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Abstract. This paper seeks to develop fast and accurate endoscopic
stereo 3-D scene reconstruction for image-guided robotic surgery.
Although stereo 3-D reconstruction techniques have been widely dis-
cussed over the last few decades, they still remain challenging for endo-
scopic stereo images with photometric variations, noise, and speculari-
ties. To address these limitations, we propose a robust stereo matching
framework that constructs cost function on the basis of image gradi-
ent and three-channel color information for endoscopic stereo scene 3-D
reconstruction. Color information is powerful for textureless stereo pairs
and gradient is robust to texture structures under noise and illumination
change. We evaluate our stereo matching framework on clinical patient
stereoscopic endoscopic sequence data. Experimental results demonstrate
that our approach significantly outperforms current available methods. In
particular, our framework provided 99.5 % reconstructed density of stereo
images compared to other available matching strategies which achieved
at the most an 87.6 % reconstruction of the scene.

Keywords: Stereo matching · Binocular endoscope · Laparoscopy ·
Endoscopic intervention · 3D Scene reconstruction · Cost construction ·
Cost aggregation · Robotic surgery · Prostatectomy · da Vinci surgical
system

1 Introduction

Fast, accurate and robust dense stereo matching is required for many practical
applications, e.g., scene surveillance and urban terrain 3-D reconstruction. Most
of the reconstruction challenges often result from image sensor noise, specularity
and reflection, illumination changes, and occlusion [2]. To tackle these challenges,
numerous dense stereo matching algorithms have been published in the literature
and mainly consist of local and global correspondence methods.

Konolige implemented a bock-matching method for stereo reconstruc-
tion [10]. He estimated by matching small patches of one image to another one
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on the basis of the cross-correlation similarity. Local gradient-based methods,
particularly optical flow [3], calculate the disparity map in terms of inter-frame
motion and image brightness. Hirschmuller proposed a semi-global matching
algorithm to improve local correspondence methods [7]. Computational stereo
also can be formulated as a multi-labeling problem to compute the disparity
map on the basis of the pixel-wise correspondence between the left and the right
camera images. To solve such a disparity labeling problem, many global optimiza-
tion approaches, e.g., intrinsic curves [15], graph cuts [1,9], dynamic program-
ing [11,17], and belief propagation [14] or their convex counterparts, are used for
reducing sensitivity to stereo image variations. Unfortunately, global optimiza-
tion is usually a time-consuming procedure that can potentially be hampered by
premature convergence.

As one of many minimally invasive surgery approaches, robotic surgery, e.g.,
robotic laparoscopic prostatectomy, usually uses binocular or stereo endoscopes
to provide the surgeon with direct vision close visual proximity of the surface
structures in the operating room. However, the binocular endoscopic cameras
are a small with quite narrow field of view, which limits the surgeon’s sense of
accurate geometrical appreciation of the surgical site.

To expand the surgeon’s view of the surgical site and enhance his ability
to control the surgical instruments, stereoscopic endoscopic scene 3-D recon-
struction, as one of interactive and augmented visualization strategies, has been
discussed recently by the medical robotic community. To achieve accurate scene
visualization, dense stereo correspondence plays a critical role in binocular endo-
scopic video reconstruction. Various methods have been proposed in recent liter-
ature to address such a stereo correspondence problem. Stoyanov et al. reported a
quasi-dense correspondence method for laparoscopic stereo images without com-
pensating tissue deformation [13], by first detecting and matching reliable fea-
tures between stereo pairs. Using these matched features as landmark structures,
they propagated them using zero-mean normalized cross correlation (ZNCC) as
the similarity metric to determine the disparity map. However, their method
fails to reconstruct image regions with uniform or homogeneous texture and
only can obtain semi-dense reconstruction. Chang et al. [5] recently proposed
a stereo matching approach that constructs a cost volume in terms of inten-
sity information and aggregates such a volume in terms of ZNCC and convex
optimization [4,8]. Although their proposed method outperforms the state-of-
the-art, they did not use sufficient color information and also neglected gradient
information on stereo pairs. Totz et al. [16] reported a similar matching method
as the work of Stoyanov et al. [13] and obtained a semi-dense reconstruction.

