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Abstract. Side-channel distinguishers aim to reveal the secrets used in
crypto devices by utilizing the subtle dependence between some sensitive
intermediate values and physical leakages produced during its executions.
For this purpose, one or more points of interest (POIs) corresponding to
manipulations of one sensitive intermediate value are usually selected and
then fed into distinguishers. However, it turns out in practice that POIs
selected, even they are from the same leakage traces, will have significant
impacts on the key recovery efficacy of distinguishers. Therefore, it makes
a very practical sense to investigate the concrete impacts of POIs selec-
tions on side-channel distinguishers, and then pick out from those POIs
selections available the most appropriate one for a certain distinguisher.
In order to address these problems, we propose an evaluation framework
for the analysis of POIs selections for side-channel distinguishers. Basi-
cally, our framework consists of two stages: the first stage captures the
validity of points selected, while the second one reflects their quality with
respect to a certain distinguisher. Specifically, on the one hand, in order
to measure the goodness of one POIs selection, we introduce a quanti-
tative metric of accuracy rate, from a perspective of statistics; on the
other hand, we adopt the widely accepted security metric of success rate
proposed by Standaert et al. at EUROCRYPT 2009 to reflect the qual-
ity of the points selected. Eventually, taking five typical POIs selections
and three popular side-channel distinguishers as concrete study cases,
we perform simulated attacks and practical attacks as well, the results
of which not only fully justify our proposed methods but also reveal some
interesting observations.
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1 Introduction

Side-channel attacks aim at revealing the secret information embedded in a cryp-
tographic device from its physical leakages, including execution time [1], power
consumption [2], and electromagnetic emanation [3]. Among them, power analysis
attack which makes use of instantaneous power consumptions of a cryptographic
device is one of the most widely researched side-channel attacks. Therefore, for ease
and simplicity of presentation, we concentrate on power analysis attack ONLY for
illustrative purposes in this paper.

Side-channel distinguisher plays a crucial role in recovering reveal the secrets
in side-channel attacks. It refers to the process during which the adversary uses
some statistical tools to exploit the subtle dependence between one sensitive
intermediate value and its corresponding power consumptions of cryptographic
device. For real-world crypto implementations, one side-channel leakage trace
usually contains multiple samples corresponding to manipulations of one sensi-
tive intermediate value. This is quite natural because the manipulations of the
sensitive intermediate value targeted usually takes more than one instruction
cycle. In addition, according to Nyquist−Shannon sampling theorem, the acqui-
sition rate of the signal acquisition device is always set to be several times faster
than the working frequency of the targeted cryptography device. Those samples
that exactly correspond to the manipulations of one sensitive intermediate value
targeted in one leakage trace are referred to points of interest (POIs).

Based on analysis of values and of distributions, side-channel distinguishers
can be divided into two categories. Distinguishers based on values include differ-
ential power analysis (DPA) [2], correlation power analysis (CPA) [4], differential
cluster analysis (DCA) [5], template attack [6], stochastic method [7], and etc.
Mangard et al. showed in [8] that denoted as standard univariate DPA, a num-
ber of these type of distinguishers are in fact asymptotically equivalent, given
that they are provided with the same a priori information about the leakages.
Therefore, in this paper, we choose CPA to be the representative of those distin-
guishers based on values. Distinguishers based on distributions consist of mutual
information analysis (MIA) [9], KS-test based analysis (KSA) [17], MPC-KSA
[10], and etc. Considering their popularity, we choose MIA and KSA to be the
representatives of those distinguishers based on distributions.

