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Abstract. In this paper a novel patch-based tracking algorithm is pro-
posed by using two-stage multiple kernel learning. In the first stage, each
object patch is represented with multiple features. Unlike simple feature
combination, we utilize multiple kernel learning (MKL) method to obtain
the optimal combination of multiple features and kernels, which assigns
different weight to the features according to their discriminative power.
In the second stage, we apply MKL to making full use of multiple patches
of the target. This method can automatically distribute different weight
to the object patches according to their importance, which improves the
discriminative power of object patches as a whole. Within the Bayesian
framework, we achieve object tracking by constructing a classifier, and
the candidate with the maximum likelihood is chosen to be the target.
Experiments demonstrate that the proposed tracking approach performs
favorably against several state-of-the-art methods.

Keywords: Visual tracking + Multiple features - Patch-based tracking -
Multiple kernel learning

1 Introduction

Visual tracking is one of the most important component of many applications
in computer vision, such as surveillance, human-computer interaction, med-
ical imaging and robotics [1]. For robust visual tracking, numerous methods
have been presented. Despite reasonably good results from these approaches,
some common challenges remain for tracking objects under complex scenes, e.g.,
when objects undergo significant pose changes or other severe deformations, i.e.,
object pose variations accompanied with object occlusions or object intersec-
tions. To address these problems, a wide range of appearance models for track-
ing have been proposed by researchers [2]. Roughly speaking, these models can
be categorized into two types: discriminative-based model [5,9-13,18,20,21] and
generative-based model [3,4,6-8,14,15,19].
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Recently multiple kernel learning (MKL) [22,27] has been applied in com-
puter vision, such as object classification [23,24], object detection [25,26]. The
MKL method aim to compute an optimal combination of weighted kernels in
the supervised learning paradigm. Rather than using one single kernel, the
MKL algorithms fuse different features and kernels in an optimal setting, which
improves the discriminative power of multiple features.

Motivated by the MKL, we propose a novel patch-based tracking method
based on two-stage multiple kernel learning. The patch-based methods utilize
the local information of object and can effectively handle partial occlusion and
deformation to some extend. However these trackers may cause drift problem
because they do not consider the different importance of each patch when occlu-
sion happens. In this work we combine patch-based method with MKL and
present a patch-based tracking approach with two-stage MKL. In the first stage,
each object patch is represented with multiple features. Unlike simple feature
combination, we utilize MKL method to obtain the optimal combination of mul-
tiple features and kernels, which assigns different weight to the features according
to their discriminative power. In the second stage, we apply MKL to making full
use of multiple patches of the target. This method can automatically distrib-
ute different weight to the object patches according to their importance, which
improves the discriminative power of object patches as a whole. Within the
Bayesian framework, we achieve visual tracking by constructing a classifier, and
the candidate with the maximum likelihood is selected to be the tracked result.
Besides, an effective update method is adopted to help the proposed tracker
adapt to the object appearance changes.

The rest of this paper is organized as follows. Section 2 briefly reviews the
related works. Section 3 describes the multiple kernel learning method. The pro-
posed two-stage multiple kernel learning is given in Sect. 4. Section5 describes
our tracking method. Experimental results are shown in Sect. 6, and Sect. 7 con-
cludes this paper.

