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Abstract. In this paper, we propose an efficient higher order total vari-
ation regularization scheme for image denoising problem. By relaxing the
constraints appearing in the traditional infimal convolution regulariza-
tion, the proposed higher order total variation can remove the staircasing
effects caused by total variation as well as preserve sharp edges and finer
details well in the restored image. We characterize the solution of the
proposed model using fixed point equations (via the proximity opera-
tor) and develop convergent proximity algorithms for solving the model.
Our numerical experiments demonstrate the efficiency of the proposed
method.
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1 Introduction

Noise removal is a long standing problem in image processing. Many different
methods have been proposed for image denoising problem, among which the well-
known Rudin-Osher-Fatemi (ROF) total variation (TV) model is one of the most
popular methods [8]. This model restores the image by solving a minimization
problem

arg min
u

{1
2
‖u − f‖22 + λ TV(u)}, (1)

where f is the observed noisy image, TV(u) denotes the total variation of u and
λ is the regularization parameter to balance both terms in (1). The distinctive
feature of the total variation is that it can preserve sharp edges well. However,
natural images usually contain smooth part that can be destroyed by TV, and
therefore, the denoised image by total variation regularization often suffers the
undesired staircasing effects in the flat region of the image [10]. Addressing this
drawback of the total variation, many improved ROF models have been proposed
in the recent literature. These approaches can be roughly divided into two cate-
gories. In the first category, some local gradient information is added to the total
variation to make it differentiate different features of the image [4,5,11]. Another
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category to reduce the staircasing effect in the restored image is to incorporate
higher order derivatives into the regularization term. One successful approach
in this direction was give in [2] who suggested to use the infimal convolution of
functionals with first and second order derivatives as regularizer. The resulting
image denoising model has the form of

arg min
u

{1
2
‖u − f‖22 + ICTV(u)}, (2)

where ICTV(u) is the infimal convolution regularization that will be defined in
Sect. 2. Although the staircaing effects caused by total variation can be alleviated
to some extent, the infimal convolution regularization often penalizes the smooth
regions of the image too much and may blur the sharp edges and finer details of
the image.

In this paper, a novel higher order total variation regularization is proposed
to remove the staircasing effects while still preserve sharp edges and finer details
in the restored image. We first give an equivalent formulation of the traditional
infimal convolution regularizer and motivate the proposed higher order total
variation by relaxing the constrains appearing in traditional infimal convolution
regularizer. This modification will not increase any difficulties for the numerical
treatments of the resulting image denoising model. We characterize the solution
of the proposed model via fixed points of fixed point equations in which the prox-
imity operators of convex functions are involved. Based on the characterization,
the convergent proximity algorithm is developed to solve the model.

The paper is organized as follows. We shall briefly introduce the difference
matrices that are used to define total variation and the regularization terms
in this paper in Sect. 2. In Sect. 3, we present the higher order total variation
regularization term and the proposed image denoising model. We characterize
the solution of the model via fixed point equations and develop numerical algo-
rithms for the proposed model in Sect. 4. Numerical experiments showing the
performance of our method is given in Sect. 5. Finally, we conclude our paper in
Sect. 6.

2 Difference Matrices and Total Variation

In this section, we present the precise definition of the regularization terms
appearing in model (1) and (2). For the sake of simplicity, we assume the image
is an n × n square matrix for some integer n. To describe the problem in matrix
algebra language, we treat the image as a vector in R

N by sequentially concate-
nating the columns of the image. Here we assume that N = n2. To define the
total variation of the image u, we need a n × n backward difference matrix

D :=

⎡
⎢⎢⎢⎣

0
−1 1

. . . . . .
−1 1

⎤
⎥⎥⎥⎦ ,
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then −D�D is the second order central difference matrix. Since we reshape the
square image into a vector, we can use

Dx := In ⊗ D, Dy := D ⊗ In

as the first order difference matrices for the image, where ⊗ denotes the Kro-
necker product of the matrices and In denotes the n×n identity matrix. Hence,
by setting the gradient matrix

B1 := [Dx;Dy]

which is formed by stacking two matrices into a single one, and ϕ : R2N → R

defined for z ∈ R
2N as

ϕ(z) :=
N∑

i=1

√
z2i + z2i+N , (3)

the composition ϕ(B1u) computes the total variation TV(u) appearing in the
model (1).

