case of the translator, input X is absent; in the case of the AND gate,
either input X or Y (or both) are absent. We do not assume a single molecule

5 The increasing length of the branch migration region is expected to lead to a lin-
early decreasing success probability per collision [20]. Thus each of the N strand
displacement reactions slows down linearly with N . The time spent in the random
walk of branch migration will increase quadratically, but will not be rate limiting
for practical concentrations and values of N .
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experiment; each present molecule can be present in many copies. Leak occurs
when the bottom and top strands of a reporter molecule separate. We devote
the following section (Sect. 5.2) to proving that producing a single activated
reporter molecule necessarily involves the binding of N top fuel strands and
N bottom fuel strands in a single complex together with the reporter bottom
strand (assuming (2) above). Thus our intuition based on the TLD scheme is
confirmed. To understand what this implies about the equilibrium amount of
leak let us examine the enthalpic and entropic gains and costs.

Consider the thermodynamic equilibrium of the hypothetical translator and
AND gate experiments described above. We argue that (assuming (1) above)
the free energy difference between leaked and initial configurations increases lin-
early with N (with the leaked configurations unfavorable). What is the enthalpic
driving force for leak? For the worst case, consider the AND gate when input X is
present and input Y is absent: Note that there are N unbound bottom domains
(X∗

1 , . . . , X∗
N ) that could potentially become bound in some leaked state if input

X is present (all other single stranded domains have no complementary domains
in the whole system). What is the entropic cost of leak? If any leaked configu-
ration involves the binding of N fuel top strands and N fuel bottom strands in
a single complex together with the reporter bottom strand, then the number of
separate molecules decreases by N .

Assumption (1) implies that the formation of N new toehold bonds at the
cost of decreasing the number of separate complexes by N is thermodynamically
unfavorable, with the net increase in free energy proportional to N . This means
that the amount of translator or AND gate in the leaked configuration decreases
exponentially with N at thermodynamic equilibrium.

Does our thermodynamic argument about the individual translator and AND
gate generalize to a circuit of these components? Unfortunately, the combinato-
rial argument in the next section fails to account for other types of strands with
domains that overlap with the given translator or AND gate, as would occur in
upstream and downstream components. Also note that in a circuit of these com-
ponents, a leaked upstream signal may enable non-leak downstream reactions
gaining N toehold bonds per downstream component. When we consider a fixed
circuit, and increase N , this means that leak may result in αN new toehold bond
formed, where α ≥ 1 depends on the circuit. To ensure that the amount of leak
at the output of the whole circuit decreases exponentially with N , we need to be
in a regime where forming α toehold bonds but losing entropy due to combining
two separate molecules is still unfavorable — a strengthening of assumption (1).

5.2 Combinatorics: Leak Requires Binding of All Fuels

Translator. Recall the hypothetical experiment on the NDL translator paired
with a downstream reporter (Fig. 7b). Suppose input X is absent, but the flu-
orophore and quencher are on separate molecules. We now show that assuming
we do not decrease the number of bonded long domains (per assumption (2)
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above), there are N fuel top strands and N fuel bottom strands bound in the
same complex as the bottom strand of the leaked reporter.6

We ignore toeholds for the rest of the argument and assume for simplicity
that the top strands are extended all the way to the left. Let C be the complex
containing the bottom strand but not the top strand of the reporter. First we
show that C must contain the same number of top fuel strands as bottom fuel
strands. Consider top domain XN and the complementary bottom domain X∗

N .
Without the input, there is the same number of domains XN as X∗

N in the
system, and we say that XN is balanced. Note that the initial state has the
maximum number of long domain bonds. Thus, if we don’t decrease the sum
count of long domain bonds, every XN must be bonded to a X∗

N and vice versa
in C as well. Since each top fuel strand contains exactly one XN domain, and
every bottom fuel strand contains exactly one X∗

N domain, it must be that
complex C contains the same number of top fuel strands as bottom fuel strands.

Let t and b be the total number of top domains and bottom domains in
complex C, respectively. If C contains s top fuel strands (and therefore s bottom
fuel strands), then the difference t − b is: s · (N + 1) − s · (N) − N . The first
term captures the contribution of N + 1 top domains in each top fuel strand.
The second term captures the contribution of N bottom domains in each bottom
fuel strand. The last term captures the contribution of the N bottom domains
on the bottom reporter strand.

If we maximize the number of long domain bonds, it must be that complex C
contains at least as many top domains as bottom domains (otherwise, we have
an unbound bottom domain but we started with all bottom domains bound.)
Thus, s · (N + 1) − s · (N) − N ≥ 0. This implies that s ≥ N . In other words,
complex C contains N top fuel strands and N bottom fuel strands.

And Gate. Recall the hypothetical experiment on the NDL AND gate paired
with a downstream reporter (Fig. 7d). Suppose one of the inputs is absent. We
show that if the reporter top strand (fluorophore) is not in the same complex as
the reporter bottom strand (quencher), then the complex containing the reporter
bottom strand contains N fuel complexes (assuming we do not decrease the
number of bonded long domains).

Again let C be the complex containing the bottom reporter strand but not
the top reporter strand. If either input X or input Y is absent, then either XN

or Y1 domains are balanced (i.e. have the same number of top as bottom types).
Every fuel top strand contains exactly one XN and Y1 domain and every fuel

6 Note that it is not enough to notice that each fuel complex has one top Y domain
in excess and thus assume that to replace the top reporter strand requires all N fuel
complexes. As we saw before, there are possible cascades between fuel complexes
that need to be taken into account. To drive home the point, consider removing the
leftmost X1 and X∗

1 domains from F1. Then we could swap the top strands on F1

and F2 without decreasing the number of long domains bound, and then F1 will
contain two open Y domains: Y1 and Y2. In this case, only N − 1 fuel complexes are
sufficient to replace the top reporter strand.
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bottom strand contains exactly one X∗
N and Y ∗

1 domain. Thus if one of the
inputs is absent, the complex C contains the same number of fuel top strands
as fuel bottom strands.

Suppose input X is absent. Suppose C contains s top fuel strands (and
therefore s bottom fuel strands). Let t be the total count of top X and Z domains
in complex C, and let b be the total count of bottom X and Z domains in
complex C. Note that the contribution of any fuel top strand (and respectively
fuel bottom strand) to the difference t − b is identical, and thus we can avoid
considering exactly which fuel strands are in complex C. Since each fuel top
strand contains a total of N + 1 of top X and Z domains, and each fuel bottom
strand contains a total of N of bottom X and Z domains, the difference t− b is:
s · (N +1)−s · (N)−N . The last term again is the contribution of the N bottom
Z domains on bottom reporter strand. Since globally there is an excess of top Z
domains (and a balanced amount of X domains), it must be that on complex C,
the above difference is non-negative. In other words, s · (N +1)−s · (N)−N ≥ 0,
which implies that s ≥ N .

If, on the other hand, input Y is absent (and X is possibly present), we
proceed as before but let t be the total count of top Y and Z domains in complex
C, and let b be the total count of bottom Y and Z domains in complex C. Note
that similarly each fuel top strand contains a total of N + 1 of top Y and Z
domains, and each fuel bottom strand contains a total of N of bottom Y and Z
domains. Since without the Y input, there is a balanced amount of Y domains,
and as before an excess of top Z domains, we again must satisfy the same
inequality s · (N + 1) − s · (N) − N ≥ 0, which implies s ≥ N .

6 CRNs Using the DLD Motif

Can general chemical reaction networks be emulated using leakless DNA strand
displacement systems? As a proof of principle, we give two implementations for
the canonical reaction A + B → X + Y using the DLD motif. We note that
this reaction can emulate any bimolecular reaction with at most two reactants
and at most two products — A or B or both can be declared as fuel species
(whose concentration is assumed to be constant) for reactions with less than
two reactant input signals, whereas X or Y or both can be declared as waste
species (which are considered inert) for reactions with less than two product
signals. Furthermore, higher order reactions, or bimolecular reactions with more
than two products, can be emulated by a cascade of these canonical reactions.

How can we determine if these schemes are correct, even in the absence of
leak? Several general approaches to this question have been explored for DSD
implementations [6,12,18]. The task is divided into two parts: enumerating all
the (non-leak) reactions between the molecules (either using an enumerator [9,14]
or formal proofs) followed by applying some notion of program equivalence
between the original CRN and the implemented CRN. Unfortunately, none of
these approaches is fully satisfactory when applied to the systems described here.
For example, Lakin, Phillips, and Stefanovic have previously shown that any
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Fig. 8. An implementation of A + B → X + Y using the DLD motif and cooperative
hybridization. Domain Q is unique to reactions that have A + B as reactants.

DNA strand displacement encoding scheme satisfying certain modularity prop-
erties can be formally proven to correctly implement a chemical reaction network
of interest, in terms of the notion of serializability [12]. Our proposed schemes
do not satisfy the sufficient conditions to claim correctness with respect to seri-
alizability: both schemes have been optimized to share intermediates between
different reaction encodings, and are therefore not strictly modular. However,
both schemes do satisfy a key property identified in the serializability result: each
DSD reaction cascade, called a reaction encoding, that emulates a formal reac-
tion should be transactional. Informally, a reaction encoding r1, . . . , ri, . . . , rn
that emulates the formal reaction A + B → X + Y is transactional if it can be
partitioned into two parts, separated by its first irreversible reaction, ri. The
reactions r1, . . . , ri−1 must be reversible and cannot produce signals represent-
ing X nor Y , and the signals representing formal species A and B must be
consumed in r1, . . . , ri. The reactions ri, . . . , rn must produce the signals repre-
senting X and Y . The enumerator tool used in previous sections was applied to
both scheme’s encodings of A + B → X + Y , and the resulting implementation
CRNs were then easily verified to be transactional in this sense. At this point, we
have not yet established that in implementations of larger CRNs, no unexpected
crosstalk interactions between molecules would arise during the enumeration.

6.1 DLD Motif + Cooperative Hybridization

The DLD motif can be used in combination with cooperative hybridization [24]
to implement arbitrary chemical reaction networks. The implementation of the



150 C. Thachuk et al.

Fig. 9. An implementation of A + B → X + Y using the DLD motif and associative
hybridization.

canonical reaction A+B → X +Y is illustrated in Fig. 8 and is a generalization
of the cooperative AND gate implementation of Fig. 4. Input signals A and B
cooperate to displace the long strand on fuel F1, which in turn displaces two
intermediate signals on F2. One intermediate signal interacts with F3 to produce
output signal X, while the other interacts with F4 to produce output signal Y .
This process is driven forward since the final state contains four additional bound
toeholds and maintains the same number of complexes as the initial state.

This reaction encoding is transactional. The process becomes irreversible only
after the long strand on fuel F1 is displaced by consuming both input signals.
Thus, in the absence of one input the other cannot be irreversibly consumed.
The remaining reactions produce the output species and render other species
into waste.
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6.2 DLD Motif + Associative Hybridization

Recall that cooperative strand displacement involves an initial effectively tri-
molecular step. Such trimolecular reactions can be prohibitively slow for low
concentration systems. We next demonstrate that arbitrary bimolecular chemi-
cal reactions can in fact be implemented by utilizing the associative hybridization
primitive. Although more complex, this scheme avoids the effectively trimolecu-
lar step and thus scales more favorably to low concentrations.

An implementation of the canonical reaction A+B → X+Y using associative
strand displacement is illustrated in Fig. 9. Consider how the product X, initially
bound to fuel complex F3, is produced. Two strand exchanges must occur on fuel
complex F1 to create a displacing complex with sufficient domains to displace
the bound signal X. Firstly, input A exchanges with a “certificate” signal, AC ,
which denotes that A has been consumed. The second exchange requires the
certificate signal BC , which denotes signal B has been consumed. After these
strand exchanges, the domains X2,X3 and A3 have been “glued” together (asso-
ciated) and displacement of X can occur. Production of signal Y is symmetric,
by design. This process is driven forward since the final state contains two addi-
tional bound toeholds and maintains the same number of complexes as the initial
state.

This reaction encoding is transactional. The process becomes irreversible
only when the first output signal is produced (either X or Y ). An output signal
can only be produced after both input signals have been consumed. Once one
output signal is produced, the other must eventually be produced since no series
of backward reactions can occur in order to erroneously produce an input signal.
(Suppose X has been produced. Then A is irreversibly bound and so is BC .
However, BC is the only strand that could displace B).

7 Conclusion

The problem of leak has frustrated efforts to build complex DSD systems. In
this work we begin a systematic effort to design DSD domain-level logic to
reduce leak. In contrast to a number of previous approaches which relied on
sequence-based leak reduction strategies, or subtle tweaks on existing designs
(e.g. by introducing clamps), we rely on domain level redundancy. By utilizing
more long domains in active signals, and more sequential strand displacement
reactions to produce the output, we can increase the number of consecutive
unfortunate events necessary for leak.

We focus on translator components, AND gates, and the implementation of
CRNs. Our schemes rely on well-established types of strand displacement reac-
tions, with the more complex components utilizing cooperative or associative
displacement. It is, however, a natural open question whether it is possible to
implement an NLD (or even DLD) AND gates and CRNs without using coop-
erative or associative strand displacement.

We advance two types of arguments to affirm leak reduction. First, we obtain
leak rates for specific constructions (DLD motif) using a domain level reaction
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enumerator. Second, we develop an analytical argument based on thermodynam-
ics showing that increasing redundancy exponentially reduces the leak.

The principle remaining open questions concern the composition of the
described components into circuits and networks. We have taken care to ensure
that inputs and output signals have compatible form. However, we have not
proven that the “leakless” properties of the individual components is preserved
under composition. Further, properly ensuring the correctness of our CRN
schemes when multiple reactions are implemented, even ignoring leak, requires
more sophisticated arguments.
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Abstract. The development of DNA circuits capable of adaptive behav-
ior is a key goal in DNA computing, as such systems would have potential
applications in long-term monitoring and control of biological and chem-
ical systems. In this paper, we present a framework for adaptive DNA
circuits using buffered strand displacement gates, and demonstrate that
this framework can implement supervised learning of linear functions.
This work highlights the potential of buffered strand displacement as a
powerful architecture for implementing adaptive molecular systems.

1 Introduction

Implementing adaptive behaviors, such as supervised learning, is a key challenge
for the fields of molecular computing and synthetic biology. Addressing this
challenge would enable the development of molecular computing solutions to
important practical applications, such as the detection of emerging pathogens [1]
whose signatures mutate over time. Furthermore, the development of molecular
computing systems that are capable of operating over an extended period of time
would advance the state of the art of molecular circuit design, as most current
systems are single-use devices.

Previous experimental work has shown that neural networks may be imple-
mented using DNA strand displacement circuits [2] comprising “seesaw” gates
[3,4]. However, in that work the neural network was trained in silico and each
instance of the experimental system could only be used one time. Our prior
theoretical work has demonstrated that a biochemical system assuming hypo-
thetical, DNAzyme-like reactions can learn a class of linear functions [5], and
other work has shown that high-level artificial chemistries can learn to imple-
ment Boolean functions [6] and perceptron-like classification tasks [7]. Here we
present a design for an adaptive, reusable DNA learning circuit based on the
framework of four-domain DNA strand displacement reactions, which has been
shown to be capable of implementing arbitrary chemical reaction networks in
a concrete biochemical system [8]. Thus, this paper offers a route to an experi-
mental realization of adaptive DNA computing systems.

