
A Guess-Then-Algebraic Attack on LFSR-Based
Stream Ciphers with Nonlinear Filter

Xiao Zhong1,2(B), Mingsheng Wang3, Bin Zhang1,4, and Shengbao Wu1,2

1 Trusted Computing and Information Assurance Laboratory, Institute of Software,
Chinese Academy of Sciences, Beijing, China

zhongxiao456@163.com,
{zhangbin,wushengbao}@tca.iscas.ac.cn

2 Graduate School of Chinese Academy of Sciences, Beijing, China
3 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, China
mingsheng wang@aliyun.com

4 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

Abstract. This paper introduces a new parameter called 1-st minimum
algebraic immunity AImin(f), along with some theoretical properties of
AImin(f). Based on our results, we propose a guess-then-algebraic attack
on LFSR-based stream ciphers with nonlinear filter Boolean function f .
Our method takes some particular guessing strategy by taking advantage
of the properties of AImin(f), and makes full use of each guessed bit to
generate as many equations of degree AImin(f) as possible. The cost of
time and data is less than that of the traditional algebraic attack under
some condition. Our attack suggests that AImin(f) should not be too
small, which is a new design criterion for the filter Boolean function f .
We apply our method to a 80-stage keystream generator with a MAI
Boolean function f as its filter, while AImin(f) is very small, which
disobeys our criterion. The time and data complexities of the traditional
algebraic attack are O(273.56) and O(224.52) respectively, with a memory
cost of O(249). The time and data complexity of our method are O(256.86)
and O(25.36) respectively, and the memory cost is O(210.72).

Keywords: Algebraic attack ·Algebraic immunity ·Guess-then-algebraic
attack · LFSR-based stream ciphers · 1-st minimum algebraic immunity

1 Introduction

The research of the LFSR-based stream ciphers with nonlinear filter generators
or combination generators has spawned many analytical methods and theoretical
research. A most important cryptanalytic tool is algebraic attack.

Courtois, N.T. and Meier, W. proposed algebraic attack on stream ciphers
with linear feedback in 2003 [3], which is a classical and efficient analytical
method towards LFSR-based stream ciphers. The basic idea of the algebraic
attack is divided into three steps:
c© Springer International Publishing Switzerland 2015
L.C.K. Hui et al. (Eds.): ICICS 2014, LNCS 8958, pp. 132–142, 2015.
DOI: 10.1007/978-3-319-21966-0 10

A Guess-Then-Algebraic Attack on LFSR-Based Stream Ciphers 133

Step 1: Construct a nonlinear equation system A with the secret key bits
or initial vector values as its variables by using the keystream bits.

Step 2: Multiply a nonzero function g of low degree to each equation of the
system, resulted to an equation system B with degree lower than that of A.

Step 3: Solve the equation system B.
Since algebraic attack was proposed, there have emerged many research issues

related to it. Scholars try to explore the properties of the nonzero function g
in Step 2, resulting to the research areas of algebraic immunity and annihi-
lators for the Boolean functions [1,2,4,6,8,10,12,13,15,16]. Denote AN(f) =
{g ∈ Bn|f · g = 0}. Any function g ∈ AN(f) is called an annihilator of f .
The algebraic immunity of f , named AI(f), is the minimum algebraic degree
of nonzero annihilators of f or f + 1 [11], which measures the ability of the
Boolean functions against algebraic attack. The maximum algebraic immunity
for n-variable Boolean functions is �n

2 � [3], and a Boolean function with maxi-
mum algebraic immunity is called MAI Boolean function.

In this paper, for a Boolean function f ∈ Bn (where Bn is the n-variable
Boolean ring), we introduce a parameter called 1-st minimum algebraic immu-
nity AImin(f). We prove that when AI(f) is optimum, AImin(f) ≤ AI(f),
particularly, when n is odd, AImin(f) < AI(f). A simple algorithm is given to
compute AImin(f).

