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Abstract. In this paper, we propose an algorithm to improve some important
details of sparse representation based image super resolution (SR) framework.
Firstly, a new dictionary learning technique K-Eigen decomposition (K-EIG) is
proposed. It improves the classical K-SVD algorithm in dictionary atom
updating. K-EIG accelerates the learning process and keeps the similar perfor-
mance of the learned dictionary. Secondly, image patch classification and edge
patches extension are integrated into the SR framework. Two over-complete
dictionary-pairs are trained based on K-EIG. In reconstruction, the input low
resolution (LR) image is split into patches and each one is classified. The patch
type decides which dictionary-pair is chosen. Then the sparse representation
coefficient of the LR signal is inferred and the corresponding high resolution
(HR) patch can be reconstructed. Experimental results prove that our algorithm
can obtain competitive SR performance when compared with some classical
methods. Besides, the time-consuming of dictionary-pair learning is lower.

Keywords: Image super-resolution - Sparse representation + Dictionary
learning

1 Introduction

Super resolution (SR) image reconstruction refers to a signal processing approach to
obtain a high resolution (HR) image from observed single or multiple low resolution
(LR) image(s) [1]. For the single image SR reconstruction problem, simple interpo-
lation methods like “bilinear” or “bicubic” interpolation cannot do a good job because
only the neighbor pixels are used to estimate the missing information. The enlarged
image is blurry especially in the regions existing edges and textures. Some researchers
[2, 3] merged the natural image priors into the traditional interpolation methods and
generated the image with sharper edges. But these methods are unstable and sometimes
easy to produce artifacts. Another kind of methods employs the machine learning
techniques which are very popular nowadays. Freeman et al. [4, 5] first proposed this
idea and named it as “example-based super-resolution”. They estimated the missing
details with the help of abundant example-pairs extracted from an external training set.
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The algorithm attempts to learn the co-occurrence prior between LR and HR image
patches. Then the prior is used in SR reconstruction. Example-based SR method breaks
through the bottleneck of the conventional SR methods and generates more distinct
image. Inspired by the manifold learning, neighbor embedding for SR was proposed
[6]. In this method, multiple examples can contribute simultaneously to the generation
of each HR image patch. In 2008, Yang et al. [7] employed “sparse coding” to rep-
resent an image patch sparsely over an example set. Moreover, the connection between
LR and HR example is replaced by the same sparse representation coefficient over the
LR or HR example set. Then, Wang [8] and Yang [9] successively used a pair of
learned compact over-complete dictionary to replace the two huge example sets. This
change speeds up the process of sparse coding greatly. However, it is very
time-consuming to learn the over-complete dictionary-pair. So, some researchers try to
accelerate the learning process [10-12]. In recent years, Dong et al. [13] proposed a
nonlocal centralized sparse representation technique and Peleg et al. [14] presented a
statistical prediction model based on sparse representations, which all generates the
better SR images.

Here, we propose a fast dictionary learning technique K-Eigen Decomposition
(K-EIG) and employ it into the sparse representation based SR framework. In addition,
we merge the classification of image patches and the extension of edge patches
skillfully into the whole algorithm to promote the quality of the SR images. The outline
of this paper is as follows. In Sect. 2, we analyze the essence of the sparse represen-
tation based image SR methods. Then, the details of our proposed algorithm are
presented in Sect. 3. In Sect. 4, we show the simulations and results. Conclusion is
given in Sect. 5.

2 Reviews and Analysis

Let I; be the given LR image and I, be the corresponding HR image which needs to be
estimated. Usually, the degradation model can be written as:

I =I,xf) |s, (1)

where f is a blurring kernel, * is the convolution operation and | s means down-sampling
with a factor s. In addition to the prior degradation model, an external training set 7'S
containing various HR images T, can be used. The objective of the example-based image
SR methods is to predict the missing details in I; by “borrowing” information from some
similar examples in 7S [15] and then reconstruct I,. Next, we make an analysis from the
following three aspects for the essence of sparse representation based image SR methods.
Meanwhile, some representative prior work is also reviewed.