Even though the methods discussed above work well in binocular endoscopic
video reconstruction, they still remain challenging in the presence of photomet-
ric variations, specular reflections, noise, uniform texture, and occlusion. This
work aims to develop fast and accurate binocular endoscopic 3-D scene recon-
struction for robotic surgery. Being motivated by the fast cost-volume filtering
method [8,12], we introduce a color and gradient-driven stereo correspondence
framework to boost stereoscopic endoscopic scene reconstruction. Such a local
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filtering method can avoid some of the drawbacks of the aforementioned schemes
and yields a high-quality disparity map that is robust to illumination changes
making it applicable in stereoscopic endoscopic scenarios.

The main highlight or contribution of this work lies in successfully con-
structing the correspondence cost aggregation on the basis of three-channel color
and gradient image information for matching stereoscopic endoscopic pairs and
achieving fully automatic dense 3-D reconstructions of surgical scenes. Recent
robotic surgery systems, e.g., the clinically used da Vinci surgical system, pro-
vide high-definition (HD) binocular endoscopic images. These HD images pro-
vide sufficient color information to allow accurate scene reconstruction even if
lacks texture and is noisy. Image gradient information can provide the means to
overcome difficulties provided by illumination changes and noise.

The rest of this paper is organized as follows. Section 2 describes the various
steps of our color and gradient-boosted aggregation stereo matching method.
Experimental setups and results are shown in Sect. 3. Section 4 discusses different
experimental results obtained from different stereo matching methods before
concluding this work in Sect. 5.

2 Approaches

This section describes our color and gradient-boosted aggregation matching
method that basically compares color and gradient differences between stereo
pairs with left and right images. Currently available robotic surgical procedures
usually provide HD endoscopic stereo videos. These HD stereo videos contain
sufficient color information that can characterize the difference between stereo
pairs more powerfully than intensity information directly used for the disparity
computation in 3-D reconstruction. On the other hand, gradient information, as
a simple image descriptor, is much more robust to illumination and exposure
changes. Based on the work of Honsi et al. [8], our stereo matching framework
first defines a cost volume function with respect to color and gradient informa-
tion. We then aggregate the cost volume with color and gradient structures by the
guided image filtering method [6]. An optimization strategy of winner-takes-all
(WTA) is then employed for disparity selection. Finally, two postprocessing steps
including occlusion removal and smoothness are performed to further improve
the disparity accuracy. Each step is discussed below.

2.1 Cost Construction

Suppose Iu and Iv denote the left and right images of a stereo pair. Image Iu with
size of W × H pixels (similarly Iv) has three color channels of Ir

u, Ig
u, and Ib

u in
RGB model space. For each pixel p on Iu and each pixel q on Iv, a color matching
cost function Fα(p,q) minimizes average absolute color difference dC(p,q) in
each color channel:

Fα(p,q) = min (dC(p,q), α), (1)
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(a) Input left image (b) Input right image

(c) Cost volume disparity (d) Reconstructed scene from (c)

Fig. 1. Input stereo images and the reconstructed scene on the basis of the constructed
cost volume disparity map

where α is a threshold and dC(p,q) is calculated by

dC(p,q) =
1
3

∑

i∈r,g,b

∣∣Ii
u(p) − Ii

v(q)
∣∣ . (2)

Moreover, we define a gradient matching cost function Fβ(p,q) to measure
absolute gradient difference dG(p,q) between the left and right images of the
stereo pair:

Fβ(p,q) = min (dG(p,q), β), (3)

where β is also a predefined threshold and dG(p,q) computes derivative ∇xÎu

along the x-direction of stereo pairs:

dG(p,q) = |∇xÎu − ∇xÎv|, (4)

∀ p = (x, y),∇xÎu =
(̂Iu(x + 1, y) − Îu(x − 1, y))

2
, (5)

where Îu and Îv are grayscale images converted from color images Iu and Iv.
∇xÎv is similarly defined as ∇xÎu.

