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Abstract. Algebraic side-channel attacks are a type of side-channel
analysis which can recover the secret information with a small num-
ber of samples (e.g., power traces). However, this type of side-channel
analysis is sensitive to measurement errors which may make the attacks
fail. In this paper, we propose a new method of algebraic side-channel
attacks which considers noisy leakages as integers restricted to intervals
and finds out the secret information with the help of a constraint pro-
gramming compiler named BEE. To demonstrate the efficiency of this
new method in algebraic side-channel attacks, we analyze some popular
implementations of block ciphers—PRESENT, AES, and SIMON under
the Hamming weight or Hamming distance leakage model. For AES, our
method requires the least leakages compared with existing works under
the same error model. For both PRESENT and SIMON, we provide the
first analytical results of them under algebraic side-channel attacks in
the presence of errors. To further demonstrate the wide applicability of
this new method, we also extend it to cold boot attacks. In the cold boot
attacks against AES, our method increases the success rate by over 25 %
than previous works.

Keywords: Algebraic side-channel attack · Hamming weight leakage ·
Error-tolerance · Cold boot attack

1 Introduction

In recent years side-channel cryptanalysis has been an active topic of cryptanaly-
sis, in which an attacker targets a certain implementation of a cipher and exploits
the physical information during the encryption of the cipher such as computation
traces and power traces. In 2002 Suresh Chari et al. proposed template attacks [9]
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which are usually considered as the most powerful type of side-channel attacks in
an information theoretical sense, since a template attack only requires minimum
traces.

Combining template attacks with algebraic cryptanalysis, Renauld and Stan-
daert proposed algebraic side-channel cryptanalysis [25]. Their analysis composes
of two stages. First, the implementation of the cipher is profiled in advance as a
template, and a decoding process is devised to map a single power consumption
trace or electromagnetic trace to a vector of leaks (e.g., the Hamming weight)
on the intermediate values of the encryption of the cipher. In the second stage,
the cipher as well as the leaks is represented with a system of equations and the
system is solved with a SAT solver, assuming the leaks derived from the first
stage are accurate.

In fact, due to interference and the limitations of measurement setups, the
side-channel information usually involves noise. However, the algebraic crypt-
analysis is sensitive to errors and even small errors may make the key recovery
attack fail, i.e., the attack finds no or wrong solutions. In the literature, there
are several works that have explored error-tolerant algebraic side-channel attacks
under some leakage models like Hamming weight leakage model. In [23], a cryp-
tosystem and the corresponding Hamming weight leakages are transformed nat-
urally into a pseudo-Boolean optimization (PBOPT) problem which was then
solved with the mixed integer programming (MIP) solver SCIP [5]. Neverthe-
less, the method in [23] can not fully attack AES in the presence of errors. Later,
an enhanced error-tolerant algebraic side-channel attack named MDASCA was
introduced in [30], where the leakage is treated as a set of values rather than a
single value, so that the correct leakage can be included with great confidence.
In MDASCA, the cryptosystem and leakages are transformed into Conjunctive
Normal Form (CNF) and then solved with a SAT solver. The MDASCA method
outperforms the the SCIP-based method in [23] in dealing with errors. More
techniques under a framework similar to MDASCA were discussed in [21].

Our Contribution. Inspired by the idea of MDASCA that models the leakage
as a set of values to trade robustness for informativeness, we propose a new
method of algebraic side-channel attacks that considers noisy leakages as integers
restricted to an interval and finds secret information with BEE (Ben-Gurion
Equi-propagation Encoder) [4,20]. BEE is a constraint programming compiler for
problems represented with Boolean variables and integer variables and provides
a high-level descriptive language for use and automatically generates low-level
executable CNF for the underlying SAT solver. Using this method, we analyze
some popular implementations for three block ciphers—PRESENT, AES and
SIMON under the Hamming weight or Hamming distance leakage model where
side-channel leakages are modeled as integers (constraints for BEE). We provide
the first analytical results of PRESENT and SIMON under the Hamming weight
and the Hamming distance leakage model respectively in the presence of errors,
and our attack against the AES is better than MDASCA and other existing
attacks under the same error model with respect to the error-tolerance and
leakages required.
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To further show the flexibility of the new method in algebraic side-channel
attacks, we extend its use in cold boot attacks [15] and also other applications
where the side-channel information can be described as constraints for BEE. In
the cold boot attacks against AES, our method increases the success rate by over
25% than previous works. Furthermore, all of our experiments are done within
several seconds even in the worst case.