2 Related Work

General tracking approaches can be categorized into either discriminative or
generative models [2]. The discriminative methods regard tracking as a classifi-
cation problem which aims to best separate the object from the ever-changing
background. These methods employ both the foreground and background infor-
mation. Avidan [18] proposes an ensemble tracker which treats tracking as a
pixel-based binary classification problem. This method can distinguish target
from background, however the pixel-based representation needs more computa-
tional resources and thereby limits its performance. In [10], Grabner et al. present
an online boosting tracker to update discriminative features and further in [20]
a semi-online method is proposed to handle drifting problem. Kalal et al. [13]
introduce a P-N learning algorithm to learn effective features from positive and
negative samples for object tracking. This tracking method nevertheless is prone
to induce drifting problem when object appearance varies. Fan et al. [15] suggest
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a weighted P-N learning algorithm and combine it with part-based framework for
visual tracking. This method can improve the robustness of tracker in the pres-
ence of occlusion. Babenko et al. [9] utilize the multiple instance learning (MIL)
method for visual tracking, which can alleviate drift to some extent. Whereas
the MIL tracker may detect the positive sample that is less important because it
does not consider the sample importance in its learning process. Further in [21],
Zhang et al. propose the online weighted multiple instance learning (WMIL) by
assigning weight to different samples in the process of training classifier. In [12],
Zhang et al. propose a compressive tracker with an appearance model based on
features extracted in the compressed domain. This tracker easily induce drift
even failure since it is lack of an effective updating strategy in the presence of
appearance variations.

On the contrary, the generative models formulate the tracking problem as
searching for regions most similar to object. These methods are based on either
subspace models or templates. To solve the problem of appearance variations
caused by illumination or deformation, the appearance model is updated dynam-
ically. In [3], the incremental visual tracking method suggests an online approach
for efficiently learning and updating a low dimensional PCA subspace representa-
tion for the object. However, this PCA subspace based representation scheme is
sensitive to partial occlusion. Adam et al. [4] present a fragment-based template
model for visual tracking. This tracking method estimates the target based on
voting map of each part via comparing its histogram with the templates. Never-
theless, static template with equal importance being assigned to each fragment
obviously lowers the performance of tracker. Mei et al. [6] apply sparse repre-
sentation to visual tracking, which can resist occlusion in some degree. However,
this method is prone to cause drift because it does not have any update strategy.
Jia et al. [8] propose a local structural spare appearance model for object track-
ing. This method adopts a online update mechanism to help the tracker adapt
to appearance changes. Kwon et al. [14] decompose the appearance model into
multiple basic observation models to cover a wide range of illumination and
deformation.

Recently, MKL method has been widely used in image classification, object
detection and recognition. In [23], Yang et al. present a group-sensitive MKL for
object categorization. Jawanpuria et al. [24] utilize MKL for non-linear feature
selection and apply it to classification. Vedaldi et al. [25] propose a novel three-
stage classifier with MKL, which combines linear, quasi-linear, and non-linear
kernel SVMs. Zhang et al. [26] proposes an E2LSH based clustering algorithm
which combines the advantages of nonlinear multiple kernel combination meth-
ods, and use it for object detection.

The most related work to ours is [28], in which a multiple kernel boosting
method with affinity constraints is proposed. This method boosts the multiple
kernel learning process, thereby facilitating robust visual tracking in complex
scenes effectively and efficiently. However, their method does not adopt patch-
based representation and hence may be sensitive to partial occlusion. In our work,
we segment object into multiple patches and combine it with a two-stage MKL
method. Consequently, the proposed tracker is more adaptive to appearance
variations.
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3 Multiple Kernel Learning

Support vector machine (SVM) has been successfully applied to numerous clas-
sification and regression tasks. One of the most important problem in these tasks
is to choose an appropriate data representation. In SVM-based approaches, the
data representation is implicitly selected by the kernel function K (x,z;), where
K(-,-) is a function associated with a reproducing kernel Hilbert space [28]. Nev-
ertheless, it is difficult for a single SVM classifier to select a good kernel function
for the training set in some case. To address this issue, MKL algorithm is pro-
posed. MKL is an extension of kernel learning method. By using different types
of kernel to represent different properties of samples (e.g., feature and metric),
MKL provides a unified framework for model combination and selection. One of
the most popular multiple kernel learning methods is SimpleMKL (SMKL) [29]
in which the kernel function is defined as a convex linear combination of kernels

M
fL' l'z Zﬂm .’E,Sﬂi), Zﬁm:]ﬂﬂmzo (1)

m=1 m=1

where K (x,z;) denotes the m!* kernel and f3,, is the corresponding weight.
The SMKL is aimed to simultaneously obtain support vectors, support vector
coefficients and kernel weights by solving the constrained optimization problem
as follows

