
Protecting Elliptic Curve Cryptography Against
Memory Disclosure Attacks

Yang Yang1,2,3, Zhi Guan1,2,3(B), Zhe Liu4, and Zhong Chen1,2,3

1 Institute of Software, School of EECS,, Peking University, Beijing, China
{yangyang,guanzhi,chen}@infosec.pku.edu.cn

2 MoE Key Lab of High Confidence Software Technologies (PKU), Beijing, China
3 MoE Key Lab of Network and Software Security Assurance (PKU), Beijing, China
4 Laboratory of Algorithmics, Cryptology and Security, University of Luxembourg,

Walferdange, Luxembourg
zhe.liu@uni.lu

Abstract. In recent years, memory disclosure attacks, such as cold boot
attack and DMA attack, have posed huge threats to cryptographic appli-
cations in real world. In this paper, we present a CPU-bounded mem-
ory disclosure attacks resistant yet efficient software implementation of
elliptic curves cryptography on general purpose processors. Our imple-
mentation performs scalar multiplication using CPU registers only in
kernel level atomatically to prevent the secret key and intermediate data
from leaking into memory. Debug registers are used to hold the private
key, and kernel is patched to restrict access to debug registers. We take
full advantage of the AVX and CLMUL instruction sets to speed up the
implementation. When evaluating the proposed implementation on an
Intel i7-2600 processor (at a frequency of 3.4 GHz), a full scalar multipli-
cation over binary fields for key length of 163 bits only requires 129 μs,
which outperforms the unprotected implementation in the well known
OpenSSL library by a factor of 78.0 %. Furthermore, our work is also
flexible for typical Linux applications. To the best of our knowledge,
this is the first practical ECC implementation which is resistant against
memory disclosure attacks so far.

Keywords: Elliptic curve cryptography · Efficient implementation ·
Memory disclosure attack · Cold boot attack · AVX · CLMUL

1 Introduction

Main memory has long been commonly used to store private keys at runtime for
various cryptosystems because of the assumption that memory space isolation
mechanism of operating system and volatility of dynamic RAM (DRAM) prevent
access from adversaries both logically and physically. However, the presence of
cold boot attack [5] shows acquiring memory contents is much easier than most
people thought. Cold boot attack leverages the data remanence property which
is a fundamental physical property of DRAM chips, because of which DRAM
c© Springer International Publishing Switzerland 2015
L.C.K. Hui et al. (Eds.): ICICS 2014, LNCS 8958, pp. 49–60, 2015.
DOI: 10.1007/978-3-319-21966-0 4



50 Y. Yang et al.

contents take a significant time to fade away gradually. This property exists in
all DRAM chips and it determines how DRAM chips works: holding memory
contents by refreshing the state of each memory unit periodly. The problem is
that the time before memory contents fading away after the moment at which
memory chips lost power can be significant extended at a low temperature, and
memory contents stop fading away and become readable again once memory
chips power on, so memory contents may survive across boots. As a result, for
a running target machine physically accessible to adversaries, adversaries are
able to transplant the memory chips from the machine to a well prepared attack
machine after cooling down the memory chips, and cold boot the attack machine
with a customized boot loader to bypass all defence mechanisms of the target
machine and dump the memory contents to some persistent storage to get a
snapshot of the memory contents.

Cold boot attack is not the only attack can be used to acquire the mem-
ory contents. DMA attack is another powerful attack which uses direct memory
access through ports like Firewire, IEEE1394 to access physical memory space
of the target machine. And the recently exposed vulnerable of OpenSSL called
“HeartBleed”1 which leaks memory contents onto network can also be used for
memory acquisition. These attacks are called memory disclosure attacks in
general, since they disclose contents in memory partially or entirely to adver-
saries while adversaries are unable to actively change the contents in the memory.
Not only PCs and laptops, smart phones have also been demonstrated to be vul-
nerable to these attacks [11]. These attacks pose huge and prevalent threats to
the implementation of both public-key and symmetric-key cryptosystems which
hold secret keys in memory at runtime, and adversaries are able to reconstruct
the key efficiently when only a part of the key or key schedule is acquired
[5,7]. Compared to symmetric-key cryptosystems, these attacks may cause more
damage on public-key cryptosystems, since revoking a compromised private key
is very expensive, sometimes even impossible: private keys often have a long life
cycle such as several years, leakage of high sensitive private keys leads to serious
consequences.

