
4P VES: A Collusion-Resistant Accountable
Virtual Economy System

Hong Zhang1, Xiaolei Dong2(B), Zhenfu Cao2(B), and Jiachen Shen1

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

{zefan,jiachenshen}@sjtu.edu.cn
2 Shanghai Key Lab for Trustworthy Computing, East China Normal University,

Shanghai 200062, China
{dongxiaolei,zfcao}@sei.ecnu.edu.cn

Abstract. Virtual economy develops rapidly and accounts for quite a
large proportion in the entire economy. Markets of virtual goods, such
as games, apps and cloud services, are quite active and contribute a lot
to the revenue of platforms and providers. The existing virtual economy
systems mainly rely on the trustworthiness of the platforms who maintain
the accounts of all participants, which is short of transparency. Another
concern is how to maintain the market order when conspiracy between
participants happens. In this paper, we extend the Verito scheme (NDSS
2013) and introduce a new participant Payment to obtain our 4P VES
scheme, in which collusion between two parties can be detected while
satisfying required properties of transparency and accountability at the
same time. We also analyze the properties and prove the security of our
scheme. Finally, we evaluate the additional cost compared with Verito
and find that our scheme is a cost affordable and practical one which
enhances the system’s independency and security.

Keywords: Virtual economy · E-coin · Homomorphic commitment ·
Dynamic accumulator

1 Introduction

With the rapid development of Internet, network economy expands to nearly
all kinds of market segments and accounts for a large proportion in the entire
economy. The recent years have seen the boom of transactions of virtual goods
and services, including online games, apps and cloud services. According to Face
book annual report 2013, payments revenue, generated almost exclusively from
game applications, in the fourth quarter is $241 million. It is the largest source of
revenue after advertising [1]. For cloud services, it is estimated that the Amazon
Web Service hits $3.8 billion revenue in 2013. In China, Ten cent, one of the
leading providers of internet value-added services, declares that the revenue of
virtual goods and services, mainly contributed by online games, reached 11,972
million Yuan, or about 2 billion dollars, in the fourth quarter of 2013, accounting
for 70 percent in the total revenue [2].
c© Springer International Publishing Switzerland 2015
L.C.K. Hui et al. (Eds.): ICICS 2014, LNCS 8958, pp. 61–73, 2015.
DOI: 10.1007/978-3-319-21966-0 5

62 H. Zhang et al.

Usually these virtual economies are carried out on platforms using virtual
currencies rather than real ones. Due to the high frequency and small-valued
size of virtual transactions, it is inconvenient for both sides to use a real cur-
rency. Thus the platforms issue virtual currencies, which can be sold in bulk,
to perform the function of circulation. There are a number of virtual currencies
now, including Face book credits, Q-coins (issued by Ten cent), U-coins (issued
by Sina, a top portal in China), etc. Due to the lack of strong supervision and
effective regulation in virtual economy, platforms are able to issue virtual cur-
rency without any limit. This makes the exchange rate from virtual coins to real
currency unpredictable. Additionally, the virtual economy is globally oriented,
making the issue more complicated. Because of the very divergent pricing poli-
cies and floating exchange rates from region to region, the possibility of arbitrage
should also be taken into consideration.

Raghav Bhaskar et al. proposed a solution Verito [8] in NDSS 2013 which
provides four properties viz., transparency, fairness, non-repudiation and scala-
bility to address the issue mentioned above. The main idea of their scheme is to
make a commitment which binds a virtual coin with a price in real currency. [8]
assumes that no two of the three parties (i.e. Platform, Merchant and User) will
collude to compromise the third. However, according to the property of fairness
they mentioned, the merchants cannot distinguish between any two coins even
if they are of different real values, so the User does not have incentive to check
the coin’s real value. This leaves room to the conspiracy between Platform and
User. Thus it is a necessity to propose an anti-collusion scheme.

Our Contribution: We modify the Verito to obtain our own solution, in which
collusion can be detected while supporting the essential properties at the same
time. As the majority of transactions take place online and third-party payments
such as Paypal, Alipay are widely adopted, we introduce the third-party payment
into our system to defend against collusion. We propose 4P VES, a virtual econ-
omy system composed of four parties (Platform, Provider, Player and Payment)
which provides transparency and accountability even allowing the existence of
collusion. We also analyze the security as well as the feasibility in our paper.