Organization. The paper is organized as follows. We briefly describe the process
of our method of algebraic side-channel attacks using BEE in Sect. 2 and present
algebraic side-channel attacks on two block ciphers in Sect. 3. In Sect. 4 we extend
the use of our method into cold boot attacks and other attacks, and discuss the
features of BEE in Sect. 5. Finally, we conclude the paper in the last section.

2 Algebraic Side-Channel Attacks Using BEE

In this section, we elaborate on the new method of algebraic side-channel attacks
using BEE. As can be seen in Fig. 1, an attacker needs to build a system of
polynomial equations from the target cipher, and then add the side-channel
information he obtained to the equation system as constraints and solve it to
recover the secret key. A more detailed description is provided below.

Fig. 1. Algebraic side-channel attacks using BEE

2.1 Building an Equation System

Theoretically, each cipher can be represented with a system of Boolean polyno-
mial equations which involve the bits of the cipher key, plaintext and ciphertext
as unknown variables. However, since a block cipher usually iterates a nonlin-
ear function many times (e.g., AES iterates 10 or more rounds), it is unlikely to
obtain a low degree polynomial representation on the bits of the cipher key, plain-
text and ciphertext. To get a system of low degree Boolean equations, intermedi-
ate variables (e.g., standing for input and output bits of the nonlinear operations
in intermediate round operations) are needed. To build quadratic equations for
the nonlinear layer composed of S-boxes, techniques in [6,10,18] can be referred.
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2.2 Extracting Side-Channel Information

Usually, it is difficult to solve the system of polynomial equations of a block
cipher even when the plaintext and ciphertext are known, since there are too
many unknown variables in the system [10]. However, under the circumstance of a
side-channel attack, partial information related to the key, plaintext or ciphertext
may be known, e.g., physical leakage of the intermediate states in the encryption
or key schedule of a block cipher, and this so-called side-channel information
can be plugged into the equation system to help to solve it. Unfortunately, the
side-channel information usually involves noise in practice, which may make the
attack fail, i.e., the attacker finds no or wrong solutions.

To deal with the noise, it is needed to profile a device (similar to the target
one) which executes the encryptions and modulates the measurement errors in
advance. Once the leakages of the target device are obtained, the side-channel
information can be added to the equation system in an error-tolerant way accord-
ing to a priori error model. In this paper we assume that the error model has
been built and the leakages can be extracted in some way. Hence, we focus on the
procedure of solving the system of equations and noisy side-channel information.

2.3 Solving the System of Equations and Noisy Side-Channel
Information with BEE

In recent years, Boolean SAT solving techniques were improved dramatically in
the field of cryptanalysis [2,22]. A general idea of SAT-based cryptanalysis is
to encode algebraic equations (usually over the binary field F2) into Boolean
formulae in CNF and solve the transformed problem with a SAT solver. Since
the efficiency of SAT solving is greatly influenced by the conversion, it is crucial
to choose proper conversion methods. Truth table, Karnaugh map [17] and the
methods proposed in [2] can be served as such conversions. Another way is to
use a SAT-based tool which provides a high-level descriptive language for prob-
lems and automatically generates low-level executable files for the underlying
SAT solver. STP [14] and BEE [4,20] are this sort of known examples. In these
tools specific techniques are used to optimize the problem before invoking the
underlying SAT solver.

BEE is a compiler in constraint programming which facilitates users to trans-
late problem instances involving Boolean and integral variables into CNF. The
generated CNF is then solved by an underlying SAT solver such as CryptoMin-
iSat [27] and MiniSat [13]. A brief description of its syntax can be referred to [20].
Compared with a pure SAT solver, its ability to deal with integers and maintain
the structure of the original problem instance opens a door for more complex appli-
cations.