The remainder of this paper is organized as follows. In Sect. 2, we intro-
duce buffered DNA strand displacement systems and illustrate their use for
c© Springer International Publishing Switzerland 2015
A. Phillips and P. Yin (Eds.): DNA 2015, LNCS 9211, pp. 154–167, 2015.
DOI: 10.1007/978-3-319-21999-8 10
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implementing adaptive systems. In Sect. 3, we present an adaptive buffered
amplifier, which is a key component of the learning circuit that we present
in Sect. 4. We present results from computational simulations of this learning
circuit in Sect. 5, and conclude with a discussion in Sect. 6.

2 Buffered DNA Strand Displacement
for Adaptive Systems

The idea of buffered DNA strand displacement gates was introduced (as “cur-
ried” gates) by Cardelli [9]. This idea was further developed in the context of
implementing DNA oscillators with robust long-term kinetics [10]. In this section
we recap the principle of buffered strand displacement gates and show how they
can be used to implement adaptive molecular systems.

The basic principle of buffered strand displacement is illustrated in Fig. 1. In
this paper we base our gate designs on the “four-domain” encoding of abstract
chemical reaction networks into DNA strand displacement, developed by Solove-
ichik [8]. In the four-domain encoding, each abstract species X is represented
by three domains Xâ, Xb and Xĉ. We write “?” to denote a “history domain”
whose identity is irrelevant for the operation of the gate (however, the history
domains for the product species must be freshly generated for each gate, to avoid
crosstalk). The key difference is that, rather than initializing the system with
populations of active gates capable of accepting input strands directly, a buffered
system is initialized with a buffer of inactive gates that cannot initially accept
input strands. A population of “unbuffering” strands must first be introduced,
which (irreversibly) activate a subset of the buffered gates, so that they can
accept input strands as normal. We design the gates so that an additional copy
of each gate’s unbuffering strand is released along with the gate’s outputs, to
maintain a (roughly) constant population of active gates. Furthermore, since the
gates in the buffer are inactive, the population of inactive buffered gates can be
replenished, either at intervals or continuously, without significantly affecting the
reaction kinetics. If waste products were removed, to prevent them from accumu-
lating, this could allow buffered strand displacement systems to run indefinitely.

We will write a buffered strand displacement gate that implements the reac-
tion R −→ P with buffer species B using the notation B � R −→ P , and we will
use the ∅ symbol to denote an empty (multi)set of reactants or products.

We propose to use buffered strand displacement gates to implement adaptive
systems. To this end, we note that altering the concentration of unbuffering
strands that are available for a given buffered gate provides a means of controlling
the rate of the gate’s reaction: if more copies of a given reaction gate are activated
from the buffer, it will emulate a faster reaction. (This is a simpler approach than
engineering toehold binding energies or developing remote toehold systems [11].)
Furthermore, in addition to regenerating its own unbuffering strand, a given
buffered gate may also release unbuffering strands for other gate populations
as part of its output. This crucial fact enables one buffered gate to adjust the
number of active gates of a second kind, thereby controlling the rate of the
second buffered gate’s reaction.
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3 An Adaptive, Buffered Amplifier

In this section, we will illustrate the use of buffered strand displacement gates
to implement an adaptive amplifier whose gain can be dynamically adjusted.
This contrasts with previous work on DNA strand displacement-based ampli-
fiers [3,4,12–14], which relied on hard-coding the gain of the system in the initial
species concentrations, and gave no consideration to reusability or autonomously
adjusting the gain of the amplifier. In addition to providing an example of a
buffered strand displacement system whose result can be controlled by adjust-
ing the provision of unbuffering strands, this circuit design motif will be a key
component of our learning circuit design.

Our design for a reusable, adaptive, buffered strand displacement-based
amplifier consists of two buffered strand displacement gates:

B � x −→ x + y B′ � x −→ ∅.

The first gate is a “catalyst” gate that uses the input strand x to catalyze
release of the output strand y, and the second gate is a “degradation” gate that
removes the input strand x from the system by consuming it without releasing

Fig. 2. Buffered amplifier design and ODE simulation data. a. The buffered amplifier
consists of two buffered reactions: a catalytic reaction that generates the output and a
degradation reaction that removes the input from the system. The ratio of the concen-
trations of active gates from the two buffers corresponds to the gain of the amplifier.
b. Data from an ODE simulation of the buffered amplifier with multiple sequential
input additions and dynamic control of amplifier gain. The initial concentration of B′

was 100 nM and the initial concentration of B was 200 nM, which sets the gain, w,
to be 2.0. Addition of the x input species (1 nM) at t = 100 s causes the amplifier to
generate the output species y at a concentration of 2 nM, as expected. At t = 600 s,
an additional 300 nM of the unbuffering strand B was added, increasing the amplifier’s
gain (w) by 3.0. Then, subsequent addition of x (1 nM) at t = 700 s produced a further
5 nM of the output species y, showing that the gain had indeed been increased to 5.0,
as expected. (Note that the plotted value of w is not a concentration but rather a ratio
of concentrations, but the value follows the left axis.)
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any output species (except for a new activating strand B′). This design draws on
ideas introduced by Zhang and Seelig [14]: the ratio between the effective rates
of the first and second gates controls the number of output molecules y that each
input molecule x can produce before it is irreversibly consumed, and therefore
this ratio controls the gain of the amplifier. Thus, in the amplifier circuit, the
concentration ratio [B]

[B′] controls the gain of the amplifier. More specifically, if
we write [z]0 for the initial concentration of species z and [z]ss for the steady
state concentration of z (assuming that a steady state exists), then we would
expect that [y]ss = [B]0

[B′]0
× [x]0. A graphical shorthand for this circuit design

element is presented in Fig. 2(a). Our approach to implementing the amplifier
circuit motif is also related to the “ideal gain blocks” developed by Oishi and
Klavins [15], the main difference being that our approach produces a quiescent
final state, whereas their approach produces a steady state in which production
and degradation of the output species balance. Thus, our approach prevents
the supply of input species being constantly drained as in [15]. However, our
approach does require some care to be taken when composing the output from
an amplifier circuit motif with downstream circuit elements, as we outline below.

We implemented this circuit motif in the buffered strand displacement gate
framework introduced in Sect. 2, and simulated it using the beta version of the
DSD compiler that includes support for mixing events [16]. These simulation
results are presented in Fig. 2(b), and show that the amplifier produces correct
results for several gain settings, and that the gain of the amplifier can be dynami-
cally adjusted by directly adding more unbuffering strands between amplification
reactions.

4 A Strand Displacement Learning Circuit

In this section, we will present a buffered strand displacement system that can
learn linear functions f of the form

f(x1, x2) = w1 × x1 + w2 × x2,

where w1 and w2 are real-valued coefficients and x1 and x2 are real-valued inputs.
In the current paper, we restrict ourselves to the two-input case for clarity,
although the circuit design motifs that we will present could be replicated to
handle more inputs. In particular, a bias term could be included by incorporat-
ing an additional input signal x0 that is always supplied with the input value
x0 = −1 in each training round. This is standard practice in studies of artifi-
cial neural networks. We will present a strand displacement system that learns
functions of this form using a stochastic gradient descent algorithm [17]. Gra-
dient descent is a general solution for many optimization tasks, in which the
current weight approximations are adjusted to minimize the squared error over
the entire training set in each training round. Stochastic gradient descent is a
simplification of gradient descent that only considers a single training instance in
each training round, making it more amenable to implementation in a molecular
computing system.
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A molecular computing system that solves this problem must accept the
input values x1 and x2, compute the predicted output y = ŵ1 × x1 + ŵ2 × x2

based on the current stored weight approximations ŵ1 and ŵ2, compare y with
the supplied expected value d = w1×x1+w2×x2, and update the stored weight
approximations according to the gradient descent weight update rule:

ŵi := ŵi + α × (d − y) × xi, (1)

where α is a (small) positive coefficient called the “learning rate”. We now present
a strand displacement system that implements this learning algorithm using
buffered DNA strand displacement gates. Our design can be divided into two
subcircuits, as follows.

Predictor Subcircuit. The predictor subcircuit is based on the adaptive ampli-
fier presented in Sect. 3. The input signals, and all other numeric signals, are
represented in a dual rail format with a differential encoding, that is, the input
signal xi actually consists of two signals xi

+ and xi
−, and the value of xi is

interpreted as the concentration difference [xi
+] − [xi

−]. The predictor subcir-
cuit design is presented in Fig. 3: the initial circuit motif is replicated for each
input xi. Here, and henceforth, we will omit the identities of buffer species from
figures if their identity is not important when describing the operation of the
circuit. The species highlighted in grey (xi

+, xi
−, d+, and d−) are provided by

the user to initiate each training round: their concentrations represent the input
value xi and the expected result d that the user must derive using the target
weight values. (If d = 0 then we must add equal concentrations of d+ and d−.
Any non-zero concentration is acceptable, as these species must be present to
drive the execution of the predictor subcircuit).

Each positive input signal xi
+ is “copied” by a buffered fork gate that gen-

erates four signals with the same overall concentration as the original: two of
these, xi1

+ and xi2
+, are for use by the predictor subcircuit and the remaining

two, ki1
+ and ki2

+, are for use by the feedback subcircuit (as detailed below).
Each negative input signal xi

− is copied similarly.
The key parts of the predictor subcircuit are the buffered strand displacement

amplifier motifs. The initial gains of the predictor subcircuit amplifiers encode
the initial approximation of each weight value stored in the system. There is
one pair of amplifiers per positive input signal and one pair per negative input
signal. In each of these pairs, the gain of one amplifier represents the positive
component ŵi

+ of the corresponding weight approximation ŵi, and the gain of
the other amplifier represents the negative component ŵi

−. Thus, the positive
component of each input is multiplied by both the positive and negative compo-
nents of the corresponding weight, and similarly for the negative component. The
outputs of the predictor subcircuit amplifiers are two species y+ and y−, which
represent positive and negative components of the current prediction, based on
the current input values and stored weight approximations. The amplifier gates
are constructed such that the sign of the output species is correct with respect
to the signs of the input component and the weight component in each case.
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To complete the execution of the predictor subcircuit, the y+ and y− species,
whose concentrations represent the current prediction, interact with the d+ and
d− species, whose concentrations represent the expected value of the target func-
tion. These species interact via the four buffered reactions shown in the box on
the right-hand side of Fig. 3, which collectively have the effect of subtracting
the value of y from the value of d. We implement this operation via four two-
input two-output reactions, in which the d± species catalyze conversion of the
y± species to d±, with signs chosen such that the resulting concentrations of
d± represent the result of a subtraction. We choose to implement subtraction
in this way, rather than using annihilator gates that degrade the positive and
negative variants of the species, to avoid sequestration of the remaining species
by the annihilator gates, which has been problematic in other work [16]. For this
reason, it is crucial that the y± species are the first input strands consumed by
these reaction gates.

Fig. 3. Design schematic for the predictor subcircuit. The concentrations of the input
species xi

+ and xi
− (for each input signal xi) are copied by buffered fork gates to pro-

duce species that serve as inputs to the buffered amplifier motifs that implement linear
function prediction, and additional species (ki1

±, ki2
±) that will be used in the feed-

back subcircuit. The gains of these amplifiers store the current weight approximations.
The amplifiers produce species y+ and y−, such that [y+] − [y−] equals the predicted
output value. These species then interact with the d+ and d− species, which encode the
expected output value, via four buffered reactions that implement subtraction. When
the predictor subcircuit reaches steady state, the concentration difference [d+] − [d−]
should equal d − y, i.e., the error in the prediction when compared with the expected
output value.



Supervised Learning in an Adaptive DNA Strand Displacement Circuit 161

Thus, when the predictor subcircuit reactions reach steady state, the concen-
tration difference [d+]− [d−] represents the value of d−y. If this value is positive,
i.e., if [d+] > [d−], then the predicted output value was too small. Similarly, if
this value is negative, i.e., if [d+] < [d−], then the predicted output was too large.
The goal of the learning process is to adjust the stored weight approximations

Fig. 4. Feedback subcircuit. a. Graphical shorthand for a multi-amplifier motif that
enables one input concentration ([x]) to be multiplied by another concentration ([k])
and a scalar scaling factor (β). b. and c. Design schematic for the feedback subcircuit.
Here, the scaling factor β = α × δ, where α is the learning rate constant and δ is the
denominators of the weight ratios in the predictor subcircuit. The feedback circuitry
from b. is activated when d+ is left over from the predictor subcircuit, and the feedback
circuitry from c. is activated when d− is left over from the predictor subcircuit.
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ŵi to match the target weight approximations, so that [d+] = [d−] when the
predictor subcircuit reactions reach steady state.

Feedback Subcircuit. Once the predictor subcircuit has computed the discrepancy
between the predicted function output and the expected output, the feedback
subcircuit must use the value of this discrepancy to update the weight approx-
imations stored in the predictor subcircuit, according to the gradient descent
learning rule (1). A design schematic for our feedback subcircuit is presented in
Fig. 4.

The first point to note from (1) is that the feedback subcircuit must take the
concentration of d± that denotes the discrepancy from the predictor subcircuit
and, for each input, multiply the discrepancy value by the corresponding input
value, both of which are concentrations, and by the learning rate constant α.
However, a single buffered amplifier can only multiply an input concentration
by a gain factor encoded as a ratio of concentrations. To enable two input con-
centrations to be multiplied together, we have developed a two-concentration
multiplier circuit motif, shown in Fig. 4(a). In this motif, we assume that no
unbuffering strands are initially present for the uppermost amplifier, which will
accept the input signal x and produce the output species. The input signal k
activates an amplifier that produces the unbuffering strand for the catalyst gate
from the output-producing amplifier, with gain β. An additional input signal,
whose value is constant 1, activates an amplifier that produces the unbuffer-
ing strand for the degradation gate from the output-producing amplifier, with
gain 1. Thus, these secondary amplifiers preset the gain of the output-producing
amplifier to be β × [k], and upon addition of the input signal x the resulting
concentration of both output species (y and z) will be β × [x] × [k], as desired.
(Here, we include two outputs because this variation is called for in our two-input
learning circuit design.)

The feedback subcircuit uses the two-concentration multiplier circuit motif
extensively, to implement the weight update rule (1). Figure 4(b)(c) presents
the feedback subcircuit design for the two-input case. Execution of the feedback
subcircuit is initialized by buffered fork gates that copy the d± species into
eight species da

±, db
±, dc

±, and dd
±. We assume that there are initially no

unbuffering strands for these fork gates and, once the predictor subcircuit has
run to completion, the addition of these unbuffering strands triggers execution
of the feedback subcircuit.