Based on Eqs. 1 and 3, a stereo image color and gradient-boosted matching
cost function Fμ can be defined as:

Fμ(p,q) = (1 − μ)Fα(p,q) + μFβ(p,q), (6)
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where the prefixed constant parameter μ is introduced to balance the color and
gradient costs.

Finally, for pixel p = (x, y) on Iu and its potential correspondence q =
(x + λ, y) with disparity λ on Iv, a cost volume V(p, λ) is constructed in a 3-
D space R3 = {x ∈ [1,W ], y ∈ [1,H], λ ∈ [λmin, λmax]} (λmin and λmax are
predefined minimal and maximal disparity values):

∀ (x, y, λ) ∈ R3,V(p, λ) = Fμ(p(x, y),q(x + λ, y)). (7)

Figure 1 shows the reconstructed surface (Fig. 1(d)) after constructing the
cost volume disparity map (Fig. 1(c)) in terms of input left and right images
(Fig. 1(a) and (b)).

2.2 Cost Aggregation

The cost construction is a generally ambiguous process. The correct matches
might easily have a higher cost than the incorrect ones because of image noise.
To deal with mismatches in the stereo pair, we use a guided filtering to weight
each cost volume V(p, λ) built above and obtain a filtered cost volume Ṽ(p, λ) [6]:

Ṽ(p, λ) =
∑

k

Ψp,k(Iu)V(k, λ), (8)

which employs the left color image Iu as the guidance image.
Let Ωo be a squared region, of size a × a, centered at pixel o on image Iu.

Weight Ψp,k(Iu) is computed by

Ψp,k =
1

No

∑

o∈Ωo

(1 + (Iu(p) − δo)Λ(Iu(k) − δo)), (9)

where No = NpNk, Np and Nk are the number of pixels in squared regions
Ωp and Ωk, Ωo = Ωp ∩ Ωk, color image Iu = (Ir

u, Ig
u, Ib

u)T , average color image
δo = (δr

o, δg
o, δb

o)T , and each average color channel of Iu is calculated by

δi
o =

1
No

∑

p∈Ωo

Ii
u(p), i ∈ {r, g, b}. (10)

Term Λ = (Σo + εA)−1 (A �→ 3 × 3 identity matrix) with smoothness factor
ε and covariance matrix Σo of squared region Ωo from image Iu. Matrix Σo is
determined by Σo, which is in accordance with variance σij

o on Ωo:

Σo =

⎛

⎝
σrr
o σrg

o σrb
o

σrg
o σgg

o σgb
o

σrb
o σgb

o σbb
o

⎞

⎠

3×3

, i, j ∈ {r, g, b}. (11)

σij
o =

1
No

∑

p∈Ωo

Ii
u(p)Ij

u(p) − δi
oδj

o, i, j ∈ {r, g, b}. (12)

After aggregating the cost volume, the disparity and reconstruction become
more accurate (Fig. 2(a) and (b)).
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(a) Weighted disparity map (b) Reconstructed scene from (a)

(c) Optimized disparity map (d) Reconstructed scene from (c)

Fig. 2. Weighted disparity map (a) from Fig. 1(a), optimized disparity map (c) from
(a), reconstructed scenes (b) and (d)

2.3 Disparity Determination

Based on the aggregated cost volume Ṽ(p, λ), we use WTA to select disparity
λ̃(p) for minimizing the matching cost relative to pixel p within range D =
[λmin, λmax]:

λ̃(p) = arg min
λ∈D

Ṽ(p, λ). (13)

Figure 2(c) displays the chosen disparity map and its corresponding recon-
structed scene (Fig. 2(d)).