The first aspect is how to build the link between LR and HR image patches based
on TS through learning. The link is a learned prior for SR reconstruction. With the
degradation model, the LR version T for each T}, can be formed by T; = (T}, *f) | s.
For the sampling convenience, T; is enlarged to be with the same size of T, by
interpolation. Then, a number of image patch-pairs (Tp,, Tp,) are sampled from every
image-pair (T},T;), representing the LR and HR version of the same region
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respectively. In the sparse representation based image SR methods, an effective link is
through the common sparse representation coefficient [7—10]. Specifically speaking, a
Tp, can be represented by a sparse vector over a LR over-complete dictionary D; and at
the same time the corresponding Tp, owns the same sparse vector over a HR dictionary
Dy,. Therefore, a key problem is how to construct the over-complete dictionary-pair
(D, Dy) to meet the requirement. The second aspect is how to express the LR and HR
image patches. In [5], the authors pointed out that the highest spatial-frequency
components of the LR image are most important in predicting the extra details. Usually,
there are three ways to get them, the high-pass filter [4, 5, 10], the image primitives [15,
16] and the low-order derivatives [6, 9]. For each LR image patch, a signal vector v,
can be formed from its highest spatial-frequency components. For a HR image patch,
its mean value or LR version is often subtracted and then v, is formed. These signal
vector-pairs (v;,vy,) represent the raw image patch-pairs. The third aspect is how to
reconstruct I, from I;. Usually, the input I; is scaled-up to the size of I, by interpo-
lation. Since the SR scheme works on the patches, I; is broken into patches in advance.
Then, the signal vector v; of each patch Ip, is calculated and its sparse representation
vector « is inferred over D;. Depending on the link learned in training, a HR version iph
can be estimated. Through the rational combination such as averaging the multiple
estimated values for each pixel, a HR image can be obtained.

3 The Details of Our Proposed SR Method

3.1 A New Dictionary Learning Algorithm K-EIG

Assume that the given set of signal examples is Y :{yi}?il. yi(y; € R") is a signal
example and M is the number of signal examples. According to the theory of signal
sparse representation [17], each y; can be represented approximately by a sparse vector
a;(a; € RE) over an over-complete dictionary D, D € R"™“(L > n). Let A be a sparse
vector set A = {oc,-}?i 1- Note that ¥ and A can be also treated as the matrices. Then, the
problem of dictionary learning can be described as:

min{|[¥ — DA|}} 5., |[oally < To, )

where || a; ||o stands for the count of nonzero entries in &;, Ty is the maximum allowed
number of nonzero entries in a;. By now K-SVD [12] is the most prevalent dictionary
learning algorithm [18-20]. It alternates between sparse coding of signal vectors and
updating the dictionary atoms to get the solution. The creativity of K-SVD is that it
updates one column in D at a time. All columns in D except one atom dj is fixed.
Besides, the kth row in A, denoted as oc’;, is also put in question. So, the penalty term
can be rewritten as:

1Y —DA|lz = [|(Y = Y _djag) — dioth |7 = ||Ex — diots |7 (3)
7k
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E;. stands for the representation error matrix based on the current D and A when d; is
removed. Note that some signal examples do not use dy, so E; should be restricted as

E} by choosing only the related columns. In order to use E¥ to find the unknown d;

and & for minimizing ||Ef — dyak ||%, the singular value decomposition (SVD) of E}
is employed:

=USV?, d, = U(;,1), & =VT(:,1) x S(1,1). (4)

After updating dictionary atoms one by one, a new D can be obtained. Then, go back to
the stage of sparse coding. A satisfactory dictionary fitting ¥ can be generated after
several alternations. Unfortunately, the operation of Ef’s SVD is time-consuming since
the column number of Ef is usually large. It causes the high computational cost.
Rubinstein et al. [11] offered an approximate K-SVD (AK-SVD) algorithm to accel-
erate K-SVD. However, it sacrifices the performance of the learned dictionary to
promote the training speed. Next, we propose a new algorithm K-EIG to accelerate the
learning process and try to keep the similar performance of the learned dictionary. The
details of derivation are as follows.

For the convenience of derivation, the target function ||[EF — dyak ||} is denoted as
||E —daHi. Then, we expand || - ||12r

fi= I —dall} = 32 3" (@()a(j) — (i)
= 557 @aG) = 24a0)ED) + EG.i) 5)
- Z (D)) = 23 dE)a0) + 3 ()]

Note that 5" d(i)* = 1. Besides, we can ignore 3 E(i, j)* because it can be treated as a
i i

constant. Therefore, fu turns to:

fu:Zao —2Zd (i,4))a(j)]- (6)

The formula in [-] can be considered as a form of quadratic equation about «(j). So, the
minimum value of fu is reached at the bottom of the quadratic curve when

a(j) = Ed( E(i,j). And now:
=3 (S )G @

Thus o(j) is eliminated from fu and we can solve d directly under the normalization
constraint with the help of Lagrange multiplier method. The Lagrange function is:
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= O dGEG) + A i) - 1). (8)
J i i
Let OLf /0d(m) = 0 where d(m) is the mth element in d. Then we can obtain:
OLf /dd(m Z Z d(i m,j) + 2d(m) =0
9
¢Zd ZEZ] J)—2dm)=0, m=1,2,...,n. ©)

Let R be the autocorrelation matrix of E, ie. R=E-E’. So,
> E(i,j)E(m,j) = R(i,m). Then, Eq. (9) turns to:
J

> R(i,m)d(i) = dd(m) =0,m =1,2,...,n
i (10)
= R(:,m)'d = Jd(m),m=1,2,....,n= R'd = Jd.