In summary, this paper makes three main contributions:

– First, we identify the possibility of collusion between Platform and Player in
virtual economy system as a realistic threat;

– Second, we modify Verito to obtain an anti-collusion system 4P VES with the
combination of cryptographic primitives: commitment and accumulator.

– Finally, we discuss the properties of our system and the security under concrete
assumptions.

The rest of the paper is organized as follows: We describe the system and define
the model in Sect. 2. Section 3 gives the preliminaries including cryptographic
primitives and assumptions. Section 4 presents the concrete construction of our
scheme. Properties and security are analyzed in Sect. 5. We evaluate its perfor-
mance and compare it with different schemes in Sect. 6. We review related work
in Sect. 7 and finally conclude in Sect. 8.

4P VES: A Collusion-Resistant Accountable Virtual Economy System 63

2 System Model

4P VES consists of four parties: Platform, Provider, Payment and Player.
(4P refers to these four parties whose names all start with P). The Platform (Face
book, Ten cent etc.) provides an ecosystem for the transaction. It maintains the
resources of system and deals with both the Provider and the Player. The Provider
is the company or individual who is registered with Platform and provides vir-
tual goods or services. Online games and application vendors are examples of the
Provider, such as King, Wooga (registered in Face book). Players are the cus-
tomers who buy virtual goods and services with virtual currency. And Payment
(Paypal, Alipay, etc.) is the third party in charge of pay and encashment.

Fig. 1. Participants and interactions

Virtual currency, referred as e-coin in this paper, is adopted during the
transaction. Platform issues e-coins and maintains the virtual accounts of both
Provider and Player. Player purchases e-coins in bulk from Platform and pay
with real currency through Payment. Player spends e-coins to buy virtual goods
and services, such as apps and in-game props supplied by Provider. And Provider
offers virtual goods or services in exchange for e-coins which can be encashed in
bulk from Platform through Payment later. Payment plays a vital role in our sys-
tem and is responsible for payment and encashment. The additional duty of Pay-
ment is to supervise the behavior of Platform and Player, checking whether there
is conspiracy. It is reasonable to introduce the Payment party in our scheme.
First, third party payment such as Paypal and Alipay are widely adopted in real
world. Second, Payment is much more reliable than common users. Considering
the large number of users registered, it is infeasible to verify and regulate all
the users’ behavior. Third party payment is under the public and government’s
supervision and is much easier for regulation. Furthermore, third party payment
reduces the computation burden of clients, which makes the system more prac-
tical since the clients tend to use terminals with limited computational capacity.
Therefore, the party, Payment, is introduced in our system.

64 H. Zhang et al.

The main interactions of the virtual economy (Fig. 1) are listed as follows.

(1) Purchase e-coins (Participants: Player, Platform, Payment):

– Player chooses the quantity and type of e-coins to buy from Platform.
– Platform generates the e-coins requested by Player.
– Payment verifies whether the real value bound to the e-coins is equal to the

posted price. If the verification succeeds, Payment authenticates the e-coins
by a signature scheme and transfers real currency from Player’s account to
Platform’s. Otherwise, it rejects the Purchase action.

– Player receives e-coins together with the signature of Payment.

(2) Consume (Participants: Player, Provider, Platform):

– Player chooses the products (including goods and services) to buy and sends
the e-coins as posted price to Provider.

– Provider checks the e-coins whether they are signed by Payment. Provider
then generates a Transaction No. (TNO) and sends it back to Player.

– Player sends the TNO together with the e-coins to Platform.
– Platform verifies the e-coins, transfers the e-coins from Player’s virtual account

to Provider’s and sends back a receipt to Player.
– Player forwards the receipt to Provider to get the products.

(3) Encash (Participants: Provider, Platform, Payment):

– Provider sends the e-coins to Platform to exchange for real currency.
– Platform checks the authenticity of the e-coins. If it is valid, Platform produces

a proof that convinces the Provider that the aggregate value of the cashed e-
coins is v without revealing the value of any individual e-coin.

– Provider reviews the proof.
– Platform removes the e-coins from Provider’s virtual account.
– Payment transfers real currency from Platform’s account to the Provider’s.

3 Preliminaries

As our scheme follows [8] closely, the same modern cryptographic primitives,
commitment and dynamic accumulator, are employed. In addition, to obtain a
collusion-free system, we adopt another much more familiar primitive, digital
signature, which is omitted here to save space.