2.4 Occlusion Removal

Occlusion is often unavoidable in stereo matching procedures. Detection of occlu-
sion involves determining whether the calculated disparity in the left image is
consistent with that of the right image. An occluded pixel will be removed and
assigned the minimal disparity value if λ̃(p) �= −λ(p+ λ̃(p)). To consider true or
subpixel disparity, we employ a more general constraint for removing occluded
pixels:

|λ̃(p) + λ(p + λ̃(p))| > 1. (14)

Figure 3(a) shows the detected occlusion using Eq. 14. Figure 3(b) gives the result
after occlusion rejection.
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(a) Detected occlusion (b) Occlusion removal

(c) Improved disparity map after smoothing

Fig. 3. Accuracy-enhanced disparity by occlusion rejection and smoothing from the
optimized disparity in Fig. 2(c)

2.5 Disparity Smoothness

The occlusion removal step usually introduces edge blurring in the disparity map
(Fig. 3(b)). To preserve the edge in the disparity map, we use bilateral filtering
to weight each disparity after the occlusion rejection step:

ϕst = exp(−‖s − t‖2
γ2
1

− ‖Ii
u(s) − Ii

u(t)‖2
γ2
2

), (15)

where pixel t is located at squared region Ωs with size of s × s centered at
pixel s, γ1 and γ2 indicate pixel spatial and color similarities, and ‖ · ‖ denotes
the Euclidean distance (i ∈ r, g, b). We then calculate the cumulative histogram
H(λ̃) for every disparity value λ̃:

∀ λ̃ ∈ D = [λmin, λmax],H(λ̃) =
∑

t∈Ωt|λ̃(t)≤λ̃

ϕst. (16)

Finally, the optimal disparity λ̃∗(p) at pixel p is decided by

λ̃∗(p) = {λ̃|H(λ̃) ≥ 0.5H(λmax)}. (17)
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Algorithm 1. Cost volume stereo matching

Input: Stereo pairs with left and right color
images, Iu and Iv, disparity range D = [λmin, λmax]

Output: Disparity map λ̃∗(p) at each pixel p

➊ Calculate Σo and δo (Eqs. 10∼12), λ̃∗(p) �→ ∞;
for λ = λmin to λmax (λ ∈ D) do

➋ Cost volume construction (Sect. 2.1);
for each pixel p on left image Iu do

Compute dC(·) and dG(·) (Eqs. 2 and 4);
Compute cost Fµ w.r.t. p for λ (Eq. 6);
Set cost V(p, λ) for pixel p (Eq. 7);

end
➌ Cost volume aggregation (Sect. 2.2);
Calculate Σo and δo (Eqs. 10∼12);
for each pixel p on left image Iu do

Use the guided filtering to weight V(p, λ) for edge-preserving and obtain
Ṽ(p, λ) (Eq. 8);

end
➍ Disparity determination (Sect. 2.3);
for each pixel p on left image Iu do

Select disparity by WTA and obtain λ̃(p) (Eq. 13);
end

end

for each λ̃(p) on disparity map {λ̃(p)}W×H do
➎ Occlusion removal (Sect. 2.4);
➏ Disparity smoothing (Sect. 2.5);

Return λ̃∗(p);

end

Figure 3(b) shows the disparity map with edge blurring after the occlusion
is removed. Figure 3(c) gives the final disparity map after the smoothness step
using the bilateral filtering.

In general, the color and gradient-driven matching method for 3-D recon-
struction is implemented in Algorithm 1.

3 Experimental Results

Clinical stereoscopic endoscopic video sequences were recorded by the da Vinci
Si surgical system (Intuitive Surgical Inc., Sunnyvale, CA, USA) during a robotic
prostatectomy procedure. The HD (1920 × 1080) video frames were downsam-
pled to 320×180 pixels. We investigate several methods as follows: (1) stereo
block-matching (SBM) [10], (2) semi-global matching (SGM) [7], (3) quasi-dense
stereo matching (QSM) [13], and (4) our color and gradient-boosted cost aggre-
gation matching (CAM), as discussed in Sect. 2. All these methods were tested
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(a) Input left image (b) Input right image

(c) SBM (d) SGM

(e) QSM (f) CAM

Fig. 4. Visual comparison of disparity maps of using matching methods of SBM [10],
SGM [7], QSM [13] and CAM.

on a laptop installed with Windows 8.1 Professional 64-Bit System, 16.0-GB
Memory, and Processor Intel(R) Core(TM) i7 CPU×8 and were implemented
on Microsoft Visual C++.