Memory disclosure attacks have become a research hotspot since the presence
of cold boot attack [5]. Akavia et al. proposed a new security model to formally
describe memory disclosure attacks [1], in which the total amount of key leakage
is bounded while “only computation leaks information” in traditional model of
side channel attacks. Based on this model, several schemes have been proposed
to resist memory disclosure attacks theoretically [1,2,15]. These solutions are
not practical and cannot be used to protect existing cryptographic primitives,
such as AES, RSA, etc.

Several solutions based on CPU-bounded encryption have been proposed to
protect existing cryptographic primitives. The underlying idea of which is to avoid
DRAM usage completely by storing the secret key and sensitive inner state in CPU
registers, since there has been no known attacks can be used to acquire contents
of CPU registers. AESSE [13] from Müller et al. implemented an AES cryptosys-
tem using X86 SSE registers as the key storage. The performance of AESSE is

1 http://heartbleed.com.

http://heartbleed.com


Protecting Elliptic Curve Cryptography Against Memory Disclosure Attacks 51

about 6 times slower than a standard implementation. As a successor of AESSE,
TRESOR [14] utilizes the new X86 AES-NI instructions for AES encryption to
provide a better performance and a better compatibility with Linux distributions.
Loop-Amnesia [16] stores a master key inside Machine Specific Registers (MSRs),
and supports multiple AES keys securely inside RAM by scrambling them with
the master key. TreVisor [12] builds TRESOR into the hypervisor layer to yield
an OS-independent disk encryption solution.

On the other hand, resisting memory disclosure attacks for public key cryp-
tosystem is more challenging. Garmany et al. [4] have proposed a memory disclo-
sure attacks resistant RSA implementation based on CPU-bounded encryption.
They achieved 21 ms per operation for modular exponentiation, which is about
ten times slower than off-the-shelf cryptographic libraries. And the TLS server
based on their implementation achieved a significant higher latency under high
load in the benchmark.

An important reason for the unsatisfied performance in PRIME is the
extreme large key size of RSA for CPU registers. On the other hand, elliptic
curve cryptography (ECC) [8,10] provides the same level of security as RSA
with a much smaller key size, and thus, requires less memory storage. In this
case, efficient implementation of ECC which resists against memory disclosure
attacks is still a challenging work. Our work presented in this paper is going to
make up for the gap.

1.1 Contributions

In this paper, we propose an efficient elliptic curve cryptography (ECC) imple-
mentation that also resists memory disclosure attacks by keeping the private
key and sensitive intermediate state out of the memory. In detail, our major
contributions are listed as follows:

– We proposed an efficient and memory disclosure attack resistant CPU-bounded
elliptic curve cryptography cryptosystem using new features on modern X86-64
CPUs. The cryptosystem keeps the private key and sensitive intermediate data
within CPU registers after the private key is loaded so that attackers have no
chance to retrieve the key or key schedule from the memory.

– The cryptosystem makes full use of AVX and CLMUL instruction sets of X86-
64 CPU architecture to speed up the computation. The performance evalua-
tion of our solution on an Intel i7-2600 processor found our implementation
achieves a performance of 129 µs for a scalar multiplication operation over
binary fields for key length of 163 bits. This result outperforms the unpro-
tected fashion of OpenSSL by a factor of 78.0 %.

– To the best of our knowledge, this work provides the first memory disclosure
attacks resistant ECC implementation, and the first public-key cryptographic
implementation that resists these attacks, and provides a better performance
than off-the-shelf cryptographic libraries at the same time.

The rest of this paper is organized as follows. A brief introduction of elliptic
curve cryptography is given in Sect. 2 together with architecture we focus on.



52 Y. Yang et al.

Next we describe how we design and implement the solution in Sect. 3. Then the
evaluation on security and performance is given in Sect. 4. Finally, we conclude
this paper in Sect. 5.

