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Abstract. For the convenience of providing temporal and spectral information
by a single variable, fractional Fourier transformation (FRFT) is more and more
applied to image processing recently. This paper focuses on the statistical reg-
ularity of FRFT coefficients of natural images and proposes that the real and
imaginary parts of FRFT coefficients of natural images take on the generalized
Gaussian distribution, the coefficient modulus follow the gamma distribution
and the coefficient phase angles tend to the uniform distribution, moreover, the
real and imaginary parts of coefficient phases similar to the extended beta dis-
tribution. These underlying statistics can provide theoretical basis for image
processing in FRFT, such as dimensionality reduction, feature extraction,
smooth denoising, digital forensics, watermarking, etc.
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Fractional Fourier transformation (FRFT), as a kind of generalized Fourier transfor-
mation (FT), can be interpreted as a rotation of the signal in the time-frequency plane.
Different from wavelet transformation, short-time Fourier transformation, Gabor
transformation and other common two-parameters time frequency distributions, FRFT
can provide the related local information of the signal in the time domain and the
frequency domain simultaneously by a single variable, thus it has a wide application
prospect in the field of signal processing [1]. FRFT is also introduced into the image
processing, which is a significant branch of signal processing, such as the data com-
pression [2], the image registration [3], the facial expression recognition [4], the image
encryption [5], the digital watermarking [6] and so on. For the image processing based
on FRFT, it is necessary to learn the related prior knowledge of FRFT coefficients of
natural images. However, to the author’s knowledge, there has not been relevant
research report currently. Thus, this paper will focus on the statistical probability
distribution of FRFT coefficients of natural images. As the FRFT phase gaining more
and more attention for carrying the important image texture information [4], this paper
will explore the statistical distribution of the amplitude and phase parts also with the
real and imaginary parts of FRFT coefficients of natural images.
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The following paper is organized as follows: firstly, introduces the FRFT briefly;
and then discusses the probability distribution of the FRFT coefficients of natural
images, including the real part, the imaginary part, the amplitude part and the phase
part; finally, makes conclusions and points out the future research directions.

1 Fractional Fourier Transformation

The fractional Fourier transformation (FRFT) of the one-dimensional function xðtÞ is
defined as the follows:

Xp uð Þ ¼ Z1

�1
x tð Þ � Kp t; uð Þdt ð1Þ

where the kernel function of FRFT is given as:

Kp t; uð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
1�jcota

2p

q
e
j t2þu2ð Þ

2 cota�jtucsca a 6¼ np

d t � uð Þ a ¼ 2np
d t þ uð Þ a ¼ 2nþ 1ð Þp

8><
>: ð2Þ

where a ¼ pp=2 is the order of FRFT and p is a real number. For p only existing in the
trigonometric function of the definition of FRFT, as (1) shows, the FRFT follows a
period of p ¼ 4. Furthermore, kp t; uð Þ shows symmetry properties in the range of
p 2 �2; 2ð �, and so, only FRFT with p 2 0; 1½ � is generally taken into account [7]. It
must be pointed out that the FRFT of signal with p ¼ 0 is just the original signal, while
the FRFT of signal with p ¼ 1 is the ordinary FT of signal. Therefore, when p changes
from 0 to 1, the result of FRFT changes from the original signal to the ordinary FT
signal smoothly, and the corresponding data domain changes from the time domain to
the frequency domain.

The FRFT of two-dimensional function x s; tð Þ is defined as the follows:

Xp1;p2 u; vð Þ ¼ Z1

�1

Z1

�1
x s; tð ÞKp1;p2 s; t; u; vð Þdsdt ð3Þ

where the kernel function, Kp1;p2 s; t; u; vð Þ, is given as:

Kp1;p2 s; t; u; vð Þ ¼ 1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j cot a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j cot b

p
� e

j s2þu2ð Þ
2 cot a�jsu csc a � e

j t2þv2ð Þ
2 cot b�jsu cscb

ð4Þ

where a ¼ p1p=2, b ¼ p2p=2 are the orders of 2D-FRFT and p1; p2 are real numbers.
According to the commutative and associative of multiplication, Kp1;p2 s; t; u; vð Þ can be
decomposed as:
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Namely, the kernel of 2D-FRFT can be decomposed as the multiplication of two
kernels of 1-D FRFT. Substituting (4) into (3), there are:

Xp1;p2 u; vð Þ ¼ Z1

�1

Z1

�1
x s; tð ÞKp1;p2 s; t; u; vð Þdsdt

¼ Z1

�1

Z1

�1
x s; tð ÞKp1 s; uð Þds

" #
Kp2 t; vð Þdt

ð6Þ

Comparing (5) with (1), it can be known that 2D-FRFT can be decomposed into
column 1-D FRFT of original data matrix and then row 1-D FRFT of column trans-
formed data matrix.