3.1 Commitment

A commitment scheme includes two main phases: committing and revealing.
Vividly, it can be thought of as analogous to an envelope. When a user Alice
wants to form a commitment to a certain value, she puts the value into the
envelope and seals it. The envelope is sealed in a special way that no one except
Alice can open it. Then the envelope can be sent as a commitment to another
user Bob. When it is time to reveal the value, Alice opens the envelope. There

4P VES: A Collusion-Resistant Accountable Virtual Economy System 65

are two properties of commitment: hiding and binding. The hiding property:
As the value is sealed in the envelope, Bob cannot learn any information about
the value before Alice reveals it. The binding property: Because the envelope is
sealed, Alice cannot change the value in the envelope without Bob’s notice. We
denote the commitment of value m as c = Com(m) and the revealing phase as
OpenCom(c, r,m), r is the randomness used to form the commitment.

One more property required in our commitment scheme is additive homomor-
phism, i.e. Com(m1 + m2) = Com(m1)

⊙
Com(m2). There are several homo-

morphic commitment schemes such as [3,12,14,15]. To best suit our purpose, we
adopt the Pedersen commitment [15], which relies on the security of the Discrete
Logorithm assumption. Following is the main construction of [15].

ComSetup(): generate large primes p and q such that q|(p − 1). Let Gq �
Z

∗
p, |Gq| = q. Randomly choose a generator g ∈ Gq and an element h ∈ Gq

such that loggh is unknown.

Com(m): to commit an element m ∈ Zq, choose r ∈ Zq at random and compute
c = gmhr.

OpenCom(c, r,m): output 1 if gmhr ≡ c, otherwise 0.

3.2 Dynamic Accumulator

An accumulator scheme, introduced by Benaloh and de Mare [7], allows aggrega-
tion of a large set of values into one constant size value. Camenisch and Lysyan-
skaya extended the accumulator to dynamic accumulator (DA), where the cost
of adding or deleting elements from the accumulator and witness updating do
not depend on the size of the accumulated set [5,10]. Here is the construction of
[4,10] adopted in our implementation.

Fk is a family of functions that correspond to exponentiating modulo safe-
prime products with length k. fn ∈ Fk, fn(u, x) = ux mod n, n = pq, p = 2p′ +
1, q = 2q′ +1, where p, p′, q, q′ are all prime, x ∈ X = {a |a is prime, a �= p′, q′}.

The accumulator value will be updated when an element is added or deleted.
Adding an element x̃ ∈ X to the accumulator v:

v′ = AccAdd(v, x̃) = fn(v, x̃) = vx̃ mod n;

Deleting an element x̃ from the accumulator v:

v′ = AccDel(v, x̃) = D((p, q), v, x̃) = vx̃−1 mod (p−1)(q−1) mod n.

For each element x accumulated in v, there is a corresponding witness w such
that wx ≡ v.

AccV erify(v, x) = 1, iff wx ≡ v mod n.

Updating the witness w of x after x̃ has been added:

w′ = fn(w, x̃) = wx̃ mod n;

66 H. Zhang et al.

Updating the witness w of x after x̃(x̃ �= x) has been deleted:

w′ = wbv′a mod n, ax + bx̃ = 1.

And multi-elements can be added or deleted at once. Let πa be the product of
elements to be added while πd be the product of ones to be deleted. Then

v′ = vπaπ−1
d mod (p−1)(q−1) mod n;

w′ = (wπa)bv′a mod n, ax + bπd = 1.

3.3 Cryptographic Assumptions

The construction of our scheme is based on the following assumptions.

Discrete Logarithm (DL) Assumption: given a group G with generator g,
|G| = p, for all non-uniform probabilistic polynomial-time (PPT) algorithms A,

Pr
h←G

[A(h) = logg h] is negligible

As the Pohlig-Hellman algorithm can solve the DL problem efficiently in the
case when p − 1 is a product of small primes, usually p is required to be a safe
prime (p = 2q + 1, q is prime).

Strong RSA Assumption: given a modulus n of unknown factorization and
a ciphertext c, it is infeasible to find a pair (m, e) such that c = me mod n.

4 Scheme Construction

This section details the key parts of our system using the cryptographic primi-
tives mentioned above. Other familiar primitives such as symmetric encryption
and signature are also used. To best adapt our scheme, we adopt DES as Ek(r,m)
while RSA signature is used in function sign().