For example, in an algebraic side-channel attack under the Hamming weight
leakage model, a byte X = x7x6 · · · x0 with x0 as the least significant bit and its
Hamming weight can be represented in the BEE syntax as

new int(I, w − i, w + j),
bool array sum eq([x0, x1, x2, x3, x4, x5, x6, x7], I),
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where the i and j in the first sentence are used to define the interval of integer
I around the most likely value w which includes the correct Hamming weight
of X with great confidence, and the second sentence represents the Hamming
weight of X as I. With additional information of the Hamming weight, the whole
equation system of the target cipher ended with the functional sentence as solve
satisfy can be fed into BEE, and BEE returns an assignment or reports UNSAT.
Other functional sentences solve minimize w or solve maximize w can also be
used, which means BEE returns UNSAT or solutions that minimize or maximize
the objective integer variable w.

Hence, as long as the side-channel information can be modeled as integers,
i.e. constraints that speeds up the solving or narrows solution space, BEE works
well. However, when the side-channel information is modeled as integers, noise
should be considered, that is to say, each integer should be defined with an
interval or a set rather than a specific value in order to trade robustness for
informativeness.

3 Algebraic Side-Channel Attacks Under the Hamming
Weight Leakage Model

In this section we explain the efficiency of our method through algebraic side-
channel attacks against some popular implementations where the Hamming
weight (distance) leakage model can be built. Our examples are PRESENT-80 [7],
AES-128 [11] and SIMON-32 [3] (in Appendix B). In these examples we assume
that the noisy Hamming weight or Hamming distance information during the
encryption is obtained (no leakage during the key schedule of the cipher), and we
focus on solving the corresponding equation system with our new method.

To begin with, we introduce the notion of offset, standing for the offset of
the measured Hamming weight (or Hamming distance) from the correct one. For
simplicity, we only consider three typical cases with offset 0, ±1 and ±2, and
denote them as offset = 0, offset = 1 and offset = 2. More general offsets can
also be analyzed. Obviously, larger offsets tolerate greater noise, so the offset is
determined by the error model of the template.

3.1 PRESENT-80

PRESENT is a cipher with substitution-permutation network and with a block
size of 64 bits [7]. The recommended size for the key is 80 bits, while 128-bit
keys are also suggested. In this paper we just analyze PRESENT-80, the version
with 80-bit keys.

The encryption of PRESENT-80 is composed of 31 rounds, each of which
consists of an XOR operation to introduce a round key Ki for 1 ≤ i ≤ 31, a
linear bitwise permutation and a nonlinear substitution layer which parallelly
applies a 4-bit S-box 16 times. An additional round key K32 is used for post-
whitening.
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Both the encryption and key schedule of PRESENT-80 are simple with
respect to algebraic representations. In our attack, each S-box is described with
four equations as shown in Appendix A. Since the algebraic representations of
the S-boxes are the most complex part of the equation system, we introduce
new variables for the input and output bits of each S-box to get low degree
polynomial equations. In this way we get a system of 4276 equations in 4292
variables.

For an implementation of PRESENT-80 in a PIC 16F877 8-bit RISC-based
microcontroller, a measurement setup described in [28] can be exploited to
extract a power consumption that strongly correlates with the Hamming weight
of the data manipulated. This is also the model used in [25] where the Hamming
weight of the data commuting on the bus is indicated to be recovered with a
probability of 0.986. In this implementation, the whole encryption of a single
plaintext leaks the Hamming weight information corresponding to the compu-
tation of 2 × 8 × 31 bytes.

Let us first consider the case that the accurate Hamming weight informa-
tion can be recovered, and then move on to other cases of inaccurate Hamming
weight information. All of our experiments are conducted with MiniSat as the
underlying solver of BEE on a PC with 3.4 GHz CPU (only one core is used)
and 4 GB Memory. All solving times are given in seconds and are averaged over
on 50 random instances.

For accurate Hamming weight information, it can be added to the equation
system as constraints in the way described in Sect. 2 with i = j = 0. Following
[25], we consider four different attack scenarios according to known/unknown
plaintext-ciphertext pairs and consecutive/random Hamming weight leakages.
Table 1 lists the solving times using one trace compared with [25] when a 100 %
success rate is reached, where “#rounds” means the number of rounds which are
observed in the side-channel information, and the leakage rate means the ratio
between the number of leaked bytes and the number of all bytes in the measured
rounds. Thus, 50 % indicates random leakages and 100 % infers to consecutive
leakages.

According to Table 1, our attack requires less leakages than [25]. However,
under the unknown plaintext and ciphertext scenario with random leakages, our
attack fails and the experiments ran overtime.