2 Statistic Distribution Modeling of the FRFT Coefficients
of Natural Images

Through FRFT, the natural image data will become complex number, thus, the sta-
tistical analysis of the real and imaginary parts of FRFT coefficients of natural images
will all be made in this paper. Furthermore, considering that more and more image
processing algorithms pay attention to the FRFT phase for its carrying the importance
image texture information [4], we also focus on the statistical analysis of the amplitude
and phase parts of FRFT coefficients of natural images.

According to the analysis of the previous section, two FRFT orders p1; p22 0; 1½ �
with the interval D ¼ 0:1 are adopted when analyzing the statistical probability dis-
tribution of FRFT coefficients of natural images. The experimental database Iif g
consists of 96 commonly used 128� 128 gray images, including Lena, Baboon etc. All
images in Iif g are sequentially transformed with FRFT for different orders and the
FRFT coefficients with the same orders pi1; p

i
2

� �
, although from the different images,

are stored together forming a data set for the statistical analysis.

2.1 Statistical Distribution of the Real and Imaginary Parts

Figure 1 shows the histograms for the real part R ¼ real Xp1;p2 u; vð Þ� �
and the imaginary

part R ¼ imag Xp1;p2 u; vð Þ� �
of the FRFT coefficients of natural images along with the

fitted generalized Gaussian distribution (GGD).
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The probability density function (pdf) of GGD can be defined as the follows:

fGGD xja; bð Þ ¼ b
2aC 1=bð Þ e

� xj j=að Þb ð7Þ

where �j j is the modulo operation, C �ð Þ is the Gamma function, and the real parameter a
is proportional to the peak width of pdf, while the real parameter b is inversely
proportional to the peak rate of decline. Generally, a is called scale parameter and b is
called shape parameter. Moreover, when b ¼ 2, GGD becomes the Gaussian distri-
bution; when b ¼ 1, GGD is the Laplace distribution. Sharifi and Leon-Garcia [8] had
given the moment estimation of the two parameters in GGD:

a ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 3=bð Þ=C 1=bð Þp ð8Þ

b ¼ F�1 m=rð Þ ð9Þ

where m ¼ 1
N

PN
i¼1 xij j is the mean of the sample modulus, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 x

2
i

q
is the

standard deviation of samples, and F�1ð�Þ is the inverse function of F xð Þ ¼
C 2=xð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C 1=xð Þ � C 3=xð Þp
.

Although Fig. 1 seems clear that the GGD can accurately models the statistical
distribution of R and I, this paper will further provide the quantitative analysis of fitting

Fig. 1. Statistical histograms for the FRFT coefficients of natural images and the fitted GGD
curves
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by the Kullback-Leibler divergence (KLD). KLD is a measure of the asymmetry
between two discrete distributions with probabilities P and Q:

KLD P;Qð Þ ¼
XM
i¼1

Piln
Pi

Qi
ð10Þ

where M is the number of the sample subspaces, Pi and Qi represent the probabilities of
the sample subspace i of P and Q, ln �ð Þ is the natural logarithm. Equation (9) makes
sense only if Pi [ 0 and Qi [ 0, else Pi ln Pi=Qið Þ ¼ 0. If P ¼ Q, then KLD P;Qð Þ ¼ 0.
Namely, the smaller the KLD, the higher of the similarity between P and Q.

The a, b and KLD of the GGD fitting curve of the real and imaginary parts of FRFT
coefficients with different orders of natural images are shown as the Fig. 2, from which
it can be seen that:

• The real and imaginary parts of the FRFT coefficients of natural images are all
similar to the GGD distribution. As the FRFT orders increase, the parameter a
increases, while the shape parameter b decreases. Moreover, a and b are symmetric
about the diagonal of FRFT orders, that is, the real and imaginary parts of FRFT
coefficients with the orders i; jð Þ and j; ið Þ are similar to the same GGD distribution.

• The GGD shape parameters b of the real and imaginary parts of coefficients with
different FRFT orders are all less than 2, namely, the statistical probability distri-
butions of the real and imaginary parts of FRFT coefficients of natural images
neither the Gaussian nor fixing on the Laplace.