2 Preliminaries

In this section, we first recap the basic knowledge of elliptic curve cryptography
and then give a brief description of the CPU architecture and key instruction
sets we used for our implementation.

2.1 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) can be considered as an approach of public-
key cryptography based on the algebraic structure of elliptic curves over finite
fields [8,10]. An elliptic curve over a field K is defined by Eq. 1.

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (1)

The equation can be simplified for the characteristic of K is 2, 3, or greater than
3, respectively. The points satisfying the equation and a distinguished point at
infinity which is the identity element forms a set, together with group operations
of the elliptic group theory form an Abelian group. The group is used in the
construction of elliptic curve cryptographic system.

There are two basic group operations in ECC: a point addition adds two dif-
ferent points together and a point doubling operation doubles a single point.
Point addition and point doubling are computed according to a chord-and-
tangent rule. Scalar multiplication computes k · P where k is a scalar and P
is a point on an elliptic curve, that is adding P together k times. A scalar mul-
tiplication is computed as a serious of point additions and point doublings. Like
the integer exponentiation in RSA cryptosystem, scalar multiplication is the
basic cryptographic operation of various ECC schemes.

Domain parameters define the field and the curve of an ECC system, includ-
ing the field order f , the curve constants a and b, the base point(subgroup
generator) G, the order of the base point n and the cofactor h. The generation
of domain parameters is time consuming, therefore several standard bodies pub-
lished domain parameters for several common field sizes, which are commonly
known as “standard curves” or “named curves”. Domain parameters must be
agreed on by all parties before use.

Each party must also generate a public-private key pair before use. The
private key d is a randomly selected scalar. The public key Q is computed as
Q = d ·G, where G is the base point. The security of an ECC cryptosystem relies
on the assumption that finding the discrete logarithm of a random elliptic curve
point with respect to a public known base point is infeasible.

Elliptic Curve Diffie-Hellman(ECDH) is an anonymous key agreement proto-
col that allows two parties to establish a shared secret over an insecure channel.



Protecting Elliptic Curve Cryptography Against Memory Disclosure Attacks 53

It is a variant of the Diffie-Hellman protocol using elliptic curve cryptography.
Denote two parties A and B, the key pairs of them are (dA, QA) and (dB , QB),
then they can compute dAQB and dBQA respectively to get a shared secret, as
(xk, yk) = dAQB = dAdBG = dBQA where xk is the shared secret. A symmetric
key can be derived from the shared secret to encrypt subsequent communica-
tions. The key exchange protocol is one of the most important applications for
public key cryptography.

2.2 The X86-64 CPU Architecture

x86-64 is the 64-bit version of x86 instruction set. It supports larger memory
address space and register files. X86-64 is supported by mainstream operating
systems and widely used in modern desktop and laptop computers. Besides the
base instruction set, we mainly use its two extensions: CLMUL and AVX.

Carry-Less Multiplication. The Carry-Less Multiplication(CLMUL)2

instruction set is an X86 extension that can be used to compute a polynomial
multiplication, which is the product of two operands without the generation or
propagation of carry values. Carry-less multiplication is an essential process-
ing component of several cryptographic systems and standards, including of the
Galois Counter Mode(GCM) and elliptic curve cryptography over binary fields.
Software implementations of carry-less multiplication are often inefficient and
suffer from potential side channel attacks, while CLMUL instruction set pro-
vides an convenient and efficient way to calculate carry-less multiplications.

Advanced Vector Extensions. The Advanced Vector Extensions (AVX/
AVX2/AVX–512)3 are X86 SIMD extensions proposed by Intel. AVX and AVX2
are supported by recent processors, while AVX–512 will be supported in 2015.
AVX/AVX2 doubles the amount of SIMD registers from 8 to 16, which are
named as YMM0–YMM15 respectively, and extends the width of each register
from 128 bits to 256 bits. AVX–512 doubles the amount and width of SIM reg-
isters again to 32 and 512 bits resprectively. AVX introduces a non-destructive
three-operand SIMD instruction format. Mixed usage of AVX and legacy SSE
instructions should be avoided to prevent AVX-SSE transition penalties. For any
legacy SSE instruction, there is an equivalent VEX encoded instruction which
should be used instead to avoid the penalty.