M
minJ(9) s.t. mzzjlﬁm =1,8m >0 (2)

where

J(5) {f}bgzzﬁ [ fonll,, +OZ£Z

(3)
s.t. ylzfm .T,‘Z' +yib >1-&,6>0,V1

where z; denotes the i*" training sample, y; is the class label for the ‘" sam-
ple, & and C represent its slack variable and penalty factor for slack variable
respectively, H,, denotes the reproducing kernel Hilbert space (RKHS), and each
function f,, belongs to a different RHSH H,, associated with a kernel K,,. The
Formulation (3) can be solved by reduced gradient method [29], which computes
simple differentiation of the dual function of Eq. (3) with respect to 5,

a’ﬁm =—= Zaiajyzyj (xs,25),YVm (4)

where «; represents the dual coefficient of x;. Then the decision function for
binary classification is defined as

Z &Y Z Bm K. ZIJ xz +b (5)
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4 Patch-Based Two-Stage MKL

4.1 Object Segmentation

In this paper, we use multiple patches to represent the target, which utilizes
the local information of object and can effectively handle partial occlusion and
deformation to some extend. Different from [4], we adopt a overlapping slide
window segmentation strategy as shown in Fig.1. After segmentation, we can
obtain a patch set P = {p1,p2, -+ ,pp}, where p; is the i*" patch and P is the
number of patches.

"
II
i

©
Fig. 1. Tllustration of the overlapping slide window segmentation. Image (a) is the

object, image (b) shows the segmentation method and image (c) is the set of object
patches.

4.2 First-Stage Multiple Kernel Learning

In the first stage, we use multiple features (e.g., HIS histogram, HoG [16] and
LBP [17] descriptors) to represent each object patch and apply MKL to the
optimal combination for multiple features. For each i*" patch, it can be represent
with feature set {fi1, fi2, -, fip}, where f; ; denotes the j*(j = 1,2,---, D)
feature and D is the number of features. Our goal is to find a strategy to integrate
these multiple features to maximize the overall discriminative power. MKL has
shown its potential in integrating multiple features in recent research. Therefore,
for each i*" patch, the output margin of first-stage MKL classifier can be written
as the following

L D
D= aw > viaKalfi, fir) +b; (6)

where Fi, (-) denotes the classification function for the i*" patch, K4(-,-) represent
the d*" kernel for the d** feature, L is the number of training samples, D stands
for the number of features and +y; 4 weights the discriminative power of the d‘*
feature. Note that in the first stage, the MKL is only used to obtain the weight
of each feature. Figure2 gives a simple illustration about how we make use of
MKL to obtain the weight of multiple features for each patch.
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Fig. 2. We firstly collect the training samples for the i** patch in (a), and extract D
features for it in (b). The MKL in (c) is then utilized to obtain the weight of multiple
features for the patch ¢ as shown in (d).

With the weight of different features, we can obtain the optimal combination
of multiple features for the each patch. For the i*" patch, we define F; as its
combined feature

Fi=iafir,vigfie, - vinfipl, i=1,2,--- | P (7)

4.3 Second-Stage Multiple Kernel Learning

In the second stage, we apply MKL to assigning different weight to the object
patches according to their importance. In Sect. 4.1, the target is represented by a
patch set P = {p1,p2,- - ,pp} in which p; denotes the i*(i = 1,2,--- , P) patch
associated with a combination feature JF;. Our goal is aimed to use MKL find
an optimal combination for the patches in which the coefficient of each patch
stands for the corresponding weight. Therefore, for the target, the output margin
of MKL classifier can be written as follows

N P
F(F) =Y amys > 6iKi(F, Fy) + b (8)
q=1

i=1

where F*(-) denotes the decision function , K;(-,-) represents the i*" kernel for
the it patch, N is the number of training samples, P stands for the number of
patches and §; weights the discriminative power of the i*" patch. The process of
weighing patches can be shown in Fig. 3.