The second order difference matrices for the image can be defined as

Dxx := In ⊗ (−D�D), Dyy := (−D�D) ⊗ In, Dxy := (−D�) ⊗ D, Dyx := D ⊗ (−D�),

using which we can get the second order gradient matrix

B2 := [Dxx;Dxy;Dyx;Dyy].

The first and second order gradient matrices B1 and B2 are related by

B2 = RB1

where

R =

⎡
⎢⎢⎣

In ⊗ −Dt 0
−Dt ⊗ In 0

0 In ⊗ −Dt

0 −Dt ⊗ In

⎤
⎥⎥⎦ .

Based on our notation, the regularizer ICTV(u) in (2) which use the infimal
convolution of functionals with first and second order derivatives has the form of

ICTV(u) := min
u=u1+u2

{λ1ϕ(B1u1) + λ2ψ(B2u2)}, (4)

where λ1 and λ2 are positive parameters balancing between the first and second
order derivatives, and ψ : R4N → R is defined z ∈ R

4N as

ψ(z) :=
N∑

i=1

√√√√
3∑

j=0

z2i+jN . (5)
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3 The Proposed Model

In this section, we give the proposed higher order total variation regularization
term and the resulting image denoising model. The proposed regularizer can
be seen as the improved version of the infimal convolution regularizer in (4).
The following lemma presents an equivalent form of the infimal convolution
regularizer in (4) which facilitates us to motivate the proposed higher order
total variation regularization term.

Lemma 1. For any u, we have that

ICTV(u) = min
B1u = d + x
d, x ∈ R(B1)

{λ1ϕ(d) + λ2ψ(Rx)}, (6)

where R(·) denotes the range of a matrix.

Proof. Clearly, we can conclude that

min
B1u = d + x
d, x ∈ R(B1)

{λ1ϕ(d) + λ2ψ(Rx)} = min
B1u=B1u1+B1u2

{λ1ϕ(B1u1) + λ2ψ(B2u2)}

by setting d = B1u1 and x = B1u2.
Since u = u1 + u2 implies that B1u = B1u1 + B1u2, we can get

min
u=u1+u2

{λ1ϕ(B1u1) + λ2ψ(B2u2)} ≥ min
B1u=B1u1+B1u2

{λ1ϕ(B1u1) + λ2ψ(B2u2)}
(7)

On the other hand, for any u1, u2 satisfying B1u = B1u1 + B1u2, there exists
v ∈ N (B1) such that u = u1 + u2 + v, and we can have

λ1ϕ(B1u1) + λ2ψ(B2u2) = λ1ϕ(B1(u1 + v)) + λ2ψ(B2u2)
≥ min

u=u1+u2
{λ1ϕ(B1u1) + λ2ψ(B2u2)}

which implies that

min
B1u=B1u1+B1u2

{λ1ϕ(B1u1) + λ2ψ2(B2u2)} ≥ min
u=u1+u2

{λ1ϕ(B1u1) + λ2ψ(B2u2)}

This together with (7) complete the proof.

The proposed higher order total variation regularization term can be seen as
the improved version of the infimal convolution regularizer and has the form of

HTV(u) = min
B1u=d+x

{λ1ϕ(d) + λ2ψ(Rx)}. (8)

As can be seen from Lemma 1, the difference between the original infimal con-
volution relarization and its modified version (8) consists in the relaxed condi-
tions on the new regularizer. For HTV(u) we no longer have the restriction that
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d, x ∈ R(B1) and B1u can be decomposed into any components d and x. The
authors in [9] showed that this modification can generally lead to better numeri-
cal results than the original model (4). This modification was given a theoretical
fundament in [1] based on tensor algebra and the corresponding new regularizer
was called total generalized variation.

Using the higher order total variation in (8) as the regularizer, the proposed
image denoising model is

arg min
u

{1
2
‖u − f‖22 + HTV(u)}, (9)

which can be reformulated as an equivalent unconstrained two variables mini-
mization problem

arg min
u,d

{1
2
‖u − f‖22 + λ1ϕ(d) + λ2ψ(B2u − Rd)}. (10)

Both above models are equivalent in the sense that if the pair (û, d̂) is the solution
of model (10) then û is the solution of model (9). Therefore, we can solve model
(10) as an alternative of directly solving model (9).