3 System Design and Implementation

3.1 System Overview

We hold the private key and intermediate data in CPU registers to avoid the
leakage of secret data. We implement the ECC scalar multiplication using assem-
bly language to control the usage of registers precisely to ensure no secret data
2 http://en.wikipedia.org/wiki/CLMUL instruction set.
3 http://en.wikipedia.org/wiki/Advanced Vector Extensions.

http://en.wikipedia.org/wiki/CLMUL_instruction_set
http://en.wikipedia.org/wiki/Advanced_Vector_Extensions


54 Y. Yang et al.

Fig. 1. The architecture of the proposed ECC cryptosystem.

leaks into memory explicitly. To avoid the implicit leakage of secret data by
context switch mechanism, we deploy the ECC implementation in kernel level in
a loadable kernel module(LKM) and make the computation atomically by dis-
abling the interruption and kernel preemption during the computation. Netlink
based interfaces are provided for user level applications. We also implement an
OpenSSL engine to provide an interface based on our implementation for ECDH
operations to demonstrate the possibility of integrating our implementation with
existed applications. A private key is imported into the cryptosystem before use.
The imported key is stored in debug registers and loaded into YMM registers
before each scalar multiplication. The kernel of the operating system is patched
to restrict access to debug registers. The architecture of the system is shown
in Fig. 1.

3.2 Implementation of Secure Scalar Multiplication in ECC

Field Operations. For domain parameters “sect163k1”, there are two sizes of
polynomial involved in field operations: 163-bit and 325-bit. The former is the
size of polynomials over the field F2163 , while the latter is the size of the product
of two polynomial and will be further reduced to 163 bits. As we implement
field operations mainly with AVX instructions and YMM registers, we use one
YMM register for a 163-bit polynomial and two YMM registers for a 325-bit
polynomial.

Operations over binary field are carry-less operations, which means the oper-
ation is performed without the generation or propagation of any carry values.



Protecting Elliptic Curve Cryptography Against Memory Disclosure Attacks 55

In this case, for any polynomial a and b over the binary field, the following
equation holds:

a + b = a − b = a ⊕ b

Namely that an addition and a subtraction over binary field can be simply
calculated by XORing two operands.

The presence of CLMUL instruction set makes it much easier to imple-
ment carry-less multiplication efficiently and securely. Denote the 163-bit input
operands A and B by [A2 : A1 : A0] and [B2 : B1 : B0], where Ai, Bj , 0 ≤ i, j ≤ 2
is a 64-bit quad-word. The carry-less multiplication between Ai and Bj can be
simply calculated with a VPCLMULQDQ instruction:

Cij = Ai · Bj = VPCLMULQDQ(Ai, Bj), 0 ≤ i, j ≤ 2

Then the product C of A and B can be calculated as:

C = A · B = [C22 : C21 ⊕ C12 : C20 ⊕ C11 ⊕ C02 : C10 ⊕ C01 : C00]

Therefore we can implement a carry-less multiplication of two 163-bit operands
with only 9 PCLMULQDQ instructions for partial products, 4 bitwise XOR
instructions to combine partial products together, and several register manip-
ulation instructions to put the partial products into right place in the result.
A squaring operation can be implemented similarly as multiplicate the operand
with itself.

The result of a multiplication or a squaring is a 325-bit polynomial, therefore
it has to be reduced to 163 bits before further use. We use the NIST fast reduction
algorithm and modulo f(z) = z163 + z7 + z6 + z3 + z1 defined in FIPS 186-2 [3]
for reduction.

The inversion operation is to find a polynomial g = a−1modf over F2m for
the polynomial a satisfying ag ≡ 1(modf). The inverse can be efficiently calcu-
lated by the extended Euclidean algorithm for polynomials. In our solution, we
use the “modified almost inverse algorithm for inversion in F2m” algorithm [6]
to calculate the inversion of a polynomial in F2163 . An inversion operation takes
much longer time than other basic field operations, therefore the group oper-
ation algorithm must be carefully selected to reduce the number of inversion
operations.