Obviously, the solution of the above problem can be obtained by calculating the
eigenvector of R7. We choose the eigenvector corresponding to the largest eigenvalue as
the optimal solution of the problem. Then, use @ = d”E to get a. Thus, we replace the
implementation of E’s SVD with R?’s eigen-decomposition and name the whole
algorithm as K-Eigen decomposition. Compared with K-SVD, the advantage of K-EIG
is computational simplicity. The reason is as follows. In K-SVD, the object of SVD is
the matrix E,’f with the size n X My, where M, represents the number of signals using d.
Usually, M, is related to the total number of input signals M. With the increasing of M,
the column number of Ef is larger. It results in poor computational efficiency due to the
slow implementation of Ef ’s SVD. Whereas, K-EIG implements eigen-decomposition
of RT.RT is a square matrix of size n X n. It is much smaller than Ef since n < M. So,
the implementation of R” ’s eigen-decomposition is much faster. It makes K-EIG more
time-saving.

As described in Sect. 2, based on the signal vector-pairs (v;,v;) sampled from
(T),T}y), we train the dictionary-pair (D;,D},) to satisfy the following formula:

min || v =Dy -a® |3 5. || @ [lo <To
D

e | | , vie{l,2,. .M}, (11)
min || v =Dy -a® |3 st &l o <To
0

In order to get (D;D;), we first generate D; based on {vl(l),vl(z),...,vgm} by
solving:
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M
Dy {a"} =argmin ¥ | v =Dy a3, 50 [0 |lo <To, Vie {1,2,....M}.

D {a} =1
(12)
K-EIG can serve the above problem and we get D; and {a)}. Then, {a«()} and
{v,(ll), v1(12)’ e v,gM)} both guide the computation of D, directly as the way in [10]. Let
vV, = [vél),vf),...,v,(qM)] and A = [aV) a@® ... aM], then D, can be obtained by

D,=V, AT (AAT)fl. Now, (D;,D;,) can meet the requirement of common sparse
representation coefficient. Compared with the joint dictionary training method used in
[9], the direct dictionary-pair construction method employing K-EIG is fast and
effective.

3.2 Sparse Representation Based SR Framework with Example
Classification and Extension

Considering the types of image patches, we do an important work before training. That
is classification for the sampled image patches. Each patch-pair (Tp,, Tp,,) will be put
into a classifier and then marked by a label “smooth” or “edge”. We employ the sorted
quadrant median vector (SQMV) scheme proposed in [21] to classify every Tp,,.
SQMV is a simple but efficient tool to recognize an image patch belonging to uniform
region or edge region. Then, the set of example-pairs is separated into two parts,
“smooth” set and “edge” set. In order to increase the number of “edge” patch-pairs
before learning, we rotate each HR image 7', by three different angles (90°, 180° and
270°) and three different images are formed. Then, we can generate more “edge”
patch-pairs. For “smooth” class, there is no need to increase the patch number. Based
on the two sets of signal vector-pairs, two different dictionary-pairs (D{"°°", Dimooth)

and (D", D*°) are constructed respectively.

In reconstruction, the input LR image I, is first interpolated to the objective size and
then broken into lots of overlapped patches Ip; with the size of w x w. Foreach Ip;, we use
the first-order combining second-order derivatives to represent it and form a signal vector
v;. Through labeling Ip;, by SQMV scheme, we choose the appropriate dictionary-pair

(Dyree™ pyroothy or (DS, DE%¢) for SR. A key problem is to infer the sparse repre-
sentation vector of v; over D; by & = argmin || v; — Dy - a || s.t. || & ||o < Tp. Orthog-
o

onal matching pursuit (OMP) [22] or convex relaxation techniques [17] can be used to

solve the problem. After getting & for Ip,, we can reconstruct its HR version by iph =
Ip, + reshape(Dy, - &) where reshape(-) means rearranging a vector to a patch. By the

simple “averaging” of these overlapped iph, we get the estimated HR image I,. Besides,
to satisfy the degradation model, we add an operation of “backprojection” [9] to modify I,
and generate the last I,,.
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4 Simulations and Results