Next, we consider the cases where the Hamming weight leakages are noisy
with offset = 1 and offset = 2. Table 2 exhibits the experimental results under
known plaintext/ciphertext scenario. If the leakages are consecutive, two traces
are enough to retrieve the cipher key within an hour even when the offset is ±2.
For the case that offset = 2 and the leakage rate is 0.7, three traces are required.
For unknown plaintext/ciphertext scenario, it takes a very long time to return
a solution.

3.2 AES-128

The block cipher AES-128 [11] accepts 128-bit blocks and 128-bit keys and iter-
ates 10 rounds. Each round, except the last one, consists of four operations—
AddRoundKey, SubByte, ShiftRow and MixColumn. The last round omits the
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Table 1. Experimental results of PRESENT-80 with a single trace when offset = 0.
Experiments in [25] were performed on an Intel-based server with a Xeon E5420 proces-
sor cadenced at 2.5 GHz running a linux 32-bit 2.6 Kernel.

Scenario leakage rate [25] this paper

#rounds time (s) #rounds time(s)

known P/C 100 % 8 79.69 2.5 0.21

known P/C 50 % 18 117.10 5 104.31

unknown P/C 100 % 8 45.59 4.5 92.55

unknown P/C 50 % 26 214.12 > 8 > 3600

Table 2. Experimental results of PRESENT-80 when offset = 1,2

Scenarios offset leakage rate #rounds #traces time (s)

known P/C 1 100 % 4 2 6.86

known P/C 1 50 % 4 2 39.40

known P/C 2 100 % 5 2 3084.39

known P/C 2 70 % 4 3 33.27

MixColumn operation. The SubByte operation applies an 8-bit S-box 16 times
in parallel and is the only nonlinear operation in AES.

In order to represent AES as a system of low degree Boolean polynomial
equations, we introduce new variables for both the input bits and output bits of
SubByte and apply the technique proposed in [10] to describe the S-box with 23
quadratic equations. Then the key schedule algorithm and the encryption of a
plaintext can be represented with a system of 6296 equations in 3168 variables.

For an 8-bit PIC microcontroller implementation of AES, there are 84 Ham-
ming weight leakages in each round corresponding to 16 weights in AddRound-
Key, 16 weights in SubBytes and 4 ·13 weights in MixColumn [21,23,26,30]. The
work in [26] is the first algebraic side-channel attack against AES, which showed
how the keys can be recovered from a single measurement trace, provided that
the attacker can identify the correct Hamming weight leakages of several inter-
mediate computations during the encryption process. Later, Zhao el al. proposed
an enhanced method named MDASCA to deal with the noise in measurement
using a set rather than a single value to describe the Hamming weight [30]. More
elaborate techniques in a framework similar to MDASCA were discussed in [21].
Recently, a novel method that models the cipher and the template as a graph and
finds the most possible key with a decoding algorithm from low-density parity
check codes was proposed in [32].

Following the notations in the previous subsections, we give our experimen-
tal results on AES comparing with two latest works [21,30]. The experiments
are carried out with CryptoMiniSat as the underlying solver of BEE on a PC
with 3.4 GHz CPU (only one core is used) and 4 GB Memory. The results are
summarized in Table 3. It shows the method in [30] outperforms that of [21],
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Table 3. Experimental results of AES-128. The symbol “-” indicates that no related
information was provided. The experiments of [30] were ran on an AMD Athlon 64
Dual core 3600+ processor clocked at 2.0 GHz. All solving times are given in seconds.

Scenario offset leakage [25] [30] this paper

rate #rounds time #rounds time #rounds time

known P/C 0 100 % 2 - 1 10 1 2.74

known P/C 0 50 % 10 - 5 120 3 118.00

unknown P/C 0 100 % 5 - 2 10 2 6.75

unknown P/C 0 50 % not clear - 6 100 6 69.17

known P/C 1 100 % - - 2(2 traces) 120 2(2 traces) 37.11

3 974.67

known P/C 2 100 % - - - - 1(3 traces) 33.29

while our attacks push the results of [30] further. Specifically, for offset = 1 our
method can recover the secret key of AES using a single trace, less than what
is needed in [30]. For a greater offset, offset = 2, only three traces are needed.
Note that method in [32] also provides good results. In [32], the noise level is
parameterized with signal-to-noise ratio, which makes it difficult to compare our
results with that of [32].