Group Operations. We employ Montgomery ladder for elliptic curves over
binary fields to compute a scalar multiplication [9]. One advantage of this algo-
rithm is that it does not have any extra storage requirements, which is suitable
for our CPU-bounded ECC cryptosystem since the storage space we can use is
limited. It is also efficient enough and has been used in mainstream cryptographic
libraries, such as OpenSSL. We use the projective version of the algorithm in
order to reduce field inversions, as described by López and Dahab [9].

In this algorithm, each iteration j between line 4–13 performs an addition
(line 7 and 10) and a doubling (line 8 and 11) to compute the x-coordinates
only of Tj = [lp, (l + 1)p], where l is the integer represented by the jth left



56 Y. Yang et al.

most bit of k. After the final iteration, x-coordinates of kP and (k + 1)P have
been computed, and line 14 and 15 are used to compute the affine coordinates
of kP . Using temporary variables for intermediate result, one addition requires
4 field multiplications and one squaring, and one doubling requires 2 field mul-
tiplications and 4 squarings. The number of temporary variables used by an
addition and a doubling is 2 and 1 respectively. The operation used to convert
kP and (k + 1)P back to affine coordinates requires 3 temporary variables, 10
field multiplications, 1 field squaring and 1 field inversion.

We allocate the YMM registers as follows. One YMM register for storing a
dimension of a point on elliptic curve over F2163 , and thus, two YMM registers
are sufficient for a point represented in affine coordinates. Following the equa-
tions listed above, we implement addition and doubling with field operation in
MACROs. Consequently, a doubling operation requires five YMM registers and
an addition requires eight YMM registers, as well as the scalar multiplication
algorithm (i.e. doubling-and-addition) requires 12 YMM registers. At the end,
the ECC private key is a polynomial over the field and can be stored into one
YMM register.

3.3 Deployment of ECC Cryptosystem in the Operating System

The implementation of ECC scalar multiplication should be carefully deployed
in the operating system to make it be secure and accessible to user space appli-
cations. As described above, we implement the ECC cryptosystem as a loadable
kernel module(LKM) to make it run atomically and patched the kernel to protect
the private key. We demonstrate the modification and deployment successfully
on Ubuntu 14.04, the kernel version is 3.13.0-34.

Atomicity. The private key and sensitive intermediate data is kept in YMM
registers during cryptographic computations, so we have to make the compu-
tation atomic to prevent sensitive intermediate data being swapped into the
memory. This can be achieved by disabling the interruption and the kernel pre-
emption by preempt disable(), local irq save() and local irq disable(),
before the computation, and enable the interruption and the kernel preemption
again after the computation by local irq enable(), local irq restore() and
preempt enable() to make the system run normally.

User Space Interface. We provide two interfaces based on netlink mechanism,
which is widely used for communications between kernel and user space processes
of the same host:

private key import Import the private key into the debug registers. The input
is the plain text of the private key, which is a 163-bit big number.

private key operation Calculate the product of the point multiplication
between the private key and a given point. The input is a point which is
represented by two big numbers.



Protecting Elliptic Curve Cryptography Against Memory Disclosure Attacks 57

Each interface is implemented as a request-response round trip, namely the user
space process send the request consisting of the function name and input values
into the kernel then block until a response is received.

Private Key Protection. Access to debug registers should be prevented from
either user space or kernel space other than the code of our system to pre-
vent key damage and loss of secret data. Debug registers can only be accessed
with ring 0 privilege directly. Access to debug registers in user space and
kernel space are finally delegated to kernel functions ptrace set debugreg,
ptrace get debugreg, native set debugreg and native get debugreg. We
modified these functions to discard any change to debug registers and inform
the caller there is no debug registers available. We searched the source of the
kernel we are using thoroughly and found no other accesses to debug registers
besides in these functions, which means only our module has access to debug
registers in our patched system in both user space and kernel space.

Debug registers are per-core registers, therefore we have to copy the key
into debug registers on all CPUs to prevent logical errors. We implement this
procedure with the help of the kernel function smp call function which runs
a certain function on all other CPUs.