Currently, there are several POIs selections available. In principle, side-
channel attacks themselves could serve as the tools for POIs selection, as is
already done in the field of side-channel attacks. For example, CPA, MIA and
KSA all can be used to select the POIs. In addition, there are also non-attack
based POIs selections. Two of them are the Sum Of Squared Pairwise Differences
(sosd) [9] and the Sum Of Squared Pairwise T-Differences (sost) [11]. An impor-
tant observation is that applying different POIs selections onto the same leakage
traces could lead to distinct points selected, even if it is explicitly required that
all POIs selected must correspond to one sensitive intermediate value targeted,
which will have significant impacts on the key recovery efficacy of distinguishers.
Therefore, it makes a very practical sense to investigate the concrete impacts
of POIs selections on side-channel distinguishers, and then pick out from those
POIs selections available the most appropriate one for a certain distinguisher.
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For comparison of distinguishers, some well-known frameworks were already
proposed. The first one in [13] by Standaert et al. suggests to use a leakage metric
to qualify the maximal chance that an optimal attacker would have to extract
the secrets. For the comparison of different distinguishers, [13] suggests metrics
like oth-order success rate or guessing entropy. In another framework of [14], the
distance to the nearest rival is suggested. In [15], Maghrebi et al. proposed a
methodology to compare two side-channel distinguishers based on simulations.
In [16], some analyses showed pitfalls in the evaluation methodologies for dis-
tinguisher, including estimation bias, estimation algorithm, success rate error,
and sample errors. To the best of our knowledge, all frameworks known so far
concern distinguishers alone; and none of them take POIs selections themselves
into serious consideration, let alone any comprehensive evaluation work about
concrete impacts of POIs selections over distinguishers in practice.

1.1 Contributions

The contributions of this paper are threefold. First, we propose an two-stage
evaluation framework for the analysis of POIs selections for side-channel distin-
guishers. Second, in order to measure the goodness of the POIs selection, we
introduce the notion of accuracy rate. Third, taking five POIs selections com-
monly used and three typical distinguishers as concrete study cases, we perform
simulated attacks and practical attacks. The experimental results not only fully
justify our proposed methods, but also reveal some interesting observations.

The rest of this paper is organized as follows. Sect. 2 briefly recalls three typ-
ical distinguishers and five POIs selections commonly used; Sect. 3 introduces
our proposed two-stage framework; Sect. 4 presents details and results of simu-
lated and practical attacks, together with some useful discussions and interesting
observations; Sect. 5 concludes the whole paper.

2 Preliminaries

This section will briefly recall CPA, MIA, and KSA distinguishers. These three
distinguishers can also be used for selecting POIs. Besides, we will also briefly
introduce sosd and sost POIs selections.

2.1 CPA

CPA identifies the correct key by calculating the Pearson correlation coefficient
between real power traces and hypothetical power consumptions. The adversary
chooses a sensitive intermediate value v∗

i = g (xi, k
∗), where xi is the ith plaintext

(totally NT traces), k∗ is a key guess. For every key guess k∗, the adversary
predicates the hypothetical power consumption by hk∗

i = f (v∗
i ), where f is

a hypothetical leakage function. Hk∗
denotes a vector of hypothetical power
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consumptions. L denotes a vector of real power traces. The adversary computes
the Pearson correlation coefficient between Hk∗

and L as

ρ(Hk∗
, L) =

NT∑

i=1

(Hk∗
i − Hk∗)(Li − L)

√
NT∑

i=1

(
Hk∗

i − Hk∗
)2

·
NT∑

i=1

(
Li − L

)2
(1)

where Hk∗ and L are the mean of Hk∗
and that of L. Maximal correlation coef-

ficient indicates the most likely candidate key guess as k = arg max
k∗

ρ(Hk∗
, L).

In practice, CPA can also be used for selecting POIs. The maximal correlation
coefficient indicates the location of POIs as [k, t] = arg max

k∗,t′
ρ(Hk∗

, T (t′)). Where

T (t′) is point t′ column of traces matrix T . In order to avoid confusion, hereafter
throughout the whole paper, we use CPA-P to stand for CPA for the purpose of
selecting POIs. MIA-P and KSA-P have the same meaning.

2.2 MIA

In MIA, one can compute the mutual information (MI) between the real power
traces L and a hypothetical power consumption Hk∗

as

I(L;Hk∗
) = H(L) − H(L|Hk∗

) = H(L) − E
h∈Hk∗ [H(L|Hk∗

= h)] (2)

In this paper, for the estimation of the probability density function, we will
use histogram method [9]. The largest MI indicated the most likely key guess as
k = arg max

k∗
I(L;Hk∗

).

Similarly, as is shown in [9], MIA distinguisher can also be used for selecting
POIs (MIA-P) as [k, t] = arg max

k∗,t′
I(T (t′);Hk∗

).