For each combination of signs for the leftover d± species and the copied input
species kij

± from the predictor subcircuit, the copied d± species and the copied
kij

± species serve as inputs to an instance of the two-concentration multiplier cir-
cuit motif. As described above, this circuit motif multiplies these values together
(and by a scaling factor β = α × δ, where α is the learning rate constant and δ
is the denominators of the weight ratios in the predictor subcircuit) and gener-
ates additional unbuffering strands for certain amplifier gates from the predictor
subcircuit. From the two-input predictor subcircuit design from Fig. 3, we see
that additional unbuffering strands B+

ia and B+
ib must be generated to increase

weight approximation ŵi, and that additional unbuffering strands B−
ia and B−

ib
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must be generated to decrease weight approximation ŵi. These pairs of species
must be generated together, so that the pairs of amplifiers from the predictor
subcircuit that are initialized with the same weight approximation are updated
together.

5 Results

We encoded the learning circuit design from Sect. 4 in the DSD programming
language [18] and used the associated DSD compiler, with the “Infinite” reaction
semantics [10], to generate MATLAB code that implements an ODE model of
the system. The initial state of the two-input system consists of 278 species,
of which the majority (222) are gate complexes. It is worth noting, however,
that many of these species are variants with different combinations of history
domains, so the design complexity of the circuit is not as high as suggested by
the raw species counts. Furthermore, the number of species should scale linearly
with the number of input signals, so the circuit design presented here could be
replicated to learn similar functions of more than two inputs.

We simulated the ODE model of the learning circuit using a custom MAT-
LAB simulation routine that invokes a stiff ODE solver and that also allows mix-
ing events to be executed at certain time points during the simulation. These
mixing events simulate the addition of inputs to the system, or the removal
of species, by the experimenter at certain time points. In principle, stochastic
simulations could also be used to investigate the behavior of the system in the
limit of low species populations, though the requirement for high populations
of buffered gates could lead to poor performance in a stochastic simulation of
the full system. We found that the size of the buffer, that is, the quantity of
unbuffered gates waiting to be activated, did not affect the accuracy of the com-
putation performed by the learning circuit. It did, however, reduce the number
of training rounds that could be conducted before the buffer was depleted, at
which point no further training could be carried out. This point is discussed in
Sect. 6 below.

The initial state of the system consists of the various buffered gates and their
unbuffering strands (with the exceptions of the unbuffering strands for the fork
gates and output-generating amplifiers in the feedback subcircuit, as described
above). The initial weight approximations ŵi are encoded as the gain settings of
the amplifiers in the predictor subcircuit. After the gates have unbuffered (after
500 s), the first training inputs are added, which consist of the xi

± species and
the d± species, whose concentrations encode the input values and the expected
function output, respectively. At the same time, we also add the constant-valued
signals that serve as an input to the feedback subcircuit, so that the output-
generating amplifiers from the feedback subcircuit will be primed with the correct
gain values before it starts executing. After a further 2000 s, when the predictor
subcircuit has completed its execution, we add unbuffering strands for the fork
gates from the feedback subcircuit, which triggers execution of the feedback sub-
circuit. After a further 3500 s, when the feedback subcircuit has finished updating
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the weight approximations stored in the predictor subcircuit, we set the concen-
trations of any remaining unbuffered (active) fork gates and output-generating
gates in the feedback subcircuit to zero, to reset the state of the feedback sub-
circuit. We also add the second set of training inputs at this time, and iterate
until the specified sequence of training instances have all been presented.

We ran a total of 1,000 simulations, with initial and target weight values
and input values selected from a uniform random distribution over the interval
[−10, 10] and with a fixed learning rate value α = 0.01. Figure 5 shows simulation
results illustrating how the weight values evolve over the course of two 15-round
example training schedules. In the two-input case, we can plot the weight space
as a 2D plot and observe the trajectory of how the weights evolve from their
initial values (labeled “start”) towards the true values (labeled “target”) over
the training period. In each example, the trajectory for the simulation of the
DNA strand displacement learning circuit is overlaid with a trajectory derived
from a reference implementation of the stochastic gradient descent learning rule
(1) in Python, using the same initial state and the same training schedule. The
weight trajectories shown in Fig. 5 are representative of the agreement between
the DNA system and the reference implementation observed in all cases, and
of the fact that the weight trajectories correctly home in on the target weight
values. These results give us confidence in the correct operation of our circuit
design as an implementation of the learning rule (1).

Furthermore, to investigate the aggregate learning performance from our
simulations, we computed the root mean square error (RMSE) of the stored
weight approximations compared with the target weight values at each step
of each of the 1,000 training simulations. The average RMSE values over the
1,000 training simulations, and the standard deviations, are plotted in Fig. 6.
Again, the results from the DNA and Python versions of the learning system are
overlaid precisely, indicating that the DNA circuit follows the expected behavior.

Fig. 5. Two example weight traces from DNA learning circuit simulations (grey solid
lines), overlaid with corresponding traces from our Python reference implementation
(black broken lines). The lines coincide closely in all simulations, not just the examples
shown here, indicating that the DNA circuit works correctly.



Supervised Learning in an Adaptive DNA Strand Displacement Circuit 165

Fig. 6. Learning curves from DNA learning circuit simulations and our Python refer-
ence implementation. The average RMSE in the weight approximations was computed
after each training round for 1,000 training schedules, each 15 rounds in length. Non-
solid lines are one standard deviation above and below the mean. Again, the lines
coincide very well, indicating that our DNA circuit design works correctly.

The RMSE in the weight approximations is almost zero after just 15 training
rounds, suggesting that an experimental implementation of this system could be
trained to a reasonable degree of accuracy in a limited timeframe.

6 Discussion

We have presented a design for a DNA learning circuit based on buffered DNA
strand displacement reactions, and demonstrated via simulation results that the
design works as intended and can learn target weight values in a reasonable
timeframe. This feedback subcircuit design surpasses our previous work in this
area [5], by allowing negative weight values and input values. It also alleviates the
problems we saw in [5] with poor performance when trying to learn weight values
near zero, by implementing a weight update rule that is symmetric in the positive
and negative directions. The weight update rule used in this work (1) is a well-
studied gradient descent learning scheme, whose performance has been studied
extensively [17]. It is well known that the learning rate parameter (α) can have
a significant effect on the rate of convergence of the learning process. Indeed,
many different procedures for reducing the learning rate over time to achieve
rapid convergence have been studied, and our system should respond to such
adjustments in the same way as the reference algorithm that we implemented in
Python.

Our circuit was specifically designed to avoid the issue of input sequestration,
which can be problematic in DNA strand displacement systems. Soloveichik’s
compilation scheme for abstract chemical reactions [8] dealt with this issue by
adding additional reaction gates to compensate by sequestering all other species
similarly, which slows down the system. Other work [16] has dealt with input
sequestration by artificially increasing the values of certain input signals. This
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consideration led to the design of the “subtractor” circuit motif shown in Fig. 3
which, while elegant, has the property that the absolute values of the posi-
tive and negative components of the weight approximations and other signals
processed by the system grow monotonically over the course of a multi-round
training session, draining other species out of the system. This problem could
be ameliorated by the inclusion of an annihilator gate in the feedback subcircuit
that takes d+ and d− as inputs but produces no output, which could reduce the
absolute sizes of the signals. This annihilator gate would only need to compete
with the rest of the feedback subcircuit to drain some of the excess d± signals
from the system, and we will explore this alternative in future work.

Our use of buffered gates to implement adaptive strand displacement cir-
cuits offers a route to implement systems whose operation can be extended by the
replenishment of buffered gate species when they are depleted, without adversely
affecting the kinetics of the system. This is an important consideration for the
implementation of molecular learning circuits. Furthermore, in this paper we
have implemented the stochastic gradient descent weight update rule in con-
junction with a linear transfer function, which allows the circuit to learn linear
classification functions. However, the feedback subcircuit design presented here
could be used to learn other functional forms, including non-linear functions, by
simply replacing the predictor subcircuit to compute the desired function of the
provided training inputs. A major challenge is to implement other transfer func-
tions, in particular, non-linear transfer functions such as the Heaviside function,
which is used in classical expositions of perceptron learning [19]. Specifically, the
challenge here is to implement a reusable circuit that can amplify its output to
a fixed level. Finally, to build molecular systems that can learn arbitrary func-
tions it would be necessary to connect a number of such units into networks to
be trained by backpropagation, which could be achieved by cascading several of
the circuit motifs described here.
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Abstract. Simple computations can be performed using the interac-
tions between single-stranded molecules of DNA. These interactions are
typically toehold-mediated strand displacement reactions in a well-mixed
solution. We demonstrate that a DNA circuit with tethered reactants is
a distributed system and show how it can be described as a stochastic
Petri net. The system can be verified by mapping the Petri net onto a
continuous time Markov chain, which can also be used to find an opti-
mal design for the circuit. This theoretical machinery can be applied
to create software that automatically designs a DNA circuit, linking an
abstract propositional formula to a physical DNA computation system
that is capable of evaluating it.

Computation with DNA has been the subject of much interest from the points of
view of both pure computer science and nanomedicine. A 2009 paper by Andrew
Phillips and Luca Cardelli showed how DNA strand displacement can be thought
of as a formal computing language [8]. Further work by Matthew Lakin and
colleagues produced Microsoft Visual DSD, a computational tool for the design
and analysis of such reactions [6]. In the field of nanomedicine, Benenson et al.
created a biomolecular DNA computing system that can produce an mRNA
inhibitor to control gene expression [2].

These papers all consider DNA strands as freely floating reactants in a well-
mixed solution. There are no topological or geometric constraints that prevent
two species from interacting. Such constraints can be introduced by tethering
DNA reactants to rigid structures. Yin and colleagues designed a DNA Turing
machine that operates by DNA walkers moving on a rigid lattice [11]. Another
method utilizes the tethering of walkers to a DNA origami tile [9]. In a 2005
paper, Jonathan Bath and colleagues introduced a DNA walker powered by a
nicking enzyme that is capable of traversing a track of single-stranded DNA
anchorages (Fig. 1) [1]. Shelley Wickham and colleagues built on this design in a
2011 paper that demonstrated how the walker could be programmed to navigate
a series of tracks on an origami tile [10]. The result was a DNA walker that
c© Springer International Publishing Switzerland 2015
A. Phillips and P. Yin (Eds.): DNA 2015, LNCS 9211, pp. 168–180, 2015.
DOI: 10.1007/978-3-319-21999-8 11
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Fig. 1. The “burnt-bridges” DNA walker from [1]. Single-stranded oligonucleotides are
shown as arrows, with the arrowhead indicating the 3’ end. Step 1 A DNA walker
(shown in blue) is bound to a complementary single-stranded anchorage (Ai), com-
pleting the restriction site (red box) for a nicking enzyme. Step 2 The nicking enzyme
cuts the 5’ end of anchorage Ai, exposing a 6-nucleotide toehold on the 3’ end of the
DNA walker. Step 3 The toehold on the walker binds to the next anchorage in the
track, anchorage Ai+1. Step 4 The DNA walker moves from anchorage Ai to Ai+1 via
a toehold-mediated branch migration reaction. By continuously repeating Steps 1–4, a
DNA walker can navigate down a track of single-stranded anchorages.

could perform a computation, namely a binary decision tree. This is a “local”
computation that is performed by reactants that are tethered to the origami tile.

Localized DNA computation has also been the subject of theoretical and com-
putational study. A recent paper by Dannenberg et al. analyzed the computa-
tional potential of localized DNA circuits [3]. Lakin and colleagues incorporated
tethered DNA reactants into Microsoft Visual DSD, allowing for topological and
geometric constraints in DNA circuits [7]. This software brings the functionality
of Visual DSD to localized DNA computation circuits: It can perform proba-
bilistic model checking, detect leaks, and provide information about reaction
rates.

We demonstrate how localized DNA circuits can be analyzed as distributed
systems. As such, they can be automatically designed and verified by software.
The input to the localized DNA circuit can be posed using the language and
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grammar of the propositional calculus (Sect. 1). This input is then abstracted
into a directed graph that captures the topology of the circuit (Sect. 2). Because
the localized DNA circuit is a distributed system, it can be modeled as a stochas-
tic Petri net. Analysis of this Petri net determines the geometry of the circuit
(Sect. 3).

1 The Propositional Calculus of DNA Localized
Computation Circuits

The language of a propositional calculus is composed of two parts: The first is a
set of propositional variables, or atomic statements that each hold exactly one
truth value (1 or 0); the second is the set of logical connectives, or operators
that act on the propositional variables. A propositional formula is a string of
propositional variables and logical connectives that is said to be well-formed if
it follows the rules of the grammar.

Localized DNA computation systems can be designed to evaluate proposi-
tional formulae, and their action can be written in the formal language and
grammar of the propositional calculus. The set of all logical connectives Ω can
be partitioned into disjoint subsets according to their arity, or the number of
arguments each connective takes:

Ω = Ω0 ∪ Ω1 ∪ Ω2 ∪ · · · ∪ Ωn.

For localized DNA computation systems, attention is restricted to nullary, unary,
and binary logical connectives where,

Ω0 = {0,1} ,

Ω1 = {¬} ,

Ω2 = {∨,∧,→,↔} .

The rules of the propositional calculus can be used to search for a simpler
form of a propositional formula in order to make the corresponding DNA com-
putation system more efficient. For example, the propositional formula

(x ∧ y) ∨ (x ∧ z) (1)

has three logical connectives, and hence will require three logic gates. In this
case, it is possible to find an equivalent form that requires only two:

(x ∧ y) ∨ (x ∧ z) ≡ x ∧ (y ∨ z). (2)

There are libraries available that can implement heuristics for such a search, e.g.
SymPy [4].
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Fig. 2. Track diagrams showing one possible choice of design for NOR,NOT,OR, and
AND logic gates that use the interaction (blockage) between DNA walkers. Each walker
stays on its own track, and all walkers begin stepping at the same time. Walkers denoted
by 1 will always walk while x and y are walkers that will only start walking if their
respective propositions are true. Walkers can block another track at the junctions
marked with a red cross. The gate evaluates to 1 if the walker whose track has END
at the end of it is indeed able to make it to the end without being blocked.

2 Directed Graph Abstraction

An input propositional formula, like those described in the previous section, can
be used to find the topology for a localized DNA circuit. Every propositional
variable is represented by a track, or linear array of DNA anchorages tethered
to an origami tile, and a DNA walker. If the propositional variable holds the
value 1, then the walker will begin walking at the start of its track. Tracks that
always take the value 1 have a DNA walker that will always start walking.

DNA walkers are able to perform universal Boolean logic if they are able to
block other walkers on tracks that intersect their own. It is straightforward to
construct a NOR gate, which is a functionally complete operator, using track
blockage (Fig. 2, top left). Figure 2 shows both an AND gate constructed out of
NOR gates and an alternative design that is simpler and uses fewer tracks.

A formula written in the propositional calculus, together with the chosen
design for each gate, is enough to completely determine the topology of a cor-
responding DNA walker circuit. In the context of DNA localized computation
systems, topology refers to “connectedness” of the tracks. Two tracks are said
to be topologically connected if they intersect so that the walkers on both tracks
can interact with each other.