When the filter of a LFSR-based stream cipher is a MAI Boolean function f ,
it can resist the algebraic attack to the greatest extent. Based on our theoretical
results related to AImin(f), we propose a guess-then-algebraic attack on such
kind of LFSR-based stream ciphers. The strategy of guessing is very important
in the guess and determine attack. Our method takes some particular guessing
strategy by taking advantage of the properties of AImin(f). First, we guess some
initial state bits, the locations of which are determined by the specific structure
of the LFSR and the properties of AImin(f). After guessing enough LFSR state
bits, we derive equations of degree AImin(f) as many as possible by taking
advantage of the specific structure of the LFSR and the filter taps, and then we
solve the resulted equation system.

Our method has three special merits. (a) It makes full use of each guessed bit
to derive equations of degree AImin(f) as many as possible. In fact, AImin(f)
is strictly less than AI(f) in most cases. (b) It utilizes not only the properties
of f but also the tap positions, which helps to derive as much information as
possible. The cost of time and data is less than that of the traditional algebraic
attack given in [3] under some condition. (c) Our attack suggests that AImin(f)
should not be too small, which is a new design criterion for the filter Boolean
function f.

Moreover, we apply our method on a 80-stage keystream generator. Its filter
generator is a 9-variable MAI Boolean function f , while AImin(f) is very small,
which disobeys our design criterion. This model can resist the traditional alge-
braic attack given in [3] to the greatest extent. The time and data complexities
of the traditional algebraic attack are O(273.56) and O(224.52) respectively, with
a memory cost of O(249). While the time and data complexity of our method
are O(256.86) and O(25.36) respectively, and the memory cost is O(210.72).

134 X. Zhong et al.

Notice that Debraize, B. and Goubin, L. proposed a guess-and-determine
algebraic attack on the self-shrinking generator (SSG) with low Hamming weight
feedback polynomial in [7]. It mainly aims to analyze the self-shrinking gener-
ators, while our method targets to the LFSR-based stream ciphers with filter
Boolean functions of optimum algebraic immunity. They guess some informa-
tion first, then write a system of polynomial equations and solve the system
with SAT solver algorithm MiniSAT. While our method pays attention to the
locations of the guessed bits by taking advantage of the theoretical properties of
AImin(f), which is a new parameter in the academic sector of the stream cipher.
Moreover, the degree of the equations derived after guessing some state bits is
AImin(f), which is the most different character between our method and the
guess-and-determine algebraic attack proposed in [7].

This paper is organized as follows: Sect. 2 introduces some basic knowledge
related to our work. In Sect. 3, we introduce a new parameter called 1-st min-
imum algebraic immunity AImin(f), along with some theoretical analysis. We
also give a simple algorithm to compute AImin(f). In Sect. 4, for LFSR-based
keystream generators with nonlinear filter Boolean function, we propose a guess-
then-algebraic attack by taking advantage of AImin(f) and give some design cri-
terion of the LFSR-based keystream generators. In Sect. 5, we apply our method
to a keystream generator which does not obey our criterion. Section 6 concludes
this paper.

2 Preliminaries

Courtois, N.T. and Meier, W. proposed the algebraic attack on stream ciphers
with linear feedback [3]. They mainly focused on the LFSR-based keystream
generators with nonlinear filter Boolean function. Figure 1 shows the general
model.

Fig. 1. LFSR-based keystream generator with nonlinear filter

First, we give a brief description for this model. Let the length of the linear
feedback shift register be l. L is the “connection function” of the LFSR, and
it is linear. Let the initial state of the LFSR be s0 = (s0, s1, ..., sl−1), then it
generates a m-sequence s0, s1, s2.... For sake of narrative convenience, we call
this m-sequence as LFSR sequence. The state of the LFSR at time t is

st = (st, st+1, ..., st+l−1) = Lt(s0, s1, ..., sl−1),

A Guess-Then-Algebraic Attack on LFSR-Based Stream Ciphers 135

Table 1. Complexity of AA for the model in Fig. 1

Data Memory Complexity

O(M) O(M2) O(Mω)

which is filtered by a balanced nonlinear Boolean function f ∈ Bn. The generator
outputs one bit ct at time t. For each ct, we can construct an equation involving
some key bits and initial value as its variables. Denote the output of the filter
generator by c0, c1, c2, ..., where ci ∈ F2, then we can get the following equation
system: ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

c0 = f (s0, s1, ..., sl−1)
c1 = f(L (s0, s1, ..., sl−1))
c2 = f(L2(s0, s1, ..., sl−1))
...