(1) Setup
Platform sets the system parameters, generates a signing keypair(vk, sk) and a
symmetric key k to encrypt the commitment’s open key which should be hidden
from the Provider. It also runs the ComSetup() to set the parameters used
in commitment: p, q, g, h and Accgen() to initiate the registered Players’ and
Providers’ accumulator values.
(2) E-coin construction
There is a list mapping the e-coin’s nominal value to its real value (including
the currency type and amount) published by the Platform (Shown in Table 1).
E-coin = (Com(m), Ek(r,m)) where Com(m) = gmhr, and r is chosen randomly
from Zq.
(3) Purchase e-coins
Player chooses the type and quantity of e-coins to buy. Platform searches the
corresponding Identity Number mi of the chosen e-coin type and calls the

4P VES: A Collusion-Resistant Accountable Virtual Economy System 67

Table 1. Example of E-coins list

ID NO E-coin Type Real Price

m1 Type1 $0.1

m2 Type2 £0.6

m3 Type3 �10

· · · · · · · · ·

Table 2. Number of rounds of interactions

phases

rounds schemes
Verito 4P VES Variant

Purchase 2 4 3

Consume 5 7 6

Encash 2 4 3

construction function to generate the required e-coins. Then the e-coins are sent
together with the open keys to Payment. Payment opens the commitments (using
the homomorphic property here) to check the commited value and sends them
to Player after signing. It also transfers corresponding amount of real currency
from Player’s account to Platform’s. The Platform updates the accumulator of
the Player’s e-coins by AccAdd and sends the accumulator value to Player. Player
updates all of his e-coins’ witness, signs the accumulator value and sends back
the signed value to Platform as a receipt. The detail is showed in Algorithm 1.

Algorithm 1. Purchase e-coins
Require: The type typei and number #num of e-coins to buy.

Platform
1: mi ← search(typei) // search the ID of the typei e-coin
2: ECOINS ← ∅
3: for k = 1; k <= #num; k + + do
4: Com(mi) = gmihri ;
5: Ek(mi, ri);
6: coink ← (Com(mi), Ek(mi, ri))
7: σ(coink) = signsk(coink)
8: ECOINS = ECOINS ∪ {coink}
9: end for

10: C =
∏#num

i=1 Com(mi)

11: Openkey =
∑#num

i=1 ri

12: vid = AccAdd(vid, C) //vid is the accumulator value of Player′
ids e-coins

Payment
13: M =

∑
mi

14: if OpenCom(C, Openkey, M) == 1 then
15: for k = 1; k <= #numn; k + + do
16: σ(coink) = signpsk(coink) //psk is the private key of Payment
17: end for
18: transfer() // transfer money from real cash account
19: end if

Player
20: for each coini accumulated in vid do
21: witi = WitUpdate(witi, C) = fn(witi, C).
22: end for
23: σ(vid) = signpskid

(vid) //pskid is the private key of Playerid

(4) Consume
Player initiates a transaction by sending the e-coins as posted price to the
Provider to purchase virtual products. The Provider verifies the received e-coins
by checking the signatures of Payment. If the verification succeeds, it accepts the

68 H. Zhang et al.

transaction and sends back a Transaction No. (TNO) to the Player. Then the
Player sends e-coins to Platform together with the TNO and witnesses. Platform
checks whether these e-coins are in the whitelist of the Player by AccV erify. If
it is valid, it removes the e-coins from the Player’s accumulator by AccDel and
adds them to the Provider’s by AccAdd. It sends back the updated accumulator
values of the Player and the Provider to the Player. The Player updates the
remaining e-coins’ witnesses and forwards the Provider’s accumulator value to
the Provider. The Provider updates its e-coins’ witnesses and provides the Player
with the chosen products. At last, the Player and Provider sign their accumulator
values and send back to the Platform. Algorithm 2 shows the detail.

Algorithm 2. Consume
Require: The products to buy and the required {ecoini}, ecoini = (Com(mi), Ek(ri, mi))

Provider(prid)
1: for each ecoini ∈ {ecoini} do
2: V erifySignpvk(ecoini)//pvk is the public key of Payment
3: end for
4: TNO ← TransactionNO.