More formally, for any chosen gate design, it is possible to describe the topol-
ogy of each gate in terms of a directed graph GD = (V,E) where V is a set of
vertices and E is a set of edges represented as ordered pairs. For the NOR gate,

V = {1, x, y} , E = {(x,1), (y,1)} .
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The set V can be interpreted as the gate having three tracks, one for each of
walkers {1, x, y}. The set of ordered pairs E indicates that the x walker blocks
the 1 walker and the y walker blocks the 1 walker. Figure 2 shows one possible
choice of gate design. Once a choice is made, directed graphs can be constructed
for each gate as shown in Table 1. Directed graphs for the gates can be pieced
together to form one directed graph for the whole circuit, capturing the topology
of a DNA circuit that evaluates the propositional formula.

Table 1. The sets of edges E and vertices V in the directed graph that correspond to
each logic gate. Subscripts are used to differentiate between unique tracks.

V E

NOR {1, x, y} {(x,1), (y,1)}
NOT {1, x} {(x,1)}
OR {11,12, x, y} {(12,11), (x,12), (y,12)}
AND {1, x, y} {(1, x), (y,1)}

Adding the directed graph abstraction between the propositional formula and
its resulting track diagram has a number of advantages. At the topological level,
the system becomes easier to analyze and simplify by automated means. The
most immediate example is detecting certain redundancies, which can informally
be thought of as double negatives. For any tracks a and b, if there exists a path
{(a,1i), (1i,1j), (1j , b)} ⊂ E, then we may replace this path by {(a, b)}. In
logical terms, this is the equivalent of writing ¬(¬b) = b.

FANOUT

A key use of the directed graph structure is that it can represent circuits that
cannot be posed in the propositional calculus. The most immediate example is
FANOUT, which can be written as a directed graph:

V = {x,11,12,13,14} ,

E = {(x,11), (x,12), (11,13), (12,14)} .

As shown in Fig. 3, FANOUT requires an additional property of the walker-track
system: The walker must be able to block a track and keep walking, blocking
additional tracks thereafter. This property, as well as the FANOUT gate itself, is
not necessary to perform universal Boolean logic. It can, however, be useful in
simplifying track designs by using fewer walkers overall.

3 Localized DNA Circuits as Distributed Systems

This section shows how introducing another piece of information, a tolerance for
the probability of error, allows one to use the circuit topology to find a circuit
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Fig. 3. A track diagram of a possible design choice for a FANOUT gate. This design
requires a walker that can block a track and keep walking, blocking other tracks
thereafter.

geometry. A geometry defines the length of each track and specifies the locations
where the tracks intersect. The tools needed to find this information come from
analyzing the localized DNA circuit as a distributed system.

A distributed system is a network of autonomous computers that can per-
form a coordinated action by passing messages between different computers in
the network. When the anchorages on an origami tile are viewed as networked
computers and the walker is viewed as the the message, a localized DNA com-
putation system becomes a distributed system. The advantage of looking at the
DNA circuit in this light is that it can be readily represented and analyzed as a
Petri net.

3.1 Stochastic Petri Nets

The “burnt-bridges” walker-track system from [1] can be modeled as shown
in Fig. 4, upper. The initial marking shows the DNA walker, represented by a
token, on the first anchorage G1. The stochastic Petri net allows each walker a
stepping rate, or the rate at which it steps forward onto the next anchorage. The
transition from the first anchorage G1 to the second anchorage G2 fires at the
rate at which the walker steps from one anchorage to the next. Such transitions
require two tokens to fire. The tokens in the bottom row of nodes are used up
as the walker steps forward, so another walker will not be able to step down
the track after the current walker has finished. Physically, this bottom row of
nodes represents the 5’ end of the anchorages that are irreversibly nicked by the
nicking enzyme. A reusable track can be represented in a similar fashion (Fig. 4,
lower). In both cases, walkers are assumed to only step forward and remain on
the last anchorage once they reach the end of their track.

Junctions between tracks are needed to implement the entire localized DNA
circuit as a stochastic Petri net. Figure 5 shows a Petri net where a designated
blocking walker (blue walker) can block another walker (green walker) if the blue
walker arrives at the junction first. If the green walker arrives at the junction
first, it steps through to the end of its track as normal.
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G1 G2 G3 G4 G5

G1 G2 G3 G4 G5

Fig. 4. upper Stochastic Petri net representation of the “burnt-bridges” walker from
[1]. This track can only be used once, as the tokens in the bottom row of nodes are used
up as the walker steps. lower Stochastic Petri net of a reusable track. Each transition
only requires one token to fire, and no tokens are used up in the process.

B1 B2 B3 B4 B5

G1 G2 G3 G4 G5

Fig. 5. Two tracks, green and blue, with a blocking junction on the third anchorage
of each track (G3 and B3). If the blue walker arrives at the junction first, it can block
the green track by using up the token of the shared node (shown in red).

A stochastic Petri net can be mapped directly onto a Markov process. If
the DNA system can be posed as a Petri net, then it can be mapped onto a
continuous time Markov chain (CTMC). Using this CTMC, the probability of
certain properties of the system can be computed using techniques from formal
verification.

3.2 Designing a System Using Formal Verification Techniques

The localized computation systems discussed thus far operate under the assump-
tion that all DNA walkers, if they walk at all, begin walking at the same time
and walk at the same rate. This imposes certain length restrictions on the tracks.
In the NOT gate, for example, the track for the 1 walker must be sufficiently
longer than the track for the x walker so that the 1 walker does not arrive at
the junction first. If it does, a missed chance error has occurred because the x
walker has missed its chance to block the 1 walker.

By representing the DNA system as a Markov chain and analyzing it for
each possible combination of track lengths, one can search for a design that is
optimal in the sense that it is compact and minimizes the probability of missed
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chance errors. Starting from the state corresponding to the initial marking of
the Petri net, the system is allowed to evolve according to the CTMC. Earlier,
it was assumed that all walkers can only step forward, if they step at all, and
that walkers do not move forward once they are blocked or reach the end of their
track. Hence, the Markov chain is an absorbing Markov chain, and an absorbing
state will always be reached if the system runs to equilibrium. The absorbing
states can be divided into two groups: one group that corresponds to a missed
chance error for at least one junction, and another group that corresponds to
correct operation. Analysis of the CTMC determines the probability with which
the system ends up in missed chance error state or a correct state after it is
allowed to run for a long time.

Prism provides a natural scripting language for representing complex systems
as Markov chains in continuous time [5]. It also allows the user to evaluate the
probability of certain conditions, such as the probability of eventually ending up
in a certain state. For example, if a walker B is intended to block a walker G,
Prism should check the following property:

P = ? [B=end & G>intersection].

In Prism’s language, this is the probability that the G walker has moved through
the junction before the B walker has arrived to block it. This statement measures
the probability of a missed chance error for that junction. Due to the modular
nature of the Prism language, the code can be automatically generated from the
directed graph structures described in the previous section.

Model checking can be used to determine the system with the shortest tracks
that still has a missed chance error below a given tolerance. Finding this balance
is critical: A compact system is easier to design and fit onto an origami tile,
but tracks that are too short will cause missed chance errors. The output is
the assignment of a natural number to each track for the smallest number of
anchorages needed to stay within the specified tolerance for missed chance error.
Assuming that a track is always blocked on its penultimate anchorage, this is
sufficient to determine the track geometry of the system.

3.3 Illustrative Example 1: Track Design

This theoretical machinery forms the foundation for software that can design
track systems. The only inputs required are a propositional formula, a choice
of gate design, and a tolerance for missed chance error. The plot in Fig. 6 was
automatically generated in this way.

The simplified propositional formula in Eq. 2 can be arranged into a parsing
tree based on its logical connectives. Prism can be used to find the lengths (in
anchorages) of each track that minimizes missed chance error. Using a tolerance
of 0.15 probability for missed chance error results in the following optimized
track lengths:

11 = 14 anchorages,12 = 13 = 7 anchorages, x = y = z = 2 anchorages.
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Using the lengths of each individual track shown above and the blocking topology
from the directed graph, a track design is generated that evaluates the original
propositional formula (Fig. 6).

Fig. 6. Final design of the DNA localized computation system that can evaluate Eq. 2.
Each anchorage is represented by a light orange circle. The individual tracks, along
with their directionality, are indicated by orange arrows. Each track is labelled at its
starting anchorage by the name of the walker that walks along it.

3.4 Illustrative Example 2: DNA Mechanism

Figures 7 and 8 show an example of a DNA walker mechanism that implements
the junction in Fig. 5, whereby one walker (shown in blue) blocks another (shown
in green). The notation used is similar to that of Microsoft Visual DSD. Single-
stranded oligonucleotides are represented by arrows, as in Fig. 1. Domains are
printed as short strings of characters, such as B, and a domain’s reverse com-
plement is appended with an asterisk. For example, the reverse complement of
B is B*. Certain domains contain a restriction site for a nicking enzyme. When
a restriction site is completed by hybridization to its reverse complement, the
location where the nicking enzyme will cut is indicated by a small red arrow.
The mechanism requires that the nicking enzyme does not cut at certain domains
that closely resemble the restriction site. These domains contain a restriction site
mismatch, where one nucleotide in the restriction site has been altered. Domains
containing a restriction site mismatch are indicated with an underscore. Loca-
tions where the anchorages are tethered to the origami tile are shown with an
orange dot.

The green walker is made up of a short toehold domain Gt at the 3’ end and
a longer primary domain Gp at the 5’ end. The blue walker is similar, with two
important differences. First, the blue walker is in reverse orientation to the green
walker. Its toehold domain is at the 5’ end. Second, the blue walker has an extra
Gt* “tail” domain at the 3’ end. A junction anchorage is located where the two
tracks intersect and acts as a transducer, whereby the blue walker can convert
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Fig. 7. The green walker arrives at the junction first. It can move through the junction
and proceed down its track.

the junction anchorage from a normal anchorage to a trap that will block the
green walker.

If the green track is unblocked (i.e. the blue walker has not arrived at the
junction anchorage) then the green walker steps onto the auxiliary [Gt* Gp*
Bp] strand that is hybridized to the junction anchorage. The auxiliary strand
resembles a normal green track anchorage (Fig. 7). The restriction site for the
nicking enzyme is completed, the junction anchorage is cut, and the green walker
steps on as normal. If the blue walker arrives at the junction anchorage first, it
binds to the Bt* toehold domain on the junction anchorage and displaces the
auxiliary green anchorage from the junction (Fig. 8). This strand then diffuses
away in solution. The 3’ tail on the blue walker also displaces the Gt* domain in
the [Gt* Gp*] trapping strand. When the green walker arrives at the junction, it
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Fig. 8. The blue walker arrives at the junction first, exposing the toehold of a trap for
the green walker. When the green walker arrives, it is trapped and the track is blocked.

binds to the toehold on the trapping strand that was exposed by the blue walker.
The green walker hybridizes to the trapping strand and displaces it from the
junction anchorage. A restriction site mismatch in the trapping strand makes
the trap-green walker duplex inert and the duplex diffuses away in solution.
Hence, the green walker has been blocked and removed from the track.

4 Conclusions

We have shown that localized DNA computation circuits can be analyzed as dis-
tributed systems. A propositional formula, a choice of gate design, and an error
tolerance are enough to determine the geometry of the track system. There are
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simple blocking mechanisms for junction anchorages at the intersection between
tracks that make such systems realizable.

The software and theory developed here can be improved upon by using it
together with previously developed tools. One challenge in designing any DNA
circuit is preventing unwanted interactions between domains. As the circuit gets
more complex, these leaks become more and more difficult to identify by hand.
Microsoft DSD already has automated means of detecting such leaks at the
domain level. At the sequence level, NUPACK is an easy-to-use tool that can
find suitable nucleotide sequences for a given design [12]. The three pieces of
software can work together to first design a localized DNA circuit using the
methods described above, then compile Microsoft DSD code to check for errors
at the domain level, and finally compile NUPACK code to generate nucleotide
sequences for each strand.

A challenge of working with DNA localized computation systems is making
the system compact enough to fit on an origami tile while maintaining a low
probability of missed chance error at the junctions. We can imagine a logic gate
on an origami tile that, if it evaluates to 1, activates a messenger strand that
can set another walker stepping on a different origami tile. Such a mechanism
can help alleviate the compactness issue. It would also increase the ability of
localized DNA circuits to scale up and work with a higher reliability.

GitHub Repository

The software written to generate track designs is open source and freely available
via the GitHub clone URL https://github.com/MBoemo/DLCC.git.
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Abstract. Secondary structure folding pathways correspond to the exe-
cution of DNA programs such as DNA strand displacement systems. It
is helpful to understand the full diversity of features that such pathways
can have, when designing novel folding pathways. In this work, we show
that properties of folding pathways over a 2-base strand (a strand with
either A and T, or C and G, but not all four bases) may be quite different
than those over a 4-base alphabet. Our main result is that, for a simple
energy model in which each base pair contributes −1, 2-base sequences
of length n always have a folding pathway of length O(n3) with energy
barrier at most 2. We provide an efficient algorithm for constructing such
a pathway. In contrast, it is unknown whether minimum energy barrier
pathways for 4-base sequences can be found efficiently, and such path-
ways can have barrier Θ(n). We also present several results that show
how folding pathways with temporary and/or repeated base pairs can
have lower energy barrier than pathways without such base pairs.

1 Introduction

Nucleic acid folding pathways—sequences of structures visited by DNA and RNA
molecules as they fold—are interesting because they influence the shape and thus
function of key agents of cellular processes [4]. Folding pathways are also very
interesting to DNA nanotechnologists and molecular programmers because they
are the realization of DNA programs for the creation of nano-materials, robots,
logic circuits, artificial neural networks and much more [10,13,14,19,20].

Kinetics constrain nucleic acids to fold along pathways that tend to have low
energy barriers. The energy barrier of a pathway, or simply the barrier, is the
largest difference in free energy between any structure on the pathway and a
subsequent structure. Specifically, if we are interested in folding pathways for
a sequence s from an initial structure I to a final structure F , where I has
minimum free energy (MFE), then the energy barrier is the largest difference in
free energy between I and any other structure along the pathway. We refer to a
folding pathway from I to F with minimum barrier (taken over all possible fold-
ing pathways) as a min-barrier pathway. Several methods for computationally
predicting nucleic acid folding pathways rely on energy barrier estimation [3,15].
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Moreover, designed nucleic acid systems such as DNA strand displacement sys-
tems ensure that the desired folding pathways have low energy barriers, while
undesired alternatives have high barriers.

Thus there has been substantial work on methods for finding folding pathways
between two given structures of a DNA or RNA strand s and in particular,
finding min-barrier pathways (or approximations to these) [3,6]. These methods
for computational prediction of folding pathways and energy barriers use reliable
RNA or DNA thermodynamic and kinetic parameters [7], and mostly focus on
pseudoknot free structures.