(1)

The problem of recovering the l initial state bits of the LFSR is reduced to
solving the equation system (1).

Table 1 shows the complexity of the traditional algebraic attack (AA) in [3]
on the model given in Fig. 1, where M =

(
l

AI(f)

)
, and ω is the parameter of the

Gaussian elimination and in theory ω ≤ 2.376 [5].
While as the authors of [3] declare, the (neglected) constant factor in that

algorithm is expected to be very big and they regard Strassen’s algorithm [14]
as the fastest practical algorithm. Then they evaluate the complexity of the
Gaussian reduction to be 7 · M log7

2/64 CPU clocks. For convenience, scholars
usually use ω = 3 in Table 1 to estimate the time and data complexity of the
traditional algebraic attack.

We can get that the complexity of the traditional algebraic attack on the
model given in Fig. 1 is determined by l and AI(f). When using the traditional
algebraic attack given in [3], for each keystream bit, the lowest degree of equa-
tions that the analysts can obtain is AI(f). In the next section, we try to find a
way to see if we can decrease the time and data complexity by further exploring
the properties of the nonlinear filter function and the structure of the filter tap
positions.

3 1-st Minimum Algebraic Immunity AImin(f)

In this section, for a Boolean function f ∈ Bn, we give a new definition called 1-
st minimum algebraic immunity AImin(f). To begin with, we give the following
definition.

Definition 1. Given a Boolean function f(x1, x2, ..., xn) ∈ Bn, for some fixed
i, i ∈ [1, n], define

AI(f |xi=0) = AI(f(x1, x2, ..., xi−1, 0, xi+1, ..., xn)).

AI(f |xi=1) = AI(f(x1, x2, ..., xi−1, 1, xi+1, ..., xn)).

136 X. Zhong et al.

Definition 2. Given a Boolean function f(x1, x2, ..., xn) ∈ Bn, for some fixed
i, i ∈ [1, n], define

AIi(f) = max{AI(f |xi=0), AI(f |xi=1)}.

Definition 3. For a Boolean function f(x1, x2, ..., xn) ∈ Bn, define the 1-st
minimum algebraic immunity of f as

AImin(f) = min{AIi(f) : i ∈ [1, n]}.

Also define

NAImin
(f) = �{i|AIi(f) = AImin(f) : i ∈ [1, n]},

where “�” denote the number of the elements in a set.
Let G = {g ∈ AN(f |xi=c)|deg(g) = AImin(f)}, and also denote ni,c = �G,
where c ∈ {0, 1}.

Based on the above definitions, we derive Theorem 1:

Theorem 1. For a Boolean function f(x1, x2, ..., xn) ∈ Bn, if its algebraic
immunity is optimum, then

AImin(f) ≤ AI(f).

Particularly, if n is odd, then

AImin(f) < AI(f).

Proof. Given f(x1, x2, ..., xn) ∈ Bn, it can be expressed as:

f(x1, x2, ..., xn) = xif1(x1, ..., xi−1, xi+1, ..., xn) + f2(x1, ..., xi−1, xi+1, ..., xn).

When xi is fixed, there are only n − 1 variables left, then from Definitions 1–3,
we can get that

AImin(f) ≤ AIi(f) ≤ �n − 1
2

� ≤ AI(f).

Particularly, if n is odd, then

AImin(f) ≤ AIi(f) ≤ �n − 1
2

� < �n

2
� = AI(f).

The following example verifies Theorem 1.

Example 1. The Boolean function f = x1x2x3x5 + x1x2x5 + x1x2 + x1x3x4x5 +
x1x3x4 + x1x3x5 + x1x4x5 + x1x4 + x2x3 + x2x4x5 + x2x5 + x3x4 + x4x5 + 1 is
a 5-variable Carlet-Feng Boolean function. We can get that AI(f) = 3, which is
optimum. The AIi(f), i ∈ [1, 5] of f are listed in Table 2.

We can see that AImin(f) = AIi(f) = 2 < AI(f) = 3, NAImin
(f) = 5 > 1.