After obtaining the weight of each patch, we can represent the object with a
feature vector as follows

H = [61F1,00F2,--- ,6pFp] 9)
where H denotes the feature of the target, §; and F; are the weight and combined

feature for the i** patch.

4.4 Classifier

In this section, a classifier is constructed to discriminative the object from the
background. In the initial frame, we randomly sample bounding boxes around
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(2)
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Fig. 3. To start with, we compute the combined features in (b) for all the training
patches in (a). Then MKL in (c) is used to obtain the weight of each patch as shown
in (d).

the tracked target as positive samples and far away from the target as neg-
ative samples. By controlling the distance from the tracked object, the nega-
tive samples contain pure background so that they are capable to differenti-
ate from the target to the most extent. We use sets ST = {si",s;', e ,sj\'H}
and S~ = {s;,5;, - ,55_} to denote the positive samples and the negative
samples, where NT and N~ are the number of positive and negative sam-
ples. For each sample, it can be represented by a feature vector with Eq. (9)
through two-stage MKL. Therefore, we use sets H™ = {H;",H; ,--- ,H%,} and
H~ ={H;,H;,---,Hy_} to represent the features of positive and negative
samples. With these features, we can build a LIBSVM classifier G according to
[30]. For a new sample s associated with the feature Hy, its classification error
can be represented with G(H;). The smaller the classification error is, the more
likely the sample belongs to the object.

5 The Proposed Tracking Method

5.1 Tracking Formulation

Our tracker is implemented via the Bayesian framework. Given the observation
set of target Y* = {y1,y2, -+ , 4} up to the frame ¢, we can obtain estimation
X; by computing the maximum a posterior via

X, = max p(X{[Y?) (10)
X

where Xt denotes the i*" sample at the state of X;. The posterior probability
p(X}|Y?) can be obtained by the Bayesian theorem recursively via

(X YY) o plye|X,) / P(Xo|Xo (X, Y1 dX, (11)

where p(X;|X;_1) and p(X;_1|Y*"!) represent the dynamic model and observa-
tion model respectively.
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The dynamic model indicates the temporal correlation of the target state
between consecutive frames. We apply affine transformation to model the target
motion between two consecutive frames within the particle filter framework. The
state transition can be formulated as

P(Xe|Xi—1) = N(Xy; Xy—1,7) (12)

where ¥ is a diagonal covariance matrix whose elements are the variance of
affine parameters. The observation model p(y;|X;) represents the probability of
the observation y; as state X;. In this paper, the observation is designed by

p(ye| Xy) oc 1 — G(Xy) (13)

where G(X;) is the classification error of the #** candidate. Through Bayesian

framework, we can determine the candidate sample with the smallest classifica-
tion error as the tracking result.

5.2 Online Update

Due to the appearance variations of target, updating is essential. In this paper,
an effective mechanism is proposed to update the classifier G. To start with, we
design a set @. In each frame, after locating the target, we randomly sample
bounding boxes around the tracked target as positive samples and far away
from the target as negative samples. These samples are collected as a group, and
added into the set @. When the set size v reaches a threshold V', we apply to the
set @ to updating the weight (both the feature weight and patch weight). Then
we extract feature for each sample in @ and train them for the classifier G, and
empty @ in the end. However, when accumulating elements into @, the tracking
result may contain significant noise and thus is not reliable if the tracking result
determined by our tracker has a high classification error which is greater than a
threshold E. In this case, we skip this frame to avoid introducing noise into @.

So far, we have introduced the overall procedure of the proposed tracking
algorithm as shown in Algorithm 1.

6 Experiments

In order to evaluate the performance of our tracking algorithm, we test our
method on nine challenging image sequences and compare it with eight state-
of-the-art trackers. These algorithms are Frag tracking [4], TLD tracking [13],
£y tracking [6], IVT tracking [3], MIL tracking [9], CT tracking [12] OAB track-
ing [10] and SPT tracking [5]. Some representative results are displayed in this
section.