However, it can be helpful to work with simpler energy models, e.g., when
the goal is to understand the computational complexity of folding pathway or
energy barrier estimation, or to gain coarse-grained qualitative information on
the shape of RNA folding landscapes [1,5,12]. Morgan and Higgs [8] studied
how the energy barriers of min-barrier pathways of pseudoknot-free structures
scale with strand length, assuming a simple energy model in which each base
pair contributes −1 to the free energy of a structure. Their work considered
so-called direct folding pathways in which the only base pairs that can be
added along the folding pathway from structure I to structure F are those
in F − I and the only base pairs that can be removed are those in I − F .
Thachuk et al. [17] showed that the direct energy barrier problem (Direct-EBP),
namely to determine whether there is a direct folding pathway from I to F with
barrier of at most k, is NP-complete. Because of an earlier result of Thachuk
et al. [16], the NP-completeness result holds whether or not the pathway can
repeatedly remove and add back base pairs of I or F along the pathway.

The computational complexity of the more general energy barrier problem
(EBP) remains open even for the simple energy model, where the EBP is to
determine whether there is a possibly indirect pseudoknot-free folding pathway
from I to F with barrier at most k. A pathway is indirect if so-called temporary
and/or repeated base pairs can arise along the pathway, where a temporary base
pair is one that is not in I or F but is in some other structure of the pathway,
and a repeated base pair is one that is in some structure on the pathway (possibly
the initial structure), then is removed and later added back again.

The main result of this paper is that there is indeed an efficient algorithm
for the general energy barrier problem for sequences over a 2-base alphabet. For
concreteness we state our result for sequences over the alphabet {A,U}, which
we call AU-sequences. Our result shows that, for the simple energy model, not
only is it possible to efficiently find a min-barrier pathway of length O(|s|3) from
any initial MFE structure to any final MFE structure for any AU-sequence s,
but that this pathway will have barrier 2 if the number of U’s equals the number
of A’s and will have barrier 1 if the number of U’s is not equal to the number
of A’s. In contrast, the minimum energy barrier of a sequence over a 4-base
alphabet may be proportional to the length of the sequence.

Our algorithm relies heavily on the assumption of the simple energy model,
but variants of the techniques involved, which are relatively straightforward and
intuitive, may be useful also for more realistic energy models. The proof of our
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main result builds on the fact that the minimum free energy pseudoknot free
structure of any AU-sequence s has energy −q, where q is the lesser of the
number of A’s in s and the number of U’s in s.

Our main result raises two further questions that we address in this paper.
First, our algorithm yields indirect barrier-1 or barrier-2 pathways, specifically,
pathways with temporary base pairs. Dotu et al. [3] observed that there exist
strands over {A,C,G,U} whose min-barrier pathways are necessarily indirect.
We strengthen Dotu et al.’s observation for the simple energy model, by show-
ing that min-barrier pathways may also necessarily be indirect even for AU-
sequences. Specifically we show that for any k, there is a length-6k AU-sequence
s, and minimum energy initial and final structures for s, such that any direct
pathway from initial to final structure must have barrier at least k + 1, while
there is a barrier-1 indirect pathway.

As noted above, it is not known whether there is an efficient (polynomial-
time) algorithm for the EBP, for strands over {A,C,G,U}. It’s conceivable that,
because of the possibility that a min-barrier pathway must contain repeated
base pairs, there exist infinitely many strands for which any min-barrier, indi-
rect pathway from a given initial to a given target structure must have length
that grows exponentially with the strand length. If this is the case, the EBP
problem may be complete for PSPACE, a complexity class that is believed to
include problems that are even harder than those in NP. Here we present the first
example of a sequence s, initial structure I and final structure F such that the
min-barrier pathway of pseudoknot-free structures has the property that base
pairs which are in both I and F must be removed along the pathway, and then
added back in again. This result for indirect pathways stands in contrast with
the result of Thachuk et al. [16] that, for direct pathways, repeated base pairs
are not necessary in min-barrier folding pathways.

The rest of this paper is organized as follows. Section 2 introduces notation
and a preliminary result. We present our main result, namely our efficient algo-
rithm for finding min-barrier folding pathways for AU-sequences, in Sect. 3. Our
examples that illustrate why indirect pathways can have lower min-barrier than
direct pathways for AU-sequences, and why pathways with repeats can have
lower min-barrier than pathways without repeats, are in Sect. 4. Most of the
proofs are omitted, because of space limitations. We present conclusions and
directions for further work in Sect. 5.

2 Notation

Here we first introduce notation to describe nucleic acid secondary structure
and folding pathways, and present a useful result on the free energy of minimum
free energy structures. For an RNA sequence s = s1, s2, . . . , sn (i.e., string over
{A,C,G,U}), a base pair is an unordered pair {i, j} where indices i and j are
in the range [1, . . . , n], i �= j, and the set of bases {si, sj} is either {A,U} or
{C,G}. (DNA is similar with T instead of U). A secondary structure S for s is
a set of base pairs of s, such that no two intersect. Secondary structure is often
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represented as an arc diagram such as that in Fig. 1 (a), in which each base pair
is represented as an arc that connects two bases of sequence s. For this reason, we
often refer to a base pair as an arc, and refer to its indices as endpoints. We only
consider pseudoknot-free structures: these are structures in which no arcs cross
in the arc diagram representation. Equivalently, if a structure is pseudoknot free,
then for all {i, j} and {i′, j′} in the structure with i < j and i′ < j′, it is not the
case that i < i′ < j < j′ or i′ < i < j′ < j. Given a set S of arcs, a narrowest
arc of S is an arc {i, j} of S for which |i − j| is minimal.

We use a simple energy model where each bond in a structure contributes
-1 to the structure’s free energy, and we denote the free energy of a structure P
by E(P). A folding pathway, π, from structure I to structure F is a sequence
of pseudoknot-free secondary structures π = P0,P1, ...,Pm where I = P0 and
F = Pm. Each structure in the sequence differs from the structure directly before
it by the addition or removal of exactly one base pair. When the first structure I
on a folding pathway π is a MFE structure (as is always the case in this paper),
the energy barrier of π is max1≤i≤mE(P0)−E(Pi). Sometimes, rather than listing
a given folding pathway, we list instead its transformation sequence, which is the
sequence of arcs that are added or removed to obtain successive structures of
the folding pathway. When listing the arcs of a transformation sequence, we use
the prefices “+” and “−” to indicate whether the arc is added or removed. For
example, if I is the structure {a1, a2, a3} with three arcs, then the transformation
sequence −a1,+a4,−a2,+a1 corresponds to the folding pathway

{a1, a2, a3}, {a2, a3}, {a2, a3, a4}, {a3, a4}, {a1, a3, a4}.

A U-index of s is a number u in the range [1, . . . , |s|] such that the base
at position u of sequence s is U. An A-index of s is defined similarly, with A
replacing U. If p is an arc then A-index(p) and U-index(p) denote the endpoints
of p that are an A-index and a U-index, respectively. We say that an index
i is covered by an arc p if i is in the range [A-index(p) + 1,U-index(p) − 1]
if A-index(p) < U-index(p) or the range [U-index(p) + 1,A-index(p) − 1] if
U-index(p) < A-index(p). Similarly, we say that an arc p is covered by arc
p′ if both endpoints of p are covered by p′.

An arc p′ separates an index u from arc p if p′ �= p and p′ either covers u
or covers p but does not cover both. Arc p′ separates u from a set P of arcs if
p′ �∈ P and p′ either covers u or all arcs in P , but not both.

For the simple energy model, the number of base pairs that could form in
a secondary structure of an AU-sequence s is bounded by the minimum of the
number of A’s and the number of U’s. Without loss of generality, suppose that
s has at least as many U’s as A’s and let q be the number of A’s. A simple
stack-based algorithm can find a pseudoknot free structure with q base pairs in
linear time:

Claim 1. Let s be an AU-sequence with at least as many U’s as A’s, and let q
be the number of A bases. There is a pseudoknot-free secondary structure S for
s with q base pairs, and S can be generated in time O(|s|).
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3 Low-Barrier Pathways for AU-Sequences

In this section we show how to find a folding pathway with barrier at most 2 from
an initial MFE structure I to a final MFE structure F of an AU-sequence s.
We consider two cases in the following two subsections: first, where the number
of U’s of s equals the number of A’s and second, where there are more U’s than
A’s. The case where there are more A’s than U’s can be handled in a manner
symmetric to the case where there are more U’s than A’s and we do not discuss
it further here.

3.1 AU-Sequences with an Equal Number of A’s and U’s

In the first case, a simple algorithm works to find a pathway with barrier 2,
namely our FindBarrier2Pathway, Algorithm 1. This and later algorithms main-
tain a current structure Scurr which is initially set to I; the algorithm repeatedly
removes and adds arcs to Scurr until the structure F is reached, and the result-
ing sequence of structures forms the folding pathway. In this case, the algorithm
adds the arcs of F to Scurr in narrowest-first order. Before adding arc fnar, the
two arcs of Scurr that share an endpoint with fnar must first be removed; then
fnar and one additional arc are added in order to avoid a barrier of more than
2. At the start of each iteration, Ffrozen is the set of arcs of F that have already
been added to Scurr (these arcs are “frozen” in the sense that they will not be
subsequently removed from Scurr). Claim 2 asserts that this can be done without
introducing pseudoknots. We also note that if the number of U’s is not equal to
the number of A’s, Algorithm 1 is not correct.

Claim 2. The pathway π produced by FindBarrier2Pathway (Algorithm 1) on
input s, I, F is a valid barrier-2 pathway from I to F where no structure in the
pathway contains pseudoknots. The pathway produced has length at most 4 times
the number of arcs in an MFE structure of s.

3.2 AU-Sequences with More U’s Than A’s

If sequence s has more U’s than A’s, there is a barrier-1 pathway from MFE
structure I to MFE structure F . Here we present our FindPathway algorithm,
Algorithm 2, which constructs this pathway.

Starting with a current structure Scurr that is set to the initial structure I,
FindPathway repeatedly selects an arc f of F that is not in the current structure.
For each f , it calls the ResolveConflicts algorithm, Algorithm 3, which updates
the current structure via a barrier-1 pathway that removes any arcs that conflict
with, i.e., form a pseudoknot with, f , while also ensuring that arcs of F that
were added in earlier iterations—so-called frozen arcs—are not removed. Once
ResolveConflicts is done, the FindPathways algorithm adds f to Scurr and arc
f is also frozen. As we show later, the order in which the arcs of F are added
by FindPathway ensures that ResolveConflicts can proceed within barrier 1.
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Algorithm 1. Find a barrier-2 pathway for an AU-sequence with #U’s = #A’s
procedure FindBarrier2Pathway (s, I, F)

Input:
a sequence s ∈ {A,U}∗, with an equal number of U’s and A’s
an initial MFE structure I for s
a final MFE structure F for s
Output:
a valid pathway π from I to F with barrier 2

Scurr = I; π ← empty pathway; Ffrozen ← ∅
while Ffrozen �= F do

fnar ← a narrowest arc such that fnar ∈ F but fnar /∈ Ffrozen

if fnar /∈ Scurr then
fa ← the arc of Scurr with endpoint A-index(fnar)
fu ← the arc of Scurr with endpoint U-index(fnar)
p ← the arc with endpoint U-index(fa) and A-index(fu)
remove fa from Scurr; π ← π, Scurr

remove fu from Scurr; π ← π, Scurr

add p to Scurr; π ← π, Scurr

add fnar to Scurr; π ← π, Scurr

end if
add fnar to Ffrozen

end while
return π

We next describe the ResolveConflicts algorithm, while also introducing def-
initions that are used in the algorithm descriptions. These definitions are with
respect to the inputs to ResolveConflicts, namely a “current” pseudoknot-free
secondary structure Scurr for s, a subset Ffrozen—the frozen arcs of Scurr, and
an additional arc f of F that is not yet in Scurr. Let conflict(f) be the set of
arcs of Scurr that form a pseudoknot with f , except that the arc of Scurr from
the A-index endpoint of f is excluded.

ResolveConflicts repeatedly removes the arcs of conflict(f), keeping the bar-
rier low by “repairing” the A-indices of these conflicting arcs with other avail-
able U-indices. To do this, ResolveConflicts first identifies a set U of currently
unpaired U-indices that can indirectly repair conflict(f). A U-index u of s can
indirectly repair conflict(f) if u is unpaired in Scurr and no arc of Ffrozen ∪ {f}
separates an index of U from conflict(f). (If an arc p separates u from some arc
of conflict(f) then p must separate u from all arcs of conflict(f).) It is the case
(details omitted) that conflict(f) is indeed repairable, that is, there is a set U of
| conflict(f)| U-indices that can indirectly repair conflict(f). However, it may not
be possible for ResolveConflicts to simply remove an arc p from conflict(f) and
pair its A-index with a U-index of U without creating a pseudoknot. We say that
an unpaired U-index u can directly repair an arc p if no arc of Scurr ∪ {f} − {p}
separates u from A-index(p). The inner while loop of ResolveConflicts finds a
pathway that can “convert” an unpaired base u of U into an unpaired base that
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can directly repair an arc p of conflict(f). The outer loop of ResolveConflicts
then removes p and adds (A-index(p), u) to Scurr, thereby reducing the number
of arcs that conflict with f . ResolveConflicts ends once all conflicts are removed.

Claims 3 and 4 assert that the ResolveConflicts and FindPathway algorithms
are correct, leading to our main result of this section, Theorem 1.

Claim 3. ResolveConflicts is correct, that is, produces an output with the prop-
erties specified at the top of the algorithm description, given an input with the
properties specified at the top of the algorithm description.

Claim 4. FindPathway is correct.

Theorem 1. Let (s, I,F) be an AU-instance of the EBP. A barrier-2 pathway
of length O(|s|) can be found in O(|s|) steps for (s, I, F ). Moreover, if the number

Algorithm 2. Find a valid barrier-1 folding pathway from initial structure I to
final structure F , for a sequence s that has more U’s than A’s.
algorithm FindPathway(I, F , s)

Input:
a sequence s ∈ {A,U}∗, with more U’s than A’s
an initial MFE pseudoknot-free structure I for s
a final MFE pseudoknot-free structure F for s
Output:
a valid pseudoknot-free folding pathway π from I to F with barrier 1

Scurr = I; π ← empty pathway; Ffrozen ← ∅
if in F , some U-index is unpaired and not covered by any arc then

let U-chosen be any such U-index
else

let U-chosen be any U-index that is unpaired in F and is covered
by a narrowest arc of F (among those arcs covering unpaired U-indices)

end if

while some arc of F − Ffrozen does not cover U-chosen do
let f be a narrowest such arc in F − Ffrozen

(S ′, π′) ← ResolveConflicts(s, Scurr, Ffrozen, f)
append π′ to π; Scurr ← S ′

remove the arc of Scurr containing A-index(f) as an endpoint; π ← π, Scurr

add f to Scurr; π ← π, Scurr; Ffrozen ← Ffrozen ∪ {f}
end while// all arcs of F − Ffrozen cover U-chosen

while Scurr �= F do
let f be the widest arc in F − Ffrozen

(S ′, π′) ← ResolveConflicts(s, Scurr, Ffrozen, f)
append π′ to π; Scurr ← S ′

remove the arc of Scurr containing A-index(f) as an endpoint; π ← π, Scurr

add f to Scurr; π ← π, Scurr; Ffrozen ← Ffrozen ∪ {f}
end while
return π
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Procedure 3. Find a valid barrier-1 pathway from an input MFE structure
Scurr for sequence s to an updated MFE structure Scurr for s, where the updated
Scurr contains all arcs in Ffrozen, a subset of S, and such that conflict(f) is
empty.
procedure ResolveConflicts (s,Scurr,Ffrozen, f)

Input:
sequence s ∈ {A,U}∗, with more U’s than A’s, MFE structure Scurr for s,
Ffrozen ⊂ Scurr and arc f �∈ Ffrozen such that conflict(f) is repairable
Output:
updated MFE structure Scurr for s such that Ffrozen ⊆ Scurr and conflict(f) is
empty a valid barrier-1 pathway π′ from the input Scurr to the output Scurr

π′ ← empty pathway
let U be a set of | conflict(f)| U-indices that can indirectly repair conflict(f)
while | conflict(f)| > 0 do

// create a U-index that can directly repair some arc of conflict(f)
select some u in U and remove u from U
while u cannot directly repair any arc of conflict(f) do

let p be an arc that separates u from conflict(f), such that u can directly repair
p
remove p from Scurr; π ← π, Scurr

add {A-index(p), u} to Scurr; π ← π, Scurr

u ← U-index(p)
end while
choose arc p ∈ conflict(f) such that u can directly repair p
remove p from Scurr; π ← π, Scurr

add {A-index(p), u} to Scurr; π ← π, Scurr

end while
return (Scurr, π

′)

of A’s of s does not equal the number of U’s of s, a barrier-1 pathway of length
O(|s|3) can be found in O(|s|3) time.