In fact, for a Boolean function h ∈ Bn, although AI(h) is not maximum,
it is possible that AImin(h) is strictly less than AI(h). For instance, for the
filter function fd adopted by the stream cipher LILI-128 [9], AImin(fd) = 3 <
AI(fd) = 4, NAImin

(fd) = 4.

A Guess-Then-Algebraic Attack on LFSR-Based Stream Ciphers 137

Table 2. Compute the AIi(f) of f

xi x1 x2 x3 x4 x5

AIi(f) 2 2 2 2 2

Algorithm 1 shows how to compute AImin(f) and NAImin
(f) for a Boolean

function f .

Algorithm 1. Compute AImin(f) and NAImin
(f)

Input: I = {1, 2, ..., n}, Boolean function f ∈ Bn.
Set F = ∅, E = ∅, c ∈ {0, 1}.
for i ∈ I do

Compute all the AIi(f) defined in Definition 2 and the corresponding ni,c

defined in Definition 3;
if AIi(f) ≤ AI(f) then

F = F ∪ {(xi, AIi(f), ni,0, ni,1)};

Denote the minimum AIi(f) in F as AImin(f);
E = E ∪ {(xi, AIi(f), ni,0, ni,1) ∈ D|AIi(f) = AImin(f), i ∈ I};
NAImin(f) = �E;
Output E, NAImin(f).

4 A Guess-Then-Algebraic Attack on LFSR-Based
Stream Ciphers via Our Theoretical Results

Designers often choose a MAI Boolean function as the filter of the LFSR-based
keystream generators, which helps to resist the traditional algebraic attack to
the greatest extent. Section 3 shows that for a Boolean function f of optimum
algebraic immunity, AImin(f) ≤ AI(f). Even if AI(f) is not maximum, it is
possible that AImin(f) < AI(f). We consider to take advantage of the properties
of AImin(f) to recover the initial state of the LFSR.

The strategy of guessing is very important in the guess and determine attack.
In this section,wewould like togiveaguess-then-algebraic attack,which takes some
particular guessing strategy by taking advantage of the properties ofAImin(f) pro-
posed in Sect. 4. First we choose to guess some (initial) internal state bits of the
LFSR, resulted to equations of degree AImin(f). Here we make use of each guessed
bit to the greatest extent, that is, we would use each guessed bit to construct as
many low-degree equations as possible. The positions of the guessed internal state
bits of the LFSR should obey some rules according to the detailed structure of the
LFSR, the properties of the filter Boolean function, and the filter tap positions.
After guessing a suitable number of (initial) internal state bits, we can get an equa-
tion system of degree AImin(f).

In the following, we propose an attack by using our theoretical results in
Sect. 3. We focus on the LFSR-based keystream generator with nonlinear filter

138 X. Zhong et al.

shown in Fig. 1. With the same description in Sect. 2, we target to recover the
initial state bits s0 = (s0, s1, ..., sl−1) by solving the following equation system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c0 = f(s10, s
2
0, ..., s

n
0)

c1 = f(s11, s
2
1, ..., s

n
1)

c2 = f(s12, s
2
2, ..., s

n
2)

...

(2)

where si
t, i = 1, 2, ..., n are the n LFSR state bits tapped as the input of the filter

Boolean function f(x1, x2, ..., xn) at time t.

Guess-then-algebraic Attack:
Assume that the LFSR shifts right and it is regularly clocked.
Step I: For f(x1, x2, ..., xn) ∈ Bn, compute AImin(f), E and NAImin

(f) via
Algorithm 1. Suppose we get E ={(xi1 , AImin(f), ni1,0, ni1,1), ..., (xim , AImin(f),
nim,0, nim,1) : 1 ≤ i1 < i2 < · · · < im ≤ n}, NAImin

(f) = m, AImin(f) = k.
Step II: With the parameters derived from Step I, we do the following operation:

(1) At time t, denote the inputs of the filter function as s1t , ..., s
n
t , find the

LFSR state bit corresponding to xi1 in set E, and denote it as si1
t .