Figure 4 compares the disparity maps estimated from different stereo match-
ing methods. Figure 5 visualizes the reconstructed scenes in terms of the disparity
maps from Fig. 4. Figure 6(a) compares the reconstructed density of using differ-
ent correspondence methods. The percentage of the reconstructed density was
81.7 %, 87.6 %, 60.8 %, and 99.5 % when using SBM [10], SGM [7], QSM [13]
and CAM, respectively. The proposed method almost reconstructed all the pix-
els from the stereo color images. Figure 6 investigates the processing time of the
disparity computation of each compared method. The processing time of the dis-
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(a) SBM (b) SGM

(c) QSM (d) CAM

Fig. 5. Visual comparison of reconstructed scenes corresponding to disparity maps
from Fig. 4

parity calculation was 143, 146, 532, and 428 milliseconds (ms) using SBM [10],
SGM [7], QSM [13] and CAM.

4 Discussion

The objective of this work is to explore fast and robust 3-D scene reconstruction
of binocular endoscopic video sequences with image variations including noise,
occlusion, specularity reflection, and motion blurring. In general, we achieved fast
and accurate binocular endoscopic stereo scene reconstruction for augmenting
image-guided robotic surgery.

The effectiveness of our proposed stereo matching approach lies in two aspects
of the matching cost aggregation function. First, sufficient color information was
propagated in the disparity map estimation. Compared to intensity-based local
matching methods (e.g., SBM and SGM) [7,10], color is a more powerful char-
acteristic to tackle textureless noisy stereo images. Furthermore, gradient-based
cost aggregation can preserve the disparity edge and be robust to illumination
variation, occlusion, and motion blurring. In contrast to feature-driven semi-
dense matching (e.g.,), the gradient cost does not suffer from the featureless
problem. The color and gradient-boosted correspondence strategies balance each
other to construct the matching cost enabling it to outperform other current
available stereo matching methods.

Although our proposed stereo matching method performs much better than
others, it still suffers from image sensor noise and edge blurring problems, as
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(a) Reconstruction density

(b) Processing time

Fig. 6. Comparison of reconstruction density and processing time of disparity compu-
tation of using different methods

shown in Fig. 7. To address these problems, edge-preserving filtering methods,
which are robust to image variations, can be used to improve the quality of the
computed disparity map during binocular endoscopic scene reconstruction. On
the other hand, we currently employ simple optimization method, i.e., the WTA
strategy, which is sensitive to image noise. Despite the fact that global optimiza-
tion methods for dense stereo matching are somewhat time-consuming, they
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Fig. 7. An example of collapsed reconstruction regions (green circles) due to image
sensor noise and edge blurring

are nevertheless another option to further deal with image noise. Additionally,
we still need to improve the processing time of the disparity map calculation.
Graphics processing unit (GPU) and multi-threading programming techniques
can be used to accelerate our stereo matching and reconstruction procedures to
meet real-time requirements in clinical applications.

5 Conclusions

This work proposed a color and gradient-boosted cost aggregation stereo match-
ing framework to reconstruct binocular endoscopic video scene. We integrate
color and gradient information in HD images to construct the matching cost
function making it robust to stereoscopic endoscopic image variations. We then
employ guided image filtering procedure to weight each disparity value in the
disparity map. Experimental results demonstrate that our proposed stereo cor-
respondence framework significantly outperforms other matching methods. The
reconstruction density improved from 87.6 % to 99.5 %, Future work includes
reduction of the computational time for stereo matching, improvement of noise
insensitivity, edge-preserving fileting procedure, and combination of global opti-
mization methods.
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