Proof. Claim 2 shows that Algorithm 1, FindBarrier2Pathway, finds a barrier-2,
length O(n) pathway for an AU-instance (s, I,F) of the EBP. The number of
steps of the algorithm is O(|s|), since there are F ≤ |s| iterations of the whle
loop, each taking O(1) steps.

Claim 4 shows that FindPathway, Algorithm 2 finds a barrier-1 pathway
when the AU-instance is such that the number of U’s is greater than the number
of A’s ( and by swapping U’s and A’s in the algorithm works when the number
of A’s is greater than the number of U’s). To bound the length of the pathway,
we first need to bound the number of steps in ResolveConflicts, Algorithm 3
(which is called by FindPathway). Each iteration of the inner while loop of
ResolveConflicts reduces the number of arcs that separate u from conflict(f) by
1, and thus the number of iterations is O(|s|). Each iteration has O(1) steps
and thus the total number of steps per iteration of the inner while loop, and the
length of the pathway segment generated, is O(|s|). Each iteration of the outer
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while loop reduces the size of conflict(f) by 1, using O(1) steps beyond those of
the inner while loop. Therefore, the total number of steps of ResolveConflicts is
O(|s|2), and the total length of the pathway segment generated is also O(|s|2).
For each arc of F that is added to Ffrozen, FindPathway calls ResolveConflicts
once, and takes O(1) additional steps. Thus, the overall length of the pathway
generated by FindPathway is O(|s|3), and this also bounds the total number of
steps taken by the algorithm (including calls to ResolveConflicts).

4 On Min-Barrier Pathways that Are Necessarily
Indirect Pathways or Contain Repeat Base Pairs

Theorem 2. For any k, there is a length-6k AU-sequence with minimum energy
initial and final structures such that any direct pathway from initial to final
structure must have barrier at least k + 1, while there is a barrier-1 indirect
pathway.

Proof. The length-6k AU-sequence is AkUkUkAkUkUk, where here Xk is the
letter X repeated k times. The initial and final structures are I = (k.k)k(k.k)k

and F = (k(k.k)k)k.k respectively. That is, I has two disjoint hairpin-forming
stems that we refer to as the left and right stems, while F has one stem nested
in another; we refer to these as the inner and outer stems. Note also that the
set of A-indices of I’s left stem equals the set of A-indices of F ’s outer stem,
and the set of A-indices of I’s right stem equals the set of A-indices of F ’s inner
stem. Figure 1 illustrates the sequence and initial and final structures for k = 3.

A A A U U U U U U A A A U U U U U U

(a) Initial structure I

A A A U U U U U U A A A U U U U U U

(b) Final structure F

Fig. 1. Illustration of the construction of Theorem 2 for k = 3.

We first show that any direct pathway must have barrier at least k + 1. Let
P = p1, p2, . . . , p|P | be a direct pathway from I to F . Let a be the first arc of
F that appears in a structure of pathway P , say structure pi. By definition of
a direct pathway, the only arcs that can be in pi−1 are either arcs from I or
F . However, since a is the first arc of F to appear in a structure of P , with a
appearing first in pi, pi−1 contains no arc of F . If a is in the outer stem of F ,
then pi−1 also contains none of the k arcs from the right stem of I; otherwise
such arcs would cause a pseudoknot with a in pi. Furthermore, at least one arc
from the left stem of I, namely the arc that shares an endpoint with a, is not in
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pi−1. Therefore at most k − 1 arcs of P are in pi−1; since I and F have 2k arcs,
pi−1 causes the barrier of the path to be k +1. A similar argument shows that if
a is in the inner stem of F , then pi−1 also contains at most k − 1 arcs and thus
the barrier is k + 1.

Next we show that there is an indirect, barrier-1 pathway from I to F . The
pathway has several stages. First, the right stem of I is replaced by a nar-
rower stem to obtain the structure (k.k)k(k)k.k. This can be done via a barrier-1
pathway in which the arcs of I’s right stem are replaced by narrower arcs, in
narrowest-first order. Then, the left stem of I can be replaced by a stem that
spans from the leftmost A’s to the rightmost U’s of the sequence, via a barrier-1
pathway, thereby reaching current structure (k.k.k(k)k)k Then replace the inner
stem of the current structure with the inner stem of F . Finally, replace the wide
stem of the current structure with the outer stem of F .

Theorem 3. There exists an AU-sequence s, with corresponding initial struc-
ture I and final structure F where there is an indirect pathway with repeats with
a lower energy barrier than the energy barrier than that of any direct pathway.

Proof. Consider the sequence and structures I and F of Fig. 2.

A A U U U A U A U

a1
a2 a3 a4

a1
a2 b1 b2

Fig. 2. An initial structure I = {a1, a2, a3, a4} (top) and a final structure F =
{a1, a2, b1, b2} (bottom) for sequence AAUUUAUAU, such that there is no barrier-
1 pathway without repeats from I to F . Additional dashed arcs are required for a
barrier-1 pathway.

We first consider possible barrier-1 pathways without repeats from structure
I. Note that since a1 and a2 are in F that in any pathway without repeats they
cannot be removed as re-adding either of them would cause a repeat. So we move
onto adding b1 and b2 without introducing a repeat, and to add either requires
first removing both a3 and a4, which means that any pathway that does not
allow repeats must be barrier-2.

So, we are left to demonstrate that there exists a barrier-1 pathway from I
that contains repeats. We will need to add the dashed arcs in Fig. 2, so of the
two nested dashed arcs, let’s denote the narrower one by t1 and the wider one
by t2, and the remaining dashed arc shall be t3.

The following transformation sequence is barrier-1, and requires a1 and a2

to repeat; as an arc is added immediately after every arc that is removed, we
have a barrier-1 pathway.

T = −a2,+t1,−a1,+t2,−a3,+t3,−a4,+b2,−t3,+b1,−t2,+a1,−t1,+a2
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5 Conclusions and Future Work

In this paper, for sequences over two bases, we show how to efficiently find min-
barrier, pseudoknot-free pathways from initial to final MFE structures, for an
energy model that assigns “-1” to each base pair (Theorem 1). In contrast, the
computational complexity of finding such min-barrier pathways for sequences
over four bases is unknown, and the problem may well be computationally
intractable. We also show that min-barrier pathways for sequences over two
bases may necessarily be indirect, i.e., involve base pairs that are neither in
the initial nor final structures, and that direct pathways for such sequences may
have a minimum energy barrier that is proportional to the length of the sequence
(Theorem 2). Thirdly, we show that a weak form of arc repetition may be nec-
essary in a min-barrier pathway (Theorem 3).

There are several ways in which our results could be improved. Our algorithm
yields a O(n3) bound on the length of a barrier-1 pathway between two MFE
structures of a length-n AU-sequence. We expect that this can be reduced, by
carefully choosing the order in which u’s are chosen from U in the while loop
of the ResolveConflicts algorithm, the order in which conflicts are repaired, and
perhaps also the order in which arcs are added to Ffrozen. Can the pathway
length be reduced to O(n)? Another question is whether the problem of finding
min-barrier, direct, pseudoknot-free pathways has an efficient algorithm (recall
that for 4-base sequences, the problem is NP-hard [17]).

A significant limitation of our results is that the simple energy model ignores
critical aspects of real RNA thermodynamics, such as base stacking energies,
the energy costs of helix formation and loops, and the fact that hairpin loops
have at least three unpaired nucleotides between their innermost paired bases.
Another concern is that the model ignores pseudoknots, particularly given that
pseudoknots may occur in intermediate structures along a folding pathway to
a native structure, even if there is no pseudoknot in the native structure [18].
A first step forward in improving the model would be to have an energy of “-1”
per stacked pair. It may be feasible to provide proofs as to whether, for this
model, the energy barrier for sequences over two bases is bounded. NP-hardness
of the energy barrier problem for the stacked pair model, for either two-base
or four-base sequences, would suggest that molecular programs could perhaps
be encoded within a DNA or RNA strand; the program could be executed via
the strand’s folding pathway, with the number of steps being exponential in the
strand length. Alternatively, an efficient algorithm might indicate limits to the
potential for long computations with a single nucleic acid strand, but could be
useful in practice for finding folding pathways.

Given that it will likely be difficult to prove rigorous results for more real-
istic energy models, empirical computational studies could be very useful in
elucidating whether the contrasting properties of two-base and four-base fold-
ing pathways described in this paper reflect the properties of two-base versus
four-base sequences with respect to realistic energy models. The following ques-
tions could fruitfully be investigated empirically. Are there significant differences
in min-energy barriers of pathways between low-energy structures of random
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versus biological sequences? Of two-base and four-base sequences? In particular,
is the the min-energy barrier of any two-base sequence bounded by a constant
that is independent of the sequence length? Are two-base sequences more likely
to quickly fold to their MFE structures, compared with four-base sequences?
Or alternatively, is it possible to design a two-base sequence with a kinetic trap
that causes the sequence to fold slowly to its MFE state? Insights on questions
such as these may be relevant to a hypothesis that in the early history of life,
a precursor to RNA contained only two nucleotides [2,9]. Are there examples
of biological molecules that follow indirect folding pathways, or which repeat-
edly add and remove base pairs or stems (rather than following shorter, possibly
higher-barrier pathways)? We plan to study these questions using available soft-
ware tools for folding pathway and energy barrier prediction.

Acknowledgments. We thank the reviewers of the paper for their detailed and
thoughtful comments, for raising their significant concerns about the value of our results
in light of the underlying simplistic energy model, and for pointing us to the work of
Reader and Joyce [11]. Their comments on follow-on work are reflected in Sect. 5 and,
while beyond the scope of what we could address in our revisions, will guide us in our
future work.
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Abstract. DNA nanotechnology is an emerging field which utilizes the
unique structural properties of nucleic acids in order to build nanoscale
devices, such as logic gates, motors, walkers, and algorithmic structures.
Predicting the structure and interactions of a DNA device requires effec-
tive modeling of both the thermodynamics and the kinetics of the DNA
strands within the system. The kinetics of a set of DNA strands can be
modeled as a continuous time Markov process through the state space of
all secondary structures. The primary means of exploring the kinetics of
a DNA system is by simulating trajectories through the state space and
aggregating data over many such trajectories. We expand on previous
work by extending the thermodynamics and kinetics models to handle
multiple strands in a fixed volume, in a way that is consistent with previ-
ous models. We developed data structures and algorithms that allow us
to take advantage of local properties of secondary structure, improving
the efficiency of the simulator so that we can handle reasonably large sys-
tems. Finally, we illustrate the simulator’s analysis methods on a simple
case study.

1 Introduction

Dynamic DNA nanotechnology [29] is an emerging field that utilizes the unique
structural properties of nucleic acids in order to build nanoscale devices, such as
conformational motors [27], hybridization catalysts [21], logic gates [14,19], ana-
log circuits [2,26,30], triggered self-assembly [6,26], polymerization motors [22],
molecular walkers [13,20], and molecular robots [9,12] that operate even in the
absence of enzymes and other sophisticated non-nucleic-acid chemistry. These
devices are built out of DNA strands whose sequences have been carefully
designed in order to control their secondary structure—the hydrogen bonding
state of the bases within the strand (called “base-pairing”). This base-pairing
is used to not only control the physical structure of the device, but also to
enable specific interactions between different components of the system, such
as allowing, for example, a DNA strand that catalytically triggers the assembly
of two components. Predicting the structure and interactions of a DNA device
requires effective modeling of both the thermodynamics and the kinetics of the
DNA strands within the system. Thermodynamic models can be used to make
c© Springer International Publishing Switzerland 2015
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equilibrium predictions for these systems, allowing us to look at questions like
“Is the assembled end-product a well-formed molecular structure, and is it
energetically favorable?”, while kinetics models allow us to predict the non-
equilibrium dynamics, such as “How quickly will the catalytic pathway take
place?” Although the thermodynamics of multiple interacting DNA strands
is a well-studied model [3,4], which allows for both analysis and design of
DNA devices [5,28], previous work on secondary structure kinetics models only
explored the kinetics of how a single strand folds on itself [7,25].

The kinetics of a set of DNA strands can be modeled as a continuous time
Markov process through the state space of all secondary structures. Due to the
exponential size of this state space it is computationally intractable to obtain an
analytic solution for most problem sizes of interest. Thus the primary means of
exploring the kinetics of a DNA system is by simulating trajectories through the
state space and aggregating data over many such trajectories. We present here
the Multistrand kinetics simulator, which extends previous work [7] by using
the multiple strand thermodynamics model [4] (a core component for calculating
transition rates in the kinetics model), adding new terms to the thermodynamics
model to account for stochastic modeling considerations, and by adding new
kinetic moves that allow bimolecular interactions between strands. In Ref. [18],
we prove that this new kinetics and thermodynamics model is consistent with
the prior work on multiple strand thermodynamics models [4].

The Multistrand simulator is based on the Gillespie algorithm [8] for gener-
ating statistically correct trajectories of a stochastic Markov process. We devel-
oped data structures and algorithms that take advantage of local properties of
secondary structures. These algorithms enable the efficient reuse of the basic
objects that form the system, such that only a very small part of the state’s
neighborhood information needs to be recalculated with every step. A key addi-
tion was the implementation of algorithms to handle the new kinetic steps that
occur between different DNA strands, without increasing the time complexity
of the overall simulation. These improvements lead to a reduction in worst case
time complexity of a single step and also lead to additional improvements in the
average case time complexity.