The proposed algorithm is implemented in MATLAB and runs at 1.6 frames
on a 3.2 GHz Intel E3-1225 v3 Core PC with 8GB memory. We use three features
(HST histogram, HoG and LBP descriptors) and four types of kernels (linear,
polynomial, RBF kernel, and sigmoid functions) to represent the target. The
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Algorithm 1. Tracking Based on Proposed Method

Initialization:

1: Given initial state of the target, extract NT positive samples
and N~ negative samples;

2: Segment each sample into P patches;

3: Extract D features for each patch, and apply MKL
to obtaining the weights of multiple features;

4: Compute the combined feature for each patch, and apply
MKL to obtaining the weights of patches;

5: Calculate the feature of each sample and utilize LIBSVM
to train them for the classifier G;

Tracking:

6: for ¢t = 2 to the end of the sequence do

7: Generate N, candidates {si}f-vzcl;

8: for n. =1 to N. do

9: Compute the feature H,, for the nt candidate;
10: Calculate the classification error G(Hn,,) ;
11: end for

12: Select the smallest classification error and its index
via e = minG(H,,) and K = min, G(Hn,);

13: The K" candidate target is chosen to be the object;

14: if e> F do

15: Skip this frame;

16: else

17: Extract samples as a group and add this group
to set &;

18: If the size of set @ is equal V', update the weight
and classifier, and then empty set &;

19: end if

20:end for

End

parameters of the proposed tracker are fixed in all experiments. The number of
particles in Bayesian framework is set to 300 to 500. The training frame N is 4
and the size of the set @ in this work is set to 5. The parameter classification
error threshold E is fixed to 0.4 to 0.6.

6.1 Quantitative Comparison

We evaluate the above mentioned trackers via center location error and overlap-
ping rate [31], and the comparing results are shown in Tables1 and 2. Figure4
shows the center location error of the trackers on nine test sequences. Overall,
the tracker proposed in this paper outperforms the state-of-the-art algorithms.
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Table 1. Center location errors (in pixels). The best result is shown in red and the
second best in blue fonts.

y [ ¢ [Frag [ IVT [ MIL [ TLD | CT [OAB] SPT | Ous |
Basketball 131.2 ] 16.2 | 68.4 [94.83[129.3 | 19.0 | 86.4 | 4.8 | 5.2
Bicycle | 49.0 | 55.7 | 7.8 | 10.5 | 10.6 | 51.5 | 60.9 | 5.4 | 4.9
Bolt | 361.7 | 100.6 | 374.9 | 365.4 | 87.8 [348.0| - | 6.8 | 6.6
Cup | 29 | 7.0 | 1.8 [40.60| 3.1 [25.13| 445 | - | 2.8
Deer | 91.7 | 93.4 |222.5|214.0 | 47.8 | 235.9 | 27.6 | 97.0 | 9.8
Face | 54 | 4.8 | 62.5 [36.22| 6.9 |57.07| 10.5 | 182 | 4.5
Jogging | 14.5 | 9.3 |130.0 | 146.1 | 7.2 |124.7| - - | 10.2
Lemming| 179.5 | 143.7 | 182.9 | 135.3 | 17.04 | 82.4 | 16.2 | 7.3 | 5.8
Woman | 134.1 | 106.2 | 138.6 | 116.3 | 72.6 |108.8 | - |12.2 | 8.2

Average| 101.3 [ 56.2 [ 114.7 [119.2 [ 38.4 [116.9 |

341]19.9] 6.4 |

Table 2. Overlapping rate. Red fonts indicate the best performance while the blue
fonts indicate the second best.