4.1 Testing the Performance of K-EIG

We test the performance of K-EIG by a synthetic experiment and compare it with other
typical dictionary learning algorithms. A random matrix D, of size 20 x 50 is generated
with i.i.d uniformly distributed entries. Each column is normalized to a unit ¢,-norm.
Then a number of data signals {yi}?il of dimension 20 are produced. Each signal is
created by a linear combination of three different atoms in D, with uniformly distributed
i.i.d coefficients in random and independent locations. Then, K-SVD [12], AK-SVD
[11] and K-EIG are implemented respectively to obtain three recovered dictionaries D,

based on {y,-}?il and then we observe which D, is closest to D,. Authors can see [12] for
more details about success ratio computation. In order to test the robustness of algo-
rithm, white Gaussian noise with varying signal-to-noise ratio (SNR) is added to {yi}?il.
Let M = 1500 and Ty = 3. Set the number of alternate iteration by 30. The results of
atom recovery performance are shown in Table 1. We see that K-SVD obtains the best
performance under any SNR situation. The average success ratio of K-EIG is very close
to K-SVD. AK-SVD is inferior to the other two algorithms. Besides, we compare the
running speed of the three algorithms. We change the input signal number from M =
1000 to M = 96000 with interval of 5000 and keep the other parameters unchanged. The
running platform is MATLAB 2009 and the computer is equipped with 2.60 GHZ Inter
(R) Core(TM) i5 CPU & 4.0 GB memory. Figure 1 shows the time consuming curve.
We see that the computation time of K-SVD rises rapidly with the increasing of input
signals number. On the contrary, the time consuming of K-EIG and AK-SVD always
keeps a low level even in the situation of large M.

Table 1. Comparison of several dictionary learning algorithms in average success ratio of atom
recovery

SNR (dB) | K-SVD | AK-SVD | K-EIG
20 92.68 % |91.48 % |92.64 %
15 89.24 % | 88.36 % | 88.72 %
10 86.44 % | 83.28 % |85.92 %
8 70.08 % | 66.60 % |69.32 %

4.2 Testing Image SR Performance

In our SR experiments, we use a training set T'S containing some HR natural images
such as flowers, architectures, animals and human faces. In simulation, we assume that
the degradation model I; = (I}, «f) | s is operated by the “bicubic filter” with a zoom
factor 1/s. During training, we extract about 8 x 10* image patch-pairs to be the
training examples for each class. The patch size is 5 x 5. The column number of D; or
D, is set by 1000. The number of alternate iteration of K-EIG is set by 40. Five color
images are chosen as the test images. They are “lena”, “child”, “flower”, “building”,
and “zebra”. Then, five corresponding LR images are generated by the known



376 Y. Zhou et al.

70 T T T T T T T T T

—HE—K-EIG
—&— Approximate K-SVD
B0 | —o— oOriginal K-SVD

o= m
(=] [=]

Computation time in seconds
w
[=]

The number of input signals from 1000 to 96000. 4

Fig. 1. Time consuming curve of three dictionary learning algorithms

degradation model. Our task is to reconstruct the HR versions of these LR images. As
the way in other literatures, we just apply our SR algorithm to the illuminance channel
(Y). The other channels (Cb, Cr) are processed by bicubic interpolation simply. Several
representative and related image SR methods are also implemented for comparison
purpose. They are “bicubic interpolation”, “neighbor embedding [6]”, “Yang’s method
[9]” and “Zeyde’s method [10]”. We choose the peak signal-to-noise ratio (PSNR) and
the mean structure similarity index measure (MSSIM) [23] as the performance indexes
to measure the quality of the reconstructed image.

We show the quantitative SR results in Tables 2 and 3 in case of s =2 and s = 3.