2.3 KSA

The KS test quantifies a distance between the empirical cumulative distribution
function of two samples to determine the similarity of them. The central idea of
KSA distinguisher proposed in [17] is to measure the maximum distance between
the global trace distribution L and the conditional trace distribution L|Hk∗

as

DKS(k∗) = E[KS(L||(L|Hk∗
))] = E

h∈Hk∗
[KS(L||(L|Hk∗

= h))] (3)

The largest distance indicates the most likely key guess as k =
arg max

k∗
DKS(k∗).

Similarly, KSA distinguisher can also be used for selecting POIs (KSA-P) as
[k, t] = arg max

k∗,t′
DKS(k∗) = E[KS(T (t′)||(T (t′)|Hk∗

))]



204 Y. Zheng et al.

2.4 Sosd and Sost

Denote hypothesis power consumption by hk∗
i = f (v∗

i ). In Hamming weight
model, hk∗

i ∈ [0, 8]. We partition all traces T according to hk∗
i , Gj = {Ti|hk∗

i =
j}, (j = 0, 1, 2, ..., 8). We calculate the mean mj and the standard deviation σj

of every partition Gj . For the sosd, we sum up their squared pairwise differences,
sosd =

∑8
i,j=0 (mi − mj)

2. The sost is based on the T-Test. nj is the number of
traces in partition Gj . The location of POI is where the sosd or sost is biggest.

sost =
8∑

i,j=0

⎛

⎜
⎜
⎝

mi − mj√
σ2
i

ni
+

σ2
j

nj

⎞

⎟
⎟
⎠

2

(4)

3 Evaluation Framework

In this section, we will present our framework for analysis of POIs selections for
univariate side-channel distinguishers.

We argue that a real-word side-channel attack consists of two essential pro-
cedures, namely point extraction and key recovery. Unlike in those works of
theoretical analysis, POIs selection really matters in real-world practices and
distinguishers are sensitive to the POIs selected. In univariate case, this means
once a “bad” point is fed into a certain distinguisher, key recovery efficiency of
the attack will lower down, or sometimes even a wrong key guess will be made.
Therefore, it is of great help if there is a method for picking out from those
POIs selections available the most appropriate one for a certain distinguisher. In
order to do this task, we need to measure the quality of the POIs selected. For-
tunately, we could use security metric like success rate proposed in [13] to reflect
the quality of POIs selected, with respect to a certain distinguisher. Yet, we have
to notice that in some cases a successful attack using a certain POIs selected
might also be falsity. For example, take for example a CPA attack against an
unprotected AES software implementation. In this case, we choose the output
of Sbox of the first round of AES encryption to the sensitive intermediate value.
The outcome of performing a CPA attack will be the same as that against 4
bytes (i.e. 1st, 5th, 9th, and 13th byte) of outputs of ShiftRow operation. If only
partial success rate is considered, this could lead to misleading results. As what
we really need in real-world practices are those POIs selected that exactly cor-
respond to the sensitive intermediate value targeted, which could be viewed to
be a necessary requirement for a sound POIs selection. This means that success
rate really makes sense only when this requirement holds.

For this requirement, we define the validity of a point with respect to a certain
sensitive intermediate value. One point is said to be “valid” if it fall into the set
of all points corresponding to the manipulations of the sensitive intermediate
value; otherwise, it is said to be “invalid”. Under the condition that two points
are both valid, we say that one point is to have a “better” quality than another
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point, if the success rate of a key recovery attack using this point is higher than
that of using another point, with respect to a certain distinguisher. Now, we can
think of how to measure the goodness of one POIs selection. For this purpose,
we introduce the notion of accuracy rate, from the perspective of statistics.
Intuitively, the accuracy rate is to capture how well one POIs selection method
is capable of extracting from side-channel leakage traces those points that exactly
correspond to manipulations of one sensitive intermediate value targeted. The
formal definition of accuracy rate will presented in Sect. 3.1.

Put above-mentioned ideas together, we put forward our evaluation frame-
work. Basically, our framework contains of two stages. In the first stage, we
measure the goodness of POIs selections through capturing the validity of points
selected. The second stage reflects the quality of points selected, with respect to
a certain distinguisher.