Platform
5: for each ecoini ∈ {ecoini} do
6: AccV erify(vid, Com(mi))//check the ecoini is in the Player’s accumulated value vid

7: end for
8: vid = AccDel(vid,

∏
Com(mi))//vid is the accumulator of Playerid

9: vprid = AccAdd(vprid,
∏

Com(mi))//vprid is the accumulator of Providerid

Player(id)
10: for each ecoini accumulated in vid do
11: witi = WitUpdate(witi,

∏
Com(mi))

12: end for
13: σ(vid) = signpskid

(vid) //pskid is the private key of Playerid

Provider(prid)
14: for each ecoini accumulated in vprid do
15: witi = WitUpdate(witi,

∏
Com(mi))

16: end for
17: σ(vprid) = signprskid

(vprid) //prskid is the private key of Providerid

18: provide products

(5) Encash
Provider sends a batch of e-coins to the Platform in exchange for real currency.
The Platform verifies the e-coins and checks whether they are accumulated in the
Provider’s whitelist. If the verification succeeds, it computes the total value of
the e-coins, decrypts the keys and computes the Openkey to open the product
of commitments πcommitments according to the homomorphism. The Provider
opens πcommitments with Openkey and checks whether the sum of money equals
to the one Platform announced. The Platform also removes the e-coins from
the Provider’s accumulator by AccDel and sends back the updated accumulator
value. The Provider updates the remaining e-coins’ witnesses, signs the accu-
mulator value and sends back to the Platform. At last, the Payment transfers
the money (after deducting the Platform’s profit) from Platform’s real currency
account to the Provider’s. See the detail in Algorithm 3.

4P VES: A Collusion-Resistant Accountable Virtual Economy System 69

Algorithm 3. Encash
Require: The set of e-coins to cash {ecoini}, ecoini = (Com(mi), Ek(ri, mi))

Platform
1: for each ecoini ∈ {ecoini} do
2: AccV erify(vprid, Com(mi))//check the ecoini is in the Provider’s accumulated value vprid

3: end for
4: C =

∏
Com(mi)

5: Openkey =
∑

ri

6: M =
∑

mi

7: vprid = AccDel(vprid,
∏

Com(mi))//vprid is the accumulator of Providerid

Provider(prid)
8: if OpenCom(C, Openkey, M) == 1 then
9: for each ecoini remained in vprid do

10: witi = WitUpdate(witi, C)
11: end for
12: σ(vprid) = signprskid

(vprid) //prskid is the private key of Providerid

13: end if
Payment

14: transfer()

5 Property Analysis

The properties of e-coin and virtual economy are given in this section. We define
the properties formally as well as the attack model. We also analyze the security
and discuss the cryptographic assumptions on which it is based.
Consistency: Once an e-coin is generated, the Platform should not be able to
change its real value. The adversary is the Platform in this game.

– The adversary generates an e-coin with real value m;
– The adversary changes the value m to m′ without other party’s notice.

Formally, the adversary wins if it can find m′ �= m that Com(m′) = Com(m).
Analysis:

Pr[Adv wins] = Pr[Com(m′) = Com(m) ∧ m′ �= m] = Pr[gm′
hr′

= gmhr ∧ m′ �= m].

r′ = (m−m′)(loggh)−1+r, according to the DL Assumption, it is with negligible
probability to compute r′.
Indistinguishability: The Provider cannot distinguish between different
e-coins with the same nominal value. This is a necessity to ensure the fairness
of the virtual market as the Provider cannot give priority to the Player whose
e-coins with higher real value. In this attack game, the adversary is the Provider
and the challenger is the Player. The model is:

– Challenger randomly picks t ∈ {0, 1} and sends ecoint to adversary. ecoin0

and ecoin1 are two coins with the same face value but different real values.
– The adversary responds t′ ∈ {0, 1}
The adversary wins if it guess t′ = t with probability 1/2+ ε, ε is non negligible.

Analysis: c0 = gm0hr0 mod p, c1 = gm1hr1 mod p. c0 and c1 are
information-theoretically indistinguishable since the randomness of r and r′.
Unreusability: The Player cannot re-spend an e-coin and the Provider should
not be able to encash an e-coin more than once.

70 H. Zhang et al.

In this game, the challenger is the Platform. The adversary is the Player in
re-spending and the Provider in re-encashment.

– The adversary generates two sets of e-coins: S1, S2, S1 ∩ S2 �= ∅.
– The challenger removes the e-coins ∈ S1 from the adversary’s accumulator.
– The challenger verifies the e-coins ∈ S2.