Clearly, our proposed method achieves the highest PSNRs and MSSIMs for all the test

Table 2. PSNRs (MSSIMs) results of reconstructed images with s = 2

Image s=2
Bicubic Neigbor Yang’s Zeyde’s Our
interpolation embedding algorithm
Lena 3541 34.78 37.24 36.86 37.56
(0.9297) (0.9169) (0.9436) (0.9411) (0.9457)
Child 37.06 35.73 38.37 38.07 38.64
(0.9513) (0.9345) (0.9629) (0.9606) (0.9659)
Flower 30.42 29.81 32.55 32.11 32.92
(0.8985) (0.8764) (0.9301) (0.9249) (0.9339)
Building | 28.81 27.92 30.22 29.91 30.57
(0.8525) (0.8233) (0.8886) (0.8817) (0.8918)
Zebra 30.68 29.80 33.33 32.86 33.66
(0.9084) (0.8774) (0.9410) (0.9352) (0.9440)
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Table 3. PSNRs (MSSIMs) results of reconstructed images with s = 3

Image

s=3
Bicubic Neigbor Yang’s Zeyde’s Our algorithm
interpolation embedding

Lena
Child

32.11 (0.8798)
33.94 (0.9042)

31.52 (0.8592)
32.73 (0.8760)

33.57 (0.8997)
34.97 (0.9206)

33.42 (0.8973)
34.98 (0.9195)

33.63 (0.9009)
35.18 (0.9225)

Flower

27.32 (0.8027)

26.71 (0.7644)

28.62 (0.8427)

28.50 (0.8388)

28.66 (0.8440)

Building
Zebra

26.14 (0.7518)
26.69 (0.7946)

25.54 (0.7208)
25.57 (0.7383)

26.77 (0.7839)
28.49 (0.8445)

26.73 (0.7788)
28.50 (0.8390)

26.85 (0.7861)
28.78 (0.8484)

images. In order to compare the reconstruction results visually, we present the esti-
mated HR images by nearest interpolation, bicubic interpolation, neighbor embedding,
Yang’s, Zeyde’s and our method in case of s = 3 in Figs. 2 and 3. Meanwhile, some
details are magnified to clearly display the subtle difference. From them, we see that
bicubic interpolation eliminates the sawtooth appearance in the images obtained by

Fig. 2. (a) Input LR ‘child’ image, (b) estimated HR ‘child’ by nearest interpolation,
(c) estimated HR ‘child’ by bicubic interpolation, (d) estimated HR ‘child’ by neigbor
embedding, (e) estimated HR ‘child’ by Yang’s method, (f) estimated HR ‘child’ by Zeyde’s,
(g) estimated HR ‘child’ by our method, (h) original ‘child’ image.
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Fig. 3. (a) Input LR ‘building’ image, (b) estimated HR ‘building’ by nearest interpolation,
(c) estimated HR ‘building’ by bicubic interpolation, (d) estimated HR ‘building’ by neigbor
embedding, (e) estimated HR ‘building’ by Yang’s method, (f) estimated HR ‘building’ by
Zeyde’s, (g) estimated HR ‘building” by our method, (h) original ‘building’ image.
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nearest interpolation, but it generates the blurred edges. Neighbor embedding is easy to
produce some artifacts. For example, in the part between hat and face in Fig. 2(d), we
can observe the discontinuous. Sparse representation based methods generate clearer
HR images. Among them, our algorithm obtains the best results which are closest to the
original HR images, thanks to the integration of patch classification and edge patches
extension into the SR framework. In Fig. 3, we can see obviously that the lattice in
Fig. 3(g) is reconstructed better than Fig. 3(b) and (f).

4.3 Testing the Time Performance of Dictionary-Pair Construction

Here, we compare the time performance of the three dictionary-pair construction
methods (Yang’s, Zeyde’s and ours). The platform and computer configuration are the
same as description in Sect. 4.1. The CPU running time is presented in Table 4.
Obviously, our and Zeyde’s method are much faster than Yang’s method. Our method
is slightly slower than Zeyde’s one because our training process includes
patch-classification, edge-patches extension and learning of two dictionary-pairs. It is
worthy of spending more several minutes to obtain better dictionary-pair.

Table 4. Time comparison of three dictionary-pair constructing methods

Method | Time consuming (in s)
Yang’s | 10007
Zeyde’s | 238
Ours 411

5 Conclusion

In this paper, we propose a sparse representation based single image super resolution
algorithm with a new dictionary learning technique K-EIG. Our proposed K-EIG is an
improved algorithm based on the classical K-SVD algorithm. It replaces the imple-
mentation of SVD about the representation error matrix with eigen-decomposition about
its autocorrelation matrix. This change overcomes the drawback that the operation of
SVD is time-consuming in case of the large number of training examples. We employ a
direct dictionary-pair construction method based on K-EIG to accelerate the whole
training process. Besides, considering the types of image patches and the number of
edge examples, patch classification and edge patches extension are integrated rationally
into the SR framework. Extensive experimental results show that our SR algorithm
generates better SR images compared with some classical or related methods.
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