4 Cold Boot Attacks and Other Applications

In general, we can feed into BEE any problem instance that can be solved by a
SAT solver. In fact, BEE was designed for problems that are characterized by cer-
tain constraints, for example algebraic side-channel attacks under the Hamming
weight leakage model. Besides this, BEE can also be applied in other algebraic
attacks like cold boot attacks [15].

4.1 Cold Boot Attacks Against AES-128

Cold boot attacks were first proposed in [15]. In a cold boot attack, an attacker
tries to recover the cryptographic key from DRAM based on the fact that the
data may persist in memory for several minutes after removal of power by reduc-
ing the temperature of memory. For block ciphers, a cold boot attack is to recover
the secret key from an observed set of the round keys in memory, which are dis-
turbed by errors due to memory bit decay. From the point of view of algebraic
analysis, the cold boot problem can be modeled as solving a polynomial system
{f1, f2, · · · , fm} with noise.

There are different methods proposed to tackle the cold boot problem [1,16].
In [1] a system of equations derived from the cold boot attack is solved with
a mixed integer programming solver SCIP [5]. Specifically, for each fi a new
Boolean variable ei is added, and then the system is converted to a mixed integer
programming problem with Σei as the objective function. Hence, the cold boot
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problem turns to be a maximum satisfiability problem, which may also be solved
with another method named ISBS [16]. The basic idea of ISBS is to solve the
polynomial system {f1 + e1, f2 + e2, · · · , fm + em} with the characteristic set
method [29] by searching all {e1, e2, · · · , em}. The solution with {e1, e2, · · · , em}
achieving the smallest Hamming weight is the target solution.

Following the ideas of [1,16], BEE can be used instead in the following way.
First, represent the polynomial system {f1 + e1, f2 + e2, · · · , fm +em} with the
BEE syntax, and introduce a new integer variable, say w, to describe the Ham-
ming weight of {e1, e2, · · · , em}, and then solve the problem with the BEE func-
tional sentence as solve minimize w.

Before experimentally verifying the efficiency of BEE for solving cold boot
problems, the bit decay model should be illuminated first. According to [15], bit
decay in DRAM is usually asymmetric: bit flips 0 → 1 and 1 → 0 occur with
different probabilities, depending on the ground state. Consider an efficiently
computable vectorial Boolean function KS : Fn

2 → F
N
2 where N > n, and two

real numbers 0 ≤ δ0, δ1 ≤ 1. Let K = KS(k) be the image for some k ∈ F
n
2 , and

Ki be the i-th bit of K. Given K, we compute K ′ = (K ′
0,K

′
1, · · · ,K ′

N−1) ∈ F
N
2

according to the following probability distribution:

Pr[K ′
i = 0|Ki = 0] = 1 − δ1, P r[K ′

i = 1|Ki = 0] = δ1,

P r[K ′
i = 1|Ki = 1] = 1 − δ0, P r[K ′

i = 0|Ki = 1] = δ0.

Therefore, K ′ can be considered as a noisy version of K = KS(k) for some
unknown k ∈ F

n
2 , where the probability of a bit 1 in K flipping to 0 is δ0 and

the probability of a bit 0 in K flipping to 1 is δ1.
In our experiments, the target is the key schedule of AES-128 and the same

algebraic representation of the key schedule is used as in Subsect. 3.2. We set δ1
to be 0.001 to generate the K ′ as in [1,16,31] and assume δ1 = 0 for solving the
cold boot problem. Figure 2 shows the experimental success rate of key recovery
of AES for different δ0, compared with methods from [1,16] denoted as SCIP
and ISBS respectively. It is manifest that BEE provides an increase over 25%
in success rate. The details of running time can be found in Appendix C which
shows that BEE solves the problem in several seconds even when δ0 increases to
0.5. This may be explained by the low nonlinearity of the key schedule of AES-
128 and the optimization of BEE. The experiments also include the case where
BEE simply takes the cold boot problem as a satisfiability problem denoted as
“BEE satisfiability”. If we use information of all rounds of the key schedule, this
method almost corresponds to the method in [31] and the key can be recovered
in 1.3 hours even when δ0 = 0.8.