(2) Guess si1
t = a, where a ∈ {0, 1}, then we can derive an equation

ft(s1t , s
2
t , ..., s

i1−1
t , a, si1+1

t , ..., sn
t) = ct.

From Algorithm 1 we get that AI(ft) = AImin(f) = k.
(3) For each clock, denote the distance of the locations for the LFSR state

bits corresponding to the variables xi and xj of f as di,j .
Notice that E ={(xi1 , AImin(f), ni1,0, ni1,1), ..., (xim , AImin(f), nim,0, nim,1) :

1 ≤ i1 < i2 < · · · < im ≤ n}, then we clock the stream cipher di1,i2 clocks from
time t. Find the LFSR state bit corresponding to xi2 in the set E at time t+di1,i2 ,
and denote it as si2

t+di1,i2
. With the keystream bit ct+di1,i2

and the guessed value

of si1
t = a, we get another equation at time t+di1,i2 by substitute si2

t+di1,i2
by a.

ft+di1,i2
(s1t+di1,i2

, s2t+di1,i2
, ..., si2−1

t+di1,i2
, a, si2+1

t+di1,i2
, ..., sn

t) = ct+di1,i2
.

In the same way, we can get a group of m equations, and the algebraic
immunity of the functions ft, ft+di1,i2

, ..., ft+di1,im
is AImin(f) = k.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ft(s1t , ..., s
i1−1
t , a, si1+1

t , ..., sn
t) = ct

ft+di1,i2
(s1t+di1,i2

, ..., si2−1
t+di1,i2

, a, si2+1
t+di1,i2

, ..., sn
t+di1,i2

) = ct+di1,i2

...
ft+di1,im

(s1t+di1,im
, ..., sim−1

t+di1,im
, a, sim+1

t+di1,im
, ..., sn

t+di1,im
) = ct+di1,im

(3)

Until now, we get m equations by guessing one LFSR state bit. For each equation,
we can derive nij ,ct+dij,ik

(or nij ,ct+dij,ik
+1 when ct+dij ,ik

= 0) equations of

degree AImin(f), where nij ,ct+dij,ik
is the number of annihilators defined in

A Guess-Then-Algebraic Attack on LFSR-Based Stream Ciphers 139

Definition 3. We guess another LFSR state bit which is appropriately chosen,
and get another group of equations, and so on.

We hope that the guessed bits are all the initial state bits of the LFSR, which
can make the analysis much easier. If the guessed bits are not all the initial state
bits, more careful analysis is needed.

Usually, we choose the parameter t = 0, for it can make the number of the
guessed initial bits among all the guessed LFSR state bits as large as possible,
which can make the analysis much easier.

Here we analyze the situation that the guessed bits are all the initial state
bits of the LFSR. Suppose we guess r initial LFSR state bits, then we can
get r · ∑

1≤j<k≤m nij ,ct+dij,ik
equations with the initial LFSR state bits as the

variables by using the linear feedback recursion of the LFSR. Then we use the
same method to analyze the complexity with the method mentioned in [3].

After guessing r LFSR initial state bits, we reduce the problem of solving the
l initial LFSR state bits with a filter Boolean function f of algebraic immunity
AI(f) to solving l − r unknown initial bits with a filter Boolean function of
algebraic immunity AImin(f).

When the condition

r ·
∑

1≤j<k≤m

nij ,ct+dij,ik
≥

(
l − r

AImin(f)

)

(4)

is satisfied, the time complexity to solve the equation system derived from Step
II is

T1 = Nω,

where N =
(

l−r
AImin(f)

)
, and ω is the parameter of the Gaussian elimination, and

we adopt ω = 3 in this paper. The complexity to recover the initial state of the
LFSR is

T = 2rNω.

The data that we need is

D = max(rm,

(
l − r

AImin(f)

)

).

The key condition is that the inequality (4) is satisfied. In fact, when AImin(f)
is small enough (especially when AImin(f) = 1), the condition can be satisfied
in most cases. Under this situation, we can directly see that the data complexity
is better than that of the algebraic attack in [3]. While the improvement of the
time complexity is not determined. It can be derived that the time complexity
of our attack is less than that of the conventional algebraic attack given in [3]
when r satisfies the following inequality:

r

w
< log2

(
l

d

)

− log2

(
l − r

k

)

, (5)

where r is the number of the guessed initial state bits, d = AI(f), k = AImin(f),
and ω is the parameter of the Gaussian elimination.

