
Automatic Segmentation
of White Matter Lesions Using SVM
and RSF Model in Multi-channel MRI

Renping Yu1(B), Liang Xiao1,2, Zhihui Wei1,2, and Xuan Fei3

1 School of Computer Science and Engineering,
Nanjing University of Science and Technology, Xiaolingwei 200,

Nanjing 210094, Jiangsu, China
yurenping91@163.com, {xiaoliang,gswei}@mail.njust.edu.cn
2 Jiangsu Key Lab of Spectral Imaging and Intelligent Sensing,

Nanjing 210094, China
3 College of Information Science and Engineering,

Henan University of Technology, Zhengzhou 450001, China
feixuancn@163.com

Abstract. Brain lesions, especially White Matter Lesions, are not only
associated with cardiac and vascular disease, but also with normal aging.
Quantitative analysis of WMLs in large clinical trials is becoming more
and more important. Based on intensity features and tissues’ prior,
we develop a computer-assisted WMLs segmentation method, with the
expectation that our approach would segment WMLs in Magnetic Res-
onance Imaging (MRI) sequences without user intervention. We first
train a SVM nonlinear classifier to classify the MRI data voxel-by-
voxel. In detail, the attribute vector is constructed by the intensity
features extracted from Multi-channel MRI sequences, i.e. fluid atten-
uation inversion recovery (FLAIR), T1-weighted, T2-weighted, proton
density-weighted (PD), and the tissues’ prior provided by partial vol-
ume estimate (PVE) images in native space. Based on the prior that
the lesions almost exist in white matter, we then present an algorithm
to eliminate the false-positive labels. Subsequent further segmentation
through Region-Scalable Fitting (RSF) evolution on FLAIR sequence
is employed to effectively segment precise lesions boundary and detect
missing lesions. Compared with the manual segmentation results from an
experienced neuroradiologist, experimental results for real images show
desirable performances and high accuracy of the proposed method.

Keywords: White matter lesions · Segmentation · SVM · Partial vol-
ume estimate · Active contour

1 Introduction

White Matter lesions (WMLs) are small groups of dead cells that clump together
in the white matter of the brain. The human brain is made of both gray and
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white matter. Information is typically stored and archived in the gray area, but
the white parts play an important role when it comes to shuttling signals back
and forth and retrieving information from one place and bringing it to the next.
Lesions can slow or stop this process. Alzheimer’s disease, Multiple Sclerosis,
and dementia are three of the most common ailments connected with lesions, but
the list is usually quite long. Segmenting the lesions from Magnetic Resonance
(MR) image is the prerequisite step for performing various quantitative analyses
of the disease. Since brain lesion patterns are quite heterogeneous, for their
shapes are deformable, their location may vary widely with different subjects,
the segmentation of lesions is a challenge.

Leemput et al. [1] proposed to set up a multivariate Gaussian model by a
digital brain atlas that contains information about the normal tissue signal distri-
bution, and use it to detect lesions as outliers. Lao et al. [2] employ the previously
segmented WMLs annotated by neuroradiologists to train a SVM classifier to
classify new scans and reduce false-positive by utilizing anatomical knowledge
and measures of distance from the training set. Freifeld et al. [3] perform healthy
tissue segmentation using a probabilistic model, termed constrained-GMM, while
lesions are simultaneously identified as outlier Gaussian components.

For different medical imaging mechanisms, there are different appearances
for one subject. In general, the normal tissues are more distinguishable from
each other in T1-weighted than other sequences, so many researchers utilize
T1-weighted image to segment the normal tissues. But on the other hand, the
lesions in the T1-weighted lesions appear hypointense or isointense relative to
GM, which makes the lesions segmentation difficult. In the T2-weighted and
PD-weighted, although these lesions appear hyperintense, it is hard for us to
distinguish lesions for their intensities’ overlap with CSF. In the FLAIR images,
the intensities of lesions are hyperintense and more distinguishable than others,
which makes a lot of related studies mainly utilize the FLAIR images to segment
lesions [4,5]. But due to the effects of pulsatile fluid flow and partial volume, there
exhibit higher intensities in some edge regions of the GM and CSF, which might
introduce artificial anatomical errors in the final segmentation results and reduce
the accuracy rate. Based on the above basis, combining more than one modality
of the MR protocols, i.e. multi-channel images, has the benefits of increasing the
intensity feature space to produce a better discrimination between brain tissues
and reducing the uncertainty to increase the accuracy of the segmentation [2].