What data does the simulation produce? At the very simplest, the simulation
produces a full kinetic trajectory through the state space—the exact states it
passed through, and the time at which it reached them. A small system might
produce trajectories that pass through hundreds of thousands of states, and that
number increases rapidly as the system gets larger. Going back to our original
question, the type of information a researcher hopes to get out of the data could
be very simple: “How quickly will the catalytic pathway take place?”, with the
implied question of whether it’s worth it to actually purchase the particular DNA
strands composing the catalyst system and perform an experiment, or go back
to the drawing board and redesign the device. One way to acquire that type
of information is to look at the first time in the trajectory where we reached
the “assembly has been catalyzed” state, and record that information for a large
number of simulated trajectories in order to obtain a useful answer. We designed
and implemented new simulation modes that allow the full trajectory data to be
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condensed during generation into only the pieces the user cares about for their
particular question. This analysis tool also required the development of flexible
ways to talk about states that occur in trajectory data; if someone wants data
on when or how the catalyst acted, we have to be able to express that in terms
of the Markov process states which meet that condition.

2 The Model

2.1 System Specification

We are interested in simulating nucleic acid molecules (DNA or RNA) in a sto-
chastic regime; that is to say that we have a discrete number of molecules in a
fixed volume. This regime is found in experimental systems that have a small
volume with a fixed count of each molecule present, such as the interior of a
cell, protocell, or droplet. We can also apply this to experimental systems with
a larger volume (such as a test tube) when the system is well mixed, as we can
either simulate a fixed small volume with small molecular counts and extrapolate
to the larger volume, or we can individually simulate the interactions between
specific molecules and derive rate constants for a coarse-grained chemical reac-
tion network model that can be simulated in the mass-action regime.

To discuss the modeling and simulation of the system, we begin by defining
the components of the system, and what comprises a state of the system within
the simulation.

Strands. Each DNA molecule to be simulated is represented by a strand. Our
system then contains a set of strands Ψ∗, where each strand s ∈ Ψ∗ is defined
by s = (id, label, sequence). A strand’s id uniquely identifies the strand within
the system, while the sequence is the ordered list of nucleotides that compose
the strand. The strand label will usually be ignored, but may be used to make a
distinction between strands with identical sequences. For example, if one strand
were to be labeled with a fluorophore, it would no longer be physically identical
to another with the same sequence but no fluorophore. We define two strands
as being identical if they have the same labels and sequences.

Complex Microstate. A complex is a set of strands connected by base pairing
(secondary structure). We define the state of a complex by c = (ST, π∗, BP ),
called the complex microstate. The components are a nonempty set of strands
ST ⊆ Ψ∗, an ordering π∗ on the strands ST , and a list of base pairings BP =
{(ij ·kl) | base i on strand j is paired to base k on strand l, and j ≤ l, with i < k
if j = l}, where “strand l” refers to the strand occurring in position l in the
ordering π∗. Further, not all base pairings are allowed: following Ref. [4], every
complex must by definition be connected, hairpins must have loop lengths of at
least three, and in this work only non-pseudoknotted secondary structures will
be considered.

System Microstate. A system microstate represents the configuration of the
strands in the volume we are simulating (the “box”). We define a system
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microstate i as a set of complex microstates, such that each strand in the system
is in exactly one complex within the system.

2.2 Energy

The conformation of a nucleic acid strand at equilibrium can be predicted by
a well-studied model, called the nearest neighbor energy model [15–17]. Recent
work has extended this model to cover systems with multiple interacting nucleic
acid strands [4]. The distribution of system microstates at equilibrium is a
Boltzmann distribution, where the probability of observing a microstate i is
given by

Pr(i) =
1

Qkin
∗ e−ΔGbox(i)/RT (1)

where ΔGbox(i) is the free energy of the system microstate i, and is the key
quantity determined by these energy models. Qkin =

∑
i e−ΔGbox(i)/RT is the

partition function of the system, R is the gas constant, and T is the temperature
of the system in Kelvin.

Energy of a System Microstate. To treat the energy of the system microstate
i, we break it down into components. The system consists of one or more com-
plex microstates c, each with their own energy. Additionally, the system has an
entropy that accounts for the possible spatial arrangements of complexes within
the “box”.

Let us first consider the entropy term. Our reference state, which by def-
inition will have zero energy, is chosen to be the system microstate in which
all strands are in separate complexes and have no base pairs formed. There-
fore, our entropy term is in terms of the reduction of available positional states
caused by having strands join together. Assuming that the solution is sufficiently
dilute that boundary and crowding effects can be ignored (i.e. each complex’s
center of mass can be anywhere within the simulated volume V ), then each
complex contributes RT log V

V0
to the energy of the system, where V0 is the

reference volume1 chosen to be consistent with existing thermodynamic mod-
els. If the system contains Ltot strands within a total of C complexes, and we
define ΔGvolume = RT log V

V0
, then the contribution to the energy of the system

microstate i from the translational entropy of the box, relative to the reference
state, is simply (Ltot − C) ∗ ΔGvolume.

And thus in terms of C,Ltot,ΔGvolume and ΔG(c) (the energy of complex
microstate c, defined in the next section), we define ΔGbox(i), the energy of the
system microstate i, as follows:

1 We calculate V0 as the volume in which we would have exactly one molecule at a
standard concentration of 1 mol/L: V0 = 1/(Na ∗ 1 mol/L), where Na is Avogadro’s
number, and thus V0 is in liters. Similarly, we may wish to calculate V based on the
concentration u in mol/L of a single strand such that the volume V is chosen such
that exactly one molecule is present in that volume. In this case we have V = 1

u∗Na

and the relative number of states in the box is then V
V0

= Na
u∗Na

= 1
u
.
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ΔGbox(i) = (Ltot − C) ∗ ΔGvolume +
∑
c ∈ i

ΔG(c) (2)

The energy formulas derived here, suitable for our stochastic model, differ
from those in [4] in two main ways: the lack of “symmetry terms”, and the
addition of the ΔGvolume term.

Energy of a Complex Microstate. We previously defined a complex
microstate in terms of the list of base pairings present within it. However, the
well-studied models are based upon nearest neighbor interactions between the
nucleic acid bases. These interactions divide the secondary structure of the sys-
tem into local components which we refer to as loops, shown in Fig. 1.

IV.
Multiloop

V. Exterior
Loop

I.
StackIII. Bulge

Loop

II. Interior
Loop

VI. Hairpin

Fig. 1. Secondary structure divided into loops.

These loops can be broken down into different categories, and parameter
tables and formulas for each category have been determined from experimental
data [17]. Each loop l has an energy, ΔG(l), which can be retrieved from the
appropriate parameter table for its category. Each complex also has an energy
contribution associated with the entropic initiation cost [1] (e.g., rotational) of
bringing two strands together, ΔGassoc, whose total contribution is proportional
to the number of strands L within the complex, as follows: (L − 1) ∗ ΔGassoc.

The energy of a complex microstate c is then the sum of these two types
of contributions. We can also divide any free energy ΔG into the enthalpic and
entropic components, ΔH and ΔS related by ΔG = ΔH+T ∗ΔS. For a complex
microstate, each loop can have both enthalpic and entropic components, but
ΔGassoc is usually assumed to be purely entropic [16]. This becomes important
when determining the kinetic rates, in Sect. 2.3.

We use ΔG(c) to refer to the energy of a complex microstate to be consistent
with the nomenclature in [4], where ΔG(c) refers to the energy of a complex
when all strands within it are considered unique (as is the case in our system),
and ΔG(c) is the energy of the complex, without assuming that all strands
are unique (and thus it must account for rotational symmetries). In summary,
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the standard free energy of a complex microstate c, containing L(c) = |ST (c)|
strands, is

ΔG(c) =

⎛
⎝ ∑

loop l ∈c

ΔG(l)

⎞
⎠ + (L(c) − 1)ΔGassoc

which can now be used in combination with Eq. 2 to compute ΔGbox(i).
It can also be convenient to write the system energy as a single sum over

the complexes, rather than separating the complex microstate energies and the
overall translational entropy terms. Using Ltot =

∑
c∈i L(c), and C =

∑
c∈i 1,

we obtain

ΔGbox(i) =
∑
c∈i

(
ΔG(c) + (L(c) − 1) ∗ ΔGvolume

) def
=

∑
c∈i

ΔG∗(c)

where

ΔG∗(c) = ΔG(c) + (L(c) − 1) ∗ ΔGvolume

=

⎛
⎝ ∑

loop l∈c

ΔG(l)

⎞
⎠+ (L(c) − 1) ∗ (ΔGassoc + ΔGvolume)

is the component of the total system energy that is associated with complex
microstate c.

In Ref. [18], we have compared the Multistrand stochastic energy model to the
NUPACK mass action model, showing that despite the lack of symmetry terms
and the addition of ΔGvolume terms they nonetheless make identical equilibrium
predictions.

2.3 Kinetics

Basics. Thermodynamic predictions have only limited use for some systems
of interest, if the key information to be gathered is the reaction rates and not
the equilibrium states. Many systems have well-defined ending states that can
be found by thermodynamic prediction, but predicting whether it will reach
the end state in a reasonable amount of time requires modeling the kinetics.
Kinetic analysis can also help uncover poor sequence designs, such as those with
alternate reactions leading to the same states, or kinetic traps which prevent an
intended reaction from occurring quickly.

The kinetics are modeled as a continuous time Markov process over secondary
structure space. System microstates i, j are considered adjacent if they differ by
a single base pair (Fig. 2), and we choose the transition rates kij (the transition
from state i to state j) and kji such that they obey detailed balance:

kij

kji
= e− ΔGbox(j)−ΔGbox(i)

RT (3)
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state j: state i:

state q:

k
ji

k
ij
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qj
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jq

Fig. 2. System microstates i, q adjacent to current state j, with many others not shown.

This property ensures that given sufficient time we will arrive at the same equi-
librium state distribution as the thermodynamic prediction (i.e., the Boltzmann
distribution on system microstates, Eq. 1) but it does not fully define the kinet-
ics as only the ratio kij

kji
is constrained. We discuss how to choose these transition

rates in the following sections, but regardless of this choice we can still determine
how the next state is chosen and the time at which that transition occurs.

Given that we are currently in state i, the next state m in a simulated
trajectory is chosen randomly among the adjacent states j, weighted by the rate
of transition to each.

Pr(m) =
kim

Σjkij
(4)

Similarly, the time taken to transition to the next state is chosen randomly
from an exponential distribution with rate parameter λ, where λ is the total rate
out of the current state, Σjkij .

Pr(Δt) = λ exp(−λΔt) (5)

We will now classify transitions into two exclusive types: those that change
the number of complexes present in the system, called bimolecular transitions,
and those where changes are within a single complex, called unimolecular tran-
sitions. Note that this terminology is slightly different from the standard use of
bimolecular reactions and unimolecular reactions in chemical reaction network
theory: a bimolecular transition could be either a bimolecular reaction (two
complexes coming together) or the corresponding unimolecular reaction (one
complex dissociating into two).

Unimolecular Transitions. Because unimolecular transitions involve only a
single complex, it is natural to define these transitions in terms of the com-
plex microstate which changed, rather than the full system microstate. Like
Fig. 2 implies, we define a complex microstate d as being adjacent to a complex
microstate c if it differs by exactly one base pair. We call a transition from c
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to d that adds a base pair a creation move, and a transition from c to d that
removes a base pair a deletion move. The exclusion of pseudoknotted structures
is not inherent in this definition of adjacent states, but rather arises from our
disallowing pseudoknotted complex microstates.

The formal Markov chain for Multistrand simulations consists of transitions
between system microstates i and j that differ by exactly one base pair, thus
any unimolecular transition involves exactly one complex. Note that if i to j is
a creation move, j to i must be a deletion move, and vice versa. Similarly, if
there is no transition from i to j, there cannot be a transition from j to i, which
implies that every unimolecular move in this system is reversible.

Bimolecular Transitions. A bimolecular transition from system microstate i
to system microstate j is one where the single base pair difference between them
leads to a differing number of complexes within each system microstate. This
differing number of complexes could be due to a base pair joining two complexes
in i to form a single complex in j, which we will call a join move. Conversely, the
removal of this base pair from i could cause one complex in i to break into two
complexes within j, which we will call a break move. Note that if i to j is a join
move, then j to i must be a break move, and vice versa. As we saw before, this
also implies that every bimolecular move is reversible. Again, while arbitrary
bimolecular transitions are not inherently prevented from forming pseudoknots
in this model, we implicitly prevent them by using only complex microstates
that are not pseudoknotted.

Transition Rates. A key part of our model is the choice of rate method: the way
we set the rates of a pair of reactions so that they obey detailed balance. There are
several rate methods found in the literature [10,11,31] which have been used for
kinetics models for single-stranded nucleic acids [7,31] with various energy models.
We have implemented two of these simple rate methods which were previously used
in single base pair elementary step kinetics models for single stranded systems.

In order to maintain consistency with known thermodynamic models, each
pair of kij and kji must satisfy detailed balance and thus their ratio is deter-
mined by the thermodynamic model, but in principle each pair could be indepen-
dently scaled by some arbitrary prefactor, perhaps chosen to optimize agreement
with experimental results on nucleic acid kinetics. However, since the number of
microstates is exponential, this leads to far more model parameters (the prefac-
tors) than is warranted by available experimental data. For the time being, we
limit ourselves to using only two scaling factors: kuni for use with unimolecular
transitions, and kbi for bimolecular transitions.

Unimolecular Rate Models. The first rate model we will examine is the
Kawasaki method [10]. This model has the property that both “downhill” (ener-
getically favorable) and uphill transitions scale directly with the steepness of
their slopes.

kij = kuni ∗ e− ΔGbox(j)−ΔGbox(i)
2RT (6)

kji = kuni ∗ e− ΔGbox(i)−ΔGbox(j)
2RT (7)
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The second rate model under consideration is the Metropolis method [11]. In
this model, all downhill moves occur at the same fixed rate, and only the uphill
moves scale with the slope. This means that the maximum rate for any move
is bounded, and in fact all downhill moves occur at this rate. This is in direct
contrast to the Kawasaki method, where there is no bound on the maximum
rate. For microstates i and j such that ΔGbox(i) ≥ ΔGbox(j):

kij = 1 ∗ kuni (8)

kji = kuni ∗ e− ΔGbox(i)−ΔGbox(j)
RT (9)

Note that the value of kuni that best fits experimental data is likely to be
different for both models. Additionally, note that full calculation of ΔGbox(i) and
ΔGbox(j) is not necessary in order to calculate the rates, because microstates
i and j differ in exactly one pair of complex microstates (c ∈ i, d ∈ j) and by
exactly three loop terms within those complex microstates.

Bimolecular Rate Model. When dealing with moves that join or break com-
plexes, we must consider the choice of how to assign rates for each transition in
a new light. In the particular situation of the join move, where two molecules
in a stochastic regime collide and form a base pair, this rate is expected to be
modeled by stochastic chemical kinetics.

Stochastic chemical kinetics theory [8] tells us that there should be a rate
constant k such that the propensity of a particular bimolecular reaction between
two species X and Y should be k ∗ #X ∗ #Y/V , where #X and #Y are the
number of copies of X and Y in the volume V . Since our simulation considers
each strand to be unique, #X = #Y = 1, and thus we see the propensity
should scale as 1/V . Recalling that ΔGvolume = RT log V

V0
= RT log 1

u , we see
that we can obtain the 1/V scaling by letting the join rate be proportional to
e−ΔGvolume/RT .