4.2 Side-Channel Cube Attacks

Cube attacks were proposed by Dinur and Shamir at Eurocrypt 2009 [12]. It
is a type of generic key recovery attacks applicable to any cryptosystem whose
ciphertext bit can be represented by a low degree multivariate polynomial in the
secret and public variables. The aim of a cube attack is to derive a system of
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Fig. 2. Success rate of key recovery considering 4 rounds of key schedule output

linear or quadratic equations with the secret key bits as unknowns which can be
solved easily. However, block ciphers tend to resist against cube attacks, since
they iteratively apply a nonlinear round function a large number of times such
that it is unlikely to obtain a low degree polynomial to represent any cipher-
text bit.

Fortunately, in a side-channel attack where some intermediate variables leak,
cube attacks are still useful [19]. Due to the side-channel noise, the derived
equation system may contain errors, which resembles the situation in a cold
boot attack. As a consequence, it is likely that our method can also be applied
efficiently in side-channel cube attacks against block ciphers.

5 Discussion

We have introduced a new method of algebraic side-channel attacks that con-
siders the noisy leakage as an integer restricted to an interval and finds secret
information with the help of BEE, a compiler in constraint programming. We
exemplified the efficiency of our method by analyzing some popular implementa-
tions of three block ciphers—PRESENT, AES and SIMON under the Hamming
weight or Hamming distance leakage model. In addition we applied our method
to cold boot attacks against AES.

As a new compiler for SAT problems, BEE can be added to the tool set
for side-channel attacks. In the literature, SAT solvers usually outperform MIP
solvers in cryptanalysis. For instance, an MIP solver determines the initial state
of Bivium B [24] in 263.7 seconds [8] while the MiniSat takes only 242.7 seconds.
For side-channel attacks in the presence of errors as mentioned above, the SAT-
based BEE works better than the methods based on MIP solvers. It is likely
that BEE has its own advantages for certain algebraic attacks. The feathers of
our BEE-based method are summarized below.
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– With the side-channel information modeled as constraints, BEE shows a wide-
spread use in algebraic side-channel attacks, for example, side-channel attacks
under Hamming weight leakage model, cold boot attacks and cube attacks.

– BEE, as a SAT-based tool, may outperform the tools based on MIP solvers
in many classes of algebraic attacks.

– It is natural for use, and BEE can simplify constraints and optimizes the
resulted CNF automatically.

– Algebraic side-channel attacks are more efficient than classical side-channel
attacks like differential power attack (DPA) in respect of the number of traces
needed.

6 Conclusion

In this paper we introduced a new method of algebraic side-channel attacks that
treats the noisy leakage as an integer restricted to an interval and finds secret
information with the help of BEE. We showed that this method is efficient and
flexible.

We analyzed some popular implementations of PRESENT, AES and SIMON
under the Hamming weight or Hamming distance leakage model to illustrate the
efficiency of constraint programming in cryptanalysis. The results on AES are
better than previous ones under the same error model and we provided the first
analytical results on PRESENT and SIMON under the Hamming weight and
Hamming distance leakage model respectively in the presence of errors.

To further show the flexibility of BEE in algebraic side-channel attacks, we
extended its use in cold boot attacks. In the cold boot attacks against AES,
our method provides an increase over 25 % in success rate and all of our attack
experiments were done within seconds. It is also likely to apply our method in
cube attacks and it is a future work to verify its efficiency experimentally in new
applications.
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Appendix

A Equations of the S-Box in PRESENT

Suppose the input nibble of the 4-bit S-box in PRESENT is X = x3x2x1x0 and
the output nibble is Y = y3y2y1y0. Then four Boolean polynomial equations on
xis and yjs are as follows.
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x0 + x2 + x1x2 + x3 + y0 = 0,

x1 + x0x1x2 + x3 + x1x3 + x0x1x3 + x2x3 + x0x2x3 + y1 = 0,

1 + x0x1 + x2 + x3 + x0x3 + x1x3 + x0x1x3 + x0x2x3 + y2 = 0,

1 + x0 + x1 + x1x2 + x0x1x2 + x3 + x0x1x3 + x0x2x3 + y3 = 0.