4 Evaluation and Discussion

4.1 Security Verification

We assume the procedure of loading the key from a secure storage to the registers
is safe and the memory trace of the key is erased immediately. This assumption
is reasonable, because this procedure is transient and the user of the system
has to physically access the computer to load the key, which also prevent the
physical access from attackers. Therefore our system focus on the life cycle since
the private key has been loaded into the registers.

We implement ECC in a way that no private key or sensitive intermediate
data leaks into memory once the private key has been loaded into debug registers.
Considering about the threats posed by memory disclosure attacks, our approach
resists these attacks since adversaries cannot get the private key or any private
key related data which can be used for key recovery with these attacks from our
cryptosystem. In this section, we analyze and evaluate the approach to verify its
security under the threats of these attacks.

Since we have already patched kernel functions which are used to access
debug registers, and Müller et al. have verified debug registers are reset to zero
after both cold and warm reboot, there is no way for the key to be moved into
memory from debug registers or be accessed with cold boot attack.

For intermediate data and the private key in YMM registers, they will not
appear in memory unless we write them to memory explicitly or be swapped
into memory due to interruptions during the execution. We reviewed our code



58 Y. Yang et al.

Table 1. Performance comparison of scalar multiplication between OpenSSL and this
work. �: unprotected version. †: protected version

Implementation Operations Per Second

OpenSSL 4346�

This work 7734†

Improvements 78.0 %

thoroughly and made sure only the final result is written into memory. As pre-
emption and interruption are disabled during the computation, our system is
theoretically not vulnerable to memory disclosure attacks.

We also verified the correctness of the system on the test machine. Since we
have already known the private key, we do this by acquire a series of snapshots
of the memory contents after the key is loaded and search for the private key
in them. If our system works correctly, there will be no match in snapshots.
Performing a memory disclosure attack such as cold boot attack actually is time
consuming, and these attacks get no more than memory contents, so we used
a tool called fmem4 to acquire the whole range of memory contents instead.
We also performed this test on a system running a process using OpenSSL ECC
library with the same private key as a comparison. The result shows there is
a match of the private key on the system using OpenSSL while there is no
significant match on the system using our approach.

As should be noted that the security of cryptographic application in real
world is not trivial, single countermeasure can not mitigate different attacks.
But our method is compatible with other countermeasures such as software based
power analysis defeat method and can be used together.

4.2 Performance

Our benchmark is running on a desktop with an Intel Core i7-2600 processor
set to be constantly running at 3.4 GHz. The operating system is Ubuntu Linux
13.10 64-bit with our modified kernel at version 3.11.0. We implemented an
OpenSSL ECDH engine using scalar multiplication in our approach, and com-
pared the performance of ECDH operation on curve SECT163K1 in our imple-
mentation with the same operation provided by OpenSSL5 at version 1.0.1e.
The evaluation shows the performance improvements precisely and practically,
since ECDH is widely used and each operation comprises mainly a single scalar
multiplication. The performance is measured by operations per second with the
OpenSSL built-in speed tool. the result is shown in Table 1.

As shown in the table, an ECDH operation, namely a scalar multiplication
in our solution is faster than that in OpenSSL by a factor of 78.0 %. The result
of performance evaluation is encouraging, since our implementation is memory
disclosure attacks resistant and that in OpenSSL is not, ours is also much more
4 http://hysteria.sk/∼niekt0/fmem/.
5 https://www.openssl.org/.

http://hysteria.sk/~niekt0/fmem/
https://www.openssl.org/


Protecting Elliptic Curve Cryptography Against Memory Disclosure Attacks 59

Table 2. Performance comparison of field arithmetic operations between OpenSSL
and this work (in μs per operation)

Implementation Modular Add. Modular Mul. Modular Sqr. Inversion

OpenSSL 0.013 0.160 0.117 3.670

This work 0.004 0.084 0.083 3.133

Improvements 225 % 90.1 % 41.0 % 17.1 %

efficient. We also compared the performance of running scalar multiplications
directly and running with the APIs exposed into user space, and found com-
munications between user space and kernel brings 2 %–5 % overheads, which are
acceptable.