• According to the KLD, when the FRFT order tends to 1, the fitting degree of the
GGD curve, which is obtained by Sharifi and Leon-Garcia [8], decreases. This is
mainly because the FRFT gradually transforms into the FT when its orders tend to 1.
Due to the prominent energy aggregation property of FT, more transform coefficients
turn to zeros, all the energy focuses on fewer singular values, and the peak of the
statistical probability density curve becomes sharper, which is reflected in the GGD
parameters a reduces to 0, while b increases to infinity, as is shown in Fig. 2. At this
time, any slight error of the GGD parameters’ moment estimation may greatly
influence on the curve fitness. However, according to Fig. 1, a remarkable similarity
can be found between the statistical distribution of the real and imaginary parts of
FRFT coefficients and the GGDs, even when the FRFT orders tend to 1.

Fig. 2. The parameters of the fitted GGD curve with different FRFT orders
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2.2 Statistical Distribution of the Coefficient Amplitudes

Taking the amplitude of FRFT coefficients of natural images as V ¼ Xp1;p2 u; vð Þ�� ��, it
can be discovered that the statistical distribution of V is similar to the Gamma distri-
bution (ΓD), as is shown in Fig. 3.

The pdf of ΓD is defined as the follows:

fCD x a; bjð Þ ¼ ab

C bð Þ x
b�1e�ax ð11Þ

where x� 0, the positive real parameter a is proportional to the peak width while the
positive real parameter b is inversely proportional to the peak rate of decline. Thus, a is
usually called the scale parameter and b is usually called the shape parameter. It is
noted that ΓD becomes exponential distribution when b ¼ 1. The maximum likelihood
estimation of two parameters ΓD is given by Dang and Weerakkody [10]:

a ¼ b=�x ð12Þ

b ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4logð�x=x̂Þ=3p
4lnð�x=x̂Þ ð13Þ

where, �x ¼ 1
N

PN
i¼1

xi is the arithmetic mean of samples, and x̂ ¼ QN
i¼1 xi

� �1=N
is the

geometric mean of samples.
As the Fig. 3 shows, when the FRFT orders are small, the statistical distribution of

the amplitude of FRFT coefficients of natural images can be well fitted by ΓD, but as
the orders become higher, there are significant differences between them. From the a; b
and KLD of the ΓD fitting curve with difference FRFT orders in Fig. 4, some further
conclusions can be drawn as:

Fig. 3. Statistical histograms for the FRFT amplitude of natural images and the fitted ΓD curves
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• The probability density of the amplitudes of the FRFT coefficients of natural images
is similar to the ΓD and b[ 1, which means the amplitudes of the FRFT coeffi-
cients of natural images do not follow the exponential distribution.

• With the FRFT orders becoming higher, the b obtained by the maximum likelihood
estimation method in Dang and Weerakkody [10] decreases gradually. However,
when FRFT orders higher than 0.5, b\ 2, and there are significant differences
between the statistical probability distribution of the amplitudes of FRFT coeffi-
cients of natural images and the ΓD fitting curve, just as Fig. 4(c) shows. Therefore,
it’s necessary to carry out further research on getting the fitting curve of the FRFT
amplitudes with high orders of natural images.

2.3 Statistical Distribution of the Coefficient Phase

Taking the phase angles of the FRFT coefficients of natural images as A ¼ arg tg R=Ið Þ,
the statistical probability distribution of A gradually tends to the uniform distribution
(UD) with the rising of the FRFT orders (Fig. 5).

Fig. 4. The parameters of the fitted ΓD curve with different FRFT orders

Fig. 5. Statistical histograms for the FRFT phase angles of natural images and its fitted UD
curves
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For the further study on the statistical probability distribution of the phases of FRFT
coefficients of natural images, we takes the phases of FRFT coefficients as
A0 ¼ Xp1;p2 u; vð Þ=V . Then we can find that, the real part RA ¼ real A0ð Þ and imaginary
part IA ¼ imag A0ð Þ of the complex number A0 are all similar to the beta distribution
(BD) with the domain of (−1,1), as is shown in Fig. 6.

The traditional BD is a two- parameters probability distribution with the domain of
(0,1), and its pdf is:

fBD xja; bð Þ ¼ C aþ bð Þ
C að ÞC bð Þ x

a�1 1� xð Þb�1 ð14Þ

where 0\x\1, a and b are positive real numbers. According to the definition of
traditional BD, the pdf of the extended BD with the domain of (−1,1) can be obtained
as *appendix for derivation:

f 0BD xja; bð Þ ¼ C aþ bð Þ
C að ÞC bð Þ � 2

1� aþbð Þ 1þ xð Þa�1 1� xð Þb�1 ð15Þ

where �1\x\1. And according to the f 0BD x a; bjð Þ, the first moment m1 and the second
moment m2 of the extended BD can be obtained respectively as:

Fig. 6. Statistical histograms for the FRFT phases of natural images and its fitted BD curve.
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m1 ¼ E xð Þ ¼ Z1

�1

x � fBD xja; bð Þdx ¼ a� b
aþ b

ð16Þ

m2 ¼ E x2
� � ¼ Z1

�1

x2 � fBD xja; bð Þdx

¼ 1� 4ab
aþ bð Þ aþ bþ 1ð Þ

ð17Þ

And we can derive the two parameters a and b of the extended BD from (15) and
(16) as:

a ¼ 1þ m1

1� m1
b ð18Þ

b ¼ 1� m1 � m2

2 m2
1 þ m2

� � ð19Þ

The ab and KLD of the extended BD fitting curve of the real and imaginary parts of
FRFT phases with different orders of natural images are listed in Fig. 7, and some
further conclusions can be drawn as:

• The real and imaginary parts of the FRFT phases of natural images are all similar to
the extended BD distribution. If the FRFT orders are non-zero, the a and b have no
significant differences as the transformation order changing.

• The parameters a and b of the extended BD of the real and imaginary parts of FRFT
phases of natural images are approximately equal to 0.5, and furthermore, they are
symmetrical about 0.5 in a certain sense: the extended BD parameters of the real
part ar; brð Þ and the extended BD parameters of the imaginary part ai; bið Þ with the
same FRFT orders satisfy ar � 0:5 � 0:5� ai and br � 0:5 � 0:5� bi.

• According to the KLD, if there is zero in the FRFT orders, the fitting degree
between the extended BD and the statistical distribution of the real and imaginary
parts of FRFT phases of natural images may decrease. This is mainly because the
natural images data remains unchanged when the FRFT orders are zero, which
means the data is still the original real data and the phase equals zero.

Fig. 7. The parameters of the fitted BD curve with different FRFT orders.
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3 Conclusion

In this paper, we have studied the statistical distribution of FRFT coefficients of natural
images and proposed that the real and imaginary parts of FRFT coefficients take on the
generalized Gaussian distribution, the FRFT modulus follow the gamma distribution
and the FRFT phase angles tend to the uniform distribution, moreover, the real and
imaginary parts of FRFT phases meet the extended beta distribution with the definition
domain of (−1,1). These underlying statistics rules are expected to provide theoretical
basis for the image processing in FRFT, such as dimensionality reduction, feature
extraction, smooth de-noising, digital forensics and watermarking etc. These will be the
key of our future work.

Appendix

The extended beta distribution with the definition domain of (−1,1).
The traditional beta distribution (BD) originated from such a question: sampling n

times for the random variable X uniformly distributed on (0,1), then the distribution of
the kth largest xk is BD and its probability density function is as the follows:

fBDðx a; bj Þ ¼ C aþ bð Þ
C að ÞC bð Þ x

a�1 1� xð Þb�1; 0\x\1 ð20Þ

where a ¼ k and b ¼ n� k þ 1. And then, we can extended the definition domain of
BD to (−1,1), which is to find the distribution of the kth largest xk in the n times
sampling of the random variable X uniformly distributed on (−1,1).

Let xk 2 x; xþ Dxð Þ, then its probability is:

P x\xk � xþ Dxð Þ ¼ C1
n � Ck�1

n � x� �1ð Þ
2

� �k�1

� xþ Dx� x
2

� 1� xþ Dxð Þ
2

� �n�k

¼ n!
k � 1ð Þ! n� kð Þ! � 2

�n � xþ 1ð Þk�1� 1� xð Þn�kDxþ o Dxð Þ

ð21Þ

where o Dxð Þ is the infinitesimal of Dx, then the probability density of xk is:

f xkð Þ ¼ lim
Dx!0

P x\xk � xþ Dxð Þ
Dx

¼ n!
k � 1ð Þ! n� kð Þ! � 2

�n � xþ 1ð Þk�1� 1� xð Þn�k

ð22Þ

For the known gamma function C nð Þ ¼ n� 1ð Þ!, let a ¼ k, b ¼ n� k þ 1, then the
above equation can be expressed as:
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f xkð Þ ¼ C aþ bð Þ
C að ÞC bð Þ � 2

1� aþbð Þ 1þ xð Þa�1 1� xð Þb�1 ð23Þ

That is, the pdf of the extended BD defined on (−1,1) is as the follows:

f 0BD xja; bð Þ ¼ C aþ bð Þ
C að ÞC bð Þ � 2

1� aþbð Þ 1þ xð Þa�1 1� xð Þb�1 ð24Þ
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