The adversary wins if the verification succeeds.
Analysis: When S1 is removed from S(accumulator value v), v is updated

to v′, v′ is the accumulator of S′(S′ = S − S1). If the verification in the third
step succeeds, for each e-coin ∈ S2, it needs to generate a valid witness. Let
x ∈ S1∩S2, then x /∈ S′, we need to find the witness w′ of x such that w′x = v′ =
w
∏ {xi|xi∈S′}, according to [10], it can be reduced to the strong RSA problem.

Transparency: All the real cash inflow should be accountable without rely-
ing on the assumption of the Platform’s honesty. Let EcoinS denote the set
of e-coins that have been sold. Let Cashed and Uncashed denote the sets of
all e-coins which have been encashed and not cashed respectively. V alue(S)
denotes the function computing the aggregate real value of the e-coins set S.
Then V alue(Ecoins) = V alue(Cashed) + V alue(Uncashed) holds;

In this game the challenger is the Provider and the adversary is the Platform.

– The challenger sends the e-coins set {(Com(mi), Ek(ri,mi))} to the Platform
together with the witnesses.

– The adversary responds to the challenger with the Openkey to reveal the
aggregated commitment πCom(mi) as a proof of the e-coins’ total value M .

– The challenger opens the πCom(mi) with Openkey to check the value M .

The adversary wins if M = Open(πCom(mi), Openkey) while M �= ∑
mi.

Analysis: Pr[Adv wins] = Pr[πCom(mi) = gMhOpenkey ∧ M �=
∑

mi]

= Pr[g
∑

mih
∑

ri = gMhOpenkey ∧ M �=
∑

mi] = Pr[hOpenkey = g
∑

mi−Mh
∑

ri].

Openkey = (
∑

mi − M)(loggh)−1 +
∑

ri, finding such an Openkey can be
reduced to the DL problem.

Collusion-Resistance: As discussed in the previous sections, it is possible for
the Platform to collude with the Player. The Platform creates an e-coin with
committed value m while selling it at a price m′. 4P V ES introduces Payment
to defend this conspiracy. The Payment will open the commitment before signing
the e-coins. Provider will verify the Payment’s signature whenever it receives an
e-coin. As no one can forge the signature of Payment, there is no possibility of
collusion between Platform and Player without the Provider’s notice.

6 Performance Evaluation

In this section, we evaluate the performance of 4P VES and compare it with
Verito. As a new party Payment is introduced, additional cost of computation

4P VES: A Collusion-Resistant Accountable Virtual Economy System 71

Fig. 2. Each party’s cost in Purchase Fig. 3. Avg. cost of Purchase with diff.
sizes

and communication is inevitable. We will show the extra cost is acceptable. We
also try to optimize the performance by proposing a variant of 4P VES.

During the purchase phase, as the commitment is opened by the Payment
rather by the Player in Verito to detect conspiracy in our solution, the cost
of this step is transferred from the Player to the Payment. And the Payment
is also in charge of signing the e-coins which brings about extra cost. Figure 2
describes the cost of each party in purchase phase. As the cost of generating
e-coins depends on the number of e-coins, we assume the Player buys a batch of
50 e-coins in our evaluation. The total time cost of Player and Payment is about
23 % higher than the cost of Player in Verito.

As the commitment is homomorphic and the accumulator is dynamic, the cost
of opening commitment and updating accumulator can be amortized. Therefore
the more e-coins in a batch, the less average cost it takes. Figure 3 shows the
performance of purchase phase with different batch sizes.

Our solution adds interactions between the participants to make the sys-
tem less rely on the Platform’s honesty. Every time when the accumulator value
changes, the Platform needs to require the corresponding signature. Table 2
compares the interaction rounds of different solutions. The variant version of
4P VES is a tradeoff between security and communication efficiency. In the vari-
ant, the Player or Provider sends the accumulator value’s signature together with
the transaction request messages which will save one interaction. The expense
is that the Platform merely holds the last accumulator value rather than the
current one’s signature which leaves a little room for the Platform’s trick.

As evaluated above, although extra cost and delay are introduced in our
solution, it is still within acceptable tolerance. That is to say, our solution is
practical that enhances the Verito with little overhead.