We also compared the performance improvements of each field operations,
the result is shown in Table 2. The performance of field addition, modular mul-
tiplication and modular squaring in our solution is faster than that in OpenSSL
by a factor of 225 %, 90.1 % and 41.0 % respectively. The performance of inver-
sion in our solution is faster than that in OpenSSL by a factor of 17 %. The
performance improvements due to the reduction of branches, unrolled loops and
the power of CLMUL and AVX instruction sets, etc.

5 Conclusion and Future Work

Memory disclosure attacks such as cold boot attack have become a threat that
must be considered by designers and developers of cryptographic libraries and
applications. To mitigate such threats, we present a systematic solution on pro-
tecting public key cryptography based on the idea that restricts the private key
and the intermediate states during the cryptographic operations inside CPU.
Our solution is implemented as a Linux kernel patch with interfaces in the user
space to provide secure elliptic curve scalar multiplications, and various secure
ECC schemes can be constructed based on it. Evaluation shows our approach
leaks none of the information that can be exploited by attackers to the memory,
therefore it resists the cold boot attack and other memory disclosure attacks
effectively. An ECC scalar multiplication over binary fields for key length of 163
bits in our solution is about 78.0 % faster than that in OpenSSL. To the best
of our knowledge, our solution is the first efficient ECC implementation that is
memory disclosure attacks resistant.

One of our future work is to support multiple private keys in our cryptosystem
so that it supports multiple applications at the same time. After the release of
processors supporting AVX-512, we will provide support of larger key size since
AVX-512 has 4 times more register space than AVX/AVX2.

Acknowledgments. This work is supported by National High Technology Research
and Development Program of China under Grant No. 2014AA123001.



60 Y. Yang et al.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

3. PUB FIPS. 186–2. digital signature standard (DSS). National Institute of Stan-
dards and Technology (NIST) (2000)

4. Garmany, B., Mller, T.: PRIME: private RSA infrastructure for memory-less
encryption. In: Proceedings of the 29th Annual Computer Security Applications
Conference, ACSAC 2013, pp. 149–158. ACM

5. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W.,
Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remem-
ber: cold boot attacks on encryption keys. In: USENIX Security Symposium,
pp. 45–60 (2008)

6. Hankerson, D., Hernandez, J.L., Menezes, A.: Software implementation of elliptic
curve cryptography over binary fields. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000.
LNCS, vol. 1965, pp. 1–24. Springer, Heidelberg (2000)

7. Heninger, N., Shacham, H.: Reconstructing RSA private keys from random key
bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Heidelberg (2009)

8. Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48(177), 203–209
9. López, J., Dahab, R.: Fast multiplication on elliptic curves over GF (2m) without

precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717,
p. 316. Springer, Heidelberg (1999)

10. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

11. Müller, T., Spreitzenbarth, M.: FROST. In: Jacobson, M., Locasto, M.,
Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 373–388.
Springer, Heidelberg (2013)

12. Müller, T., Taubmann, B., Freiling, F.C.: TreVisor. In: Bao, F., Samarati, P., Zhou,
J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 66–83. Springer, Heidelberg (2012)

13. Müller, T., Dewald, A., Freiling, F.C.: AESSE: a cold-boot resistant implementa-
tion of AES. In: Proceedings of the Third European Workshop on System Security,
EUROSEC 2010, pp. 42–47. ACM, New York, NY, USA (2010)

14. Müller, T., Freiling, F.C., Dewald, A.: TRESOR runs encryption securely outside
RAM. In: Proceedings of the 20th USENIX Conference on Security, SEC 2011, p.
17. USENIX Association, Berkeley, CA, USA (2011)

15. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. 41(4),
772–814

16. Simmons, P.: Security through amnesia: a software-based solution to the cold boot
attack on disk encryption. In: ACSAC, pp. 73–82 (2011)


	Protecting Elliptic Curve Cryptography Against Memory Disclosure Attacks
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Elliptic Curve Cryptography
	2.2 The X86-64 CPU Architecture

	3 System Design and Implementation
	3.1 System Overview
	3.2 Implementation of Secure Scalar Multiplication in ECC
	3.3 Deployment of ECC Cryptosystem in the Operating System

	4 Evaluation and Discussion
	4.1 Security Verification
	4.2 Performance

	5 Conclusion and Future Work
	References