140 X. Zhong et al.

In fact, the number of the equations that can be derived by guessing r-bit
initial state can be more than r · ∑

1≤j<k≤m nij ,ct+dij,ik
if we can make full use

of the annihilators for f |xi=c. Let G = {g ∈ AN(f |xi=c)|deg(g) = AImin(f)},
for an element g ∈ G, multiply monomials of degree less than AImin(f) to g,
and we may get new polynomials that can be used to construct equations.

Our method suggests a new design criterion for the filter Boolean function
f adopted by the LFSR-based stream ciphers, that is, the parameters of the
keystream generator should not satisfy the inequality (4) and inequality (5)
in the same time, which means that designers should pay attention that their
keystream generator should satisfy that:

(a)AImin(f) should be large enough to resist our guess-then-algebraic attack.
(b)The number of variables corresponding to AImin(f) should not be too
large.

Notice that our method can be applied to all kinds of LFSR-based stream
ciphers with nonlinear filter. If the target stream cipher satisfies the inequalities
(4) and (5), then we can decrease the time and data complexity.

5 Application of Our Method on a LFSR-Based Stream
Cipher Overlooking Our Criterion

In this section, we would like to give an example to show that the AImin(f)
should not be too small for the nonlinear filter Boolean function.

The target model is the same with the one shown in Fig. 1. The length of
the LFSR is 80, and its initial state bits are (s0, s1, ..., s79). The linear feedback
polynomial is primitive. The filter Boolean function is a 9-variable Boolean func-
tion f = f(x1, x2, ..., x9), AI(f) is optimum. Suppose the LFSR shifts left and
it is regularly clocked. The 9 inputs to f are taken from LFSR according to this
full positive difference set: (0,1,3,7,12,20,30,44,65).

From the above description we can get that this model can resist the tradi-
tional algebraic attack given in [3] to the greatest extent. In the following, we
would show that although AI(f) is optimum, our method works if the model
disobeys our criterion mentioned in Sect. 4.

Suppose AImin(f) = 1, and the corresponding variable is x7, that is,
AI(f |x7=0) = AI(f |x7=1) = 1, which means that this model disobeys our
criterion.

According to the guess-then-algebraic attack given in Sect. 4, we can guess
r = 41 initial state bits (s38, s31, ..., s79). Then we can get at least 41 linear
equations, which satisfy the inequality (4), that is r ≥ (

80−r
AImin(f)

)
= 39. The time

complexity of our attack is

T = 2r

(
80 − r

1

)ω

= 256.86,

where m is the number of variables for f corresponding to AImin(f).
The data complexity is

D = max(r,
(

80 − r

1

)

= 25.36.

A Guess-Then-Algebraic Attack on LFSR-Based Stream Ciphers 141

The memory complexity is
M = 210.72.

Table 3 shows the comparison between our method (GA) and the traditional
attack (AA) given in [3] on this model.

Table 3. Comparison between GA and AA in [3]

T D M

Our method O(256.86) O(25.36) O(210.72)

Algebraic attack O(273.56) O(224.52) O(249)

Remark 1. This example verifies that although the target model obsesses a filter
Boolean function of optimum algebraic immunity, if it disobeys our criterion,
analysts can still use our guess-then-algebraic attack to recover the initial state
with time and data complexities less than that of the traditional algebraic attack
given in [3].

6 Conclusion

This paper introduces a new parameter called 1-st minimum algebraic immunity
AImin(f) for the Boolean function f , along with some theoretical properties of
AImin(f). Based on our results, we propose a guess-then-algebraic attack on the
LFSR-based stream cipher with nonlinear filter Boolean function f by guessing
some state bits in advance and then applying algebraic attack on it. Our method
makes full use of each guessed bit to generate as many equations of degree less
than or equal to AI(f) as possible. The cost of time and data is less than that
of the traditional algebraic attack in [3] under some condition. Our method
suggests a new design criterion for the LFSR-based keystream generators with
nonlinear filter. We apply our method to a 80-stage keystream generator with
a MAI Boolean function f as its filter, while AImin(f) is very small, which
disobeys our criterion. The time, memory and data complexities of our method
are less than that of the traditional algebraic attack.