One feature of our framework is that it provides both designers and evalu-
ators a more fine-grained way of examining two essential procedures (i.e. point
extraction and key recovery) of real-world side-channel attacks. Another feature
of our framework is that it could be jointly used in a very natural way with other
well-known frameworks in the field for comparison of distinguishers themselves,
including those of Standaert et al. [13] and Whitnall et al. [14,16]. With the
help of this powerful framework, we can objectively and fairly compare different
POIs selections, and then find the most suitable one for a certain distinguisher
afterwards.

3.1 Metrics

We will provide the formal definition of accuracy rate of POIs selection, and
then briefly discuss success rate.

Accuracy Rate (AR) of POIs Selection. The accuracy rate of one POIs
selection is a expected probability of event S, if the points selected are in the
POIs set corresponding to the manipulations of the sensitive intermediate value,
we say event S occurs. It is straightforward that if the points are not in the
POIs set, they are not pertinent to the chosen sensitive intermediate value, and
they are not points we need even though distinguishers can recover the key using
them in some cases. We can use this metric to measure the goodness of POIs
selections. This is independent of key recovery of distinguishers.

Obviously, there is an important prerequisite, i.e. we need to know the POIs
set. The example scenarios include that one performs POIs selection in simu-
lated scenarios where he can control the generation of traces; or one knows all
details about the cryptographic algorithm and cryptographic device, then he can
calculate the positions or range of POIs by clock frequency of device and sam-
pling frequency of oscilloscope. This metric is designed to be used in evaluation
scenarios, because in adversarial scenarios, once we know the POIs set, we need
not perform POIs selection any more.

We define a POIs selection adversary as an algorithm AEK ,L with time com-
plexity τ , memory complexity m and q queries to the target physical computer.
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The real POIs set tc is determined by the definition of a function β, i.e. tc = β(k).
In order to select the POIs, we assume that the output of the adversary AEK ,L is
a sorted points vector tg = [tg1, tg2, ..., tg|W |], where W is the number of points
in one whole trace. According to the selection result: the most likely POI being
tg1. Finally, we define a POIs selection of order o with the experiment:

ExpAps−ar−o
AEK,L

[tg ← AEK ,L; tc = β(k); k
R← κ; ]

if (tg1, tg2, ..., tgo) ∈ tc then return 1 else return 0
(5)

The oth-order accuracy rate of AEK ,L against known POIs set is defined as:

ARps−ar−o
AEK,L

(τ,m, q) = Pr[ExpAps−ar−o
AEK,L

= 1] (6)

Success Rate (SR) of Key Recovery [13]. Let EK = {Ek(.)}k∈κ be a family
of cryptographic abstract computers indexed by a variable key K. Let (EK , L)
be the physical computers corresponding to the association of EK with a leakage
function L. In general, the attack defines a function γ : κ → S which maps each
key k onto an equivalent key class s = γ(k), such that |S| << |κ|. We define a
side-channel key recovery adversary as an algorithm AEK ,L. Its goal is to guess
a key class s = γ(k) with non negligible probability. For this purpose, we assume
that the output of the adversary AEK ,L is a guess vector g = [g1, g2, ..., g|S|]
with the different key candidates sorted according to the attack result: the most
likely candidate being g1. Finally, we define a side-channel key recovery of order
o with the experiment:

ExpBsc−kr−o
AEK,L

[g ← AEK ,L; s = γ(k); k
R← κ; ]

if s ∈ [g1, ..., go] then return 1 else return 0
(7)

The oth-order success rate of AEK ,L against a key class is defined as:

SRsc−kr−o
AEK,L

(τ,m, q) = Pr[ExpBsc−kr−o
AEK,L

= 1] (8)

In this paper, we only consider the 1st-order AR and 1st-order SR.

3.2 Factors

In practice, there are some other factors to affect the key recovery of
distinguishers.

Noise Level. Generally, the higher noise level increases, the worse POIs selec-
tions perform. POIs selections have different ability to adapt various noise level.
We assume that the noise follow the Gaussian distribution with mean 0, and
noise level is measured by standard deviation.
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Leakage Type and Hypothetical Model. Leakage type refers to leakage
model of crypto device. In this paper, we considered four types, i.e. Hamming
Weight (HW) leakage, Hamming Distance (HD) leakage, Unevenly Weighted
Sum of the Bits (UWSB) leakage and Highly Non-Linear (HNL) leakage [12].