B Algebraic Side-Channel Attack of SIMON-32 Under
Hamming Distance Leakage Model

SIMON is a family of lightweight block ciphers designed by researchers from the
National Security Agency (NSA) of the USA to provide an optimal hardware
implementation performance [3]. SIMON comes in a variety of block sizes and key
sizes. In this section we analyze its smallest version, SIMON-32, which accepts
64-bit keys and 32-bit blocks and iterates 32 rounds.

The design of SIMON follows a classical Feistel structure, operating on two
n-bit halves in each round. For SIMON-32, n is 16. The round function makes
use of three n-bit operations: XOR (⊕), AND (&) and circular shift (≪), and
given a round key k it is defined on two inputs x and y as

Rk(x, y) = (y ⊕ f(x) ⊕ k, x),

where f(x) = ((x ≪ 1)&(x ≪ 8)) ⊕ (x ≪ 2). The key schedule algorithm of
SIMON is a linear transformation.

The algebraic representation of SIMON is intuitive due to the simplicity of
the round function. We introduce new variables for the intermediate state after
each round operation in both the encryption and key schedule algorithm. Conse-
quently, a system of 960 equations in 992 variables is built from the encryption
of a single plaintext and the key scheduling.

A typical implementation of SIMON is based on ASIC [3] which leaks the
Hamming distance between the input and the output of the round function. The
Hamming distance varies from 0 to 16. Following the attacks on PRESENT and
AES, we consider the measured Hamming distance, compared with the correct
one, to be with a small offset offset = 0,1,2.

Table 4 exhibits our results of experiments running on a PC with 2.83 GHz
CPU (only one core is used) and 3.25 GB Memory with CryptoMiniSat as the
underlying solver of BEE, where all solving times are given in seconds and are
averaged over 50 random instances. Our attacks are performed under the known
plaintext or known ciphertext scenario and there is no difference between them.
For offset=0, the BEE works seriously overtime with only one trace and 5 traces
are advisable to recover the key within a proper time. For offset=2, as many as
13 traces are required. It is observed that the Hamming distances leaked near
the known plaintext or ciphertext is more useful than the ones in the middle for
solving the system in a reasonable time. Note that more traces are required for
attacking SIMON-32 than for AES or PRESENT. This is because the Hamming
distance leakages on 16-bit states provide less information than that on 8-bit
states.
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Table 4. Experimental results of SIMON-32

offset #traces #rounds time (s)

0 5 6 36.32

1 11 7 386.34

2 13 8 320.11

C Running Time of Cold Boot Attack against AES-128

In this appendix the running time of the cold boot attack against AES-128 is
shown in Table 5, where “SCIP” stands for the method in [1]; “ISBS” represents
the method in [16]; “BEE min.” and “BEE sat.” are methods in this paper and
short for “BEE minimize” and “BEE satisfiability” respectively. Our experiments
are carried out with CryptoMiniSat as the underlying solver of BEE on a PC
with 3.4 GHz CPU (only one core is used) and 4 GB Memory. Experiments of
“SCIP” and “ISBS” are conducted on PCs with 2.6 Ghz and 2.8 Ghz respectively.

Table 5. The running time of key recovery considering 4 rounds of key schedule output
of AES-128 (in seconds)

δ0 Method limit t min t avg. t max t

0.15 SCIP 60 1.78 11.77 59.16

ISBS 60 0.002 0.07 0.15

BEE min. 60 1.29 2.02 2.36

BEE sat. 60 1.25 1.94 2.33

0.30 SCIP 3600 4.86 117.68 719.99

ISBS 3600 0.002 0.14 2.38

BEE min. 60 1.34 2.15 2.64

BEE sat. 60 1.34 2.27 2.55

0.35 SCIP 3600 4.45 207.07 1639.55

ISBS 3600 0.002 0.27 7.87

BEE min. 60 1.41 2.10 2.76

BEE sat. 60 1.42 2.34 2.59

0.40 SCIP 3600 4.97 481.99 3600

ISBS 3600 0.002 0.84 20.30

BEE min. 60 1.48 2.44 3.34

BEE sat. 60 1.44 2.43 3.11

0.50 SCIP 3600 6.57 3074.36 3600

ISBS 3600 0.002 772.02 3600

BEE min. 60 1.47 1.94 4.18

BEE sat. 60 1.62 2.82 3.94
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