Acknowledgements. We are grateful to the anonymous reviewers for their valuable
comments on this paper. This work was supported by the National Basic Research Pro-
gram of China (Grant No. 2013CB834203, Grant No. 2013CB338002) and the National
Natural Science Foundation of China (Grant No. 61379142, Grant No. 11171323, Grant
No. 60833008, Grant No. 60603018, Grant No. 61173134, Grant No. 91118006, Grant
No. 61272476), the Strategic Priority Research Program of the Chinese Academy of
Sciences (Grant No. XDA06010701).

142 X. Zhong et al.

References

1. Armknecht, F., Carlet, C., Gaborit, P., Künzli, S., Meier, W., Ruatta, O.: Efficient
computation of algebraic immunity for algebraic and fast algebraic attacks. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 147–164. Springer,
Heidelberg (2006)

2. Carlet, C., Feng, K.: An infinite class of balanced functions with optimal alge-
braic immunity, good immunity to fast algebraic attacks and good nonlinearity.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 425–440. Springer,
Heidelberg (2008)

3. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

4. Carlet, C., Zeng, X.Y., Li, C.L., Hu, L.: Further properties of several classes of
Boolean functions with optimum algebraic immunity. Des. Codes Crypt. (DCC)
52(3), 303–338 (2009)

5. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
J. Symb. Comput. 9, 251–280 (1990)

6. Tang, D., Carlet, C., Tang, X.H.: Highly nonlinear boolean functions with optimal
algebraic immunity and good behavior against fast algebraic attacks. IEEE Trans.
Inf. Theor. (TIT) 59(1), 653–664 (2013)

7. Debraize, B., Goubin, L.: Guess-and-determine algebraic attack on the self-
shrinking generator. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 235–252.
Springer, Heidelberg (2008)

8. Dalai, D.K., Maitra, S., Sarkar, S.: Basic theory in construction of Boolean func-
tions with maximum possible annihilator immunity. Des. Codes Crypt. 40(1), 41–
58 (2006)

9. Dawson, E., Golić, J.D., Millan, W., Simpson, L.: The LILI-II keystream generator.
In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 25–39. Springer,
Heidelberg (2002)

10. Limniotis, K., Kolokotronis, N., Kalouptsidis, N.: Secondary constructions of
Boolean functions with maximum algebraic immunity. Crypt. Commun. (CCDS)
5(3), 179–199 (2013)

11. Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean
functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 474–491. Springer, Heidelberg (2004)

12. Peng, J., Wu, Q.S., Kan, H.B.: On symmetric Boolean functions with high algebraic
immunity on even number of variables. IEEE Trans. Inf. Theor. 57(10), 7205–7220
(2011)

13. Rizomiliotis, P.: On the security of the Feng-Liao-Yang Boolean functions with
optimal algebraic immunity against fast algebraic attacks. Des. Codes Crypt.
(DCC) 57(3), 283–292 (2010)

14. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356
(1969)

15. Zeng, X., Carlet, C., Shan, J., Hu, L.: More balanced Boolean functions with
optimal algebraic immunity and good nonlinearity and resistance to fast algebraic
attacks. IEEE Trans. Inf. Theor. 57(9), 6310–6320 (2011)

16. Chen, Y.D., Lu, P.Z.: Two classes of symmetric Boolean functions with optimum
algebraic immunity: construction and analysis. IEEE Trans. Inf. Theor. 57(4),
2522–2538 (2011)

	A Guess-Then-Algebraic Attack on LFSR-Based Stream Ciphers with Nonlinear Filter
	1 Introduction
	2 Preliminaries
	3 1-st Minimum Algebraic Immunity AImin(f)
	4 A Guess-Then-Algebraic Attack on LFSR-Based Stream Ciphers via Our Theoretical Results
	5 Application of Our Method on a LFSR-Based Stream Cipher Overlooking Our Criterion
	6 Conclusion
	References