In terms of hypothetical model, in this paper, we consider two kind of
adversaries with different characterization ability to the leakage model of
crypto device. An adversary with strong ability uses hypothetical leakage model
(denoted by HL) as same as real leakage type (denoted by RL) to calculate the
hypothetical power consumption, while an adversary with limited ability uses
Hamming weight as hypothetical leakage model. We define a tuple <RL,HL>
to represent a specific analysis or evaluation scenarios.

4 Experimental Evaluation

In this section, we will conduct comprehensive empirical evaluation. Our exper-
iments will carry out in simulated scenarios and practical scenarios.

4.1 Simulated Experiments

In simulated scenarios, we choose the output of the first Sbox of the first round
unprotected AES operation as the target intermediate value. In these scenarios,
we know all details about the cryptographic algorithm and cryptographic device,
and we control the generation of traces. Therefore, we can use the accuracy
rate to evaluate the goodness of five popular POIs selections, i.e. CPA-P, sosd,
sost, MIA-P, KSA-P. Three typical leakage types are adopted, i.e. HW leakage1,
UWSB leakage and HNL leakage.

The simulated traces are composed of the signal part and noise part. Firstly,
we generate the signal part of 10,000 traces which contain five points correspond-
ing to every intermediate value and five independent points. The intermediate
values contains the plaintext, plaintext xor key, the output of Sbox and the result
of Shift-Row. The plaintexts are random, and the key is fixed. Secondly, we add
Gaussian noise varying in standard deviation to the signal part.

Our experiments are carefully divided into two stages in order to justify our
proposed framework. Specifically, stage one, in each of the noise level, five POIs
selections run 500 times using 1,000 and 5,000 random selected traces, and count
the ARs according to definition of it respectively. Stage two, three distinguishers
run 500 times using the points selected by five POIs selections, and count the
SRs according to definition of it respectively.

Hamming Weight Leakage. In this scenario, the tuple is <HW,HW>. The
ARs of five POIs selections are shown in Fig. 1. The quality of points selected
with respect to three distinguishers are shown in Fig. 2. Specifically, we divide
1 HD is another usual leakage types, but it is a linear leakage like Hamming weight.

In simulated scenarios, we took Hamming weight as a typical leakage example.
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(a) 1000 Traces for Selecting POIs
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CPA-P
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sost
MIA-P

KSA-P

Fig. 1. ARs of five POIs selections in HW leakage simulated scenario

the results of three distinguishers into three groups according to the standard
deviation of Guassian noise, and denote these groups by A, B and C, respectively.
The standard deviation in Group A, B, C is 4, 8, 16, respectively.

Figure 1 shows the ARs of five POIs selections decrease rapidly with the
increase of noise level. When noise level increases highly, all selections fail. How-
ever, the ARs of CPA-P is obviously higher than those of other four selections.
This implies that CPA-P is the relatively strongest capacity to tolerate noise,
while sosd and sost are the poorest. Compared with (a) in Fig. 1, (b) shows that
the ability to tolerate noise of all selections improves.

Figure 2 shows the results of stage two in our framework. In Group A, points
selected by five POIs selections are all “valid” to recover the key, but the SRs
using points selected by five POIs selections for a certain distinguisher have sub-
tle differences. When standard deviation of Gaussian noise is 8, points selected
are still “valid”, but the points selected by CPA-P is much better than those
selected by other four selections. When standard deviation is 16, the point
selected by sosd and sost are “invalid”, CPA-P is still the best one, followed
by KSA-P and MIA-P. The observations above suggest that different points in
POIs set could make different key recovery efficiency.

An Unevenly Weighted Sum of the Bits Leakage. In this scenario, the
least significant bit dominates in the leakage function with a relative weight
of 10 and other bits with a relative weight of 1. An adversary with lim-
ited ability to describe the leakage type of device (i.e. the scenario tuple is
<UWSB,HW>) and another adversary with strong ability (i.e. the scenario tuple
is <UWSB,UWSB>) can get the ARs of five POIs selections. Our experiments
show that the curves of ARs have exactly the same trend as those in Fig. 1.