Thus we arrive at the following rate method, where the choice of the scalar
term kbi can be found by comparison to experiments measuring the hybridiza-
tion rate of oligonucleotides [23], and where without loss of generality the tran-
sition from microstate i to microstate j is a join move while the transition from
microstate j to microstate i is a break move:

kij = kbi ∗ e
−ΔGvolume

RT = kbi ∗ V0

V
= kbi ∗ u (10)

kji = kbi ∗ e− ΔGbox(i)−ΔGbox(j)+ΔGvolume
RT

def
= kbi ∗ e− ΔGloops(i,j)−ΔGassoc

RT (11)

The latter simplification derives from the observation that, as in the bimolecular
case, the system microstates i and j differ by exactly three loop terms in their
complex microstates. However, they also differ in the total number of complexes
within each system microstate, such that if i to j is a join move, ΔGbox(i) −
ΔGbox(j) = ΔGloops(i, j)−ΔGvolume −ΔGassoc, where ΔGloops(i, j) represents
the energy differences between i and j due to the three differing loop terms in
the complex microstates.
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This formulation is convenient for simulation, as the join rates are then inde-
pendent of the resulting secondary structure. Note that an implication is that
due to the rate being determined for every possible first base pair between
two complexes, the overall rate for two complexes to bind (by a single base
pair) is proportional roughly to the square of the number of exposed nucleotides
(although possibly only a linear subset is likely to zipper up reliably), in addition
to the 1

V dependence noted earlier.

3 The Simulator: Multistrand

Energy and kinetics models similar to these can been solved analytically; how-
ever, the standard master equation methods [24] scale with the size of the sys-
tem’s state space. For our DNA secondary structure state space, the size gets
exponentially large as the strand length increases, so these methods become
computationally prohibitive. One alternate method we can use is stochastic sim-
ulation [8], which has previously been done for single-stranded DNA and RNA
folding (the Kinfold simulator [7]). Our stochastic simulation refines these meth-
ods for our particular energetics and kinetics models, which extends the simula-
tor to handle systems with multiple strands and takes advantage of the localized
energy model for DNA and RNA.

3.1 Data Structures

There are two main pieces that go into this new stochastic simulator. The first
piece is the multiple data structures needed for the simulation: the loop graph,
which represents the complex microstates contained within a system microstate
(Fig. 3D); the moves, which represent transitions in our kinetics model (the single
base pair changes in our structure that are the basic step in the Markov process);
and the move tree, the container for moves that lets us efficiently store and
organize them (Fig. 4).

Energy Model. Since the basic step for calculating the rate of a move involves
the computation of a state’s energy, we must be able to handle the energy model
parameter set in a manner that simplifies this computation. Previous kinetic sim-
ulations (Kinfold) rely on the energy model we have described, though without
the extension to multiple strand systems.

The energy model parameter set and calculations are implemented in a simple
modular data structure that allows for both the energy computations at a local
scale as we have previously mentioned, but also as a flexible subunit that can be
extended to handle energy model parameter sets from different sources.

The Current State: Loop Structure. A complex microstate can be stored
in many different ways, as shown in Fig. 3. While each of these has different
advantages, we are going to focus on the loop representation, which allows the
energy to be computed and stored in local components. One drawback is that
the loop graph cannot represent pseudoknotted structures without introducing



204 J.M. Schaeffer et al.

IV.
Multiloop

V. Exterior
Loop

I.
StackIII. Bulge

Loop

II. Interior
Loop

VI. Hairpin

A. B.

C.

D.

Strand #Strand #
Base # Base #

(1,1)
(1,3)
(1,4)
(2,4)
(2,5)
(2,7)
(2,8)
(2,10)
(2,11)
(2,12)
(2,13)

(2,31)
(2,2)
(2,1)
(2,29)
(2,28)
(2,26)
(2,25)
(2,24)
(2,23)
(2,22)
(2,21)

-
-
-
-
-
-
-
-
-
-
-

(.((_)).((.((.((((.......)))))).)).).

Fig. 3. Example secondary structure, with different representations: (A) Original loop
diagram representation. (B) Base pair list representation. Each base pairing is repre-
sented by the indices of the bases involved. (C) Dot-paren representation, also called
the flat representation. Each base is represented by either a period, representing an
unpaired base, or by a parenthesis, representing a pairing with the base that has the
(balanced) matching parenthesis. An underscore represents a break between multiple
strands. (D) Loop graph representation. Each loop in the secondary structure is a single
node in the graph, which contains the sequence information within the loop.

a loop type for pseudoknots (for which we may not know how to calculate the
energy), and making the loop graph cyclic; however, since this work is primarily
concerned with non-pseudoknotted structures this is only a minor point.

We use the loop graph representation for each complex within a system
microstate, and organize those with a simple list. This gives us the advantage
that the energy can be computed for each individual node in the graph, and since
each move only affects either one or two nodes in the graph we will only have
to recompute the energy for the affected nodes when performing a transition.
While providing useful output of the current state then requires processing of
the graph, it is a constant time operation if we store a flat representation which
gets updated incrementally as each move is performed by the simulator.

Reachable States: Moves. When dealing with a flat representation or base
pair list for a current state, we can simply store an available move as the indices
of the bases involved in the move, as well as the rate at which the transition
should occur. This approach is very straightforward to implement (as was done
in the original Kinfold), and we can store all of the moves for the current state
in a single global structure such as a list. However, when our current state is
represented as a loop graph this simple representation can work, but does not
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Fig. 4. (A) Creation moves (blue line) and deletion moves (red highlight) are repre-
sented here by rectangles. Either type of move is associated with a particular loop, and
has indices to designate which bases within the loop are affected. (B) All possible moves
which affect the interior loop in the center of the structure. These are then arranged
into a tree (green area), which can be used to quickly choose a move. (C) Each loop
in the loop graph then has a tree of moves that affect it, and we can arrange these
into another tree (black boxes), each node of which is associated with a particular loop
(dashed line) and thus a tree of moves (blue line). This resulting tree then contains all
the moves available in the complex (Color figure online).

contain enough information to efficiently identify the loops affected by the move.
Thus we elect to add enough complexity to how we store the moves so that we
can quickly identify the affected nodes in our loop graph, which allows us to
quickly identify the loops for which we need to recalculate the available moves.

We let each move contain a reference to the loop(s) it affects (Fig. 4A), as well
as an index to the bases within the loop, such that we can uniquely identify the
structural change that should be performed if this move is chosen. This reference
allows us to quickly find the affected loop(s) once a move is chosen. We then
collect all the moves which affect a particular loop and store them in a container
associated with the loop (Fig. 4B). This allows us to quickly access all the moves
associated with a loop whose structure is being modified by the current move.
We should note that since deletion moves by nature affect the two loops adjacent
to the base pair being deleted, they must necessarily show up in the available
moves for either loop. This is handled by including a copy of the deletion move
in each loop’s moves, and halving the rate at which each occurs.

Finally, since this method of move storage is not a global structure, we add
a final layer of complexity on top, so that we can easily access all the moves
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available from the current state without needing to traverse the loop graph.
This is as simple as storing each loop’s move container in a larger structure such
as a list or a tree, which represents the entire complex’s available moves as shown
in Fig. 4C.

3.2 Algorithms

The second main piece of the simulator is the algorithms that control the indi-
vidual steps of the simulator. The algorithm implementing the Markov process
simulation closely follows the Gillespie algorithm [8] in structure:

1. Initialization: Generate the initial loop graph representing the input state,
and compute the possible transitions.

2. Stochastic Step: Generate random numbers to determine the next transition,
as well as the time interval elapsed before the transition occurs.

3. Update: Change the current loop graph to reflect the chosen move. Recompute
the available transitions from the new state. Update the current time using
the time interval in the previous step.

4. Check Stopping Conditions: check if we are at some predetermined stopping
condition (such as a maximum amount of simulated time) and stop if it is
met. Otherwise, go back to step 2.

The striking difference between this structure and the Gillespie algorithm is
the necessity of recomputing the possible transitions from the current state at
every step, and the complexity of that recalculation. Since we are dealing with
an exponential state space we have no hope of storing all possible transitions
between any possible pair of states, and instead must look at the transitions that
occur only around the current state.

4 Analysis Case Studies

We have now presented the models and algorithms that form the continuous time
Markov process simulator. Now we move on to discuss the most important part
of the simulator from a user’s perspective: the huge volume of data produced by
the simulation, and methods for processing that data into useful information for
analyzing the simulated system.

How much data are we talking about here? We would expect an average of
O(N) moves per time unit simulated, where N is the total length over all strands
in the system. This doesn’t tell us much about the actual amount of data, only
that we expect it to not change drastically for different size input systems. In
practice this amount can be quite large, even for simple systems: for a simple 25
base hairpin sequence, it takes ∼4,000,000 Markov steps to simulate 1 s of real
time. For an even larger system, such as a four-way branch migration system
with 108 total bases, simulating 1 s of real time takes ∼14,000,000 Markov steps.

What can we do with all the data produced by the simulator? A key insight
is that most of this Markov step data is not needed if the measurement of
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. . .
Start State Branch Migration Disassociation

Fig. 5. Three-way branch migration system. The toehold region is in green and has
sequence GTGGGT, and the branch migration region is black and has sequence
ACCGCACCACGTGGGTGTCG. Both sequences are for the substrate strand.

interest is for a particular pathway, such as that shown in Fig. 5. In this system,
one quantity of interest is how quickly the system reaches the completed branch
migration state from the starting state. To measure this quantity we do not need
to examine every Markov step as it is being made, but rather need to be able to
record when we have reached the stop state. A stop state is typically defined by a
macrostate, a collection of system microstates which meet some common criteria.
For example, in the three way branch migration system, we might say that all
system microstates which have the incumbent strand in a separate complex is
the stop state of interest, as this corresponds to all the possible ways in which
we could have had the incumbent strand dissociated at the end of the branch
migration. For more on the definition of macrostates, see Ref. [18].

We now define the first passage time mode of simulation within Multistrand:
given a starting system microstate and a set of stop states, it performs the
simulation algorithm as given in Sect. 3.2 and records the time at which it reaches
any of the stop states, as well as which one was reached. This produces a single
piece of data for each trajectory simulated, which is a rather striking difference
when compared to the raw number of microstates observed in a trajectory.

Let us now look at a simple three-way branch migration system in Fig. 5 and
how it is to be simulated using first passage time mode. We start the system
as shown, and use two different stop states: the complete stop condition where
the incumbent strand has dissociated (as shown in the figure), and the failed
stop condition where the invading strand has dissociated without completing
the branch migration. Both of these are done using a macrostate describing a
strand dissociation, which makes it very efficient to check the stop states. Note
that we include the invading strand dissociating as a stop state so that if it
occurs (which should be very rarely for long toehold lengths), we can find out
easily without waiting until the maximum simulation time or until the strands
reassociate and complete the branch migration.

The following table (Table 1) shows five trajectories’ worth of data from first
passage time mode on the example system. Note that we have included a third
piece of data for each trajectory, which is the pseudorandom number generator
seed used to simulate that trajectory. This allows us to produce the exact same
trajectory again using a different simulation mode, stop states or other output
conditions. For example, we might wish to run the fifth trajectory in the table
again using trajectory mode, to see why it took longer than the others, or run
the first trajectory to see what kinetic pathway it took to reach the failed stop
condition.
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Table 1. First passage time data for the example three-way branch migration system.
Stop conditions are either “complete”, indicating the branch migration completed suc-
cessfully, or “failed”, indicating the strands fell apart before the branch migration could
complete.

Random number seed Completion time Stop condition

0x790e400d 3.7 ∗ 10−3 Failed

0x38188213 3.8 ∗ 10−3 Complete

0x47607ebf 2.1 ∗ 10−3 Complete

0x02efe7fa 2.8 ∗ 10−3 Complete

0x7c590233 6.7 ∗ 10−3 Complete

Let’s now look at a much larger data set for first passage time mode. Here we
again use the three-way branch migration system shown in Fig. 5, but with a ten
base toehold region with sequence GTGGGTAGGT on the substrate strand in
order to minimize the number of trajectories that reach the failed stop condition.
We run 1000 trajectories, using a maximum simulation time of 1s, though no
trajectory actually used that much as we shall shortly see.

Instead of listing all the trajectories in a table, we graph the first passage
time data for the complete stop condition in two different ways: first (Fig. 6a)
we make a histogram of the distribution of first passage times for the data set,
and second (Fig. 6b) we graph the percentage of trajectories in our sample that
have reached the complete stop condition as a function of the simulation time.

While there are many ways to analyze these figures, we note two particular
observations. Firstly, the histogram of the first passage time distribution looks
suspiciously like an exponential distribution, possibly with a short delay. This is
not always typical, but the shape of this histogram can be very helpful in inferring

(a) Histogram of first passage times (b) Percent completion by simulation time

Fig. 6. First passage time data for the three-way branch migration system with ten
base toehold. 1000 trajectories were simulated and all of them ended with the complete
stop condition.
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how we might wish to model our system based on the simulation data; e.g., for
this system, we might decide that this three-way branch migration process is
roughly exponential (with some fitted rate parameter) and so we could model it
as a one-step unimolecular process.

The second observation is that while the percentage completion graph looks
very similar to an experimental fluorescence microscopy curve, they should NOT
be assumed to be directly comparable. The main pitfall is found when comparing
fluorescence curves from systems where the reactions are bimolecular: in these
the concentration of the relevant molecules are changing over time, but in our
stochastic simulation the bimolecular steps are at a fixed volume/concentration
(reflected in the ΔGvolume energy term) and data is aggregated over many tra-
jectories.

5 Conclusions

The Multistrand simulator provides a powerful platform for exploring the behav-
iors of molecular machines created using dynamic DNA nanotechnology. In addi-
tion to the first passage time mode described above, alternative simulation modes
have been implemented to provide differing levels of detail for analysis [18]: tra-
jectory mode provides the full elementary step trajectory, which could be used to
make a movie; transition mode collects statistics on when the simulation enters
and exits specified macrostates; and first step mode runs simulations starting
from an initial collision, which provides an efficient method for analyzing reac-
tions in dilute solutions. The core simulation algorithms are implemented in
C++, while a flexible user interface is available from within Python. The Mul-
tistrand package can be downloaded from http://www.multistrand.org.

At this time, Multistrand is best used to explore semi-quantitative sequence-
dependent phenomena, such as assessing relative sequence design quality,
because kinetic predictions are not expected to be in quantitative agreement
with experimental measurements. While the secondary structure energy land-
scape used by Multistrand agrees with established thermodynamic models such
as NUPACK [4], the simple methods used to set the relative rates of different
types of elementary moves (Metropolis and Kawasaki dynamics) are not flexible
enough to simultaneously accurately match the widely varying rates of funda-
mental processes such as zipping, fraying, breathing, three-way branch migration,
and four-way branch migration. This is an important area for future work.
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