Therefore, we would rather integrate information from multi-channel for
WMLs segmentation than just using a single-channel image. In this paper, we
formulate the WMLs segmentation problem as a WMLs classification problem
at first. After that, we treat the problem as a segmentation problem, using the
classification results as the initial region of interest (ROI) for active contour to
improve the final detection.

2 Methods

For quantitative analysis and comparison, we have tested our method over
45 subjects. Mean age of these subjects was 62 (mean: 62.2, SD: 5.9, range:
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Fig. 1. The framework of our proposed algorithm.

54–77, median: 61). All 45 participants’ exams consisted of transaxial T1-w,
T2-w, PD and FLAIR scans. All scans except T1-w were performed with a
3 mm slice thickness, no slice gap, a 240 × 240 mm FOV and a 256 × 256 scan
matrix. T1-w scans were performed with a 1.5 mm slice thickness, same slice gap,
FOV and scan matrix. We use the manual segmentation results from an expe-
rienced neuroradiologist as the reference for assessments of our method perfor-
mance. Figure 1 shows the detailed framework of our computer-assisted WMLs
segmentation.

2.1 Image Pre-processing

To compensate for differences owing to subject movement between scans, all
sequences of the same individual need be co-registered. As FLAIR sequence
contains the most distinctive lesion-healthy tissue differentiation for segmenta-
tion of white matter lesions [6], FLAIR image space of each subject serves as the
reference space which all other corresponding sequences (T1, T2 and PD) are



Automatic Segmentation 657

co-registered to. A rigid transformation based on mutual-information [7] was
applied for co-registration of multi-channel images. To remove the non-brain tis-
sue for restricting our analysis on the brain tissue only, we employed a deformable
model based skull stripping algorithm [8] to the co-registered T1-weighted images
to generate an initial brain tissue mask, which will be used to skull-strip the other
modality images. To correct the intensity inhomogeneity, we use the N3 method
developed by [9].

2.2 The Voxel-Level Feature Extraction

The problem of image segmentation is first regarded as a classification task, and
the goal of segmentation is to assign a label to individual voxel or a region. So,
it is very important to extract the effective voxel-level image feature.

Intensity Normalization. Intensity is one of the most dominant and distin-
guishable low-level visual features in describing image, and has been employed
for segmentation. We extract the intensity of multi-channel MR images for the
attribute vector. As for the acquisitions of different sequences differing from one
another, the magnitudes of the intensities were unequal in different sequences.
We adopt the following steps to normalize the intensities, IFLAIR, IT1, IT2 and
IPD individual and construct the attribute vector.

1. For a subject, find all the non-background voxel’s locations in FLAIR image
space, i.e. Ω, and make them as domain Ωnon−background.

2. Computing the average intensity, μFLAIR, μT1, μT2 and μPD in domain,
respectively.

3. Divide the original intensity I∗ by the corresponding average intensity μ∗,
and get the normalized intensity norI∗.

4. We compose the 4 different normalized intensities norI∗ of each voxel
as the corresponding first 4 attribute vector components in the domain
Ωnon−background.

There is one note that has to be mentioned. Although the co-registration
algorithm that we have implemented has been shown high accuracy of registra-
tion, there will always be inevitable misregistration in the processing. Smoothing
has been shown to ameliorate the effects of registration error [10], so we employ a
mean filtering for its easy implementation to all sequences. To assist the extrac-
tion of voxel-level image feature, we implement the same normalized operations
to the filtered data. Then we construct the attribute vector components of each
voxel by composing the 8 normalized intensities.