7 Related Work

Our work is closely related to [8] in which the possibility of collusion between
participants is not considered and the account’s consistency relies on the honesty
of platform. Our work is based on [8] and tries to avoid some of its shortcomings.

72 H. Zhang et al.

Other electronic cash systems focus on the anonymous and traceable payment
[16]. Schemes [11,17] introduce the trusted third party (TTP) to trace double-
spending. And only when some vital crime happens will the tracing be performed.
Double-spending tracing schemes without TTP are also proposed in [6,9]. In [13],
a provably secure E-cash scheme with tracing is proposed.

8 Conclusion and Future Work

In this paper, an accountable and transparent virtual economy system with four
participant parties is proposed based on the scheme of Verito. Our system retains
the properties of Verito while further study the anti-collusion problem. We intro-
duce a new participant Payment to detect possible collusion. Our solution also
enhances the security and reduces the dependency on Platform’s honesty.

Although our solution solves the problem of collusion, it introduces extra
cost. How to reduce computation and communication overhead and make the
system more efficient and feasible is an interesting problem. In future, we will
also extend our scheme to other application situations.

Acknowledgement. This work is supported in part by the National Natural Science
Foundation of China under Grant 61321064, Grant 61371083, Grant 61373154, and
Grant 61411146001, and in part by the Specialized Research Fund for the Doctoral
Program of Higher Education of China through the Prioritized Development Projects
under Grant 20130073130004.

References

1. Face book annual report (2013). http://investor.fb.com/annuals.cfm
2. Ten cent financial reports (2013). http://tencent.com/en-us/content/ir/rp/2013/

attachments/201302.pdf
3. Abe, M., Cramer, R., Fehr, S.: Non-interactive distributed-verifier proofs and prov-

ing relations among commitments. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS,
vol. 2501, pp. 206–223. Springer, Heidelberg (2002)

4. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for
DDH groups and their application to attribute-based anonymous credential sys-
tems. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 295–308. Springer,
Heidelberg (2009)

5. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

6. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact E-cash and sim-
ulatable VRFs revisited. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS,
vol. 5671, pp. 114–131. Springer, Heidelberg (2009)

7. Benaloh, J.C., de Mare, M.: One-way accumulators: a decentralized alternative
to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765,
pp. 274–285. Springer, Heidelberg (1994)

8. Bhaskar, R., Guha, S., Laxman, S., Naldurg, P.: Verito: A practical system for
transparency and accountability in virtual economies. In: NDSS (2013)

http://investor.fb.com/annuals.cfm
http://tencent.com/en-us/content/ir/rp/2013/attachments/201302.pdf
http://tencent.com/en-us/content/ir/rp/2013/attachments/201302.pdf

4P VES: A Collusion-Resistant Accountable Virtual Economy System 73

9. Camenisch, J.L., Hohenberger, S., Lysyanskaya, A.: Compact E-cash. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer,
Heidelberg (2005)

10. Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to effi-
cient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, p. 61. Springer, Heidelberg (2002)

11. Canard, S., Delerablée, C., Gouget, A., Hufschmitt, E., Laguillaumie, F., Sibert, H.,
Traoré, J., Vergnaud, D.: Fair E-cash: be compact, spend faster. In: Samarati, P.,
Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735,
pp. 294–309. Springer, Heidelberg (2009)

12. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. J. Cryptology
23(4), 546–579 (2010)

13. Lian, B., Chen, G., Li, J.: Provably secure e-cash system with practical and efficient
complete tracing. Int. J. Inf. Secur. 13(3), 271–289 (2014)

14. Lipmaa, H.: Verifiable homomorphic oblivious transfer and private equality test.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 416–433. Springer,
Heidelberg (2003)

15. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

16. Stadler, M.A., Piveteau, J.-M., Camenisch, J.L.: Fair blind signatures. In: Guillou,
L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 209–219.
Springer, Heidelberg (1995)

17. Zhang, J., Ma, L., Wang, Y.: Fair e-cash system without trustees for multiple
banks. In: International Conference on Computational Intelligence and Security
Workshops, CISW 2007, pp. 585–587. IEEE (2007)

	4P_VES: A Collusion-Resistant Accountable Virtual Economy System
	1 Introduction
	2 System Model
	3 Preliminaries
	3.1 Commitment
	3.2 Dynamic Accumulator
	3.3 Cryptographic Assumptions

	4 Scheme Construction
	5 Property Analysis
	6 Performance Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