‘ 0 ‘ Frag ‘ IvT ‘ MIL ‘ TLD ‘ cT ‘ OAB ‘ SPT ‘ Ours ‘
Basketbal] 0.03 | 0.55 | 0.41 | 0.21 | 0.09 | 0.61 | 0.16 | 0.83 | 0.81
Bicycle | 0.31 | 0.25 | 0.33 | 0.43 | 0.39 | 0.29 | 0.24 | 0.55 | 0.72
Bolt 0.02 | 0.20 | 0.01 | 0.01 | 0.14 | 0.01 - 0.73 | 0.67
Cup 0.74 | 0.67 | 0.71 | 0.39 | 0.72 | 0.53 | 0.76 - 0.78
Deer 0.13 | 0.10 | 0.03 | 0.03 | 0.49 | 0.04 | 0.59 | 0.10 | 0.68
Face 0.85 | 0.86 | 0.36 | 0.55 | 0.77 | 0.38 | 0.79 | 0.74 | 0.88
Jogging | 0.57 | 0.65 | 0.13 | 0.01 | 0.73 | 0.13 - - 0.68
Lemming| 0.14 | 0.13 | 0.12 | 0.12 | 0.30 | 0.33 | 0.61 | 0.65 | 0.81
Woman | 0.06 | 0.19 | 0.16 | 0.13 | 0.29 | 0.16 - 0.60 | 0.62
]Average\ 0.30 \ 0.41 \ 0.27 \ 0.22 \ 0.44 \ 0.26 \ 0.49 \ 0.63 \ 0.74‘

6.2 Qualitative Comparison

Heavy Occlusion: Deformation is a challenge for tracker, because the tem-
plate features have completely changed when deformation occurs. As shown in
Fig.5, MIL, CT, IVT, OAB, TLD and #; do not have good performances in
the sequences Bolt and Jogging. Differently, Frag and SPT have relatively better
tracking results in these sequences, because part-based trackers are less sensitive
to structure variation than holistic appearance. Whereas, the lack of effective
updating strategy still easily cause drifting away even failure. Our tracker have
obvious advantage in handling structure deformation even in high frequency,
since some local patches of the target remain the same in the presence of the
deformation and with the help of effective updating mechanism, our tracking
method robustly adapts to the deformation.
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Fig. 4. Quantitative evaluation in terms of center location error (in pixel).

Motion Blur: Fig.5 demonstrates experimental results on two challenging
sequences (Deer and Lemming). Because the target undergoes fast and abrupt
motion, it is more prone to cause blur, which causes drifting problem. It is worth
noticing that the suggested approach in this paper performs better than other
algorithms. When motion blur happens, our tracker can still effectively repre-
sent the target appearance. Besides, our updating mechanism can resist motion
blur to some degree. Hence our tracker will not be undermined by the abrupt
movement.

Deformation: Deformation is a challenge for tracker, because the template fea-
tures have completely changed when deformation occurs. As shown in Fig. 5,
MIL, CT, IVT, OAB, TLD and {; do not have good performances in the
sequences Bolt and Jogging. Differently, Frag and SPT have relatively better
tracking results in these sequences, because part-based trackers are less sensitive
to structure variation than holistic appearance. Whereas, the lack of effective
updating strategy still easily cause drifting away even failure. Our tracker have
obvious advantage in handling structure deformation even in high frequency,
since some local patches of the target remain the same in the presence of the
deformation and with the help of effective updating mechanism, our tracking
method robustly adapts to the deformation.
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(b) Bicycle

(c) Bolt

TLD

SPT

Ours 1§

HEEE Frag ====' Ll ====' IVT MIL = CT OAB

Fig. 5. Screenshots of some sample tracking results.
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Background Clutter: The sequences Cup and Basketball in Fig. 5 are challeng-
ing as the background cluttered and the target undergoes the scale variation.
Our tracker performs well in this sequence as the target can be differentiated
from the cluttered background with the use of our two-stage MKL method. In
addition, the updating scheme is also robust to the complex background.

7 Conclusion

In this paper a novel patch-based tracking algorithm is proposed by using two-
stage multiple kernel learning. Our method can automatically distribute different
weight to the object patches according to their importance, which improves the
discriminative power of object patches as a whole. Experiments on challenging
image sequences demonstrate that our method performs favorably against several
state-of-the-art methods.
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