Computing the PVE-Label. A single voxel in a medical image may contain
several tissue types as a result of the finite resolution of the imaging devices. This
case is known as partial volume effect (PVE). Tohka [11] presented a method
integrated in VBM8 for the accurate, robust, and efficient estimation of partial
volume model parameters, which is crucial to the accurate estimation of tissue
volumes, etc.
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As the normal tissues are more distinguishable from each other in T1-
weighted than other sequences, we adopt this method primarily utilizing the
intensity values of co-registered T1-weighted image to generate a PVE lable
image volume in native space for exact tissue classification. Each voxel in PVE
lable image volume is labeled with a number ranging from 1 to 3 in accord with
the voxel intensity in co-registered T1-weighted image. The integers (1, 2, 3)
represent CSF, GM and WM, respectively, while values between those integers
mean the partial volume effect. This PVE lable image provides the 9th attribute
vector component of the voxel.

2.3 Voxel-Wise Segmentation of WML by SVM

In machine learning, support vector machines (SVM) introduced by Cortes and
Vapnik [12] are supervised learning models with associated learning algorithms
that analyze data and recognize patterns, used for classification and regression
analysis. In this paper, we mainly concentrate on the detection of WM lesions,
so we classify the voxels of the MR images into two classes: lesion (assigned with
label 1) and non-lesion (assigned with label 0).

All the data are prepared by the above proceeding steps. 2 subjects which
are empirically chosen form the training set whose samples are made of all the
lesion voxels and their surrounding normal tissue voxels. The training set con-
sists of 43960 voxel samples (19137 voxel for lesion, others for non-lesion). These
training samples are provided to SVM to generate a nonlinear classifier for clas-
sifying the remaining 43 subjects voxel-by-voxel. Every non-background voxel
will be assigned by a label, lesion or normal tissues. We call the results as initial
predicted labels, since false positive labels will be eliminated by the methods
proposed next.

2.4 Elimination of False-Positive Labels

Most of the false-positive labels are in the appearance of very small regions or
even disperse points for the noise or the intensity inhomogeneity and the mis-
registration between the multiple modalities. Although we have adopted inho-
mogeneity correction and the average filtering to remit the adverse effect of the
unavoidable factors, there are still some unexpected results.

Elimination Based on the Prior. The movement of the CSF and partial
volume effect give rise to the intensity overlap between CSF and partial GM
area and WMLs, which will result in the some false-positive segmentation, so we
need to take steps to eliminate the false-positive.

Based on the prior that WMLs are almost existing in WM regions [13] and
around the ventricle, we construct the corresponding template of each subject
by the segmented WM and ventricle from the PVE-label image. The later is
achieved by the morphology operation on the tissue classification. Then we elim-
inate the false-positive label by quantifying the fusion between the initial pre-
dicted label and the template. In detail, when a predicted lesion area’s fusion
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degree is lower than a certain degree, this area will be considered as false-positive
label and then be deleted. The experimental results show that this method of
false-positive elimination makes a remarkable improvement on the accuracy of
segmentation. This result will be named second eliminated label.

Further Segmentation by the Region-Scalable Fitting. Intensity inhomo-
geneities are inevitable phenomenon in MR images and may cause considerable
difficulties in WMLs segmentation. Region-Scalable Fitting (RSF) model [14],
a region-based active contour model, can deal with intensity inhomogeneity
through drawing upon intensity information in local regions at a controllable
scale to guide the motion of the contour.

As the brain images consist of several regions, the RSF model which only
segment image into two regions (object and background) can’t be used directly
in whole image. We construct the ROI only containing the potential lesion by all
the voxels with value of PVE-label ≥ 1.5. Since brain images are complex, and
lesion volumes are relatively small, it is impractical to use the standard initial
contour (small circles) as in [19,20] and others. Hence, we use the segmentation
of the lesions from the SVM classifier as an initialization for the curve, which
makes it possible to apply active contour techniques for lesion delineation [3].