Highly Non-Linear Leakage. In this scenario, the leakage function of crypto-
graphic device is a highly non-linear function. Without loss of generality, S-box
is used in this leakage scenario [12,20]. An adversary with limited ability to
describe the leakage type of device (i.e. the scenario tuple is <HNL,HW>) can
get the goodness evaluation results of POIs selections. Our experiments show
that five POIs selections all fail.
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Fig. 2. SRs of CPA, MIA, and KSA using points selected by CPA-P, sosd, sost, MIA-P,
KSA-P in HW leakage simulated scenarios

4.2 Practical Experiments.

In practical scenarios, we perform attacks against AES-256 RSM [18] imple-
mented in software on an Atmel ATMega-163 smart card (Case 1) and unpro-
tected AES implemented in hardware on Xilinx Vertex-5 FPGA (Case 2), and we
use traces from DPA Contest v4 and DPA Contest v2, respectively. Especially, we
ONLY focus on the POIs selection and key recovery against unprotected imple-
mentation in this paper. In Case 1, we converted the traces of protected imple-
mentation into traces of unprotected implementation using the known masks.

In the view of an adversary, we will choose hypothetical model according to
priori knowledge. Specifically, we will use HW model in Case 1, and HD model
in Case 2. In these practical scenarios, we cannot obtain the locations or range of
POIs, the ARs cannot be computed. However, we can follow the second stage of
framework, and utilize the SRs to evaluate the quality of points selected by five
methods. For three distinguishers, we respectively perform key recovery attacks
300 times using every points selected by five POIs selections and count the SRs.

Case 1: Attacks Against an Unprotected AES Software Implementa-
tion. In this scenario, the output of the first S-box of the first round of AES
operation is chosen as the target. The noise level of the traces from software
implementation on the Atmel ATMega-163 smart card is very low. In order to
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Fig. 3. SRs of CPA, MIA, and KSA using POIs selected by CPA-P, sosd, sost, MIA-P,
KSA-P using original traces in Case 1

study the influence of noise level on POIs selections and distinguishers, we use
additional Gaussian noise. Particularly, we employed five standard deviations of
additional Gaussian noise, i.e. 0, 4, 8, 16, 32, where 0 denotes the original traces.

According to the results on DPA Contest website [19], the number of traces
needed to recover the key in non-profiling attacks is at most 130. In order to
study the influence of the number of traces on POIs selections, we set up two
scenarios i.e. limited (100 traces) scenarios and sufficient (1,000 traces) scenarios.

Using original traces with limited number (100), five POIs selections get three
points. Group A of Fig. 3 shows that, CPA, MIA, KSA can achieve 100 % SRs
using the points selected by CPA-P, sost, MIA-P, KSA-P. Three distinguishers
all fail using point selected by sosd. When the number of traces increases to
1,000, Group B shows that, the quality of points selected by all POIs selections
are “good” enough to help three distinguishers achieve 100 % SRs.

When standard deviation of additional Gaussian noise is 4, using 100 traces,
our experiments show that the most obvious change compared with Group A of
Fig. 3 is that sosd and sost both fail to select a “good” point. When standard
deviation 8 (Fig. 4) and 16, MIA-P fails, too. However, when 1,000 traces are
used, MIA-P will be “good”. We argue that this is because 100 traces are not
sufficient to get satisfying probability density function, while 1000 traces do.

When standard deviation of additional Gaussian noise is 32, using limited
traces, all POIs selections fail. It is because the noise level is too high and traces
is too little. Using 1,000 traces, MIA-P fails. Possibly, it is because the noise
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Fig. 4. SRs of CPA, MIA, and KSA using POIs selected by CPA-P, sosd, sost, MIA-P,
KSA-P using traces with additional Gaussian noise of standard deviation 8 in Case 1

level is too high to get correct probability density function. This implies that
MIA-P has weaker ability to tolerate noise than CPA-P and KSA-P.

Comprehensive analysing the experimental observations above, the quality
of points selected by five POIs selections becomes worse with the increase of
noise level. In the overall trend, sosd never has selected an “good” POI, sost
affected by the noise level mostly, followed by MIA-P. The points selected by
CPA-P and KSA-P are relatively more excellent. Moreover, comparing Group
A with Group B, an important observation is that the negative impact of noise
level could be decreased through increasing the number of traces. In addition,
CPA distinguisher needs the least traces to achieve 100 % SR.