4 Minimization Algorithm

The main focus of this section is to give numerical proximity algorithm that
solve the proposed model (10). Proximity algorithm was proposed in [6] for solv-
ing the ROF model and outperformed the benchmarking split Bregman itera-
tion method. The application of the proximity algorithm to other image models
can be found in [3,7]. The main idea of this algorithm is firstly characterize
the solution of the model via the fixed point of fixed point equations in which
the proximity operators of the convex functions are included, and then develop
efficient numerical algorithms via various fixed point iterations. The proximity
operator of a real-valued function g is defined for x ∈ R

d and γ > 0 by

proxγg(x) := arg min
y

{1
2
‖y − x‖22 + γg(y)}

For convenience of developing numerical algorithms, we can rewrite the pro-
posed model into a general form of

arg min
w

{F (w) + λ2ψ(Bw)}, (11)

by defining the matrix B, the vector w and the function F as

B = [B2,−R], w = [u; d]

and
F (w) =

1
2
‖u − f‖22 + λ1ϕ(d)

respectively. The following proposition characterizes a solution of model (11) in
terms of fixed point equations.
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Proposition 1. If ŵ is a solution of model (11), then for any σ, γ > 0, there
exist two vectors b, c such that

ŵ = prox 1
σ F ((I − γ

σ
BtB)ŵ − γ

σ
Bt(b − c))

c = prox 1
γ ψ(b + Bŵ) (12)

b = b + Bw − c

Conversely, if there exist positive parameters σ, γ and vectors b, c and ŵ satisfying
equations in (12), then ŵ is a solution of model (11).

Proof. See Proposition 5 in [3].

According to Proposition 1, the solution of model (10) is characterized by
the fixed point equations in (12). Based on these fixed point equations, we can
naturally propose an iterative algorithm that generates the sequence {wk, ck, bk}
from arbitrary initial vector (w0, c0, b0). This iterative procedure may be stated
as follows:

⎧
⎨
⎩

wk+1 = prox 1
σ F ((I − γ

σ BtB)wk − γ
σ Bt(bk − ck)

ck+1 = prox 1
γ ψ(bk + Bwk+1)

bk+1 = bk + Bwk+1 − ck+1

. (13)

The following theorem establishes a convergence result of the proposed iterative
scheme (13), its proof can be found in Theorem 4.1 in [3].

Theorem 1. If the positive numbers γ and σ are chosen to satisfy

σ

γ
<

1
‖B‖22

, (14)

then the sequence {(wk, bk, ck)} generated by the iterative scheme (13) converges
to the solution of model (10).

Implementing the iterative procedure (13) requires the availability of explicit
forms of two proximity operators prox 1

σ F and prox 1
γ ψ. We next present explicit

forms of these proximity operators. We first give the closed forms of the proximity
operator of F . Remembering that w = [u; d] and F (w) = 1

2‖u − f‖22 + λ1ϕ(d),
the corresponding proximity operator of F in (13) reads

[
uk+1

dk+1

]
= prox 1

σ
F ((I − γ

σ
BtB)wk − γ

σ
Bt(bk − ck)) = argminu,d{ 1

2
‖
[
u

d

]

−
[
(I − γ

σ
Bt

2B2)uk − γ
σ

Bt
2(b

k − ck)

(I − γ
σ

RtR)dk + γ
σ

Rt(bk − ck)

]
‖2 + 1

2σ
‖u − f‖2 + λ1

σ
ϕ(d)} (15)

The minimization problem in (15) is very easy to compute since it can solved
separately with respect to uk+1 and dk+1, that is we have

uk+1 =
1

1 + σ
f +

σ

1 + σ
((I − γ

σ
Bt

2B2)uk − γ

σ
Bt

2(b
k − ck))

dk+1 = proxλ1
σ ϕ

((I − γ

σ
RtR)dk +

γ

σ
Rt(bk − ck)). (16)
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Both of the proximity operators prox 1
γ ψ and proxλ1

σ ϕ
appearing in (13) and

(16) have the closed-form solutions respectively. For t > 0 and x ∈ R
2N and

x̃ ∈ R
4N , set y := proxtϕ(x) and z := proxtψ(x̃), writing xi := [xi;xi+N ], and

x̃i := [x̃i; x̃i+N ; x̃i+2N ; x̃i+3N ], for i = 1, 2, · · · , N , we have
[

yi

yi+N

]
= max {‖xi‖2 − t, 0} xi

‖xi‖2 (17)

and ⎡
⎢⎢⎣

zi

zi+N

zi+2N

zi+3N

⎤
⎥⎥⎦ = max

{
‖x̃i‖2 − t, 0

} x̃i

‖x̃i‖2
(18)

respectively.
In summary, we have the following convergent algorithm for solving prob-

lem (10):

Algorithm 1. Proximity algorithm to solve the proposed model (10).