As mentioned above, the WMLs have the most distinctive performance of
lesion-healthy tissue differentiation in FLAIR sequence [6], so we apply the RSF
model only on the FLAIR sequence for further segmentation. In this way, the
lesion is the object and pixels around it are the background. As a result, the
WMLs’ boundary can be detected more precisely than the second eliminated
lesions, and some missed lesion area can be detected automatically with the evo-
lution of active contour. This further segmentation performs an effective detec-
tion of lesions and we call this result as final segmented labels.

3 Experiments and Results

3.1 Validation Methods

We evaluate our approach by comparing automatically segmented lesions to
the ground truth for the 43 remaining testing subjects. We compute the true-
positive rate (TPR), true-negative rate (TNR), the precision and the Dice sim-
ilarity coefficient (DSC) of our approach: TPR = TP

TP+FN , TNR = TN
TN+FP ,

Precision(PI) = TP
TP+FP and DSC = 2TP

2TP+FP+FN , where TP and FP are the
number of true- and false-positive voxels, and TN and FN are the number of
true- and false-negative voxels, respectively.

3.2 Results

Our method was examined on ACCORD-MIND MRI dataset [15]. We com-
pare our algorithm with the WMLs segmentation algorithm developed by
Lao et al. [2], Lesion Segmentation Toolbox (LST) [16], LesionTOADS [17],
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Fig. 2. Automatic segmentation versus manual lesion segmentation in a
subject with minimal lesion burden. From left to right: Ground truth,
Lao et al., LST, LesionTOADS, Zhan et al., SVM Classification, SVM+Elimination,
SVM+Elimination+RSF.

Fig. 3. Automatic segmentation versus manual lesion segmentation in a subject with
large lesion burden. From left to right: Ground truth, Lao et al., LST, LesionTOADS,
Zhan et al., SVM Classification, SVM+Elimination, SVM+Elimination+RSF.

Zhan et al. [18]. Figures 2 and 3 show the automatic segmentation versus man-
ual lesion segmentation in different sizes of lesion burden. Figure 4 shows the
outstanding performance of our approach in dealing with each subject. This is
due to our introduction of active contour model for delineating the lesion bound-
aries precisely in the presence of intensity inhomogeneities.

In Table 1 we summarize the statistic data (mean) of the above 4 evaluation
index in these 6 results: Lao et al., LST, LesionTOADS, Zhan et al., SVM +
Elimination (second eliminated labels) and SVM + Elimination + RSF evolution
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Fig. 4. Dice Similarity Coefficient (DSC) for each subjects in different methods.

(final segmented labels). From this table, we can conclude that the elimination
step and the further segmentation step of RSF evolution perform effectively
improvement in WM lesion segmentation.

Table 1. Statistic data (mean) of the WMLs segmentation by Lao et al., LST, Lesion-
TOADS, Zhan et al. and our methods.

Lao et al. LST LesionTOADS Zhan et al. SVM+E SVM+E+RSF

DSC 0.6531 0.5638 0.6654 0.7841 0.7766 0.8118

PI 0.7805 0.5668 0.6879 0.7955 0.8006 0.8437

TPR 0.7425 0.6080 0.7240 0.7986 0.7729 0.7945

TNR 0.9994 0.9898 0.9965 0.9974 0.9971 0.9981

4 Conclusion

We have developed and evaluated an computer-assisted algorithm for automated
segmentation of White Matter lesions, based on integrating intensity feature
information from multiple-channel MR sequences and the tissues’ prior provided
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by PVE images to train a nonlinear classifier by SVM for the initially effective
segmentation of lesions. The experimental results have shown the robustness and
accuracy of the classification. We then eliminate the false-positive labels, which
is caused by pulsatile fluid flow and partial volume, based on the prior that the
lesions almost exist in white matter. This strategy not only improve the accuracy
of the first SVM classification, but also can provide an precisely initial ROI to
the active contour evolution for delineating the lesion boundaries. The RSF
evolution provides results that agree highly with human experts’ segmentation.
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