Case 2: Attacks Against an Unprotected AES FPGA Implementation.
In this scenario, the input of the first S-box of the last round of AES operation
is chosen as the target. As we known, the noise level of the traces from hardware
implementation on Xilinx Vertex-5 FPGA is relatively high. That can factually
represent a kind of common scenarios, so we will not use additional noise.

According to the results on DPA Contest website [19], the numbers of traces
needed to achieve 80 % SR in non-profiling attacks range from 5,000 to 16,000.
We set up two scenarios, i.e. limited (5,000) traces and sufficient (20,000) traces
for selecting POIs. In this case, the SRs of three distinguishers using points
selected by five POIs selections are presented in Fig. 5.

Group A of Fig. 5 shows that, using 5,000 traces, CPA can achieve 80 % SR
by feeding point selected by only CPA-P. Other four POIs selections fail. MIA
and KSA cannot recover the key using any points selected. Group B shows that,
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Fig. 5. SRs of CPA, MIA, and KSA using POIs selected by CPA-P, sosd, sost, MIA-P,
KSA-P in Case 2

when traces for selecting POIs are sufficient, CPA can achieve 90 % SR using
point selected by CPA-P; MIA can achieve 30 % SR using point selected by MIA-
P; KSA can achieve 35 % SR using point selected by KSA-P. The SRs in Group
B are limited with the trace number provided by DPA Contest v2 official.

4.3 Experimental Observations

According to the results of evaluation experiments in simulated scenarios and
practical scenarios, we have the following observations.

1. When evaluations perform in the scenarios RL=HL={HW,UWSB,NL} or
<UWSB,HW>,
– Observation 1: The points selected by five POIs selections are not the

same, sometimes differ greatly. The goodness of POIs selections signifi-
cantly depends on noise level: with the increase of noise level, the goodness
of five POIs selections decrease. Specifically, when the number of traces is
limited, CPA-P> KSA-P > MIA-P> sosd> sost; when traces are sufficient,
CPA-P> KSA-P> sost> MIA-P> sosd (“A > B” denotes POIs selection
A is better than POIs selection B in a certain scenario).

– Observation 2: In same noise level, the quality of point selected by CPA-P is
the best. Specially, in the scenario <HD,HD>, this conclusion is incorrect.

2. When evaluations perform in the scenarios <NL,HW>,
– Observation 3: All five POIs selections fail.
– Observation 4: When in the scenarios <NL,UWSB or HD>, we guess that

the conclusions are the same to those of Observation 3.
3. When evaluations perform in the scenario <HD,HD> and noise level is high,

– Observation 5: We guess that the goodness of five POIs selections are the
same to those of Observation 1.
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– Observation 6: An interesting pattern is that the quality of points selected
depend on certain distinguisher. Specifically, if choosing CPA, the optimal
POIs selection is CPA-P; if choosing MIA, the optimal POIs selection is
MIA-P; if choosing KSA, the optimal POIs selection is KSA-P.

Some Hints. Generally speaking, the adversary usually does not have powerful
enough ability to identify a non-linear leakage. According to the observations
above, we suggest that a crypto device with a highly non-linear leakage might be
more secure. Some possible ways to implement it contain increasing noise level,
making a device with non-linear leakage itself, or some other special methods.

5 Conclusions

In the field of side-channel attacks, POIs selection really matters much more
in real-world practices than it is in those of theoretical analysis. In order to
investigate the concrete impacts of POIs selections on distinguishers, and then
pick out from those selection methods available the most appropriate one for
a certain distinguisher, we proposed a two-stage evaluation framework which
aims to separate the validity of POIs selected and their quality with respect to a
certain distinguisher. This framework equips both designers and evaluators with
a powerful tool to examine, in a more fine-grained way, two essential procedures
(i.e. point extraction and key recovery). For the goodness of the POIs selection
being used, we introduced the accuracy rate. It captures how well one POIs
selection is capable of extracting from leakage traces those points that exactly
correspond to the manipulations of one sensitive intermediate value targeted.
In order to justify our proposed methods, we performed simulated attacks and
practical attacks, taking five typical POIs selections and three distinguishers
as concrete study cases. The results of these experiments also revealed some
interesting observations.
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