1. Given: f and positive parameters λ1, λ2, σ, γ satisfies σ
γ

< 1
‖B‖2

2. Initialization: u0 = 0, d0 = 0, b0 = 0, c0 = 0
3. For k ∈ N,

(a) uk+1 = 1
1+σ

f + σ
1+σ

((I − γ
σ
Bt

2B2)u
k − γ

σ
Bt

2(b
k − ck))

dk+1 = prox λ1
σ

ϕ
((I − γ

σ
RtR)dk + γ

σ
Rt(bk − ck))

(b) ck+1 = prox 1
γ

ψ(bk + B2u
k+1 − Rdk+1)

(c) bk+1 = bk + B2u
k+1 − Rdk+1 − ck+1

(d) Stop, if uk+1 converges or satisfies a stopping criteria; otherwise, set k ← k+1.
4. Write the output from the above loop as: û, d̂

5 Experiments

In this section, we justify the proposed higher order total variation regularization
term and image denoising model by its performance in removing Gaussian noise
from images. The peak signal-to-noise ration(PSNR) is used to measure the
quality of the restored image. We select the standard pepper and lena images
and a CT image as our testing data. Both of the lena and pepper are with the
size of 256 × 256, and the CT image is with the size of 555 × 555. All of the
images are shown in Fig. 1. The regularization parameters are chosen to produce
the highest PSNR values in all of the experiments. The stopping criterion of all
of the algorithms is that the relative error between the successive iterates of the
restored images should satisfy the following inequality

‖ui+1 − ui‖22
‖ui‖22

≤ 10−4
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Lena Pepper CT

Fig. 1. The original images.

Total variation Infimal convolution Proposed

Fig. 2. The restored CT images in the case of Gaussian noise with δ=10.

where ui is the denoised image at the i-th iteration. Each PSNR value reported
in this section is the averaged result of three runs.

We add additive white Gaussian noise with standard deviation δ = 10 and
δ = 20 to the lena, pepper and CT images respectively. We use the ROF model
(1), the infimal convolution model (2), and the model (9) which is based on our
proposed higher order total variation to restore the images. The PSNR results
of all restored images are shown in Table 1. We can see that our proposed model
can produce the restored images with the higher PSNR values than those of
the ROF model and infimal convolution model. To see the visual effects of the
restored images, we show the CT images (the case of δ = 10) in Fig. 2. Figure 3 is
the zoomed version of Fig. 2. It can be clearly seen the staircasing effects caused
by the total variation when the image is zoomed in. The infimal convolution
regularization can remove the staircasing effects caused by TV, however, the
visible blurring artifacts at the edges are introduced. Our proposed higher order
total variation regularization can produce more favorable result without visual
artifacts while still preserve sharp edges and finer details well.
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Table 1. The summary of the restoration results of Models (1), (2), and (9).

Model δ = 10 δ = 20

Lena Pepper CT Lena Pepper CT

Model (1) 32.30 32.47 36.84 29.07 29.67 33.67

Model (2) 33.07 33.28 37.55 29.55 30.21 34.51

Model (9) 33.52 33.69 37.98 30.06 30.75 34.86

Total variation Infimal convolution Proposed

Fig. 3. Zoomed results of the restored CT images in the case of Gaussian noise with
δ=10.

6 Concluding Remarks

We propose an higher order total variation regularization for image denoising
problem. This regularization term can be seen as the improvement of the tradi-
tional infimal convolution type regularization and can alleviate the staircasing
effects in the restored image caused by total variation. We use the proximity algo-
rithm to solve the resulting model and establish the convergence result of the
algorithm. Numerical results presented in this paper demonstrate the efficiency
of the proposed method.
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